WO2010116641A1 - Vehicle - Google Patents

Vehicle Download PDF

Info

Publication number
WO2010116641A1
WO2010116641A1 PCT/JP2010/002118 JP2010002118W WO2010116641A1 WO 2010116641 A1 WO2010116641 A1 WO 2010116641A1 JP 2010002118 W JP2010002118 W JP 2010002118W WO 2010116641 A1 WO2010116641 A1 WO 2010116641A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
vehicle body
link
value
limit value
Prior art date
Application number
PCT/JP2010/002118
Other languages
French (fr)
Japanese (ja)
Inventor
土井克則
高倉裕司
加藤憲二
林弘毅
Original Assignee
株式会社エクォス・リサーチ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009271314A external-priority patent/JP2010254286A/en
Priority claimed from JP2009271339A external-priority patent/JP5428806B2/en
Application filed by 株式会社エクォス・リサーチ filed Critical 株式会社エクォス・リサーチ
Priority to CN201080015174.5A priority Critical patent/CN102378700B/en
Publication of WO2010116641A1 publication Critical patent/WO2010116641A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G5/00Resilient suspensions for a set of tandem wheels or axles having interrelated movements
    • B60G5/04Resilient suspensions for a set of tandem wheels or axles having interrelated movements with two or more pivoted arms, the movements of which are resiliently interrelated, e.g. the arms being rigid
    • B60G5/043Resilient suspensions for a set of tandem wheels or axles having interrelated movements with two or more pivoted arms, the movements of which are resiliently interrelated, e.g. the arms being rigid the arms being transverse to the longitudinal axis of the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1701Braking or traction control means specially adapted for particular types of vehicles
    • B60T8/1706Braking or traction control means specially adapted for particular types of vehicles for single-track vehicles, e.g. motorcycles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K11/00Motorcycles, engine-assisted cycles or motor scooters with one or two wheels
    • B62K11/007Automatic balancing machines with single main ground engaging wheel or coaxial wheels supporting a rider

Definitions

  • the present invention relates to a vehicle.
  • the link mechanism may be fixed when an actuator that tilts the vehicle body to the left or right is abnormal.
  • the brake is operated to fix the link mechanism when the actuator is abnormal.
  • control may not be able to sufficiently ensure stability and comfort.
  • the substantial limit value of the turning performance of the vehicle is lowered by fixing the link mechanism.
  • the range in which the center of the ground load can be moved changes due to the fixing of the link mechanism, the vehicle body posture cannot be maintained and the safety may not be sufficiently ensured when turning in the same manner as normal.
  • the amount of decrease in the limit value differs in the turning direction depending on the state where the link mechanism is fixed. Therefore, the driver is forced to carefully control by accurately determining the amount of decrease in the left and right turning performance limits from the fixed angle of the link mechanism. In such a case, safety and maneuverability may not be sufficiently ensured.
  • the present invention solves the problems of the conventional vehicle, and when the vehicle body tilt link mechanism is fixed, by reducing the limit value of the vehicle lateral acceleration, the vehicle body is fixed in a state of being greatly inclined to the left or right side. It is an object to provide a vehicle that can assure as much safety as possible while ensuring sufficient safety, and is easy to use and safe and comfortable to use. And
  • left and right drive wheels that are rotatably attached to the vehicle body, a vehicle body tilt link mechanism that tilts the vehicle body left and right, a link brake that fixes the vehicle body tilt link mechanism,
  • a vehicle control device for controlling the posture of the vehicle body by controlling a drive torque applied to each of the drive wheels and a link torque applied to the vehicle body tilt link mechanism, the vehicle control device including the link brake
  • the limit value of the vehicle lateral acceleration when the vehicle body tilt link mechanism is fixed is reduced to a value smaller than the vehicle lateral acceleration limit value when the vehicle body tilt link mechanism is not fixed.
  • the vehicle control device further reduces a limit value with respect to a target value of vehicle lateral acceleration.
  • the vehicle control device further determines a reduction amount of the limit value according to a fixed angle of the vehicle body tilt link mechanism.
  • the vehicle control device further uses the angle from the right end of the vehicle body tilt movable range to the fixed position as a reduction amount of the rightward acceleration limit value, and the fixed position from the left end of the vehicle body tilt movable range. Is the amount of decrease in the left acceleration limit value.
  • the vehicle control device further decreases the other value in accordance with one of the right acceleration limit value and the left acceleration limit value.
  • the vehicle control device further compares the right acceleration limit value and the left acceleration limit value, and decreases the larger acceleration limit value to the smaller acceleration limit value.
  • the vehicle control device further decreases the average driving wheel rotation angular velocity limit value according to the limit value of the vehicle lateral acceleration.
  • the vehicle control device further sets a minimum turning radius at a maximum speed when the vehicle body tilt link mechanism is fixed to a maximum when the vehicle body tilt link mechanism is not fixed.
  • the average driving wheel rotational angular velocity limit value when the vehicle body tilt link mechanism is fixed is corrected so as to be equal to or less than the minimum turning radius at the speed.
  • the vehicle control device further reduces the limit value of the vehicle left-right acceleration according to the left-right road surface gradient.
  • the vehicle control device further includes a vehicle left acceleration and a vehicle right acceleration when the vehicle body inclination direction on the horizontal plane is the same as the downward direction of the left-right road gradient.
  • the limit value is decreased, and the limit values of the vehicle left acceleration and the vehicle right acceleration are fixed when the inclination direction of the vehicle body on the horizontal plane is the same as the upward direction of the left-right road gradient.
  • the vehicle control device further applies a drive torque difference according to a target value of the limited vehicle lateral acceleration to the left and right drive wheels.
  • the vehicle control device further includes the vehicle lateral acceleration from the midpoint of the grounding point of the left and right drive wheels according to the limited vehicle lateral acceleration and the left and right inclination state of the vehicle body.
  • Estimating the ground load movement rate which is a value obtained by dividing the distance to the center of action of the ground load of the left and right drive wheels by the distance from the midpoint to the ground point of the drive wheel, to the estimated value of the ground load mobility Accordingly, a drive torque difference is applied to the left and right drive wheels.
  • the vehicle lateral acceleration can be limited within a range in which the vehicle posture can be reliably maintained.
  • the limit value of the vehicle lateral acceleration that satisfies the stability condition of the vehicle body posture can be obtained by a very simple method, safety and exercise performance can be achieved without increasing the load of control processing. Can be secured.
  • the driver can easily perform safe maneuvering by setting the maximum speed of the vehicle to a value corresponding to the decrease in turning performance.
  • the vehicle speed can be limited without giving the driver a sense of incongruity or discomfort by setting a speed limit suitable for lowering the turning performance.
  • the configuration of the tenth aspect it is prohibited to temporarily limit the restriction of turning according to the inclination direction of the road surface, and the driver feels uncomfortable or overconfidence with respect to the turning performance after passing the road inclination portion. Can be surely prevented.
  • the vehicle lateral acceleration can be more reliably limited by executing the control for the target in the turning traveling state stably and with high accuracy.
  • the control for the target in the turning traveling state is executed stably and with high accuracy, and the vehicle lateral acceleration is more reliably performed. Can be limited.
  • FIG. 1 is a diagram showing a tilted state of a vehicle in the first embodiment of the present invention
  • FIG. 2 is a block diagram showing a configuration of a vehicle system in the first embodiment of the present invention.
  • reference numeral 10 denotes a vehicle according to the present embodiment, which includes a body portion 11, a drive wheel 12, a support portion 13, and a riding portion 14 on which an occupant 15 rides. It can be tilted left and right. Then, the posture of the vehicle body is controlled similarly to the posture control of the inverted pendulum. Further, the vehicle 10 can move forward and backward.
  • the drive wheel 12 is rotatably supported with respect to the support portion 13 which is a part of the vehicle body, and is driven by a drive motor 52 as a drive actuator.
  • the rotational axis of the drive wheel 12 exists in a horizontal direction when the vehicle body is upright, and the drive wheel 12 rotates about the rotational axis.
  • the drive wheel 12 may be singular or plural, but in the case of plural, the drive wheels 12 are arranged on the same axis in parallel. In the present embodiment, description will be made assuming that there are two drive wheels 12. In this case, each drive wheel 12 is independently driven by an individual drive motor 52.
  • the drive actuator for example, a hydraulic motor, an internal combustion engine, or the like can be used, but here, the description will be made assuming that the drive motor 52 that is an electric motor is used.
  • main body 11 which is a part of the vehicle body is supported from below by the support 13 and is positioned above the drive wheel 12.
  • the occupant 15 does not necessarily have to board the boarding unit 14.
  • the occupant 15 does not have to be on the riding section 14, and a load such as cargo may be loaded instead of the occupant 15.
  • the said boarding part 14 is the same as the sheet
  • the vehicle 10 has a link mechanism 60 as a vehicle body tilting link mechanism that tilts the vehicle body to the left and right, and when turning, as shown in FIG. 1, the angle with respect to the road surface of the left and right drive wheels 12, that is, the camber. While changing the angle and inclining the vehicle body including the riding section 14 and the main body section 11 toward the turning inner wheel, it is possible to improve the turning performance and ensure the comfort of the occupant 15. That is, the vehicle 10 can tilt the vehicle body in the lateral direction (left and right direction).
  • the link mechanism 60 connects the left and right vertical link units 65 that also function as motor support members that support the drive motor 52 that applies drive force to the left and right drive wheels 12 and the upper ends of the left and right vertical link units 65.
  • a lower horizontal link unit 64 that connects lower ends of the left and right vertical link units 65 to each other.
  • the left and right vertical link units 65, the upper horizontal link unit 63, and the lower horizontal link unit 64 are rotatably connected.
  • a support portion 13 extending in the vertical direction is rotatably connected to the center of the upper side link unit 63 and the center of the lower side link unit 64.
  • Reference numeral 61 denotes a link motor as a body tilting actuator that generates link torque, and includes a cylindrical body as a stator and a rotation shaft as a rotor rotatably attached to the body.
  • the body is fixed to the upper lateral link unit 63, and the rotation shaft is fixed to the support portion 13.
  • the body may be fixed to the support portion 13 and the rotation shaft may be fixed to the upper lateral link unit 63.
  • An input device 30 including a joystick 31 as a target travel state acquisition device is disposed beside the boarding unit 14.
  • the occupant 15 controls the vehicle 10 by operating a joystick 31 as a control device, that is, inputs a travel command such as acceleration, deceleration, turning, in-situ rotation, stop, and braking of the vehicle 10. ing. If the occupant 15 can operate and input a travel command, other devices such as a pedal, a handle, a jog dial, a touch panel, and a push button can be obtained instead of the joystick 31 to obtain a target travel state. It can also be used as a device.
  • the joystick 31 is disposed on a remote controller (not shown), and the operation amount of the joystick 31 is disposed on the vehicle 10 by wire or wireless from the remote controller. It is transmitted to the receiving device.
  • the operator of the joystick 31 is a person other than the occupant 15.
  • the x-axis is perpendicular to the rotation axis of the drive wheels 12, the y-axis is parallel, and the z is vertically upward. It is based on the coordinate system that takes the axis.
  • the vehicle system includes a control ECU (Electronic Control Unit) 20 as a vehicle control device, and the control ECU 20 includes a main control ECU 21, a drive wheel control ECU 22, and a link control ECU 23.
  • the control ECU 20, the main control ECU 21, the drive wheel control ECU 22, and the link control ECU 23 include calculation means such as a CPU and MPU, storage means such as a magnetic disk and a semiconductor memory, input / output interfaces, and the like, and perform operations of each part of the vehicle 10.
  • a computer system to be controlled which is disposed in the main body 11, for example, but may be disposed in the support portion 13 or the riding portion 14.
  • the main control ECU 21, the drive wheel control ECU 22, and the link control ECU 23 may be configured separately or may be configured integrally.
  • the main control ECU 21 functions as a part of the drive wheel control system 50 that controls the operation of the drive wheel 12 together with the drive wheel control ECU 22, the drive wheel sensor 51, and the drive motor 52.
  • the drive wheel sensor 51 includes a resolver, an encoder, and the like, functions as a drive wheel rotation state measuring device, detects a drive wheel rotation angle and / or rotation angular velocity indicating a rotation state of the drive wheel 12, and transmits it to the main control ECU 21. To do.
  • the main control ECU 21 transmits a drive torque command value to the drive wheel control ECU 22, and the drive wheel control ECU 22 supplies an input voltage corresponding to the received drive torque command value to the drive motor 52.
  • the drive motor 52 applies drive torque to the drive wheels 12 in accordance with the input voltage, thereby functioning as a drive actuator.
  • the main control ECU 21 functions as a part of the vehicle body control system 40 that controls the posture of the vehicle body together with the drive wheel control ECU 22, the vehicle body tilt sensor 41, the link sensor 42, the drive motor 52, the link motor 61, and the link brake 62.
  • the vehicle body tilt sensor 41 includes an acceleration sensor, a gyro sensor, and the like, and functions as a vehicle body tilt state measuring device.
  • the vehicle body tilt sensor 41 detects a vehicle body tilt angle and / or tilt angular velocity indicating the tilt state of the vehicle body, and transmits the detected vehicle body tilt angle to the main control ECU 21.
  • the link sensor 42 includes a resolver, an encoder, and the like.
  • the link sensor 42 is disposed in the link mechanism 60, and the angle of the link units that rotate relative to each other, for example, between the support portion 13 and the upper lateral link unit 63.
  • the angle that is, the link rotation angle and / or the rotation angular velocity is detected and transmitted to the main control ECU 21.
  • the main control ECU 21 transmits a drive torque command value to the drive wheel control ECU 22.
  • the main control ECU 21 transmits a link torque command value to the link control ECU 23, and the link control ECU 23 supplies an input voltage corresponding to the received link torque command value to the link motor 61.
  • the main control ECU 21 supplies the operating voltage to the link brake 62.
  • the link motor 61 applies a driving torque to the link mechanism 60 according to the input voltage, thereby functioning as an actuator for tilting.
  • the link brake 62 functions as a tilt mechanism brake device that fixes the link mechanism 60 so that it cannot bend and stretch according to the operating voltage.
  • the link brake 62 is a non-excited electromagnetic brake that is released when power is supplied.
  • the link brake 62 is a device that is disposed in the link motor 61 and fixes the rotation shaft of the link motor 61 to the body of the link motor 61 so as not to rotate.
  • the lower side link unit 64 and the support part 13 may be relatively non-rotatably fixed.
  • the operating voltage is directly input from the main control ECU 21 to the link brake 62.
  • the main control ECU 21 transmits a brake operation signal to the link control ECU 23, and the link control ECU 23 receives the signal.
  • an operating voltage may be applied to the link brake 62.
  • an operation amount is input to the main control ECU 21 as a travel command from the joystick 31 of the input device 30.
  • the main control ECU 21 transmits a drive torque command value to the drive wheel control ECU 22 and transmits a link torque command value to the link control ECU 23.
  • each sensor may acquire a plurality of state quantities.
  • an acceleration sensor and a gyro sensor may be used together as the vehicle body tilt sensor 41, and the vehicle body tilt angle and the vehicle body tilt angular velocity may be determined from the measured values of both.
  • control ECU 20 includes vehicle lateral acceleration limiting means for limiting the vehicle lateral acceleration and lateral acceleration limit value correcting means for correcting the limit value of the vehicle lateral acceleration from the viewpoint of function.
  • the vehicle 10 turns with the link mechanism 60 in a state in which the vehicle body is tilted to the inside of the turning circle as shown in FIG.
  • the link brake 62 is operated.
  • FIG. 3 is a flowchart showing the operation of the vehicle control process in the first embodiment of the present invention.
  • the control ECU 20 first determines whether the motor is normal and determines whether the motor is normal (step S1). In this case, it is determined whether or not the link motor 61 can generate torque.
  • the link control ECU 23 includes motor diagnosis means, and when the link motor 61 is unable to generate torque, that is, when it is diagnosed as abnormal, a predetermined signal is transmitted to the main control ECU 21. Then, when receiving the signal, the main control ECU 21 determines that the motor is not normal.
  • step S2 the control ECU 20 releases the brake (step S2).
  • the link brake 62 is released, and the link mechanism 60 can be rotated.
  • the main control ECU 21 inputs an operating voltage to the link brake 62.
  • control ECU 20 executes a normal travel / posture control process (step S3), realizes a travel command from the occupant 15 while maintaining the posture of the vehicle body while appropriately tilting the vehicle body, and performs a vehicle control process.
  • the vehicle control process is repeatedly executed at predetermined time intervals (for example, every 100 [ ⁇ s]).
  • step S4 the control ECU 20 performs a brake operation.
  • the link brake 62 is operated to fix the link mechanism 60.
  • the main control ECU 21 stops input of the operating voltage to the link brake 62.
  • control ECU 20 executes emergency travel / posture control processing (step S5), and realizes a travel command from the occupant 15 while maintaining the posture of the vehicle body while the link mechanism 60 is fixed.
  • the control process ends.
  • FIG. 4 is a flowchart showing the operation of the normal travel / posture control process in the first embodiment of the present invention.
  • state quantities, parameters, and the like are represented by the following symbols.
  • ⁇ WR Right drive wheel rotation angle [rad]
  • ⁇ WL Left drive wheel rotation angle [rad]
  • ⁇ W average driving wheel rotation angle [rad]
  • ⁇ W ( ⁇ WR + ⁇ WL ) / 2
  • ⁇ W Driving wheel rotation angle left / right difference [rad]
  • ⁇ 1 Body tilt roll angle (vertical axis reference) [rad]
  • ⁇ L Link torque [Nm]
  • ⁇ WR Right drive torque [Nm]
  • ⁇ WL Left drive torque [Nm]
  • ⁇ W Total driving torque [Nm]
  • ⁇ W ⁇ WR ⁇ WL g: Gravity acceleration [m / s 2
  • the driving wheel rotation angle or the driving wheel rotation angular velocity is acquired from the driving wheel sensor 51
  • the vehicle body inclination angle or the inclination angular velocity is acquired from the vehicle body inclination sensor 41
  • the link rotation angle or the link rotation angular velocity is acquired from the link sensor 42. get.
  • the main control ECU 21 calculates the remaining state quantity (step S3-2).
  • the remaining state quantity is calculated by time differentiation or time integration of the obtained state quantity.
  • the acquired state quantities are the drive wheel rotation angle, the vehicle body tilt angle, and the link rotation angle
  • the drive wheel rotation angular velocity, the tilt angular velocity, and the link rotation angular velocity can be obtained by time differentiation.
  • the drive wheel rotation angle, the vehicle body tilt angle, and the link rotation angle can be obtained by time integration of these. it can.
  • the main control ECU 21 acquires the pilot operation amount (step S3-3).
  • the operator acquires the operation amount of the joystick 31 that is operated to input a travel command such as acceleration, deceleration, turning, on-site rotation, stop, and braking of the vehicle 10.
  • the main control ECU 21 determines a target value for vehicle acceleration based on the obtained operation amount of the joystick 31 (step S3-4). For example, values proportional to the front and rear and left and right operation amounts are set as target values for the longitudinal acceleration and the left and right acceleration.
  • the operation amount of the joystick 31 is represented by a positive value for forward operation and a negative value for backward operation, and for the left and right operations when operated from the rear of the vehicle 10 to the left. A positive value and a rightward operation are expressed as a negative value.
  • the main control ECU 21 corrects the target value of vehicle acceleration (step S3-5). Specifically, the target value of the vehicle lateral acceleration is corrected by the following formula.
  • ⁇ Y, Max, L left acceleration limit values
  • ⁇ Y, Max, R right acceleration limit values
  • the left-right road gradient ⁇ is positive when tilted so as to be low on the left side when viewed from the rear of the vehicle 10 and high on the right side, and so as to be high on the left side of the vehicle 10 and low on the right side. Sometimes it is negative.
  • the superscript * represents the target value
  • the superscript (n) represents the nth data in the time series
  • one dot on the symbol is 1
  • the value obtained by differentiating the floor time, that is, the speed, and the two dots on the symbol represent the value obtained by differentiating the second floor time, that is, the acceleration.
  • the subscript X represents front and rear (x-axis direction)
  • the subscript Y represents left and right (y-axis direction)
  • the subscript d represents a steering command value. .
  • ⁇ Y, Max, 0 is a standard lateral acceleration limit value, and is expressed as follows.
  • Max is the maximum vehicle body tilt roll angle on flat ground, and is a value determined by the structure of the link mechanism 60.
  • ⁇ 1L is a link rotation angle reference vehicle body tilt roll angle
  • ⁇ 1L f ( ⁇ L ).
  • ⁇ L is a link rotation angle
  • f is a function for converting the link rotation angle into a vehicle body tilt roll angle on a horizontal plane based on the geometric condition of the link mechanism 60.
  • ⁇ t is a control processing cycle (data acquisition interval), which is a predetermined value.
  • the target value of the vehicle lateral acceleration is corrected by the limit values of the leftward acceleration and the rightward acceleration.
  • the left and right vehicle acceleration target values are corrected so as to be within the range defined by the right acceleration limit value and the left deceleration limit value. That is, when the rightward acceleration target value is equal to or greater than the rightward acceleration limit value, the target value is set as the rightward acceleration limit value.
  • the target value is set as the left acceleration limit value.
  • the left acceleration limit value and the right deceleration limit value are predetermined values determined by mechanical parameters of the vehicle 10 or the like. Specifically, a limit that allows the ground load center point to be positioned between the two driving wheel ground points by moving the center of gravity of the vehicle body, that is, a stability limit of the vehicle body posture is given as each limit value. Thereby, the target value of the vehicle lateral acceleration is set within a range in which the stability of the vehicle body posture can be ensured.
  • the limit values for vehicle left acceleration and vehicle right acceleration are corrected by the value of the left and right road surface gradient. Specifically, in consideration of a change in the vehicle body stability limit due to the road surface gradient, one of the left and right accelerations is further limited and the other is relaxed. That is, the lateral acceleration limit value in the direction of turning downward on the road surface gradient is increased by the value of the road surface gradient. Further, the lateral acceleration limit value in the direction of turning to the upside of the road surface gradient is reduced by the value of the road surface gradient. In this way, by grasping the true performance limit under the driving environment at that time and relaxing the driving limit so that driving in the limiting state is possible, on the road surface inclined right and left such as bank road Allows for comfortable driving on the road.
  • the road surface gradient is estimated from the measured values of the vehicle body tilt roll angle and the link rotation angle. Therefore, without adding a sensor for measuring the road surface, it is possible to acquire the road surface gradient and realize the traveling suitable for it.
  • a low-pass filter is applied to the estimated road surface gradient.
  • the value of the road surface gradient is obtained by estimation, but a road surface sensor that measures the road surface shape may be provided, and the road surface gradient may be obtained from the measured value. Moreover, you may acquire the value of road surface gradient from map data, such as a navigation system.
  • the main control ECU 21 calculates the target value of the drive wheel rotation angular velocity from the target value of the vehicle acceleration (step S3-6). Specifically, the average driving wheel rotation angular velocity target value is calculated by the following equation.
  • the drive wheel rotation angular velocity left / right difference target value is calculated by the following formula.
  • the target value of the drive wheel rotational angular velocity corresponding to the target value of the vehicle acceleration is determined.
  • an average driving wheel rotational angular velocity target value which is a target of the average rotational angular velocity of the left and right driving wheels 12, is determined by time integration of the vehicle longitudinal acceleration target value.
  • a drive wheel rotation angular velocity left / right difference target value which is a target of the difference between the rotation angular velocities of the left and right drive wheels 12, is determined from the vehicle left / right acceleration target value and the average drive wheel rotation angular velocity target value.
  • the amount of operation of the joystick 31 that is a control device is associated with the longitudinal and lateral acceleration, but may be associated with the speed and yaw rate of the vehicle 10. Further, feedback control may be executed using the vehicle speed or the yaw rate itself as a state quantity.
  • the vehicle speed and the yaw rate are converted into the rotational angular speed of the drive wheel 12 under the assumption that no slip exists between the driving wheel ground contact point and the road surface.
  • the target value of the drive wheel rotation angular velocity may be determined.
  • the main control ECU 21 corrects the target value of the drive wheel rotation angular velocity (step S3-7). Specifically, the average driving wheel rotational angular velocity target value is corrected by the following equation.
  • the target value of the average driving wheel rotation angular velocity is corrected by the limit value of the average driving wheel rotation angular velocity.
  • the average driving wheel rotation angular velocity target value is corrected so as to be equal to or less than the average driving wheel rotation angular velocity limit value. If the target value is equal to or greater than the average driving wheel rotation angular velocity limit value, the target value is set as the limit value.
  • the average driving wheel rotation angular velocity limit value is a predetermined value.
  • the vehicle longitudinal acceleration is satisfied in order to satisfy the consistency with the vehicle longitudinal acceleration target value. Correct the target value to zero.
  • the main control ECU 21 determines a target value of the vehicle body inclination angle (step S3-8). Specifically, the vehicle body tilt pitch angle target value is determined from the target value of the vehicle longitudinal acceleration by the following formula.
  • the vehicle body tilt roll angle target value is determined by the following formula from the target value of the vehicle lateral acceleration.
  • the target value of the vehicle body inclination angle is determined according to the target value of the vehicle acceleration.
  • the vehicle body posture capable of achieving the travel target given by the longitudinal acceleration is given as the target value in consideration of the mechanical structure of the inverted pendulum vehicle related to the vehicle body posture before and after and the running state.
  • the target posture can be set freely within a range where the center of the grounding load exists in a stable region between the grounding points of the two drive wheels 12, but in this embodiment, the load of the passenger 15 The position with the least number is given as the target value.
  • the target vehicle body tilt roll angle may be set to zero, and the upright posture may be maintained for a small lateral acceleration.
  • the main control ECU 21 calculates the remaining target value (step S3-9). That is, the target values of the drive wheel rotation angle and the vehicle body inclination angular velocity are calculated by time differentiation or time integration of each target value.
  • the main control ECU 21 determines the feedforward output of each actuator from each target value (step S3-10). Specifically, the feed forward output ⁇ W, FF of the total drive torque, the feed forward amount ⁇ W, FF of the left / right difference of the drive torque , and the feed forward amount ⁇ L, FF of the link torque are obtained as feed forward outputs by the following formulas. decide.
  • the actuator output necessary to realize the target traveling state and vehicle body posture is predicted from the dynamic model, and the amount is fed-forwardly added, so that the traveling and posture control of the vehicle 10 can be performed with high accuracy.
  • the feedforward amount of the total drive torque is determined so that the travel target in the front-rear direction can be achieved. Specifically, by estimating the inertial force generated according to the vehicle longitudinal acceleration and the running resistance generated according to the average driving wheel rotational angular velocity corresponding to the vehicle speed, and giving the total driving torque that cancels it The target front-rear running state is realized.
  • the target turning travel target is realized by predicting the yaw moment generated with the movement of the center position of the ground load and giving a difference between the left and right driving torques to cancel the yaw moment. Further, the moving rate of the ground load center position is predicted based on the vehicle body tilt roll angle and the vehicle lateral acceleration.
  • the feed forward amount of the link torque is determined so that the target of the left and right vehicle body inclination can be realized.
  • the target is obtained by predicting the torque of gravity generated according to the vehicle body tilt roll angle and the torque of centrifugal force generated according to the vehicle lateral acceleration, and giving a link torque that cancels the torque. Realizes left and right body tilt.
  • the feedforward amount may be determined by a simple model.
  • elements not considered in the present embodiment may be newly taken into consideration. For example, rolling resistance of the driving wheel 12 and dry friction at the link mechanism 60 may be taken into consideration.
  • the necessary output is given as the feedforward amount according to the target value of the running state and the vehicle body posture, but it may be given as a quasi feedback amount based on the measured value. Therefore, even when there is a large gap between the target value and the actual value, it is possible to appropriately control.
  • the main control ECU 21 determines the feedback output of each actuator from the deviation between each target value and the state quantity (step S3-11). Specifically, the feedback amount ⁇ W, FB of the total drive torque, the feedback amount ⁇ W, FB of the left / right difference of the drive torque , and the feedback amount ⁇ L, FB of the link torque are determined as feedback outputs by the following equations.
  • each feedback gain K ** is set in advance, for example, as determined by the pole placement method or the like. Further, nonlinear feedback control such as sliding mode control may be introduced. Furthermore, as a simpler control, some of the gains excluding K W2 , K W3 , K d2 and K L3 may be set to zero. Further, an integral gain may be introduced in order to eliminate the steady deviation.
  • the vehicle is given a total driving torque proportional to the difference between the measured value and the target value.
  • the vehicle is stably maintained in a state where the front-rear running state of 10 and the inverted posture of the vehicle body are targeted.
  • a drive torque left-right difference proportional to the difference between the measured value and the target value is given.
  • the vehicle is stably maintained with the target turning state. In this way, the turning state can be controlled more stably and with high accuracy by taking into account the left-right inclination state of the vehicle body.
  • the vehicle body left-right tilt state To keep it stable in the target state. In this way, by considering the turning traveling state of the vehicle 10, it is possible to control the vehicle body leaning state more stably and with high accuracy.
  • the drive wheel rotation angular velocity left-right difference is used as a state quantity corresponding to the turning traveling state. In this way, by controlling the rotational state of the drive wheel 12, the possibility that the drive wheel 12 will be locked or idling can be reduced.
  • the main control ECU 21 gives a command value to each element control system (step S3-12), and ends the normal travel / posture control process.
  • the main control ECU 21 instructs the drive wheel control ECU 22 and the link control ECU 23 as command values determined by the following formulas as a right drive torque command value ⁇ WR , a left drive torque command value ⁇ WL , and a total drive torque command value.
  • ⁇ W drive torque left / right difference command value ⁇ W and link torque command value ⁇ L are given.
  • each feedforward output and each feedback output is given as a command value.
  • command values for the right drive torque and the left drive torque are given so that the total drive torque and the left-right difference between the drive torques are required values.
  • the value of the left-right difference of the driving torque is corrected according to the eccentric state of the ground load. Specifically, a value obtained by multiplying the total drive torque command value by the ground load movement rate is added as the drive torque left-right difference. In this way, by giving the drive torque left / right difference so as to cancel the yaw moment generated with the movement of the ground load, the turning state can be controlled with higher accuracy.
  • the ground load movement rate is estimated based on the vehicle body tilt roll angle and the vehicle lateral acceleration. As a result, it is possible to appropriately consider the movement of the ground load center position that changes depending on the vehicle body tilting state and the turning traveling state.
  • the vehicle lateral acceleration is estimated based on the rotational speeds of the left and right drive wheels 12.
  • traveling and attitude control can be executed without a sensor for measuring the lateral acceleration of the vehicle 10.
  • the ground load movement rate is estimated based on the measured values of the vehicle body tilt state and the turning traveling state, but may be estimated based on the target value. Thereby, the stability of control may become higher.
  • the vehicle lateral acceleration value necessary for estimating the ground load movement rate is estimated from the rotational angular velocities of the left and right drive wheels 12, and includes a measuring means for measuring the lateral acceleration.
  • a measured value may be used.
  • FIG. 5 is a flowchart showing the operation of the emergency travel / posture control process in the first embodiment of the present invention.
  • the main control ECU 21 first acquires each state quantity from the sensor (step S5-1). Specifically, the driving wheel rotation angle or the driving wheel rotation angular velocity is acquired from the driving wheel sensor 51, the vehicle body inclination angle or the inclination angular velocity is acquired from the vehicle body inclination sensor 41, and the link rotation angle or the link rotation angular velocity is acquired from the link sensor 42. get.
  • the link rotation angle or the link rotation angular velocity is not reacquired / updated, but based on the link rotation angle or the link rotation angular velocity immediately before the link brake 62 is operated.
  • the link rotation angle or the link rotation angular velocity is acquired. Thereby, even when the link mechanism 60 is displaced due to a failure of the link brake 62 or the like, the control can be appropriately executed.
  • the main control ECU 21 calculates the remaining state quantity (step S5-2).
  • the remaining state quantity is calculated by time differentiation or time integration of the obtained state quantity.
  • the main control ECU 21 acquires the pilot operation amount (step S5-3).
  • the occupant 15 acquires the operation amount of the joystick 31 that is operated to input a travel command such as acceleration, deceleration, turning, on-site rotation, stop, and braking of the vehicle 10.
  • the main control ECU 21 determines a target value for vehicle acceleration based on the obtained operation amount of the joystick 31 (step S5-4). For example, values proportional to the front and rear and left and right operation amounts are set as target values for the longitudinal acceleration and the left and right acceleration.
  • the main control ECU 21 corrects the target value of vehicle acceleration (step S5-5). Specifically, the target value of the vehicle lateral acceleration is corrected by the following formula.
  • left acceleration limit value ⁇ Y, Max, L and the right acceleration limit value ⁇ Y, Max, R are respectively expressed as follows.
  • the limit value of the vehicle lateral acceleration is decreased. That is, the vehicle lateral acceleration is decreased according to the fixed state of the link mechanism 60.
  • the difference between the vehicle body tilt roll angle corresponding to the link rotation angle of the link mechanism 60 fixed by the link brake 62 and the maximum right vehicle body tilt roll angle is defined as the amount of decrease in the right acceleration limit value.
  • the difference between the vehicle body tilt roll angle corresponding to the link rotation angle of the link mechanism 60 fixed by the link brake 62 and the left maximum vehicle body tilt roll angle is defined as the amount of decrease in the left acceleration limit value.
  • the other acceleration limit value is decreased.
  • the larger acceleration limit value is decreased so that the ratio between the larger limit value and the smaller limit value is not more than a predetermined threshold.
  • the threshold is set to 1, and both the right acceleration limit value and the left acceleration limit value are set to smaller values. In this way, by reducing the difference in the left / right direction of the turning state with respect to the input operation of the driver, it is possible to facilitate the maneuvering at the time of emergency driving due to a vehicle failure etc., and to further improve safety and convenience in emergency Can do.
  • the vehicle lateral acceleration is reduced according to the left-right road surface gradient. Specifically, if the vehicle body tilt direction when the link is fixed is the downward direction of the left and right road surface gradient, the acceleration limit value is decreased in consideration of the decrease in the stability of the vehicle body posture with respect to turning in the upward direction. . That is, the acceleration limit value is decreased by the value of the left and right road surface gradient. In this way, even when the link mechanism 60 is fixed, considering that the vehicle body tilt roll angle varies depending on the road surface gradient, and limiting the influence quantitatively, the turning performance can be maximized within a safe range. The limit can be secured.
  • the vehicle body tilt direction when the link is fixed is the upward direction of the left and right road surface gradient
  • the improvement of the stability of the vehicle body posture with respect to the turning in the downward direction is ignored, and the acceleration limit value is not changed.
  • the turning performance is improved with respect to the temporary road surface gradient, and as a result, the occupant 15 is prevented from feeling uneasy about recognizing that the turning performance is higher than the current level and that the steering response is not stable. To do.
  • the limit value of the vehicle lateral acceleration based on the stability condition of the vehicle body posture is determined by a linearized function, but the limit value may be determined by a more strict nonlinear function. . Further, a non-linear function may be provided as a map and determined using the map.
  • the right / left acceleration balancing coefficient is used to limit the ratio of the limit values of the vehicle left / right acceleration to be within a predetermined range. It may be within the range. In some cases, there is a possibility that the imbalance in the lateral acceleration can be reduced more appropriately.
  • safety is prioritized over turning performance by restricting the left / right imbalance of the vehicle lateral acceleration and road gradient more strictly than the original turning limit value.
  • You may give priority to turning performance.
  • you may enable it to select this by an operator's intention.
  • a switch as an emergency travel mode selection means may be provided on the side of the joystick 31 so that the turning travel performance priority mode and the safety priority mode can be selected by the operator's switch operation.
  • the driver's satisfaction can be increased and the driver can recognize the intention of restriction.
  • the main control ECU 21 calculates the target value of the drive wheel rotational angular velocity from the target value of the vehicle acceleration (step S5-6).
  • the calculation of the target value of the drive wheel rotational angular velocity is the same as the calculation of the target value of the drive wheel rotational angular velocity in the normal travel / posture control process, that is, step S3-6 shown in FIG. To do.
  • the main control ECU 21 corrects the target value of the drive wheel rotation angular velocity (step S5-7). Specifically, the average driving wheel rotational angular velocity target value is corrected by the following equation.
  • the average driving wheel rotation angular velocity limit value is decreased according to the vehicle lateral acceleration limit value. Specifically, the average driving wheel rotational angular speed limit value is corrected so that the minimum turning radius at the maximum speed is less than or equal to a predetermined limit value. That is, the average driving wheel rotational angular velocity limit value is corrected so that the minimum turning radius at the maximum speed when the link is fixed is equal to or less than the minimum turning radius at the maximum speed when the link is released. In this way, by correcting the maximum speed of the vehicle 10 to a speed according to the current turning performance, it is not necessary for the operator himself to adjust to a traveling speed suitable for the amount of decrease in the turning traveling performance. And a certain degree of running performance can be guaranteed.
  • the main control ECU 21 determines a target value of the vehicle body inclination angle (step S5-8). Specifically, the vehicle body tilt pitch angle target value is determined from the target value of the vehicle longitudinal acceleration by the following formula.
  • the target value of the vehicle body inclination angle is determined according to the target value of the vehicle acceleration.
  • the vehicle body posture that can achieve the travel target given by the longitudinal acceleration is given as the target value in consideration of the mechanical structure of the inverted pendulum with respect to the vehicle body posture before and after and the traveling state.
  • the main control ECU 21 calculates the remaining target value (step S5-9). That is, the target values of the drive wheel rotation angle and the vehicle body inclination angular velocity are calculated by time differentiation or time integration of each target value.
  • the main control ECU 21 determines the feedforward output of each actuator from each target value (step S5-10). Specifically, the feedforward output ⁇ W, FF of the total driving torque and the feed forward amount ⁇ W, FF of the left / right difference of the driving torque are determined as feedforward outputs by the following formula.
  • the actuator output necessary to realize the target traveling state and vehicle body posture is predicted from the dynamic model, and the amount is fed-forwardly added, so that the traveling and posture control of the vehicle 10 can be performed with high accuracy.
  • the feedforward amount of the total drive torque is determined so that the travel target in the front-rear direction can be achieved. Specifically, by estimating the inertial force generated according to the vehicle longitudinal acceleration and the running resistance generated according to the average driving wheel rotational angular velocity corresponding to the vehicle speed, and giving the total driving torque that cancels it The target front-rear running state is realized.
  • the target turning travel target is realized by predicting the yaw moment generated with the movement of the center position of the ground load and giving a difference between the left and right driving torques to cancel the yaw moment. Further, the moving rate of the ground load center position is predicted based on the vehicle body tilt roll angle and the vehicle lateral acceleration.
  • the feedforward amount may be determined by a simple model.
  • elements not considered in the present embodiment may be newly taken into consideration.
  • the rolling resistance of the drive wheel 12 may be taken into consideration.
  • the necessary output is given as the feedforward amount according to the target value of the running state and the vehicle body posture, but it may be given as a quasi feedback amount based on the measured value. Therefore, even when there is a large gap between the target value and the actual value, it is possible to appropriately control.
  • the main control ECU 21 determines the feedback output of each actuator from the deviation between each target value and the state quantity (step S5-11). Specifically, the feedback amount ⁇ W, FB of the total driving torque and the feedback amount ⁇ W, FB of the left-right difference of the driving torque are determined as feedback outputs by the following formula.
  • each feedback gain K ** is set in advance, for example, as determined by the pole placement method or the like. Further, nonlinear feedback control such as sliding mode control may be introduced. Further, as a simpler control, some of the gains except for K W2 , K W3 and K d2 (e) may be set to zero. Further, an integral gain may be introduced in order to eliminate the steady deviation.
  • the vehicle is given a total driving torque proportional to the difference between the measured value and the target value.
  • the vehicle is stably maintained in a state where the front-rear running state of 10 and the inverted posture of the vehicle body are targeted.
  • a driving torque left / right difference proportional to the difference between the measured value and the target value is given, so that the turning traveling state of the vehicle 10 is stably maintained in the target state.
  • the drive wheel rotation angular velocity left-right difference is used as a state quantity corresponding to the turning traveling state. In this way, by controlling the rotational state of the drive wheel 12, the possibility that the drive wheel 12 will be locked or idling can be reduced.
  • the main control ECU 21 gives a command value to each element control system (step S5-12), and ends the emergency travel / posture control process.
  • the main control ECU 21 instructs the drive wheel control ECU 22 and the link control ECU 23 as command values determined by the following formulas as a right drive torque command value ⁇ WR , a left drive torque command value ⁇ WL , and a total drive torque command value.
  • ⁇ W and drive torque left / right difference command value ⁇ W are given.
  • each feedforward output and each feedback output is given as a command value.
  • command values for the right drive torque and the left drive torque are given so that the total drive torque and the left-right difference between the drive torques are required values.
  • the value of the left-right difference of the driving torque is corrected according to the eccentric state of the ground load. Specifically, a value obtained by multiplying the total drive torque command value by the ground load movement rate is added as the drive torque left-right difference. In this way, by giving the drive torque left / right difference so as to cancel the yaw moment generated with the movement of the ground load, the turning state can be controlled with higher accuracy.
  • the ground load movement rate is estimated based on the vehicle body tilt roll angle and the vehicle lateral acceleration. As a result, it is possible to appropriately consider the movement of the ground load center position that changes depending on the vehicle body tilting state and the turning traveling state.
  • the vehicle lateral acceleration is estimated based on the rotational speeds of the left and right drive wheels 12.
  • traveling and attitude control can be executed without a sensor for measuring the lateral acceleration of the vehicle 10.
  • the vehicle lateral acceleration value necessary for estimating the ground load movement rate is estimated from the rotational angular velocities of the left and right drive wheels 12, but includes a measuring means for measuring the lateral acceleration, A measured value may be used. Moreover, you may determine the left-right acceleration of the vehicle 10 from measured values, such as a yaw rate.
  • the limit value of the vehicle lateral acceleration is decreased. Specifically, the limit value for the target value of the vehicle lateral acceleration is decreased. That is, the target value of the vehicle lateral acceleration determined according to the operation amount of the joystick 31 is limited.
  • the amount of decrease in vehicle lateral acceleration is determined according to the fixed angle of the link mechanism 60. That is, the angle from the right end of the vehicle body tilt movable range to the fixed position is set as the amount of decrease in the rightward acceleration limit value. Further, the angle from the left end of the vehicle body tilt movable range to the fixed position is set as the amount of decrease in the left acceleration limit value.
  • the other acceleration limit value is further reduced. That is, both the right acceleration limit value and the left acceleration limit value are set to the smaller value of the right acceleration limit value and the left acceleration limit value.
  • the average driving wheel rotation angular velocity limit value is decreased according to the limit value of the vehicle lateral acceleration.
  • the link mechanism 60 is fixed so that the minimum turning radius at the maximum speed when the link mechanism 60 is fixed is less than the minimum turning radius at the maximum speed when the link mechanism 60 is not fixed.
  • the average driving wheel rotation angular velocity limit value is corrected.
  • the limit value of left and right acceleration is decreased according to the left and right road surface gradient. That is, when the fixed vehicle body tilt direction is equal to the upward direction of the road surface gradient, the reduction of the lateral acceleration limit value is prohibited.
  • FIG. 6 is a diagram showing a tilted state of the vehicle in the second embodiment of the present invention
  • FIG. 7 is a block diagram showing the configuration of the vehicle system in the second embodiment of the present invention.
  • the vehicle 10 includes, for example, a three-wheeled vehicle having one front wheel and two rear wheels, a three-wheeled vehicle having two front wheels and one rear wheel, and two front wheels and rear wheels. However, it may be of any kind as long as it has three or more wheels.
  • the vehicle 10 is disposed in front of the vehicle body and has one front wheel that functions as a steering wheel, and left and right 2 that are disposed in the rear of the vehicle body and function as drive wheels 12. It will be described as a three-wheeled vehicle having two rear wheels.
  • the vehicle 10 changes the camber angles of the left and right rear wheels by the link mechanism 60 and tilts the vehicle body including the riding portion 14 and the main body 11 toward the turning inner wheel. By doing so, it is possible to improve the turning performance and ensure the comfort of the occupant 15. That is, the vehicle 10 can tilt the vehicle body in the lateral direction (left and right direction).
  • posture control such as posture control of an inverted pendulum is not performed. That is, the posture control of the vehicle body in the front-rear direction is not performed.
  • the input device 30 of the vehicle 10 in the present embodiment does not include the joystick 31, but instead uses the steering angle sensor 33a, the throttle grip 34, and the brake lever 35 as a steering device. Prepare.
  • the vehicle 10 has a handle 33 as a steering device.
  • the handle 33 is a rod-like member used in general motorcycles, bicycles and the like.
  • the steering angle sensor 33a as a steering amount detector detects the steering angle as a steering amount of the steering device and transmits it to the main control ECU 21.
  • the throttle grip 34 is a member similar to a throttle grip used in a general motorcycle or the like, and is rotatably attached to one end of a rod-like handle 33.
  • the rotation angle, that is, the throttle opening is set. Accordingly, it is a device for inputting a travel command for accelerating the vehicle 10.
  • the brake lever 35 is a member similar to a brake lever used in general motorcycles, bicycles, and the like, and is attached to one end of a rod-like handle 33 so as to be swingable. This is a device for inputting a travel command for decelerating the vehicle 10 according to the operation amount.
  • the vehicle body control system 40 includes a lateral acceleration sensor 43.
  • the lateral acceleration sensor 43 is a sensor composed of a general acceleration sensor, a gyro sensor, or the like, and detects the lateral acceleration of the vehicle 10.
  • the attitude control is performed by the control ECU 20, so that the vehicle 10 turns in a state in which the vehicle body is inclined inward of the turning circle as shown in FIG.
  • the main control ECU 21 first acquires each state quantity from the sensor.
  • the wheel base L [m] is acquired.
  • the vehicle body center-of-gravity distance and the vehicle body tilt pitch angle or pitch angular velocity are not acquired because they are unnecessary.
  • the main control ECU 21 calculates the target value of the drive wheel rotational angular velocity from the target value of the vehicle acceleration.
  • the operation for determining the target value of the average driving wheel rotation angular velocity is the same as that in the first embodiment, the description thereof will be omitted.
  • the main control ECU 21 determines the target value of the left / right difference of the drive wheel rotation angular velocity by the following equation.
  • the drive wheel rotation angular velocity left / right difference target value which is the target of the difference between the rotation angular velocities of the left and right drive wheels 12, is determined from the steering angle and the average drive wheel rotation angular velocity target value.
  • the main control ECU 21 determines a target value of the vehicle body inclination angle.
  • the posture control in the front-rear direction is not performed, so the main control ECU 21 does not calculate the target value of the vehicle body tilt pitch angle when determining the target value of the vehicle body tilt angle, but instead calculates the target value of the vehicle body tilt pitch angle. Only the roll angle target value is determined. Since the determination of the target value of the vehicle body tilt roll angle is performed in the same manner as in the first embodiment, description thereof is omitted.
  • the target posture can be freely set within the range where the ground load center exists in the stable region between the ground points of the two drive wheels 12, but in this embodiment, the load on the occupant 15 is the most. Give a few postures as target values.
  • the main control ECU 21 determines the feedback output of each actuator from the deviation between each target value and the state quantity. Specifically, the feedback amount ⁇ W, FB of the total drive torque, the feedback amount ⁇ W, FB of the left / right difference of the drive torque , and the feedback amount ⁇ L, FB of the link torque are determined as feedback outputs by the following equations.
  • the vehicle 10 is stably maintained in a state where the turning traveling state of the vehicle 10 is a target. In this way, the turning state can be controlled more stably and with high accuracy by taking into account the left-right inclination state of the vehicle body.
  • the vehicle body left-right tilt state To keep it stable in the target state. In this way, by considering the turning traveling state of the vehicle 10, it is possible to control the vehicle body leaning state more stably and with high accuracy.
  • the drive wheel rotation angular velocity left-right difference is used as a state quantity corresponding to the turning traveling state. In this way, by controlling the rotational state of the drive wheel 12, the possibility that the drive wheel 12 will be locked or idling can be reduced.
  • the main control ECU 21 gives a command value to each element control system and ends the normal running / attitude control process.
  • the operation for giving the command value to each element control system is the first embodiment. Since it is the same as that, the description is omitted.
  • the tilt direction predicting means for solving the problems of the conventional vehicle and predicting the direction in which the vehicle body tilts when the tilt mechanism brake is released includes a target tilt angle.
  • FIG. 8 is a diagram showing a tilted state of the vehicle in the third embodiment of the present invention
  • FIG. 9 is a block diagram showing the configuration of the vehicle system in the third embodiment of the present invention.
  • (a) shows turning, (b) brake operation, (c) brake release, and (d) state return.
  • the input device 30 includes a return permission switch 32 as a tilt permission means in addition to a joystick 31 as a target travel state acquisition device.
  • the permission signal is transmitted by operating the return permission switch 32.
  • the device can be operated by the occupant 15 to input execution or stop of the inverted control
  • another device such as a push button, a touch panel, an operation lever, or a voice recognition system is used instead of the return permission switch 32.
  • a device such as a control command acquisition device.
  • these may be a device that commands only one of execution or stop.
  • a receiving device that receives a travel command from the controller in a wired or wireless manner is used as the target travel state acquisition device instead of the joystick 31 and the return permission switch 32. be able to.
  • data for reading travel command data stored in a storage medium such as a semiconductor memory or a hard disk instead of the joystick 31 and the return permission switch 32.
  • the reading device can be used as a target running state acquisition device.
  • the vehicle body control system 40 in the present embodiment does not include the link sensor 42 described in the first and second embodiments.
  • the main control ECU 21 also serves as a tilt direction predicting unit that predicts the left and right tilt direction of the vehicle body when the link brake 62 is released, and a periodic signal acquiring unit that acquires a periodic signal transmitted intermittently at a predetermined cycle. Function.
  • the attitude control is performed by the control ECU 20, so that the vehicle 10 turns in a state in which the vehicle body is inclined inward of the turning circle as shown in FIG.
  • the link brake 62 is operated.
  • the vehicle body tilt state is maintained even after the turn is completed.
  • the brake is released, and the link brake 62 is released again during turning, allowing the vehicle body to be tilted to the outside of the turning circle.
  • the vehicle body is raised by the action of centrifugal force.
  • the link mechanism 60 rotates and the vehicle body returns to the upright state. In this state, that is, in the return state, the link brake 62 is operated again, and the link mechanism 60 is fixed.
  • FIG. 10 is a flowchart showing the operation of the vehicle control process in the third embodiment of the present invention.
  • control ECU 20 first determines whether the motor is normal and determines whether the motor is normal (step S11). When it is determined that the motor is normal, the control ECU 20 releases the brake (step S12).
  • the control ECU 20 executes a normal travel / posture control process (step S13), realizes a travel command from the occupant 15 while maintaining the posture of the vehicle body while appropriately tilting the vehicle body, and performs a vehicle control process.
  • the vehicle control process is repeatedly executed at predetermined time intervals (for example, every 100 [ ⁇ s]).
  • the operations in steps S11 to S13 are the same as the operations in steps S1 to S3 shown in FIG. 3 in the first embodiment.
  • step S14 the control ECU 20 executes a brake control process (step S14).
  • the link brake 62 is operated or released according to the state of the vehicle 10.
  • control ECU 20 executes an emergency travel / posture control process (step S15), realizes a travel command from the occupant 15 while maintaining the posture of the vehicle body while the link mechanism 60 is fixed, and the vehicle.
  • the control process ends.
  • FIG. 11 is a flowchart showing the operation of the brake control process in the third embodiment of the present invention.
  • ⁇ L is the vehicle lateral acceleration [G]
  • b is the tread (predetermined value) [m].
  • the main control ECU 21 first acquires each state quantity from the sensor (step S14-1). Specifically, the left and right driving wheel rotation angles or rotation angular velocities are acquired from the driving wheel sensor 51, and the vehicle body inclination angle or inclination angular velocity is acquired from the vehicle body inclination sensor 41.
  • the description will be made assuming that the inclination of the vehicle body means the vehicle body inclination, that is, a roll.
  • the driving wheel rotation angle and / or the rotation angular velocity is acquired from the driving wheel sensor 51
  • the vehicle body inclination angle and / or the inclination angular velocity is acquired from the vehicle body inclination sensor 41
  • the acquired state quantity is converted into time.
  • the remaining state quantity is calculated by differentiation or time integration.
  • the acquired state quantities are the driving wheel rotation angle and the vehicle body inclination angle
  • the rotational angular velocity and the inclination angular velocity can be obtained by differentiating them with time.
  • the driving wheel rotational angle and the vehicle body tilt angle can be obtained by time integration of these.
  • the main control ECU 21 predicts the release tilt angular velocity (step S14-2).
  • the main control ECU 21 predicts the estimated value of the vehicle body inclination angular velocity when the link brake 62 is released and the link mechanism 60 is released from each state quantity by the following equation.
  • the estimated value obtained by the above equation is a value obtained by estimating the vehicle body inclination angular velocity in the future.
  • T is the advance time (predetermined value).
  • M 1 is an acting torque acting on the vehicle body and is represented by the following equation.
  • Each term of the above formula representing the working torque M 1 corresponds to the following action.
  • First term action of gravity due to tilting of vehicle body
  • Second term action of centrifugal force due to turning of vehicle 10
  • Third term action of viscous frictional force on tilting angular velocity of vehicle body
  • the values of the angular velocity and the left and right drive wheel rotation angular velocities are obtained by first-order time differentiation (difference) of the measured values of the vehicle body tilt angle and the drive wheel rotation angle.
  • the vehicle body inclination angular velocity predicted when the link mechanism 60 is released is obtained. That is, the vehicle body inclination angular velocity after a predetermined time when the link brake 62 is released at the present time or when the release state is continued is predicted.
  • the release inclination angular velocity is predicted on the basis of an acting torque that is a torque acting on the vehicle body. For example, when the vehicle body is stationary at a certain inclination angle and the acting torque is acting in the direction toward the target inclination angle, it is predicted that the vehicle body will incline toward the target inclination angle when the link brake 62 is released, and the link brake 62 is released and the link mechanism 60 is released. In this way, the vehicle body can be reliably tilted in an appropriate direction by taking into account the acting torque acting on the vehicle body.
  • the operating torque is estimated based on the vehicle body tilting state, the vehicle turning traveling state, or the driving wheel rotation state.
  • the action torque the action of gravity accompanying the vehicle body tilt
  • the action of the centrifugal force accompanying the turning of the vehicle 10 and the viscous friction force with respect to the inclination angular velocity of the vehicle body are considered.
  • the acting torque that is, the release inclination angular velocity with high accuracy without adding a dedicated sensor.
  • the release inclination angle velocity is predicted. For example, when the inclination angle speed of the vehicle body toward the target inclination angle is higher than a predetermined value, the link brake 62 is maintained in the released state regardless of the direction of the applied torque, and the vehicle body inclination due to inertia is continued.
  • the rotational inertia of the vehicle body the vehicle body can be brought closer to the target inclination angle more efficiently and quickly.
  • the values of the rotational angular velocities of the left and right drive wheels are used for determining the centrifugal force, but values measured by other sensors may be used.
  • a yaw rate sensor that measures the yaw rate of the vehicle 10 may be provided, and the lateral acceleration and centrifugal force may be determined based on the measured values.
  • a lateral acceleration sensor that measures the lateral acceleration may be provided, and the lateral acceleration and the centrifugal force may be determined based on the measured values.
  • gravity, viscous frictional force, inertial force and the like are considered as the acting torque, but some of them may be omitted. Also, other factors such as dry friction and motor back electromotive force may be considered.
  • the operating torque is determined by a non-linear function, but may be determined by a simple function that is linearly approximated. Further, a non-linear function may be provided as a map and determined using the map.
  • the magnitude and direction of the acting torque are acquired by the estimation means, but may be acquired by another means.
  • the link brake 62 may be provided with a torque sensor that measures the magnitude of the frictional force, and the magnitude and direction of the acting torque may be determined based on the measured value.
  • the main control ECU 21 determines the inclination direction and determines whether or not the direction is OK (step S14-3). That is, it is determined whether or not the predicted inclination direction of the vehicle body is a direction toward the reference inclination angle.
  • the determination condition that is, the condition for determining that the direction is appropriate is represented by the following expression.
  • the value of the vehicle body inclination angle ⁇ 1 has a reference inclination angle of zero.
  • the reference inclination angle is the inclination angle of the vehicle body such that the line of intersection between the plane parallel to the rotation axis of the drive wheel 12 and the plane parallel to the seating surface of the riding section 14 is parallel to the horizontal plane, regardless of the road surface gradient. Represents.
  • the tilt direction determination in the present embodiment it is determined whether or not the predicted vehicle body tilt direction when the link brake 62 is released is the direction toward the target tilt angle. Specifically, when the value corresponding to the target inclination angle of the vehicle body is set to zero, it is appropriate when the product of the actual vehicle body inclination angle and the estimated inclination angle at release is smaller than a predetermined negative value. The direction is determined. Thus, by releasing the link brake 62 only when the vehicle body is predicted to lean in an appropriate direction, the vehicle body can be inclined to an appropriate inclination angle without using an actuator that applies torque. The anxiety and discomfort of the occupant 15 due to the tilt of the vehicle body when the motor 61 is broken can be eliminated.
  • the target tilt angle which is the target tilt angle for tilting the vehicle body
  • the reference tilt angle is set as the reference tilt angle.
  • the link brake 62 is released. In this way, by tilting the vehicle body to the reference inclination angle, it becomes possible to keep the riding section 14 in a horizontal posture regardless of the road surface gradient, thereby eliminating the anxiety and discomfort of the occupant 15 as well as sideways.
  • the acceleration allowance is set to the same level on the left and right, it is possible to prevent a significant decrease in the stability during one turn and to ensure a certain level of maneuverability.
  • the target tilt angle is given as a point for releasing the link mechanism 60 and tilting the vehicle body, but the target tilt angle may be given as a certain range. This eliminates the need for fine brake control in the vicinity of the target inclination angle, and can prevent the occurrence of vibration associated with frequent switching of the brake state.
  • the target inclination angle is set to a predetermined reference inclination angle, but the target inclination angle may be changed according to the situation.
  • a road surface gradient acquisition unit that acquires a road surface gradient in the left-right direction may be provided, and the target inclination angle may be corrected so that the vehicle body is always perpendicular to the road surface. Thereby, it is not necessary to execute the brake control every time the state of the traveling road surface changes.
  • the target inclination angle may be changed according to the travel target of the vehicle 10. For example, when a turning target is input by the occupant 15, the target inclination angle may be moved to the inside of the turning circle. Thereby, even when the link motor 61 is out of order, turning performance close to normal can be achieved.
  • the main control ECU 21 performs the inclination angular speed determination, and the speed is OK. Is determined (step S14-4). If it is determined that the direction is not OK, the link brake 62 is operated (step S14-7), and the brake control process is terminated.
  • the tilt angular velocity determination it is determined whether the vehicle tilt angular velocity is within an allowable range.
  • the absolute value of the actual vehicle body inclination angular velocity and the predicted absolute value of the release inclination angular velocity are both equal to or less than a predetermined threshold value, it is determined that the value is within the allowable range.
  • the link brake 62 is actuated to keep the vehicle body inclination angular velocity below a predetermined limit value. 15 adverse effects and adverse effects on inverted posture control are reduced.
  • the main control ECU 21 performs occupant permission determination, and whether the permission is OK. It is determined whether or not (step S14-5). If it is determined that the speed is not OK, the link brake 62 is operated (step S14-7), and the brake control process is terminated.
  • the main control ECU 21 determines the operation state of the return permission switch 32 based on whether or not a permission signal has been received. If the permission signal is received, the main control ECU 21 determines that the occupant 15 has permitted. Accordingly, it is possible to prevent the occupant 15 from feeling uneasy due to the unexpected inclination of the vehicle body accompanying the release of the link brake 62, and to make the occupant 15 recognize that the link motor 61 is in an abnormal state.
  • the brake control based on the inclination direction prediction is not executed.
  • the brake control is not performed regardless of the occupant 15 permission status. May be executed.
  • the brake control may be executed regardless of the permission status of the occupant 15. Thereby, the opportunity to rotate the link mechanism 60 to an appropriate state can be reliably utilized.
  • the main control ECU 21 releases the link brake 62 (step S14-6), and the brake The control process ends. If it is determined that the permission is not OK, the link brake 62 is operated (step S14-7), and the brake control process is terminated.
  • the link brake 62 is released only when all three conditions are appropriate. Specifically, an operating voltage is input from the main control ECU 21 to the link brake 62.
  • the control is executed based on the left and right vehicle body inclination angles (roll angles) measured by the vehicle body inclination sensor 41.
  • the state quantities acquired by other sensors may be substituted.
  • a link sensor that measures the rotation angle of the link motor 61 or the state of the link mechanism 60 may be provided, and the brake value may be executed by converting the measured value into the vehicle body inclination angle.
  • the vehicle body tilt sensor 41 is not necessary, and an inexpensive system can be realized.
  • a means for separately measuring or estimating the road surface gradient may be provided, and the vehicle body inclination angle may be estimated from the acquired value and the state quantity of the link mechanism 60.
  • the brake control is executed only when the link motor 61 is abnormal, but it may be executed in another scene.
  • the power consumption can be reduced by executing the brake control when power saving is requested due to a decrease in the remaining battery level.
  • the main control ECU 21 includes a tilt direction predicting unit that predicts a direction in which the vehicle body tilts when the link brake 62 is released, and predicts a tilt in a direction approaching the target tilt angle.
  • the link brake 62 is released.
  • the tilt direction predicting means predicts the tilt direction based on the tilt angular velocity of the vehicle body and the estimated value of the acting torque.
  • the tilting direction is predicted by estimating the tilting angular velocity after the acting torque has acted for a predetermined time.
  • the link brake 62 is released when it is predicted that the acting torque will work in the direction of the target inclination angle.
  • the link brake 62 is released when the tilt angular velocity toward the target tilt angle is higher than a predetermined threshold. Further, the acting torque is estimated from the vehicle body inclination angle and the vehicle lateral acceleration. In this case, the effects of gravity, frictional force and centrifugal force are taken into account.
  • the link brake 62 is operated.
  • the control ECU 20 includes a return permission switch 32 as a tilt permission means, and releases the link brake 62 when the occupant 15 permits the release of the link brake 62. Further, brake control is executed when it is impossible to generate torque of the link motor 61 that tilts the vehicle body. In this case, an angle at which the riding section 14 is horizontal is set as a target inclination angle.
  • the link motor 61 when the link motor 61 is abnormal, the vehicle body stops in a state of being largely inclined and is automatically fixed to an appropriate state even when the vehicle body is fixed. Therefore, since the discomfort and anxiety given to the occupant 15 due to the vehicle body inclination and the decrease in maneuverability are eliminated, the safe and comfortable inverted vehicle 10 can be provided.
  • FIG. 12 is a block diagram showing a configuration of a vehicle system according to the fourth embodiment of the present invention.
  • the brake control process is executed without using the measured value of the vehicle body tilt state.
  • the release continuation time of the link brake 62 is limited.
  • a periodic signal acquisition unit is provided, and the release of the link brake 62 is permitted only when the periodic signal is output.
  • the state of the link brake 62 is controlled based on the direction of the acting torque and the vehicle body inclination angle immediately before the occurrence of the abnormality.
  • the link brake 62 is released when the product of the value of the acting torque and the value of the vehicle body tilt angle immediately before the occurrence of the abnormality is negative. In this case, the value of the vehicle body tilt angle immediately before the occurrence of the abnormality is used for estimating the action torque.
  • a reference inclination angle detecting means is provided, and the release of the link brake 62 is prohibited when the vehicle body reaches the reference inclination angle.
  • the control ECU 20 includes a reference inclination angle detection sensor 66 as reference inclination angle detection means.
  • the reference inclination angle detection sensor 66 transmits an arrival signal to the main control ECU 21.
  • a light detection type proximity sensor is used as the reference inclination angle detection sensor 66.
  • the inclined portion including the vehicle body is provided with a shielding (edge) plate, the light emitting portion and the light receiving portion are provided at a position corresponding to the reference inclination angle of the fixed portion, and light from the light emitting portion is reflected by the shielding plate.
  • an arrival signal is transmitted to the main control ECU 21.
  • FIG. 13 is a flowchart showing the operation of the brake control process in the fourth embodiment of the present invention.
  • the main control ECU 21 first acquires each state quantity from the sensor (step S14-11). Specifically, the drive wheel rotation angle or rotation angular velocity is acquired from the drive wheel sensor 51.
  • the main control ECU 21 predicts the operating torque (step S14-12).
  • the main control ECU 21 obtains an action torque (vehicle action torque) M 1 acting on the vehicle body from each state quantity by the following equation.
  • each term of the above formula representing the working torque M 1 corresponds to the following action.
  • 1st term action of gravity due to tilting of vehicle body
  • 2nd term action of centrifugal force caused by turning of vehicle 10
  • the value of each drive wheel rotation angular velocity in the above formula is a measured value of the drive wheel rotation angle. Is obtained by first-order time differentiation (difference).
  • the influence of the vehicle body tilt angle is considered. Specifically, the influence of gravity due to the vehicle body tilt is taken into account by the measured value of the vehicle body tilt angle acquired last.
  • the actual vehicle body inclination angle that is, estimated to be smaller than the gravitational torque, and the brake release as a result of erroneous estimation
  • the main control ECU 21 determines the inclination direction and determines whether or not the direction is OK (step S14-13). That is, it is determined whether or not the acting torque is acting in the direction toward the reference inclination angle.
  • the determination condition that is, the condition for determining that the direction is appropriate is represented by the following expression.
  • the tilt direction determination in the present embodiment it is determined whether or not the torque acting on the vehicle body is acting in the direction toward the target tilt angle. Specifically, when the value corresponding to the target inclination angle of the vehicle body is set to zero, it is appropriate when the product of the vehicle body inclination angle immediately before the motor abnormality occurs and the estimated action torque is smaller than a predetermined negative value. It is determined that the direction is correct. As described above, the vehicle body tilt angle immediately before the occurrence of the motor abnormality is determined based on whether the vehicle body should be tilted based on whether the vehicle body tilt angle is unknown or not. It is possible to move the vehicle body posture to an appropriate state to some extent when a motor abnormality occurs.
  • one reference inclination angle detection sensor 66 is provided at a position corresponding to the target inclination angle, but a plurality of reference inclination angle detection sensors 66 are provided, and each attachment position is set as a target inclination angle candidate. You may enable it to select them according to a road surface gradient or a turning target. As a result, the vehicle body tilt state can be guided to a selective target tilt angle.
  • the main control ECU 21 performs the periodic signal permission determination, and whether the time is OK. It is determined whether or not (step S14-14). If it is determined that the direction is not OK, the link brake 62 is operated (step S14-18), and the brake control process is terminated.
  • the determination condition that is, the condition for releasing the link brake 62 is expressed by the following equation.
  • t is a time
  • TH is a release permission time (predetermined value)
  • TL is a release prohibition time (predetermined value).
  • release of the link brake 62 is prohibited depending on the time of day. Specifically, permission and prohibition of release of the link brake 62 are periodically repeated. That is, after the release is permitted for a predetermined release permission time, the release is repeatedly prohibited for the predetermined release prohibition time. Thus, by limiting the time for which the release of the link brake 62 is continued within the predetermined release permission time, it is possible to reliably prevent an excessive increase in the tilt angular velocity of the vehicle body even when the vehicle body tilt state cannot be obtained. .
  • the periodic link brake 62 is forcibly operated regardless of other release permission conditions, but may be adapted to other conditions.
  • the periodic signal permission determination may be executed using the time from the time when the release of the link brake 62 is permitted in the tilt direction determination as the time. Thereby, the vehicle body can be guided to the target inclination angle more efficiently and quickly.
  • Step S14-15 If it is determined that the time is not OK, the link brake 62 is operated (step S14-18), and the brake control process is terminated.
  • the main control ECU 21 determines the operation state of the return permission switch 32 based on whether or not a permission signal has been received. If the permission signal is received, the main control ECU 21 determines that the occupant 15 has permitted. Accordingly, it is possible to prevent the occupant 15 from feeling uneasy due to the unexpected inclination of the vehicle body accompanying the release of the link brake 62, and to make the occupant 15 recognize that the link motor 61 is in an abnormal state.
  • the main control ECU 21 performs the reference inclination angle arrival determination and determines whether or not it has not yet reached. Is determined (step S14-16). If it is determined that the permission is not OK, the link brake 62 is operated (step S14-18), and the brake control process is terminated.
  • the main control ECU 21 determines whether or not the vehicle body has reached the reference inclination angle based on whether or not the arrival signal has been received. If the arrival signal is received, the main control ECU 21 determines that the vehicle body has reached the reference inclination angle. judge. Thereby, even if the measurement value of the vehicle body tilt state cannot be acquired, the vehicle body can be fixed at an appropriate tilt angle.
  • the target tilt angle for tilting the vehicle body is given as a point, but the target tilt angle may be given as a certain range.
  • the reference inclination angle detection sensor 66 is attached to each of two points corresponding to angles different from the reference inclination angle of the vehicle body by a predetermined value, and the arrival signal is received from one reference inclination angle detection sensor 66, the vehicle body inclination angle is It may be determined that it is within the allowable range, and subsequent brake release may be prohibited.
  • the main control ECU 21 releases the link brake 62 (step S14-17). Then, the brake control process is terminated. If it is determined that the link has been reached, the link brake 62 is operated (step S14-18), and the brake control process is terminated.
  • the link brake 62 is released only when all four conditions are appropriate. Specifically, an operating voltage is input from the main control ECU 21 to the link brake 62.
  • the brake control process is executed without using the measured value of the vehicle body tilt state. Specifically, the release of the link brake 62 is permitted only when the periodic signal is output. Further, when the product of the value of the acting torque and the value of the vehicle body tilt angle immediately before the occurrence of the abnormality is negative, the link brake 62 is released. Further, the release of the link brake 62 is prohibited when the vehicle body reaches the reference inclination angle.
  • FIG. 14 is a diagram showing a tilted state of the vehicle in the fifth embodiment of the present invention
  • FIG. 15 is a block diagram showing the configuration of the vehicle system in the fifth embodiment of the present invention.
  • (a) shows turning
  • (b) shows brake operation
  • (c) shows brake release
  • (d) shows state return.
  • the vehicle 10 includes, for example, a three-wheeled vehicle having one front wheel and two rear wheels, a three-wheeled vehicle having two front wheels and one rear wheel, and two front wheels and rear wheels. However, it may be of any kind as long as it has three or more wheels.
  • the vehicle 10 is disposed in front of the vehicle body and has one front wheel that functions as a steering wheel, and two left and right rear wheels that are disposed in the rear of the vehicle body and function as drive wheels 12. It is assumed that the vehicle is a three-wheeled vehicle having In this case, as in the first and second embodiments, the vehicle 10 changes the camber angles of the left and right rear wheels by the link mechanism 60 and moves the vehicle body including the riding portion 14 and the main body portion 11 to the turning inner wheel. By tilting to the side, it is possible to improve the turning performance and ensure the comfort of the passenger (not shown). That is, the vehicle 10 can tilt the vehicle body in the lateral direction (left and right direction). Note that posture control such as posture control of an inverted pendulum is not performed. That is, the posture control of the vehicle body in the front-rear direction is not performed.
  • posture control such as posture control of an inverted pendulum is not performed. That is, the posture control of the vehicle body in the front-rear direction is not performed.
  • the input device 30 of the vehicle 10 in the present embodiment does not include the joystick 31, but instead includes a handle 33, a throttle grip 34, and a brake lever 35 as a steering device.
  • the handle 33 is a rod-like member used in general motorcycles, bicycles, etc., and is directly connected to the front wheels.
  • the front wheels as the steered wheels change the steering angle in accordance with the operation of the handle 33 by the occupant 15, thereby changing the traveling direction of the vehicle 10.
  • the throttle grip 34 is a member similar to a throttle grip used in a general motorcycle or the like, and is rotatably attached to one end of a rod-like handle 33.
  • the rotation angle, that is, the throttle opening is set. Accordingly, it is a device for inputting a travel command for accelerating the vehicle 10.
  • the brake lever 35 is a member similar to a brake lever used in general motorcycles, bicycles and the like, and is attached to one end of a rod-like handle 33 so as to be swingable. This is a device for inputting a travel command for decelerating the vehicle 10 according to the operation amount.
  • the vehicle body control system 40 includes a lateral acceleration sensor 43.
  • the lateral acceleration sensor 43 is a sensor composed of a general acceleration sensor, a gyro sensor, or the like, and detects the lateral acceleration of the vehicle 10.
  • the vehicle 10 turns in a state where the vehicle body is tilted to the inside of the turning circle as shown in FIG.
  • an abnormality occurs in the link motor 61 during turning, that is, when an actuator abnormality occurs
  • the link brake 62 is operated.
  • the vehicle body tilt state is maintained even after the turn is completed.
  • the brake is released, and the link brake 62 is released again during turning, allowing the vehicle body to be tilted to the outside of the turning circle.
  • the vehicle body is raised by the action of centrifugal force.
  • the link mechanism 60 rotates and the vehicle body returns to the upright state. In this state, that is, in the return state, the link brake 62 is operated again, and the link mechanism 60 is fixed.
  • the vehicle lateral acceleration ⁇ L is acquired by the lateral acceleration sensor 43. Further, when the vehicle body control system 40 includes a yaw rate sensor, it can be obtained by the following equation. In this embodiment, since the vehicle 10 is a three-wheeled vehicle, when the vehicle lateral acceleration ⁇ L is calculated based on the rotational difference between the left and right wheels as in the third embodiment, an accurate value is obtained. It is because it cannot be obtained.
  • ⁇ L v ⁇
  • v an average vehicle speed [m / s] for the left and right wheels
  • is a yaw rate [rad / s], which is an output of the yaw rate sensor.
  • is a steering angle
  • L is a wheel base [m] of the vehicle 10.
  • a comfortable vehicle 10 can be provided.
  • FIG. 16 is a block diagram showing a configuration of a vehicle system according to the sixth embodiment of the present invention.
  • control ECU 20 includes a reference inclination angle detection sensor 66 as reference inclination angle detection means.
  • the reference inclination angle detection sensor 66 transmits an arrival signal to the main control ECU 21.
  • the release continuation time of the link brake 62 is limited. Specifically, a periodic signal acquisition unit is provided, and the release of the link brake 62 is permitted only when the periodic signal is output. Further, the state of the link brake 62 is controlled based on the direction of the acting torque and the vehicle body inclination angle immediately before the occurrence of the abnormality. Specifically, the link brake 62 is released when the product of the value of the acting torque and the value of the vehicle body tilt angle immediately before the occurrence of the abnormality is negative. In this case, the value of the vehicle body tilt angle immediately before the occurrence of the abnormality is used for estimating the action torque. Further, the release of the link brake 62 is prohibited when the vehicle body reaches the reference inclination angle.
  • the brake control process can be executed even when both the torque addition and the inclination state acquisition of the link mechanism 60 are impossible, and the inverted and safer and more inexpensive type.
  • the vehicle 10 can be provided.
  • a drive wheel rotatably attached to the vehicle body a vehicle body left-right tilt mechanism that tilts the vehicle body left and right, a tilt mechanism brake that fixes the vehicle body left-right tilt mechanism, drive torque applied to the drive wheel, and / or
  • a vehicle control device that controls the vehicle body posture by controlling the vehicle body tilt, and the vehicle control device predicts the vehicle body tilt direction when the tilt mechanism brake is released.
  • a vehicle that releases the tilt mechanism brake when the tilt direction prediction means predicts that the vehicle body tilts in a direction approaching a target tilt angle.
  • the posture of the vehicle body is automatically returned to an appropriate state, so that discomfort and anxiety given to the occupant due to the vehicle body inclination and a decrease in maneuverability can be solved.
  • the tilt direction predicting means further predicts the left / right tilt direction based on an estimated value of a left / right tilt angular velocity of the vehicle body and an acting torque acting to tilt the vehicle body to the left / right.
  • the tilt direction predicting means estimates the left and right tilt directions by estimating the left and right tilt angular velocities after the acting torque has acted for a predetermined time.
  • the tilt direction predicting means estimates the acting torque based on the left / right tilt angle and lateral acceleration of the vehicle body.
  • the vehicle control device further operates the tilt mechanism brake when the left-right tilt angular velocity of the vehicle body is higher than a predetermined threshold.
  • the vehicle control device further includes a periodic signal acquisition unit that acquires a periodic signal that is intermittently transmitted at a predetermined cycle, and the vehicle control device is configured such that the periodic signal acquisition unit cannot acquire the periodic signal. The release of the tilt mechanism brake is prohibited.
  • the vehicle control device further includes a tilt permission unit, and releases the tilt mechanism brake when an occupant permits the release of the tilt mechanism brake by operating the tilt permission unit.
  • the vehicle control device further executes control of the tilt mechanism brake when it is impossible to generate torque of the tilt actuator that operates the vehicle body tilt mechanism.
  • the posture of the vehicle body can be automatically returned to an appropriate state.
  • the present invention can be applied to vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Motorcycle And Bicycle Frame (AREA)

Abstract

Disclosed is a user-friendly vehicle which can be used comfortably in safety and can ensure motion performance as much as possible while guaranteeing adequate security even when the body is fixed while leaning heavily to either the left or right side by reducing the transverse acceleration limit of the vehicle when a body tilting link mechanism is fixed. The vehicle comprises right and left drive wheels (12) fixed rotatably to the body, a body tilting link mechanism which tilts the body to the right or left, a link brake which fixes the body tilting link mechanism, and a vehicle controller which controls the position of the body by controlling the drive torque to be imparted to each drive wheel (12) and the link torque to be imparted to the body tilting link mechanism, wherein the vehicle controller reduces the transverse acceleration limit of the vehicle when the link brake fixes the body tilting link mechanism.

Description

車両vehicle
 本発明は、車両に関するものである。 The present invention relates to a vehicle.
 従来、一対の車輪と、一対の車輪を支持するリンク機構とを備える、いわゆる、同軸2輪タイプの倒立振り子の姿勢制御を利用した車両に関する技術が提案されている。例えば、同軸上に配設された2つの駆動輪を有し、運転者の重心移動による車体の姿勢変化を感知して駆動する車両等の技術が提案されている(例えば、特許文献1及び2参照。)。 Conventionally, a technique related to a vehicle using a so-called coaxial two-wheel inverted pendulum attitude control including a pair of wheels and a link mechanism that supports the pair of wheels has been proposed. For example, a technology has been proposed for a vehicle or the like that has two drive wheels arranged on the same axis and that drives by sensing a change in the posture of the vehicle body caused by the driver's movement of the center of gravity (for example, Patent Documents 1 and 2). reference.).
 特許文献1に記載の車両の場合、リンク機構によって車体を左右に傾斜させながら走行するようになっている。 In the case of the vehicle described in Patent Document 1, the vehicle travels while the vehicle body is tilted left and right by a link mechanism.
特開2006-001385号公報JP 2006-001385 A 特開2008-238938号公報JP 2008-238938 A
  しかしながら、前記従来の車両においては、車体を左右に傾けるアクチュエータの異常時に、リンク機構を固定する場合がある。例えば、車体が自由に傾斜して車体姿勢の安定性が低下することを防ぐために、アクチュエータの異常時には、ブレーキを作動してリンク機構を固定する。しかし、このような制御では、安定性や快適性を十分に保障できない可能性がある。 However, in the conventional vehicle, the link mechanism may be fixed when an actuator that tilts the vehicle body to the left or right is abnormal. For example, in order to prevent the vehicle body from freely tilting and deteriorating the stability of the vehicle body posture, the brake is operated to fix the link mechanism when the actuator is abnormal. However, such control may not be able to sufficiently ensure stability and comfort.
 例えば、リンク機構の固定によって、車両の旋回性能の実質的な限界値が低下する。つまり、リンク機構の固定によって接地荷重中心の移動が可能な範囲が変化するため、正常時と同様に旋回すると、車体の姿勢を維持できず、安全性を十分に保障できない可能性がある。 For example, the substantial limit value of the turning performance of the vehicle is lowered by fixing the link mechanism. In other words, since the range in which the center of the ground load can be moved changes due to the fixing of the link mechanism, the vehicle body posture cannot be maintained and the safety may not be sufficiently ensured when turning in the same manner as normal.
 また、リンク機構が固定された状態によって、旋回方向で限界値の低下量が異なる。そのため、操縦者は、リンク機構の固定された角度から左右各々の旋回性能限界の低下量を正確に判断して慎重に操縦することを強いられる。このような場合、安全性や操縦性を十分に保障できない可能性がある。 Also, the amount of decrease in the limit value differs in the turning direction depending on the state where the link mechanism is fixed. Therefore, the driver is forced to carefully control by accurately determining the amount of decrease in the left and right turning performance limits from the fixed angle of the link mechanism. In such a case, safety and maneuverability may not be sufficiently ensured.
 もっとも、これらの条件に対して安全性を保障するために車両を強制停止させると、非常時に道路外や路肩に退避するような走行が不可能となり、利用可能な環境が実質的に著しく制限されてしまう。 However, if the vehicle is forcibly stopped to ensure safety against these conditions, it will not be possible to run away from the road or on the shoulder in an emergency, and the usable environment will be substantially limited. End up.
 本発明は、前記従来の車両の問題点を解決して、車体傾斜リンク機構を固定した場合に車両左右加速度の制限値を減少させることによって、車体が左右一方に大きく傾いた状態で固定されたときであっても、十分な安全性を保障しつつ、可能な限りの運動性能を確保することができ、使い勝手がよく、かつ、安全で快適に使用することができる車両を提供することを目的とする。 The present invention solves the problems of the conventional vehicle, and when the vehicle body tilt link mechanism is fixed, by reducing the limit value of the vehicle lateral acceleration, the vehicle body is fixed in a state of being greatly inclined to the left or right side. It is an object to provide a vehicle that can assure as much safety as possible while ensuring sufficient safety, and is easy to use and safe and comfortable to use. And
 そのために、本発明の車両においては、回転可能に車体に取り付けられた左右の駆動輪と、前記車体を左右に傾斜させる車体傾斜リンク機構と、該車体傾斜リンク機構を固定するリンクブレーキと、前記駆動輪の各々に付与する駆動トルク及び前記車体傾斜リンク機構に付与するリンクトルクを制御して前記車体の姿勢を制御する車両制御装置とを有し、該車両制御装置は、前記リンクブレーキが前記車体傾斜リンク機構を固定した場合における車両左右加速度の制限値を、前記車体傾斜リンク機構を固定しない場合における車両左右加速度の制限値よりも小さい値に減少させる。 Therefore, in the vehicle of the present invention, left and right drive wheels that are rotatably attached to the vehicle body, a vehicle body tilt link mechanism that tilts the vehicle body left and right, a link brake that fixes the vehicle body tilt link mechanism, A vehicle control device for controlling the posture of the vehicle body by controlling a drive torque applied to each of the drive wheels and a link torque applied to the vehicle body tilt link mechanism, the vehicle control device including the link brake The limit value of the vehicle lateral acceleration when the vehicle body tilt link mechanism is fixed is reduced to a value smaller than the vehicle lateral acceleration limit value when the vehicle body tilt link mechanism is not fixed.
 本発明の他の車両においては、さらに、前記車両制御装置は、車両左右加速度の目標値に対する制限値を減少させる。 In another vehicle of the present invention, the vehicle control device further reduces a limit value with respect to a target value of vehicle lateral acceleration.
 本発明の更に他の車両においては、さらに、前記車両制御装置は、前記車体傾斜リンク機構の固定角度に応じて前記制限値の減少量を決定する。 In still another vehicle of the present invention, the vehicle control device further determines a reduction amount of the limit value according to a fixed angle of the vehicle body tilt link mechanism.
 本発明の更に他の車両においては、さらに、前記車両制御装置は、車体傾斜可動域の右端から固定位置までの角度を右方加速度制限値の減少量とし、車体傾斜可動域の左端から固定位置までの角度を左方加速度制限値の減少量とする。 In still another vehicle of the present invention, the vehicle control device further uses the angle from the right end of the vehicle body tilt movable range to the fixed position as a reduction amount of the rightward acceleration limit value, and the fixed position from the left end of the vehicle body tilt movable range. Is the amount of decrease in the left acceleration limit value.
 本発明の更に他の車両においては、さらに、前記車両制御装置は、右方加速度制限値及び左方加速度制限値のうちの一方の値に応じて、他方の値を更に減少させる。 In yet another vehicle of the present invention, the vehicle control device further decreases the other value in accordance with one of the right acceleration limit value and the left acceleration limit value.
 本発明の更に他の車両においては、さらに、前記車両制御装置は、右方加速度制限値と左方加速度制限値を比較し、大きい方の加速度制限値を小さい方の加速度制限値まで減少させる。 In still another vehicle according to the present invention, the vehicle control device further compares the right acceleration limit value and the left acceleration limit value, and decreases the larger acceleration limit value to the smaller acceleration limit value.
 本発明の更に他の車両においては、さらに、前記車両制御装置は、車両左右加速度の制限値に応じて、平均駆動輪回転角速度制限値を減少させる。 In still another vehicle of the present invention, the vehicle control device further decreases the average driving wheel rotation angular velocity limit value according to the limit value of the vehicle lateral acceleration.
 本発明の更に他の車両においては、さらに、前記車両制御装置は、前記車体傾斜リンク機構が固定されたときの最高速度での最小旋回半径を前記車体傾斜リンク機構が固定されていないときの最高速度での最小旋回半径以下にするように、前記車体傾斜リンク機構が固定されたときの平均駆動輪回転角速度制限値を補正する。 In still another vehicle of the present invention, the vehicle control device further sets a minimum turning radius at a maximum speed when the vehicle body tilt link mechanism is fixed to a maximum when the vehicle body tilt link mechanism is not fixed. The average driving wheel rotational angular velocity limit value when the vehicle body tilt link mechanism is fixed is corrected so as to be equal to or less than the minimum turning radius at the speed.
 本発明の更に他の車両においては、さらに、前記車両制御装置は、左右路面勾(こう)配に応じて車両左右加速度の制限値を減少させる。 In still another vehicle of the present invention, the vehicle control device further reduces the limit value of the vehicle left-right acceleration according to the left-right road surface gradient.
 本発明の更に他の車両においては、さらに、前記車両制御装置は、水平面上での前記車体の傾斜方向が前記左右路面勾配の下り方向と同じ場合には車両左方加速度及び車両右方加速度の制限値を減少させ、水平面上での前記車体の傾斜方向が前記左右路面勾配の上り方向と同じ場合には車両左方加速度及び車両右方加速度の制限値を固定する。 In still another vehicle of the present invention, the vehicle control device further includes a vehicle left acceleration and a vehicle right acceleration when the vehicle body inclination direction on the horizontal plane is the same as the downward direction of the left-right road gradient. The limit value is decreased, and the limit values of the vehicle left acceleration and the vehicle right acceleration are fixed when the inclination direction of the vehicle body on the horizontal plane is the same as the upward direction of the left-right road gradient.
 本発明の更に他の車両においては、さらに、前記車両制御装置は、制限された車両左右加速度の目標値に応じた駆動トルク差を左右の駆動輪に付与する。 In yet another vehicle of the present invention, the vehicle control device further applies a drive torque difference according to a target value of the limited vehicle lateral acceleration to the left and right drive wheels.
 本発明の更に他の車両においては、さらに、前記車体傾斜リンク機構が固定された場合、前記車体が左右のいずれかに傾斜している。 In still another vehicle according to the present invention, when the vehicle body tilt link mechanism is fixed, the vehicle body is tilted to the left or right.
 本発明の更に他の車両においては、さらに、前記車両制御装置は、前記制限された車両左右加速度、及び、前記車体の左右の傾斜状態によって、前記左右の駆動輪の接地点の中点から前記左右の駆動輪の接地荷重の作用中心までの距離を前記中点から前記駆動輪の接地点までの距離で除した値である接地荷重移動率を推定し、該接地荷重移動率の推定値に応じて前記左右の駆動輪に駆動トルク差を付与する。 In still another vehicle of the present invention, the vehicle control device further includes the vehicle lateral acceleration from the midpoint of the grounding point of the left and right drive wheels according to the limited vehicle lateral acceleration and the left and right inclination state of the vehicle body. Estimating the ground load movement rate, which is a value obtained by dividing the distance to the center of action of the ground load of the left and right drive wheels by the distance from the midpoint to the ground point of the drive wheel, to the estimated value of the ground load mobility Accordingly, a drive torque difference is applied to the left and right drive wheels.
 請求項1の構成によれば、十分な安全性を保障しつつ、可能な限りの旋回運動性能を確保することができる。 According to the configuration of claim 1, it is possible to ensure as much turning performance as possible while ensuring sufficient safety.
 請求項2の構成によれば、車両左右加速度の制限値を減少させることを簡易に実行できる。 According to the configuration of the second aspect, it is possible to easily reduce the limit value of the vehicle lateral acceleration.
 請求項3の構成によれば、車体姿勢の安定条件を厳密に考慮するので、確実に車両の姿勢を維持することができる範囲内に車両左右加速度を制限することができる。 According to the configuration of the third aspect, since the stability condition of the vehicle body posture is strictly considered, the vehicle lateral acceleration can be limited within a range in which the vehicle posture can be reliably maintained.
 請求項4の構成によれば、車体姿勢の安定条件を満たす車両左右加速度の制限値を非常に簡単な方法で取得することができるため、制御処理の負荷を増すことなく、安全性と運動性能を確保できる。 According to the configuration of the fourth aspect, since the limit value of the vehicle lateral acceleration that satisfies the stability condition of the vehicle body posture can be obtained by a very simple method, safety and exercise performance can be achieved without increasing the load of control processing. Can be secured.
 請求項5及び6の構成によれば、操縦者の入力に対する旋回走行状態が左右で異なることによる違和感や操縦の難しさを軽減させることができる。 According to the configurations of the fifth and sixth aspects, it is possible to reduce a sense of incongruity and difficulty in maneuvering due to the difference between the left and right turning traveling states with respect to the operator's input.
 請求項7の構成によれば、車両の最高速度を旋回性能の低下に応じた値にすることで、操縦者は安全な操縦を容易に実行できる。 According to the configuration of claim 7, the driver can easily perform safe maneuvering by setting the maximum speed of the vehicle to a value corresponding to the decrease in turning performance.
 請求項8の構成によれば、旋回性能の低下に適した制限速度を設定することで、操縦者に違和感や不快感を与えることなく車両速度を制限できる。 According to the configuration of claim 8, the vehicle speed can be limited without giving the driver a sense of incongruity or discomfort by setting a speed limit suitable for lowering the turning performance.
 請求項9の構成によれば、路面が左右に傾斜している場所でも、安全な範囲で旋回走行性能を最大限確保することができる。 According to the configuration of claim 9, even when the road surface is inclined to the left and right, the maximum turning performance can be secured within a safe range.
 請求項10の構成によれば、路面の傾斜方向に応じて旋回走行の制限が一時的に緩和されることを禁止し、操縦者に違和感を与えたり、路面傾斜部通過後の旋回性能に対する過信を与えたりすることを確実に防ぐことができる。 According to the configuration of the tenth aspect, it is prohibited to temporarily limit the restriction of turning according to the inclination direction of the road surface, and the driver feels uncomfortable or overconfidence with respect to the turning performance after passing the road inclination portion. Can be surely prevented.
 請求項11の構成によれば、旋回走行状態の目標に対する制御を安定かつ高精度に実行することで、より確実に車両左右加速度を制限することができる。 According to the configuration of the eleventh aspect, the vehicle lateral acceleration can be more reliably limited by executing the control for the target in the turning traveling state stably and with high accuracy.
 請求項12の構成によれば、車体が大きく傾いた状態で車体傾斜リンク機構が固定された場合でも、十分な安全性を保障しつつ、可能な限りの旋回運動性能を確保することができる。 According to the twelfth aspect of the present invention, even when the vehicle body tilt link mechanism is fixed in a state where the vehicle body is largely inclined, it is possible to ensure as much turning performance as possible while ensuring sufficient safety.
 請求項13の構成によれば、車体が大きく傾いた状態で車体傾斜リンク機構が固定された場合でも、旋回走行状態の目標に対する制御を安定かつ高精度に実行し、より確実に車両左右加速度を制限することができる。 According to the configuration of the thirteenth aspect, even when the vehicle body tilt link mechanism is fixed in a state where the vehicle body is largely inclined, the control for the target in the turning traveling state is executed stably and with high accuracy, and the vehicle lateral acceleration is more reliably performed. Can be limited.
本発明の第1の実施の形態における車両の傾斜状態を示す図である。It is a figure which shows the inclination state of the vehicle in the 1st Embodiment of this invention. 本発明の第1の実施の形態における車両システムの構成を示すブロック図である。It is a block diagram which shows the structure of the vehicle system in the 1st Embodiment of this invention. 本発明の第1の実施の形態における車両制御処理の動作を示すフローチャートである。It is a flowchart which shows the operation | movement of the vehicle control process in the 1st Embodiment of this invention. 本発明の第1の実施の形態における通常走行・姿勢制御処理の動作を示すフローチャートである。It is a flowchart which shows the operation | movement of the normal driving | running | working and attitude | position control process in the 1st Embodiment of this invention. 本発明の第1の実施の形態における非常走行・姿勢制御処理の動作を示すフローチャートである。It is a flowchart which shows the operation | movement of the emergency running and attitude | position control process in the 1st Embodiment of this invention. 本発明の第2の実施の形態における車両の傾斜状態を示す図である。It is a figure which shows the inclination state of the vehicle in the 2nd Embodiment of this invention. 本発明の第2の実施の形態における車両システムの構成を示すブロック図である。It is a block diagram which shows the structure of the vehicle system in the 2nd Embodiment of this invention. 本発明の第3の実施の形態における車両の傾斜状態を示す図である。It is a figure which shows the inclination state of the vehicle in the 3rd Embodiment of this invention. 本発明の第3の実施の形態における車両システムの構成を示すブロック図である。It is a block diagram which shows the structure of the vehicle system in the 3rd Embodiment of this invention. 本発明の第3の実施の形態における車両制御処理の動作を示すフローチャートである。It is a flowchart which shows the operation | movement of the vehicle control process in the 3rd Embodiment of this invention. 本発明の第3の実施の形態におけるブレーキ制御処理の動作を示すフローチャートである。It is a flowchart which shows the operation | movement of the brake control process in the 3rd Embodiment of this invention. 本発明の第4の実施の形態における車両システムの構成を示すブロック図である。It is a block diagram which shows the structure of the vehicle system in the 4th Embodiment of this invention. 本発明の第4の実施の形態におけるブレーキ制御処理の動作を示すフローチャートである。It is a flowchart which shows the operation | movement of the brake control process in the 4th Embodiment of this invention. 本発明の第5の実施の形態における車両の傾斜状態を示す図である。It is a figure which shows the inclination state of the vehicle in the 5th Embodiment of this invention. 本発明の第5の実施の形態における車両システムの構成を示すブロック図である。It is a block diagram which shows the structure of the vehicle system in the 5th Embodiment of this invention. 本発明の第6の実施の形態における車両システムの構成を示すブロック図である。It is a block diagram which shows the structure of the vehicle system in the 6th Embodiment of this invention.
 以下、本発明の実施の形態について図面を参照しながら詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 図1は本発明の第1の実施の形態における車両の傾斜状態を示す図、図2は本発明の第1の実施の形態における車両システムの構成を示すブロック図である。 FIG. 1 is a diagram showing a tilted state of a vehicle in the first embodiment of the present invention, and FIG. 2 is a block diagram showing a configuration of a vehicle system in the first embodiment of the present invention.
 図1において、10は、本実施の形態における車両であり、車体の本体部11、駆動輪12、支持部13及び乗員15が搭乗する搭乗部14を有し、前記車両10は、車体を前後左右に傾斜させることができるようになっている。そして、倒立振り子の姿勢制御と同様に車体の姿勢を制御する。また、車両10は前進及び後退することができる。 In FIG. 1, reference numeral 10 denotes a vehicle according to the present embodiment, which includes a body portion 11, a drive wheel 12, a support portion 13, and a riding portion 14 on which an occupant 15 rides. It can be tilted left and right. Then, the posture of the vehicle body is controlled similarly to the posture control of the inverted pendulum. Further, the vehicle 10 can move forward and backward.
 前記駆動輪12は、車体の一部である支持部13に対して回転可能に支持され、駆動アクチュエータとしての駆動モータ52によって駆動される。なお、駆動輪12の回転軸は車体が直立した状態において水平な方向に存在し、駆動輪12はその回転軸を中心に回転する。また、前記駆動輪12は、単数であっても複数であってもよいが、複数である場合、同軸上に並列に配設される。本実施の形態においては、駆動輪12が2つであるものとして説明する。この場合、各駆動輪12は個別の駆動モータ52によって独立して駆動される。なお、駆動アクチュエータとしては、例えば、油圧モータ、内燃機関等を使用することもできるが、ここでは、電気モータである駆動モータ52を使用するものとして説明する。 The drive wheel 12 is rotatably supported with respect to the support portion 13 which is a part of the vehicle body, and is driven by a drive motor 52 as a drive actuator. The rotational axis of the drive wheel 12 exists in a horizontal direction when the vehicle body is upright, and the drive wheel 12 rotates about the rotational axis. The drive wheel 12 may be singular or plural, but in the case of plural, the drive wheels 12 are arranged on the same axis in parallel. In the present embodiment, description will be made assuming that there are two drive wheels 12. In this case, each drive wheel 12 is independently driven by an individual drive motor 52. As the drive actuator, for example, a hydraulic motor, an internal combustion engine, or the like can be used, but here, the description will be made assuming that the drive motor 52 that is an electric motor is used.
 また、車体の一部である本体部11は、支持部13によって下方から支持され、駆動輪12の上方に位置する。そして、本体部11には、車両10の運転者である乗員15が搭乗する搭乗部14が取り付けられている。 Further, the main body 11 which is a part of the vehicle body is supported from below by the support 13 and is positioned above the drive wheel 12. A boarding unit 14 on which an occupant 15 who is a driver of the vehicle 10 boards is attached to the main body 11.
 本実施の形態においては、説明の都合上、搭乗部14には乗員15が搭乗する例について説明するが、搭乗部14には必ずしも乗員15が搭乗している必要はなく、例えば、車両10がリモートコントロールによって操縦される場合には、搭乗部14に乗員15が搭乗していなくてもよいし、乗員15に代えて、貨物等の搭載物が積載されていてもよい。なお、前記搭乗部14は、乗用車、バス等の自動車に使用されるシートと同様のものであり、座面部、背もたれ部及びヘッドレストを備える。 In the present embodiment, for the sake of explanation, an example in which an occupant 15 is boarded on the boarding unit 14 will be described. However, the occupant 15 does not necessarily have to board the boarding unit 14. In the case of being controlled by remote control, the occupant 15 does not have to be on the riding section 14, and a load such as cargo may be loaded instead of the occupant 15. In addition, the said boarding part 14 is the same as the sheet | seat used for motor vehicles, such as a passenger car and a bus | bath, and is provided with a seat surface part, a backrest part, and a headrest.
 また、前記車両10は、車体を左右に傾斜させる車体傾斜リンク機構としてのリンク機構60を有し、旋回時には、図1に示されるように、左右の駆動輪12の路面に対する角度、すなわち、キャンバー角を変化させるとともに、搭乗部14及び本体部11を含む車体を旋回内輪側へ傾斜させることによって、旋回性能の向上と乗員15の快適性の確保とを図ることができるようになっている。すなわち、前記車両10は車体を横方向(左右方向)にも傾斜させることができる。 Further, the vehicle 10 has a link mechanism 60 as a vehicle body tilting link mechanism that tilts the vehicle body to the left and right, and when turning, as shown in FIG. 1, the angle with respect to the road surface of the left and right drive wheels 12, that is, the camber. While changing the angle and inclining the vehicle body including the riding section 14 and the main body section 11 toward the turning inner wheel, it is possible to improve the turning performance and ensure the comfort of the occupant 15. That is, the vehicle 10 can tilt the vehicle body in the lateral direction (left and right direction).
 前記リンク機構60は、左右の駆動輪12に駆動力を付与する駆動モータ52を支持するモータ支持部材としても機能する左右の縦リンクユニット65と、該左右の縦リンクユニット65の上端同士を連結する上側横リンクユニット63と、左右の縦リンクユニット65の下端同士を連結する下側横リンクユニット64とを有する。また、左右の縦リンクユニット65と上側横リンクユニット63及び下側横リンクユニット64とは回転可能に連結されている。さらに、上側横リンクユニット63の中央及び下側横リンクユニット64の中央には、上下方向に延在する支持部13が回転可能に連結されている。 The link mechanism 60 connects the left and right vertical link units 65 that also function as motor support members that support the drive motor 52 that applies drive force to the left and right drive wheels 12 and the upper ends of the left and right vertical link units 65. And a lower horizontal link unit 64 that connects lower ends of the left and right vertical link units 65 to each other. The left and right vertical link units 65, the upper horizontal link unit 63, and the lower horizontal link unit 64 are rotatably connected. Furthermore, a support portion 13 extending in the vertical direction is rotatably connected to the center of the upper side link unit 63 and the center of the lower side link unit 64.
 そして、61は、リンクトルクを発生する車体傾斜用のアクチュエータとしてのリンクモータであって、固定子としての円筒状のボディと、該ボディに回転可能に取り付けられた回転子としての回転軸とを備えるものであり、ボディが上側横リンクユニット63に固定され、回転軸が支持部13に固定されている。なお、前記ボディが支持部13に固定され、回転軸が上側横リンクユニット63に固定されていてもよい。そして、リンクモータ61を駆動して回転軸をボディに対して回転させると、上側横リンクユニット63に対して支持部13が回転し、リンク機構60が屈伸する。なお、前記リンクモータ61の回転軸は、支持部13と上側横リンクユニット63との連結部分の回転軸と同軸になっている。これにより、リンク機構60を屈伸させて本体部11を傾斜させることが可能となる。 Reference numeral 61 denotes a link motor as a body tilting actuator that generates link torque, and includes a cylindrical body as a stator and a rotation shaft as a rotor rotatably attached to the body. The body is fixed to the upper lateral link unit 63, and the rotation shaft is fixed to the support portion 13. The body may be fixed to the support portion 13 and the rotation shaft may be fixed to the upper lateral link unit 63. When the link motor 61 is driven to rotate the rotating shaft with respect to the body, the support portion 13 rotates with respect to the upper lateral link unit 63, and the link mechanism 60 bends and stretches. The rotational axis of the link motor 61 is coaxial with the rotational axis of the connecting portion between the support portion 13 and the upper lateral link unit 63. As a result, the link mechanism 60 can be bent and extended to incline the main body 11.
 前記搭乗部14の脇(わき)には、目標走行状態取得装置としてのジョイスティック31を備える入力装置30が配設されている。乗員15は、操縦装置であるジョイスティック31を操作することによって、車両10を操縦する、すなわち、車両10の加速、減速、旋回、その場回転、停止、制動等の走行指令を入力するようになっている。なお、乗員15が操作して走行指令を入力することができる装置であれば、ジョイスティック31に代えて他の装置、例えば、ペダル、ハンドル、ジョグダイヤル、タッチパネル、押しボタン等の装置を目標走行状態取得装置として使用することもできる。 An input device 30 including a joystick 31 as a target travel state acquisition device is disposed beside the boarding unit 14. The occupant 15 controls the vehicle 10 by operating a joystick 31 as a control device, that is, inputs a travel command such as acceleration, deceleration, turning, in-situ rotation, stop, and braking of the vehicle 10. ing. If the occupant 15 can operate and input a travel command, other devices such as a pedal, a handle, a jog dial, a touch panel, and a push button can be obtained instead of the joystick 31 to obtain a target travel state. It can also be used as a device.
 さらに、車両10がリモートコントロールによって操縦される場合には、前記ジョイスティック31が図示されないリモートコントローラに配設され、ジョイスティック31の操作量は、リモートコントローラから、有線又は無線によって車両10に配設される受信装置に送信される。この場合、ジョイスティック31の操縦者は乗員15以外の者である。 Further, when the vehicle 10 is steered by remote control, the joystick 31 is disposed on a remote controller (not shown), and the operation amount of the joystick 31 is disposed on the vehicle 10 by wire or wireless from the remote controller. It is transmitted to the receiving device. In this case, the operator of the joystick 31 is a person other than the occupant 15.
 なお、本実施の形態における以降の説明は、搭乗部14の座面が水平であるときに、駆動輪12の回転軸に垂直な方向にx軸、平行な方向にy軸、鉛直上向きにz軸を採る座標系に基づくものとする。 In the following description of the present embodiment, when the seating surface of the riding section 14 is horizontal, the x-axis is perpendicular to the rotation axis of the drive wheels 12, the y-axis is parallel, and the z is vertically upward. It is based on the coordinate system that takes the axis.
 車両システムは、図2に示されるように、車両制御装置としての制御ECU(Electronic Control Unit)20を有し、該制御ECU20は、主制御ECU21、駆動輪制御ECU22及びリンク制御ECU23を備える。前記制御ECU20並びに主制御ECU21、駆動輪制御ECU22及びリンク制御ECU23は、CPU、MPU等の演算手段、磁気ディスク、半導体メモリ等の記憶手段、入出力インターフェイス等を備え、車両10の各部の動作を制御するコンピュータシステムであり、例えば、本体部11に配設されるが、支持部13や搭乗部14に配設されていてもよい。また、前記主制御ECU21、駆動輪制御ECU22及びリンク制御ECU23は、それぞれ、別個に構成されていてもよいし、一体に構成されていてもよい。 As shown in FIG. 2, the vehicle system includes a control ECU (Electronic Control Unit) 20 as a vehicle control device, and the control ECU 20 includes a main control ECU 21, a drive wheel control ECU 22, and a link control ECU 23. The control ECU 20, the main control ECU 21, the drive wheel control ECU 22, and the link control ECU 23 include calculation means such as a CPU and MPU, storage means such as a magnetic disk and a semiconductor memory, input / output interfaces, and the like, and perform operations of each part of the vehicle 10. A computer system to be controlled, which is disposed in the main body 11, for example, but may be disposed in the support portion 13 or the riding portion 14. The main control ECU 21, the drive wheel control ECU 22, and the link control ECU 23 may be configured separately or may be configured integrally.
 そして、主制御ECU21は、駆動輪制御ECU22、駆動輪センサ51及び駆動モータ52とともに、駆動輪12の動作を制御する駆動輪制御システム50の一部として機能する。前記駆動輪センサ51は、レゾルバ、エンコーダ等から成り、駆動輪回転状態計測装置として機能し、駆動輪12の回転状態を示す駆動輪回転角及び/又は回転角速度を検出し、主制御ECU21に送信する。また、該主制御ECU21は、駆動トルク指令値を駆動輪制御ECU22に送信し、該駆動輪制御ECU22は、受信した駆動トルク指令値に相当する入力電圧を駆動モータ52に供給する。そして、該駆動モータ52は、入力電圧に従って駆動輪12に駆動トルクを付与し、これにより、駆動アクチュエータとして機能する。 The main control ECU 21 functions as a part of the drive wheel control system 50 that controls the operation of the drive wheel 12 together with the drive wheel control ECU 22, the drive wheel sensor 51, and the drive motor 52. The drive wheel sensor 51 includes a resolver, an encoder, and the like, functions as a drive wheel rotation state measuring device, detects a drive wheel rotation angle and / or rotation angular velocity indicating a rotation state of the drive wheel 12, and transmits it to the main control ECU 21. To do. The main control ECU 21 transmits a drive torque command value to the drive wheel control ECU 22, and the drive wheel control ECU 22 supplies an input voltage corresponding to the received drive torque command value to the drive motor 52. The drive motor 52 applies drive torque to the drive wheels 12 in accordance with the input voltage, thereby functioning as a drive actuator.
 また、主制御ECU21は、駆動輪制御ECU22、車体傾斜センサ41、リンクセンサ42、駆動モータ52、リンクモータ61及びリンクブレーキ62とともに、車体の姿勢を制御する車体制御システム40の一部として機能する。前記車体傾斜センサ41は、加速度センサ、ジャイロセンサ等から成り、車体傾斜状態計測装置として機能し、車体の傾斜状態を示す車体傾斜角及び/又は傾斜角速度を検出し、主制御ECU21に送信する。また、前記リンクセンサ42は、レゾルバ、エンコーダ等から成り、リンク機構60に配設され、該リンク機構60の相互に回転するリンクユニットの角度、例えば、支持部13と上側横リンクユニット63との角度、すなわち、リンク回転角及び/又は回転角速度を検出して主制御ECU21に送信する。そして、該主制御ECU21は、駆動トルク指令値を駆動輪制御ECU22に送信する。また、前記主制御ECU21は、リンクトルク指令値をリンク制御ECU23に送信し、該リンク制御ECU23は、受信したリンクトルク指令値に相当する入力電圧をリンクモータ61に供給する。また、主制御ECU21は、作動電圧をリンクブレーキ62に供給する。 The main control ECU 21 functions as a part of the vehicle body control system 40 that controls the posture of the vehicle body together with the drive wheel control ECU 22, the vehicle body tilt sensor 41, the link sensor 42, the drive motor 52, the link motor 61, and the link brake 62. . The vehicle body tilt sensor 41 includes an acceleration sensor, a gyro sensor, and the like, and functions as a vehicle body tilt state measuring device. The vehicle body tilt sensor 41 detects a vehicle body tilt angle and / or tilt angular velocity indicating the tilt state of the vehicle body, and transmits the detected vehicle body tilt angle to the main control ECU 21. The link sensor 42 includes a resolver, an encoder, and the like. The link sensor 42 is disposed in the link mechanism 60, and the angle of the link units that rotate relative to each other, for example, between the support portion 13 and the upper lateral link unit 63. The angle, that is, the link rotation angle and / or the rotation angular velocity is detected and transmitted to the main control ECU 21. Then, the main control ECU 21 transmits a drive torque command value to the drive wheel control ECU 22. The main control ECU 21 transmits a link torque command value to the link control ECU 23, and the link control ECU 23 supplies an input voltage corresponding to the received link torque command value to the link motor 61. The main control ECU 21 supplies the operating voltage to the link brake 62.
 そして、前記リンクモータ61は、入力電圧に従ってリンク機構60に駆動トルクを付与し、これにより、傾斜用のアクチュエータとして機能する。また、前記リンクブレーキ62は、作動電圧に従ってリンク機構60を屈伸不能に固定する傾斜機構ブレーキ装置として機能する。なお、前記リンクブレーキ62は、電力供給時に解除されるもの、例えば、無励磁作動型の電磁ブレーキである。また、前記リンクブレーキ62は、例えば、リンクモータ61に配設され、該リンクモータ61の回転軸をリンクモータ61のボディに対して回転不能に固定する装置であるが、リンク機構60に配設され、例えば、下側横リンクユニット64と支持部13とを相対的に回転不能に固定する装置であってもよい。 The link motor 61 applies a driving torque to the link mechanism 60 according to the input voltage, thereby functioning as an actuator for tilting. The link brake 62 functions as a tilt mechanism brake device that fixes the link mechanism 60 so that it cannot bend and stretch according to the operating voltage. The link brake 62 is a non-excited electromagnetic brake that is released when power is supplied. The link brake 62 is a device that is disposed in the link motor 61 and fixes the rotation shaft of the link motor 61 to the body of the link motor 61 so as not to rotate. For example, the lower side link unit 64 and the support part 13 may be relatively non-rotatably fixed.
 なお、本実施の形態においては、主制御ECU21からリンクブレーキ62に作動電圧を直接入力しているが、主制御ECU21がリンク制御ECU23にブレーキ動作信号を送信し、リンク制御ECU23が同信号の受信に応じて、リンクブレーキ62に作動電圧を与えるようにしてもよい。 In this embodiment, the operating voltage is directly input from the main control ECU 21 to the link brake 62. However, the main control ECU 21 transmits a brake operation signal to the link control ECU 23, and the link control ECU 23 receives the signal. In response to this, an operating voltage may be applied to the link brake 62.
 また、主制御ECU21には、入力装置30のジョイスティック31から走行指令として、操作量が入力される。そして、前記主制御ECU21は、駆動トルク指令値を駆動輪制御ECU22に送信し、リンクトルク指令値をリンク制御ECU23に送信する。 Further, an operation amount is input to the main control ECU 21 as a travel command from the joystick 31 of the input device 30. The main control ECU 21 transmits a drive torque command value to the drive wheel control ECU 22 and transmits a link torque command value to the link control ECU 23.
 なお、各センサは、複数の状態量を取得するものであってもよい。例えば、車体傾斜センサ41として加速度センサとジャイロセンサとを併用し、両者の計測値から車体傾斜角と車体傾斜角速度とを決定してもよい。 In addition, each sensor may acquire a plurality of state quantities. For example, an acceleration sensor and a gyro sensor may be used together as the vehicle body tilt sensor 41, and the vehicle body tilt angle and the vehicle body tilt angular velocity may be determined from the measured values of both.
 また、制御ECU20は、機能の観点から、車両左右加速度を制限する車両左右加速度制限手段と、車両左右加速度の制限値を補正する左右加速度制限値補正手段とを備える。 Further, the control ECU 20 includes vehicle lateral acceleration limiting means for limiting the vehicle lateral acceleration and lateral acceleration limit value correcting means for correcting the limit value of the vehicle lateral acceleration from the viewpoint of function.
 前記制御ECU20によって姿勢制御が行われることで、車両10は、リンク機構60によって、旋回走行時には、図1に示されるように、車体を旋回円内側に傾けた状態で旋回する。そして、旋回走行中にリンクモータ61に異常が発生すると、すなわち、アクチュエータ異常が発生すると、リンクブレーキ62を作動させる。 As the attitude control is performed by the control ECU 20, the vehicle 10 turns with the link mechanism 60 in a state in which the vehicle body is tilted to the inside of the turning circle as shown in FIG. When an abnormality occurs in the link motor 61 during turning, that is, when an actuator abnormality occurs, the link brake 62 is operated.
 次に、前記構成の車両10の動作について詳細に説明する。まず、車両制御処理の概要について説明する。 Next, the operation of the vehicle 10 having the above configuration will be described in detail. First, an outline of the vehicle control process will be described.
 図3は本発明の第1の実施の形態における車両制御処理の動作を示すフローチャートである。 FIG. 3 is a flowchart showing the operation of the vehicle control process in the first embodiment of the present invention.
 車両制御処理において、制御ECU20は、まず、モータ正常判定を行い、モータが正常であるか否かを判定する(ステップS1)。この場合、リンクモータ61がトルクを発生可能であるか否かを判定する。具体的には、リンク制御ECU23がモータ診断手段を備え、リンクモータ61がトルクを発生不能、すなわち、異常と診断した場合に所定の信号を主制御ECU21に送信する。すると、該主制御ECU21は、その信号を受信した場合に、モータが正常ではないと判定する。 In the vehicle control process, the control ECU 20 first determines whether the motor is normal and determines whether the motor is normal (step S1). In this case, it is determined whether or not the link motor 61 can generate torque. Specifically, the link control ECU 23 includes motor diagnosis means, and when the link motor 61 is unable to generate torque, that is, when it is diagnosed as abnormal, a predetermined signal is transmitted to the main control ECU 21. Then, when receiving the signal, the main control ECU 21 determines that the motor is not normal.
 そして、モータが正常であると判定すると、制御ECU20は、ブレーキ解除を行う(ステップS2)。この場合、リンクブレーキ62を解除して、リンク機構60を回転可能とする。具体的には、主制御ECU21は、リンクブレーキ62に作動電圧を入力する。 If it is determined that the motor is normal, the control ECU 20 releases the brake (step S2). In this case, the link brake 62 is released, and the link mechanism 60 can be rotated. Specifically, the main control ECU 21 inputs an operating voltage to the link brake 62.
 続いて、制御ECU20は、通常走行・姿勢制御処理を実行し(ステップS3)、車体を適切に傾斜させながら、車体の姿勢を保持しつつ、乗員15からの走行指令を実現して車両制御処理を終了する。なお、該車両制御処理は、所定の時間間隔(例えば、100〔μs〕毎)で繰り返し実行される。 Subsequently, the control ECU 20 executes a normal travel / posture control process (step S3), realizes a travel command from the occupant 15 while maintaining the posture of the vehicle body while appropriately tilting the vehicle body, and performs a vehicle control process. Exit. The vehicle control process is repeatedly executed at predetermined time intervals (for example, every 100 [μs]).
 一方、モータが正常であるか否かを判定して異常である場合、制御ECU20は、ブレーキ作動を行う(ステップS4)。この場合、リンクブレーキ62を作動して、リンク機構60を固定する。具体的には、主制御ECU21は、リンクブレーキ62への作動電圧の入力を停止する。 On the other hand, if it is abnormal by determining whether or not the motor is normal, the control ECU 20 performs a brake operation (step S4). In this case, the link brake 62 is operated to fix the link mechanism 60. Specifically, the main control ECU 21 stops input of the operating voltage to the link brake 62.
 続いて、制御ECU20は、非常走行・姿勢制御処理を実行し(ステップS5)、リンク機構60が固定された状態で、車体の姿勢を保持しつつ、乗員15からの走行指令を実現して車両制御処理を終了する。 Subsequently, the control ECU 20 executes emergency travel / posture control processing (step S5), and realizes a travel command from the occupant 15 while maintaining the posture of the vehicle body while the link mechanism 60 is fixed. The control process ends.
 次に、通常走行・姿勢制御処理について説明する。 Next, normal travel / posture control processing will be described.
 図4は本発明の第1の実施の形態における通常走行・姿勢制御処理の動作を示すフローチャートである。 FIG. 4 is a flowchart showing the operation of the normal travel / posture control process in the first embodiment of the present invention.
 本実施の形態においては、状態量、パラメータ等を次のような記号によって表す。
θWR:右駆動輪回転角〔rad〕
θWL:左駆動輪回転角〔rad〕
θ:平均駆動輪回転角〔rad〕;θ=(θWR+θWL)/2
Δθ:駆動輪回転角左右差〔rad〕;Δθ=θWR-θWL
θ:車体傾斜ピッチ角(鉛直軸基準)〔rad〕
φ:車体傾斜ロール角(鉛直軸基準)〔rad〕
τ:リンクトルク〔Nm〕
τWR:右駆動トルク〔Nm〕
τWL:左駆動トルク〔Nm〕
τ:総駆動トルク〔Nm〕;τ=τWR+τWL
Δτ:駆動トルク左右差〔Nm〕;Δτ=τWR-τWL
g:重力加速度〔m/s
:駆動輪接地半径〔m〕
D:2輪間距離〔m〕
:車体質量(搭乗部を含む)〔kg〕
:駆動輪質量(2輪合計)〔kg〕
:車体重心距離(車軸から)〔m〕
:駆動輪慣性モーメント(2輪合計)〔kgm
α:車両前後加速度〔m/s
α:車両左右加速度〔m/s
η:左右路面勾配〔rad〕
 通常走行・姿勢制御処理において、主制御ECU21は、まず、センサから各状態量を取得する(ステップS3-1)。具体的には、駆動輪センサ51から駆動輪回転角又は駆動輪回転角速度を取得し、車体傾斜センサ41から車体傾斜角又は傾斜角速度を取得し、リンクセンサ42からリンク回転角又はリンク回転角速度を取得する。
In the present embodiment, state quantities, parameters, and the like are represented by the following symbols.
θ WR : Right drive wheel rotation angle [rad]
θ WL : Left drive wheel rotation angle [rad]
θ W : average driving wheel rotation angle [rad]; θ W = (θ WR + θ WL ) / 2
Δθ W : Driving wheel rotation angle left / right difference [rad]; Δθ W = θ WR −θ WL
θ 1 : body tilt pitch angle (vertical axis reference) [rad]
φ 1 : Body tilt roll angle (vertical axis reference) [rad]
τ L : Link torque [Nm]
τ WR : Right drive torque [Nm]
τ WL : Left drive torque [Nm]
τ W : Total driving torque [Nm]; τ W = τ WR + τ WL
Δτ W : Driving torque left / right difference [Nm]; Δτ W = τ WR −τ WL
g: Gravity acceleration [m / s 2 ]
R W : Driving wheel contact radius [m]
D: Distance between two wheels [m]
m 1 : Body mass (including the riding section) [kg]
m W : Drive wheel mass (total of 2 wheels) [kg]
l 1 : Body center-of-gravity distance (from axle) [m]
I W : Moment of inertia of drive wheels (total of 2 wheels) [kgm 2 ]
α X : Vehicle longitudinal acceleration [m / s 2 ]
α Y : Vehicle lateral acceleration [m / s 2 ]
η: Left and right road surface gradient [rad]
In the normal travel / posture control process, the main control ECU 21 first acquires each state quantity from the sensor (step S3-1). Specifically, the driving wheel rotation angle or the driving wheel rotation angular velocity is acquired from the driving wheel sensor 51, the vehicle body inclination angle or the inclination angular velocity is acquired from the vehicle body inclination sensor 41, and the link rotation angle or the link rotation angular velocity is acquired from the link sensor 42. get.
 続いて、主制御ECU21は、残りの状態量を算出する(ステップS3-2)。この場合、取得した状態量を時間微分又は時間積分することによって、残りの状態量を算出する。例えば、取得した状態量が駆動輪回転角、車体傾斜角及びリンク回転角である場合には、これらを時間微分することによって、駆動輪回転角速度、傾斜角速度及びリンク回転角速度を得ることができる。また、例えば、取得した状態量が駆動輪回転角速度、傾斜角速度及びリンク回転角速度である場合には、これらを時間積分することによって、駆動輪回転角、車体傾斜角及びリンク回転角を得ることができる。 Subsequently, the main control ECU 21 calculates the remaining state quantity (step S3-2). In this case, the remaining state quantity is calculated by time differentiation or time integration of the obtained state quantity. For example, when the acquired state quantities are the drive wheel rotation angle, the vehicle body tilt angle, and the link rotation angle, the drive wheel rotation angular velocity, the tilt angular velocity, and the link rotation angular velocity can be obtained by time differentiation. Further, for example, when the acquired state quantities are the drive wheel rotation angular velocity, the tilt angular velocity, and the link rotation angular velocity, the drive wheel rotation angle, the vehicle body tilt angle, and the link rotation angle can be obtained by time integration of these. it can.
 続いて、主制御ECU21は、操縦者の操縦操作量を取得する(ステップS3-3)。この場合、操縦者が、車両10の加速、減速、旋回、その場回転、停止、制動等の走行指令を入力するために操作したジョイスティック31の操作量を取得する。 Subsequently, the main control ECU 21 acquires the pilot operation amount (step S3-3). In this case, the operator acquires the operation amount of the joystick 31 that is operated to input a travel command such as acceleration, deceleration, turning, on-site rotation, stop, and braking of the vehicle 10.
 続いて、主制御ECU21は、取得したジョイスティック31の操作量に基づいて、車両加速度の目標値を決定する(ステップS3-4)。例えば、前後及び左右の操作量に比例した値を前後加速度及び左右加速度の目標値とする。なお、ジョイスティック31の操作量は、前後については、前方への操作を正の値、後方への操作を負の値で表し、左右については、車両10の後方から見て左方への操作を正の値、右方への操作を負の値で表すものとする。 Subsequently, the main control ECU 21 determines a target value for vehicle acceleration based on the obtained operation amount of the joystick 31 (step S3-4). For example, values proportional to the front and rear and left and right operation amounts are set as target values for the longitudinal acceleration and the left and right acceleration. Note that the operation amount of the joystick 31 is represented by a positive value for forward operation and a negative value for backward operation, and for the left and right operations when operated from the rear of the vehicle 10 to the left. A positive value and a rightward operation are expressed as a negative value.
 続いて、主制御ECU21は、車両加速度の目標値を補正する(ステップS3-5)。具体的には、下記の式によって車両左右加速度の目標値を補正する。 Subsequently, the main control ECU 21 corrects the target value of vehicle acceleration (step S3-5). Specifically, the target value of the vehicle lateral acceleration is corrected by the following formula.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 また、αY,Max,L は左方加速度制限値、αY,Max,R は右方加速度制限値であり、各々、
αY,Max,L =αY,Max,0 +η
αY,Max,R =αY,Max,0 -η
である。
Α Y, Max, L are left acceleration limit values, α Y, Max, R are right acceleration limit values,
α Y, Max, L = α Y, Max, 0 + η
α Y, Max, R = α Y, Max, 0
It is.
 なお、左右路面勾配ηは、車両10の後方から見て左側で低く、右側で高くなるように傾斜しているときに正、車両10の左側で高く、右側で低くなるように傾斜しているときに負であるものとする。また、本実施の形態における説明において、上付き添字*は目標値であることを表し、上付き添字(n)は時系列のn番目のデータであることを表し、記号上の1ドットは1階時間微分した値、すなわち、速度であることを表し、記号上の2ドットは2階時間微分した値、すなわち、加速度であることを表すものとする。下付き添字Xは前後(x軸方向)であることを表し、下付き添字Yは左右(y軸方向)であることを表し、下付き添字dは操縦指令値であることを表すものとする。 Note that the left-right road gradient η is positive when tilted so as to be low on the left side when viewed from the rear of the vehicle 10 and high on the right side, and so as to be high on the left side of the vehicle 10 and low on the right side. Sometimes it is negative. In the description of the present embodiment, the superscript * represents the target value, the superscript (n) represents the nth data in the time series, and one dot on the symbol is 1 The value obtained by differentiating the floor time, that is, the speed, and the two dots on the symbol represent the value obtained by differentiating the second floor time, that is, the acceleration. The subscript X represents front and rear (x-axis direction), the subscript Y represents left and right (y-axis direction), and the subscript d represents a steering command value. .
 さらに、αY,Max,0 は標準左右加速度制限値であり、下記のように表される。 Further, α Y, Max, 0 is a standard lateral acceleration limit value, and is expressed as follows.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 また、φ1L,Maxは平地における最大車体傾斜ロール角であり、リンク機構60の構造によって決定される値である。 Φ 1L, Max is the maximum vehicle body tilt roll angle on flat ground, and is a value determined by the structure of the link mechanism 60.
 なお、左右路面勾配ηは、下記の式によって求められる。 Note that the left-right road surface gradient η is obtained by the following equation.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 さらに、φ1Lはリンク回転角基準車体傾斜ロール角であり、φ1L=f(φ)である。なお、φはリンク回転角、fはリンク機構60の幾何学的条件に基づいてリンク回転角を水平面上での車体傾斜ロール角に変換する関数である。また、Δtは制御処理周期(データ取得間隔)であり、所定値である。 Further, φ 1L is a link rotation angle reference vehicle body tilt roll angle, and φ 1L = f (φ L ). Note that φ L is a link rotation angle, and f is a function for converting the link rotation angle into a vehicle body tilt roll angle on a horizontal plane based on the geometric condition of the link mechanism 60. Δt is a control processing cycle (data acquisition interval), which is a predetermined value.
 このように、左方加速度及び右方加速度の制限値によって、車両左右加速度の目標値を補正する。具体的には、左右車両加速度目標値が右方加速度制限値と左方減速度制限値で定義される範囲内であるように補正する。すなわち、右方への加速度目標値が右方加速度制限値以上である場合には、目標値を右方加速度制限値とする。また、左方への加速度目標値が左方加速度制限値以上である場合には、目標値を左方加速度制限値とする。 Thus, the target value of the vehicle lateral acceleration is corrected by the limit values of the leftward acceleration and the rightward acceleration. Specifically, the left and right vehicle acceleration target values are corrected so as to be within the range defined by the right acceleration limit value and the left deceleration limit value. That is, when the rightward acceleration target value is equal to or greater than the rightward acceleration limit value, the target value is set as the rightward acceleration limit value. When the left acceleration target value is equal to or greater than the left acceleration limit value, the target value is set as the left acceleration limit value.
 さらに、左方加速度制限値及び右方減速度制限値は、車両10の力学的パラメータ等で決定される所定値とする。具体的には、車体の重心移動によって接地荷重中心点を2つの駆動輪接地点間に位置させることができる限界、すなわち、車体姿勢の安定限界を各制限値として与える。これにより、車体姿勢の安定性を確保できる範囲内で、車両左右加速度の目標値が設定される。 Furthermore, the left acceleration limit value and the right deceleration limit value are predetermined values determined by mechanical parameters of the vehicle 10 or the like. Specifically, a limit that allows the ground load center point to be positioned between the two driving wheel ground points by moving the center of gravity of the vehicle body, that is, a stability limit of the vehicle body posture is given as each limit value. Thereby, the target value of the vehicle lateral acceleration is set within a range in which the stability of the vehicle body posture can be ensured.
 また、左右路面勾配の値によって、車両左方加速度と車両右方加速度の制限値を補正する。具体的には、路面勾配による車体安定限界の変化を考慮して、左右加速度の一方を更に制限し、他方を緩和する。すなわち、路面勾配の下り側へ旋回する方向の左右加速度制限値を、路面勾配の値だけ大きくする。また、路面勾配の上り側へ旋回する方向の左右加速度制限値を、路面勾配の値だけ小さくする。このように、そのときの走行環境下での真の性能限界を把握し、その限界状態での走行を可能とするように走行制限を緩和することで、バンク路等の左右に傾斜した路面上での快適な走行を可能にする。 Also, the limit values for vehicle left acceleration and vehicle right acceleration are corrected by the value of the left and right road surface gradient. Specifically, in consideration of a change in the vehicle body stability limit due to the road surface gradient, one of the left and right accelerations is further limited and the other is relaxed. That is, the lateral acceleration limit value in the direction of turning downward on the road surface gradient is increased by the value of the road surface gradient. Further, the lateral acceleration limit value in the direction of turning to the upside of the road surface gradient is reduced by the value of the road surface gradient. In this way, by grasping the true performance limit under the driving environment at that time and relaxing the driving limit so that driving in the limiting state is possible, on the road surface inclined right and left such as bank road Allows for comfortable driving on the road.
 さらに、車体傾斜ロール角とリンク回転角の計測値から、路面勾配を推定する。これにより、路面を計測するセンサを追加することなく、路面勾配を取得し、それに適応した走行を実現できる。 Furthermore, the road surface gradient is estimated from the measured values of the vehicle body tilt roll angle and the link rotation angle. Thereby, without adding a sensor for measuring the road surface, it is possible to acquire the road surface gradient and realize the traveling suitable for it.
 さらに、路面勾配の推定値にローパスフィルタをかける。これにより、駆動輪12のタイヤの変形、路面の凹凸、又は、センサ計測値のノイズが推定値へ悪影響を及ぼすことを防止する。 Furthermore, a low-pass filter is applied to the estimated road surface gradient. Thereby, the deformation of the tire of the drive wheel 12, the unevenness of the road surface, or the noise of the sensor measurement value is prevented from adversely affecting the estimated value.
 なお、本実施の形態においては、路面勾配の値を推定によって取得しているが、路面形状を計測する路面センサを備え、その計測値から路面勾配を取得してもよい。また、ナビゲーションシステム等の地図データから路面勾配の値を取得してもよい。 In this embodiment, the value of the road surface gradient is obtained by estimation, but a road surface sensor that measures the road surface shape may be provided, and the road surface gradient may be obtained from the measured value. Moreover, you may acquire the value of road surface gradient from map data, such as a navigation system.
 続いて、主制御ECU21は、車両加速度の目標値から、駆動輪回転角速度の目標値を算出する(ステップS3-6)。具体的には、下記の式によって平均駆動輪回転角速度目標値を算出する。 Subsequently, the main control ECU 21 calculates the target value of the drive wheel rotation angular velocity from the target value of the vehicle acceleration (step S3-6). Specifically, the average driving wheel rotation angular velocity target value is calculated by the following equation.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 また、下記の式によって駆動輪回転角速度左右差目標値を算出する。 Also, the drive wheel rotation angular velocity left / right difference target value is calculated by the following formula.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 このように、車両加速度の目標値に相当する駆動輪回転角速度の目標値を決定する。この場合、車両前後加速度目標値を時間積分することによって、左右の駆動輪12の回転角速度の平均値の目標である平均駆動輪回転角速度目標値を決定する。また、車両左右加速度目標値と平均駆動輪回転角速度目標値から、左右の駆動輪12の回転角速度の差の目標である駆動輪回転角速度左右差目標値を決定する。 Thus, the target value of the drive wheel rotational angular velocity corresponding to the target value of the vehicle acceleration is determined. In this case, an average driving wheel rotational angular velocity target value, which is a target of the average rotational angular velocity of the left and right driving wheels 12, is determined by time integration of the vehicle longitudinal acceleration target value. Further, a drive wheel rotation angular velocity left / right difference target value, which is a target of the difference between the rotation angular velocities of the left and right drive wheels 12, is determined from the vehicle left / right acceleration target value and the average drive wheel rotation angular velocity target value.
 なお、本実施の形態においては、操縦装置であるジョイスティック31の操作量を前後及び左右の加速度と対応させているが、車両10の速度やヨーレートに対応させてもよい。また、その車両速度やヨーレート自体を状態量として、フィードバック制御を実行してもよい。 In the present embodiment, the amount of operation of the joystick 31 that is a control device is associated with the longitudinal and lateral acceleration, but may be associated with the speed and yaw rate of the vehicle 10. Further, feedback control may be executed using the vehicle speed or the yaw rate itself as a state quantity.
 また、本実施の形態においては、駆動輪接地点と路面の間に滑りが存在しないという仮定の下で、車両速度やヨーレートを駆動輪12の回転角速度に換算しているが、滑りを考慮して駆動輪回転角速度の目標値を決定してもよい。 In the present embodiment, the vehicle speed and the yaw rate are converted into the rotational angular speed of the drive wheel 12 under the assumption that no slip exists between the driving wheel ground contact point and the road surface. Thus, the target value of the drive wheel rotation angular velocity may be determined.
 続いて、主制御ECU21は、駆動輪回転角速度の目標値を補正する(ステップS3-7)。具体的には、下記の式によって平均駆動輪回転角速度目標値を補正する。 Subsequently, the main control ECU 21 corrects the target value of the drive wheel rotation angular velocity (step S3-7). Specifically, the average driving wheel rotational angular velocity target value is corrected by the following equation.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 このように、平均駆動輪回転角速度の制限値によって、平均駆動輪回転角速度の目標値を補正する。具体的には、平均駆動輪回転角速度目標値が平均駆動輪回転角速度制限値以下であるように補正する。なお、目標値が平均駆動輪回転角速度制限値以上である場合には、目標値を制限値とする。また、平均駆動輪回転角速度制限値は所定値とする。 Thus, the target value of the average driving wheel rotation angular velocity is corrected by the limit value of the average driving wheel rotation angular velocity. Specifically, the average driving wheel rotation angular velocity target value is corrected so as to be equal to or less than the average driving wheel rotation angular velocity limit value. If the target value is equal to or greater than the average driving wheel rotation angular velocity limit value, the target value is set as the limit value. The average driving wheel rotation angular velocity limit value is a predetermined value.
 なお、平均駆動輪回転角速度が補正された場合、すなわち、上記の式の第1行又は第3行の条件に該当する場合、車両前後加速度目標値との整合性を満たすために、車両前後加速度目標値を零に補正する。 When the average driving wheel rotational angular velocity is corrected, that is, when the condition of the first row or the third row of the above formula is satisfied, the vehicle longitudinal acceleration is satisfied in order to satisfy the consistency with the vehicle longitudinal acceleration target value. Correct the target value to zero.
 また、説明の簡略化のため、本実施の形態においては、車両10が停止及び前進する場合のみについて説明するが、車両10が後進する場合についても、同様の制御を導入することにより、同様の効果を得ることができる。 In addition, in the present embodiment, only the case where the vehicle 10 stops and moves forward will be described for the sake of simplification, but the same control is also introduced when the vehicle 10 moves backward. An effect can be obtained.
 続いて、主制御ECU21は、車体傾斜角の目標値を決定する(ステップS3-8)。具体的には、車両前後加速度の目標値から、下記の式によって車体傾斜ピッチ角目標値を決定する。 Subsequently, the main control ECU 21 determines a target value of the vehicle body inclination angle (step S3-8). Specifically, the vehicle body tilt pitch angle target value is determined from the target value of the vehicle longitudinal acceleration by the following formula.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 また、車両左右加速度の目標値から、下記の式によって車体傾斜ロール角目標値を決定する。 Also, the vehicle body tilt roll angle target value is determined by the following formula from the target value of the vehicle lateral acceleration.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 このように、車両加速度の目標値に応じて車体傾斜角の目標値を決定する。この場合、車体傾斜ピッチ角については、前後の車体姿勢と走行状態に関する倒立振り子車両の力学的構造を考慮して、前後加速度で与えられる走行目標を達成できる車体姿勢を目標値として与える。また、車体傾斜ロール角については、接地荷重中心が2つの駆動輪12の接地点間である安定領域に存在する範囲で、自由に目標姿勢を設定できるが、本実施の形態では乗員15の負荷が最も少ない姿勢を目標値として与える。 Thus, the target value of the vehicle body inclination angle is determined according to the target value of the vehicle acceleration. In this case, regarding the vehicle body tilt pitch angle, the vehicle body posture capable of achieving the travel target given by the longitudinal acceleration is given as the target value in consideration of the mechanical structure of the inverted pendulum vehicle related to the vehicle body posture before and after and the running state. Further, with respect to the vehicle body tilt roll angle, the target posture can be set freely within a range where the center of the grounding load exists in a stable region between the grounding points of the two drive wheels 12, but in this embodiment, the load of the passenger 15 The position with the least number is given as the target value.
 なお、車体傾斜ロール角の目標値として他の値を与えてもよい。例えば、目標左右加速度の絶対値が所定の閾値よりも小さい場合には目標車体傾斜ロール角を零として、小さな左右加速度に対しては直立姿勢を維持させてもよい。 Note that other values may be given as the target value of the vehicle body tilt roll angle. For example, when the absolute value of the target lateral acceleration is smaller than a predetermined threshold, the target vehicle body tilt roll angle may be set to zero, and the upright posture may be maintained for a small lateral acceleration.
 続いて、主制御ECU21は、残りの目標値を算出する(ステップS3-9)。すなわち、各目標値を時間微分又は時間積分することによって、駆動輪回転角及び車体傾斜角速度の目標値をそれぞれ算出する。 Subsequently, the main control ECU 21 calculates the remaining target value (step S3-9). That is, the target values of the drive wheel rotation angle and the vehicle body inclination angular velocity are calculated by time differentiation or time integration of each target value.
 続いて、主制御ECU21は、各目標値から各アクチュエータのフィードフォワード出力を決定する(ステップS3-10)。具体的には、下記の式によってフィードフォワード出力として、総駆動トルクのフィードフォワード量τW,FF、駆動トルク左右差のフィードフォワード量ΔτW,FF及びリンクトルクのフィードフォワード量τL,FFを決定する。 Subsequently, the main control ECU 21 determines the feedforward output of each actuator from each target value (step S3-10). Specifically, the feed forward output τ W, FF of the total drive torque, the feed forward amount Δτ W, FF of the left / right difference of the drive torque , and the feed forward amount τ L, FF of the link torque are obtained as feed forward outputs by the following formulas. decide.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 このように、目標とする走行状態や車体姿勢を実現するのに必要なアクチュエータ出力を力学モデルより予測し、その分をフィードフォワード的に付加することで、車両10の走行及び姿勢制御を高精度に実行する。つまり、前後方向の走行目標を達成できるように、総駆動トルクのフィードフォワード量を決定する。具体的には、車両前後加速度に応じて発生する慣性力と、車両速度に相当する平均駆動輪回転角速度に応じて発生する走行抵抗を予測し、それを打ち消すような総駆動トルクを与えることで、目標とする前後走行状態を実現する。 As described above, the actuator output necessary to realize the target traveling state and vehicle body posture is predicted from the dynamic model, and the amount is fed-forwardly added, so that the traveling and posture control of the vehicle 10 can be performed with high accuracy. To run. That is, the feedforward amount of the total drive torque is determined so that the travel target in the front-rear direction can be achieved. Specifically, by estimating the inertial force generated according to the vehicle longitudinal acceleration and the running resistance generated according to the average driving wheel rotational angular velocity corresponding to the vehicle speed, and giving the total driving torque that cancels it The target front-rear running state is realized.
 また、旋回走行の目標を実現できるように、駆動トルク左右差のフィードフォワード量を決定する。具体的には、接地荷重中心位置の移動に伴って発生するヨーモーメントを予測し、それを打ち消すような駆動トルク左右差を与えることで、目標とする旋回走行目標を実現する。また、車体傾斜ロール角と車両左右加速度に基づいて、接地荷重中心位置の移動率を予測する。 Also, determine the feed forward amount of left and right drive torque so that the goal of turning can be achieved. Specifically, the target turning travel target is realized by predicting the yaw moment generated with the movement of the center position of the ground load and giving a difference between the left and right driving torques to cancel the yaw moment. Further, the moving rate of the ground load center position is predicted based on the vehicle body tilt roll angle and the vehicle lateral acceleration.
 さらに、左右車体傾斜の目標を実現できるように、リンクトルクのフィードフォワード量を決定する。具体的には、車体傾斜ロール角に応じて発生する重力のトルクと、車両左右加速度に応じて発生する遠心力のトルクを予測し、それを打ち消すようなリンクトルクを与えることで、目標とする左右車体傾斜状態を実現する。 Furthermore, the feed forward amount of the link torque is determined so that the target of the left and right vehicle body inclination can be realized. Specifically, the target is obtained by predicting the torque of gravity generated according to the vehicle body tilt roll angle and the torque of centrifugal force generated according to the vehicle lateral acceleration, and giving a link torque that cancels the torque. Realizes left and right body tilt.
 なお、本実施の形態においては、力学モデルにおける主な要素をすべて考慮して、必要な出力をフィードフォワード量として与えているが、これらの要素の中で影響が小さいものを無視し、より簡素なモデルによってフィードフォワード量を決定してもよい。また、本実施の形態では考慮していない要素をあらたに考慮してもよい。例えば、駆動輪12の転がり抵抗やリンク機構60での乾性摩擦等を考慮してもよい。 In this embodiment, all the main elements in the dynamic model are considered, and the necessary output is given as the feedforward amount. The feedforward amount may be determined by a simple model. In addition, elements not considered in the present embodiment may be newly taken into consideration. For example, rolling resistance of the driving wheel 12 and dry friction at the link mechanism 60 may be taken into consideration.
 さらに、本実施の形態においては、走行状態や車体姿勢の目標値に応じて必要な出力をフィードフォワード量として与えているが、計測値に基づく準フィードバック量として与えてもよい。これにより、目標値と実値に大きな隔たりがある場合でも、適切に制御を行うことができる。 Furthermore, in the present embodiment, the necessary output is given as the feedforward amount according to the target value of the running state and the vehicle body posture, but it may be given as a quasi feedback amount based on the measured value. Thereby, even when there is a large gap between the target value and the actual value, it is possible to appropriately control.
 続いて、主制御ECU21は、各目標値と状態量との偏差から各アクチュエータのフィードバック出力を決定する(ステップS3-11)。具体的には、下記の式によってフィードバック出力として、総駆動トルクのフィードバック量τW,FB、駆動トルク左右差のフィードバック量ΔτW,FB及びリンクトルクのフィードバック量τL,FBを決定する。 Subsequently, the main control ECU 21 determines the feedback output of each actuator from the deviation between each target value and the state quantity (step S3-11). Specifically, the feedback amount τ W, FB of the total drive torque, the feedback amount Δτ W, FB of the left / right difference of the drive torque , and the feedback amount τ L, FB of the link torque are determined as feedback outputs by the following equations.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 なお、各フィードバックゲインK**の値は、例えば、極配置法等により決定される値をあらかじめ設定しておく。また、スライディングモード制御等の非線形のフィードバック制御を導入してもよい。さらに、より簡単な制御として、KW2、KW3、Kd2及びKL3を除くゲインのいくつかを零にしてもよい。さらに、定常偏差をなくすために、積分ゲインを導入してもよい。 Note that the value of each feedback gain K ** is set in advance, for example, as determined by the pole placement method or the like. Further, nonlinear feedback control such as sliding mode control may be introduced. Furthermore, as a simpler control, some of the gains excluding K W2 , K W3 , K d2 and K L3 may be set to zero. Further, an integral gain may be introduced in order to eliminate the steady deviation.
 このように、状態フィードバック制御により、実際の状態を目標とする状態に近付けるようにフィードバック出力を与える。具体的には、前後走行状態に相当する平均駆動輪回転状態と、車体の倒立状態に相当する車体傾斜ピッチ角について、計測値と目標値の差に比例する総駆動トルクを与えることで、車両10の前後走行状態と車体の倒立姿勢を目標とする状態で安定に維持する。 In this way, feedback output is given so as to bring the actual state closer to the target state by state feedback control. Specifically, for the average driving wheel rotation state corresponding to the front-rear driving state and the vehicle body inclination pitch angle corresponding to the vehicle body inverted state, the vehicle is given a total driving torque proportional to the difference between the measured value and the target value. The vehicle is stably maintained in a state where the front-rear running state of 10 and the inverted posture of the vehicle body are targeted.
 また、旋回走行状態に相当する駆動輪回転状態左右差と、車体の左右傾斜に相当する車体傾斜ロール角について、計測値と目標値の差に比例する駆動トルク左右差を与えることで、車両10の旋回走行状態を目標とする状態で安定に維持する。このように、車体の左右傾斜状態を考慮することで、より安定かつ高精度に旋回走行状態を制御できる。 Further, with respect to the left-right difference between the driving wheel rotation state corresponding to the turning traveling state and the vehicle body tilt roll angle corresponding to the left-right inclination of the vehicle body, a drive torque left-right difference proportional to the difference between the measured value and the target value is given. The vehicle is stably maintained with the target turning state. In this way, the turning state can be controlled more stably and with high accuracy by taking into account the left-right inclination state of the vehicle body.
 さらに、左右傾斜状態に相当する車体傾斜ロール角と、旋回走行状態に相当する駆動輪回転状態左右差について、計測値と目標値の差に比例するリンクトルクを与えることで、車体の左右傾斜状態を目標とする状態で安定に維持する。このように、車両10の旋回走行状態を考慮することで、より安定かつ高精度に車体左右傾斜状態を制御できる。 Furthermore, by applying a link torque proportional to the difference between the measured value and the target value for the vehicle body tilt roll angle corresponding to the left-right tilt state and the driving wheel rotation state left-right difference corresponding to the turning traveling state, the vehicle body left-right tilt state To keep it stable in the target state. In this way, by considering the turning traveling state of the vehicle 10, it is possible to control the vehicle body leaning state more stably and with high accuracy.
 さらに、旋回走行状態に相当する状態量として、駆動輪回転角速度左右差を用いる。このように、駆動輪12の回転状態を制御することで、駆動輪12がロックや空転の状態に至る可能性を低減できる。 Furthermore, the drive wheel rotation angular velocity left-right difference is used as a state quantity corresponding to the turning traveling state. In this way, by controlling the rotational state of the drive wheel 12, the possibility that the drive wheel 12 will be locked or idling can be reduced.
 最後に、主制御ECU21は、各要素制御システムに指令値を与えて(ステップS3-12)、通常走行・姿勢制御処理を終了する。この場合、主制御ECU21は、駆動輪制御ECU22及びリンク制御ECU23に、下記の式によって決定される指令値として、右駆動トルク指令値τWR、左駆動トルク指令値τWL、総駆動トルク指令値τ、駆動トルク左右差指令値Δτ及びリンクトルク指令値τを与える。 Finally, the main control ECU 21 gives a command value to each element control system (step S3-12), and ends the normal travel / posture control process. In this case, the main control ECU 21 instructs the drive wheel control ECU 22 and the link control ECU 23 as command values determined by the following formulas as a right drive torque command value τ WR , a left drive torque command value τ WL , and a total drive torque command value. τ W , drive torque left / right difference command value Δτ W and link torque command value τ L are given.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 このように、各フィードフォワード出力と各フィードバック出力の和を指令値として与える。また、総駆動トルクと駆動トルク左右差が要求する値になるように、右駆動トルクと左駆動トルクの指令値を与える。 In this way, the sum of each feedforward output and each feedback output is given as a command value. Further, command values for the right drive torque and the left drive torque are given so that the total drive torque and the left-right difference between the drive torques are required values.
 そして、接地荷重の偏心状態に応じて、駆動トルク左右差の値を補正する。具体的には、総駆動トルク指令値に接地荷重移動率を乗じた値を駆動トルク左右差として付加する。このように、接地荷重の移動に伴って発生するヨーモーメントを打ち消すように駆動トルク左右差を与えることで、旋回走行状態をより高精度に制御することができる。 Then, the value of the left-right difference of the driving torque is corrected according to the eccentric state of the ground load. Specifically, a value obtained by multiplying the total drive torque command value by the ground load movement rate is added as the drive torque left-right difference. In this way, by giving the drive torque left / right difference so as to cancel the yaw moment generated with the movement of the ground load, the turning state can be controlled with higher accuracy.
 また、車体傾斜ロール角と車両左右加速度に基づいて、接地荷重移動率を推定する。これにより、車体傾斜状態や旋回走行状態によって変化する接地荷重中心位置の移動を適切に考慮することができる。 Also, the ground load movement rate is estimated based on the vehicle body tilt roll angle and the vehicle lateral acceleration. As a result, it is possible to appropriately consider the movement of the ground load center position that changes depending on the vehicle body tilting state and the turning traveling state.
 さらに、左右の駆動輪12の回転速度に基づいて、車両左右加速度を推定する。これにより、車両10の左右加速度を計測するセンサがなくても、走行及び姿勢制御を実行できる。 Further, the vehicle lateral acceleration is estimated based on the rotational speeds of the left and right drive wheels 12. As a result, traveling and attitude control can be executed without a sensor for measuring the lateral acceleration of the vehicle 10.
 なお、本実施の形態においては、接地荷重移動率を、車体傾斜状態と旋回走行状態の計測値に基づいて推定しているが、目標値に基づいて推定してもよい。これにより、制御の安定性がより高くなる場合がある。 In the present embodiment, the ground load movement rate is estimated based on the measured values of the vehicle body tilt state and the turning traveling state, but may be estimated based on the target value. Thereby, the stability of control may become higher.
 また、本実施の形態においては、接地荷重移動率の推定に必要な車両左右加速度の値を左右の駆動輪12の回転角速度から推定しているが、左右加速度を計測する計測手段を備え、その計測値を用いてもよい。また、ヨーレート等の計測値から車両10の左右加速度を決定してもよい。 In this embodiment, the vehicle lateral acceleration value necessary for estimating the ground load movement rate is estimated from the rotational angular velocities of the left and right drive wheels 12, and includes a measuring means for measuring the lateral acceleration. A measured value may be used. Moreover, you may determine the left-right acceleration of the vehicle 10 from measured values, such as a yaw rate.
 次に、非常走行・姿勢制御処理について説明する。 Next, emergency travel / posture control processing will be described.
 図5は本発明の第1の実施の形態における非常走行・姿勢制御処理の動作を示すフローチャートである。 FIG. 5 is a flowchart showing the operation of the emergency travel / posture control process in the first embodiment of the present invention.
 非常走行・姿勢制御処理において、主制御ECU21は、まず、センサから各状態量を取得する(ステップS5-1)。具体的には、駆動輪センサ51から駆動輪回転角又は駆動輪回転角速度を取得し、車体傾斜センサ41から車体傾斜角又は傾斜角速度を取得し、リンクセンサ42からリンク回転角又はリンク回転角速度を取得する。 In the emergency travel / posture control process, the main control ECU 21 first acquires each state quantity from the sensor (step S5-1). Specifically, the driving wheel rotation angle or the driving wheel rotation angular velocity is acquired from the driving wheel sensor 51, the vehicle body inclination angle or the inclination angular velocity is acquired from the vehicle body inclination sensor 41, and the link rotation angle or the link rotation angular velocity is acquired from the link sensor 42. get.
 なお、リンクブレーキ62の作動後は、リンク機構60が固定されるので、リンク回転角又はリンク回転角速度を再取得・更新せず、リンクブレーキ62の作動直前のリンク回転角又はリンク回転角速度に基づいて制御を実行してもよいが、本実施の形態においては、リンク回転角又はリンク回転角速度を取得するものとする。これにより、リンクブレーキ62の故障等によってリンク機構60が変位した場合にも、適切に制御を実行できる。 Since the link mechanism 60 is fixed after the link brake 62 is operated, the link rotation angle or the link rotation angular velocity is not reacquired / updated, but based on the link rotation angle or the link rotation angular velocity immediately before the link brake 62 is operated. However, in this embodiment, the link rotation angle or the link rotation angular velocity is acquired. Thereby, even when the link mechanism 60 is displaced due to a failure of the link brake 62 or the like, the control can be appropriately executed.
 続いて、主制御ECU21は、残りの状態量を算出する(ステップS5-2)。この場合、取得した状態量を時間微分又は時間積分することによって、残りの状態量を算出する。 Subsequently, the main control ECU 21 calculates the remaining state quantity (step S5-2). In this case, the remaining state quantity is calculated by time differentiation or time integration of the obtained state quantity.
 続いて、主制御ECU21は、操縦者の操縦操作量を取得する(ステップS5-3)。この場合、乗員15が、車両10の加速、減速、旋回、その場回転、停止、制動等の走行指令を入力するために操作したジョイスティック31の操作量を取得する。 Subsequently, the main control ECU 21 acquires the pilot operation amount (step S5-3). In this case, the occupant 15 acquires the operation amount of the joystick 31 that is operated to input a travel command such as acceleration, deceleration, turning, on-site rotation, stop, and braking of the vehicle 10.
 続いて、主制御ECU21は、取得したジョイスティック31の操作量に基づいて、車両加速度の目標値を決定する(ステップS5-4)。例えば、前後及び左右の操作量に比例した値を前後加速度及び左右加速度の目標値とする。 Subsequently, the main control ECU 21 determines a target value for vehicle acceleration based on the obtained operation amount of the joystick 31 (step S5-4). For example, values proportional to the front and rear and left and right operation amounts are set as target values for the longitudinal acceleration and the left and right acceleration.
 続いて、主制御ECU21は、車両加速度の目標値を補正する(ステップS5-5)。具体的には、下記の式によって車両左右加速度の目標値を補正する。 Subsequently, the main control ECU 21 corrects the target value of vehicle acceleration (step S5-5). Specifically, the target value of the vehicle lateral acceleration is corrected by the following formula.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 また、左方加速度制限値αY,Max,L 及び右方加速度制限値αY,Max,R は、各々、下記のように表される。 Further, the left acceleration limit value α Y, Max, L and the right acceleration limit value α Y, Max, R are respectively expressed as follows.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 なお、κは左右加速度均衡化係数(所定値)であり、本実施の形態においては、κ=1であるものとする。また、リンク機構60が固定されているので、リンク回転角φは、固定された角度である。 Note that κ is a left-right acceleration balancing coefficient (predetermined value), and in this embodiment, κ = 1. Further, since the link mechanism 60 is fixed, the link rotation angle φ L is a fixed angle.
 このように、リンク機構60の固定時に、車両左右加速度の制限値を減少させる。つまり、リンク機構60の固定状態に応じて、車両左右加速度を減少させる。具体的には、リンクブレーキ62によって固定されたリンク機構60のリンク回転角に相当する車体傾斜ロール角と右方最大車体傾斜ロール角との差を右方加速度制限値の減少量とする。また、リンクブレーキ62によって固定されたリンク機構60のリンク回転角に相当する車体傾斜ロール角と左方最大車体傾斜ロール角との差を左方加速度制限値の減少量とする。このように、2つの駆動輪接地点の間に接地荷重中心が存在する条件である車体姿勢の安定条件を厳密に考慮することで、安全な範囲内で旋回走行性能を最大限確保できる。 Thus, when the link mechanism 60 is fixed, the limit value of the vehicle lateral acceleration is decreased. That is, the vehicle lateral acceleration is decreased according to the fixed state of the link mechanism 60. Specifically, the difference between the vehicle body tilt roll angle corresponding to the link rotation angle of the link mechanism 60 fixed by the link brake 62 and the maximum right vehicle body tilt roll angle is defined as the amount of decrease in the right acceleration limit value. Further, the difference between the vehicle body tilt roll angle corresponding to the link rotation angle of the link mechanism 60 fixed by the link brake 62 and the left maximum vehicle body tilt roll angle is defined as the amount of decrease in the left acceleration limit value. Thus, by strictly considering the stability condition of the vehicle body posture, which is a condition in which the center of the ground load exists between the two driving wheel grounding points, it is possible to secure the maximum turning performance within a safe range.
 また、左右一方の加速度制限値に応じて、他方の加速度制限値を減少させる。具体的には、左右の加速度制限値で、大きい方の制限値と小さい方の制限値との比が所定の閾値以下になるように、大きい方の加速度制限値を減少させる。なお、本実施の形態においてはその閾値を1とし、右方加速度制限値及び左方加速度制限値を、共に、より小さい方の値とする。このように、操縦者の入力操作に対する旋回走行状態の左右方向による差異を軽減することで、車両故障等に伴う緊急走行時の操縦を容易にし、緊急時の安全性や利便性をより高めることができる。 Also, according to the acceleration limit value of one of the left and right, the other acceleration limit value is decreased. Specifically, the larger acceleration limit value is decreased so that the ratio between the larger limit value and the smaller limit value is not more than a predetermined threshold. In the present embodiment, the threshold is set to 1, and both the right acceleration limit value and the left acceleration limit value are set to smaller values. In this way, by reducing the difference in the left / right direction of the turning state with respect to the input operation of the driver, it is possible to facilitate the maneuvering at the time of emergency driving due to a vehicle failure etc., and to further improve safety and convenience in emergency Can do.
 さらに、左右路面勾配に応じて、車両左右加速度を減少させる。具体的には、リンク固定時の車体傾斜方向が左右路面勾配の下り方向である場合、上り方向への旋回走行に対する車体姿勢の安定性が低下することを考慮して、加速度制限値を減少させる。すなわち、左右路面勾配の値だけ、加速度制限値を減少させる。このように、リンク機構60の固定時でも車体傾斜ロール角が路面勾配によって変化することを考慮し、その影響を定量的に加味して制限することで、安全な範囲内で旋回走行性能を最大限確保できる。 Furthermore, the vehicle lateral acceleration is reduced according to the left-right road surface gradient. Specifically, if the vehicle body tilt direction when the link is fixed is the downward direction of the left and right road surface gradient, the acceleration limit value is decreased in consideration of the decrease in the stability of the vehicle body posture with respect to turning in the upward direction. . That is, the acceleration limit value is decreased by the value of the left and right road surface gradient. In this way, even when the link mechanism 60 is fixed, considering that the vehicle body tilt roll angle varies depending on the road surface gradient, and limiting the influence quantitatively, the turning performance can be maximized within a safe range. The limit can be secured.
 一方、リンク固定時の車体傾斜方向が左右路面勾配の上り方向である場合、下り方向への旋回走行に対する車体姿勢の安定性が向上することを無視し、加速度制限値を変化させない。これにより、一時的な路面勾配に対して旋回走行性能を上昇させた結果、乗員15が旋回走行性能を現状より高く認識することや操縦反応が安定しないことに対して不安感を抱くことを防止する。 On the other hand, when the vehicle body tilt direction when the link is fixed is the upward direction of the left and right road surface gradient, the improvement of the stability of the vehicle body posture with respect to the turning in the downward direction is ignored, and the acceleration limit value is not changed. As a result, the turning performance is improved with respect to the temporary road surface gradient, and as a result, the occupant 15 is prevented from feeling uneasy about recognizing that the turning performance is higher than the current level and that the steering response is not stable. To do.
 なお、本実施の形態においては、線形化した関数によって、車体姿勢の安定条件に基づく車両左右加速度の制限値を決定しているが、より厳密な非線形の関数によって制限値を決定してもよい。また、非線形の関数をマップとして具備し、それを用いて決定してもよい。 In the present embodiment, the limit value of the vehicle lateral acceleration based on the stability condition of the vehicle body posture is determined by a linearized function, but the limit value may be determined by a more strict nonlinear function. . Further, a non-linear function may be provided as a map and determined using the map.
 また、本実施の形態においては、左右加速度均衡化係数によって、車両左右加速度の制限値の比が所定の範囲内にあるように制限しているが、車両左右加速度の制限値の差が所定の範囲内にあるようにしてもよい。場合によっては、より適度に左右加速度の不均衡を軽減できる可能性がある。 Further, in the present embodiment, the right / left acceleration balancing coefficient is used to limit the ratio of the limit values of the vehicle left / right acceleration to be within a predetermined range. It may be within the range. In some cases, there is a possibility that the imbalance in the lateral acceleration can be reduced more appropriately.
 さらに、本実施の形態においては、車両左右加速度の左右不均衡や路面勾配に対して、本来の旋回走行限界値よりも厳しく制限することで、旋回走行性能よりも安全性を優先させているが、より旋回走行性能を優先させてもよい。また、これを操縦者の意思によって選択できるようにしてもよい。例えば、ジョイスティック31の脇に緊急時走行モード選択手段としてのスイッチを備え、操縦者のスイッチ操作によって、旋回走行性能優先モードと安全性優先モードを選択できるようにしてもよい。これにより、操縦者の満足度を高めるのとともに、制限の意図を操縦者に認識させることができる。 Furthermore, in the present embodiment, safety is prioritized over turning performance by restricting the left / right imbalance of the vehicle lateral acceleration and road gradient more strictly than the original turning limit value. , You may give priority to turning performance. Moreover, you may enable it to select this by an operator's intention. For example, a switch as an emergency travel mode selection means may be provided on the side of the joystick 31 so that the turning travel performance priority mode and the safety priority mode can be selected by the operator's switch operation. As a result, the driver's satisfaction can be increased and the driver can recognize the intention of restriction.
 続いて、主制御ECU21は、車両加速度の目標値から、駆動輪回転角速度の目標値を算出する(ステップS5-6)。なお、駆動輪回転角速度の目標値の算出は、通常走行・姿勢制御処理における駆動輪回転角速度の目標値の算出、すなわち、図4に示されるステップS3-6と同様であるので、説明を省略する。 Subsequently, the main control ECU 21 calculates the target value of the drive wheel rotational angular velocity from the target value of the vehicle acceleration (step S5-6). The calculation of the target value of the drive wheel rotational angular velocity is the same as the calculation of the target value of the drive wheel rotational angular velocity in the normal travel / posture control process, that is, step S3-6 shown in FIG. To do.
 続いて、主制御ECU21は、駆動輪回転角速度の目標値を補正する(ステップS5-7)。具体的には、下記の式によって平均駆動輪回転角速度目標値を補正する。 Subsequently, the main control ECU 21 corrects the target value of the drive wheel rotation angular velocity (step S5-7). Specifically, the average driving wheel rotational angular velocity target value is corrected by the following equation.
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 このように、車両左右加速度制限値に応じて、平均駆動輪回転角速度制限値を減少させる。具体的には、最高速度での最小旋回半径が所定の制限値以下になるように、平均駆動輪回転角速度制限値を補正する。すなわち、リンク固定時における最高速度での最小旋回半径が、リンク解放時における最高速度での最小旋回半径以下になるように、平均駆動輪回転角速度制限値を補正する。このように、車両10の最高速度を現状の旋回性能に応じた速度に補正することで、操縦者自身が旋回走行性能の低下量に適した走行速度に調整する必要がなく、安全性と操縦性、及び、ある程度の走行性能を保障できる。 Thus, the average driving wheel rotation angular velocity limit value is decreased according to the vehicle lateral acceleration limit value. Specifically, the average driving wheel rotational angular speed limit value is corrected so that the minimum turning radius at the maximum speed is less than or equal to a predetermined limit value. That is, the average driving wheel rotational angular velocity limit value is corrected so that the minimum turning radius at the maximum speed when the link is fixed is equal to or less than the minimum turning radius at the maximum speed when the link is released. In this way, by correcting the maximum speed of the vehicle 10 to a speed according to the current turning performance, it is not necessary for the operator himself to adjust to a traveling speed suitable for the amount of decrease in the turning traveling performance. And a certain degree of running performance can be guaranteed.
 続いて、主制御ECU21は、車体傾斜角の目標値を決定する(ステップS5-8)。具体的には、車両前後加速度の目標値から、下記の式によって車体傾斜ピッチ角目標値を決定する。 Subsequently, the main control ECU 21 determines a target value of the vehicle body inclination angle (step S5-8). Specifically, the vehicle body tilt pitch angle target value is determined from the target value of the vehicle longitudinal acceleration by the following formula.
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 このように、車両加速度の目標値に応じて車体傾斜角の目標値を決定する。この場合、車体傾斜ピッチ角について、前後の車体姿勢と走行状態に関する倒立振り子の力学的構造を考慮して、前後加速度で与えられる走行目標を達成できる車体姿勢を目標値として与える。 Thus, the target value of the vehicle body inclination angle is determined according to the target value of the vehicle acceleration. In this case, regarding the vehicle body tilt pitch angle, the vehicle body posture that can achieve the travel target given by the longitudinal acceleration is given as the target value in consideration of the mechanical structure of the inverted pendulum with respect to the vehicle body posture before and after and the traveling state.
 続いて、主制御ECU21は、残りの目標値を算出する(ステップS5-9)。すなわち、各目標値を時間微分又は時間積分することによって、駆動輪回転角及び車体傾斜角速度の目標値をそれぞれ算出する。 Subsequently, the main control ECU 21 calculates the remaining target value (step S5-9). That is, the target values of the drive wheel rotation angle and the vehicle body inclination angular velocity are calculated by time differentiation or time integration of each target value.
 続いて、主制御ECU21は、各目標値から各アクチュエータのフィードフォワード出力を決定する(ステップS5-10)。具体的には、下記の式によってフィードフォワード出力として、総駆動トルクのフィードフォワード量τW,FF及び駆動トルク左右差のフィードフォワード量ΔτW,FFを決定する。 Subsequently, the main control ECU 21 determines the feedforward output of each actuator from each target value (step S5-10). Specifically, the feedforward output τ W, FF of the total driving torque and the feed forward amount Δτ W, FF of the left / right difference of the driving torque are determined as feedforward outputs by the following formula.
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 このように、目標とする走行状態や車体姿勢を実現するのに必要なアクチュエータ出力を力学モデルより予測し、その分をフィードフォワード的に付加することで、車両10の走行及び姿勢制御を高精度に実行する。つまり、前後方向の走行目標を達成できるように、総駆動トルクのフィードフォワード量を決定する。具体的には、車両前後加速度に応じて発生する慣性力と、車両速度に相当する平均駆動輪回転角速度に応じて発生する走行抵抗を予測し、それを打ち消すような総駆動トルクを与えることで、目標とする前後走行状態を実現する。 As described above, the actuator output necessary to realize the target traveling state and vehicle body posture is predicted from the dynamic model, and the amount is fed-forwardly added, so that the traveling and posture control of the vehicle 10 can be performed with high accuracy. To run. That is, the feedforward amount of the total drive torque is determined so that the travel target in the front-rear direction can be achieved. Specifically, by estimating the inertial force generated according to the vehicle longitudinal acceleration and the running resistance generated according to the average driving wheel rotational angular velocity corresponding to the vehicle speed, and giving the total driving torque that cancels it The target front-rear running state is realized.
 また、旋回走行の目標を実現できるように、駆動トルク左右差のフィードフォワード量を決定する。具体的には、接地荷重中心位置の移動に伴って発生するヨーモーメントを予測し、それを打ち消すような駆動トルク左右差を与えることで、目標とする旋回走行目標を実現する。また、車体傾斜ロール角と車両左右加速度に基づいて、接地荷重中心位置の移動率を予測する。 Also, determine the feed forward amount of left and right drive torque so that the goal of turning can be achieved. Specifically, the target turning travel target is realized by predicting the yaw moment generated with the movement of the center position of the ground load and giving a difference between the left and right driving torques to cancel the yaw moment. Further, the moving rate of the ground load center position is predicted based on the vehicle body tilt roll angle and the vehicle lateral acceleration.
 なお、本実施の形態においては、力学モデルにおける主な要素をすべて考慮して、必要な出力をフィードフォワード量として与えているが、これらの要素の中で影響が小さいものを無視し、より簡素なモデルによってフィードフォワード量を決定してもよい。また、本実施の形態では考慮していない要素をあらたに考慮してもよい。例えば、駆動輪12の転がり抵抗等を考慮してもよい。 In this embodiment, all the main elements in the dynamic model are considered, and the necessary output is given as the feedforward amount. The feedforward amount may be determined by a simple model. In addition, elements not considered in the present embodiment may be newly taken into consideration. For example, the rolling resistance of the drive wheel 12 may be taken into consideration.
 さらに、本実施の形態においては、走行状態や車体姿勢の目標値に応じて必要な出力をフィードフォワード量として与えているが、計測値に基づく準フィードバック量として与えてもよい。これにより、目標値と実値に大きな隔たりがある場合でも、適切に制御を行うことができる。 Furthermore, in the present embodiment, the necessary output is given as the feedforward amount according to the target value of the running state and the vehicle body posture, but it may be given as a quasi feedback amount based on the measured value. Thereby, even when there is a large gap between the target value and the actual value, it is possible to appropriately control.
 続いて、主制御ECU21は、各目標値と状態量との偏差から各アクチュエータのフィードバック出力を決定する(ステップS5-11)。具体的には、下記の式によってフィードバック出力として、総駆動トルクのフィードバック量τW,FB及び駆動トルク左右差のフィードバック量ΔτW,FBを決定する。 Subsequently, the main control ECU 21 determines the feedback output of each actuator from the deviation between each target value and the state quantity (step S5-11). Specifically, the feedback amount τ W, FB of the total driving torque and the feedback amount Δτ W, FB of the left-right difference of the driving torque are determined as feedback outputs by the following formula.
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 なお、各フィードバックゲインK**の値は、例えば、極配置法等により決定される値をあらかじめ設定しておく。また、スライディングモード制御等の非線形のフィードバック制御を導入してもよい。さらに、より簡単な制御として、KW2、KW3及びKd2 (e) を除くゲインのいくつかを零にしてもよい。さらに、定常偏差をなくすために、積分ゲインを導入してもよい。 Note that the value of each feedback gain K ** is set in advance, for example, as determined by the pole placement method or the like. Further, nonlinear feedback control such as sliding mode control may be introduced. Further, as a simpler control, some of the gains except for K W2 , K W3 and K d2 (e) may be set to zero. Further, an integral gain may be introduced in order to eliminate the steady deviation.
 また、リンク解放時とリンク固定時で、フィードバックゲインを変更する。つまり、リンク固定時に、駆動輪回転状態左右差のフィードバックゲインを大きくする。これにより、車体傾斜ロール角に伴う旋回走行状態の偏差を軽減させる。 Also, change feedback gain when link is released and link is fixed. That is, when the link is fixed, the feedback gain of the drive wheel rotation state left-right difference is increased. Thereby, the deviation of the turning traveling state accompanying the vehicle body tilt roll angle is reduced.
 このように、状態フィードバック制御により、実際の状態を目標とする状態に近付けるようにフィードバック出力を与える。具体的には、前後走行状態に相当する平均駆動輪回転状態と、車体の倒立状態に相当する車体傾斜ピッチ角について、計測値と目標値の差に比例する総駆動トルクを与えることで、車両10の前後走行状態と車体の倒立姿勢を目標とする状態で安定に維持する。 In this way, feedback output is given so as to bring the actual state closer to the target state by state feedback control. Specifically, for the average driving wheel rotation state corresponding to the front-rear driving state and the vehicle body inclination pitch angle corresponding to the vehicle body inverted state, the vehicle is given a total driving torque proportional to the difference between the measured value and the target value. The vehicle is stably maintained in a state where the front-rear running state of 10 and the inverted posture of the vehicle body are targeted.
 また、旋回走行状態に相当する駆動輪回転状態左右差について、計測値と目標値の差に比例する駆動トルク左右差を与えることで、車両10の旋回走行状態を目標とする状態で安定に維持する。 Further, with respect to the left / right difference of the driving wheel rotation state corresponding to the turning traveling state, a driving torque left / right difference proportional to the difference between the measured value and the target value is given, so that the turning traveling state of the vehicle 10 is stably maintained in the target state. To do.
 さらに、旋回走行状態に相当する状態量として、駆動輪回転角速度左右差を用いる。このように、駆動輪12の回転状態を制御することで、駆動輪12がロックや空転の状態に至る可能性を低減できる。 Furthermore, the drive wheel rotation angular velocity left-right difference is used as a state quantity corresponding to the turning traveling state. In this way, by controlling the rotational state of the drive wheel 12, the possibility that the drive wheel 12 will be locked or idling can be reduced.
 最後に、主制御ECU21は、各要素制御システムに指令値を与えて(ステップS5-12)、非常走行・姿勢制御処理を終了する。この場合、主制御ECU21は、駆動輪制御ECU22及びリンク制御ECU23に、下記の式によって決定される指令値として、右駆動トルク指令値τWR、左駆動トルク指令値τWL、総駆動トルク指令値τ及び駆動トルク左右差指令値Δτを与える。 Finally, the main control ECU 21 gives a command value to each element control system (step S5-12), and ends the emergency travel / posture control process. In this case, the main control ECU 21 instructs the drive wheel control ECU 22 and the link control ECU 23 as command values determined by the following formulas as a right drive torque command value τ WR , a left drive torque command value τ WL , and a total drive torque command value. τ W and drive torque left / right difference command value Δτ W are given.
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 このように、各フィードフォワード出力と各フィードバック出力の和を指令値として与える。また、総駆動トルクと駆動トルク左右差が要求する値になるように、右駆動トルクと左駆動トルクの指令値を与える。 In this way, the sum of each feedforward output and each feedback output is given as a command value. Further, command values for the right drive torque and the left drive torque are given so that the total drive torque and the left-right difference between the drive torques are required values.
 そして、接地荷重の偏心状態に応じて、駆動トルク左右差の値を補正する。具体的には、総駆動トルク指令値に接地荷重移動率を乗じた値を駆動トルク左右差として付加する。このように、接地荷重の移動に伴って発生するヨーモーメントを打ち消すように駆動トルク左右差を与えることで、旋回走行状態をより高精度に制御することができる。 Then, the value of the left-right difference of the driving torque is corrected according to the eccentric state of the ground load. Specifically, a value obtained by multiplying the total drive torque command value by the ground load movement rate is added as the drive torque left-right difference. In this way, by giving the drive torque left / right difference so as to cancel the yaw moment generated with the movement of the ground load, the turning state can be controlled with higher accuracy.
 また、車体傾斜ロール角と車両左右加速度に基づいて、接地荷重移動率を推定する。これにより、車体傾斜状態や旋回走行状態によって変化する接地荷重中心位置の移動を適切に考慮することができる。 Also, the ground load movement rate is estimated based on the vehicle body tilt roll angle and the vehicle lateral acceleration. As a result, it is possible to appropriately consider the movement of the ground load center position that changes depending on the vehicle body tilting state and the turning traveling state.
 さらに、左右の駆動輪12の回転速度に基づいて、車両左右加速度を推定する。これにより、車両10の左右加速度を計測するセンサがなくても、走行及び姿勢制御を実行できる。 Further, the vehicle lateral acceleration is estimated based on the rotational speeds of the left and right drive wheels 12. As a result, traveling and attitude control can be executed without a sensor for measuring the lateral acceleration of the vehicle 10.
 なお、本実施の形態においては、接地荷重移動率の推定に必要な車両左右加速度の値を左右の駆動輪12の回転角速度から推定しているが、左右加速度を計測する計測手段を備え、その計測値を用いてもよい。また、ヨーレート等の計測値から車両10の左右加速度を決定してもよい。 In the present embodiment, the vehicle lateral acceleration value necessary for estimating the ground load movement rate is estimated from the rotational angular velocities of the left and right drive wheels 12, but includes a measuring means for measuring the lateral acceleration, A measured value may be used. Moreover, you may determine the left-right acceleration of the vehicle 10 from measured values, such as a yaw rate.
 このように、本実施の形態においては、リンク機構60を固定した場合に車両左右加速度の制限値を減少させる。具体的には、車両左右加速度の目標値に対する制限値を減少させる。すなわち、ジョイスティック31の操作量に応じて決定される車両左右加速度の目標値を制限する。 Thus, in this embodiment, when the link mechanism 60 is fixed, the limit value of the vehicle lateral acceleration is decreased. Specifically, the limit value for the target value of the vehicle lateral acceleration is decreased. That is, the target value of the vehicle lateral acceleration determined according to the operation amount of the joystick 31 is limited.
 また、リンク機構60の固定角度に応じて、車両左右加速度の減少量を決定する。すなわち、車体傾斜可動域の右端から固定位置までの角度を右方加速度制限値の減少量とする。また、車体傾斜可動域の左端から固定位置までの角度を左方加速度制限値の減少量とする。 Also, the amount of decrease in vehicle lateral acceleration is determined according to the fixed angle of the link mechanism 60. That is, the angle from the right end of the vehicle body tilt movable range to the fixed position is set as the amount of decrease in the rightward acceleration limit value. Further, the angle from the left end of the vehicle body tilt movable range to the fixed position is set as the amount of decrease in the left acceleration limit value.
 さらに、一方の加速度制限値に応じて、他方の加速度制限値を更に減少させる。すなわち、右方加速度制限値と左方加速度制限値を共に、右方加速度制限値と左方加速度制限値の小さい方の値とする。 Furthermore, in accordance with one acceleration limit value, the other acceleration limit value is further reduced. That is, both the right acceleration limit value and the left acceleration limit value are set to the smaller value of the right acceleration limit value and the left acceleration limit value.
  さらに、車両左右加速度の制限値に応じて、平均駆動輪回転角速度制限値を減少させる。この場合、リンク機構60が固定されたときの最高速度での最小旋回半径がリンク機構60が固定されていないときの最高速度での最小旋回半径以下になるように、リンク機構60が固定されたときの平均駆動輪回転角速度制限値を補正する。 Further, the average driving wheel rotation angular velocity limit value is decreased according to the limit value of the vehicle lateral acceleration. In this case, the link mechanism 60 is fixed so that the minimum turning radius at the maximum speed when the link mechanism 60 is fixed is less than the minimum turning radius at the maximum speed when the link mechanism 60 is not fixed. The average driving wheel rotation angular velocity limit value is corrected.
 さらに、左右路面勾配に応じて、左右加速度の制限値を減少させる。すなわち、固定された車体傾斜方向が路面勾配の上り方向と等しい場合には、左右加速度制限値の減少を禁止する。 Furthermore, the limit value of left and right acceleration is decreased according to the left and right road surface gradient. That is, when the fixed vehicle body tilt direction is equal to the upward direction of the road surface gradient, the reduction of the lateral acceleration limit value is prohibited.
 さらに、制限された車両左右加速度の目標値に応じた駆動トルク差を左右の駆動輪12に与える。 Furthermore, a drive torque difference corresponding to the target value of the limited vehicle lateral acceleration is given to the left and right drive wheels 12.
 これにより、リンクモータ61の異常により、車体が左右一方に大きく傾いた状態で固定された場合でも、可能な限りの運動性能と十分な安全性を保障でき、安全で快適な倒立型の車両10を提供することができる。 As a result, even when the vehicle body is fixed in a state of being largely inclined to the left or right due to an abnormality in the link motor 61, it is possible to ensure as much motion performance and sufficient safety as possible, and the inverted vehicle 10 is safe and comfortable. Can be provided.
 次に、本発明の第2の実施の形態について説明する。なお、第1の実施の形態と同じ構造を有するものについては、同じ符号を付与することによってその説明を省略する。また、前記第1の実施の形態と同じ動作及び同じ効果についても、その説明を省略する。 Next, a second embodiment of the present invention will be described. In addition, about the thing which has the same structure as 1st Embodiment, the description is abbreviate | omitted by providing the same code | symbol. The description of the same operation and the same effect as those of the first embodiment is also omitted.
 図6は本発明の第2の実施の形態における車両の傾斜状態を示す図、図7は本発明の第2の実施の形態における車両システムの構成を示すブロック図である。 FIG. 6 is a diagram showing a tilted state of the vehicle in the second embodiment of the present invention, and FIG. 7 is a block diagram showing the configuration of the vehicle system in the second embodiment of the present invention.
 本実施の形態においては、車両10が3輪以上の車輪を有するものである場合について説明する。つまり、前記車両10は、例えば、前輪が1輪であり後輪が2輪である3輪車、前輪が2輪であり後輪が1輪である3輪車、前輪及び後輪が2輪である4輪車等であるが、3輪以上の車輪を有するものであれば、いかなる種類のものであってもよい。 In the present embodiment, the case where the vehicle 10 has three or more wheels will be described. That is, the vehicle 10 includes, for example, a three-wheeled vehicle having one front wheel and two rear wheels, a three-wheeled vehicle having two front wheels and one rear wheel, and two front wheels and rear wheels. However, it may be of any kind as long as it has three or more wheels.
 ここでは、説明の都合上、前記車両10が、車体の前方に配設され、操舵(だ)輪として機能する1つの前輪と、車体の後方に配設され、駆動輪12として機能する左右2つの後輪とを有する3輪車であるものとして説明する。この場合、車両10は、前記第1の実施の形態と同様に、リンク機構60によって左右の後輪のキャンバー角を変化させるとともに、搭乗部14及び本体部11を含む車体を旋回内輪側へ傾斜させることによって、旋回性能の向上と乗員15の快適性の確保とを図ることができるようになっている。すなわち、前記車両10は車体を横方向(左右方向)にも傾斜させることができる。なお、倒立振り子の姿勢制御のような姿勢制御は行わないものとする。すなわち、車体の前後方向の姿勢制御は行わないものとする。 Here, for convenience of explanation, the vehicle 10 is disposed in front of the vehicle body and has one front wheel that functions as a steering wheel, and left and right 2 that are disposed in the rear of the vehicle body and function as drive wheels 12. It will be described as a three-wheeled vehicle having two rear wheels. In this case, similarly to the first embodiment, the vehicle 10 changes the camber angles of the left and right rear wheels by the link mechanism 60 and tilts the vehicle body including the riding portion 14 and the main body 11 toward the turning inner wheel. By doing so, it is possible to improve the turning performance and ensure the comfort of the occupant 15. That is, the vehicle 10 can tilt the vehicle body in the lateral direction (left and right direction). Note that posture control such as posture control of an inverted pendulum is not performed. That is, the posture control of the vehicle body in the front-rear direction is not performed.
 また、本実施の形態における車両10の入力装置30は、図に示されるように、ジョイスティック31を備えておらず、その代わりに、操舵角センサ33a、スロットルグリップ34及びブレーキレバー35を操縦装置として備える。 Further, as shown in the figure, the input device 30 of the vehicle 10 in the present embodiment does not include the joystick 31, but instead uses the steering angle sensor 33a, the throttle grip 34, and the brake lever 35 as a steering device. Prepare.
 前記車両10は操舵装置としてのハンドル33を有する。該ハンドル33は、一般的なオートバイ、自転車等において使用されている棒状の部材である。そして、乗員15がハンドル33を操作すると、それに応じて操舵輪としての前輪は舵角を変化させ、これにより、車両10の進行方向が変化する。また、操舵量検出器としての操舵角センサ33aは、操舵装置の操舵量としての前記舵角を検出して主制御ECU21に送信する。 The vehicle 10 has a handle 33 as a steering device. The handle 33 is a rod-like member used in general motorcycles, bicycles and the like. When the occupant 15 operates the steering wheel 33, the front wheel as the steering wheel changes the steering angle accordingly, and the traveling direction of the vehicle 10 changes accordingly. Further, the steering angle sensor 33a as a steering amount detector detects the steering angle as a steering amount of the steering device and transmits it to the main control ECU 21.
 また、前記スロットルグリップ34は、一般的なオートバイ等において使用されているスロットルグリップと同様の部材であり、棒状のハンドル33の一端に回転可能に取り付けられ、その回転角度、すなわち、スロットル開度に応じて、車両10を加速するような走行指令を入力する装置である。 The throttle grip 34 is a member similar to a throttle grip used in a general motorcycle or the like, and is rotatably attached to one end of a rod-like handle 33. The rotation angle, that is, the throttle opening is set. Accordingly, it is a device for inputting a travel command for accelerating the vehicle 10.
 さらに、前記ブレーキレバー35は、一般的なオートバイ、自転車等において使用されているブレーキレバーと同様の部材であり、棒状のハンドル33の一端に揺動可能に取り付けられ、その操作量、すなわち、ブレーキ操作量に応じて、車両10を減速するような走行指令を入力する装置である。 Further, the brake lever 35 is a member similar to a brake lever used in general motorcycles, bicycles, and the like, and is attached to one end of a rod-like handle 33 so as to be swingable. This is a device for inputting a travel command for decelerating the vehicle 10 according to the operation amount.
 また、車体制御システム40は、横加速度センサ43を備える。該横加速度センサ43は、一般的な加速度センサ、ジャイロセンサ等から成るセンサであって、車両10の横加速度を検出する。 Further, the vehicle body control system 40 includes a lateral acceleration sensor 43. The lateral acceleration sensor 43 is a sensor composed of a general acceleration sensor, a gyro sensor, or the like, and detects the lateral acceleration of the vehicle 10.
 そして、制御ECU20によって姿勢制御が行われることで、車両10は、旋回走行時には、図6に示されるように、車体を旋回円内側に傾けた状態で旋回する。 Then, the attitude control is performed by the control ECU 20, so that the vehicle 10 turns in a state in which the vehicle body is inclined inward of the turning circle as shown in FIG.
 なお、その他の点の構成については、前記第1の実施の形態と同様であるので、その説明を省略する。 The configuration of other points is the same as that of the first embodiment, and the description thereof is omitted.
 次に、本実施の形態における車両10の動作について詳細に説明する。ここでは、車両制御処理、及び、非常走行・姿勢制御処理についての説明は省略し、通常走行・姿勢制御処理についてのみ説明する。 Next, the operation of the vehicle 10 in the present embodiment will be described in detail. Here, descriptions of the vehicle control process and the emergency travel / posture control process are omitted, and only the normal travel / posture control process is described.
 通常走行・姿勢制御処理において、主制御ECU21は、まず、センサから各状態量を取得する。本実施の形態においては、ホイールベースL〔m〕を取得する。なお、車体重心距離、及び、車体傾斜ピッチ角又はピッチ角速度は、不要なので取得しない。 In the normal travel / posture control process, the main control ECU 21 first acquires each state quantity from the sensor. In the present embodiment, the wheel base L [m] is acquired. The vehicle body center-of-gravity distance and the vehicle body tilt pitch angle or pitch angular velocity are not acquired because they are unnecessary.
 なお、次に行われる残りの状態量を算出する動作、操縦者の操縦操作量を取得する動作、車両加速度の目標値を決定する動作、及び、車両加速度の目標値を補正する動作については、前記第1の実施の形態と同様であるので、説明を省略する。 In addition, regarding the operation to calculate the remaining state amount to be performed next, the operation to acquire the pilot operation amount, the operation to determine the target value of the vehicle acceleration, and the operation to correct the target value of the vehicle acceleration, Since it is the same as that of the said 1st Embodiment, description is abbreviate | omitted.
 続いて、主制御ECU21は、車両加速度の目標値から、駆動輪回転角速度の目標値を算出する。ここで、平均駆動輪回転角速度の目標値を決定する動作については、前記第1の実施の形態と同様であるので、説明を省略する。 Subsequently, the main control ECU 21 calculates the target value of the drive wheel rotational angular velocity from the target value of the vehicle acceleration. Here, since the operation for determining the target value of the average driving wheel rotation angular velocity is the same as that in the first embodiment, the description thereof will be omitted.
 また、本実施の形態において、主制御ECU21は、駆動輪回転角速度左右差の目標値を下記の式によって決定する。 In the present embodiment, the main control ECU 21 determines the target value of the left / right difference of the drive wheel rotation angular velocity by the following equation.
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
 このように、本実施の形態においては、操舵角と平均駆動輪回転角速度目標値から左右の駆動輪12の回転角速度の差の目標である駆動輪回転角速度左右差目標値を決定する。 Thus, in the present embodiment, the drive wheel rotation angular velocity left / right difference target value, which is the target of the difference between the rotation angular velocities of the left and right drive wheels 12, is determined from the steering angle and the average drive wheel rotation angular velocity target value.
 なお、次に行われる駆動輪回転角速度の目標値を補正する動作については、前記第1の実施の形態と同様であるので、説明を省略する。 In addition, since the operation | movement which corrects the target value of the driving wheel rotational angular velocity performed next is the same as that of the said 1st Embodiment, description is abbreviate | omitted.
 続いて、主制御ECU21は、車体傾斜角の目標値を決定する。なお、本実施の形態においては前後方向の姿勢制御は行わないので、主制御ECU21は、車体傾斜角の目標値を決定する際に、車体傾斜ピッチ角の目標値は算出せずに、車体傾斜ロール角の目標値のみを決定する。車体傾斜ロール角の目標値の決定は、前記第1の実施の形態と同様に行われるので、説明を省略する。 Subsequently, the main control ECU 21 determines a target value of the vehicle body inclination angle. In the present embodiment, the posture control in the front-rear direction is not performed, so the main control ECU 21 does not calculate the target value of the vehicle body tilt pitch angle when determining the target value of the vehicle body tilt angle, but instead calculates the target value of the vehicle body tilt pitch angle. Only the roll angle target value is determined. Since the determination of the target value of the vehicle body tilt roll angle is performed in the same manner as in the first embodiment, description thereof is omitted.
 車体傾斜ロール角については、接地荷重中心が2つの駆動輪12の接地点間である安定領域に存在する範囲で、自由に目標姿勢を設定できるが、本実施の形態では乗員15の負荷が最も少ない姿勢を目標値として与える。 Regarding the vehicle body tilt roll angle, the target posture can be freely set within the range where the ground load center exists in the stable region between the ground points of the two drive wheels 12, but in this embodiment, the load on the occupant 15 is the most. Give a few postures as target values.
 なお、次に行われる残りの目標値を算出する動作、及び、各目標値から各アクチュエータのフィードフォワード出力を決定する動作については、前記第1の実施の形態と同様であるので、説明を省略する。 Since the operation for calculating the remaining target value to be performed next and the operation for determining the feedforward output of each actuator from each target value are the same as those in the first embodiment, description thereof will be omitted. To do.
 続いて、主制御ECU21は、各目標値と状態量との偏差から各アクチュエータのフィードバック出力を決定する。具体的には、下記の式によってフィードバック出力として、総駆動トルクのフィードバック量τW,FB、駆動トルク左右差のフィードバック量ΔτW,FB及びリンクトルクのフィードバック量τL,FBを決定する。 Subsequently, the main control ECU 21 determines the feedback output of each actuator from the deviation between each target value and the state quantity. Specifically, the feedback amount τ W, FB of the total drive torque, the feedback amount Δτ W, FB of the left / right difference of the drive torque , and the feedback amount τ L, FB of the link torque are determined as feedback outputs by the following equations.
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
 このように、状態フィードバック制御により、旋回走行状態に相当する駆動輪回転状態左右差と、車体の左右傾斜に相当する車体傾斜ロール角について、計測値と目標値の差に比例する駆動トルク左右差を与えることで、車両10の旋回走行状態を目標とする状態で安定に維持する。このように、車体の左右傾斜状態を考慮することで、より安定かつ高精度に旋回走行状態を制御できる。 As described above, with the state feedback control, the left and right difference between the driving wheel rotation state corresponding to the turning state and the left and right difference between the driving torque proportional to the difference between the measured value and the target value for the vehicle body tilt roll angle corresponding to the left and right inclination of the vehicle body Thus, the vehicle 10 is stably maintained in a state where the turning traveling state of the vehicle 10 is a target. In this way, the turning state can be controlled more stably and with high accuracy by taking into account the left-right inclination state of the vehicle body.
 さらに、左右傾斜状態に相当する車体傾斜ロール角と、旋回走行状態に相当する駆動輪回転状態左右差について、計測値と目標値の差に比例するリンクトルクを与えることで、車体の左右傾斜状態を目標とする状態で安定に維持する。このように、車両10の旋回走行状態を考慮することで、より安定かつ高精度に車体左右傾斜状態を制御できる。 Furthermore, by applying a link torque proportional to the difference between the measured value and the target value for the vehicle body tilt roll angle corresponding to the left-right tilt state and the driving wheel rotation state left-right difference corresponding to the turning traveling state, the vehicle body left-right tilt state To keep it stable in the target state. In this way, by considering the turning traveling state of the vehicle 10, it is possible to control the vehicle body leaning state more stably and with high accuracy.
 さらに、旋回走行状態に相当する状態量として、駆動輪回転角速度左右差を用いる。このように、駆動輪12の回転状態を制御することで、駆動輪12がロックや空転の状態に至る可能性を低減できる。 Furthermore, the drive wheel rotation angular velocity left-right difference is used as a state quantity corresponding to the turning traveling state. In this way, by controlling the rotational state of the drive wheel 12, the possibility that the drive wheel 12 will be locked or idling can be reduced.
 最後に、主制御ECU21は、各要素制御システムに指令値を与えて、通常走行・姿勢制御処理を終了するが、各要素制御システムに指令値を与える動作については、前記第1の実施の形態と同様であるので、説明を省略する。 Finally, the main control ECU 21 gives a command value to each element control system and ends the normal running / attitude control process. The operation for giving the command value to each element control system is the first embodiment. Since it is the same as that, the description is omitted.
 また、その他の点の動作についても、前記第1の実施の形態と同様であるので、その説明を省略する。 Further, since the operation of other points is the same as that of the first embodiment, the description thereof is omitted.
 次に、本発明の第3~第6の実施の形態について説明する。 Next, third to sixth embodiments of the present invention will be described.
 「背景技術」の項で説明した特許文献2に記載されているような従来の車両の場合、センサで車体のバランスや動作の状態を検出しながら、駆動輪の動作を制御して車両を停止又は移動させるようになっている。このような車両においては、車体を左右に傾けるアクチュエータの異常時に、リンク機構を固定する必要がある。例えば、ブレーキを作動しないと、車体が左右一方に更に傾斜してしまう場合があるので、アクチュエータの異常時には、ブレーキを作動してリンク機構を固定する。しかし、このような制御では、安全性や快適性を十分に保障できない可能性がある。 In the case of a conventional vehicle as described in Patent Document 2 described in the “Background Art” section, the vehicle is stopped by controlling the operation of the drive wheels while detecting the balance of the vehicle body and the state of the operation with a sensor. Or move it. In such a vehicle, it is necessary to fix the link mechanism when the actuator that tilts the vehicle body to the left or right is abnormal. For example, if the brake is not operated, the vehicle body may be further tilted to the left or right. Therefore, when the actuator is abnormal, the brake is operated to fix the link mechanism. However, such control may not be able to sufficiently ensure safety and comfort.
 例えば、車体が基準角(搭乗部が水平になる角度)から大きく外れた角度で、アクチュエータ異常に伴うブレーキ作動によって固定される場合がある。車両の急旋回時には、車体を旋回円内側に大きく傾ける必要があるが、この時にブレーキが作動すると、走行状態に関わらず、車体は常に傾いた状態で固定されるので、乗員にとっては非常に乗り心地が悪くなる。また、車両重心の偏りによって、車両の進行方向が車体の傾斜側に偏る場合がある。この場合、乗員にとって、退避走行時等における適切な車両の操縦が困難である。さらに、車両重心の偏りによって、車体の傾斜側と逆側への旋回時に車体が大きく傾く可能性があり、アクチュエータ故障時の安全性を十分に保障できない。 For example, there is a case where the vehicle body is fixed by a brake operation accompanying an actuator abnormality at an angle greatly deviating from a reference angle (an angle at which the riding section becomes horizontal). When the vehicle turns sharply, it is necessary to tilt the vehicle body to the inside of the turning circle. However, if the brake is activated at this time, the vehicle body is always fixed in a tilted state regardless of the driving condition. I feel uncomfortable. Further, the traveling direction of the vehicle may be biased toward the inclined side of the vehicle body due to the bias of the vehicle center of gravity. In this case, it is difficult for the occupant to properly control the vehicle during evacuation travel. Furthermore, due to the deviation of the center of gravity of the vehicle, there is a possibility that the vehicle body will be greatly inclined when turning to the opposite side of the vehicle body, and safety at the time of actuator failure cannot be sufficiently guaranteed.
 本発明の第3~第6の実施の形態は、前記従来の車両の問題点を解決して、傾斜機構ブレーキを解除した場合に車体が傾斜する方向を予測する傾斜方向予測手段が目標傾斜角に近付く方向への傾斜を予測した場合に傾斜機構ブレーキを解除することによって、アクチュエータの異常に伴い、車体が大きく傾いた状態で固定された場合であっても、車体の姿勢が適切な状態に自動的に復帰し、車体傾斜によって乗員に与える不快感及び不安感、並びに、操縦性の低下を解消することができ、安全で快適に使用することができる車両を提供することを目的とする。 In the third to sixth embodiments of the present invention, the tilt direction predicting means for solving the problems of the conventional vehicle and predicting the direction in which the vehicle body tilts when the tilt mechanism brake is released includes a target tilt angle. By releasing the tilt mechanism brake when it is predicted that the vehicle will lean toward the direction of the vehicle, even if the vehicle body is fixed in a largely inclined state due to an abnormality in the actuator, the vehicle body posture will be in an appropriate state. An object of the present invention is to provide a vehicle that can be used safely and comfortably, which can automatically recover and can eliminate discomfort and anxiety given to the occupant by leaning the vehicle body, and a decrease in maneuverability.
 まず、第3の実施の形態について説明する。なお、第1及び第2の実施の形態と同じ構造を有するものについては、同じ符号を付与することによってその説明を省略する。また、前記第1及び第2の実施の形態と同じ動作及び同じ効果についても、その説明を省略する。 First, a third embodiment will be described. In addition, about the thing which has the same structure as 1st and 2nd embodiment, the description is abbreviate | omitted by providing the same code | symbol. Also, the description of the same operations and effects as those of the first and second embodiments is omitted.
 図8は本発明の第3の実施の形態における車両の傾斜状態を示す図、図9は本発明の第3の実施の形態における車両システムの構成を示すブロック図である。なお、図8において、(a)は旋回走行、(b)はブレーキ作動、(c)はブレーキ解除、(d)は状態復帰を示す。 FIG. 8 is a diagram showing a tilted state of the vehicle in the third embodiment of the present invention, and FIG. 9 is a block diagram showing the configuration of the vehicle system in the third embodiment of the present invention. In FIG. 8, (a) shows turning, (b) brake operation, (c) brake release, and (d) state return.
 本実施の形態において、入力装置30は、図9に示されるように、目標走行状態取得装置としてのジョイスティック31に加えて、傾斜許可手段としての復帰許可スイッチ32を備える。そして、乗員15がリンクブレーキ62の解除を許可する場合には、復帰許可スイッチ32を操作することによって、許可信号が送信されるようになっている。 In the present embodiment, as shown in FIG. 9, the input device 30 includes a return permission switch 32 as a tilt permission means in addition to a joystick 31 as a target travel state acquisition device. When the occupant 15 permits the release of the link brake 62, the permission signal is transmitted by operating the return permission switch 32.
 ここで、乗員15が操作して倒立制御の実行や停止を入力することができる装置であれば、復帰許可スイッチ32に代えて他の装置、例えば、押しボタン、タッチパネル、操作レバー、音声認識システム等の装置を制御指令取得装置として使用することもできる。また、これらは実行又は停止の一方のみを指令する装置であってもよい。 Here, as long as the device can be operated by the occupant 15 to input execution or stop of the inverted control, another device such as a push button, a touch panel, an operation lever, or a voice recognition system is used instead of the return permission switch 32. It is also possible to use a device such as a control command acquisition device. Moreover, these may be a device that commands only one of execution or stop.
 なお、車両10がリモートコントロールによって操縦される場合には、前記ジョイスティック31及び復帰許可スイッチ32に代えて、コントローラからの走行指令を有線又は無線で受信する受信装置を目標走行状態取得装置として使用することができる。また、車両10があらかじめ決められた走行指令データに従って自動走行する場合には、前記ジョイスティック31及び復帰許可スイッチ32に代えて、半導体メモリ、ハードディスク等の記憶媒体に記憶された走行指令データを読み取るデータ読取り装置を目標走行状態取得装置として使用することができる。 When the vehicle 10 is steered by remote control, a receiving device that receives a travel command from the controller in a wired or wireless manner is used as the target travel state acquisition device instead of the joystick 31 and the return permission switch 32. be able to. Further, when the vehicle 10 automatically travels according to predetermined travel command data, data for reading travel command data stored in a storage medium such as a semiconductor memory or a hard disk instead of the joystick 31 and the return permission switch 32. The reading device can be used as a target running state acquisition device.
 本実施の形態における車体制御システム40は、前記第1及び第2の実施の形態において説明したリンクセンサ42を含んでいない。また、主制御ECU21は、リンクブレーキ62を解除した際の車体の左右傾斜方向を予測する傾斜方向予測手段、及び、所定の周期で断続的に発信する周期信号を取得する周期信号取得手段としても機能する。 The vehicle body control system 40 in the present embodiment does not include the link sensor 42 described in the first and second embodiments. The main control ECU 21 also serves as a tilt direction predicting unit that predicts the left and right tilt direction of the vehicle body when the link brake 62 is released, and a periodic signal acquiring unit that acquires a periodic signal transmitted intermittently at a predetermined cycle. Function.
 そして、制御ECU20によって姿勢制御が行われることで、車両10は、旋回走行時には、図8(a)に示されるように、車体を旋回円内側に傾けた状態で旋回する。そして、旋回走行中にリンクモータ61に異常が発生すると、すなわち、アクチュエータ異常が発生すると、リンクブレーキ62を作動させる。すると、図8(b)に示されるように、旋回終了後も、車体傾斜状態が保持される。続いて、所定の条件が満たされるとブレーキ解除が行われ、再び旋回走行中にリンクブレーキ62を解除して旋回円外側への車体傾斜を許可する。すると、図8(c)に示されるように、遠心力の作用により、車体を起き上がらせる。そして、図8(d)に示されるように、リンク機構60が回転し、車体が直立状態に復帰する。そして、この状態、すなわち、復帰状態で、再度リンクブレーキ62を作動させ、リンク機構60を固定する。 Then, the attitude control is performed by the control ECU 20, so that the vehicle 10 turns in a state in which the vehicle body is inclined inward of the turning circle as shown in FIG. When an abnormality occurs in the link motor 61 during turning, that is, when an actuator abnormality occurs, the link brake 62 is operated. Then, as shown in FIG. 8B, the vehicle body tilt state is maintained even after the turn is completed. Subsequently, when a predetermined condition is satisfied, the brake is released, and the link brake 62 is released again during turning, allowing the vehicle body to be tilted to the outside of the turning circle. Then, as shown in FIG. 8C, the vehicle body is raised by the action of centrifugal force. Then, as shown in FIG. 8D, the link mechanism 60 rotates and the vehicle body returns to the upright state. In this state, that is, in the return state, the link brake 62 is operated again, and the link mechanism 60 is fixed.
 なお、その他の点の構成については、前記第1及び第2の実施の形態と同様であるので、その説明を省略する。 The configuration of other points is the same as that of the first and second embodiments, and the description thereof is omitted.
 次に、本実施の形態における車両10の動作について詳細に説明する。まず、車両制御処理の概要について説明する。 Next, the operation of the vehicle 10 in the present embodiment will be described in detail. First, an outline of the vehicle control process will be described.
 図10は本発明の第3の実施の形態における車両制御処理の動作を示すフローチャートである。 FIG. 10 is a flowchart showing the operation of the vehicle control process in the third embodiment of the present invention.
 車両制御処理において、制御ECU20は、まず、モータ正常判定を行い、モータが正常であるか否かを判定する(ステップS11)。そして、モータが正常であると判定すると、制御ECU20は、ブレーキ解除を行う(ステップS12)。 In the vehicle control process, the control ECU 20 first determines whether the motor is normal and determines whether the motor is normal (step S11). When it is determined that the motor is normal, the control ECU 20 releases the brake (step S12).
 続いて、制御ECU20は、通常走行・姿勢制御処理を実行し(ステップS13)、車体を適切に傾斜させながら、車体の姿勢を保持しつつ、乗員15からの走行指令を実現して車両制御処理を終了する。なお、該車両制御処理は、所定の時間間隔(例えば、100〔μs〕毎)で繰り返し実行される。ステップS11~S13の動作は、前記第1の実施の形態における図3に示されるステップS1~S3の動作と同様である。 Subsequently, the control ECU 20 executes a normal travel / posture control process (step S13), realizes a travel command from the occupant 15 while maintaining the posture of the vehicle body while appropriately tilting the vehicle body, and performs a vehicle control process. Exit. The vehicle control process is repeatedly executed at predetermined time intervals (for example, every 100 [μs]). The operations in steps S11 to S13 are the same as the operations in steps S1 to S3 shown in FIG. 3 in the first embodiment.
 一方、モータが正常であるか否かを判定して異常である場合、制御ECU20は、ブレーキ制御処理を実行する(ステップS14)。ブレーキ制御処理では、車両10の状態に応じて、リンクブレーキ62を作動又は解除する。 On the other hand, if it is determined that the motor is normal and abnormal, the control ECU 20 executes a brake control process (step S14). In the brake control process, the link brake 62 is operated or released according to the state of the vehicle 10.
 続いて、制御ECU20は、非常走行・姿勢制御処理を実行し(ステップS15)、リンク機構60が固定された状態で、車体の姿勢を保持しつつ、乗員15からの走行指令を実現して車両制御処理を終了する。 Subsequently, the control ECU 20 executes an emergency travel / posture control process (step S15), realizes a travel command from the occupant 15 while maintaining the posture of the vehicle body while the link mechanism 60 is fixed, and the vehicle. The control process ends.
 次に、ブレーキ制御処理について説明する。 Next, the brake control process will be described.
 図11は本発明の第3の実施の形態におけるブレーキ制御処理の動作を示すフローチャートである。 FIG. 11 is a flowchart showing the operation of the brake control process in the third embodiment of the present invention.
 本実施の形態において、αは車両横加速度〔G〕であり、bはトレッド(所定値)〔m〕である。 In the present embodiment, α L is the vehicle lateral acceleration [G], and b is the tread (predetermined value) [m].
 ブレーキ制御処理において、主制御ECU21は、まず、センサから各状態量を取得する(ステップS14-1)。具体的には、駆動輪センサ51から左右の駆動輪回転角又は回転角速度を取得し、車体傾斜センサ41から、車体傾斜角又は傾斜角速度を取得する。 In the brake control process, the main control ECU 21 first acquires each state quantity from the sensor (step S14-1). Specifically, the left and right driving wheel rotation angles or rotation angular velocities are acquired from the driving wheel sensor 51, and the vehicle body inclination angle or inclination angular velocity is acquired from the vehicle body inclination sensor 41.
 なお、本実施の形態において、車体の傾斜は、車体の左右傾斜、すなわち、ロールを意味するものとして説明する。 In the present embodiment, the description will be made assuming that the inclination of the vehicle body means the vehicle body inclination, that is, a roll.
 そして、車両制御においては、駆動輪センサ51から駆動輪回転角及び/又は回転角速度を取得し、車体傾斜センサ41から車体傾斜角及び/又は傾斜角速度を取得し、さらに、取得した状態量を時間微分又は時間積分することによって、残りの状態量を算出する。例えば、取得した状態量が駆動輪回転角及び車体傾斜角である場合には、これらを時間微分することによって、回転角速度及び傾斜角速度を得ることができる。また、例えば、取得した状態量が回転角速度及び傾斜角速度である場合には、これらを時間積分することによって、駆動輪回転角及び車体傾斜角を得ることができる。 In the vehicle control, the driving wheel rotation angle and / or the rotation angular velocity is acquired from the driving wheel sensor 51, the vehicle body inclination angle and / or the inclination angular velocity is acquired from the vehicle body inclination sensor 41, and the acquired state quantity is converted into time. The remaining state quantity is calculated by differentiation or time integration. For example, when the acquired state quantities are the driving wheel rotation angle and the vehicle body inclination angle, the rotational angular velocity and the inclination angular velocity can be obtained by differentiating them with time. Further, for example, when the acquired state quantities are the rotational angular velocity and the tilt angular velocity, the driving wheel rotational angle and the vehicle body tilt angle can be obtained by time integration of these.
 続いて、主制御ECU21は、解放時傾斜角速度を予測する(ステップS14-2)。この場合、主制御ECU21は、各状態量から、リンクブレーキ62を解除してリンク機構60を解放した時の車体傾斜角速度の推定値を下記の式によって予測する。 Subsequently, the main control ECU 21 predicts the release tilt angular velocity (step S14-2). In this case, the main control ECU 21 predicts the estimated value of the vehicle body inclination angular velocity when the link brake 62 is released and the link mechanism 60 is released from each state quantity by the following equation.
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000021
 上記の式によって得られる推定値は、少し先の未来における車体傾斜角速度を推定した値である。なお、Tは進み時間(所定値)である。また、Mは車体に作用する作用トルクであり、下記の式によって表される。 The estimated value obtained by the above equation is a value obtained by estimating the vehicle body inclination angular velocity in the future. T is the advance time (predetermined value). M 1 is an acting torque acting on the vehicle body and is represented by the following equation.
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000022
 作用トルクMを表す上記の式の各項は以下の作用に相当する。
第1項:車体が傾くことによる重力の作用
第2項:車両10が旋回することによる遠心力の作用
第3項:車体の傾斜角速度に対する粘性摩擦力の作用
 なお、上記式の中の車体傾斜角速度及び左右の駆動輪回転角速度の値は、車体傾斜角及び駆動輪回転角の計測値を1階時間微分(差分)することで得られる。
Each term of the above formula representing the working torque M 1 corresponds to the following action.
First term: action of gravity due to tilting of vehicle body Second term: action of centrifugal force due to turning of vehicle 10 Third term: action of viscous frictional force on tilting angular velocity of vehicle body The values of the angular velocity and the left and right drive wheel rotation angular velocities are obtained by first-order time differentiation (difference) of the measured values of the vehicle body tilt angle and the drive wheel rotation angle.
 このように、本実施の形態においては、リンク機構60を解放した場合に予測される車体の傾斜角速度を求める。つまり、現時点でリンクブレーキ62を解除した場合、又は、解除状態を継続した場合における所定時間後の車体傾斜角速度を予測する。具体的には、車体に作用しているトルクである作用トルクに基づいて、解放時傾斜角速度を予測する。例えば、車体がある傾斜角で静止している場合、目標傾斜角に向かう方向に作用トルクが働いているときには、リンクブレーキ62の解除時に車体が目標傾斜角へ向けて傾斜すると予測し、リンクブレーキ62を解除してリンク機構60を解放する。このように、車体に作用する作用トルクを考慮することで、確実に車体を適切な方向に傾斜させることができる。 As described above, in the present embodiment, the vehicle body inclination angular velocity predicted when the link mechanism 60 is released is obtained. That is, the vehicle body inclination angular velocity after a predetermined time when the link brake 62 is released at the present time or when the release state is continued is predicted. Specifically, the release inclination angular velocity is predicted on the basis of an acting torque that is a torque acting on the vehicle body. For example, when the vehicle body is stationary at a certain inclination angle and the acting torque is acting in the direction toward the target inclination angle, it is predicted that the vehicle body will incline toward the target inclination angle when the link brake 62 is released, and the link brake 62 is released and the link mechanism 60 is released. In this way, the vehicle body can be reliably tilted in an appropriate direction by taking into account the acting torque acting on the vehicle body.
 また、車体傾斜状態、車両旋回走行状態又は各駆動輪回転状態に基づいて、作用トルクを推定する。具体的には、作用トルクとして、車体傾斜に伴う重力の作用、車両10の旋回走行に伴う遠心力の作用、及び、車体の傾斜角速度に対する粘性摩擦力を考慮する。これにより、専用のセンサを追加することなく、高精度に作用トルク、すなわち、解放時傾斜角速度を予測できる。 Also, the operating torque is estimated based on the vehicle body tilting state, the vehicle turning traveling state, or the driving wheel rotation state. Specifically, as the action torque, the action of gravity accompanying the vehicle body tilt, the action of the centrifugal force accompanying the turning of the vehicle 10, and the viscous friction force with respect to the inclination angular velocity of the vehicle body are considered. As a result, it is possible to predict the acting torque, that is, the release inclination angular velocity with high accuracy without adding a dedicated sensor.
 さらに、現時点での車体の傾斜角速度に基づいて、解放時傾斜角速度を予測する。例えば、目標傾斜角に向かう車体の傾斜角速度が所定の値よりも高い場合、作用トルクの方向に関わらず、リンクブレーキ62を解除状態に維持し、慣性による車体の傾斜を継続させる。このように、車体の回転慣性を活用することで、より効率的に素早く車体を目標傾斜角に近付けることができる。 Furthermore, based on the current vehicle body inclination angle velocity, the release inclination angle velocity is predicted. For example, when the inclination angle speed of the vehicle body toward the target inclination angle is higher than a predetermined value, the link brake 62 is maintained in the released state regardless of the direction of the applied torque, and the vehicle body inclination due to inertia is continued. Thus, by utilizing the rotational inertia of the vehicle body, the vehicle body can be brought closer to the target inclination angle more efficiently and quickly.
 なお、本実施の形態においては、遠心力の決定に左右の駆動輪回転角速度の値を用いているが、他のセンサによる計測値を用いてもよい。例えば、車両10のヨーレートを計測するヨーレートセンサを備え、その計測値に基づいて横加速度及び遠心力を決定してもよい。また、横加速度を計測する横加速度センサを備え、その計測値に基づいて横加速度及び遠心力を決定してもよい。これにより、駆動輪12のスリップ状態等に影響されることなく、より高精度に作用トルクを推定することができる。 In the present embodiment, the values of the rotational angular velocities of the left and right drive wheels are used for determining the centrifugal force, but values measured by other sensors may be used. For example, a yaw rate sensor that measures the yaw rate of the vehicle 10 may be provided, and the lateral acceleration and centrifugal force may be determined based on the measured values. Further, a lateral acceleration sensor that measures the lateral acceleration may be provided, and the lateral acceleration and the centrifugal force may be determined based on the measured values. As a result, the operating torque can be estimated with higher accuracy without being affected by the slip state of the drive wheels 12 and the like.
 また、本実施の形態においては、作用トルクとして重力、粘性摩擦力、慣性力等を考慮しているが、その一部を省略してもよい。また、乾性摩擦、モータの逆起電力等の他の要素を考慮してもよい。 In this embodiment, gravity, viscous frictional force, inertial force and the like are considered as the acting torque, but some of them may be omitted. Also, other factors such as dry friction and motor back electromotive force may be considered.
 さらに、本実施の形態においては、非線形の関数によって作用トルクを決定しているが、線形近似した簡単な関数によって決定してもよい。また、非線形の関数をマップとして具備し、それを用いて決定してもよい。 Furthermore, in the present embodiment, the operating torque is determined by a non-linear function, but may be determined by a simple function that is linearly approximated. Further, a non-linear function may be provided as a map and determined using the map.
 さらに、本実施の形態においては、作用トルクの大きさや方向を推定手段によって取得しているが、別の手段によって取得してもよい。例えば、リンクブレーキ62に摩擦力の大きさを計測するトルクセンサを備え、その計測値に基づいて作用トルクの大きさや方向を決定してもよい。 Furthermore, in the present embodiment, the magnitude and direction of the acting torque are acquired by the estimation means, but may be acquired by another means. For example, the link brake 62 may be provided with a torque sensor that measures the magnitude of the frictional force, and the magnitude and direction of the acting torque may be determined based on the measured value.
 続いて、主制御ECU21は、傾斜方向判定を行い、方向がOKであるか否かを判定する(ステップS14-3)。すなわち、車体の予測される傾斜方向が基準傾斜角へ向かう方向であるか否かを判定する。判定条件、すなわち、適切な方向であると判定する条件は、下記の式によって表される。 Subsequently, the main control ECU 21 determines the inclination direction and determines whether or not the direction is OK (step S14-3). That is, it is determined whether or not the predicted inclination direction of the vehicle body is a direction toward the reference inclination angle. The determination condition, that is, the condition for determining that the direction is appropriate is represented by the following expression.
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000023
 なお、車体傾斜角φの値は、基準傾斜角を零とする。該基準傾斜角は、路面勾配に関わらず、駆動輪12の回転軸に平行な平面と搭乗部14の座面に平行な平面との交線が、水平面と平行であるような車体の傾斜角を表す。 Note that the value of the vehicle body inclination angle φ 1 has a reference inclination angle of zero. The reference inclination angle is the inclination angle of the vehicle body such that the line of intersection between the plane parallel to the rotation axis of the drive wheel 12 and the plane parallel to the seating surface of the riding section 14 is parallel to the horizontal plane, regardless of the road surface gradient. Represents.
 本実施の形態における傾斜方向判定では、予測されるリンクブレーキ62の解除時の車体傾斜方向が目標傾斜角へ向かう方向であるか否かを判定する。具体的には、車体の目標傾斜角に相当する値を零とするとき、実際の車体傾斜角と推定された解放時傾斜角速度との積が所定の負の値よりも小さい場合に、適切な方向であると判定する。このように、車体が適切な方向に傾斜すると予測される場合にのみリンクブレーキ62を解除することで、トルクを与えるアクチュエータを用いることなく車体を適切な傾斜角まで傾斜させることが可能となり、リンクモータ61の故障時の車体傾斜による乗員15の不安感や不快感を解消できる。 In the tilt direction determination in the present embodiment, it is determined whether or not the predicted vehicle body tilt direction when the link brake 62 is released is the direction toward the target tilt angle. Specifically, when the value corresponding to the target inclination angle of the vehicle body is set to zero, it is appropriate when the product of the actual vehicle body inclination angle and the estimated inclination angle at release is smaller than a predetermined negative value. The direction is determined. Thus, by releasing the link brake 62 only when the vehicle body is predicted to lean in an appropriate direction, the vehicle body can be inclined to an appropriate inclination angle without using an actuator that applies torque. The anxiety and discomfort of the occupant 15 due to the tilt of the vehicle body when the motor 61 is broken can be eliminated.
 また、車体を傾斜させる目標となる傾斜角である目標傾斜角を基準傾斜角とする。そして、車体が基準傾斜角に向けて傾斜すると判定される場合に、リンクブレーキ62を解除する。このように、車体を基準傾斜角に傾けることで、路面勾配に関わらず、搭乗部14を水平な姿勢に保持することが可能となり、乗員15の不安感や不快感を解消するのと共に、横加速度許容量を左右で同程度とすることで、一方の旋回走行時の安定性を著しく低下させることを防ぎ、ある程度の操縦性を保障できる。 Also, the target tilt angle, which is the target tilt angle for tilting the vehicle body, is set as the reference tilt angle. When it is determined that the vehicle body is inclined toward the reference inclination angle, the link brake 62 is released. In this way, by tilting the vehicle body to the reference inclination angle, it becomes possible to keep the riding section 14 in a horizontal posture regardless of the road surface gradient, thereby eliminating the anxiety and discomfort of the occupant 15 as well as sideways. By setting the acceleration allowance to the same level on the left and right, it is possible to prevent a significant decrease in the stability during one turn and to ensure a certain level of maneuverability.
 このように、本実施の形態においては、リンク機構60を解放して車体を傾斜させる目標となる傾斜角を点として与えているが、ある程度の範囲として目標傾斜角を与えてもよい。これにより、目標傾斜角付近での細かいブレーキ制御が不要になり、ブレーキ状態の頻繁な切替に伴う振動の発生を防ぐことができる。 As described above, in the present embodiment, the target tilt angle is given as a point for releasing the link mechanism 60 and tilting the vehicle body, but the target tilt angle may be given as a certain range. This eliminates the need for fine brake control in the vicinity of the target inclination angle, and can prevent the occurrence of vibration associated with frequent switching of the brake state.
 また、本実施の形態においては、目標傾斜角を所定の基準傾斜角に設定しているが、目標傾斜角を状況に応じて変化させてもよい。例えば、左右方向の路面勾配を取得する路面勾配取得手段を備え、常に車体が路面に対して垂直になるように目標傾斜角を修正してもよい。これにより、走行路面の状態が変化する度にブレーキ制御を実行する必要がなくなる。 In the present embodiment, the target inclination angle is set to a predetermined reference inclination angle, but the target inclination angle may be changed according to the situation. For example, a road surface gradient acquisition unit that acquires a road surface gradient in the left-right direction may be provided, and the target inclination angle may be corrected so that the vehicle body is always perpendicular to the road surface. Thereby, it is not necessary to execute the brake control every time the state of the traveling road surface changes.
 さらに、車両10の走行目標に応じて、目標傾斜角を変化させてもよい。例えば、乗員15によって旋回目標が入力された場合には、目標傾斜角を旋回円内側に移してもよい。これにより、リンクモータ61の故障時においても、正常時に近い旋回性能を達成することができる。 Furthermore, the target inclination angle may be changed according to the travel target of the vehicle 10. For example, when a turning target is input by the occupant 15, the target inclination angle may be moved to the inside of the turning circle. Thereby, even when the link motor 61 is out of order, turning performance close to normal can be achieved.
 そして、傾斜方向判定の結果、車体の予測される傾斜方向が基準傾斜角へ向かう方向であり、方向がOKであると判定された場合、主制御ECU21は、傾斜角速度判定を行い、速度がOKであるか否かを判定する(ステップS14-4)。なお、方向がOKでないと判定された場合には、リンクブレーキ62を作動し(ステップS14-7)、ブレーキ制御処理を終了する。 Then, as a result of the inclination direction determination, when it is determined that the predicted inclination direction of the vehicle body is the direction toward the reference inclination angle and the direction is OK, the main control ECU 21 performs the inclination angular speed determination, and the speed is OK. Is determined (step S14-4). If it is determined that the direction is not OK, the link brake 62 is operated (step S14-7), and the brake control process is terminated.
 傾斜角速度判定では、車体の傾斜角速度が許容範囲内であるか否かを判定する。そして、実際の車体傾斜角速度の絶対値と予測された解放時傾斜角速度の絶対値が共に所定の閾値以下である場合に、許容範囲内であると判定する。車体の傾斜角速度が高くなるとリンクブレーキ62を作動することで、車体の傾斜角速度を所定の制限値以下に抑え、速く傾斜することによる乗員15の不安感、及び、その後の停止時における衝撃に対する乗員15の不快感や倒立姿勢制御への悪影響を軽減する。 In the tilt angular velocity determination, it is determined whether the vehicle tilt angular velocity is within an allowable range. When the absolute value of the actual vehicle body inclination angular velocity and the predicted absolute value of the release inclination angular velocity are both equal to or less than a predetermined threshold value, it is determined that the value is within the allowable range. When the vehicle body inclination angular velocity increases, the link brake 62 is actuated to keep the vehicle body inclination angular velocity below a predetermined limit value. 15 adverse effects and adverse effects on inverted posture control are reduced.
 そして、傾斜角速度判定の結果、車体の予測される傾斜角速度が許容範囲内であり、速度がOKであると判定された場合、主制御ECU21は、乗員許可判定を行い、許可がOKであるか否かを判定する(ステップS14-5)。なお、速度がOKでないと判定された場合には、リンクブレーキ62を作動し(ステップS14-7)、ブレーキ制御処理を終了する。 Then, as a result of the inclination angular velocity determination, when it is determined that the predicted inclination angular velocity of the vehicle body is within the allowable range and the speed is OK, the main control ECU 21 performs occupant permission determination, and whether the permission is OK. It is determined whether or not (step S14-5). If it is determined that the speed is not OK, the link brake 62 is operated (step S14-7), and the brake control process is terminated.
 乗員許可判定では、乗員15がリンクブレーキ62の解除を許可しているか否かを判定する。主制御ECU21は、復帰許可スイッチ32の操作状態を許可信号受信の有無によって判定し、許可信号を受信した場合には、乗員15は許可していると判定する。これにより、リンクブレーキ62の解除に伴う車体の不意の傾斜によって乗員15に不安感を与えることを防ぐと共に、リンクモータ61が異常状態にあることを乗員15に認識させることができる。 In the passenger permission determination, it is determined whether or not the passenger 15 permits the release of the link brake 62. The main control ECU 21 determines the operation state of the return permission switch 32 based on whether or not a permission signal has been received. If the permission signal is received, the main control ECU 21 determines that the occupant 15 has permitted. Accordingly, it is possible to prevent the occupant 15 from feeling uneasy due to the unexpected inclination of the vehicle body accompanying the release of the link brake 62, and to make the occupant 15 recognize that the link motor 61 is in an abnormal state.
 なお、本実施の形態においては、乗員15がリンクブレーキ62の解除を許可しない限り、傾斜方向予測によるブレーキ制御を実行しないが、特定の条件下では、乗員15の許可状況に関わらずブレーキ制御を実行してもよい。例えば、車体が目標傾斜角から所定の角度以上離れた位置で固定された場合には、乗員15の許可状況に関わらず、ブレーキ制御を実行してもよい。これにより、リンク機構60を適切な状態に回転させる好機を確実に活かすことができる。 In the present embodiment, unless the occupant 15 permits the release of the link brake 62, the brake control based on the inclination direction prediction is not executed. However, under a specific condition, the brake control is not performed regardless of the occupant 15 permission status. May be executed. For example, when the vehicle body is fixed at a position away from the target inclination angle by a predetermined angle or more, the brake control may be executed regardless of the permission status of the occupant 15. Thereby, the opportunity to rotate the link mechanism 60 to an appropriate state can be reliably utilized.
 そして、乗員許可判定の結果、乗員15がリンクブレーキ62の解除を許可し、許可がOKであると判定された場合、主制御ECU21は、リンクブレーキ62を解除し(ステップS14-6)、ブレーキ制御処理を終了する。なお、許可がOKでないと判定された場合には、リンクブレーキ62を作動し(ステップS14-7)、ブレーキ制御処理を終了する。 As a result of the occupant permission determination, if the occupant 15 permits the release of the link brake 62 and it is determined that the permission is OK, the main control ECU 21 releases the link brake 62 (step S14-6), and the brake The control process ends. If it is determined that the permission is not OK, the link brake 62 is operated (step S14-7), and the brake control process is terminated.
 ブレーキ制御処理では、3つの条件がすべて適切である場合に限り、リンクブレーキ62を解除する。具体的には、主制御ECU21からリンクブレーキ62に作動電圧を入力する。 In the brake control process, the link brake 62 is released only when all three conditions are appropriate. Specifically, an operating voltage is input from the main control ECU 21 to the link brake 62.
 なお、本実施の形態においては、車体傾斜センサ41によって計測された左右車体傾斜角(ロール角)に基づいて制御を実行しているが、他のセンサによって取得された状態量で代用してもよい。例えば、リンクモータ61の回転角又はリンク機構60の状態を計測するリンクセンサを備え、その計測値を車体傾斜角に換算してブレーキ制御を実行してもよい。この場合、路面勾配への適応は困難であるが、車体傾斜センサ41が不要となり、安価なシステムを実現できる。あるいは、別途路面勾配を計測又は推定する手段を備え、その取得値とリンク機構60の状態量から車体傾斜角を推定してもよい。 In the present embodiment, the control is executed based on the left and right vehicle body inclination angles (roll angles) measured by the vehicle body inclination sensor 41. However, the state quantities acquired by other sensors may be substituted. Good. For example, a link sensor that measures the rotation angle of the link motor 61 or the state of the link mechanism 60 may be provided, and the brake value may be executed by converting the measured value into the vehicle body inclination angle. In this case, although it is difficult to adapt to the road surface gradient, the vehicle body tilt sensor 41 is not necessary, and an inexpensive system can be realized. Alternatively, a means for separately measuring or estimating the road surface gradient may be provided, and the vehicle body inclination angle may be estimated from the acquired value and the state quantity of the link mechanism 60.
 また、本実施の形態においては、リンクモータ61の異常時に限り、前記ブレーキ制御を実行しているが、他の場面で実行してもよい。例えば、バッテリの残量低下によって節電を要求された場合に前記ブレーキ制御を実行することで、消費電力を低減することができる。 In the present embodiment, the brake control is executed only when the link motor 61 is abnormal, but it may be executed in another scene. For example, the power consumption can be reduced by executing the brake control when power saving is requested due to a decrease in the remaining battery level.
 このように、本実施の形態において、主制御ECU21は、リンクブレーキ62を解除した場合に車体が傾斜する方向を予測する傾斜方向予測手段を備え、目標傾斜角に近付く方向への傾斜を予測した場合にリンクブレーキ62を解除する。具体的には、傾斜方向予測手段は、車体の傾斜角速度と作用トルク推定値によって傾斜方向を予測する。この場合、作用トルクが所定時間だけ作用した後の傾斜角速度を推定して、傾斜方向を予測する。そして、リンク機構60の停止時において、作用トルクが目標傾斜角の方向に働くと予測される場合にリンクブレーキ62を解除する。また、リンク機構60の移動時において、目標傾斜角に向かう傾斜角速度が所定の閾値よりも高い場合にリンクブレーキ62を解除する。さらに、車体傾斜角と車両横加速度によって作用トルクを推定する。この場合、重力、摩擦力及び遠心力の影響を考慮する。また、車体の傾斜速度が所定の閾値よりも高い場合には、リンクブレーキ62を作動する。さらに、制御ECU20は、傾斜許可手段としての復帰許可スイッチ32を備え、乗員15がリンクブレーキ62の解除を許可した場合に、リンクブレーキ62を解除する。また、車体を傾斜させるリンクモータ61のトルク発生が不可能な場合にブレーキ制御を実行する。この場合、搭乗部14が水平になる角度を目標傾斜角とする。 As described above, in the present embodiment, the main control ECU 21 includes a tilt direction predicting unit that predicts a direction in which the vehicle body tilts when the link brake 62 is released, and predicts a tilt in a direction approaching the target tilt angle. In this case, the link brake 62 is released. Specifically, the tilt direction predicting means predicts the tilt direction based on the tilt angular velocity of the vehicle body and the estimated value of the acting torque. In this case, the tilting direction is predicted by estimating the tilting angular velocity after the acting torque has acted for a predetermined time. When the link mechanism 60 is stopped, the link brake 62 is released when it is predicted that the acting torque will work in the direction of the target inclination angle. Further, when the link mechanism 60 moves, the link brake 62 is released when the tilt angular velocity toward the target tilt angle is higher than a predetermined threshold. Further, the acting torque is estimated from the vehicle body inclination angle and the vehicle lateral acceleration. In this case, the effects of gravity, frictional force and centrifugal force are taken into account. When the vehicle body tilt speed is higher than a predetermined threshold, the link brake 62 is operated. Further, the control ECU 20 includes a return permission switch 32 as a tilt permission means, and releases the link brake 62 when the occupant 15 permits the release of the link brake 62. Further, brake control is executed when it is impossible to generate torque of the link motor 61 that tilts the vehicle body. In this case, an angle at which the riding section 14 is horizontal is set as a target inclination angle.
 これにより、リンクモータ61の異常に伴い、車体が大きく傾いた状態で停止し、固定された場合であっても、車体の姿勢が適切な状態に自動的に復帰する。したがって、車体傾斜によって乗員15に与える不快感及び不安感、並びに、操縦性の低下が解消されるので、安全で快適な倒立型の車両10を提供できる。 Thus, when the link motor 61 is abnormal, the vehicle body stops in a state of being largely inclined and is automatically fixed to an appropriate state even when the vehicle body is fixed. Therefore, since the discomfort and anxiety given to the occupant 15 due to the vehicle body inclination and the decrease in maneuverability are eliminated, the safe and comfortable inverted vehicle 10 can be provided.
 次に、本発明の第4の実施の形態について説明する。なお、第1~第3の実施の形態と同じ構造を有するものについては、同じ符号を付与することによってその説明を省略する。また、前記第1~第3の実施の形態と同じ動作及び同じ効果についても、その説明を省略する。 Next, a fourth embodiment of the present invention will be described. Note that components having the same structure as those of the first to third embodiments are denoted by the same reference numerals and description thereof is omitted. The description of the same operations and effects as those of the first to third embodiments is also omitted.
 図12は本発明の第4の実施の形態における車両システムの構成を示すブロック図である。 FIG. 12 is a block diagram showing a configuration of a vehicle system according to the fourth embodiment of the present invention.
 本実施の形態においては、車体傾斜状態の計測値を用いずに、ブレーキ制御処理を実行する。 In the present embodiment, the brake control process is executed without using the measured value of the vehicle body tilt state.
 リンク機構60の回転角の計測値から車体傾斜角を求める場合、リンクモータ61の故障状態によっては、トルクの付加と車体傾斜角の取得が同時に不可能となる可能性がある。例えば、リンクモータ61の電流制御に必要な位相角の取得とリンク機構60の回転角の取得に共通のセンサを用いる場合、そのセンサが故障すると、トルク制御と傾斜角取得が同時に不可能になる。このような故障モードに備えて、別のフェイルセーフ手段を用意することが必要であり、安価な車両10の実現が困難になる可能性がある。 When obtaining the vehicle body inclination angle from the measured value of the rotation angle of the link mechanism 60, depending on the failure state of the link motor 61, it may be impossible to add torque and acquire the vehicle body inclination angle at the same time. For example, when a common sensor is used for acquisition of the phase angle necessary for current control of the link motor 61 and acquisition of the rotation angle of the link mechanism 60, if the sensor fails, torque control and inclination angle acquisition cannot be performed simultaneously. . In preparation for such a failure mode, it is necessary to prepare another fail-safe means, which may make it difficult to realize an inexpensive vehicle 10.
 そこで、本実施の形態においては、リンクブレーキ62の解除継続時間を制限する。具体的には、周期信号取得手段を備え、周期信号出力時に限り、リンクブレーキ62の解除を許可する。また、作用トルクの方向と異常発生直前の車体傾斜角に基づいて、リンクブレーキ62の状態を制御する。具体的には、作用トルクの値と異常発生直前の車体傾斜角の値との積が負である場合、リンクブレーキ62を解除する。この場合、作用トルクの推定に、異常発生直前の車体傾斜角の値を用いる。さらに、基準傾斜角検出手段を備え、車体が基準傾斜角に到達したときリンクブレーキ62の解除を禁止する。 Therefore, in the present embodiment, the release continuation time of the link brake 62 is limited. Specifically, a periodic signal acquisition unit is provided, and the release of the link brake 62 is permitted only when the periodic signal is output. Further, the state of the link brake 62 is controlled based on the direction of the acting torque and the vehicle body inclination angle immediately before the occurrence of the abnormality. Specifically, the link brake 62 is released when the product of the value of the acting torque and the value of the vehicle body tilt angle immediately before the occurrence of the abnormality is negative. In this case, the value of the vehicle body tilt angle immediately before the occurrence of the abnormality is used for estimating the action torque. Further, a reference inclination angle detecting means is provided, and the release of the link brake 62 is prohibited when the vehicle body reaches the reference inclination angle.
 これにより、リンク機構60のトルク付加と傾斜状態取得の両方が不可能であっても、ブレーキ制御処理を実行可能とすることができ、より安全で安価な倒立型の車両10を提供することができる。 Thereby, even if it is impossible to add torque and acquire the tilt state of the link mechanism 60, it is possible to execute the brake control process, and to provide a safer and cheaper inverted vehicle 10. it can.
 図12に示されるように、本実施の形態においては、制御ECU20は、基準傾斜角検出手段としての基準傾斜角検出センサ66を備える。該基準傾斜角検出センサ66は、車体が基準傾斜角に到達したことを検出すると、到達信号を主制御ECU21に送信する。 As shown in FIG. 12, in the present embodiment, the control ECU 20 includes a reference inclination angle detection sensor 66 as reference inclination angle detection means. When detecting that the vehicle body has reached the reference inclination angle, the reference inclination angle detection sensor 66 transmits an arrival signal to the main control ECU 21.
 本実施の形態においては、基準傾斜角検出センサ66として、光検出型の近接センサを用いる。具体的には、車体を含む傾斜部に遮蔽(へい)板を具備し、固定部の基準傾斜角に相当する位置に発光部と受光部とを具備し、発光部からの光が遮蔽板によって遮られることで受光部が受光できない場合に、到達信号を主制御ECU21に送信する。 In this embodiment, a light detection type proximity sensor is used as the reference inclination angle detection sensor 66. Specifically, the inclined portion including the vehicle body is provided with a shielding (edge) plate, the light emitting portion and the light receiving portion are provided at a position corresponding to the reference inclination angle of the fixed portion, and light from the light emitting portion is reflected by the shielding plate. When the light receiving unit cannot receive light due to being blocked, an arrival signal is transmitted to the main control ECU 21.
 なお、その他の点の構成については、前記第3の実施の形態と同様であるので、その説明を省略する。 The configuration of other points is the same as that of the third embodiment, and a description thereof will be omitted.
 次に、本実施の形態における車両10の動作について説明する。ここでは、ブレーキ制御処理について説明する。 Next, the operation of the vehicle 10 in the present embodiment will be described. Here, the brake control process will be described.
 図13は本発明の第4の実施の形態におけるブレーキ制御処理の動作を示すフローチャートである。 FIG. 13 is a flowchart showing the operation of the brake control process in the fourth embodiment of the present invention.
 本実施の形態では、ブレーキ制御処理において、主制御ECU21は、まず、センサから各状態量を取得する(ステップS14-11)。具体的には、駆動輪センサ51から駆動輪回転角又は回転角速度を取得する。 In the present embodiment, in the brake control process, the main control ECU 21 first acquires each state quantity from the sensor (step S14-11). Specifically, the drive wheel rotation angle or rotation angular velocity is acquired from the drive wheel sensor 51.
 続いて、主制御ECU21は、作用トルクを予測する(ステップS14-12)。この場合、主制御ECU21は、各状態量から、車体に作用する作用トルク(車体作用トルク)Mを下記の式によって取得する。 Subsequently, the main control ECU 21 predicts the operating torque (step S14-12). In this case, the main control ECU 21 obtains an action torque (vehicle action torque) M 1 acting on the vehicle body from each state quantity by the following equation.
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000024
 作用トルクMを表す上記の式の各項は以下の作用に相当する。
第1項:車体が傾くことによる重力の作用
第2項:車両10が旋回することによる遠心力の作用
 なお、上記式の中の各駆動輪回転角速度の値は、駆動輪回転角の計測値を1階時間微分(差分)することで得られる。
Each term of the above formula representing the working torque M 1 corresponds to the following action.
1st term: action of gravity due to tilting of vehicle body 2nd term: action of centrifugal force caused by turning of vehicle 10 Note that the value of each drive wheel rotation angular velocity in the above formula is a measured value of the drive wheel rotation angle. Is obtained by first-order time differentiation (difference).
 このように、モータ異常発生直前の車体傾斜角に基づいて、該車体傾斜角の影響を考慮する。具体的には、最後に取得した車体傾斜角の計測値によって、車体傾斜による重力の影響を考慮する。実質的にモータ異常発生後の最大車体傾斜角に相当する異常発生直前の値を用いることで、実際の車体傾斜角すなわち重力トルクよりも小さく推定すること、及び、誤った推定の結果としてブレーキ解除時に車体が更に大きく傾斜することを確実に防ぐことができる。したがって、車体傾斜状態を取得できない場合でも、確実に車体を適切な傾斜状態に導くことができる。 Thus, based on the vehicle body tilt angle immediately before the occurrence of the motor abnormality, the influence of the vehicle body tilt angle is considered. Specifically, the influence of gravity due to the vehicle body tilt is taken into account by the measured value of the vehicle body tilt angle acquired last. By using the value immediately before the occurrence of the abnormality that substantially corresponds to the maximum vehicle body inclination angle after the motor abnormality has occurred, the actual vehicle body inclination angle, that is, estimated to be smaller than the gravitational torque, and the brake release as a result of erroneous estimation Sometimes it is possible to reliably prevent the vehicle body from tilting further. Therefore, even when the vehicle body tilt state cannot be acquired, the vehicle body can be reliably guided to an appropriate tilt state.
 続いて、主制御ECU21は、傾斜方向判定を行い、方向がOKであるか否かを判定する(ステップS14-13)。すなわち、作用トルクが基準傾斜角へ向かう方向に作用しているか否かを判定する。判定条件、すなわち、適切な方向であると判定する条件は、下記の式によって表される。 Subsequently, the main control ECU 21 determines the inclination direction and determines whether or not the direction is OK (step S14-13). That is, it is determined whether or not the acting torque is acting in the direction toward the reference inclination angle. The determination condition, that is, the condition for determining that the direction is appropriate is represented by the following expression.
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000025
 本実施の形態における傾斜方向判定では、車体に作用するトルクが車体を目標傾斜角へ向かう方向に作用しているか否かを判定する。具体的には、車体の目標傾斜角に相当する値を零とする場合、モータ異常発生直前の車体傾斜角と推定された作用トルクとの積が所定の負の値よりも小さいときに、適切な方向であると判定する。このように、モータ異常発生直前の車体傾斜角について、その正負によって車体を傾斜させるべき方向を判定することにより、モータ異常発生後に車体傾斜角が不明であっても、車体を目標傾斜角に向けて移動させることが可能となり、モータ異常発生時の車体姿勢をある程度適切な状態に復帰させることができる。 In the tilt direction determination in the present embodiment, it is determined whether or not the torque acting on the vehicle body is acting in the direction toward the target tilt angle. Specifically, when the value corresponding to the target inclination angle of the vehicle body is set to zero, it is appropriate when the product of the vehicle body inclination angle immediately before the motor abnormality occurs and the estimated action torque is smaller than a predetermined negative value. It is determined that the direction is correct. As described above, the vehicle body tilt angle immediately before the occurrence of the motor abnormality is determined based on whether the vehicle body should be tilted based on whether the vehicle body tilt angle is unknown or not. It is possible to move the vehicle body posture to an appropriate state to some extent when a motor abnormality occurs.
 なお、本実施の形態においては、目標傾斜角に相当する位置に基準傾斜角検出センサ66を1つ備えるが、基準傾斜角検出センサ66を複数備え、各取付位置を目標傾斜角の候補として、それらを路面勾配や旋回走行目標に応じて選択できるようにしてもよい。これにより、選択的な目標傾斜角に車体傾斜状態を誘導することが可能となる。 In the present embodiment, one reference inclination angle detection sensor 66 is provided at a position corresponding to the target inclination angle, but a plurality of reference inclination angle detection sensors 66 are provided, and each attachment position is set as a target inclination angle candidate. You may enable it to select them according to a road surface gradient or a turning target. As a result, the vehicle body tilt state can be guided to a selective target tilt angle.
 そして、傾斜方向判定の結果、作用トルクが基準傾斜角へ向かう方向に作用し、方向がOKであると判定された場合、主制御ECU21は、周期信号許可判定を行い、時刻がOKであるか否かを判定する(ステップS14-14)。なお、方向がOKでないと判定された場合には、リンクブレーキ62を作動し(ステップS14-18)、ブレーキ制御処理を終了する。 As a result of the inclination direction determination, when the acting torque acts in the direction toward the reference inclination angle and it is determined that the direction is OK, the main control ECU 21 performs the periodic signal permission determination, and whether the time is OK. It is determined whether or not (step S14-14). If it is determined that the direction is not OK, the link brake 62 is operated (step S14-18), and the brake control process is terminated.
 周期信号許可判定では、リンクブレーキ62の解除が許可されている時刻であるか否かを判定する。判定条件、すなわち、リンクブレーキ62を解除する条件は、下記の式によって表される。 In the periodic signal permission determination, it is determined whether it is a time when the release of the link brake 62 is permitted. The determination condition, that is, the condition for releasing the link brake 62 is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000026
 なお、tは時刻、Tは解除許可時間(所定値)、Tは解除禁止時間(所定値)である。 Note that t is a time, TH is a release permission time (predetermined value), and TL is a release prohibition time (predetermined value).
 周期信号許可判定(解除継続時間制限)では、時刻によって、リンクブレーキ62の解除を禁止する。具体的には、リンクブレーキ62の解除の許可と禁止を周期的に繰り返す。つまり、所定の解除許可時間だけ解除を許可した後、所定の解除禁止時間だけ解除を禁止することを繰り返す。このように、リンクブレーキ62の解除を継続する時間を所定の解除許可時間内に制限することで、車体傾斜状態を取得できない場合でも、車体の傾斜角速度が過剰に上昇することを確実に防止できる。 In periodic signal permission determination (release duration limit), release of the link brake 62 is prohibited depending on the time of day. Specifically, permission and prohibition of release of the link brake 62 are periodically repeated. That is, after the release is permitted for a predetermined release permission time, the release is repeatedly prohibited for the predetermined release prohibition time. Thus, by limiting the time for which the release of the link brake 62 is continued within the predetermined release permission time, it is possible to reliably prevent an excessive increase in the tilt angular velocity of the vehicle body even when the vehicle body tilt state cannot be obtained. .
 なお、本実施の形態においては、他の解除許可条件とは無関係に、周期的なリンクブレーキ62の強制作動を実行しているが、他の条件に適応させてもよい。例えば、傾斜方向判定でリンクブレーキ62の解除を許可された時点からの時間を時刻として、周期信号許可判定を実行してもよい。これにより、車体をより効率的に素早く目標傾斜角に誘導できる。 In this embodiment, the periodic link brake 62 is forcibly operated regardless of other release permission conditions, but may be adapted to other conditions. For example, the periodic signal permission determination may be executed using the time from the time when the release of the link brake 62 is permitted in the tilt direction determination as the time. Thereby, the vehicle body can be guided to the target inclination angle more efficiently and quickly.
 そして、周期信号許可判定の結果、リンクブレーキ62の解除が許可され、時刻がOKであると判定された場合、主制御ECU21は、乗員許可判定を行い、許可がOKであるか否かを判定する(ステップS14-15)。なお、時刻がOKでないと判定された場合には、リンクブレーキ62を作動し(ステップS14-18)、ブレーキ制御処理を終了する。 Then, as a result of the periodic signal permission determination, when the release of the link brake 62 is permitted and it is determined that the time is OK, the main control ECU 21 performs an occupant permission determination and determines whether the permission is OK or not. (Step S14-15). If it is determined that the time is not OK, the link brake 62 is operated (step S14-18), and the brake control process is terminated.
 乗員許可判定では、乗員15がリンクブレーキ62の解除を許可しているか否かを判定する。主制御ECU21は、復帰許可スイッチ32の操作状態を許可信号受信の有無によって判定し、許可信号を受信した場合には、乗員15は許可していると判定する。これにより、リンクブレーキ62の解除に伴う車体の不意の傾斜によって乗員15に不安感を与えることを防ぐと共に、リンクモータ61が異常状態にあることを乗員15に認識させることができる。 In the passenger permission determination, it is determined whether or not the passenger 15 permits the release of the link brake 62. The main control ECU 21 determines the operation state of the return permission switch 32 based on whether or not a permission signal has been received. If the permission signal is received, the main control ECU 21 determines that the occupant 15 has permitted. Accordingly, it is possible to prevent the occupant 15 from feeling uneasy due to the unexpected inclination of the vehicle body accompanying the release of the link brake 62, and to make the occupant 15 recognize that the link motor 61 is in an abnormal state.
 そして、乗員許可判定の結果、乗員15がリンクブレーキ62の解除を許可し、許可がOKであると判定された場合、主制御ECU21は、基準傾斜角到達判定を行い、未到達であるか否かを判定する(ステップS14-16)。なお、許可がOKでないと判定された場合には、リンクブレーキ62を作動し(ステップS14-18)、ブレーキ制御処理を終了する。 As a result of the occupant permission determination, when the occupant 15 permits the release of the link brake 62 and it is determined that the permission is OK, the main control ECU 21 performs the reference inclination angle arrival determination and determines whether or not it has not yet reached. Is determined (step S14-16). If it is determined that the permission is not OK, the link brake 62 is operated (step S14-18), and the brake control process is terminated.
 基準傾斜角到達判定では、車体が既に基準傾斜角に到達しているか否かを判定する。この場合、主制御ECU21は、車体が基準傾斜角に到達しているか否かを到達信号受信の有無によって判定し、到達信号を受信した場合には、車体が基準傾斜角に到達していると判定する。これにより、車体傾斜状態の計測値を取得不可能であっても、車体を適切な傾斜角で固定できる。 In the reference inclination angle arrival determination, it is determined whether or not the vehicle body has already reached the reference inclination angle. In this case, the main control ECU 21 determines whether or not the vehicle body has reached the reference inclination angle based on whether or not the arrival signal has been received. If the arrival signal is received, the main control ECU 21 determines that the vehicle body has reached the reference inclination angle. judge. Thereby, even if the measurement value of the vehicle body tilt state cannot be acquired, the vehicle body can be fixed at an appropriate tilt angle.
 なお、本実施の形態においては、車体を傾斜させる目標となる傾斜角を点として与えているが、ある程度の範囲として目標傾斜角を与えてもよい。例えば、車体の基準傾斜角から所定値だけ異なる角度に相当する2点に基準傾斜角検出センサ66をそれぞれ取り付け、一方の基準傾斜角検出センサ66から到達信号を受信した時点で、車体傾斜角が許容範囲内に存在すると判断して、以降のブレーキ解除を禁止してもよい。 In this embodiment, the target tilt angle for tilting the vehicle body is given as a point, but the target tilt angle may be given as a certain range. For example, when the reference inclination angle detection sensor 66 is attached to each of two points corresponding to angles different from the reference inclination angle of the vehicle body by a predetermined value, and the arrival signal is received from one reference inclination angle detection sensor 66, the vehicle body inclination angle is It may be determined that it is within the allowable range, and subsequent brake release may be prohibited.
 そして、基準傾斜角到達判定の結果、車体が未だに基準傾斜角に到達しておらず、未到達であると判定された場合、主制御ECU21は、リンクブレーキ62を解除し(ステップS14-17)、ブレーキ制御処理を終了する。なお、到達していると判定された場合には、リンクブレーキ62を作動し(ステップS14-18)、ブレーキ制御処理を終了する。 If it is determined that the vehicle body has not yet reached the reference inclination angle as a result of the reference inclination angle arrival determination, the main control ECU 21 releases the link brake 62 (step S14-17). Then, the brake control process is terminated. If it is determined that the link has been reached, the link brake 62 is operated (step S14-18), and the brake control process is terminated.
 ブレーキ制御処理では、4つの条件がすべて適切である場合に限り、リンクブレーキ62を解除する。具体的には、主制御ECU21からリンクブレーキ62に作動電圧を入力する。 In the brake control process, the link brake 62 is released only when all four conditions are appropriate. Specifically, an operating voltage is input from the main control ECU 21 to the link brake 62.
 このように、本実施の形態においては、車体傾斜状態の計測値を用いずに、ブレーキ制御処理を実行する。具体的には、周期信号出力時に限り、リンクブレーキ62の解除を許可する。また、作用トルクの値と異常発生直前の車体傾斜角の値との積が負である場合、リンクブレーキ62を解除する。さらに、車体が基準傾斜角に到達したときリンクブレーキ62の解除を禁止する。 Thus, in the present embodiment, the brake control process is executed without using the measured value of the vehicle body tilt state. Specifically, the release of the link brake 62 is permitted only when the periodic signal is output. Further, when the product of the value of the acting torque and the value of the vehicle body tilt angle immediately before the occurrence of the abnormality is negative, the link brake 62 is released. Further, the release of the link brake 62 is prohibited when the vehicle body reaches the reference inclination angle.
 これにより、リンク機構60のトルク付加と傾斜状態取得の両方が不可能であっても、ブレーキ制御処理の実行が可能となり、より安全で安価な倒立型の車両10を提供することができる。 Thereby, even if it is impossible to both add torque and acquire the tilt state of the link mechanism 60, it is possible to execute the brake control processing, and it is possible to provide the inverted vehicle 10 that is safer and less expensive.
 次に、本発明の第5の実施の形態について説明する。なお、第1~第4の実施の形態と同じ構造を有するものについては、同じ符号を付与することによってその説明を省略する。また、前記第1~第4の実施の形態と同じ動作及び同じ効果についても、その説明を省略する。 Next, a fifth embodiment of the present invention will be described. Note that components having the same structure as those of the first to fourth embodiments are denoted by the same reference numerals and description thereof is omitted. Explanation of the same operations and effects as those in the first to fourth embodiments is also omitted.
 図14は本発明の第5の実施の形態における車両の傾斜状態を示す図、図15は本発明の第5の実施の形態における車両システムの構成を示すブロック図である。なお、図14において、(a)は旋回走行、(b)はブレーキ作動、(c)はブレーキ解除、(d)は状態復帰を示す。 FIG. 14 is a diagram showing a tilted state of the vehicle in the fifth embodiment of the present invention, and FIG. 15 is a block diagram showing the configuration of the vehicle system in the fifth embodiment of the present invention. In FIG. 14, (a) shows turning, (b) shows brake operation, (c) shows brake release, and (d) shows state return.
 本実施の形態においては、車両10が3輪以上の車輪を有するものである場合について説明する。つまり、前記車両10は、例えば、前輪が1輪であり後輪が2輪である3輪車、前輪が2輪であり後輪が1輪である3輪車、前輪及び後輪が2輪である4輪車等であるが、3輪以上の車輪を有するものであれば、いかなる種類のものであってもよい。 In the present embodiment, the case where the vehicle 10 has three or more wheels will be described. That is, the vehicle 10 includes, for example, a three-wheeled vehicle having one front wheel and two rear wheels, a three-wheeled vehicle having two front wheels and one rear wheel, and two front wheels and rear wheels. However, it may be of any kind as long as it has three or more wheels.
 ここでは、説明の都合上、前記車両10が、車体の前方に配設され、操舵輪として機能する1つの前輪と、車体の後方に配設され、駆動輪12として機能する左右2つの後輪とを有する3輪車であるものとして説明する。この場合、車両10は、前記第1及び第2の実施の形態と同様に、リンク機構60によって左右の後輪のキャンバー角を変化させるとともに、搭乗部14及び本体部11を含む車体を旋回内輪側へ傾斜させることによって、旋回性能の向上と図示しない乗員の快適性の確保とを図ることができるようになっている。すなわち、前記車両10は車体を横方向(左右方向)にも傾斜させることができる。なお、倒立振り子の姿勢制御のような姿勢制御は行わないものとする。すなわち、車体の前後方向の姿勢制御は行わないものとする。 Here, for convenience of explanation, the vehicle 10 is disposed in front of the vehicle body and has one front wheel that functions as a steering wheel, and two left and right rear wheels that are disposed in the rear of the vehicle body and function as drive wheels 12. It is assumed that the vehicle is a three-wheeled vehicle having In this case, as in the first and second embodiments, the vehicle 10 changes the camber angles of the left and right rear wheels by the link mechanism 60 and moves the vehicle body including the riding portion 14 and the main body portion 11 to the turning inner wheel. By tilting to the side, it is possible to improve the turning performance and ensure the comfort of the passenger (not shown). That is, the vehicle 10 can tilt the vehicle body in the lateral direction (left and right direction). Note that posture control such as posture control of an inverted pendulum is not performed. That is, the posture control of the vehicle body in the front-rear direction is not performed.
 また、本実施の形態における車両10の入力装置30は、図に示されるように、ジョイスティック31を備えておらず、その代わりに、ハンドル33、スロットルグリップ34及びブレーキレバー35を操縦装置として備える。 In addition, as shown in the figure, the input device 30 of the vehicle 10 in the present embodiment does not include the joystick 31, but instead includes a handle 33, a throttle grip 34, and a brake lever 35 as a steering device.
 前記ハンドル33は、一般的なオートバイ、自転車等において使用されている棒状の部材であり、前輪に直結している。そして、一般的なオートバイ、自転車等の場合と同様に、乗員15によるハンドル33の操作に応じて操舵輪としての前輪は舵角を変化させ、これにより、車両10の進行方向が変化する。 The handle 33 is a rod-like member used in general motorcycles, bicycles, etc., and is directly connected to the front wheels. As in the case of general motorcycles, bicycles, etc., the front wheels as the steered wheels change the steering angle in accordance with the operation of the handle 33 by the occupant 15, thereby changing the traveling direction of the vehicle 10.
 また、前記スロットルグリップ34は、一般的なオートバイ等において使用されているスロットルグリップと同様の部材であり、棒状のハンドル33の一端に回転可能に取り付けられ、その回転角度、すなわち、スロットル開度に応じて、車両10を加速するような走行指令を入力する装置である。 The throttle grip 34 is a member similar to a throttle grip used in a general motorcycle or the like, and is rotatably attached to one end of a rod-like handle 33. The rotation angle, that is, the throttle opening is set. Accordingly, it is a device for inputting a travel command for accelerating the vehicle 10.
 さらに、前記ブレーキレバー35は、一般的なオートバイ、自転車等において使用されているブレーキレバーと同様の部材であり、棒状のハンドル33の一端に揺動可能に取り付けられ、その操作角度、すなわち、ブレーキ操作量に応じて、車両10を減速するような走行指令を入力する装置である。 Further, the brake lever 35 is a member similar to a brake lever used in general motorcycles, bicycles and the like, and is attached to one end of a rod-like handle 33 so as to be swingable. This is a device for inputting a travel command for decelerating the vehicle 10 according to the operation amount.
 また、車体制御システム40は、横加速度センサ43を備える。該横加速度センサ43は、一般的な加速度センサ、ジャイロセンサ等から成るセンサであって、車両10の横加速度を検出する。 Further, the vehicle body control system 40 includes a lateral acceleration sensor 43. The lateral acceleration sensor 43 is a sensor composed of a general acceleration sensor, a gyro sensor, or the like, and detects the lateral acceleration of the vehicle 10.
 なお、その他の点の構成については、前記第3の実施の形態と同様であるので、その説明を省略する。 The configuration of other points is the same as that of the third embodiment, and a description thereof will be omitted.
 そして、制御ECU20によって姿勢制御が行われることで、車両10は、旋回走行時には、図14(a)に示されるように、車体を旋回円内側に傾けた状態で旋回する。そして、旋回走行中にリンクモータ61に異常が発生すると、すなわち、アクチュエータ異常が発生すると、リンクブレーキ62を作動させる。すると、図14(b)に示されるように、旋回終了後も、車体傾斜状態が保持される。続いて、所定の条件が満たされるとブレーキ解除が行われ、再び旋回走行中にリンクブレーキ62を解除して旋回円外側への車体傾斜を許可する。すると、図14(c)に示されるように、遠心力の作用により、車体を起き上がらせる。そして、図14(d)に示されるように、リンク機構60が回転し、車体が直立状態に復帰する。そして、この状態、すなわち、復帰状態で、再度リンクブレーキ62を作動させ、リンク機構60を固定する。 Then, as the attitude control is performed by the control ECU 20, the vehicle 10 turns in a state where the vehicle body is tilted to the inside of the turning circle as shown in FIG. When an abnormality occurs in the link motor 61 during turning, that is, when an actuator abnormality occurs, the link brake 62 is operated. Then, as shown in FIG. 14B, the vehicle body tilt state is maintained even after the turn is completed. Subsequently, when a predetermined condition is satisfied, the brake is released, and the link brake 62 is released again during turning, allowing the vehicle body to be tilted to the outside of the turning circle. Then, as shown in FIG. 14C, the vehicle body is raised by the action of centrifugal force. Then, as shown in FIG. 14D, the link mechanism 60 rotates and the vehicle body returns to the upright state. In this state, that is, in the return state, the link brake 62 is operated again, and the link mechanism 60 is fixed.
 次に、本実施の形態における構成の車両10の動作について詳細に説明する。ここでは、走行及び姿勢制御処理の概要についての説明は省略し、まず、ブレーキ制御処理について説明する。 Next, the operation of the vehicle 10 having the configuration in the present embodiment will be described in detail. Here, description of the outline of the running and posture control processing is omitted, and first, the brake control processing will be described.
 本実施の形態において、車両左右加速度αは、横加速度センサ43によって取得される。また、車体制御システム40がヨーレートセンサを備える場合には、次式によって得ることもできる。これは、本実施の形態においては、車両10が3輪車なので、前記第3の実施の形態のように、左右輪の回転差に基づいて車両左右加速度αを算出すると、正確な値を得ることができないからである。
α=vω
 ここで、vは左右輪平均車速〔m/s〕であり、ωはヨーレート〔rad/s〕であり、ヨーレートセンサの出力である。
In the present embodiment, the vehicle lateral acceleration α L is acquired by the lateral acceleration sensor 43. Further, when the vehicle body control system 40 includes a yaw rate sensor, it can be obtained by the following equation. In this embodiment, since the vehicle 10 is a three-wheeled vehicle, when the vehicle lateral acceleration α L is calculated based on the rotational difference between the left and right wheels as in the third embodiment, an accurate value is obtained. It is because it cannot be obtained.
α L = vω
Here, v is an average vehicle speed [m / s] for the left and right wheels, and ω is a yaw rate [rad / s], which is an output of the yaw rate sensor.
 なお、ヨーレートωは、前輪の舵角から、次式によって得ることもできる。
ω=v・tan θ/L
 ここで、θは舵角であり、Lは車両10のホイールベース〔m〕である。
The yaw rate ω can also be obtained from the steering angle of the front wheels according to the following equation.
ω = v · tan θ / L
Here, θ is a steering angle, and L is a wheel base [m] of the vehicle 10.
 なお、ブレーキ制御処理におけるその他の点の説明は、前記第3の実施の形態と同様であるので、省略する。 Note that description of other points in the brake control process is the same as in the third embodiment, and is omitted.
 このように、本実施の形態においては、3輪以上の車輪を有する車両10の場合も、車体傾斜によって乗員15に与える不快感及び不安感、並びに、操縦性の低下が解消されるので、安全で快適な車両10を提供できる。 Thus, in the present embodiment, even in the case of the vehicle 10 having three or more wheels, the discomfort and anxiety given to the occupant 15 due to the vehicle body inclination and the decrease in maneuverability are eliminated. A comfortable vehicle 10 can be provided.
 次に、本発明の第6の実施の形態について説明する。なお、第1~第5の実施の形態と同じ構造を有するものについては、同じ符号を付与することによってその説明を省略する。また、前記第1~第5の実施の形態と同じ動作及び同じ効果についても、その説明を省略する。 Next, a sixth embodiment of the present invention will be described. Note that components having the same structure as those of the first to fifth embodiments are denoted by the same reference numerals and description thereof is omitted. Explanation of the same operations and effects as those of the first to fifth embodiments is also omitted.
 図16は本発明の第6の実施の形態における車両システムの構成を示すブロック図である。 FIG. 16 is a block diagram showing a configuration of a vehicle system according to the sixth embodiment of the present invention.
 本実施の形態においては、制御ECU20は、基準傾斜角検出手段としての基準傾斜角検出センサ66を備える。該基準傾斜角検出センサ66は、車体が基準傾斜角に到達したことを検出すると、到達信号を主制御ECU21に送信する。 In the present embodiment, the control ECU 20 includes a reference inclination angle detection sensor 66 as reference inclination angle detection means. When detecting that the vehicle body has reached the reference inclination angle, the reference inclination angle detection sensor 66 transmits an arrival signal to the main control ECU 21.
 なお、その他の点の構成については、前記第5の実施の形態と同様であるので、その説明を省略する。 The configuration of other points is the same as that of the fifth embodiment, and a description thereof will be omitted.
 そして、本実施の形態においては、リンクブレーキ62の解除継続時間を制限する。具体的には、周期信号取得手段を備え、周期信号出力時に限り、リンクブレーキ62の解除を許可する。また、作用トルクの方向と異常発生直前の車体傾斜角に基づいて、リンクブレーキ62の状態を制御する。具体的には、作用トルクの値と異常発生直前の車体傾斜角の値との積が負である場合、リンクブレーキ62を解除する。この場合、作用トルクの推定に、異常発生直前の車体傾斜角の値を用いる。さらに、車体が基準傾斜角に到達したときリンクブレーキ62の解除を禁止する。 And in this embodiment, the release continuation time of the link brake 62 is limited. Specifically, a periodic signal acquisition unit is provided, and the release of the link brake 62 is permitted only when the periodic signal is output. Further, the state of the link brake 62 is controlled based on the direction of the acting torque and the vehicle body inclination angle immediately before the occurrence of the abnormality. Specifically, the link brake 62 is released when the product of the value of the acting torque and the value of the vehicle body tilt angle immediately before the occurrence of the abnormality is negative. In this case, the value of the vehicle body tilt angle immediately before the occurrence of the abnormality is used for estimating the action torque. Further, the release of the link brake 62 is prohibited when the vehicle body reaches the reference inclination angle.
 なお、ブレーキ制御処理の動作については、前記第4の実施の形態と同様であるので、その説明を省略する。 Note that the operation of the brake control process is the same as that of the fourth embodiment, and thus the description thereof is omitted.
 これにより、本実施の形態においては、リンク機構60のトルク付加と傾斜状態取得の両方が不可能であっても、ブレーキ制御処理を実行可能とすることができ、より安全で安価な倒立型の車両10を提供することができる。 As a result, in the present embodiment, the brake control process can be executed even when both the torque addition and the inclination state acquisition of the link mechanism 60 are impossible, and the inverted and safer and more inexpensive type. The vehicle 10 can be provided.
 さらに、本発明の第3~第6の実施の形態においては、従来の技術の問題点を解決する手段として、以下のようなものを示すことができる。 Furthermore, in the third to sixth embodiments of the present invention, the following can be shown as means for solving the problems of the prior art.
 回転可能に車体に取り付けられた駆動輪と、前記車体を左右に傾斜させる車体左右傾斜機構と、該車体左右傾斜機構を固定する傾斜機構ブレーキと、前記駆動輪に付与する駆動トルク及び/又は前記車体の左右傾斜を制御して前記車体の姿勢を制御する車両制御装置とを有し、該車両制御装置は、前記傾斜機構ブレーキを解除した際の車体の左右傾斜方向を予測する傾斜方向予測手段を備え、前記車体が目標傾斜角に近付く方向へ傾斜することを前記傾斜方向予測手段が予測した場合に前記傾斜機構ブレーキを解除する車両。 A drive wheel rotatably attached to the vehicle body, a vehicle body left-right tilt mechanism that tilts the vehicle body left and right, a tilt mechanism brake that fixes the vehicle body left-right tilt mechanism, drive torque applied to the drive wheel, and / or A vehicle control device that controls the vehicle body posture by controlling the vehicle body tilt, and the vehicle control device predicts the vehicle body tilt direction when the tilt mechanism brake is released. A vehicle that releases the tilt mechanism brake when the tilt direction prediction means predicts that the vehicle body tilts in a direction approaching a target tilt angle.
 この構成によれば、車体の姿勢が適切な状態に自動的に復帰するようにして、車体傾斜によって乗員に与える不快感や不安感、及び、操縦性の低下を解消することができる。 According to this configuration, the posture of the vehicle body is automatically returned to an appropriate state, so that discomfort and anxiety given to the occupant due to the vehicle body inclination and a decrease in maneuverability can be solved.
 他の車両においては、さらに、前記傾斜方向予測手段は、前記車体の左右傾斜角速度及び前記車体を左右傾斜させるように作用する作用トルクの推定値によって前記左右傾斜方向を予測する。 In another vehicle, the tilt direction predicting means further predicts the left / right tilt direction based on an estimated value of a left / right tilt angular velocity of the vehicle body and an acting torque acting to tilt the vehicle body to the left / right.
 更に他の車両においては、さらに、前記傾斜方向予測手段は、前記作用トルクが所定時間だけ作用した後の左右傾斜角速度を推定して前記左右傾斜方向を予測する。 In still other vehicles, the tilt direction predicting means estimates the left and right tilt directions by estimating the left and right tilt angular velocities after the acting torque has acted for a predetermined time.
 これらの構成によれば、車体の左右傾斜方向を正確に予測することができる。 According to these configurations, it is possible to accurately predict the left-right inclination direction of the vehicle body.
 更に他の車両においては、さらに、前記傾斜方向予測手段は、車体の左右傾斜角及び横加速度によって前記作用トルクを推定する。 In still other vehicles, the tilt direction predicting means estimates the acting torque based on the left / right tilt angle and lateral acceleration of the vehicle body.
 この構成によれば、車体に作用するトルクの大きさを計測しなくても、車体の左右傾斜方向を予測することができる。 According to this configuration, it is possible to predict the lateral tilt direction of the vehicle body without measuring the magnitude of the torque acting on the vehicle body.
 更に他の車両においては、さらに、前記車両制御装置は、前記車体の左右傾斜角速度が所定の閾値より高い場合に前記傾斜機構ブレーキを作動する。 In yet another vehicle, the vehicle control device further operates the tilt mechanism brake when the left-right tilt angular velocity of the vehicle body is higher than a predetermined threshold.
 更に他の車両においては、さらに、所定の周期で断続的に発信する周期信号を取得する周期信号取得手段を更に備え、前記車両制御装置は、前記周期信号取得手段が前記周期信号を取得できないときに前記傾斜機構ブレーキの解除を禁止する。 Furthermore, in another vehicle, the vehicle control device further includes a periodic signal acquisition unit that acquires a periodic signal that is intermittently transmitted at a predetermined cycle, and the vehicle control device is configured such that the periodic signal acquisition unit cannot acquire the periodic signal. The release of the tilt mechanism brake is prohibited.
 これらの構成によれば、車体が左右に高速で傾斜することによる乗員の不安感、及び、高速傾斜から急停止した時の衝撃を低減することができる。 According to these configurations, it is possible to reduce occupant anxiety due to the vehicle body tilting to the left and right at high speed, and impact when the vehicle stops suddenly from the high speed tilt.
 更に他の車両においては、さらに、前記車両制御装置は、傾斜許可手段を備え、乗員が前記傾斜許可手段を操作して、傾斜機構ブレーキの解除を許可した場合に前記傾斜機構ブレーキを解除する。 In still another vehicle, the vehicle control device further includes a tilt permission unit, and releases the tilt mechanism brake when an occupant permits the release of the tilt mechanism brake by operating the tilt permission unit.
 この構成によれば、車体が不意に傾斜することによる乗員の不安感を防止することができる。 According to this configuration, it is possible to prevent the passenger from feeling uneasy due to the vehicle body tilting unexpectedly.
 更に他の車両においては、さらに、前記車両制御装置は、前記車体左右傾斜機構を作動させる傾斜用アクチュエータのトルク発生が不可能な場合に前記傾斜機構ブレーキの制御を実行する。 In still another vehicle, the vehicle control device further executes control of the tilt mechanism brake when it is impossible to generate torque of the tilt actuator that operates the vehicle body tilt mechanism.
 この構成によれば、アクチュエータに異常が発生しても、車体の姿勢を適切な状態に自動的に復帰させることができる。 According to this configuration, even if an abnormality occurs in the actuator, the posture of the vehicle body can be automatically returned to an appropriate state.
 なお、本発明は前記実施の形態に限定されるものではなく、本発明の趣旨に基づいて種々変形させることが可能であり、それらを本発明の範囲から排除するものではない。 The present invention is not limited to the above-described embodiment, and various modifications can be made based on the spirit of the present invention, and they are not excluded from the scope of the present invention.
 本発明は、車両に適用することができる。 The present invention can be applied to vehicles.
10  車両
12  駆動輪
20  制御ECU
60  リンク機構
62  リンクブレーキ
10 Vehicle 12 Drive wheel 20 Control ECU
60 Link mechanism 62 Link brake

Claims (13)

  1.  回転可能に車体に取り付けられた左右の駆動輪と、
     前記車体を左右に傾斜させる車体傾斜リンク機構と、
     該車体傾斜リンク機構を固定するリンクブレーキと、
     前記駆動輪の各々に付与する駆動トルク及び前記車体傾斜リンク機構に付与するリンクトルクを制御して前記車体の姿勢を制御する車両制御装置とを有し、
     該車両制御装置は、前記リンクブレーキが前記車体傾斜リンク機構を固定した場合における車両左右加速度の制限値を、前記車体傾斜リンク機構を固定しない場合における車両左右加速度の制限値よりも小さい値に減少させることを特徴とする車両。
    Left and right drive wheels attached to the vehicle body rotatably,
    A vehicle body tilting link mechanism for tilting the vehicle body left and right;
    A link brake for fixing the vehicle body tilt link mechanism;
    A vehicle control device for controlling a posture of the vehicle body by controlling a drive torque applied to each of the drive wheels and a link torque applied to the vehicle body tilt link mechanism;
    The vehicle control device reduces a vehicle lateral acceleration limit value when the link brake fixes the vehicle body tilt link mechanism to a value smaller than a vehicle lateral acceleration limit value when the vehicle body tilt link mechanism is not fixed. Vehicle characterized by letting it be.
  2.  前記車両制御装置は、車両左右加速度の目標値に対する制限値を減少させる請求項1に記載の車両。 The vehicle according to claim 1, wherein the vehicle control device reduces a limit value with respect to a target value of the vehicle lateral acceleration.
  3.  前記車両制御装置は、前記車体傾斜リンク機構の固定角度に応じて前記制限値の減少量を決定する請求項1又は2に記載の車両。 The vehicle according to claim 1 or 2, wherein the vehicle control device determines a reduction amount of the limit value according to a fixed angle of the vehicle body tilt link mechanism.
  4.  前記車両制御装置は、車体傾斜可動域の右端から固定位置までの角度を右方加速度制限値の減少量とし、車体傾斜可動域の左端から固定位置までの角度を左方加速度制限値の減少量とする請求項3に記載の車両。 The vehicle control device uses the angle from the right end of the vehicle body tilt movable range to the fixed position as the amount of decrease in the right acceleration limit value, and sets the angle from the left end of the vehicle body tilt movable range to the fixed position as the amount of decrease in the left acceleration limit value. The vehicle according to claim 3.
  5.  前記車両制御装置は、右方加速度制限値及び左方加速度制限値のうちの一方の値に応じて、他方の値を更に減少させる請求項1~4のいずれか1項に記載の車両。 The vehicle according to any one of claims 1 to 4, wherein the vehicle control device further decreases the other value in accordance with one value of the right acceleration limit value and the left acceleration limit value.
  6.  前記車両制御装置は、右方加速度制限値と左方加速度制限値を比較し、大きい方の加速度制限値を小さい方の加速度制限値まで減少させる請求項5に記載の車両。 The vehicle according to claim 5, wherein the vehicle control device compares the right acceleration limit value and the left acceleration limit value, and decreases the larger acceleration limit value to the smaller acceleration limit value.
  7.  前記車両制御装置は、車両左右加速度の制限値に応じて、平均駆動輪回転角速度制限値を減少させる請求項1~6のいずれか1項に記載の車両。 The vehicle according to any one of claims 1 to 6, wherein the vehicle control device decreases an average driving wheel rotation angular velocity limit value in accordance with a limit value of the vehicle lateral acceleration.
  8.  前記車両制御装置は、前記車体傾斜リンク機構が固定されたときの最高速度での最小旋回半径を前記車体傾斜リンク機構が固定されていないときの最高速度での最小旋回半径以下にするように、前記車体傾斜リンク機構が固定されたときの平均駆動輪回転角速度制限値を補正する請求項7に記載の車両。 The vehicle control device is configured such that the minimum turning radius at the maximum speed when the vehicle body inclination link mechanism is fixed is equal to or less than the minimum turning radius at the maximum speed when the vehicle body inclination link mechanism is not fixed. The vehicle according to claim 7, wherein an average driving wheel rotation angular velocity limit value when the vehicle body inclination link mechanism is fixed is corrected.
  9.  前記車両制御装置は、左右路面勾配に応じて車両左右加速度の制限値を減少させる請求項1~8のいずれか1項に記載の車両。 The vehicle according to any one of claims 1 to 8, wherein the vehicle control device reduces the limit value of the vehicle lateral acceleration in accordance with a lateral road gradient.
  10.  前記車両制御装置は、水平面上での前記車体の傾斜方向が前記左右路面勾配の下り方向と同じ場合には車両左方加速度及び車両右方加速度の制限値を減少させ、水平面上での前記車体の傾斜方向が前記左右路面勾配の上り方向と同じ場合には車両左方加速度及び車両右方加速度の制限値を固定する請求項9に記載の車両。 The vehicle control device reduces the limit values of the vehicle left acceleration and the vehicle right acceleration when the inclination direction of the vehicle body on the horizontal plane is the same as the downward direction of the left-right road gradient, and the vehicle body on the horizontal plane The vehicle according to claim 9, wherein a limit value of the vehicle left acceleration and the vehicle right acceleration is fixed when an inclination direction of the vehicle is the same as an upward direction of the left and right road surface gradient.
  11.  前記車両制御装置は、制限された車両左右加速度の目標値に応じた駆動トルク差を左右の駆動輪に付与する請求項2~10のいずれか1項に記載の車両。 The vehicle according to any one of claims 2 to 10, wherein the vehicle control device applies a driving torque difference according to a target value of the limited vehicle lateral acceleration to the left and right driving wheels.
  12.  前記車体傾斜リンク機構が固定された場合、前記車体が左右のいずれかに傾斜している請求項1~11のいずれか1項に記載の車両。 The vehicle according to any one of claims 1 to 11, wherein when the vehicle body tilt link mechanism is fixed, the vehicle body is tilted to either the left or right.
  13.  前記車両制御装置は、前記制限された車両左右加速度、及び、前記車体の左右の傾斜状態によって、前記左右の駆動輪の接地点の中点から前記左右の駆動輪の接地荷重の作用中心までの距離を前記中点から前記駆動輪の接地点までの距離で除した値である接地荷重移動率を推定し、該接地荷重移動率の推定値に応じて前記左右の駆動輪に駆動トルク差を付与する請求項12に記載の車両。 The vehicle control device, from the midpoint of the ground point of the left and right drive wheels to the center of action of the ground load of the left and right drive wheels, depending on the limited vehicle lateral acceleration and the left and right tilt state of the vehicle body. A ground load movement rate that is a value obtained by dividing the distance by the distance from the midpoint to the ground point of the drive wheel is estimated, and a drive torque difference is calculated between the left and right drive wheels according to the estimated value of the ground load transfer rate. The vehicle according to claim 12 to be given.
PCT/JP2010/002118 2009-03-30 2010-03-25 Vehicle WO2010116641A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201080015174.5A CN102378700B (en) 2009-03-30 2010-03-25 Vehicle

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2009-082049 2009-03-30
JP2009082049 2009-03-30
JP2009-095473 2009-04-10
JP2009095473 2009-04-10
JP2009-271339 2009-11-30
JP2009271314A JP2010254286A (en) 2009-03-30 2009-11-30 Vehicle
JP2009271339A JP5428806B2 (en) 2009-04-10 2009-11-30 vehicle
JP2009-271314 2009-11-30

Publications (1)

Publication Number Publication Date
WO2010116641A1 true WO2010116641A1 (en) 2010-10-14

Family

ID=42935942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002118 WO2010116641A1 (en) 2009-03-30 2010-03-25 Vehicle

Country Status (1)

Country Link
WO (1) WO2010116641A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9045015B2 (en) 2013-03-07 2015-06-02 Ford Global Technologies, Llc Laterally tiltable, multitrack vehicle
US9090281B2 (en) 2013-03-07 2015-07-28 Ford Global Technologies, Llc Laterally tiltable, multitrack vehicle
US9145168B2 (en) 2013-03-07 2015-09-29 Ford Global Technologies, Llc Laterally tiltable, multitrack vehicle
CN105270211A (en) * 2014-07-08 2016-01-27 裴正非 Seat servo system of medium and low speed tricycle or four-wheeler
US9248857B2 (en) 2013-03-07 2016-02-02 Ford Global Technologies, Llc Laterally tiltable, multitrack vehicle
US9283989B2 (en) 2013-03-07 2016-03-15 Ford Global Technologies, Llc Laterally tiltable, multitrack vehicle
WO2017168692A1 (en) * 2016-03-31 2017-10-05 本田技研工業株式会社 Brake control device for motorcycle
US9821620B2 (en) 2014-09-01 2017-11-21 Ford Technologies Corporation Method for operating a tilting running gear and an active tilting running gear for a non-rail-borne vehicle
US9845129B2 (en) 2014-08-29 2017-12-19 Ford Global Technologies, Llc Stabilizing arrangement for a tilting running gear of a vehicle and tilting running gear
US9925843B2 (en) 2015-02-24 2018-03-27 Ford Global Technologies, Llc Rear suspension systems for laterally tiltable multitrack vehicles
US10023019B2 (en) 2015-02-24 2018-07-17 Ford Global Technologies, Llc Rear suspension systems with rotary devices for laterally tiltable multitrack vehicles
US10076939B2 (en) 2014-11-26 2018-09-18 Ford Global Technologies, Llc Suspension systems for laterally tiltable multitrack vehicles
US11554818B2 (en) * 2017-02-07 2023-01-17 Shenzhen Dahon Technology Ltd. Self-stabilizing vehicle and control method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6245114B2 (en) * 1979-06-29 1987-09-24 Edomando Furanshisu Nebiru Jefukotsuto
JP3272347B2 (en) * 1997-09-16 2002-04-08 ブリンクス・ウエストマース・ベー・ブイ Inclined vehicle
JP2005313876A (en) * 2004-02-04 2005-11-10 Piaggio & C Spa Anti-rolling device for vehicle
JP2008039138A (en) * 2006-08-09 2008-02-21 Hitachi Constr Mach Co Ltd Travel controller of hydraulic drive vehicle
JP2009214857A (en) * 2008-03-13 2009-09-24 Equos Research Co Ltd Vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6245114B2 (en) * 1979-06-29 1987-09-24 Edomando Furanshisu Nebiru Jefukotsuto
JP3272347B2 (en) * 1997-09-16 2002-04-08 ブリンクス・ウエストマース・ベー・ブイ Inclined vehicle
JP2005313876A (en) * 2004-02-04 2005-11-10 Piaggio & C Spa Anti-rolling device for vehicle
JP2008039138A (en) * 2006-08-09 2008-02-21 Hitachi Constr Mach Co Ltd Travel controller of hydraulic drive vehicle
JP2009214857A (en) * 2008-03-13 2009-09-24 Equos Research Co Ltd Vehicle

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9045015B2 (en) 2013-03-07 2015-06-02 Ford Global Technologies, Llc Laterally tiltable, multitrack vehicle
US9090281B2 (en) 2013-03-07 2015-07-28 Ford Global Technologies, Llc Laterally tiltable, multitrack vehicle
US9145168B2 (en) 2013-03-07 2015-09-29 Ford Global Technologies, Llc Laterally tiltable, multitrack vehicle
US9248857B2 (en) 2013-03-07 2016-02-02 Ford Global Technologies, Llc Laterally tiltable, multitrack vehicle
US9283989B2 (en) 2013-03-07 2016-03-15 Ford Global Technologies, Llc Laterally tiltable, multitrack vehicle
CN105270211A (en) * 2014-07-08 2016-01-27 裴正非 Seat servo system of medium and low speed tricycle or four-wheeler
US9845129B2 (en) 2014-08-29 2017-12-19 Ford Global Technologies, Llc Stabilizing arrangement for a tilting running gear of a vehicle and tilting running gear
US9821620B2 (en) 2014-09-01 2017-11-21 Ford Technologies Corporation Method for operating a tilting running gear and an active tilting running gear for a non-rail-borne vehicle
US10076939B2 (en) 2014-11-26 2018-09-18 Ford Global Technologies, Llc Suspension systems for laterally tiltable multitrack vehicles
US9925843B2 (en) 2015-02-24 2018-03-27 Ford Global Technologies, Llc Rear suspension systems for laterally tiltable multitrack vehicles
US10023019B2 (en) 2015-02-24 2018-07-17 Ford Global Technologies, Llc Rear suspension systems with rotary devices for laterally tiltable multitrack vehicles
WO2017168692A1 (en) * 2016-03-31 2017-10-05 本田技研工業株式会社 Brake control device for motorcycle
CN109070857A (en) * 2016-03-31 2018-12-21 本田技研工业株式会社 The arrester control device of automatic two-wheeled cycle
US11358574B2 (en) 2016-03-31 2022-06-14 Honda Motor Co., Ltd. Brake control device for motorcycle
US11554818B2 (en) * 2017-02-07 2023-01-17 Shenzhen Dahon Technology Ltd. Self-stabilizing vehicle and control method thereof

Similar Documents

Publication Publication Date Title
WO2010116641A1 (en) Vehicle
JP5115133B2 (en) vehicle
JP5273020B2 (en) vehicle
WO2008032587A1 (en) Vehicle
JP5428806B2 (en) vehicle
JP4894706B2 (en) vehicle
JP5110072B2 (en) vehicle
WO2010116644A1 (en) Vehicle
JP5392027B2 (en) vehicle
CN102378700B (en) Vehicle
WO2010116640A1 (en) Vehicle
JP5229199B2 (en) vehicle
JP2010254286A (en) Vehicle
JP5045354B2 (en) vehicle
JP5561289B2 (en) vehicle
JP5223265B2 (en) vehicle
JP5186853B2 (en) vehicle
JP4888317B2 (en) vehicle
JP4894808B2 (en) vehicle
JP5067194B2 (en) vehicle
JP5157838B2 (en) vehicle
JP5200574B2 (en) vehicle
JP2010241395A (en) Vehicle
JP5083265B2 (en) vehicle
JP4888318B2 (en) vehicle

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080015174.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10761349

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10761349

Country of ref document: EP

Kind code of ref document: A1