WO2010131715A1 - Culture apparatus - Google Patents

Culture apparatus Download PDF

Info

Publication number
WO2010131715A1
WO2010131715A1 PCT/JP2010/058124 JP2010058124W WO2010131715A1 WO 2010131715 A1 WO2010131715 A1 WO 2010131715A1 JP 2010058124 W JP2010058124 W JP 2010058124W WO 2010131715 A1 WO2010131715 A1 WO 2010131715A1
Authority
WO
WIPO (PCT)
Prior art keywords
culture
medium
container
scaffold
culture apparatus
Prior art date
Application number
PCT/JP2010/058124
Other languages
French (fr)
Japanese (ja)
Inventor
幸二 西田
義則 大家
伸吾 大竹
悟 前田
Tadashi OTAKE (大竹 直)
Original Assignee
株式会社 大竹
国立大学法人東北大学
大竹 千恵子
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 大竹, 国立大学法人東北大学, 大竹 千恵子 filed Critical 株式会社 大竹
Publication of WO2010131715A1 publication Critical patent/WO2010131715A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps

Definitions

  • the present invention relates to a culture apparatus for culturing cells efficiently, and particularly to a culture apparatus for one specimen for culturing cells for regenerative medicine.
  • Patent Documents 1 to 8 As a method of inducing regeneration of living tissue for regenerative medicine, there is a method of promoting cell proliferation and differentiation in vitro using a culture apparatus. Techniques for realizing such a method are disclosed in Patent Documents 1 to 8, for example. JP-A-4-356184 JP 2004-89138 A JP 2004-350557 A JP 2006-264647 A JP 2007-20493 A JP 2007-110932 A JP 2002-316136 A JP 2007-167002 A
  • a medium is used for culturing cells.
  • the medium is preferably always fresh because it supplies nutrients to the cells and removes wastes from the cells. Therefore, the replacement of the medium is a very important operation in the culture apparatus.
  • a skillful technique is usually required, and the cells may be infected with bacteria. Therefore, there is a demand for an apparatus that automatically changes the culture medium.
  • An object of the present invention is to provide a culture apparatus capable of automatically exchanging a medium.
  • the present invention provides a culture apparatus including a culture container for culturing cells using a culture medium, wherein the culture container includes a container body having a sealed space, a scaffold for holding cells in the sealed space, and a scaffold.
  • Scaffolding fixture for fixing provided at the center of the bottom of the container body, an inlet for injecting the medium into the sealed space, and provided at the top of the container body. Is provided on the top surface of the container body, and is provided above the diaphragm and the injection port to pressurize and depressurize the sealed space by vibrating up and down.
  • the medium by oscillating the diaphragm up and down, the medium can be injected into the sealed space from the inlet and discharged from the outlet. Therefore, the medium in the sealed space can be replaced little by little by vibrating the diaphragm. Thereby, automatic exchange of a culture medium is attained.
  • FIG. 5 is a VV cross-sectional view of FIG. 3. It is a disassembled perspective view of a scaffold, a scaffold fixing tool, and both horizontal arms. It is a top view of a scaffold, a scaffold fixture, and both horizontal arms.
  • FIG. 8 is a sectional view taken along line VIII-VIII in FIG. It is a front view of a 1st check valve. It is a longitudinal cross-sectional view of a 1st check valve. It is a XI arrow partial view of FIG.
  • FIG. 13 is a sectional view taken along line XIII-XIII in FIG. 12. It is a longitudinal cross-sectional view which shows sowing work. It is a longitudinal cross-sectional view which shows the movement state of a culture medium. It is a front view which shows the culture container of an airtight state independently. It is a front view which shows the culture part of an airtight state independently. It is a front view which shows the culture part of a double sealing state. It is a longitudinal cross-sectional view which shows the modification of a rotational drive mechanism. It is a perspective view of the modification of a scaffold fixing tool. It is a XXI arrow line view of FIG. FIG.
  • FIG. 21 is a sectional view taken along line XXII-XXII in FIG. 20. It is a longitudinal cross-sectional view of the culture container which has three through-holes for needles. It is a front view of another modification of a scaffold fixture. It is a XXV arrow line view of FIG. It is a longitudinal cross-sectional view of the culture container which has a deformation
  • FIG. 28 is a longitudinal sectional view showing a step subsequent to FIG. 27. It is a front view which shows the modification of a culture apparatus. It is a front view which shows the culture apparatus of 2nd Embodiment of this invention. It is a longitudinal cross-sectional view of an exposed part. It is a longitudinal cross-sectional view of another exposed part.
  • FIG. 1 is a front view showing a culture apparatus according to a first embodiment of the present invention.
  • the culture apparatus 100 includes an apparatus main body 101, a thermostatic chamber 103 in which the apparatus main body 101 is accommodated, and a control unit 109.
  • the control unit 109 includes a container drive control unit 105, a rotation drive control unit 106, a pH measurement control unit 107, and an imaging control unit 108. These control units 105, 106, 107, and 108 can be operated by an operator.
  • the apparatus main body 101 includes a culture unit 102, a container drive mechanism 3, and a rotation drive mechanism 4 on a substrate 111.
  • a container drive control unit 105 is connected to the container drive mechanism 3.
  • a rotation drive control unit 106 is connected to the rotation drive mechanism 4.
  • the culture unit 102 includes a culture vessel 1, an infusion medium tank 21, a medium infusion pipe 22, a discharge medium tank 23, and a medium discharge pipe 24.
  • the culture part 102 has established the airtight structure as a whole.
  • a first check valve 25 and a second check valve 26 are provided in the medium injection pipe 22 and the medium discharge pipe 24, respectively.
  • a first clamp member 27 and a second clamp member 28 are provided in the medium injection pipe 22 and the medium discharge pipe 24, respectively.
  • a pH measuring device 5 is provided in the culture medium discharge pipe 24.
  • a pH measurement control unit 107 is connected to the pH measuring device 5.
  • the culture vessel 1 is provided with a photographing mechanism 6.
  • a photographing control unit 108 is connected to the photographing mechanism 6.
  • the second check valve 26 is made of a material that does not adversely affect the living body, that is, a biocompatible material.
  • the biocompatible material is appropriately selected from, for example, resin, metal, glass, and the like. Also, these members can be discarded after use.
  • the culture apparatus 100 is configured such that the medium flows from the infusion medium tank 21 to the discharge medium tank 23 via the medium infusion pipe 22, the culture container 1, and the medium discharge pipe 24. . That is, the culture apparatus 100 of this embodiment is a perfusion type.
  • the culture vessel 1 is a vessel for culturing cells with a medium.
  • the culture container 1 includes a container body 11 having a sealed space 110, a scaffold 123 for holding cells in the sealed space 110, a scaffold fixture 12 for fixing the scaffold 123, and a medium in the sealed space 110.
  • the outlet 14 for discharging the culture medium from the sealed space 110 From the inlet 13 for injecting the medium, the outlet 14 for discharging the culture medium from the sealed space 110, the diaphragm 15 that pressurizes and depressurizes the sealed space by vibrating up and down, and the inlet 13 And a rectifying member 16 for flowing the injected culture medium toward the peripheral edge in the sealed space 110.
  • the container body 11 has a rectangular parallelepiped shape, and includes a bottom surface portion 111, first to fourth side surface portions 112, 113, 114, 115, and a top surface portion 116.
  • the sealed space 110 is surrounded by these six surface portions.
  • the injection port 13 extends from the lower portion of the first side surface portion 112 of the container body 11 through the bottom surface portion 111 and opens upward at the center of the bottom surface portion 111.
  • the rectifying member 16 is a plate material, and is arranged horizontally via the legs 161 above the injection port 13 with a slight gap 163 therebetween.
  • the center of the rectifying member 16 and the center of the injection port 13 coincide with each other in a plan view, and the rectifying member 16 secures a uniform gap 162 at the periphery in the sealed space 110.
  • the discharge port 14 is formed through the upper portion of the first side surface portion 112.
  • the diaphragm 15 is made of, for example, a stretchable synthetic rubber.
  • the diaphragm 15 constitutes an upper surface portion 116 of the container main body 11.
  • the peripheral edge portion 151 of the diaphragm 15 is fixed to the upper end surfaces of the four side surface portions of the container main body 11 by the ring plate 192 with screws 193, whereby the diaphragm 15 is fixed at the center portion thereof. 151 can vibrate up and down.
  • the diaphragm 15 moves upward, the inside of the sealed space 110 is depressurized, so that the medium can be injected into the sealed space 110 from the inlet 13, and when the diaphragm 15 moves downward, the sealed space 110. Since the inside is pressurized, the medium in the sealed space 110 can be discharged from the discharge port 14. Therefore, when the diaphragm 15 vibrates, the medium can be injected and discharged, that is, the medium can be exchanged in the sealed space 110.
  • the scaffold fixture 12 is supported in the sealed space 110 by the first horizontal arm 181 and the second horizontal arm 182.
  • the first horizontal arm 181 extends from the scaffold fixture 12, and a distal end 1811 is slidably inserted into a recess 1121 on the inner surface of the first side surface portion 112.
  • the second horizontal arm 182 extends from the scaffold fixture 12 through the third side surface 114.
  • the third side surface portion 114 is provided with a sealing member 1142 that seals the through hole 1141 via the O-ring 1143.
  • the second horizontal arm 182 penetrates the sealing member 1142 in an airtight manner and is rotatable via a bearing 1144.
  • the scaffold fixture 12 includes a scaffold fixture body 122 in which a through hole 121 in the thickness direction is formed in a disc, and an O-ring 124.
  • the through hole 121 is configured by communicating a large diameter portion 1211 and a small diameter portion 1212, and has a stepped portion 1213.
  • the seeded sheet-like scaffold 123 is fixed to the scaffold fixture 12 by sandwiching the peripheral edge between the stepped part 1213 and the O-ring 124, and constitutes a cell holding surface (culture surface).
  • a needle through hole 185 is formed in the first side surface portion 112.
  • the needle through-hole 185 can be sealed with a stopper 186 so that an injection needle for seeding cells can be inserted toward the seeding sheet-like scaffold 123 of the scaffold fixture 12 in the sealed space 110. Is formed.
  • the infusion medium tank 21 and the discharge medium tank 23 are made of, for example, deformable synthetic rubber.
  • the infusion medium tank 21 is installed on the substrate 111, and is therefore installed on the same plane as the culture vessel 1.
  • the culture medium injection pipe 22 and the culture medium discharge pipe 24 are made of, for example, deformable synthetic rubber.
  • the medium injection pipe 22 connects the injection medium tank 21 and the injection port 13 of the culture vessel 1.
  • the medium discharge pipe 24 communicates the discharge medium tank 23 with the discharge port 14 of the culture vessel 1.
  • the first check valve 25 has a spherical valve structure. That is, the first check valve 25 has a spherical valve 252 in the valve space 251.
  • the valve space 251 has an inlet 253 and an outlet 254.
  • the inlet 253 has a mortar shape with a gradually increasing diameter.
  • the outlet 254 has a double structure having a main port 2541 and a sub port 2542.
  • the spherical valve 252 has a size that can completely block the inlet 253 and the main port 2541, but cannot block the auxiliary port 2542.
  • the spherical valve 252 In the first check valve 25, when the medium flows in from the inlet 253, the spherical valve 252 is pushed by the medium and moves to the outlet 254 side. However, since the spherical valve 252 blocks the main port 2541 but does not block the sub port 2542, the culture medium flows through the sub port 2542. Therefore, in the first check valve 25, the flow of the medium from the inlet 253 toward the outlet 254 is ensured. On the other hand, when the culture medium flows in from the outlet 254, the spherical valve 252 is pushed by the culture medium and closes the inlet 253. Therefore, in the first check valve 25, the flow of the medium from the outlet 254 toward the inlet 253 is blocked. Thereby, the 1st check valve 25 exhibits a backflow prevention function.
  • the second check valve 26 also has the same structure and function as the first check valve 25.
  • the first check valve 25 when the weight of the spherical valve 252 is large, a large pressure is required to flow the culture medium from the inlet 253 to the outlet 254. Conversely, when the weight of the spherical valve 252 is small, a small pressure is sufficient. That is, according to the first check valve 25, the medium injection pressure can be changed by changing the weight of the spherical valve 252. Similarly, the discharge pressure of the culture medium can be changed by the second check valve 26. Therefore, according to the check valves 25 and 26, it is possible to adjust the pressure necessary for exchanging the culture medium.
  • the first check valve 25 when the diameter of the auxiliary port 2542 is small, a large pressure is required to flow the medium from the inlet 253 to the outlet 254. Conversely, when the diameter of the auxiliary port 2542 is large, a small pressure is sufficient. That is, according to the first check valve 25, the medium injection pressure can be changed by changing the diameter of the sub-port 2542. Similarly, the discharge pressure of the culture medium can be changed by the second check valve 26. Therefore, according to the check valves 25 and 26, it is possible to adjust the pressure necessary for exchanging the culture medium.
  • the first clamp member 27 is provided between the first check valve 25 and the injection port 13 in the medium injection pipe 22.
  • the second clamp member 28 is provided between the second check valve 26 and the discharge port 14 in the culture medium discharge pipe 24.
  • the first clamp member 27 is provided so that the pipe 22 can be closed.
  • the second clamp member 28 is provided so that the pipe 24 can be closed.
  • the container drive mechanism 3 is connected to the diaphragm 15. As shown in FIG. 1, the container drive mechanism 3 includes a first motor 31, a rotating member 32, an arm 33, a first connecting member 34, a rod 35, and a rod guide 36.
  • the first motor 31 is fixed to a vertical plate 112 erected on the substrate 111.
  • the first motor 31 has a horizontal rotation shaft 311 and is capable of on / off pulse control.
  • the rotating member 32 is a disc and is provided so as to rotate in a vertical plane by a horizontal rotating shaft 311.
  • FIG. 11 is a partial view taken along arrow XI in FIG.
  • a plurality (three in this case) of screw holes 321 are formed in the rotating member 32. Each screw hole 321 is separated from the rotation center 322 by a distance P. The distance P is different for each screw hole 321.
  • the arm 33 extends downward from the rotating member 32.
  • the upper end 331 of the arm 33 is detachably connected to any one screw hole 321 by a screw 323.
  • the rod 35 extends vertically downward from the lower end 332 of the arm 33.
  • the upper end 351 of the rod 35 is detachably connected to the lower end 332 of the arm 33 via the first connecting member 34.
  • a lower end 352 of the rod 35 is fixed to the center of the diaphragm 15.
  • the rod guide 36 is a horizontal plate having a through hole 361 in the center, and is supported above the diaphragm 15 by screws 193.
  • the rod guide 36 is disposed so that the rod 35 penetrates the through hole 361 (FIG. 5) in the vertical direction, and thereby guides the movement of the rod 35 in the vertical direction.
  • the rotating member 32 is rotated together with the horizontal rotating shaft 311, and the arm 33 and the rod 35 are moved up and down. Thereby, the diaphragm 15 vibrates up and down.
  • the rod 35 reciprocates up and down once, so that the diaphragm 15 vibrates once.
  • the horizontal rotation shaft 311 rotates continuously, the diaphragm 15 vibrates continuously.
  • the diaphragm 15 vibrates, the medium is injected and discharged in the sealed space 110, and the medium moves, that is, the medium is replaced.
  • the amplitude of the diaphragm 15 can be set arbitrarily. That is, the amplitude of the diaphragm 15 can be adjusted by the position of the screw hole 321 to which the upper end 331 of the arm 33 is connected. That is, when the upper end 331 of the arm 33 is connected to the screw hole 321 having the maximum distance P, the amplitude of the diaphragm 15 becomes maximum, and the upper end 331 of the arm 33 is set to the screw hole 321 having the minimum distance P.
  • the amplitude of the diaphragm 15 is minimized. For example, when the distance P is 4 mm, the amplitude is 8 mm.
  • the volume of the sealed space 110 decreases correspondingly, and an amount of the medium corresponding to the decreased amount is discharged, and when the diaphragm 15 moves upward, the corresponding amount.
  • the volume of the sealed space 110 increases, and an amount of medium corresponding to the increase is injected. Therefore, the magnitude of the amplitude of the diaphragm 15 corresponds to the amount of medium injected and discharged (movement amount). If the amplitude of the diaphragm 15 is large, the amount of movement of the medium per vibration of the diaphragm 15 is large.
  • the rotation speed of the first motor 31 can be arbitrarily set by controlling the on / off pulse of the first motor 31. Therefore, the vibration speed of the diaphragm 15 can be arbitrarily set. That is, the time T1 required for one rotation of the horizontal rotating shaft 311 is the time T1 required for the diaphragm 15 to vibrate once.
  • the time T1 can be adjusted by on / off pulse control of the first motor 31. That is, when the on-pulse is set to be long, the time T1 is shortened, and when the off-pulse is set to be long, the time T1 is lengthened.
  • Time T1 corresponds to the moving speed of the culture medium. That is, when the time T1 is short, the moving speed of the medium is high, and when the time T1 is long, the moving speed of the medium is low.
  • the operation time T2 of the first motor 31 can be arbitrarily set by using a timer. Therefore, the driving time T2 of the diaphragm 15 can be arbitrarily set.
  • the container drive control unit 105 is connected to the first motor 31 of the container drive mechanism 3 so that the rotation speed and the drive time T2 of the first motor 31 can be arbitrarily set.
  • Rotation drive mechanism 4 A rotation driving mechanism 4 is connected to the scaffold fixture 12.
  • the rotational drive mechanism 4 includes a second motor 41, a second connecting member 42, and a second horizontal arm 182.
  • the second motor 41 is fixed to the vertical plate 112. As shown in FIG. 5, the second motor 41 has a horizontal rotation shaft 411 and is capable of on / off pulse control.
  • the horizontal rotating shaft 411 is detachably connected to the second horizontal arm 182 via the second connecting member 42.
  • the second horizontal arm 182 is rotated together with the horizontal rotation shaft 411, and the scaffold fixture 12 is rotated.
  • the scaffold fixture 12 also makes one rotation.
  • the horizontal rotation shaft 411 rotates continuously
  • the scaffold fixture 12 also rotates continuously.
  • the rotation of the scaffold fixture 12 means that the scaffold 123 rotates.
  • the rotation speed of the second motor 41 can be arbitrarily set by performing on / off pulse control of the second motor 41. Therefore, the rotation speed of the scaffold fixture 12 can be set arbitrarily. That is, the time S1 required for one rotation of the horizontal rotating shaft 411 is the time S1 required for one rotation of the scaffold fixture 12.
  • the time S1 can be adjusted by on / off pulse control of the second motor 41. That is, when the on-pulse is set longer, the time S1 becomes shorter, and when the off-pulse is set longer, the time S1 becomes longer.
  • Time S1 corresponds to the rotational speed of the scaffold fixture 12. That is, when the time S1 is short, the rotation speed of the scaffold fixture 12 is high, and when the time S1 is long, the rotation speed of the scaffold fixture 12 is low.
  • the operation time S2 of the second motor 41 can be arbitrarily set by using a timer. Therefore, the driving time S2 of the scaffold fixture 12 can be arbitrarily set.
  • the rotation drive control unit 106 is connected to the second motor 41 of the rotation drive mechanism 4 so that the rotation speed and drive time S2 of the second motor 41 can be arbitrarily set.
  • the pH measuring device 5 is provided between the second check valve 26 and the discharge medium tank 23 in the medium discharge pipe 24.
  • the pH measuring device 5 is provided so that the pH of the medium flowing through the medium discharge pipe 24 can be measured.
  • the pH measurement control unit 107 operates the pH measuring device 5, acquires and analyzes measurement data, and can detect the culture state. Usually, when pH is 6.5 or less or 8.5 or more, it is judged that culture
  • FIG. 12 is a perspective view of the culture vessel 1.
  • 13 is a cross-sectional view taken along the line XIII-XIII in FIG.
  • the scaffold fixture 12 rotates and is in a vertical state.
  • the photographing mechanism 6 has a camera 61 and a light source 62.
  • the camera 61 has a function of taking an image of a cell and detecting a light transmission amount of the light source 62.
  • the camera 61 is rotatably provided via a bearing 1134 in a recess 1133 of a sealing member 1132 fitted in a through hole 1131 formed in the center of the second side surface portion 113.
  • the sealing member 1132 is colorless and transparent, the camera 61 can photograph the inside of the container body 11.
  • the light source 62 is provided on the fourth side surface 115 and at a position facing the camera 61.
  • a through hole 1151 is formed at the center of the fourth side surface portion 115.
  • the through hole 1151 is airtightly closed from the outside by a colorless and transparent plate member 1152.
  • the plate member 1152 is fixed to the fourth side surface portion 115 by a plate body 1153.
  • the light source 62 is held in the through hole 1154 of the plate body 1153. Since the plate member 1152 is colorless and transparent, the light source 62 can illuminate the inside of the container body 11.
  • the imaging control unit 108 can operate the camera 61 and the light source 62 to acquire and analyze imaging data and detect the culture state.
  • the photographing data for example, a photographed image of a cell, a light transmission amount of the light source 62, and the like are used.
  • an initial setting operation is performed manually. That is, as shown in FIG. 1, since the infusion medium tank 21 is installed on the same plane as the culture container 1, when the weight 219 is placed on the infusion medium tank 21, the infusion medium tank 21 is removed. The medium is pushed out. As a result, the medium is injected through the medium injection pipe 22 to the lower surface of the seeding sheet-like scaffold 123 fixed to the scaffold fixture 12 in the culture vessel 1. Then, the medium injection is temporarily stopped by removing the weight 219.
  • the cell suspension is seeded on the scaffold 123 by manual work. That is, as shown in FIG. 14, the needle 202 of the syringe 201 filled with the cell suspension to be cultured is inserted into the sealed space 110 from the needle through hole 185, and the cell suspension is placed on the scaffold 123. Eject. As a result, the cell suspension is seeded on the surface (cell holding surface) of the scaffold 123. After seeding the cell suspension, the needle 202 is extracted, and the needle through hole 185 is sealed with a stopper 186 as shown in FIG.
  • the weight 219 is placed on the infusion medium tank 21 again, and the medium is spread until just before the second check valve 26 of the medium discharge pipe 24. .
  • the container drive control unit 105 and the rotation drive control unit 106 are operated to operate the container drive mechanism 3 and the rotation drive mechanism 4, and, if necessary, the pH measurement control unit 107 and / or the imaging control unit 108.
  • the culture apparatus 100 operates as follows and exhibits a remarkable effect.
  • the diaphragm 15 vibrates up and down.
  • the culture medium that has spread from the culture medium tank 21 for injection to the culture medium injection pipe 22 is injected into the sealed space 110 from the injection port 13.
  • the diaphragm 15 moves downward, the medium in the sealed space 110 is discharged from the discharge port 14 to the medium discharge pipe 24. Therefore, when the diaphragm 15 vibrates, the culture medium in the sealed space 110 is gradually replaced. That is, the medium is automatically changed.
  • FIG. 15 shows the moving state of the medium in the culture vessel 1. Since the medium injected from the injection port 13 collides with the rectifying member 16 from below, the momentum is weakened and the medium is evenly distributed in the lateral direction, and moves upward through the gap 162 and stagnates. Further, the amount of the medium injected from the injection port 13 is a constant amount corresponding to the amplitude of the diaphragm 15. Therefore, the injected medium is layered in the sealed space 110. Then, the medium injected one after another gently moves upward while maintaining the layered state. When the medium reaches the height position of the discharge port 14, the discharge port 14 is moved when the diaphragm 15 moves downward. Discharged from. Thereby, the cells of the scaffold 123 are successively exposed to new medium that has moved gently. Thus, the cells can be gently touched with fresh media and cultured without unnecessary stress. Therefore, the culture efficiency is improved.
  • the scaffold fixture 12 that is, the scaffold 123 rotates.
  • the cell holding surface is positively brought into contact with a fresh medium, and waste products attached to the cell holding surface are positively removed. Therefore, the culture efficiency is also improved from this point.
  • both the first check valve 25 and the second check valve 26 have a spherical valve structure, the medium flows lightly in both the pipes 22 and 24. Therefore, also from this point, the medium is exchanged smoothly.
  • the imaging control unit 108 acquires and analyzes the imaging data, and detects the culture state. Therefore, when the detection result indicates an inadequate culture state, the operator operates the container drive control unit 105 and the rotation drive control unit 106 so that the container drive mechanism 3 and the rotation drive mechanism 4 are cultured. Can be set to conditions that can promote
  • the culture apparatus 100 can be used in the following manner.
  • the culture vessel 1 can be transported alone in a sealed state. 1, the rod 35 and the arm 33 are disconnected by releasing the first connecting member 34, and the horizontal arm 182 and the horizontal rotating shaft 411 are disconnected by releasing the second connecting member 42.
  • the culture vessel 1 is in the state shown in FIG. It becomes. According to this, the culture vessel 1 can be moved to another place without contaminating the cells being cultured.
  • the culture unit 102 can be transported alone in a sealed state. 1, the rod 35 and the arm 33 are disconnected by releasing the first connecting member 34, and the horizontal arm 182 and the horizontal rotating shaft 411 are disconnected by releasing the second connecting member 42. Then, the culture part 102 will be in the state of FIG. According to this, the culture unit 102 can be moved to another place without contaminating the cells and culture medium being cultured, and the culture can be easily resumed at that place.
  • the culture unit 102 can be transported in a double sealed state by being housed in the thermostatic chamber 103.
  • the first motor 31 of the container drive mechanism 3 and the second motor 41 of the rotation drive mechanism 4 are arranged outside the thermostatic chamber 103.
  • the horizontal rotation shaft 311 of the first motor 31 and the rotation member 32 are releasably connected by magnets 391 and 392 with the wall 1031 of the thermostatic chamber 103 interposed therebetween, and
  • the second connecting member 42 is composed of magnets 491 and 492, and the horizontal rotating shaft 411 and the horizontal arm 182 of the second motor 41 sandwich the wall 1031 of the thermostatic chamber 103 between them, and the magnets 491 and 492 , Releasably connected. According to this, the culture unit 102 can be moved to another place without contaminating the cultured cells and medium, and the culture can be easily resumed with little preparation work at that place.
  • the culture device 100 having the above configuration can employ the following modified configuration.
  • FIG. 19 is a longitudinal sectional view showing a modification of the rotation drive mechanism 4.
  • the horizontal arm 182 and the horizontal rotation shaft 411 are releasably connected by magnets 493 and 494.
  • the through hole 1141 of the third side surface portion 114 is closed with a resin plate 1149, and the magnet 493 and the magnet 494 are connected with the resin plate 1149 interposed therebetween. According to this configuration, the second motor 41 can be easily detached from the culture vessel 1.
  • FIGS. 20 to 22 show modified examples of the scaffold fixture 12.
  • 20 is a perspective view of the scaffold fixing tool 12A
  • FIG. 21 is a view taken along the arrow XXI in FIG. 20
  • FIG. 22 is a sectional view taken along the line XXII-XXII in FIG.
  • the scaffold fixture 12A is configured by stacking the three scaffold fixtures 12 of FIG. 8 through spacers 129 and fixing them with screws 128 that pass through the scaffold fixture body 122. .
  • the scaffold fixture 12 ⁇ / b> A stacks and fixes the three scaffolds 123 at intervals 127. According to this configuration, a large amount of cells can be cultured at the same time at the same time.
  • the fourth side surface 115 of the culture vessel 1 has three needles corresponding to the three scaffolds (cell holding surfaces) 123 as shown in FIG. A through hole 185 is formed.
  • FIGS. 24 and 25 show another modification of the scaffold fixture 12.
  • the scaffold fixture 12B is formed of a cylindrical body.
  • FIG. 24 is a front view of the scaffold fixture 12B
  • FIG. 25 is a view taken along arrow XXV in FIG.
  • the cylindrical surface 1251 of the cylindrical body 125 is a net plate. Both ends of the cylindrical body 125 are closed with a porous plate 1252 through which the medium can pass.
  • this scaffold fixture 12B it is possible to culture the adherent cells well. That is, the adherent cells are seeded on atelocollagen or the like, filled in the cylindrical body 125 as a culture, and exposed to the culture medium without being adhered to the cylindrical surface 1251 by the rotation of the scaffold fixture 12B.
  • the adherent cells are seeded on atelocollagen or the like, filled in the cylindrical body 125 as a culture, and exposed to the culture medium without being adhered to the cylindrical surface 1251 by the rotation of the scaffold fixture 12B.
  • FIG. 26 is a longitudinal sectional view showing a modified example in place of the needle through-hole 185.
  • the culture vessel 1 has a rubber wall portion 1129 in a part of the first side surface portion 112.
  • the rubber wall 1129 allows the injection needle 202 for seeding the cell to penetrate toward the scaffold 123 in the sealed space 110, and closes the penetrated hole after the injection needle is removed.
  • It is configured. According to this, since the operation
  • FIG. 27 and FIG. 28 are longitudinal sectional views showing modifications of the culture vessel 1.
  • This culture vessel 1 does not have a special configuration (cell through-hole 185, rubber wall 1129, etc.) for seeding cells.
  • sowing is performed using a sowing jig 80.
  • the seeding jig 80 includes a cylindrical main body 81 and an O-ring 82 provided on the outer peripheral surface of the cylindrical main body 81.
  • the seeding operation using the seeding jig 80 is performed before attaching the upper surface part 116 in the assembly process of the culture vessel 1 in the clean bench. That is, first, as shown in FIG. 27, the seeding jig 80 is positioned above the sealed space 110. Next, as shown in FIG.
  • the seeding jig 80 is inserted into the sealed space 110 until it comes into contact with the scaffold fixture 12. At this time, the airtightness of the sealed space 110 is ensured by the O-ring 82. Next, the solution 99 containing cells is injected into the internal space of the cylindrical body 81 and left to stand. As a result, the cells settle and are seeded on the surface of the seeding sheet-like scaffold 123 of the scaffold fixture 12. Thereafter, the solution is removed, and the seeding jig 80 is taken out from the sealed space 110.
  • the culture vessel 1 has a simple configuration.
  • FIG. 29 is a front view showing a modification of the culture apparatus 100.
  • the first check valve 25 has a general structure, not a spherical valve structure. According to this configuration, since the culture medium injection pipe 22 can be arranged in the lateral direction toward the injection port 13 of the culture vessel 1, the length of the culture medium injection pipe 22 can be reduced. Can be small.
  • FIG. 30 is a front view showing a culture device 100A according to the second embodiment of the present invention.
  • This culture apparatus 100A is different from the culture apparatus 100 of the first embodiment in the following points, and is otherwise the same.
  • the combined medium tank 29, the medium injection pipe 22, the culture vessel 1, and the medium discharge pipe 24 constitute a culture part 102A, and the culture part 102A has a gas-permeable structure.
  • the lid 291 of the combined medium tank 29 and a part or all of the medium injection pipe 22 and the medium discharge pipe 24 are made of a gas permeable material.
  • the culture unit 102A is provided in the carbon dioxide incubator 91A.
  • the inside of the carbon dioxide incubator 91A is maintained in a sterilized state.
  • the temperature, humidity, oxygen partial pressure, carbon dioxide partial pressure, and nitrogen partial pressure are controlled.
  • An exposure unit 28 is provided in the combined medium tank 29. Specifically, as shown in FIG. 31, the exposure unit 28 includes an umbrella unit 281 connected to the outlet end of the medium discharge pipe 24 in the combined medium tank 29, and is used for the medium. The medium discharged from the discharge pipe 24 is sprayed by the umbrella portion 281.
  • the culture medium flows from the dual-purpose medium tank 29 to the dual-purpose medium tank 29 via the medium injection pipe 22, the culture container 1, and the medium discharge pipe 24. Yes. That is, the culture apparatus 100A of the present embodiment is a reflux type.
  • the stop valve 26 is made of a material that does not adversely affect the living body, that is, a biocompatible material.
  • the biocompatible material is appropriately selected from, for example, resin, metal, glass, and the like. Also, these members can be discarded after use.
  • the container drive mechanism 3 ⁇ / b> A includes a linear actuator 37, a first connecting member 38, and a rod 39.
  • the linear actuator 37 has a vertical telescopic shaft 371 and is capable of on / off pulse control.
  • the rod 39 is detachably connected to the lower end portion of the vertical telescopic shaft 371 via the first connecting member 38, and extends vertically downward from the lower end portion of the vertical telescopic shaft 371 to the diaphragm 15. It is fixed at the center of In the container driving mechanism 3A, when the linear actuator 37 is operated, the vertical telescopic shaft 371 and the rod 39 move up and down, thereby vibrating the diaphragm 15 up and down.
  • part or all of the culture medium injection pipe 22 and the culture medium discharge pipe 24 are made of a gas permeable material, so that when the culture medium flows through both the pipes 22 and 24, the culture medium is in the carbon dioxide incubator 91A. Be exposed to gas. Further, when the medium is discharged from the medium discharge pipe 24 to the combined medium tank 29, the medium is exposed to the gas entering the combined medium tank 29 from the carbon dioxide incubator 91 ⁇ / b> A by the exposure unit 28. Thereby, carbon dioxide gas, oxygen, etc. are taken in into a culture medium. Therefore, the medium can be reused.
  • the medium is pushed out from the combined medium tank 29 by the pump 85.
  • the culture apparatus 100A can be used in a mode in which the culture unit 102A is accommodated in the carbon dioxide incubator 91A, similarly to the mode shown in FIG.
  • the culture device 100A can employ the following modified configuration.
  • the exposure unit 28 is provided outside the combined medium tank 29.
  • Example 1 The culture apparatus 100 of the first embodiment was used.
  • Example 2 The culture apparatus 100 of the first embodiment was used.
  • the culture apparatus of the present invention can perform culture while automatically exchanging the medium, it has great industrial utility value.

Abstract

A culture apparatus provided with a culture container (1), wherein the culture container comprises: a container body (11) enclosing a closed space (110) therein; a scaffold (123) for holding cells in the closed space; a scaffold fixation device (12) for fixing the scaffold; an injection port (13), which is provided at the center of the bottom face of the container body, for injecting a medium into the closed space; a discharge port (14), which is provided in the upper part of the container body, for discharging the medium from the closed space; a diaphram (15), which is provided on the top face of the container body, for increasing and reducing pressure in the closed space through vertical vibration; and a rectifying member (16), which is provided above the injection port, for flowing the injected medium toward the circumferential section of the closed space.

Description

培養装置Incubator
 本発明は、細胞を効率良く培養するための培養装置に関するものであり、特に、再生医療用の細胞を培養するための、一検体用の、培養装置に関するものである。 The present invention relates to a culture apparatus for culturing cells efficiently, and particularly to a culture apparatus for one specimen for culturing cells for regenerative medicine.
 再生医療のために生体組織の再生誘導を行う方法としては、培養装置を用いて生体外で細胞の増殖及び分化を促進する方法がある。このような方法を実現する技術は、例えば、特許文献1~8に示されている。
特開平4-356184号公報 特開2004-89138号公報 特開2004-350557号公報 特開2006-264647号公報 特開2007-20493号公報 特開2007-110932号公報 特開2002-316136号公報 特開2007-167002号公報
As a method of inducing regeneration of living tissue for regenerative medicine, there is a method of promoting cell proliferation and differentiation in vitro using a culture apparatus. Techniques for realizing such a method are disclosed in Patent Documents 1 to 8, for example.
JP-A-4-356184 JP 2004-89138 A JP 2004-350557 A JP 2006-264647 A JP 2007-20493 A JP 2007-110932 A JP 2002-316136 A JP 2007-167002 A
 ところで、細胞を培養するためには培地が用いられる。培地は、細胞に栄養分などを供給するとともに細胞から老廃物などを除去するものであるので、常に新鮮であることが好ましい。したがって、培地の交換は、培養装置において極めて重要な作業である。しかしながら、作業者が手作業で培地の交換を行う際には、通常は、熟練した技術が必要であり、しかも、細胞が細菌に感染する恐れがある。それ故、培地の交換を自動で行う装置が要望されている。 Incidentally, a medium is used for culturing cells. The medium is preferably always fresh because it supplies nutrients to the cells and removes wastes from the cells. Therefore, the replacement of the medium is a very important operation in the culture apparatus. However, when an operator manually changes the medium, a skillful technique is usually required, and the cells may be infected with bacteria. Therefore, there is a demand for an apparatus that automatically changes the culture medium.
 更に、そのような装置には、培養効率が優れていること、安価であること、小型であることなどが、要望される。 Furthermore, such an apparatus is required to have excellent culture efficiency, low cost, and small size.
 本発明は、培地の交換を自動で行うことができる培養装置を提供することを目的としている。 An object of the present invention is to provide a culture apparatus capable of automatically exchanging a medium.
 本発明は、培地によって細胞を培養するための培養容器を備えた、培養装置において、培養容器が、密閉空間を有する容器本体と、密閉空間内にて細胞を保持するための足場と、足場を固定するための足場固定具と、容器本体の底面部中央に設けられており、密閉空間内に培地を注入するための注入口と、容器本体の上部に設けられており、密閉空間内から培地を排出するための排出口と、容器本体の上面に設けられており、上下に振動することによって、密閉空間を加圧及び減圧する、ダイヤフラムと、注入口の上方に設けられており、注入されて来た培地を密閉空間内の周縁部に向けて流すための整流部材と、を備えており、培養容器は、ダイヤフラムが上に移動すると、密閉空間が減圧され、それによって、注入口からの培地の注入を可能とし、ダイヤフラムが下に移動すると、密閉空間が加圧され、それによって、排出口からの培地の排出を可能とするようになっている、ことを特徴としている。 The present invention provides a culture apparatus including a culture container for culturing cells using a culture medium, wherein the culture container includes a container body having a sealed space, a scaffold for holding cells in the sealed space, and a scaffold. Scaffolding fixture for fixing, provided at the center of the bottom of the container body, an inlet for injecting the medium into the sealed space, and provided at the top of the container body. Is provided on the top surface of the container body, and is provided above the diaphragm and the injection port to pressurize and depressurize the sealed space by vibrating up and down. A rectifying member for allowing the culture medium to flow toward the peripheral edge in the sealed space, and the culture vessel is depressurized when the diaphragm is moved upward, thereby reducing the pressure from the inlet. Medium injection Possible and then, when the diaphragm moves down, the closed space is pressurized, thereby, it adapted to allow the discharge of the medium from the outlet, and characterized in that.
 本発明によれば、ダイヤフラムを上下に振動させることにより、培地を、注入口から密閉空間内に注入できるとともに、排出口から排出できる。したがって、ダイヤフラムを振動させることによって、密閉空間内の培地を少しずつ交換できる。これにより、培地の自動交換が可能となる。 According to the present invention, by oscillating the diaphragm up and down, the medium can be injected into the sealed space from the inlet and discharged from the outlet. Therefore, the medium in the sealed space can be replaced little by little by vibrating the diaphragm. Thereby, automatic exchange of a culture medium is attained.
本発明の第1実施形態の培養装置を示す正面図である。It is a front view which shows the culture apparatus of 1st Embodiment of this invention. 培養容器の正面図である。It is a front view of a culture container. 培養容器の平面図である。It is a top view of a culture container. 培養容器の側面図である。It is a side view of a culture container. 図3のV-V断面図である。FIG. 5 is a VV cross-sectional view of FIG. 3. 足場、足場固定具、及び両水平アームの分解斜視図である。It is a disassembled perspective view of a scaffold, a scaffold fixing tool, and both horizontal arms. 足場、足場固定具、及び両水平アームの平面図である。It is a top view of a scaffold, a scaffold fixture, and both horizontal arms. 図7のVIII-VIII断面図である。FIG. 8 is a sectional view taken along line VIII-VIII in FIG. 第1逆止弁の正面図である。It is a front view of a 1st check valve. 第1逆止弁の縦断面図である。It is a longitudinal cross-sectional view of a 1st check valve. 図1のXI矢視部分図である。It is a XI arrow partial view of FIG. 培養容器の斜視図である。It is a perspective view of a culture container. 図12のXIII-XIII断面図である。FIG. 13 is a sectional view taken along line XIII-XIII in FIG. 12. 播種作業を示す縦断面図である。It is a longitudinal cross-sectional view which shows sowing work. 培地の移動状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the movement state of a culture medium. 単独で密閉状態の培養容器を示す正面図である。It is a front view which shows the culture container of an airtight state independently. 単独で密閉状態の培養部を示す正面図である。It is a front view which shows the culture part of an airtight state independently. 二重の密閉状態の培養部を示す正面図である。It is a front view which shows the culture part of a double sealing state. 回転駆動機構の変形例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the modification of a rotational drive mechanism. 足場固定具の変形例の斜視図である。It is a perspective view of the modification of a scaffold fixing tool. 図20のXXI矢視図である。It is a XXI arrow line view of FIG. 図20のXXII-XXII断面図である。FIG. 21 is a sectional view taken along line XXII-XXII in FIG. 20. 3個の針用貫通孔を有する培養容器の縦断面図である。It is a longitudinal cross-sectional view of the culture container which has three through-holes for needles. 足場固定具の別の変形例の正面図である。It is a front view of another modification of a scaffold fixture. 図24のXXV矢視図である。It is a XXV arrow line view of FIG. 針用貫通孔に代わる変形構成を有する培養容器の縦断面図である。It is a longitudinal cross-sectional view of the culture container which has a deformation | transformation structure replaced with the through-hole for needles. 別の播種作業に用いる播種治具及び培養容器を示す縦断面図である。It is a longitudinal cross-sectional view which shows the sowing jig and culture container used for another sowing operation | work. 図27の次の工程を示す縦断面図である。FIG. 28 is a longitudinal sectional view showing a step subsequent to FIG. 27. 培養装置の変形例を示す正面図である。It is a front view which shows the modification of a culture apparatus. 本発明の第2実施形態の培養装置を示す正面図である。It is a front view which shows the culture apparatus of 2nd Embodiment of this invention. 曝露部の縦断面図である。It is a longitudinal cross-sectional view of an exposed part. 別の曝露部の縦断面図である。It is a longitudinal cross-sectional view of another exposed part.
  1 培養容器 21 注入用培地槽 22 培地用注入配管 23 排出用培地槽 24 培地用排出配管 25 第1逆止弁 26 第2逆止弁 27 第1クランプ部材 28 第2クランプ部材 3 容器駆動機構 31 第1モータ 311 水平回転軸 32 回転部材 33 アーム 34 第1連結部材 35 ロッド 36 ロッドガイド 4 回転駆動機構 41 第2モータ 42 第2連結部材 5 pH測定器 6 撮影機構 105 容器駆動制御部 106 回転駆動制御部 107 pH測定制御部 108 撮影制御部 DESCRIPTION OF SYMBOLS 1 Culture container 21 Injection medium tank 22 Medium injection pipe 23 Discharge medium tank 24 Medium discharge pipe 25 First check valve 26 Second check valve 27 First clamp member 28 Second clamp member 3 Container drive mechanism 31 1st motor 311 Horizontal rotating shaft 32 Rotating member 33 Arm 34 1st connecting member 35 Rod 36 Rod guide 4 Rotation drive mechanism 41 2nd motor 42 2nd connection member 5 pH measuring device 6 Imaging mechanism 105 Container drive control unit 106 Rotation drive Control unit 107 pH measurement control unit 108 Imaging control unit
[第1実施形態]
 図1は、本発明の第1実施形態の培養装置を示す正面図である。この培養装置100は、装置本体部101と、装置本体部101を収容した恒温槽103と、コントロール部109と、を備えている。
[First Embodiment]
FIG. 1 is a front view showing a culture apparatus according to a first embodiment of the present invention. The culture apparatus 100 includes an apparatus main body 101, a thermostatic chamber 103 in which the apparatus main body 101 is accommodated, and a control unit 109.
 コントロール部109は、容器駆動制御部105と、回転駆動制御部106と、pH測定制御部107と、撮影制御部108と、を有している。これらの制御部105、106、107、108は、作業者によって操作可能である。 The control unit 109 includes a container drive control unit 105, a rotation drive control unit 106, a pH measurement control unit 107, and an imaging control unit 108. These control units 105, 106, 107, and 108 can be operated by an operator.
 装置本体部101は、培養部102と、容器駆動機構3と、回転駆動機構4と、を基板111上に備えている。容器駆動機構3には、容器駆動制御部105が接続されている。回転駆動機構4には、回転駆動制御部106が接続されている。 The apparatus main body 101 includes a culture unit 102, a container drive mechanism 3, and a rotation drive mechanism 4 on a substrate 111. A container drive control unit 105 is connected to the container drive mechanism 3. A rotation drive control unit 106 is connected to the rotation drive mechanism 4.
 培養部102は、培養容器1と、注入用培地槽21と、培地用注入配管22と、排出用培地槽23と、培地用排出配管24と、を備えている。培養部102は、全体として、密閉構造を確立している。 The culture unit 102 includes a culture vessel 1, an infusion medium tank 21, a medium infusion pipe 22, a discharge medium tank 23, and a medium discharge pipe 24. The culture part 102 has established the airtight structure as a whole.
 培地用注入配管22及び培地用排出配管24には、それぞれ、第1逆止弁25及び第2逆止弁26が設けられている。また、培地用注入配管22及び培地用排出配管24には、それぞれ、第1クランプ部材27及び第2クランプ部材28が設けられている。 A first check valve 25 and a second check valve 26 are provided in the medium injection pipe 22 and the medium discharge pipe 24, respectively. In addition, a first clamp member 27 and a second clamp member 28 are provided in the medium injection pipe 22 and the medium discharge pipe 24, respectively.
 培地用排出配管24には、pH測定器5が設けられている。pH測定器5には、pH測定制御部107が接続されている。培養容器1には、撮影機構6が設けられている。撮影機構6には、撮影制御部108が接続されている。 A pH measuring device 5 is provided in the culture medium discharge pipe 24. A pH measurement control unit 107 is connected to the pH measuring device 5. The culture vessel 1 is provided with a photographing mechanism 6. A photographing control unit 108 is connected to the photographing mechanism 6.
 培養部102において、培地と接触する部材、具体的には、注入用培地槽21、培地用注入配管22、培養容器1、排出用培地槽23、培地用排出配管24、第1逆止弁25、及び第2逆止弁26は、生体に悪影響を及ぼさない材料、すなわち、生体適合材料で構成されている。生体適合材料は、例えば、樹脂、金属、及びガラスなどから、適切に選択される。また、これらの部材は、使用後に廃棄できる。 In the culture unit 102, members that come into contact with the culture medium, specifically, the culture medium tank 21 for injection, the culture medium injection pipe 22, the culture vessel 1, the culture medium tank 23 for discharge, the culture medium discharge pipe 24, and the first check valve 25. The second check valve 26 is made of a material that does not adversely affect the living body, that is, a biocompatible material. The biocompatible material is appropriately selected from, for example, resin, metal, glass, and the like. Also, these members can be discarded after use.
 培養装置100は、培地が、注入用培地槽21から、培地用注入配管22、培養容器1、及び培地用排出配管24を経て、排出用培地槽23へ至るように、流れるようになっている。すなわち、本実施形態の培養装置100は、灌流タイプである。 The culture apparatus 100 is configured such that the medium flows from the infusion medium tank 21 to the discharge medium tank 23 via the medium infusion pipe 22, the culture container 1, and the medium discharge pipe 24. . That is, the culture apparatus 100 of this embodiment is a perfusion type.
(培養容器1)
 図2、図3、及び図4は、培養容器1の、正面図、平面図、及び側面図である。図5は、図3のV-V断面図である。培養容器1は、培地によって細胞を培養するための容器である。培養容器1は、密閉空間110を有する容器本体11と、密閉空間110内にて細胞を保持するための足場123と、足場123を固定するための足場固定具12と、密閉空間110内に培地を注入するための注入口13と、密閉空間110内から培地を排出するための排出口14と、上下に振動することによって、密閉空間を加圧及び減圧する、ダイヤフラム15と、注入口13から注入されて来た培地を密閉空間110内の周縁部に向けて流すための整流部材16と、を備えている。
(Culture container 1)
2, 3, and 4 are a front view, a plan view, and a side view of the culture vessel 1. 5 is a cross-sectional view taken along the line VV of FIG. The culture vessel 1 is a vessel for culturing cells with a medium. The culture container 1 includes a container body 11 having a sealed space 110, a scaffold 123 for holding cells in the sealed space 110, a scaffold fixture 12 for fixing the scaffold 123, and a medium in the sealed space 110. From the inlet 13 for injecting the medium, the outlet 14 for discharging the culture medium from the sealed space 110, the diaphragm 15 that pressurizes and depressurizes the sealed space by vibrating up and down, and the inlet 13 And a rectifying member 16 for flowing the injected culture medium toward the peripheral edge in the sealed space 110.
 容器本体11は、直方体の形態を有しており、底面部111と、第1~第4側面部112、113、114、115と、上面部116と、を有している。密閉空間110は、これらの6個の面部によって囲まれている。 The container body 11 has a rectangular parallelepiped shape, and includes a bottom surface portion 111, first to fourth side surface portions 112, 113, 114, 115, and a top surface portion 116. The sealed space 110 is surrounded by these six surface portions.
 注入口13は、容器本体11の第1側面部112の下部から底面部111内を延びて、底面部111の中央において上向きに開口している。整流部材16は、板材であり、注入口13から僅かな隙間163を隔てた上方に、脚161を介して、水平に配置されている。整流部材16の中心と注入口13の中心とは、平面視において一致しており、整流部材16は、密閉空間110内において、周縁に、均等な隙間162を確保している。排出口14は、第1側面部112の上部を貫通して形成されている。 The injection port 13 extends from the lower portion of the first side surface portion 112 of the container body 11 through the bottom surface portion 111 and opens upward at the center of the bottom surface portion 111. The rectifying member 16 is a plate material, and is arranged horizontally via the legs 161 above the injection port 13 with a slight gap 163 therebetween. The center of the rectifying member 16 and the center of the injection port 13 coincide with each other in a plan view, and the rectifying member 16 secures a uniform gap 162 at the periphery in the sealed space 110. The discharge port 14 is formed through the upper portion of the first side surface portion 112.
 ダイヤフラム15は、例えば、伸縮可能な合成ゴムでできている。ダイヤフラム15は、容器本体11の上面部116を構成している。ダイヤフラム15の周縁部151は、容器本体11の4個の側面部の上端面に、リング板192によって押し付けられた状態で、ネジ193によって固定されており、これにより、ダイヤフラム15は、その中央部151が上下に振動可能となっている。 The diaphragm 15 is made of, for example, a stretchable synthetic rubber. The diaphragm 15 constitutes an upper surface portion 116 of the container main body 11. The peripheral edge portion 151 of the diaphragm 15 is fixed to the upper end surfaces of the four side surface portions of the container main body 11 by the ring plate 192 with screws 193, whereby the diaphragm 15 is fixed at the center portion thereof. 151 can vibrate up and down.
 培養容器1においては、ダイヤフラム15が上に動くと、密閉空間110内が減圧されるので、培地が注入口13から密閉空間110内に注入可能となり、ダイヤフラム15が下に動くと、密閉空間110内が加圧されるので、密閉空間110内の培地が排出口14から排出可能となる。したがって、ダイヤフラム15が振動すると、密閉空間110において、培地の注入及び排出、すなわち、培地の交換が、可能となる。 In the culture container 1, when the diaphragm 15 moves upward, the inside of the sealed space 110 is depressurized, so that the medium can be injected into the sealed space 110 from the inlet 13, and when the diaphragm 15 moves downward, the sealed space 110. Since the inside is pressurized, the medium in the sealed space 110 can be discharged from the discharge port 14. Therefore, when the diaphragm 15 vibrates, the medium can be injected and discharged, that is, the medium can be exchanged in the sealed space 110.
 図5に示されるように、足場固定具12は、第1水平アーム181及び第2水平アーム182によって、密閉空間110内に支持されている。第1水平アーム181は、足場固定具12から延びており、先端1811が第1側面部112の内面の凹部1121内に摺動可能に挿入されている。第2水平アーム182は、足場固定具12から、第3側面部114を貫通して延びている。第3側面部114には、貫通孔1141を、Oリング1143を介して密封する、密封部材1142が、設けられている。第2水平アーム182は、密封部材1142を気密的に貫通しており、且つ、ベアリング1144を介して回転可能となっている。 As shown in FIG. 5, the scaffold fixture 12 is supported in the sealed space 110 by the first horizontal arm 181 and the second horizontal arm 182. The first horizontal arm 181 extends from the scaffold fixture 12, and a distal end 1811 is slidably inserted into a recess 1121 on the inner surface of the first side surface portion 112. The second horizontal arm 182 extends from the scaffold fixture 12 through the third side surface 114. The third side surface portion 114 is provided with a sealing member 1142 that seals the through hole 1141 via the O-ring 1143. The second horizontal arm 182 penetrates the sealing member 1142 in an airtight manner and is rotatable via a bearing 1144.
 図6及び図7は、足場123、足場固定具12、及び両水平アーム181、182の、分解斜視図及び平面図である。図8は、図7のVIII-VIII断面図である。足場固定具12は、円板に厚さ方向の貫通孔121が形成された足場固定具本体122と、Oリング124と、からなっている。貫通孔121は、大径部1211と小径部1212とが連通して構成されており、段部1213を有している。播種用シート状足場123は、その周縁部が段部1213とOリング124とで挟まれることにより、足場固定具12に固定されており、細胞保持面(培養面)を構成している。 6 and 7 are an exploded perspective view and a plan view of the scaffold 123, the scaffold fixture 12, and both horizontal arms 181 and 182, respectively. 8 is a cross-sectional view taken along the line VIII-VIII in FIG. The scaffold fixture 12 includes a scaffold fixture body 122 in which a through hole 121 in the thickness direction is formed in a disc, and an O-ring 124. The through hole 121 is configured by communicating a large diameter portion 1211 and a small diameter portion 1212, and has a stepped portion 1213. The seeded sheet-like scaffold 123 is fixed to the scaffold fixture 12 by sandwiching the peripheral edge between the stepped part 1213 and the O-ring 124, and constitutes a cell holding surface (culture surface).
 更に、第1側面部112には、針用貫通孔185が形成されている。針用貫通孔185は、細胞を播種するための注射針を密閉空間110内の足場固定具12の播種用シート状足場123に向けて差し込むことができるように、且つ、栓186によって密封できるように、形成されている。 Furthermore, a needle through hole 185 is formed in the first side surface portion 112. The needle through-hole 185 can be sealed with a stopper 186 so that an injection needle for seeding cells can be inserted toward the seeding sheet-like scaffold 123 of the scaffold fixture 12 in the sealed space 110. Is formed.
(注入用培地槽21及び排出用培地槽23)
 注入用培地槽21及び排出用培地槽23は、例えば、変形可能な合成ゴムでできている。注入用培地槽21は、基板111上に設置されており、したがって、培養容器1と同一平面上に設置されている。
(Injection medium tank 21 and discharge medium tank 23)
The infusion medium tank 21 and the discharge medium tank 23 are made of, for example, deformable synthetic rubber. The infusion medium tank 21 is installed on the substrate 111, and is therefore installed on the same plane as the culture vessel 1.
(培地用注入配管22及び培地用排出配管24)
 培地用注入配管22及び培地用排出配管24は、例えば、変形可能な合成ゴムでできている。培地用注入配管22は、注入用培地槽21と培養容器1の注入口13とを連絡している。培地用排出配管24は、排出用培地槽23と培養容器1の排出口14とを連絡している。
(Medium injection pipe 22 and culture medium discharge pipe 24)
The culture medium injection pipe 22 and the culture medium discharge pipe 24 are made of, for example, deformable synthetic rubber. The medium injection pipe 22 connects the injection medium tank 21 and the injection port 13 of the culture vessel 1. The medium discharge pipe 24 communicates the discharge medium tank 23 with the discharge port 14 of the culture vessel 1.
 図9及び図10は、第1逆止弁25の、正面図及び縦断面図である。第1逆止弁25は、球体弁構造を有している。すなわち、第1逆止弁25は、弁空間251内に球体弁252を有している。弁空間251は、入口253及び出口254を有している。入口253は、口径が次第に大きくなった、すり鉢形状を、有している。出口254は、主口2541と副口2542とを有する、二重構造を、有している。球体弁252は、入口253及び主口2541を完全に塞ぐことができるが、副口2542を塞ぐことができない、大きさを、有している。 9 and 10 are a front view and a longitudinal sectional view of the first check valve 25, respectively. The first check valve 25 has a spherical valve structure. That is, the first check valve 25 has a spherical valve 252 in the valve space 251. The valve space 251 has an inlet 253 and an outlet 254. The inlet 253 has a mortar shape with a gradually increasing diameter. The outlet 254 has a double structure having a main port 2541 and a sub port 2542. The spherical valve 252 has a size that can completely block the inlet 253 and the main port 2541, but cannot block the auxiliary port 2542.
 第1逆止弁25においては、入口253から培地が流入して来ると、球体弁252が、培地によって押されて、出口254側へ移動する。しかし、球体弁252は、主口2541を塞いでも副口2542を塞がないので、培地は、副口2542を通って流れる。したがって、第1逆止弁25においては、入口253から出口254へ向かう培地の流れは、確保される。一方、出口254から培地が流入して来ると、球体弁252は、培地によって押されて、入口253を塞ぐ。したがって、第1逆止弁25においては、出口254から入口253へ向かう培地の流れは、遮断される。これにより、第1逆止弁25は、逆流防止機能を発揮する。 In the first check valve 25, when the medium flows in from the inlet 253, the spherical valve 252 is pushed by the medium and moves to the outlet 254 side. However, since the spherical valve 252 blocks the main port 2541 but does not block the sub port 2542, the culture medium flows through the sub port 2542. Therefore, in the first check valve 25, the flow of the medium from the inlet 253 toward the outlet 254 is ensured. On the other hand, when the culture medium flows in from the outlet 254, the spherical valve 252 is pushed by the culture medium and closes the inlet 253. Therefore, in the first check valve 25, the flow of the medium from the outlet 254 toward the inlet 253 is blocked. Thereby, the 1st check valve 25 exhibits a backflow prevention function.
 第2逆止弁26も、第1逆止弁25と同じ構造及び機能を有している。 The second check valve 26 also has the same structure and function as the first check valve 25.
 第1逆止弁25において、球体弁252の重量が大きい場合には、入口253から出口254へ培地を流すために大きな圧力を必要とする。逆に、球体弁252の重量が小さい場合には、小さい圧力でよい。すなわち、第1逆止弁25によれば、球体弁252の重量を変えることによって、培地の注入圧を変えることができる。第2逆止弁26によっても、同様に、培地の排出圧を変えることができる。したがって、両逆止弁25、26によれば、培地の交換に必要な圧力を調節できる。 In the first check valve 25, when the weight of the spherical valve 252 is large, a large pressure is required to flow the culture medium from the inlet 253 to the outlet 254. Conversely, when the weight of the spherical valve 252 is small, a small pressure is sufficient. That is, according to the first check valve 25, the medium injection pressure can be changed by changing the weight of the spherical valve 252. Similarly, the discharge pressure of the culture medium can be changed by the second check valve 26. Therefore, according to the check valves 25 and 26, it is possible to adjust the pressure necessary for exchanging the culture medium.
 更に、第1逆止弁25において、副口2542の口径が小さい場合には、入口253から出口254へ培地を流すために大きな圧力を必要とする。逆に、副口2542の口径が大きい場合には、小さい圧力でよい。すなわち、第1逆止弁25によれば、副口2542の口径を変えることによって、培地の注入圧を変えることができる。第2逆止弁26によっても、同様に、培地の排出圧を変えることができる。したがって、両逆止弁25、26によれば、培地の交換に必要な圧力を調節できる。 Furthermore, in the first check valve 25, when the diameter of the auxiliary port 2542 is small, a large pressure is required to flow the medium from the inlet 253 to the outlet 254. Conversely, when the diameter of the auxiliary port 2542 is large, a small pressure is sufficient. That is, according to the first check valve 25, the medium injection pressure can be changed by changing the diameter of the sub-port 2542. Similarly, the discharge pressure of the culture medium can be changed by the second check valve 26. Therefore, according to the check valves 25 and 26, it is possible to adjust the pressure necessary for exchanging the culture medium.
 第1クランプ部材27は、培地用注入配管22において、第1逆止弁25と注入口13との間に、設けられている。第2クランプ部材28は、培地用排出配管24において、第2逆止弁26と排出口14との間に、設けられている。第1クランプ部材27は、配管22を閉鎖できるように設けられている。第2クランプ部材28は、配管24を閉鎖できるように設けられている。 The first clamp member 27 is provided between the first check valve 25 and the injection port 13 in the medium injection pipe 22. The second clamp member 28 is provided between the second check valve 26 and the discharge port 14 in the culture medium discharge pipe 24. The first clamp member 27 is provided so that the pipe 22 can be closed. The second clamp member 28 is provided so that the pipe 24 can be closed.
(容器駆動機構3)
 ダイヤフラム15には、容器駆動機構3が連結されている。容器駆動機構3は、図1に示されるように、第1モータ31と、回転部材32と、アーム33と、第1連結部材34と、ロッド35と、ロッドガイド36と、を備えている。
(Container drive mechanism 3)
The container drive mechanism 3 is connected to the diaphragm 15. As shown in FIG. 1, the container drive mechanism 3 includes a first motor 31, a rotating member 32, an arm 33, a first connecting member 34, a rod 35, and a rod guide 36.
 第1モータ31は、基板111に立設された縦板112に固定されている。第1モータ31は、水平回転軸311を有しており、且つ、オンオフパルス制御可能である。回転部材32は、円板であり、水平回転軸311によって鉛直面内で回転するように、設けられている。図11は、図1のXI矢視部分図である。回転部材32には、複数(ここでは3個)のネジ穴321が形成されている。各ネジ穴321は、回転中心322から距離Pだけ離れている。距離Pは、ネジ穴321毎に異なっている。アーム33は、回転部材32から下方に延びている。アーム33の上端部331は、いずれか1個のネジ穴321に、ネジ323によって、着脱自在に、連結されている。ロッド35は、アーム33の下端部332から鉛直下方に延びている。ロッド35の上端部351は、アーム33の下端部332に、第1連結部材34を介して、着脱自在に、連結されている。ロッド35の下端部352は、ダイヤフラム15の中央に固定されている。ロッドガイド36は、中央に貫通孔361を有する水平板であり、ダイヤフラム15の上方に、ネジ193によって支持されている。ロッドガイド36は、ロッド35が貫通孔361(図5)を鉛直方向に貫通するように、配置されており、これにより、ロッド35の鉛直方向の運動をガイドするようになっている。 The first motor 31 is fixed to a vertical plate 112 erected on the substrate 111. The first motor 31 has a horizontal rotation shaft 311 and is capable of on / off pulse control. The rotating member 32 is a disc and is provided so as to rotate in a vertical plane by a horizontal rotating shaft 311. FIG. 11 is a partial view taken along arrow XI in FIG. A plurality (three in this case) of screw holes 321 are formed in the rotating member 32. Each screw hole 321 is separated from the rotation center 322 by a distance P. The distance P is different for each screw hole 321. The arm 33 extends downward from the rotating member 32. The upper end 331 of the arm 33 is detachably connected to any one screw hole 321 by a screw 323. The rod 35 extends vertically downward from the lower end 332 of the arm 33. The upper end 351 of the rod 35 is detachably connected to the lower end 332 of the arm 33 via the first connecting member 34. A lower end 352 of the rod 35 is fixed to the center of the diaphragm 15. The rod guide 36 is a horizontal plate having a through hole 361 in the center, and is supported above the diaphragm 15 by screws 193. The rod guide 36 is disposed so that the rod 35 penetrates the through hole 361 (FIG. 5) in the vertical direction, and thereby guides the movement of the rod 35 in the vertical direction.
 容器駆動機構3においては、第1モータ31が作動すると、水平回転軸311と共に回転部材32が回転し、アーム33及びロッド35が上下に動く。これにより、ダイヤフラム15が、上下に振動する。水平回転軸311が1回転すると、ロッド35が上下に1往復するので、ダイヤフラム15は1回振動する。水平回転軸311が連続して回転すると、ダイヤフラム15は連続して振動する。ダイヤフラム15が振動すると、密閉空間110において、培地の注入及び排出が起こり、培地が移動し、すなわち、培地が交換されていく。 In the container drive mechanism 3, when the first motor 31 is operated, the rotating member 32 is rotated together with the horizontal rotating shaft 311, and the arm 33 and the rod 35 are moved up and down. Thereby, the diaphragm 15 vibrates up and down. When the horizontal rotation shaft 311 makes one revolution, the rod 35 reciprocates up and down once, so that the diaphragm 15 vibrates once. When the horizontal rotation shaft 311 rotates continuously, the diaphragm 15 vibrates continuously. When the diaphragm 15 vibrates, the medium is injected and discharged in the sealed space 110, and the medium moves, that is, the medium is replaced.
 容器駆動機構3によれば、ダイヤフラム15の振幅を任意に設定できる。すなわち、ダイヤフラム15の振幅は、アーム33の上端部331が連結されるネジ穴321の位置によって、調節できる。すなわち、距離Pが最大であるネジ穴321に、アーム33の上端部331が連結されると、ダイヤフラム15の振幅は最大となり、距離Pが最小であるネジ穴321に、アーム33の上端部331が連結されると、ダイヤフラム15の振幅は最小となる。例えば、距離Pが4mmである場合、振幅は8mmとなる。ところで、ダイヤフラム15が下に動くと、その分だけ、密閉空間110の体積が減少し、その減少分に相当する量の培地が排出され、また、ダイヤフラム15が上に動くと、その分だけ、密閉空間110の体積が増加し、その増加分に相当する量の培地が注入される。したがって、ダイヤフラム15の振幅の大きさは、培地の注入及び排出される量(移動量)に対応する。そして、ダイヤフラム15の振幅が大きいと、ダイヤフラム15の振動1回当たりの培地の移動量が大きい。 According to the container drive mechanism 3, the amplitude of the diaphragm 15 can be set arbitrarily. That is, the amplitude of the diaphragm 15 can be adjusted by the position of the screw hole 321 to which the upper end 331 of the arm 33 is connected. That is, when the upper end 331 of the arm 33 is connected to the screw hole 321 having the maximum distance P, the amplitude of the diaphragm 15 becomes maximum, and the upper end 331 of the arm 33 is set to the screw hole 321 having the minimum distance P. Are coupled, the amplitude of the diaphragm 15 is minimized. For example, when the distance P is 4 mm, the amplitude is 8 mm. By the way, when the diaphragm 15 moves downward, the volume of the sealed space 110 decreases correspondingly, and an amount of the medium corresponding to the decreased amount is discharged, and when the diaphragm 15 moves upward, the corresponding amount. The volume of the sealed space 110 increases, and an amount of medium corresponding to the increase is injected. Therefore, the magnitude of the amplitude of the diaphragm 15 corresponds to the amount of medium injected and discharged (movement amount). If the amplitude of the diaphragm 15 is large, the amount of movement of the medium per vibration of the diaphragm 15 is large.
 また、容器駆動機構3によれば、第1モータ31をオンオフパルス制御することによって、第1モータ31の回転速度を、任意に設定できる。したがって、ダイヤフラム15の振動速度を任意に設定できる。すなわち、水平回転軸311が1回転するのに要する時間T1は、ダイヤフラム15が1回振動するのに要する時間T1である。そして、時間T1は、第1モータ31のオンオフパルス制御によって、調節できる。すなわち、オンパルスを長く設定すると、時間T1は短くなり、オフパルスを長く設定すると、時間T1は長くなる。時間T1は、培地の移動速度に対応する。すなわち、時間T1が短い場合には、培地の移動速度は大きく、時間T1が長い場合には、培地の移動速度は小さい。 Further, according to the container driving mechanism 3, the rotation speed of the first motor 31 can be arbitrarily set by controlling the on / off pulse of the first motor 31. Therefore, the vibration speed of the diaphragm 15 can be arbitrarily set. That is, the time T1 required for one rotation of the horizontal rotating shaft 311 is the time T1 required for the diaphragm 15 to vibrate once. The time T1 can be adjusted by on / off pulse control of the first motor 31. That is, when the on-pulse is set to be long, the time T1 is shortened, and when the off-pulse is set to be long, the time T1 is lengthened. Time T1 corresponds to the moving speed of the culture medium. That is, when the time T1 is short, the moving speed of the medium is high, and when the time T1 is long, the moving speed of the medium is low.
 更に、容器駆動機構3によれば、タイマーを用いることによって、第1モータ31の作動時間T2を、任意に設定できる。したがって、ダイヤフラム15の駆動時間T2を、任意に設定できる。 Furthermore, according to the container drive mechanism 3, the operation time T2 of the first motor 31 can be arbitrarily set by using a timer. Therefore, the driving time T2 of the diaphragm 15 can be arbitrarily set.
(容器駆動制御部105)
 容器駆動制御部105は、容器駆動機構3の第1モータ31に接続されており、第1モータ31の、回転速度及び駆動時間T2を、任意に設定できるようになっている。
(Container drive control unit 105)
The container drive control unit 105 is connected to the first motor 31 of the container drive mechanism 3 so that the rotation speed and the drive time T2 of the first motor 31 can be arbitrarily set.
(回転駆動機構4)
 足場固定具12には、回転駆動機構4が連結されている。回転駆動機構4は、第2モータ41と、第2連結部材42と、第2水平アーム182と、を備えている。
(Rotation drive mechanism 4)
A rotation driving mechanism 4 is connected to the scaffold fixture 12. The rotational drive mechanism 4 includes a second motor 41, a second connecting member 42, and a second horizontal arm 182.
 第2モータ41は、縦板112に固定されている。第2モータ41は、図5に示されるように、水平回転軸411を有しており、且つ、オンオフパルス制御可能である。水平回転軸411は、第2連結部材42を介して、着脱自在に、第2水平アーム182に連結されている。 The second motor 41 is fixed to the vertical plate 112. As shown in FIG. 5, the second motor 41 has a horizontal rotation shaft 411 and is capable of on / off pulse control. The horizontal rotating shaft 411 is detachably connected to the second horizontal arm 182 via the second connecting member 42.
 回転駆動機構4において、第2モータ41が作動すると、水平回転軸411と共に第2水平アーム182が回転し、足場固定具12が回転する。水平回転軸411が1回転すると、足場固定具12も1回転する。水平回転軸411が連続して回転すると、足場固定具12も連続して回転する。足場固定具12が回転することは、足場123が回転することである。 In the rotation drive mechanism 4, when the second motor 41 is operated, the second horizontal arm 182 is rotated together with the horizontal rotation shaft 411, and the scaffold fixture 12 is rotated. When the horizontal rotation shaft 411 makes one rotation, the scaffold fixture 12 also makes one rotation. When the horizontal rotation shaft 411 rotates continuously, the scaffold fixture 12 also rotates continuously. The rotation of the scaffold fixture 12 means that the scaffold 123 rotates.
 回転駆動機構4によれば、第2モータ41をオンオフパルス制御することによって、第2モータ41の回転速度を、任意に設定できる。したがって、足場固定具12の回転速度を任意に設定できる。すなわち、水平回転軸411が1回転するのに要する時間S1は、足場固定具12が1回転するのに要する時間S1である。そして、時間S1は、第2モータ41のオンオフパルス制御によって、調節できる。すなわち、オンパルスを長く設定すると、時間S1は短くなり、オフパルスを長く設定すると、時間S1は長くなる。時間S1は、足場固定具12の回転速度に対応する。すなわち、時間S1が短い場合には、足場固定具12の回転速度は大きく、時間S1が長い場合には、足場固定具12の回転速度は小さい。 According to the rotation drive mechanism 4, the rotation speed of the second motor 41 can be arbitrarily set by performing on / off pulse control of the second motor 41. Therefore, the rotation speed of the scaffold fixture 12 can be set arbitrarily. That is, the time S1 required for one rotation of the horizontal rotating shaft 411 is the time S1 required for one rotation of the scaffold fixture 12. The time S1 can be adjusted by on / off pulse control of the second motor 41. That is, when the on-pulse is set longer, the time S1 becomes shorter, and when the off-pulse is set longer, the time S1 becomes longer. Time S1 corresponds to the rotational speed of the scaffold fixture 12. That is, when the time S1 is short, the rotation speed of the scaffold fixture 12 is high, and when the time S1 is long, the rotation speed of the scaffold fixture 12 is low.
 また、回転駆動機構4によれば、タイマーを用いることによって、第2モータ41の作動時間S2を、任意に設定できる。したがって、足場固定具12の駆動時間S2を、任意に設定できる。 Further, according to the rotation drive mechanism 4, the operation time S2 of the second motor 41 can be arbitrarily set by using a timer. Therefore, the driving time S2 of the scaffold fixture 12 can be arbitrarily set.
(回転駆動制御部106)
 回転駆動制御部106は、回転駆動機構4の第2モータ41に接続されており、第2モータ41の、回転速度及び駆動時間S2を、任意に設定できるようになっている。
(Rotation drive control unit 106)
The rotation drive control unit 106 is connected to the second motor 41 of the rotation drive mechanism 4 so that the rotation speed and drive time S2 of the second motor 41 can be arbitrarily set.
(pH測定器5)
 pH測定器5は、培地用排出配管24において、第2逆止弁26と排出用培地槽23との間に、設けられている。pH測定器5は、培地用排出配管24を流れる培地のpHを測定できるように、設けられている。
(PH measuring device 5)
The pH measuring device 5 is provided between the second check valve 26 and the discharge medium tank 23 in the medium discharge pipe 24. The pH measuring device 5 is provided so that the pH of the medium flowing through the medium discharge pipe 24 can be measured.
(pH測定制御部107)
 pH測定制御部107は、pH測定器5を作動させ、測定データを取得して解析し、培養の状態を検出できるようになっている。通常、pHが6.5以下又は8.5以上である場合には、培養が不十分状態であると判断される。
(PH measurement control unit 107)
The pH measurement control unit 107 operates the pH measuring device 5, acquires and analyzes measurement data, and can detect the culture state. Usually, when pH is 6.5 or less or 8.5 or more, it is judged that culture | cultivation is in an insufficiency state.
(撮影機構6)
 培養容器1には、足場固定具12の細胞を観察するための撮影機構6が、設けられている。図12は、培養容器1の斜視図である。図13は、図12のXIII-XIII断面図である。なお、図13において、足場固定具12は、回転して鉛直状態となっている。撮影機構6は、カメラ61及び光源62を有している。カメラ61は、細胞の映像を撮影し、また、光源62の光の透過量を検知する、機能を、有している。カメラ61は、第2側面部113の中央に形成された貫通孔1131に嵌入された、密封部材1132の、凹部1133内に、ベアリング1134を介して回転自在に、設けられている。密封部材1132は無色透明であるので、カメラ61は、容器本体11内を撮影可能である。光源62は、第4側面部115に、且つ、カメラ61に対向する位置に、設けられている。第4側面部115の中央には、貫通孔1151が形成されている。貫通孔1151は、無色透明な板部材1152によって、外側から気密的に塞がれている。板部材1152は、板体1153によって、第4側面部115に固定されている。光源62は、板体1153の貫通孔1154内に保持されている。板部材1152は無色透明であるので、光源62は、容器本体11内を照らすことができる。
(Photographing mechanism 6)
The culture container 1 is provided with an imaging mechanism 6 for observing the cells of the scaffold fixture 12. FIG. 12 is a perspective view of the culture vessel 1. 13 is a cross-sectional view taken along the line XIII-XIII in FIG. In addition, in FIG. 13, the scaffold fixture 12 rotates and is in a vertical state. The photographing mechanism 6 has a camera 61 and a light source 62. The camera 61 has a function of taking an image of a cell and detecting a light transmission amount of the light source 62. The camera 61 is rotatably provided via a bearing 1134 in a recess 1133 of a sealing member 1132 fitted in a through hole 1131 formed in the center of the second side surface portion 113. Since the sealing member 1132 is colorless and transparent, the camera 61 can photograph the inside of the container body 11. The light source 62 is provided on the fourth side surface 115 and at a position facing the camera 61. A through hole 1151 is formed at the center of the fourth side surface portion 115. The through hole 1151 is airtightly closed from the outside by a colorless and transparent plate member 1152. The plate member 1152 is fixed to the fourth side surface portion 115 by a plate body 1153. The light source 62 is held in the through hole 1154 of the plate body 1153. Since the plate member 1152 is colorless and transparent, the light source 62 can illuminate the inside of the container body 11.
(撮影制御部108)
 撮影制御部108は、カメラ61及び光源62を作動させ、撮影データを取得して解析し、培養の状態を検出できるようになっている。撮影データとしては、例えば、細胞の撮影画像、光源62の光の透過量等が用いられる。
(Shooting control unit 108)
The imaging control unit 108 can operate the camera 61 and the light source 62 to acquire and analyze imaging data and detect the culture state. As the photographing data, for example, a photographed image of a cell, a light transmission amount of the light source 62, and the like are used.
(培養装置100の作動及び効果)
 まず、手作業により、初期設定作業を行う。すなわち、図1に示されるように、注入用培地槽21が培養容器1と同一平面上に設置されているので、注入用培地槽21の上に錘219を載せると、注入用培地槽21から培地が押し出される。これにより、培地を、培地用注入配管22を経て、培養容器1内の足場固定具12に固定された播種用シート状足場123の下面まで注入する。そして、錘219を外すことにより、培地の注入を一時停止する。
(Operation and effect of culture apparatus 100)
First, an initial setting operation is performed manually. That is, as shown in FIG. 1, since the infusion medium tank 21 is installed on the same plane as the culture container 1, when the weight 219 is placed on the infusion medium tank 21, the infusion medium tank 21 is removed. The medium is pushed out. As a result, the medium is injected through the medium injection pipe 22 to the lower surface of the seeding sheet-like scaffold 123 fixed to the scaffold fixture 12 in the culture vessel 1. Then, the medium injection is temporarily stopped by removing the weight 219.
 次に、手作業により、足場123へ、細胞懸濁液を播種する。すなわち、図14に示されるように、培養対象の細胞懸濁液が充填された注射器201の針202を、針用貫通孔185から密閉空間110内に差し込み、足場123上に細胞懸濁液を射出する。これにより、足場123の表面(細胞保持面)に細胞懸濁液が播種される。なお、細胞懸濁液を播種した後は、針202を抜き出し、図15に示されるように、針用貫通孔185を栓186で密封する。 Next, the cell suspension is seeded on the scaffold 123 by manual work. That is, as shown in FIG. 14, the needle 202 of the syringe 201 filled with the cell suspension to be cultured is inserted into the sealed space 110 from the needle through hole 185, and the cell suspension is placed on the scaffold 123. Eject. As a result, the cell suspension is seeded on the surface (cell holding surface) of the scaffold 123. After seeding the cell suspension, the needle 202 is extracted, and the needle through hole 185 is sealed with a stopper 186 as shown in FIG.
 そして、細胞懸濁液中の細胞が沈下した後、再度、注入用培地槽21の上に錘219を載せ、培地を、培地用排出配管24の第2逆止弁26の直前まで、行き渡らせる。 Then, after the cells in the cell suspension have settled, the weight 219 is placed on the infusion medium tank 21 again, and the medium is spread until just before the second check valve 26 of the medium discharge pipe 24. .
 そして、容器駆動制御部105及び回転駆動制御部106を操作して、容器駆動機構3及び回転駆動機構4を作動させ、また、必要に応じて、pH測定制御部107及び/又は撮影制御部108を操作して、撮影機構6及び/又はpH測定器5を、作動させる。これにより、培養装置100は、次のように作動して、顕著な効果を発揮する。 Then, the container drive control unit 105 and the rotation drive control unit 106 are operated to operate the container drive mechanism 3 and the rotation drive mechanism 4, and, if necessary, the pH measurement control unit 107 and / or the imaging control unit 108. To operate the photographing mechanism 6 and / or the pH measuring device 5. Thereby, the culture apparatus 100 operates as follows and exhibits a remarkable effect.
(1)容器駆動機構3が作動すると、ダイヤフラム15が上下に振動する。ダイヤフラム15が上に動くと、注入用培地槽21から培地用注入配管22に行き渡っている培地が、注入口13から密閉空間110内に注入される。ダイヤフラム15が下に動くと、密閉空間110内の培地が排出口14から培地用排出配管24に排出される。したがって、ダイヤフラム15が振動することによって、密閉空間110内の培地が少しずつ交換されていく。すなわち、培地の自動交換が行われる。 (1) When the container driving mechanism 3 operates, the diaphragm 15 vibrates up and down. When the diaphragm 15 moves upward, the culture medium that has spread from the culture medium tank 21 for injection to the culture medium injection pipe 22 is injected into the sealed space 110 from the injection port 13. When the diaphragm 15 moves downward, the medium in the sealed space 110 is discharged from the discharge port 14 to the medium discharge pipe 24. Therefore, when the diaphragm 15 vibrates, the culture medium in the sealed space 110 is gradually replaced. That is, the medium is automatically changed.
(2)培養部102は密閉構造を確立しているので、培地の自動交換は、細菌に汚染されることなく、行われる。 (2) Since the culture unit 102 has established a sealed structure, automatic medium exchange is performed without being contaminated by bacteria.
(3)培養部102は恒温槽内に設けられているので、最適な温度下で培養が行われる。 (3) Since the culture unit 102 is provided in the thermostatic chamber, the culture is performed at an optimum temperature.
(4)図15は、培養容器1内の培地の移動状態を示している。注入口13から注入された培地は、整流部材16に下方から衝突するので、勢いが弱められると共に横方向へ均等に分散していき、隙間162を通って上方へ移動して停滞する。また、注入口13から注入された培地の量は、ダイヤフラム15の振幅に対応して、一定量である。したがって、注入された培地は、密閉空間110内において、層状になる。そして、次々と注入された培地は、層状態を維持したまま、穏やかに、上方へ移動していき、排出口14の高さ位置まで来ると、ダイヤフラム15が下に動いた際に排出口14から排出される。これにより、足場123の細胞は、穏やかに移動してきた新たな培地に次々と晒されていく。したがって、細胞は、新鮮な培地に穏やかに接することができ、無用なストレスを受けることなく培養される。それ故、培養効率が向上する。 (4) FIG. 15 shows the moving state of the medium in the culture vessel 1. Since the medium injected from the injection port 13 collides with the rectifying member 16 from below, the momentum is weakened and the medium is evenly distributed in the lateral direction, and moves upward through the gap 162 and stagnates. Further, the amount of the medium injected from the injection port 13 is a constant amount corresponding to the amplitude of the diaphragm 15. Therefore, the injected medium is layered in the sealed space 110. Then, the medium injected one after another gently moves upward while maintaining the layered state. When the medium reaches the height position of the discharge port 14, the discharge port 14 is moved when the diaphragm 15 moves downward. Discharged from. Thereby, the cells of the scaffold 123 are successively exposed to new medium that has moved gently. Thus, the cells can be gently touched with fresh media and cultured without unnecessary stress. Therefore, the culture efficiency is improved.
(5)ダイヤフラム15の振幅が大きいと、注入口13から注入される培地の量が多い。注入される培地量が多いと、足場123の細胞と新鮮な培地との接触効率が向上する。したがって、この点からも培養効率が向上する。 (5) When the amplitude of the diaphragm 15 is large, the amount of the medium injected from the injection port 13 is large. When the amount of the medium to be injected is large, the contact efficiency between the cells of the scaffold 123 and the fresh medium is improved. Therefore, the culture efficiency is also improved from this point.
(6)ダイヤフラム15の振動速度が大きいと、密閉空間110内における培地の移動速度が大きい。培地の移動速度が大きいと、足場123の細胞と新鮮な培地との接触効率が向上する。したがって、この点からも培養効率が向上する。 (6) When the vibration speed of the diaphragm 15 is high, the moving speed of the medium in the sealed space 110 is high. When the moving speed of the medium is high, the contact efficiency between the cells of the scaffold 123 and the fresh medium is improved. Therefore, the culture efficiency is also improved from this point.
(7)ダイヤフラム15の駆動時間が長いと、足場123の細胞と新鮮な培地との接触時間が長い。したがって、この点からも培養効率が向上する。 (7) When the driving time of the diaphragm 15 is long, the contact time between the cells of the scaffold 123 and the fresh medium is long. Therefore, the culture efficiency is also improved from this point.
(8)回転駆動機構4が作動すると、足場固定具12すなわち足場123が回転する。足場123が回転すると、細胞保持面が積極的に新鮮な培地に接触し、また、細胞保持面に付着している老廃物が積極的に除去される。したがって、この点からも培養効率が向上する。 (8) When the rotation drive mechanism 4 is operated, the scaffold fixture 12, that is, the scaffold 123 rotates. When the scaffold 123 rotates, the cell holding surface is positively brought into contact with a fresh medium, and waste products attached to the cell holding surface are positively removed. Therefore, the culture efficiency is also improved from this point.
(9)足場固定具12の回転速度が大きいと、上記(8)の効果が向上する。 (9) When the rotation speed of the scaffold fixture 12 is high, the effect of the above (8) is improved.
(10)足場固定具12の駆動時間が長いと、上記(8)の効果が向上する。 (10) When the driving time of the scaffold fixture 12 is long, the effect of the above (8) is improved.
(11)培地用注入配管22に第1逆止弁25が設けられており、培地用排出配管24に第2逆止弁26が設けられているので、注入用培地槽21と排出用培地槽23との間に、圧力差は発生しない。したがって、培地の交換は円滑に行われる。 (11) Since the first check valve 25 is provided in the medium injection pipe 22 and the second check valve 26 is provided in the medium discharge pipe 24, the injection medium tank 21 and the discharge medium tank 23, no pressure difference is generated. Therefore, the medium is exchanged smoothly.
(12)第1逆止弁25及び第2逆止弁26が共に球体弁構造を有しているので、両配管22、24において、培地は軽快に流れる。したがって、この点からも、培地の交換は円滑に行われる。 (12) Since both the first check valve 25 and the second check valve 26 have a spherical valve structure, the medium flows lightly in both the pipes 22 and 24. Therefore, also from this point, the medium is exchanged smoothly.
(13)pH測定器5が作動すると、pH測定制御部107によって、測定データが取得されて解析され、培養の状態が検出される。したがって、検出結果が培養の不十分状態を示している場合には、作業者は、容器駆動制御部105及び回転駆動制御部106を操作して、容器駆動機構3及び回転駆動機構4を、培養を促進できる条件に、設定できる。 (13) When the pH measuring device 5 is activated, the measurement data is acquired and analyzed by the pH measurement control unit 107, and the culture state is detected. Therefore, when the detection result indicates an inadequate culture state, the operator operates the container drive control unit 105 and the rotation drive control unit 106 so that the container drive mechanism 3 and the rotation drive mechanism 4 are cultured. Can be set to conditions that can promote
(14)撮影機構6が作動すると、撮影制御部108によって、撮影データが取得されて解析され、培養の状態が検出される。したがって、検出結果が培養の不十分状態を示している場合には、作業者は、容器駆動制御部105及び回転駆動制御部106を操作して、容器駆動機構3及び回転駆動機構4を、培養を促進できる条件に、設定できる。 (14) When the imaging mechanism 6 operates, the imaging control unit 108 acquires and analyzes the imaging data, and detects the culture state. Therefore, when the detection result indicates an inadequate culture state, the operator operates the container drive control unit 105 and the rotation drive control unit 106 so that the container drive mechanism 3 and the rotation drive mechanism 4 are cultured. Can be set to conditions that can promote
(培養装置100の別の使用態様)
 培養装置100は、次のような態様で使用できる。
(Another usage mode of the culture apparatus 100)
The culture apparatus 100 can be used in the following manner.
(a)培養容器1は、図16に示されるように、単独で、密閉状態のまま運搬可能である。すなわち、図1の培養装置100において、第1連結部材34を解除することによってロッド35とアーム33とを切り離し、第2連結部材42を解除することによって水平アーム182と水平回転軸411とを切り離し、第1クランプ部材27を用いて培地用注入配管22を切断するとともに閉鎖し、第2クランプ部材28を用いて培地用排出配管24を切断するとともに閉鎖すると、培養容器1は、図16の状態となる。これによれば、培養している細胞を汚染することなく、培養容器1を別の場所に移動できる。 (A) As shown in FIG. 16, the culture vessel 1 can be transported alone in a sealed state. 1, the rod 35 and the arm 33 are disconnected by releasing the first connecting member 34, and the horizontal arm 182 and the horizontal rotating shaft 411 are disconnected by releasing the second connecting member 42. When the culture medium injection pipe 22 is cut and closed using the first clamp member 27 and the culture medium discharge pipe 24 is cut and closed using the second clamp member 28, the culture vessel 1 is in the state shown in FIG. It becomes. According to this, the culture vessel 1 can be moved to another place without contaminating the cells being cultured.
(b)培養部102は、図17に示されるように、単独で、密閉状態のまま運搬可能である。すなわち、図1の培養装置100において、第1連結部材34を解除することによってロッド35とアーム33とを切り離し、第2連結部材42を解除することによって水平アーム182と水平回転軸411とを切り離すと、培養部102は、図17の状態となる。これによれば、培養している細胞及び培地を汚染することなく、培養部102を別の場所に移動でき、しかも、その場所において培養を容易に再開できる。 (B) As shown in FIG. 17, the culture unit 102 can be transported alone in a sealed state. 1, the rod 35 and the arm 33 are disconnected by releasing the first connecting member 34, and the horizontal arm 182 and the horizontal rotating shaft 411 are disconnected by releasing the second connecting member 42. Then, the culture part 102 will be in the state of FIG. According to this, the culture unit 102 can be moved to another place without contaminating the cells and culture medium being cultured, and the culture can be easily resumed at that place.
(c)培養部102は、図18に示されるように、恒温槽103に収容することにより、二重の密閉状態のまま運搬可能である。図18では、容器駆動機構3の第1モータ31及び回転駆動機構4の第2モータ41が恒温槽103の外に配置されている。そして、容器駆動機構3において、第1モータ31の水平回転軸311と回転部材32とが、恒温槽103の壁1031を間に挟んで、マグネット391、392によって、解除可能に、連結され、また、第2連結部材42が、マグネット491、492からなっており、第2モータ41の水平回転軸411と水平アーム182とが、恒温槽103の壁1031を間に挟んで、マグネット491、492によって、解除可能に、連結される。これによれば、培養している細胞及び培地を汚染することなく、培養部102を別の場所に移動でき、しかも、その場所において殆ど準備作業を行うことなく、培養を容易に再開できる。 (C) As shown in FIG. 18, the culture unit 102 can be transported in a double sealed state by being housed in the thermostatic chamber 103. In FIG. 18, the first motor 31 of the container drive mechanism 3 and the second motor 41 of the rotation drive mechanism 4 are arranged outside the thermostatic chamber 103. In the container drive mechanism 3, the horizontal rotation shaft 311 of the first motor 31 and the rotation member 32 are releasably connected by magnets 391 and 392 with the wall 1031 of the thermostatic chamber 103 interposed therebetween, and The second connecting member 42 is composed of magnets 491 and 492, and the horizontal rotating shaft 411 and the horizontal arm 182 of the second motor 41 sandwich the wall 1031 of the thermostatic chamber 103 between them, and the magnets 491 and 492 , Releasably connected. According to this, the culture unit 102 can be moved to another place without contaminating the cultured cells and medium, and the culture can be easily resumed with little preparation work at that place.
(培養装置100の変形構成)
 上記構成の培養装置100は、次のような変形構成を採用できる。
(Modified configuration of the culture apparatus 100)
The culture device 100 having the above configuration can employ the following modified configuration.
(A)図19は、回転駆動機構4の変形例を示す縦断面図である。この回転駆動機構4では、水平アーム182と水平回転軸411とが、マグネット493、494によって、解除可能に連結されている。第3側面部114の貫通孔1141は、樹脂板1149で塞がれており、マグネット493とマグネット494とは、樹脂板1149を挟んで連結している。この構成によれば、第2モータ41を培養容器1から容易に取り外すことができる。 (A) FIG. 19 is a longitudinal sectional view showing a modification of the rotation drive mechanism 4. In this rotation drive mechanism 4, the horizontal arm 182 and the horizontal rotation shaft 411 are releasably connected by magnets 493 and 494. The through hole 1141 of the third side surface portion 114 is closed with a resin plate 1149, and the magnet 493 and the magnet 494 are connected with the resin plate 1149 interposed therebetween. According to this configuration, the second motor 41 can be easily detached from the culture vessel 1.
(B)図20~図22は、足場固定具12の変形例を示している。図20は足場固定具12Aの斜視図であり、図21は図20のXXI矢視図であり、図22は図20のXXII-XXII断面図である。この足場固定具12Aは、3個の図8の足場固定具12が、スペーサ129を介して積層され、且つ、足場固定具本体122を貫通するネジ128によって固定されることにより、構成されている。これにより、足場固定具12Aは、3個の足場123を、間隔127を空けて積層して固定している。この構成によれば、一度に多量の細胞を同一条件で培養できる。 (B) FIGS. 20 to 22 show modified examples of the scaffold fixture 12. 20 is a perspective view of the scaffold fixing tool 12A, FIG. 21 is a view taken along the arrow XXI in FIG. 20, and FIG. 22 is a sectional view taken along the line XXII-XXII in FIG. The scaffold fixture 12A is configured by stacking the three scaffold fixtures 12 of FIG. 8 through spacers 129 and fixing them with screws 128 that pass through the scaffold fixture body 122. . As a result, the scaffold fixture 12 </ b> A stacks and fixes the three scaffolds 123 at intervals 127. According to this configuration, a large amount of cells can be cultured at the same time at the same time.
 なお、足場固定具12Aを用いる場合には、培養容器1の第4側面部115には、図23に示されるように、3個の足場(細胞保持面)123に対応した3個の針用貫通孔185が形成されている。 When the scaffold fixture 12A is used, the fourth side surface 115 of the culture vessel 1 has three needles corresponding to the three scaffolds (cell holding surfaces) 123 as shown in FIG. A through hole 185 is formed.
(C)図24及び図25は、足場固定具12の別の変形例を示している。この足場固定具12Bは、円筒体からなっている。図24は足場固定具12Bの正面図であり、図25は図24のXXV矢視図である。円筒体125の円筒面1251は、網板からなっている。円筒体125の両端は、培地が通過可能な多孔板1252で塞がれている。この足場固定具12Bによれば、接着系細胞を良好に培養できる。すなわち、接着系細胞は、アテロコラーゲン等に播種され、培養物として、円筒体125内に充填され、足場固定具12Bの回転によって、円筒面1251に接着することなく、培地に晒されて、培養される。 (C) FIGS. 24 and 25 show another modification of the scaffold fixture 12. The scaffold fixture 12B is formed of a cylindrical body. FIG. 24 is a front view of the scaffold fixture 12B, and FIG. 25 is a view taken along arrow XXV in FIG. The cylindrical surface 1251 of the cylindrical body 125 is a net plate. Both ends of the cylindrical body 125 are closed with a porous plate 1252 through which the medium can pass. According to this scaffold fixture 12B, it is possible to culture the adherent cells well. That is, the adherent cells are seeded on atelocollagen or the like, filled in the cylindrical body 125 as a culture, and exposed to the culture medium without being adhered to the cylindrical surface 1251 by the rotation of the scaffold fixture 12B. The
(D)図26は、針用貫通孔185に代わる変形例を示す縦断面図である。この例では、培養容器1が、第1側面部112の一部に、ゴム壁部1129を有している。ゴム壁部1129は、細胞を播種するための注射針202を密閉空間110内の足場123に向けて貫通させることができるように、且つ、注射針を抜いた後は貫通した孔が閉じるように、構成されている。これによれば、注射針202を抜いた後に、貫通した孔を塞ぐという作業が不要であるので、作業性を向上できる。 (D) FIG. 26 is a longitudinal sectional view showing a modified example in place of the needle through-hole 185. In this example, the culture vessel 1 has a rubber wall portion 1129 in a part of the first side surface portion 112. The rubber wall 1129 allows the injection needle 202 for seeding the cell to penetrate toward the scaffold 123 in the sealed space 110, and closes the penetrated hole after the injection needle is removed. ,It is configured. According to this, since the operation | work of plugging the hole penetrated after extracting the injection needle 202 is unnecessary, workability | operativity can be improved.
(E)図27及び図28は、培養容器1の変形例を示す縦断面図である。この培養容器1は、細胞を播種するための特別な構成(針用貫通孔185、ゴム壁部1129等)を有していない。この例では、播種治具80を用いて播種を行う。播種治具80は、円筒本体81と、円筒本体81の外周面に設けられたOリング82と、からなっている。播種治具80を用いた播種作業は、クリーンベンチ内での培養容器1の組立過程において、上面部116を取り付ける前に、行う。すなわち、まず、図27に示されるように、播種治具80を密閉空間110の上方に位置させる。次に、図28に示されるように、播種治具80を、足場固定具12に接触する位置まで、密閉空間110内に挿入する。この時、密閉空間110の気密性は、Oリング82によって確保される。次に、細胞を含む溶液99を円筒本体81の内部空間に注入し、静置する。これにより、細胞が、沈下して、足場固定具12の播種用シート状足場123表面に播種される。その後、溶液を除去し、播種治具80を密閉空間110から取り出す。この培養容器1は、構成が簡素である。 (E) FIG. 27 and FIG. 28 are longitudinal sectional views showing modifications of the culture vessel 1. This culture vessel 1 does not have a special configuration (cell through-hole 185, rubber wall 1129, etc.) for seeding cells. In this example, sowing is performed using a sowing jig 80. The seeding jig 80 includes a cylindrical main body 81 and an O-ring 82 provided on the outer peripheral surface of the cylindrical main body 81. The seeding operation using the seeding jig 80 is performed before attaching the upper surface part 116 in the assembly process of the culture vessel 1 in the clean bench. That is, first, as shown in FIG. 27, the seeding jig 80 is positioned above the sealed space 110. Next, as shown in FIG. 28, the seeding jig 80 is inserted into the sealed space 110 until it comes into contact with the scaffold fixture 12. At this time, the airtightness of the sealed space 110 is ensured by the O-ring 82. Next, the solution 99 containing cells is injected into the internal space of the cylindrical body 81 and left to stand. As a result, the cells settle and are seeded on the surface of the seeding sheet-like scaffold 123 of the scaffold fixture 12. Thereafter, the solution is removed, and the seeding jig 80 is taken out from the sealed space 110. The culture vessel 1 has a simple configuration.
(F)図29は、培養装置100の変形例を示す正面図である。この培養装置100では、第1逆止弁25が、球体弁構造ではなく、一般的構造を、有している。この構成によれば、培地用注入配管22を、培養容器1の注入口13に向けて、横方向に配置できるので、培地用注入配管22の長さ寸法を小さくでき、したがって、培養装置100を小さくできる。 (F) FIG. 29 is a front view showing a modification of the culture apparatus 100. In the culture apparatus 100, the first check valve 25 has a general structure, not a spherical valve structure. According to this configuration, since the culture medium injection pipe 22 can be arranged in the lateral direction toward the injection port 13 of the culture vessel 1, the length of the culture medium injection pipe 22 can be reduced. Can be small.
[第2実施形態]
 図30は、本発明の第2実施形態の培養装置100Aを示す正面図である。この培養装置100Aは、第1実施形態の培養装置100に比して、次の点が異なっており、その他は同じである。
[Second Embodiment]
FIG. 30 is a front view showing a culture device 100A according to the second embodiment of the present invention. This culture apparatus 100A is different from the culture apparatus 100 of the first embodiment in the following points, and is otherwise the same.
(i)培地槽として、兼用培地槽29のみを用いている。すなわち、培地用注入配管22及び培地用排出配管24は、培養容器1と兼用培地槽29とを連絡している。 (I) Only the dual-purpose medium tank 29 is used as the medium tank. That is, the culture medium injection pipe 22 and the culture medium discharge pipe 24 communicate with the culture vessel 1 and the combined culture medium tank 29.
(ii)兼用培地槽29、培地用注入配管22、培養容器1、及び培地用排出配管24が、培養部102Aを構成しており、培養部102Aは、気体透過性構造を有している。具体的には、兼用培地槽29の蓋291と、培地用注入配管22及び培地用排出配管24の、一部又は全部とが、気体透過性材料でできている。 (Ii) The combined medium tank 29, the medium injection pipe 22, the culture vessel 1, and the medium discharge pipe 24 constitute a culture part 102A, and the culture part 102A has a gas-permeable structure. Specifically, the lid 291 of the combined medium tank 29 and a part or all of the medium injection pipe 22 and the medium discharge pipe 24 are made of a gas permeable material.
(iii)培養部102Aが、炭酸ガスインキュベータ91A内に設けられている。炭酸ガスインキュベータ91A内は、滅菌状態に維持されている。また、炭酸ガスインキュベータ91A内では、温度、湿度、酸素分圧、二酸化炭素分圧、及び窒素分圧が、制御されている。 (Iii) The culture unit 102A is provided in the carbon dioxide incubator 91A. The inside of the carbon dioxide incubator 91A is maintained in a sterilized state. In the carbon dioxide incubator 91A, the temperature, humidity, oxygen partial pressure, carbon dioxide partial pressure, and nitrogen partial pressure are controlled.
(iv)兼用培地槽29内に曝露部28を備えている。曝露部28は、具体的には、図31に示されるように、兼用培地槽29内において培地用排出配管24の出口端部に連結された、傘部281を、有しており、培地用排出配管24から排出された培地を、傘部281によって、散布するようになっている。 (Iv) An exposure unit 28 is provided in the combined medium tank 29. Specifically, as shown in FIG. 31, the exposure unit 28 includes an umbrella unit 281 connected to the outlet end of the medium discharge pipe 24 in the combined medium tank 29, and is used for the medium. The medium discharged from the discharge pipe 24 is sprayed by the umbrella portion 281.
(v)培養装置100Aは、培地が、兼用培地槽29から、培地用注入配管22、培養容器1、及び培地用排出配管24を経て、兼用培地槽29へ至るように、流れるようになっている。すなわち、本実施形態の培養装置100Aは、還流タイプである。 (V) In the culture apparatus 100A, the culture medium flows from the dual-purpose medium tank 29 to the dual-purpose medium tank 29 via the medium injection pipe 22, the culture container 1, and the medium discharge pipe 24. Yes. That is, the culture apparatus 100A of the present embodiment is a reflux type.
 なお、培養部102Aにおいて、培地と接触する部材、具体的には、兼用培地槽29、培地用注入配管22、培養容器1、培地用排出配管24、第1逆止弁25、及び第2逆止弁26は、生体に悪影響を及ぼさない材料、すなわち、生体適合材料で構成されている。生体適合材料は、例えば、樹脂、金属、及びガラスなどから、適切に選択される。また、これらの部材は、使用後に廃棄できる。 In the culture unit 102A, members that come into contact with the culture medium, specifically, the combined culture medium tank 29, the culture medium injection pipe 22, the culture container 1, the culture medium discharge pipe 24, the first check valve 25, and the second reverse valve. The stop valve 26 is made of a material that does not adversely affect the living body, that is, a biocompatible material. The biocompatible material is appropriately selected from, for example, resin, metal, glass, and the like. Also, these members can be discarded after use.
 また、培養装置100Aでは、容器駆動機構として、直動アクチュエータを用いた機構3Aを、用いているが、第1実施形態と同じ機構3を用いてもよい。容器駆動機構3Aは、直動アクチュエータ37と、第1連結部材38と、ロッド39と、を備えている。直動アクチュエータ37は、鉛直伸縮軸371を有しており、且つ、オンオフパルス制御可能である。ロッド39は、鉛直伸縮軸371の下端部に対して、第1連結部材38を介して、着脱自在に、連結されており、且つ、鉛直伸縮軸371の下端部から鉛直下方に延びてダイヤフラム15の中央に固定されている。容器駆動機構3Aは、直動アクチュエータ37が作動すると、鉛直伸縮軸371及びロッド39が上下に動き、それによって、ダイヤフラム15を上下に振動させるようになっている。 Further, in the culture apparatus 100A, the mechanism 3A using the linear actuator is used as the container driving mechanism, but the same mechanism 3 as in the first embodiment may be used. The container drive mechanism 3 </ b> A includes a linear actuator 37, a first connecting member 38, and a rod 39. The linear actuator 37 has a vertical telescopic shaft 371 and is capable of on / off pulse control. The rod 39 is detachably connected to the lower end portion of the vertical telescopic shaft 371 via the first connecting member 38, and extends vertically downward from the lower end portion of the vertical telescopic shaft 371 to the diaphragm 15. It is fixed at the center of In the container driving mechanism 3A, when the linear actuator 37 is operated, the vertical telescopic shaft 371 and the rod 39 move up and down, thereby vibrating the diaphragm 15 up and down.
(培養装置100Aの作動及び効果)
 培養装置100Aの作動は、第1実施形態の培養装置100の作動に比して、次の点が異なっており、その他は同じである。
(Operation and effect of culture apparatus 100A)
The operation of the culture apparatus 100A is the same as the operation of the culture apparatus 100 of the first embodiment except for the following points.
 すなわち、培地用注入配管22及び培地用排出配管24の、一部又は全部が、気体透過性材料でできているので、培地は、両配管22、24を流れる際に、炭酸ガスインキュベータ91A内の気体に晒される。また、培地は、培地用排出配管24から兼用培地槽29に排出される際に、曝露部28によって、炭酸ガスインキュベータ91Aから兼用培地槽29へ侵入している気体に晒される。これにより、培地には、炭酸ガスや酸素等が取り込まれる。したがって、培地は、再利用可能となる。 That is, part or all of the culture medium injection pipe 22 and the culture medium discharge pipe 24 are made of a gas permeable material, so that when the culture medium flows through both the pipes 22 and 24, the culture medium is in the carbon dioxide incubator 91A. Be exposed to gas. Further, when the medium is discharged from the medium discharge pipe 24 to the combined medium tank 29, the medium is exposed to the gas entering the combined medium tank 29 from the carbon dioxide incubator 91 </ b> A by the exposure unit 28. Thereby, carbon dioxide gas, oxygen, etc. are taken in into a culture medium. Therefore, the medium can be reused.
 なお、初期設定作業では、ポンプ85によって、兼用培地槽29から培地が押し出される。 In the initial setting operation, the medium is pushed out from the combined medium tank 29 by the pump 85.
(培養装置100Aの別の使用態様)
 培養装置100Aは、図18に示された態様と同様に、培養部102Aを炭酸ガスインキュベータ91A内に収容した態様で、使用できる。
(Another usage mode of the culture apparatus 100A)
The culture apparatus 100A can be used in a mode in which the culture unit 102A is accommodated in the carbon dioxide incubator 91A, similarly to the mode shown in FIG.
(培養装置100Aの変形構成)
 培養装置100Aは、次のような変形構成を採用できる。
(Modified configuration of culture apparatus 100A)
The culture device 100A can employ the following modified configuration.
(A)図32に示されるように、兼用培地槽29内において、曝露部28の傘部282が、支持棒283によって、培地用排出配管24の出口端部の直下に、支持されている。 (A) As shown in FIG. 32, the umbrella portion 282 of the exposed portion 28 is supported by the support rod 283 directly below the outlet end portion of the medium discharge pipe 24 in the combined medium tank 29.
(B)曝露部28が、兼用培地槽29の外に設けられている。 (B) The exposure unit 28 is provided outside the combined medium tank 29.
(実施例1)
 第1実施形態の培養装置100を用いた。
Example 1
The culture apparatus 100 of the first embodiment was used.
(1)条件
(a)ダイヤフラム15の振幅を8mmに設定した。これにより、ダイヤフラム15の1回の振動で移動する培地の量は、2.5ccであった。
(b)第1モータ31として、1分間に5回転する能力を有するモータを用いた。
(c)容器駆動制御部105によるオンオフパルス制御として、オンパルス時間を0.5秒、オフパルス時間を0.5秒とした。また、第1モータ31の駆動時間を2分間とした。
(1) Condition (a) The amplitude of the diaphragm 15 was set to 8 mm. As a result, the amount of the medium moved by one vibration of the diaphragm 15 was 2.5 cc.
(B) As the first motor 31, a motor having the ability to rotate 5 times per minute was used.
(C) As the on / off pulse control by the container drive control unit 105, the on pulse time was set to 0.5 seconds and the off pulse time was set to 0.5 seconds. The driving time of the first motor 31 is 2 minutes.
(2)結果
 ダイヤフラム15は5回振動し、12.5ccの培地が交換された。
(2) Results Diaphragm 15 was vibrated five times, and 12.5 cc of the medium was replaced.
(実施例2)
 第1実施形態の培養装置100を用いた。
(Example 2)
The culture apparatus 100 of the first embodiment was used.
(1)条件
(a)実施例1と同じである。
(b)実施例1と同じである。
(c)容器駆動制御部105によるオンオフパルス制御として、オンパルス時間を0.5秒、オフパルス時間を20秒とした。また、第1モータ31の駆動時間を10分間とした。
(1) Condition (a) Same as Example 1.
(B) Same as Example 1.
(C) As the on / off pulse control by the container drive control unit 105, the on pulse time was set to 0.5 seconds and the off pulse time was set to 20 seconds. The driving time of the first motor 31 was 10 minutes.
(2)結果
 ダイヤフラム15は約1.2回振動し、約3ccの培地が交換された。
(2) Results Diaphragm 15 vibrated about 1.2 times, and about 3 cc of medium was changed.
 本発明の培養装置は、培地を自動で交換しながら培養を行うことができるので、産業上の利用価値が大である。 Since the culture apparatus of the present invention can perform culture while automatically exchanging the medium, it has great industrial utility value.

Claims (22)

  1.  培地によって細胞を培養するための培養容器を備えた、培養装置において、
     培養容器が、
     密閉空間を有する容器本体と、
     密閉空間内にて細胞を保持するための足場と、
     足場を固定するための足場固定具と、
     容器本体の底面部中央に設けられており、密閉空間内に培地を注入するための注入口と、
     容器本体の上部に設けられており、密閉空間内から培地を排出するための排出口と、
     容器本体の上面に設けられており、上下に振動することによって、密閉空間を加圧及び減圧する、ダイヤフラムと、
     注入口の上方に設けられており、注入されて来た培地を密閉空間内の周縁部に向けて流すための整流部材と、
     を備えており、
     培養容器は、ダイヤフラムが上に移動すると、密閉空間が減圧され、それによって、注入口からの培地の注入を可能とし、ダイヤフラムが下に移動すると、密閉空間が加圧され、それによって、排出口からの培地の排出を可能とするようになっている、
     ことを特徴とする、培養装置。
    In a culture apparatus equipped with a culture vessel for culturing cells with a medium,
    The culture container
    A container body having a sealed space;
    A scaffold for holding the cells in an enclosed space;
    A scaffold fixture for securing the scaffold,
    Provided in the center of the bottom surface of the container body, and an inlet for injecting the medium into the sealed space;
    Provided in the upper part of the container body, and a discharge port for discharging the medium from the sealed space;
    A diaphragm that is provided on the upper surface of the container body and pressurizes and depressurizes the sealed space by vibrating up and down; and
    A rectifying member that is provided above the inlet and for flowing the injected medium toward the peripheral edge in the sealed space;
    With
    When the diaphragm moves upward, the sealed space depressurizes the sealed space, thereby allowing the medium to be injected from the inlet, and when the diaphragm moves downward, the sealed space is pressurized and thereby discharged. The medium can be discharged from the
    A culture apparatus.
  2.  培養に用いられる培地を収容するための注入用培地槽と、
     注入用培地槽と培養容器の注入口とを連絡する培地用注入配管と、
     培養容器から排出される培地を収容するための排出用培地槽と、
     排出用培地槽と培養容器の排出口とを連絡する培地用排出配管と、
     を更に備えており、
     培地用注入配管には、第1逆止弁が設けられており、
     培地用排出配管には、第2逆止弁が設けられており、
     注入用培地槽、培地用注入配管、培養容器、培地用排出配管、及び排出用培地槽は、培養部を構成しており、培養部は、密閉構造を確立しており、
     培養部は、ダイヤフラムが上下に振動すると、培地が、注入用培地槽から、培地用注入配管、培養容器、及び培地用排出配管を経て、排出用培地槽へ、流れるようになっている、
     請求項1記載の培養装置。
    An infusion medium tank for containing a medium used for culture;
    An infusion pipe for the medium connecting the infusion medium tank and the inlet of the culture container;
    A discharge medium tank for containing the medium discharged from the culture container;
    A medium discharge pipe that communicates the medium tank for discharge and the discharge port of the culture container;
    Is further provided,
    The medium injection pipe is provided with a first check valve,
    The medium discharge pipe is provided with a second check valve,
    The infusion medium tank, the medium infusion pipe, the culture container, the medium discharge pipe, and the discharge medium tank constitute the culture part, and the culture part has established a sealed structure,
    When the diaphragm vibrates up and down, the culture unit is configured so that the culture medium flows from the culture medium tank for injection to the culture medium tank for discharge via the medium injection pipe, the culture container, and the medium discharge pipe.
    The culture apparatus according to claim 1.
  3.  培養に用いられる培地を収容するための兼用培地槽と、
     兼用培地槽と培養容器の注入口とを連絡する培地用注入配管と、
     兼用培地槽と培養容器の排出口とを連絡する培地用排出配管と、
     を更に備えており、
     培地用注入配管には、第1逆止弁が設けられており、
     培地用排出配管には、第2逆止弁が設けられており、
     兼用培地槽、培地用注入配管、培養容器、及び培地用排出配管は、培養部を構成しており、培養部は、気体透過性構造を有しており、且つ、炭酸ガスインキュベータ内に設けられており、
     培地用排出配管を経て来た培地を炭酸ガスインキュベータ内の気体に曝露させる、曝露部を、更に備えており、
     培養部は、ダイヤフラムが上下に振動すると、培地が、兼用培地槽から、培地用注入配管、培養容器、培地用排出配管、及び曝露部を経て、兼用培地槽へ、流れるようになっている、
     請求項1記載の培養装置。
    A combined medium tank for containing a medium used for culture;
    An infusion pipe for medium that communicates between the combined medium tank and the inlet of the culture container;
    A culture medium discharge pipe connecting the combined medium tank and the discharge port of the culture container;
    Is further provided,
    The medium injection pipe is provided with a first check valve,
    The medium discharge pipe is provided with a second check valve,
    The combined medium tank, the medium injection pipe, the culture vessel, and the medium discharge pipe constitute a culture part, and the culture part has a gas-permeable structure and is provided in the carbon dioxide incubator. And
    An exposure unit that exposes the medium that has passed through the medium discharge pipe to the gas in the carbon dioxide incubator;
    When the diaphragm vibrates up and down in the culture part, the culture medium flows from the dual-purpose medium tank to the dual-purpose medium tank via the medium injection pipe, the culture container, the medium discharge pipe, and the exposure part.
    The culture apparatus according to claim 1.
  4.  ダイヤフラムを、上下に、任意の振幅で且つ任意の振動速度で且つ任意の駆動時間だけ、振動させる、容器駆動機構と、
     容器駆動機構における振動速度及び駆動時間を制御する、容器駆動制御部と、
     を更に備えている、
     請求項2又は3に記載の培養装置。
    A container drive mechanism that vibrates the diaphragm up and down at an arbitrary amplitude, at an arbitrary vibration speed, and for an arbitrary drive time;
    A container drive control unit for controlling a vibration speed and a drive time in the container drive mechanism;
    Further comprising
    The culture apparatus according to claim 2 or 3.
  5.  足場固定具を、水平軸回りに、任意の回転速度で且つ任意の駆動時間だけ、回転させる、回転駆動機構と、
     回転駆動機構における回転速度及び駆動時間を制御する、回転駆動制御部と、
     を更に備えている、
     請求項2又は3に記載の培養装置。
    A rotation drive mechanism for rotating the scaffold fixture around the horizontal axis at an arbitrary rotational speed and for an arbitrary drive time;
    A rotation drive control unit for controlling a rotation speed and a drive time in the rotation drive mechanism;
    Further comprising
    The culture apparatus according to claim 2 or 3.
  6.  培地用排出配管を流れる培地のpHを測定するためのpH測定器と、
     pH測定器を作動させ、測定データを取得して解析し、培養の状態を検出する、pH測定制御部と、
     を更に備えている、
     請求項2又は3に記載の培養装置。
    A pH measuring device for measuring the pH of the medium flowing through the medium discharge pipe;
    A pH measurement control unit that operates a pH measuring device, acquires and analyzes measurement data, and detects a culture state;
    Further comprising
    The culture apparatus according to claim 2 or 3.
  7.  培養容器内の足場の細胞を観察するための撮影機構と、
     撮影機構を作動させ、撮影データを取得して解析し、培養の状態を検出する、撮影制御部と、
     を更に備えている、
     請求項2又は3に記載の培養装置。
    An imaging mechanism for observing the cells of the scaffold in the culture vessel;
    An imaging control unit that activates the imaging mechanism, acquires and analyzes the imaging data, and detects the state of the culture;
    Further comprising
    The culture apparatus according to claim 2 or 3.
  8.  注入用培地槽が、培養容器と同一平面上に設置されている、
     請求項2記載の培養装置。
    The infusion medium tank is installed on the same plane as the culture container,
    The culture apparatus according to claim 2.
  9.  第1逆止弁及び第2逆止弁の、一方又は両方が、球体弁構造を有している、
     請求項2又は3に記載の培養装置。
    One or both of the first check valve and the second check valve have a spherical valve structure.
    The culture apparatus according to claim 2 or 3.
  10.  培地用注入配管に、配管を閉鎖できる第1クランプ部材が設けられており、
     培地用排出配管に、配管を閉鎖できる第2クランプ部材が設けられている、
     請求項2又は3に記載の培養装置。
    A first clamping member capable of closing the pipe is provided in the medium injection pipe,
    The culture medium discharge pipe is provided with a second clamp member capable of closing the pipe.
    The culture apparatus according to claim 2 or 3.
  11.  容器駆動機構が、培養容器との連結を解除できる第1連結部材を有している、
     請求項4記載の培養装置。
    The container drive mechanism has a first connection member that can release the connection with the culture container.
    The culture apparatus according to claim 4.
  12.  回転駆動機構が、培養容器との連結を解除できる第2連結部材を有している、
     請求項5記載の培養装置。
    The rotation drive mechanism has a second connecting member that can release the connection with the culture vessel.
    The culture apparatus according to claim 5.
  13.  容器駆動機構が、第1モータと、回転部材と、アームと、第1連結部材と、ロッドと、ロッドガイドと、を備えており、
     第1モータは、水平回転軸を有しており、且つ、オンオフパルス制御可能であり、
     回転部材は、水平回転軸によって鉛直面内で回転するように、設けられており、
     アームは、回転部材の回転中心から任意の距離だけ離れた位置に着脱自在に連結されて、下方に延びており、
     ロッドは、アームの下端部に対して第1連結部材を介して着脱自在に連結されており、且つ、アームの下端部から鉛直下方に延びてダイヤフラムの中央に固定されており、
     ロッドガイドは、ロッドの鉛直方向の運動をガイドするように、設けられており、
     容器駆動機構は、第1モータが作動すると、水平回転軸と共に回転部材が回転し、アーム及びロッドが上下に動き、それによって、ダイヤフラムを上下に振動させるようになっている、
     請求項4記載の培養装置。
    The container drive mechanism includes a first motor, a rotating member, an arm, a first connecting member, a rod, and a rod guide.
    The first motor has a horizontal rotation axis and is capable of on / off pulse control.
    The rotating member is provided so as to rotate in a vertical plane by a horizontal rotating shaft,
    The arm is detachably connected to a position separated by an arbitrary distance from the rotation center of the rotating member, and extends downward.
    The rod is detachably connected to the lower end of the arm via the first connecting member, and extends vertically downward from the lower end of the arm and is fixed to the center of the diaphragm.
    The rod guide is provided to guide the vertical movement of the rod,
    When the first motor is actuated, the container driving mechanism rotates the rotating member together with the horizontal rotation shaft, and the arm and the rod move up and down, thereby vibrating the diaphragm up and down.
    The culture apparatus according to claim 4.
  14.  第1モータの水平回転軸と回転部材とが、着脱自在に連結されている、
     請求項13記載の培養装置。
    The horizontal rotation shaft of the first motor and the rotation member are detachably connected.
    The culture apparatus according to claim 13.
  15.  容器駆動機構が、直動アクチュエータと、第1連結部材と、ロッドと、を備えており、
     直動アクチュエータは、鉛直伸縮軸を有しており、且つ、オンオフパルス制御可能であり、
     ロッドは、鉛直伸縮軸の下端部に対して、第1連結部材を介して、着脱自在に、連結されており、且つ、鉛直伸縮軸の下端部から鉛直下方に延びてダイヤフラムの中央に固定されており、
     容器駆動機構は、直動アクチュエータが作動すると、鉛直伸縮軸及びロッドが上下に動き、それによって、ダイヤフラムを上下に振動させるようになっている、
     請求項4記載の培養装置。
    The container drive mechanism includes a linear actuator, a first connecting member, and a rod;
    The linear actuator has a vertical telescopic axis and is capable of on / off pulse control,
    The rod is detachably connected to the lower end of the vertical telescopic shaft via the first connecting member, and extends vertically downward from the lower end of the vertical telescopic shaft and is fixed to the center of the diaphragm. And
    When the linear actuator is actuated, the container drive mechanism moves the vertical telescopic shaft and rod up and down, thereby vibrating the diaphragm up and down.
    The culture apparatus according to claim 4.
  16.  回転駆動機構が、第2モータと、第2連結部材と、水平アームと、を備えており、
     第2モータは、水平回転軸を有しており、且つ、オンオフパルス制御可能であり、
     水平アームは、容器本体の側面部を貫通して延びており、
     水平アームの一端は、足場固定具に固定されており、水平アームの他端は、第2モータの水平回転軸に第2連結部材を介して着脱自在に連結されており、
     回転駆動機構は、第2モータが作動すると、水平回転軸及び水平アームが回転し、それによって、足場固定具を回転させるようになっている、
     請求項5記載の培養装置。
    The rotational drive mechanism includes a second motor, a second connecting member, and a horizontal arm,
    The second motor has a horizontal rotation axis and is capable of on / off pulse control.
    The horizontal arm extends through the side surface of the container body,
    One end of the horizontal arm is fixed to the scaffold fixture, and the other end of the horizontal arm is detachably connected to the horizontal rotation shaft of the second motor via the second connecting member,
    When the second motor is actuated, the rotation drive mechanism rotates the horizontal rotation shaft and the horizontal arm, thereby rotating the scaffold fixture.
    The culture apparatus according to claim 5.
  17.  第2連結部材が、マグネット連結構造を有している、
     請求項16記載の培養装置。
    The second connecting member has a magnet connecting structure;
    The culture apparatus according to claim 16.
  18.  撮影機構が、カメラと、足場の細胞を照らす光源と、を有しており、
     カメラは、培養容器内に設置されており、又は、培養容器の覗き窓を通して撮影できるように培養容器外に設置されている、
     請求項7記載の培養装置。
    The imaging mechanism has a camera and a light source that illuminates the cells of the scaffold,
    The camera is installed inside the culture container, or installed outside the culture container so that it can be photographed through the observation window of the culture container.
    The culture apparatus according to claim 7.
  19.  足場固定具が、複数の足場を、間隔を空けて積層して固定している、
     請求項1記載の培養装置。
    Scaffolding fixtures are fixed by stacking multiple scaffolds at intervals.
    The culture apparatus according to claim 1.
  20.  足場固定具が、細胞を播種した培養物を充填できる円筒体からなっており、該円筒体の円筒面は、網板からなっている、
     請求項1記載の培養装置。
    The scaffold fixture is composed of a cylindrical body that can be filled with a culture seeded with cells, and the cylindrical surface of the cylindrical body is composed of a mesh plate.
    The culture apparatus according to claim 1.
  21.  培養容器が、側面部に、針用貫通孔を有しており、
     針用貫通孔は、細胞を播種するための注射針を密閉空間内の足場に向けて差し込むことができるように、且つ、栓によって密封できるように、形成されている、
     請求項1記載の培養装置。
    The culture container has a needle through-hole on the side surface,
    The needle through-hole is formed so that an injection needle for seeding cells can be inserted toward the scaffold in the sealed space and can be sealed with a stopper.
    The culture apparatus according to claim 1.
  22.  培養容器が、側面部の一部に、ゴム壁部を有しており、
     ゴム壁部は、細胞を播種するための注射針を密閉空間内の足場に向けて貫通させることができるように、且つ、注射針を抜いた後は貫通した孔が閉じるように、構成されている、
     請求項1記載の培養装置。
    The culture container has a rubber wall part in a part of the side part,
    The rubber wall portion is configured so that the injection needle for seeding cells can be penetrated toward the scaffold in the sealed space, and the through-hole is closed after the injection needle is removed. Yes,
    The culture apparatus according to claim 1.
PCT/JP2010/058124 2009-05-14 2010-05-13 Culture apparatus WO2010131715A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009135543A JP2012147678A (en) 2009-05-14 2009-05-14 Multiple culture apparatus for single sample
JP2009-135543 2009-05-14

Publications (1)

Publication Number Publication Date
WO2010131715A1 true WO2010131715A1 (en) 2010-11-18

Family

ID=43085088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058124 WO2010131715A1 (en) 2009-05-14 2010-05-13 Culture apparatus

Country Status (2)

Country Link
JP (1) JP2012147678A (en)
WO (1) WO2010131715A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110318828A1 (en) * 2008-10-31 2011-12-29 Susumu Suzuki Kit for preparation of antigen-specific cytotoxic lymphocytes
JP2016123336A (en) * 2014-12-26 2016-07-11 大日本印刷株式会社 Cell culture container
JPWO2020040118A1 (en) * 2018-08-20 2021-08-10 アイ ピース,インコーポレイテッド Cell incubator
CN115287188A (en) * 2022-08-11 2022-11-04 吴苑芬 Stem cell culture instrument

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230357696A1 (en) * 2001-05-28 2023-11-09 University Of Virginia Patent Foundation Hermetically or aseptically sealed bioreactor system and related method thereof
US10299773B2 (en) * 2011-08-21 2019-05-28 Transenterix Europe S.A.R.L. Device and method for assisting laparoscopic surgery—rule based approach
US10519414B2 (en) * 2013-10-16 2019-12-31 Medikan Inc Apparatus and method for continuous cell culture
JP6848273B2 (en) * 2016-09-02 2021-03-24 東洋紡株式会社 Cell culture device
EP3922710A4 (en) * 2019-02-04 2022-04-06 FUJIFILM Corporation Cell culturing device, cell culturing method, and method for preparing product

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1143198A (en) * 1997-07-25 1999-02-16 Marcom:Kk Liquid supplying equipment
JP2001504697A (en) * 1996-11-20 2001-04-10 アドバンスト ティッシュ サイエンス インコーポレイテッド Applying shear flow stress to chondrocytes
JP2004016023A (en) * 2002-06-12 2004-01-22 Central Res Inst Of Electric Power Ind Electric culture apparatus
JP2004089138A (en) * 2002-09-03 2004-03-25 Olympus Corp Culture apparatus
WO2006033435A1 (en) * 2004-09-24 2006-03-30 Hi-Lex Corporation Scaffold material capable of inducing biological hard tissue or soft tissue
JP2007020493A (en) * 2005-07-19 2007-02-01 Takagi Ind Co Ltd Culture chamber, culturing apparatus and method for supplying culture solution
JP2008092935A (en) * 2006-10-13 2008-04-24 Otake:Kk Culturing apparatus in which pump function is provided in hermetically sealed culture container
JP2009125068A (en) * 2007-11-23 2009-06-11 Otake:Kk Multilayered culturing apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001504697A (en) * 1996-11-20 2001-04-10 アドバンスト ティッシュ サイエンス インコーポレイテッド Applying shear flow stress to chondrocytes
JPH1143198A (en) * 1997-07-25 1999-02-16 Marcom:Kk Liquid supplying equipment
JP2004016023A (en) * 2002-06-12 2004-01-22 Central Res Inst Of Electric Power Ind Electric culture apparatus
JP2004089138A (en) * 2002-09-03 2004-03-25 Olympus Corp Culture apparatus
WO2006033435A1 (en) * 2004-09-24 2006-03-30 Hi-Lex Corporation Scaffold material capable of inducing biological hard tissue or soft tissue
JP2007020493A (en) * 2005-07-19 2007-02-01 Takagi Ind Co Ltd Culture chamber, culturing apparatus and method for supplying culture solution
JP2008092935A (en) * 2006-10-13 2008-04-24 Otake:Kk Culturing apparatus in which pump function is provided in hermetically sealed culture container
JP2009125068A (en) * 2007-11-23 2009-06-11 Otake:Kk Multilayered culturing apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110318828A1 (en) * 2008-10-31 2011-12-29 Susumu Suzuki Kit for preparation of antigen-specific cytotoxic lymphocytes
JP2016123336A (en) * 2014-12-26 2016-07-11 大日本印刷株式会社 Cell culture container
JPWO2020040118A1 (en) * 2018-08-20 2021-08-10 アイ ピース,インコーポレイテッド Cell incubator
EP3842513A4 (en) * 2018-08-20 2022-06-29 I Peace, Inc. Cell incubator
JP7280574B2 (en) 2018-08-20 2023-05-24 アイ ピース,インコーポレイテッド cell incubator
US11898130B2 (en) 2018-08-20 2024-02-13 Peace, Inc. Cell culture equipment
CN115287188A (en) * 2022-08-11 2022-11-04 吴苑芬 Stem cell culture instrument

Also Published As

Publication number Publication date
JP2012147678A (en) 2012-08-09

Similar Documents

Publication Publication Date Title
WO2010131715A1 (en) Culture apparatus
US11788046B2 (en) Cassette for sterility testing
JP7051972B2 (en) Closed system equipment and methods for gas permeable cell culture work
JP5160428B2 (en) Cassette containing growth medium
US11680241B2 (en) Perfusion enabled bioreactors
US20220072541A1 (en) Fluidic autosampler and incubator
JP2008539738A (en) Supply system for cell culture modules
WO2016020992A1 (en) Culture apparatus, culture method using same, and method for selecting aggregated cell mass
JP5055479B2 (en) Automatic cell culture equipment
JP2017526352A (en) Fluid circulation system incorporating a fluid leveling device
US8968681B2 (en) Filtered assay device and method
JP2006204263A (en) Culture vessel and culture method
WO2019157356A1 (en) Perfusion enabled bioreactors
AU2021290218B2 (en) Multi function spinning platform
US9212975B2 (en) Collection unit
KR20190076042A (en) Adhesive cell culture substrate sampling device
RU2797021C1 (en) Asymmetric conical bioreactor system and method for its use
CN113667590A (en) Biological culture system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10774972

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10774972

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP