WO2010106739A1 - Image processing device, image processing method, and image processing program - Google Patents

Image processing device, image processing method, and image processing program Download PDF

Info

Publication number
WO2010106739A1
WO2010106739A1 PCT/JP2010/001122 JP2010001122W WO2010106739A1 WO 2010106739 A1 WO2010106739 A1 WO 2010106739A1 JP 2010001122 W JP2010001122 W JP 2010001122W WO 2010106739 A1 WO2010106739 A1 WO 2010106739A1
Authority
WO
WIPO (PCT)
Prior art keywords
image signal
image
cyclic
dimensional filter
signal
Prior art date
Application number
PCT/JP2010/001122
Other languages
French (fr)
Japanese (ja)
Inventor
隅谷一徳
芹沢正之
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2010106739A1 publication Critical patent/WO2010106739A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/21Circuitry for suppressing or minimising disturbance, e.g. moiré or halo
    • H04N5/213Circuitry for suppressing or minimising impulsive noise
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/20Image enhancement or restoration using local operators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/144Movement detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20024Filtering details
    • G06T2207/20032Median filtering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20172Image enhancement details
    • G06T2207/20182Noise reduction or smoothing in the temporal domain; Spatio-temporal filtering

Definitions

  • the present invention relates to a digital image processing apparatus, and more particularly to an image processing apparatus capable of obtaining a high-quality image by reducing noise of an image signal and improving S / N.
  • an image signal is a signal in which image information is repeated at a frame period, and the autocorrelation between frames is very strong.
  • noise components contained in image signals generally have no autocorrelation, it is known that when image signals are temporally averaged for each frame period, only noise component energy is reduced, and noise can be reduced. It has been.
  • a noise reduction device that performs noise reduction based on motion detection information is known as a frame cyclic noise reduction device (see, for example, Patent Document 1).
  • noise reduction apparatus still image / moving image determination is performed based on the motion detection information.
  • noise reduction is mainly performed by a frame cyclic noise reduction device (three-dimensional filter).
  • an area selection type noise reduction device (2
  • Each noise reduction apparatus is controlled so that noise reduction is performed by a dimension filter.
  • the noise reduction effect of the three-dimensional filter it is possible to make the noise reduction effect of the three-dimensional filter much larger than the noise reduction effect of the two-dimensional filter by setting the cyclic coefficient large. If the circulation is not repeated to some extent, the effect of the three-dimensional filter cannot be fully exhibited.
  • the noise of the object part is reduced by the two-dimensional filter, and the part around the object (stationary) is reduced by the three-dimensional filter.
  • the noise of the image portion is reduced.
  • the S / N ratio of the noise-reduced part with the two-dimensional filter is not as good as that of the noise-reduced part with the three-dimensional filter, but there is “motion blur” for a moving subject. / N reduction is allowed. For example, when it is determined from the next frame that the object is “still”, the noise of the object portion is also reduced by the three-dimensional filter.
  • the conventional noise reduction device immediately after the moving object stops, the effect of noise reduction of the three-dimensional filter for the object part (still image part) cannot be obtained, and the circulation is repeated to some extent. After that, the same noise reduction effect as that of the surrounding portion that was originally stationary can be obtained (the S / N becomes equivalent). In other words, for an object whose state has changed from “moving state” to “still state”, it takes time until the noise is sufficiently reduced and the S / N is improved. May stand out.
  • An object of the present invention is to provide an image processing apparatus capable of shortening the time until noise is sufficiently reduced for an object whose state has changed from a moving state to a stationary state.
  • One aspect of the present invention is an image processing apparatus, which includes a frame memory unit that accumulates an image signal of one frame before as a cyclic image signal, an input image signal, and a cyclic image signal input from the frame memory unit.
  • a synchronization unit that simultaneously synchronizes a plurality of lines, a motion detection unit that detects image motion based on the synchronized input image signal and cyclic image signal, and a correlation between a pixel of interest in the image and its surrounding pixels
  • the input image signal and the cyclic image signal are weighted and added using a two-dimensional filter unit that reduces the noise component of the input image signal and a cyclic coefficient determined based on the detected motion of the image.
  • An output image from the two-dimensional filter unit using a three-dimensional filter unit that reduces noise components of the input image signal and a weighting coefficient determined based on the detected motion of the image A signal synthesizer that weights and adds the signal and the output image signal from the three-dimensional filter unit, and a noise removal unit that performs a noise removal process on the cyclic image signal input to the three-dimensional filter unit, and the motion of the image is small
  • the cyclic coefficient is determined to be smaller than the cyclic coefficient when the image motion is large.
  • Another aspect of the present invention is an image processing method, in which an image signal of one frame before is stored as a cyclic image signal, and an input image signal and the accumulated cyclic image signal are simultaneously stored for a plurality of lines.
  • To perform synchronization processing to perform motion detection processing to detect image motion based on the synchronized input image signal and cyclic image signal, and to correlate the target pixel in the image and its surrounding pixels Based on the two-dimensional filter processing for reducing the noise component of the input image signal, and the cyclic coefficient determined based on the detected image motion, where the image motion is small.
  • a three-dimensional filter that reduces the noise component of the input image signal by weighted addition of the input image signal and the cyclic image signal using a cyclic coefficient determined to a smaller value when the movement of the image is large
  • Signal synthesis processing for performing weighted addition of the output image signal after the two-dimensional filter processing and the output image signal after the three-dimensional filter processing using a weighting coefficient determined based on the motion of the detected image
  • performing noise removal processing on the cyclic image signal before the three-dimensional filter processing
  • Another aspect of the present invention is an image processing program.
  • This program stores the image signal of the previous frame as a cyclic image signal and the input image signal and the accumulated cyclic image signal for a plurality of lines simultaneously.
  • the processing for performing the synchronization processing the motion detection processing for detecting the motion of the image based on the synchronized input image signal and the cyclic image signal
  • Two-dimensional filter processing for reducing the noise component of the input image signal and a cyclic coefficient determined based on the detected motion of the image, and when the motion of the image is smaller than when the motion of the image is greater
  • Three-dimensional filter processing for reducing noise components of the input image signal by weighted addition of the input image signal and the cyclic image signal using a cyclic coefficient determined to be a small value
  • Signal synthesis processing for weighted addition of the output image signal after the two-dimensional filter processing and the output image signal after the three-dimensional filter processing using a weighting coefficient determined based on the detected motion of
  • FIG. 1 is a block diagram illustrating a configuration of an image processing apparatus according to the first embodiment.
  • FIG. 2 is a diagram illustrating an example of a noise reduction effect by a two-dimensional filter.
  • FIG. 3 is a diagram illustrating an example of a noise reduction effect by a three-dimensional filter.
  • FIG. 4 is a diagram showing an example of noise removal processing by LPF as a comparative example.
  • FIG. 5 is a diagram illustrating an example of noise removal processing according to the second embodiment.
  • the image processing apparatus includes a frame memory unit that stores an image signal of one frame before as a cyclic image signal, and a synchronization that simultaneously synchronizes an input image signal and a cyclic image signal input from the frame memory unit for a plurality of lines.
  • a motion detection unit that detects the motion of the image based on the synchronized input image signal and the cyclic image signal, and a noise component of the input image signal based on a correlation between the target pixel in the image and its surrounding pixels
  • the noise component of the input image signal is reduced by weighted addition of the input image signal and the cyclic image signal using a two-dimensional filter unit for reducing the image and a cyclic coefficient determined based on the detected motion of the image.
  • the output image signal from the two-dimensional filter unit and the output from the three-dimensional filter unit using the three-dimensional filter unit and a weighting coefficient determined based on the detected motion of the image A signal synthesis unit that performs weighted addition of the force image signal, and a noise removal unit that performs noise removal processing on the cyclic image signal input to the three-dimensional filter unit, and the cyclic coefficient when the motion of the image is small is It has a configuration that is determined to be smaller than the cyclic coefficient when the motion is large.
  • noise removal processing is performed on the cyclic image signal input to the three-dimensional filter unit. Therefore, it is possible to reduce the time until the noise is sufficiently reduced for an object whose state has changed from a moving state to a stationary state.
  • the image can be shortened and a high S / N image can be obtained quickly.
  • the noise removal unit may have a configuration that is a median filter, a weighted median filter, or a stack filter.
  • the noise removing unit compares the signal levels of the target pixel and the surrounding pixels, and the signal level of the target pixel is determined based on the maximum signal level of the surrounding pixels.
  • the pixel value of the pixel of interest may be replaced when it is larger than the upper limit value of the pixel or when it is smaller than a predetermined lower limit value determined based on the minimum signal level of the surrounding pixels.
  • the image processing method of the present invention accumulates the image signal of the previous frame as a cyclic image signal, performs a synchronization process for synchronizing the input image signal and the accumulated cyclic image signal for each of a plurality of lines, Based on the synchronized input image signal and the cyclic image signal, performing a motion detection process for detecting the motion of the image, and based on the correlation between the target pixel in the image and its surrounding pixels, the noise component of the input image signal Noise component of the input image signal by performing a two-dimensional filter process for reducing the input image signal and weighted addition of the input image signal and the cyclic image signal using a weighting coefficient determined based on the detected motion of the image And a cyclic coefficient determined on the basis of the detected motion of the image, where the motion of the image is smaller.
  • noise removal processing is performed on the cyclic image signal used for the three-dimensional filter processing, so that noise is sufficiently reduced for an object whose state has changed from a moving state to a stationary state. It is possible to shorten the time required to obtain a high S / N image.
  • the image processing program of the present invention includes a process for accumulating the image signal of the previous frame as a cyclic image signal, a process for performing a synchronization process for simultaneously synchronizing the input image signal and the accumulated cyclic image signal for a plurality of lines, Based on the synchronized input image signal and the cyclic image signal, the motion detection process for detecting the motion of the image, and the noise component of the input image signal is reduced based on the correlation between the target pixel in the image and its surrounding pixels.
  • Two-dimensional filter processing and a cyclic coefficient determined based on the detected image motion which is determined to be smaller when the image motion is small and smaller than when the image motion is large
  • the input image signal and the cyclic image signal are weighted and added to reduce the noise component of the input image signal and based on the detected motion of the image.
  • a signal synthesis process for weighted addition of the output image signal after the two-dimensional filter process and the output image signal after the three-dimensional filter process, and noise removal for the cyclic image signal before the three-dimensional filter process Processing is executed by a computer.
  • noise removal processing is performed on the cyclic image signal used for the three-dimensional filter processing as described above, so that noise is sufficiently reduced for an object whose state has changed from a moving state to a stationary state. It is possible to shorten the time until the image is received and to obtain a high S / N image quickly.
  • the present invention provides a noise removal unit that performs noise removal processing on a cyclic image signal input to a three-dimensional filter unit, until noise is sufficiently reduced for an object whose state has changed from a moving state to a stationary state. Can be shortened.
  • an image processing apparatus used for image processing of an image taken by a camera having a PTZ function is illustrated.
  • This image processing function may be realized by a program stored in an HDD or a memory of the image processing apparatus.
  • FIG. 1 is a block diagram showing the configuration of the image processing apparatus according to the present embodiment.
  • an image processing apparatus 1 includes a frame memory 2 that accumulates image signals as cyclic image signals, a synchronization unit 3 that performs a process of synchronizing an input image signal and a cyclic image signal, A motion detection unit 4 that performs processing for detecting motion and a noise removal unit 5 that performs processing for removing noise components of the cyclic image signal are provided.
  • the image processing apparatus 1 also includes a two-dimensional filter 6 that removes noise components of the input image signal based on the correlation of the pixels in the image, and weighted addition of the input image signal and the cyclic image signal to thereby calculate the input image signal.
  • a three-dimensional filter 7 that removes noise components, and a signal synthesis unit 8 that performs weighted addition of output image signals from the two-dimensional filter 6 and the three-dimensional filter 7 are provided.
  • the frame memory 2 receives the image signal of the previous frame output from the signal synthesizer 8.
  • the image signal of the previous frame is temporarily stored as a cyclic image signal in the frame memory 2 and read out in synchronization with the input signal of the next frame.
  • the synchronization unit 3 is composed of a line memory and the like. An input image signal and a cyclic image signal are input to the synchronizer 3, and the input image signal and the cyclic image signal for a plurality of lines are respectively synchronized. As a result, the image signal of the target pixel and its surrounding pixels can be processed two-dimensionally (planarly).
  • the motion detection unit 4 receives the input image signal and the cyclic image signal output from the synchronization unit 3, and detects the motion of the image based on the synchronized input image signal and the cyclic image signal. . For example, the amount of motion for each pixel is calculated based on the difference between the input image signal and the cyclic image signal.
  • the two-dimensional filter 6 has a function of reducing the noise component of the input image signal based on a two-dimensional correlation between the target pixel in the image and its surrounding pixels. That is, it can be said that the two-dimensional filter 6 functions as an area-selective noise reduction device that performs two-dimensional noise reduction processing on the input image signal to improve S / N.
  • the three-dimensional filter 7 performs a three-dimensional (planar and temporal) noise reduction process on the input image signal by weighted addition of the input image signal and the cyclic image signal, and reduces the noise component of the input image signal. It has a function to reduce.
  • the three-dimensional filter 7 functions as a frame cyclic noise reduction device that improves the S / N according to the height of the autocorrelation of the video by weighted addition of the cyclic image signal at the same position as the input image signal. I can say that.
  • the signal synthesizer 8 receives the image signal output from the two-dimensional filter 6 and the image signal output from the three-dimensional filter 7.
  • the signal synthesizer 8 performs a process of performing signal synthesis by weighted addition of these two image signals.
  • the cyclic coefficient used for the weighted addition in the three-dimensional filter 7 and the weighting coefficient (also referred to as a weighting coefficient) used for the weighted addition in the signal synthesis unit 8 are determined based on the motion amount calculated by the motion detection unit 4. Is done.
  • the motion detection unit 4 can calculate a motion amount for each pixel. For example, when the motion amount calculated by the motion detection unit 4 is large (in the case of a moving image), the cyclic coefficient is set to be small, the input image signal is frequently used, and the motion amount calculated by the motion detection unit 4 is When it is small (in the case of a still image), the cyclic coefficient is set to be large and a cyclic image signal is often used.
  • the weighting coefficient is set to be small, and the two-dimensional filter output signal is frequently used and is calculated by the motion detection unit 4.
  • the weighting coefficient is set large and a three-dimensional filter signal is often used.
  • the noise removal unit 5 performs noise removal processing using a filter on the cyclic image signal input to the three-dimensional filter 7 (cyclic image signal one frame before output from the frame memory 2).
  • a median filter is used as a filter for this noise removal processing.
  • the median filter is a filter that outputs a median value of a plurality of input image signals, and has a function of removing noise components from the image signals. Note that in order to obtain an input signal to the median filter, signals from pixels around the target pixel are required. In order to obtain the signals of the surrounding pixels, it is usually necessary to perform a synchronization process for a plurality of lines using a line memory or the like (a separate synchronization unit 3 must be provided). However, in the present embodiment, since the synchronization unit 3 is already provided for the motion detection unit 4, it is not necessary to separately provide the synchronization unit 3 by using this, thereby increasing the circuit scale. Can be suppressed.
  • FIG. 2 is a diagram illustrating an example of noise reduction processing by the two-dimensional filter 6.
  • the time change of the signal level of one point on the image is shown (the vertical axis is the signal level and the horizontal axis is the time).
  • the original signal image signal before noise reduction processing
  • a signal obtained by applying the two-dimensional filter 6 to the original signal is indicated by a symbol “square”. ing.
  • the true zero signal level without noise is “0”
  • noise is added around “0”. 2 that the noise component of the image signal is removed to some extent by the noise reduction processing by the two-dimensional filter 6.
  • FIG. 3 is a diagram illustrating an example of noise reduction processing by the three-dimensional filter 7.
  • the time change of the signal level of this pixel is shown (the vertical axis is the signal level and the horizontal axis is the time).
  • a signal obtained by applying the three-dimensional filter 7 after performing the noise removal processing using the median filter is indicated by a symbol “square”, and the three-dimensional filter 7 is applied without performing the noise removal processing.
  • the signal (that is, the comparative example) is indicated by the symbol “diamond”. From the results shown in FIG.
  • the noise removal unit 5 also performs noise removal processing on the cyclic image signal for a still image.
  • the cyclic coefficient of the cyclic image signal is set large, so that the cyclic image signal passes through the noise removal unit 5 many times and is subjected to noise removal processing many times. Therefore, an S / N improvement effect can be obtained even in a still image.
  • the moving state is changed to the stationary state.
  • the time until the noise is sufficiently reduced for the object whose state has changed can be shortened.
  • noise removal processing is performed on the cyclic image signal input to the three-dimensional filter 7, so that noise is sufficiently reduced for an object whose state has changed from a moving state to a stationary state. Time (see FIG. 3), and a high S / N image can be obtained quickly.
  • the S / N is improved to some extent by the two-dimensional filter in the “first first frame” where the subject has changed from the “moving state” to the “still state” (the S / N may be improved only to some extent). I can say). Since the motion detection result is “with motion” at the time of the “first first frame”, the cyclic coefficient is set to a low value, and the weighted addition coefficient is weighted so as to be almost a two-dimensional filter output. The output signal is approximately the current input signal with a two-dimensional filter applied.
  • the cyclic coefficient is set high, the weighted addition coefficient is weighted so as to be almost a three-dimensional filter output, and the output signal is A signal close to the cyclic image signal is output. That is, an image having a poor S / N (an image in which the S / N is improved only to some extent) in the “first frame” after the “motion state” is changed to the “still state” (the “next frame”) ", Since the cyclic coefficient is set high and the weighted addition coefficient is almost a three-dimensional filter output), it remains for a long time. As a result, the" motion state "changes to the" stationary state ". The image quality of the affected area is deteriorated compared to the image quality of the surrounding still area.
  • the method (1) is often used, and in that case, the image quality of the portion where the “motion state” is changed to the “stationary state” is “time until it becomes equal to the surroundings” and “ It was inevitable that the “image quality at rest” would be a trade-off.
  • the S / N of the “first first frame” image that has changed from the “motion state” to the “still state” is improved to some extent by the two-dimensional filter as in the conventional case.
  • the motion detection result is “with motion”
  • the cyclic coefficient is set to a low value
  • the weighted addition coefficient is weighted so as to be approximately a two-dimensional filter output
  • This output signal is input to the frame memory 2 and becomes a cyclic image signal of the next frame.
  • the cyclic image signal passes through the noise removal unit 5 and noise removal processing is performed (S / N is improved).
  • the motion detection result is “no motion”
  • the cyclic coefficient is set high, and the weighted addition coefficient is weighted so as to be an approximately three-dimensional filter output, and the output signal Outputs a signal close to the cyclic image signal.
  • This output signal is input to the frame memory 2 and becomes a cyclic image signal of the next frame.
  • the image processing apparatus 1 of the present invention such processing is repeatedly performed. That is, in the still state image, the cyclic coefficient is set high, and the weighted addition coefficient is weighted so as to be almost a three-dimensional filter output, and the signal passes through the noise removing unit 5 many times, and the S / N is reduced. There is an effect that it is improved. Such an S / N improvement effect is significantly different from that of simply strengthening the two-dimensional filter.
  • the basic performance of the image processing apparatus 1 is that an S / N image as high as possible is required even in a normal still state image (not only immediately after changing from a motion state to a still state).
  • the noise removal unit 5 since the noise removal unit 5 also performs noise removal processing on the cyclic image signal for a still image, the S / N is also improved for a still image.
  • the noise removing unit 5 is a median filter, an FIR filter, an IIR filter, etc., even if the noise removal processing is repeatedly performed on the cyclic image signal input to the three-dimensional filter 7 means. As in the case of LPF, a necessary image signal is not lost, and a high-quality image with appropriate noise reduction processing can be obtained.
  • LPFs such as FIR filters and IIR filters are common as filters, but these filters are not suitable for use in the noise removing unit 5 of the present embodiment. The reason will be described with reference to FIG.
  • the cyclic coefficient of the three-dimensional filter 7 increases, and the ratio of the cyclic signal from the frame memory 2 to the output signal increases.
  • the first cyclic image signal when the cyclic coefficient is set to 100% is indicated by the symbol “rhombus”, and the second cyclic image signal is “square”.
  • the third cyclic image signal is indicated by a “triangle” symbol.
  • FIG. 4 it can be seen that the image signal spreads and the signal level decreases as the first, second, and third cycles are repeated. In other words, if the tour is repeated, the image signal will eventually disappear, or even if it is not so extreme, the signal spreads, and the stationary part is mistakenly detected as the moving part near the contour of the stationary object. There is a risk of failure.
  • the median filter is an order selection type filter, the signal does not spread and the above-mentioned problems do not occur. Further, since the median filter is an order selection type filter, even if the circulation is repeated with a cyclic coefficient of 100%, the output value converges when the process is repeated to some extent, so that the image signal is not lost.
  • the noise removing unit 5 may be, for example, a weighted median filter or a stack filter. It may be constituted by.
  • the weighted median filter is an improvement of the median filter and improves the preservation of the fine line portion of the image.
  • the weighted median filter is preferable from the viewpoint of improving the image quality if a certain increase in circuit scale can be allowed.
  • the stack filter is a filter that can obtain an output equivalent to the median filter by dividing the input signal into threshold values, performing Boolean algebra processing for each bit, and then performing inverse transformation of the threshold division.
  • the characteristics of a median filter that preserves a specific structure such as a weighted median filter or an edge can be configured. Therefore, the stack filter is preferable from the aspect of image quality improvement if an increase in circuit scale can be allowed to some extent. .
  • the noise removal unit 5 is configured with such a weighted median filter or a stack filter, the noise removal process is repeatedly performed on the cyclic image signal input to the three-dimensional filter 7 means, as in the above embodiment. Even in such a case, a necessary image signal is not lost like an LPF such as an FIR filter or an IIR filter, and a high-quality image subjected to appropriate noise reduction processing can be obtained.
  • LPF such as an FIR filter or an IIR filter
  • the noise removing unit 5 compares the signal levels of the target pixel and the surrounding pixels, and the signal level of the target pixel is determined based on the maximum signal level of the surrounding pixels. Greater than a predetermined upper limit (maximum value of surrounding pixels + threshold) or smaller than a predetermined lower limit (minimum value of surrounding pixels ⁇ threshold) determined based on the minimum signal level of the surrounding pixels, It is characterized in that a process for replacing the pixel value of the target pixel is performed.
  • FIG. 5 is a diagram illustrating an example of noise removal processing according to the present embodiment.
  • FIG. 5 shows an example in which noise removal processing is performed by comparing the signal levels of a pixel of interest (i, j) and its surrounding pixels (3 ⁇ 3 pixels) in magnitude.
  • values x (i ⁇ 1, j ⁇ 1) and x (i ⁇ 1) of the surrounding 3 ⁇ 3 pixels excluding the target pixel value x (i, j). , J), x (i-1, j + 1), x (i, j-1), x (i-1, j + 1), x (i + 1, j-1), x (i + 1, j), x (i + 1) , J + 1) is determined.
  • the upper limit value obtained by adding the threshold value to the maximum value, the lower limit value obtained by subtracting the threshold value from the minimum value, and the target pixel value x (i, j) are compared.
  • the target pixel value x (i, j) is replaced with the upper limit value.
  • the target pixel value x (i, j) is replaced with the lower limit value.
  • the threshold value may be a fixed value or may be controlled according to the signal gain amount. Further, a value proportional to the average value of the surrounding pixel signals may be added to the threshold as a signal proportional threshold component.
  • the noise removal processing according to the present embodiment is also a signal selection type filter, the signal does not spread even if the processing is repeated by circulation. Similarly to the first embodiment, even if the cycle is repeated with a cyclic coefficient of 100%, the output value converges when processing is performed to some extent, so that the image signal is not lost.
  • surrounding 3 ⁇ 3 pixels the description has been made using surrounding 3 ⁇ 3 pixels, but the scope of the present invention is not limited to this. That is, the surrounding pixels used for the noise removal process are not limited to 3 ⁇ 3 pixels.
  • the noise removing unit 5 of the present embodiment even if the noise removal processing is repeatedly performed on the cyclic image signal input to the three-dimensional filter 7 means, like the LPF such as the FIR filter or the IIR filter. Necessary image signals are not lost, and a high-quality image with appropriate noise reduction processing can be obtained.
  • the image processing apparatus has an effect that the time until noise is sufficiently reduced for an object whose state has changed from a moving state to a stationary state can be shortened. It is useful for image processing of images taken with cameras equipped with functions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Picture Signal Circuits (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Image Processing (AREA)

Abstract

An image processing device (1) provided with: a frame memory (2) which stores a recursive image signal from 1 frame before; a synchronization unit (3) which synchronizes the input image signal with the recursive image signal; a motion detection unit (4) which detects motion in the image from the input image signal and recursive image signal; a two-dimensional filter (6) which reduces the noise component in the input image signal according to the correlation of the pixels of interest in the image to the pixels surrounding the same; a three-dimensional filter (7) which uses the recursive coefficient, which is based on the motion in the image, to add the input image signal to the recursive image signal in a weighted manner; a signal synthesis unit (8) which uses a weighting coefficient, which is based on the motion in the image, to add the output image signals from the two-dimensional filter (6) and three-dimensional filter (7) in a weighted manner; and further provided with a noise reduction unit (5) which reduces the noise in the recursive image signal to be inputted to the three-dimensional filter (7). Due to this, the image processing device (1) can shorten the time taken for noise to be sufficiently reduced in an object which has changed from a motion state to a still state.

Description

画像処理装置、画像処理方法および画像処理プログラムImage processing apparatus, image processing method, and image processing program
 本発明は、デジタル画像処理装置に関し、特に、画像信号のノイズを低減させてS/Nを改善することにより高画質な画像が得られる画像処理装置に関する。 The present invention relates to a digital image processing apparatus, and more particularly to an image processing apparatus capable of obtaining a high-quality image by reducing noise of an image signal and improving S / N.
 一般的に画像信号は、フレーム周期で画像情報が繰り返される信号であり、フレーム間の自己相関性が非常に強い。一方、画像信号に含まれるノイズ成分は一般にその自己相関性がないことから、画像信号をフレーム周期ごとに時間的に平均するとノイズ成分のエネルギーのみが低くなり、ノイズを低減することができることが知られている。従来、フレーム巡回型のノイズ低減装置として、動き検出情報に基づいてノイズ低減を行うノイズ低減装置が知られている(例えば特許文献1参照)。 Generally, an image signal is a signal in which image information is repeated at a frame period, and the autocorrelation between frames is very strong. On the other hand, since noise components contained in image signals generally have no autocorrelation, it is known that when image signals are temporally averaged for each frame period, only noise component energy is reduced, and noise can be reduced. It has been. Conventionally, a noise reduction device that performs noise reduction based on motion detection information is known as a frame cyclic noise reduction device (see, for example, Patent Document 1).
 この従来のノイズ低減装置では、動き検出情報を元に、静止画/動画の判定が行われる。そして、静止画と判定された場合には、主にフレーム巡回型ノイズ低減装置(3次元フィルタ)でノイズ低減を行い、動画と判定された場合には、主にエリア選択型ノイズ低減装置(2次元フィルタ)でノイズ低減を行うように、それぞれのノイズ低減装置が制御される。 In this conventional noise reduction apparatus, still image / moving image determination is performed based on the motion detection information. When it is determined as a still image, noise reduction is mainly performed by a frame cyclic noise reduction device (three-dimensional filter). When it is determined as a moving image, an area selection type noise reduction device (2 Each noise reduction apparatus is controlled so that noise reduction is performed by a dimension filter.
 しかしながら、従来のノイズ低減装置においては、巡回係数を大きく設定することで、3次元フィルタのノイズ低減効果を2次元フィルタのノイズ低減効果よりはるかに大きくすることも可能であるが、その場合には、巡回をある程度繰り返さないと3次元フィルタの効果が十分には発揮されない。 However, in the conventional noise reduction device, it is possible to make the noise reduction effect of the three-dimensional filter much larger than the noise reduction effect of the two-dimensional filter by setting the cyclic coefficient large. If the circulation is not repeated to some extent, the effect of the three-dimensional filter cannot be fully exhibited.
 例えば、画像中のある物体が「動いている」と判定されると、2次元フィルタでその物体の部分(動画の部分)のノイズが低減され、3次元フィルタでその物体の周囲の部分(静止画の部分)のノイズが低減される。なお、2次元フィルタでノイズ低減された部分は、3次元フィルタでノイズ低減された部分よりS/Nは良くないが、動きのある被写体に対しては「動きボケ」もあるため、ある程度のS/N低下は許容される。そして、例えば、次のフレームからその物体が「静止している」と判定されると、その物体の部分も3次元フィルタによってノイズ低減されることになる。しかし、従来のノイズ低減装置では、動いていた物体が静止した後すぐには、その物体の部分(静止画の部分)についての3次元フィルタのノイズ低減の効果は得られず、ある程度巡回を繰り返した後に、元から静止していた周囲の部分と同等のノイズ低減効果が得られる(同等のS/Nになる)ようになる。つまり「動いている状態」から「静止している状態」に状態が変わった物体に対しては、ノイズが十分に低減されてS/Nが改善されるまでに時間がかかり、その部分のノイズが目立つおそれがある。 For example, if it is determined that an object in the image is “moving”, the noise of the object part (moving image part) is reduced by the two-dimensional filter, and the part around the object (stationary) is reduced by the three-dimensional filter. The noise of the image portion is reduced. The S / N ratio of the noise-reduced part with the two-dimensional filter is not as good as that of the noise-reduced part with the three-dimensional filter, but there is “motion blur” for a moving subject. / N reduction is allowed. For example, when it is determined from the next frame that the object is “still”, the noise of the object portion is also reduced by the three-dimensional filter. However, in the conventional noise reduction device, immediately after the moving object stops, the effect of noise reduction of the three-dimensional filter for the object part (still image part) cannot be obtained, and the circulation is repeated to some extent. After that, the same noise reduction effect as that of the surrounding portion that was originally stationary can be obtained (the S / N becomes equivalent). In other words, for an object whose state has changed from “moving state” to “still state”, it takes time until the noise is sufficiently reduced and the S / N is improved. May stand out.
 そこで、「動いている状態」から「静止している状態」に状態が変わった物体に対して、できるだけ早くS/Nを改善してノイズを目立たせなくすることが望まれていた。特に、PTZ(パン・チルト・ズーム)機能を備えたカメラでは、PTZ動作中には全画面が「動いている」と判定されるが、PTZ動作の終了後にもできるだけ早くノイズを低減してS/Nを高くすることが求められていた。 Therefore, it has been desired to improve the S / N as quickly as possible to make the noise inconspicuous for an object whose state has changed from "moving state" to "stationary state". In particular, in a camera having a PTZ (pan / tilt / zoom) function, it is determined that the entire screen is “moving” during the PTZ operation, but noise is reduced as soon as possible after the PTZ operation is completed. / N should be increased.
特開2001-160909号公報JP 2001-160909 A
 本発明は、上記背景の下でなされたものである。本発明の目的は、動き状態から静止状態に状態が変わった物体に対してノイズが十分に低減されるまでの時間を短縮することのできる画像処理装置を提供することにある。 The present invention has been made under the above background. An object of the present invention is to provide an image processing apparatus capable of shortening the time until noise is sufficiently reduced for an object whose state has changed from a moving state to a stationary state.
 本発明の一の態様は、画像処理装置であり、この装置は、1フレーム前の画像信号を巡回画像信号として蓄積するフレームメモリ部と、入力画像信号とフレームメモリ部から入力される巡回画像信号をそれぞれ複数ライン分同時化する同時化部と、同時化された入力画像信号と巡回画像信号に基づいて、画像の動きを検出する動き検出部と、画像中の注目画素とその周囲画素の相関に基づいて、入力画像信号のノイズ成分を低減する2次元フィルタ部と、検出された画像の動きに基づいて決定される巡回係数を用いて、入力画像信号と巡回画像信号を加重加算することにより、入力画像信号のノイズ成分を低減する3次元フィルタ部と、検出された画像の動きに基づいて決定される重み付け係数を用いて、2次元フィルタ部からの出力画像信号と3次元フィルタ部からの出力画像信号を加重加算する信号合成部と、3次元フィルタ部に入力される巡回画像信号に対するノイズ除去処理を行うノイズ除去部と、を備え、画像の動きが小さい場合の巡回係数は、画像の動きが大きい場合の巡回係数より小さい値に決定される。 One aspect of the present invention is an image processing apparatus, which includes a frame memory unit that accumulates an image signal of one frame before as a cyclic image signal, an input image signal, and a cyclic image signal input from the frame memory unit. A synchronization unit that simultaneously synchronizes a plurality of lines, a motion detection unit that detects image motion based on the synchronized input image signal and cyclic image signal, and a correlation between a pixel of interest in the image and its surrounding pixels The input image signal and the cyclic image signal are weighted and added using a two-dimensional filter unit that reduces the noise component of the input image signal and a cyclic coefficient determined based on the detected motion of the image. An output image from the two-dimensional filter unit using a three-dimensional filter unit that reduces noise components of the input image signal and a weighting coefficient determined based on the detected motion of the image A signal synthesizer that weights and adds the signal and the output image signal from the three-dimensional filter unit, and a noise removal unit that performs a noise removal process on the cyclic image signal input to the three-dimensional filter unit, and the motion of the image is small In this case, the cyclic coefficient is determined to be smaller than the cyclic coefficient when the image motion is large.
 本発明の別の態様は、画像処理方法であり、この方法は、1フレーム前の画像信号を巡回画像信号として蓄積することと、入力画像信号と蓄積された巡回画像信号をそれぞれ複数ライン分同時化する同時化処理を行うことと、同時化された入力画像信号と巡回画像信号に基づいて、画像の動きを検出する動き検出処理を行うことと、画像中の注目画素とその周囲画素の相関に基づいて、入力画像信号のノイズ成分を低減する2次元フィルタ処理を行うことと、検出された画像の動きに基づいて決定される巡回係数であって、画像の動きが小さい場合のほうが記画像の動きが大きい場合より小さい値に決定される巡回係数を用いて、入力画像信号と巡回画像信号を加重加算することにより、入力画像信号のノイズ成分を低減する3次元フィルタ処理を行うことと、検出された画像の動きに基づいて決定される重み付け係数を用いて、2次元フィルタ処理後の出力画像信号と3次元フィルタ処理後の出力画像信号を加重加算する信号合成処理を行うことと、3次元フィルタ処理前の巡回画像信号に対してノイズ除去処理を行うことと、を含む。 Another aspect of the present invention is an image processing method, in which an image signal of one frame before is stored as a cyclic image signal, and an input image signal and the accumulated cyclic image signal are simultaneously stored for a plurality of lines. To perform synchronization processing, to perform motion detection processing to detect image motion based on the synchronized input image signal and cyclic image signal, and to correlate the target pixel in the image and its surrounding pixels Based on the two-dimensional filter processing for reducing the noise component of the input image signal, and the cyclic coefficient determined based on the detected image motion, where the image motion is small. A three-dimensional filter that reduces the noise component of the input image signal by weighted addition of the input image signal and the cyclic image signal using a cyclic coefficient determined to a smaller value when the movement of the image is large Signal synthesis processing for performing weighted addition of the output image signal after the two-dimensional filter processing and the output image signal after the three-dimensional filter processing using a weighting coefficient determined based on the motion of the detected image And performing noise removal processing on the cyclic image signal before the three-dimensional filter processing.
 本発明の別の態様は、画像処理プログラムであり、このプログラムは、1フレーム前の画像信号を巡回画像信号として蓄積する処理と、入力画像信号と蓄積された巡回画像信号をそれぞれ複数ライン分同時化する同時化処理を行う処理と、同時化された入力画像信号と巡回画像信号に基づいて、画像の動きを検出する動き検出処理と、画像中の注目画素とその周囲画素の相関に基づいて、入力画像信号のノイズ成分を低減する2次元フィルタ処理と、検出された画像の動きに基づいて決定される巡回係数であって、画像の動きが小さい場合のほうが記画像の動きが大きい場合より小さい値に決定される巡回係数を用いて、入力画像信号と巡回画像信号を加重加算することにより、入力画像信号のノイズ成分を低減する3次元フィルタ処理と、検出された画像の動きに基づいて決定される重み付け係数を用いて、2次元フィルタ処理後の出力画像信号と3次元フィルタ処理後の出力画像信号を加重加算する信号合成処理と、3次元フィルタ処理前の巡回画像信号に対してノイズ除去処理とを、コンピュータに実行させる。 Another aspect of the present invention is an image processing program. This program stores the image signal of the previous frame as a cyclic image signal and the input image signal and the accumulated cyclic image signal for a plurality of lines simultaneously. Based on the correlation between the target pixel in the image and its surrounding pixels, the processing for performing the synchronization processing, the motion detection processing for detecting the motion of the image based on the synchronized input image signal and the cyclic image signal Two-dimensional filter processing for reducing the noise component of the input image signal and a cyclic coefficient determined based on the detected motion of the image, and when the motion of the image is smaller than when the motion of the image is greater Three-dimensional filter processing for reducing noise components of the input image signal by weighted addition of the input image signal and the cyclic image signal using a cyclic coefficient determined to be a small value; Signal synthesis processing for weighted addition of the output image signal after the two-dimensional filter processing and the output image signal after the three-dimensional filter processing using a weighting coefficient determined based on the detected motion of the image, and the three-dimensional filter processing The computer executes a noise removal process on the previous cyclic image signal.
 以下に説明するように、本発明には他の態様が存在する。したがって、この発明の開示は、本発明の一部の態様の提供を意図しており、ここで記述され請求される発明の範囲を制限することは意図していない。 As described below, there are other aspects of the present invention. Accordingly, this disclosure is intended to provide some aspects of the invention and is not intended to limit the scope of the invention described and claimed herein.
図1は、第1の実施の形態における画像処理装置の構成を示すブロック図FIG. 1 is a block diagram illustrating a configuration of an image processing apparatus according to the first embodiment. 図2は、2次元フィルタによるノイズ低減効果の一例を示す図FIG. 2 is a diagram illustrating an example of a noise reduction effect by a two-dimensional filter. 図3は、3次元フィルタによるノイズ低減効果の一例を示す図FIG. 3 is a diagram illustrating an example of a noise reduction effect by a three-dimensional filter. 図4は、比較例としてLPFによるノイズ除去処理の一例を示す図FIG. 4 is a diagram showing an example of noise removal processing by LPF as a comparative example. 図5は、第2の実施の形態におけるノイズ除去処理の一例を示す図FIG. 5 is a diagram illustrating an example of noise removal processing according to the second embodiment.
 以下に本発明の詳細な説明を述べる。ただし、以下の詳細な説明と添付の図面は発明を限定するものではない。代わりに、発明の範囲は添付の請求の範囲により規定される。 The detailed description of the present invention will be described below. However, the following detailed description and the accompanying drawings do not limit the invention. Instead, the scope of the invention is defined by the appended claims.
 本発明の画像処理装置は、1フレーム前の画像信号を巡回画像信号として蓄積するフレームメモリ部と、入力画像信号とフレームメモリ部から入力される巡回画像信号をそれぞれ複数ライン分同時化する同時化部と、同時化された入力画像信号と巡回画像信号に基づいて、画像の動きを検出する動き検出部と、画像中の注目画素とその周囲画素の相関に基づいて、入力画像信号のノイズ成分を低減する2次元フィルタ部と、検出された画像の動きに基づいて決定される巡回係数を用いて、入力画像信号と巡回画像信号を加重加算することにより、入力画像信号のノイズ成分を低減する3次元フィルタ部と、検出された画像の動きに基づいて決定される重み付け係数を用いて、2次元フィルタ部からの出力画像信号と3次元フィルタ部からの出力画像信号を加重加算する信号合成部と、3次元フィルタ部に入力される巡回画像信号に対するノイズ除去処理を行うノイズ除去部と、を備え、画像の動きが小さい場合の巡回係数は、画像の動きが大きい場合の巡回係数より小さい値に決定される構成を有している。 The image processing apparatus according to the present invention includes a frame memory unit that stores an image signal of one frame before as a cyclic image signal, and a synchronization that simultaneously synchronizes an input image signal and a cyclic image signal input from the frame memory unit for a plurality of lines. A motion detection unit that detects the motion of the image based on the synchronized input image signal and the cyclic image signal, and a noise component of the input image signal based on a correlation between the target pixel in the image and its surrounding pixels The noise component of the input image signal is reduced by weighted addition of the input image signal and the cyclic image signal using a two-dimensional filter unit for reducing the image and a cyclic coefficient determined based on the detected motion of the image. The output image signal from the two-dimensional filter unit and the output from the three-dimensional filter unit using the three-dimensional filter unit and a weighting coefficient determined based on the detected motion of the image A signal synthesis unit that performs weighted addition of the force image signal, and a noise removal unit that performs noise removal processing on the cyclic image signal input to the three-dimensional filter unit, and the cyclic coefficient when the motion of the image is small is It has a configuration that is determined to be smaller than the cyclic coefficient when the motion is large.
 この構成により、3次元フィルタ部に入力される巡回画像信号に対してノイズ除去処理が行われるため、動き状態から静止状態に状態変化した物体に対してノイズが十分に低減されるまでの時間を短縮することができ、高いS/Nの画像を素早く得ることができる。 With this configuration, noise removal processing is performed on the cyclic image signal input to the three-dimensional filter unit. Therefore, it is possible to reduce the time until the noise is sufficiently reduced for an object whose state has changed from a moving state to a stationary state. The image can be shortened and a high S / N image can be obtained quickly.
 また、本発明の画像処理装置では、ノイズ除去部は、メディアンフィルタ、加重メディアンフィルタ、または、スタックフィルタである構成を有してよい。 In the image processing apparatus of the present invention, the noise removal unit may have a configuration that is a median filter, a weighted median filter, or a stack filter.
 この構成により、3次元フィルタ部に入力される巡回画像信号に対して繰り返しノイズ除去処理が行われても、必要な画像信号が失われてしまうことがなく、適正なノイズ低減処理がなされた高画質な画像を得ることができる。 With this configuration, even when the noise removal process is repeatedly performed on the cyclic image signal input to the three-dimensional filter unit, the necessary image signal is not lost, and an appropriate noise reduction process is performed. A high-quality image can be obtained.
 また、本発明の画像処理装置では、ノイズ除去部は、注目画素と周囲画素の信号レベルとの大小を比較し、注目画素の信号レベルが、周囲画素の最大信号レベルに基づいて決定される所定の上限値より大きいとき、または、周囲画素の最小信号レベルに基づいて決定される所定の下限値より小さいときに、注目画素の画素値を置き換える処理を行う構成を有してよい。 In the image processing apparatus of the present invention, the noise removing unit compares the signal levels of the target pixel and the surrounding pixels, and the signal level of the target pixel is determined based on the maximum signal level of the surrounding pixels. The pixel value of the pixel of interest may be replaced when it is larger than the upper limit value of the pixel or when it is smaller than a predetermined lower limit value determined based on the minimum signal level of the surrounding pixels.
 この構成により、3次元フィルタ部に入力される巡回画像信号に対して繰り返しノイズ除去処理が行われても、必要な画像信号が失われてしまうことがなく、適正なノイズ低減処理がなされた高画質な画像を得ることができる。 With this configuration, even when the noise removal process is repeatedly performed on the cyclic image signal input to the three-dimensional filter unit, the necessary image signal is not lost, and an appropriate noise reduction process is performed. A high-quality image can be obtained.
 本発明の画像処理方法は、1フレーム前の画像信号を巡回画像信号として蓄積することと、入力画像信号と蓄積された巡回画像信号をそれぞれ複数ライン分同時化する同時化処理を行うことと、同時化された入力画像信号と巡回画像信号に基づいて、画像の動きを検出する動き検出処理を行うことと、画像中の注目画素とその周囲画素の相関に基づいて、入力画像信号のノイズ成分を低減する2次元フィルタ処理を行うことと、検出された画像の動きに基づいて決定される重み付け係数を用いて、入力画像信号と巡回画像信号を加重加算することにより、入力画像信号のノイズ成分を低減する3次元フィルタ処理を行うことと、検出された画像の動きに基づいて決定される巡回係数であって、画像の動きが小さい場合のほうが記画像の動きが大きい場合より小さい値に決定される巡回係数を用いて、2次元フィルタ処理後の出力画像信号と3次元フィルタ処理後の出力画像信号を加重加算する信号合成処理を行うことと、3次元フィルタ処理前の巡回画像信号に対してノイズ除去処理を行うことと、を含んでいる。 The image processing method of the present invention accumulates the image signal of the previous frame as a cyclic image signal, performs a synchronization process for synchronizing the input image signal and the accumulated cyclic image signal for each of a plurality of lines, Based on the synchronized input image signal and the cyclic image signal, performing a motion detection process for detecting the motion of the image, and based on the correlation between the target pixel in the image and its surrounding pixels, the noise component of the input image signal Noise component of the input image signal by performing a two-dimensional filter process for reducing the input image signal and weighted addition of the input image signal and the cyclic image signal using a weighting coefficient determined based on the detected motion of the image And a cyclic coefficient determined on the basis of the detected motion of the image, where the motion of the image is smaller. Using a cyclic coefficient determined to be a smaller value when larger, performing signal synthesis processing for weighted addition of the output image signal after two-dimensional filter processing and the output image signal after three-dimensional filter processing, and three-dimensional filter processing Performing noise removal processing on the previous cyclic image signal.
 この方法によっても、上記と同様に、3次元フィルタ処理に用いられる巡回画像信号に対してノイズ除去処理が行われるため、動き状態から静止状態に状態変化した物体に対してノイズが十分に低減されるまでの時間を短縮することができ、高いS/Nの画像を素早く得ることができる。 Also with this method, as described above, noise removal processing is performed on the cyclic image signal used for the three-dimensional filter processing, so that noise is sufficiently reduced for an object whose state has changed from a moving state to a stationary state. It is possible to shorten the time required to obtain a high S / N image.
 本発明の画像処理プログラムは、1フレーム前の画像信号を巡回画像信号として蓄積する処理と、入力画像信号と蓄積された巡回画像信号をそれぞれ複数ライン分同時化する同時化処理を行う処理と、同時化された入力画像信号と巡回画像信号に基づいて、画像の動きを検出する動き検出処理と、画像中の注目画素とその周囲画素の相関に基づいて、入力画像信号のノイズ成分を低減する2次元フィルタ処理と、検出された画像の動きに基づいて決定される巡回係数であって、画像の動きが小さい場合のほうが記画像の動きが大きい場合より小さい値に決定される巡回係数を用いて、入力画像信号と巡回画像信号を加重加算することにより、入力画像信号のノイズ成分を低減する3次元フィルタ処理と、検出された画像の動きに基づいて決定される重み付け係数を用いて、2次元フィルタ処理後の出力画像信号と3次元フィルタ処理後の出力画像信号を加重加算する信号合成処理と、3次元フィルタ処理前の巡回画像信号に対してノイズ除去処理とを、コンピュータに実行させる。 The image processing program of the present invention includes a process for accumulating the image signal of the previous frame as a cyclic image signal, a process for performing a synchronization process for simultaneously synchronizing the input image signal and the accumulated cyclic image signal for a plurality of lines, Based on the synchronized input image signal and the cyclic image signal, the motion detection process for detecting the motion of the image, and the noise component of the input image signal is reduced based on the correlation between the target pixel in the image and its surrounding pixels. Two-dimensional filter processing and a cyclic coefficient determined based on the detected image motion, which is determined to be smaller when the image motion is small and smaller than when the image motion is large Thus, the input image signal and the cyclic image signal are weighted and added to reduce the noise component of the input image signal and based on the detected motion of the image. Using a weighted coefficient, a signal synthesis process for weighted addition of the output image signal after the two-dimensional filter process and the output image signal after the three-dimensional filter process, and noise removal for the cyclic image signal before the three-dimensional filter process Processing is executed by a computer.
 このプログラムによっても、上記と同様に、3次元フィルタ処理に用いられる巡回画像信号に対してノイズ除去処理が行われるため、動き状態から静止状態に状態変化した物体に対してノイズが十分に低減されるまでの時間を短縮することができ、高いS/Nの画像を素早く得ることができる。 Also in this program, noise removal processing is performed on the cyclic image signal used for the three-dimensional filter processing as described above, so that noise is sufficiently reduced for an object whose state has changed from a moving state to a stationary state. It is possible to shorten the time until the image is received and to obtain a high S / N image quickly.
 本発明は、3次元フィルタ部に入力される巡回画像信号に対するノイズ除去処理を行うノイズ除去部を設けることにより、動き状態から静止状態に状態変化した物体に対してノイズが十分に低減されるまでの時間を短縮することができる。 The present invention provides a noise removal unit that performs noise removal processing on a cyclic image signal input to a three-dimensional filter unit, until noise is sufficiently reduced for an object whose state has changed from a moving state to a stationary state. Can be shortened.
 以下、本発明の実施の形態の画像処理装置について、図面を用いて説明する。本実施の形態では、PTZ機能を備えたカメラで撮影された画像の画像処理等に用いられる画像処理装置の場合を例示する。この画像処理機能は、画像処理装置のHDDやメモリなどに格納されたプログラムによって実現されてもよい。 Hereinafter, an image processing apparatus according to an embodiment of the present invention will be described with reference to the drawings. In the present embodiment, an example of an image processing apparatus used for image processing of an image taken by a camera having a PTZ function is illustrated. This image processing function may be realized by a program stored in an HDD or a memory of the image processing apparatus.
(第1の実施の形態)
 本発明の第1の実施の形態の画像処理装置の構成について、図面を参照して説明する。図1は、本実施の形態の画像処理装置の構成を示すブロック図である。図1に示すように、画像処理装置1は、画像信号を巡回画像信号として蓄積するフレームメモリ2と、入力画像信号と巡回画像信号を同時化する処理を行う同時化部3と、画像中の動きを検出する処理を行う動き検出部4と、巡回画像信号のノイズ成分を除去する処理を行うノイズ除去部5を備えている。また、この画像処理装置1は、画像中の画素の相関に基づいて入力画像信号のノイズ成分を除去する2次元フィルタ6と、入力画像信号と巡回画像信号を加重加算することにより入力画像信号のノイズ成分を除去する3次元フィルタ7と、2次元フィルタ6と3次元フィルタ7からの出力画像信号を加重加算する信号合成部8を備えている。
(First embodiment)
The configuration of the image processing apparatus according to the first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing the configuration of the image processing apparatus according to the present embodiment. As shown in FIG. 1, an image processing apparatus 1 includes a frame memory 2 that accumulates image signals as cyclic image signals, a synchronization unit 3 that performs a process of synchronizing an input image signal and a cyclic image signal, A motion detection unit 4 that performs processing for detecting motion and a noise removal unit 5 that performs processing for removing noise components of the cyclic image signal are provided. The image processing apparatus 1 also includes a two-dimensional filter 6 that removes noise components of the input image signal based on the correlation of the pixels in the image, and weighted addition of the input image signal and the cyclic image signal to thereby calculate the input image signal. A three-dimensional filter 7 that removes noise components, and a signal synthesis unit 8 that performs weighted addition of output image signals from the two-dimensional filter 6 and the three-dimensional filter 7 are provided.
 フレームメモリ2には、信号合成部8から出力された1フレーム前の画像信号が入力される。この1フレーム前の画像信号は、巡回画像信号としてフレームメモリ2に一時的に記憶され、次のフレームの入力信号に同期して読み出される。 The frame memory 2 receives the image signal of the previous frame output from the signal synthesizer 8. The image signal of the previous frame is temporarily stored as a cyclic image signal in the frame memory 2 and read out in synchronization with the input signal of the next frame.
 同時化部3は、ラインメモリ等で構成される。同時化部3には入力画像信号と巡回画像信号が入力され、複数ライン分の入力画像信号と巡回画像信号がそれぞれ同時化される。これにより、注目画素とその周囲画素の画像信号を2次元的に(平面的に)処理できるようになる。 The synchronization unit 3 is composed of a line memory and the like. An input image signal and a cyclic image signal are input to the synchronizer 3, and the input image signal and the cyclic image signal for a plurality of lines are respectively synchronized. As a result, the image signal of the target pixel and its surrounding pixels can be processed two-dimensionally (planarly).
 動き検出部4には、同時化部3から出力された入力画像信号と巡回画像信号が入力され、これらの同時化された入力画像信号と巡回画像信号に基づいて、画像の動きが検出される。例えば、入力画像信号と巡回画像信号の差分などに基づいて、画素毎の動き量が算出される。 The motion detection unit 4 receives the input image signal and the cyclic image signal output from the synchronization unit 3, and detects the motion of the image based on the synchronized input image signal and the cyclic image signal. . For example, the amount of motion for each pixel is calculated based on the difference between the input image signal and the cyclic image signal.
 2次元フィルタ6は、画像中の注目画素とその周囲画素の2次元的な相関に基づいて、入力画像信号のノイズ成分を低減する機能を有している。つまり、この2次元フィルタ6は、入力画像信号に2次元的なノイズ低減処理を施してS/Nを改善するエリア選択型ノイズ低減装置として機能するともいえる。 The two-dimensional filter 6 has a function of reducing the noise component of the input image signal based on a two-dimensional correlation between the target pixel in the image and its surrounding pixels. That is, it can be said that the two-dimensional filter 6 functions as an area-selective noise reduction device that performs two-dimensional noise reduction processing on the input image signal to improve S / N.
 3次元フィルタ7は、入力画像信号と巡回画像信号を加重加算することにより、入力画像信号に3次元的な(平面的かつ時間的な)ノイズ低減処理を施して、入力画像信号のノイズ成分を低減する機能を有している。つまり、この3次元フィルタ7は、入力画像信号と同位置の巡回画像信号を加重加算することで、映像の自己相関の高さによってS/Nを改善するフレーム巡回型ノイズ低減装置として機能するともいえる。 The three-dimensional filter 7 performs a three-dimensional (planar and temporal) noise reduction process on the input image signal by weighted addition of the input image signal and the cyclic image signal, and reduces the noise component of the input image signal. It has a function to reduce. In other words, the three-dimensional filter 7 functions as a frame cyclic noise reduction device that improves the S / N according to the height of the autocorrelation of the video by weighted addition of the cyclic image signal at the same position as the input image signal. I can say that.
 信号合成部8には、2次元フィルタ6から出力された画像信号と3次元フィルタ7から出力された画像信号が入力される。この信号合成部8では、これら2つの画像信号を加重加算して、信号合成を行う処理が行われる。 The signal synthesizer 8 receives the image signal output from the two-dimensional filter 6 and the image signal output from the three-dimensional filter 7. The signal synthesizer 8 performs a process of performing signal synthesis by weighted addition of these two image signals.
 3次元フィルタ7での加重加算に用いられる巡回係数や、信号合成部8での加重加算に用いられる重み付け係数(加重係数ともいう)は、動き検出部4で算出された動き量に基づいて決定される。この動き検出部4は、画素ごとに動き量を算出することが可能である。例えば、動き検出部4で算出された動き量が大きい場合(動画の場合)には、巡回係数が小さく設定されて、入力画像信号が多く使用され、動き検出部4で算出された動き量が小さい場合(静止画の場合)には、巡回係数が大きく設定されて、巡回画像信号が多く使用される。また、例えば、動き検出部4で算出された動き量が大きい場合(動画の場合)には、加重係数が小さく設定されて、2次元フィルタ出力信号が多く使用され、動き検出部4で算出された動き量が小さい場合(静止画の場合)には、加重係数が大きく設定されて、3次元フィルタ信号が多く使用される。 The cyclic coefficient used for the weighted addition in the three-dimensional filter 7 and the weighting coefficient (also referred to as a weighting coefficient) used for the weighted addition in the signal synthesis unit 8 are determined based on the motion amount calculated by the motion detection unit 4. Is done. The motion detection unit 4 can calculate a motion amount for each pixel. For example, when the motion amount calculated by the motion detection unit 4 is large (in the case of a moving image), the cyclic coefficient is set to be small, the input image signal is frequently used, and the motion amount calculated by the motion detection unit 4 is When it is small (in the case of a still image), the cyclic coefficient is set to be large and a cyclic image signal is often used. Also, for example, when the amount of motion calculated by the motion detection unit 4 is large (in the case of a moving image), the weighting coefficient is set to be small, and the two-dimensional filter output signal is frequently used and is calculated by the motion detection unit 4. When the amount of motion is small (in the case of a still image), the weighting coefficient is set large and a three-dimensional filter signal is often used.
 ノイズ除去部5は、3次元フィルタ7に入力される巡回画像信号(フレームメモリ2から出力される1フレーム前の巡回画像信号)に対してフィルタを用いたノイズ除去処理を行う。本実施の形態のノイズ除去部5では、このノイズ除去処理用のフィルタとして、メディアンフィルタが用いられる。 The noise removal unit 5 performs noise removal processing using a filter on the cyclic image signal input to the three-dimensional filter 7 (cyclic image signal one frame before output from the frame memory 2). In the noise removal unit 5 of the present embodiment, a median filter is used as a filter for this noise removal processing.
 メディアンフィルタは、入力された複数の画像信号の中央値を出力とするフィルタであり、画像信号からノイズ成分を除去する機能を備えている。なお、メディアンフィルタへの入力信号を得るためには、注目画素の周囲画素の信号が必要になる。この周囲画素の信号を得るためには、通常であれば、ラインメモリ等で複数ラインの同時化処理を行う必要がある(別途、同時化部3を設ける必要がある)。ところが、本実施の形態では、すでに動き検出部4のために同時化部3が設けられているので、これを利用することによって、同時化部3を別途設ける必要がなくなり、回路規模の増加を抑えることができる。 The median filter is a filter that outputs a median value of a plurality of input image signals, and has a function of removing noise components from the image signals. Note that in order to obtain an input signal to the median filter, signals from pixels around the target pixel are required. In order to obtain the signals of the surrounding pixels, it is usually necessary to perform a synchronization process for a plurality of lines using a line memory or the like (a separate synchronization unit 3 must be provided). However, in the present embodiment, since the synchronization unit 3 is already provided for the motion detection unit 4, it is not necessary to separately provide the synchronization unit 3 by using this, thereby increasing the circuit scale. Can be suppressed.
 以上のように構成された画像処理装置1について、図面を用いてその動作を説明する。 The operation of the image processing apparatus 1 configured as described above will be described with reference to the drawings.
 画像上のある1点が動き画素である場合には、2次元フィルタ6によるノイズ低減処理が行われる。図2は、2次元フィルタ6によるノイズ低減処理の一例を示す図である。図2では、画像上のある1点の信号レベルの時間変化が示されている(縦軸は信号レベルであり、横軸は時間である)。この図2では、原信号(ノイズ低減処理前の画像信号)が「菱形」の記号で示されており、原信号に対して2次元フィルタ6をかけた信号が「正方形」の記号で示されている。この場合、ノイズの無い真のゼロ信号レベルを「0」としており、「0」を中心にしてノイズが加算されている。図2の結果から、2次元フィルタ6によるノイズ低減処理によって、画像信号のノイズ成分がある程度除去されていることが分かる。 When one point on the image is a moving pixel, noise reduction processing by the two-dimensional filter 6 is performed. FIG. 2 is a diagram illustrating an example of noise reduction processing by the two-dimensional filter 6. In FIG. 2, the time change of the signal level of one point on the image is shown (the vertical axis is the signal level and the horizontal axis is the time). In FIG. 2, the original signal (image signal before noise reduction processing) is indicated by a symbol “rhombus”, and a signal obtained by applying the two-dimensional filter 6 to the original signal is indicated by a symbol “square”. ing. In this case, the true zero signal level without noise is “0”, and noise is added around “0”. 2 that the noise component of the image signal is removed to some extent by the noise reduction processing by the two-dimensional filter 6.
 この画素が(動き画素から)静止画素になった場合には、3次元フィルタ7によるノイズ低減処理が行われる。図3は、3次元フィルタ7によるノイズ低減処理の一例を示す図である。図3では、この画素の信号レベルの時間変化が示されている(縦軸は信号レベルであり、横軸は時間である)。この図3では、メディアンフィルタを用いてノイズ除去処理を行ってから3次元フィルタ7をかけた信号が「正方形」の記号で示されており、ノイズ除去処理を行わずに3次元フィルタ7をかけた信号(つまり比較例)が「菱形」の記号で示されている。図3の結果から、従来のようにノイズ除去処理を行わずに原信号に3次元フィルタ7をかけると、(特に、巡回フレーム数が増えると)「0」に収束するまで時間がかかってしまうのに対し、本実施の形態のようにノイズ除去処理を行ってから原信号に3次元フィルタ7をかけると、動き状態から静止状態に変化した場合でも「0」に収束するまでの時間が短縮されている(早く収束している)ことが分かる。 When this pixel becomes a still pixel (from a moving pixel), noise reduction processing by the three-dimensional filter 7 is performed. FIG. 3 is a diagram illustrating an example of noise reduction processing by the three-dimensional filter 7. In FIG. 3, the time change of the signal level of this pixel is shown (the vertical axis is the signal level and the horizontal axis is the time). In FIG. 3, a signal obtained by applying the three-dimensional filter 7 after performing the noise removal processing using the median filter is indicated by a symbol “square”, and the three-dimensional filter 7 is applied without performing the noise removal processing. The signal (that is, the comparative example) is indicated by the symbol “diamond”. From the results shown in FIG. 3, when the original signal is subjected to the three-dimensional filter 7 without performing noise removal processing as in the prior art, it takes time to converge to “0” (especially when the number of cyclic frames increases). On the other hand, when the three-dimensional filter 7 is applied to the original signal after performing the noise removal processing as in the present embodiment, the time until convergence to “0” is shortened even when the moving state changes to the stationary state. It can be seen that it has been (converged quickly).
 なお、この場合、静止画像に対しても、ノイズ除去部5は、巡回画像信号にノイズ除去処理を行う。静止状態では、巡回画像信号の巡回係数が大きく設定されるので、巡回画像信号が何度もノイズ除去部5を通って、何度もノイズ除去処理が施される。したがって、静止状態の画像においてもS/N改善効果が得られる。 In this case, the noise removal unit 5 also performs noise removal processing on the cyclic image signal for a still image. In the stationary state, the cyclic coefficient of the cyclic image signal is set large, so that the cyclic image signal passes through the noise removal unit 5 many times and is subjected to noise removal processing many times. Therefore, an S / N improvement effect can be obtained even in a still image.
 このような第1の実施の形態の画像処理装置1によれば、3次元フィルタ7に入力される巡回画像信号に対するノイズ除去処理を行うノイズ除去部5を設けることにより、動き状態から静止状態に状態変化した物体に対してノイズが十分に低減されるまでの時間を短縮することができる。 According to the image processing apparatus 1 of the first embodiment as described above, by providing the noise removal unit 5 that performs noise removal processing on the cyclic image signal input to the three-dimensional filter 7, the moving state is changed to the stationary state. The time until the noise is sufficiently reduced for the object whose state has changed can be shortened.
 すなわち、本実施の形態では、3次元フィルタ7に入力される巡回画像信号に対してノイズ除去処理が行われるため、動き状態から静止状態に状態変化した物体に対してノイズが十分に低減されるまでの時間を短縮することができ(図3参照)、高いS/Nの画像を素早く得ることができる。 In other words, in the present embodiment, noise removal processing is performed on the cyclic image signal input to the three-dimensional filter 7, so that noise is sufficiently reduced for an object whose state has changed from a moving state to a stationary state. Time (see FIG. 3), and a high S / N image can be obtained quickly.
 ここで、本発明の画像処理装置1の作用効果を、従来の装置と比較してより詳細に説明しておく。 Here, the operational effects of the image processing apparatus 1 of the present invention will be described in more detail in comparison with a conventional apparatus.
 従来の装置では、画像の動き部分への2次元フィルタと、静止部分への3次元フィルタの性能の差の影響により、「動き状態」から「静止状態」となった部分の画質が、周囲の静止部分の画質より劣化してしまうという問題があった。 In the conventional apparatus, the image quality of the portion from the “motion state” to the “still state” due to the difference in performance between the two-dimensional filter on the moving portion of the image and the three-dimensional filter on the stationary portion is There was a problem that the image quality of the still part deteriorated.
 従来の装置でも、被写体が「動き状態」から「静止状態」となった「最初の1フレーム目」では、2次元フィルタによってある程度S/Nが改善される(ある程度しかS/Nが改善されないともいえる)。この「最初の1フレーム目」の時点では、動き検出結果は「動きあり」となるので、巡回係数は低く設定され、かつ、加重加算係数は、ほぼ2次元フィルタ出力となるような重み付けになり、出力信号は、ほぼ現在の入力信号に2次元フィルタをかけたものとなる。 Even in the conventional apparatus, the S / N is improved to some extent by the two-dimensional filter in the “first first frame” where the subject has changed from the “moving state” to the “still state” (the S / N may be improved only to some extent). I can say). Since the motion detection result is “with motion” at the time of the “first first frame”, the cyclic coefficient is set to a low value, and the weighted addition coefficient is weighted so as to be almost a two-dimensional filter output. The output signal is approximately the current input signal with a two-dimensional filter applied.
 ところが、その「次のフレーム」では、動き検出結果は「動きなし」となるので、巡回係数は高く設定され、加重加算係数は、ほぼ3次元フィルタ出力となるような重み付けになり、出力信号は、巡回画像信号に近い信号が出力され。つまり、「動き状態」から「静止状態」となった後の「最初の1フレーム目」のS/Nの悪い画像(ある程度しかS/Nが改善されていない画像)が、(「次のフレーム」からは、巡回係数が高く設定され、かつ、加重加算係数がほぼ3次元フィルタ出力となるために)長時間残ってしまうことになり、その結果、「動き状態」から「静止状態」となった部分の画質が、周囲の静止部分の画質より劣化してしまう。 However, in the “next frame”, since the motion detection result is “no motion”, the cyclic coefficient is set high, the weighted addition coefficient is weighted so as to be almost a three-dimensional filter output, and the output signal is A signal close to the cyclic image signal is output. That is, an image having a poor S / N (an image in which the S / N is improved only to some extent) in the “first frame” after the “motion state” is changed to the “still state” (the “next frame”) ", Since the cyclic coefficient is set high and the weighted addition coefficient is almost a three-dimensional filter output), it remains for a long time. As a result, the" motion state "changes to the" stationary state ". The image quality of the affected area is deteriorated compared to the image quality of the surrounding still area.
 このような問題を解決するための方法として、従来、(1)静止時の巡回係数設定値を下げることや、(2)2次元フィルタの性能を上げることが提案されていた。しかしながら、上記(1)の方法では、「動き状態」から「静止状態」となった部分の画質が周囲と同等になるまでの時間は改善するものの、静止時の画質は下がってしまう。また、上記(2)の方法では、単純に2次元にフィルタの性能を上げてゆくにも限界があり(特にゲイン量が大きい場合には2次元フィルタの効果に限界があり)、また、高性能な複雑なフィルタ回路は回路規模の増大を招くという問題があった。したがって、従来は、上記(1)の方法が用いられることが多く、その場合、「動き状態」から「静止状態」となった部分の画質が、「周囲と同等になるまでの時間」と「静止時の画質」のトレードオフとなることは止むを得なかった。 As a method for solving such a problem, conventionally, (1) lowering the cyclic coefficient setting value when stationary and (2) improving the performance of the two-dimensional filter have been proposed. However, in the method (1), although the time until the image quality of the portion from the “motion state” to the “stationary state” becomes equal to the surroundings is improved, the image quality at the time of stillness is lowered. In the method (2), there is a limit to simply improving the performance of the filter in two dimensions (particularly, when the gain amount is large, the effect of the two-dimensional filter is limited). A complicated filter circuit with high performance has a problem of increasing the circuit scale. Therefore, conventionally, the method (1) is often used, and in that case, the image quality of the portion where the “motion state” is changed to the “stationary state” is “time until it becomes equal to the surroundings” and “ It was inevitable that the “image quality at rest” would be a trade-off.
 本発明の画像処理装置1でも、「動き状態」から「静止状態」となった「最初の1フレーム目」の画像は、上記従来と同様、2次元フィルタによってある程度S/Nが改善される。この「最初の1フレーム目」の時点では、動き検出結果は「動きあり」となり、巡回係数は低く設定され、かつ、加重加算係数は、ほぼ2次元フィルタ出力となるような重み付けとなり、出力信号は、ほぼ現在の入力信号に2次元フィルタをかけたものになる。そして、この出力信号がフレームメモリ2に入力され、次のフレームの巡回画像信号となる。 Also in the image processing apparatus 1 of the present invention, the S / N of the “first first frame” image that has changed from the “motion state” to the “still state” is improved to some extent by the two-dimensional filter as in the conventional case. At the time of this “first first frame”, the motion detection result is “with motion”, the cyclic coefficient is set to a low value, and the weighted addition coefficient is weighted so as to be approximately a two-dimensional filter output, and the output signal Is approximately the current input signal with a two-dimensional filter applied. This output signal is input to the frame memory 2 and becomes a cyclic image signal of the next frame.
 本発明の画像処理装置1では、その「次のフレーム」において、巡回画像信号がノイズ除去部5を通り、ノイズ除去処理が行なわれる(S/Nが改善される)。そして、この「次のフレーム」の時点では、動き検出結果は「動きなし」となり、巡回係数は高く設定され、かつ、加重加算係数は、ほぼ3次元フィルタ出力となるような重み付けとなり、出力信号は、巡回画像信号に近い信号が出力される。そして、この出力信号がフレームメモリ2に入力され、さらに次のフレームの巡回画像信号となる。 In the image processing apparatus 1 of the present invention, in the “next frame”, the cyclic image signal passes through the noise removal unit 5 and noise removal processing is performed (S / N is improved). At the time of this “next frame”, the motion detection result is “no motion”, the cyclic coefficient is set high, and the weighted addition coefficient is weighted so as to be an approximately three-dimensional filter output, and the output signal Outputs a signal close to the cyclic image signal. This output signal is input to the frame memory 2 and becomes a cyclic image signal of the next frame.
 本発明の画像処理装置1では、このような処理が繰り返し行なわる。つまり、静止状態の画像では、巡回係数が高く設定され、加重加算係数は、ほぼ3次元フィルタ出力となるような重み付けになり、ノイズ除去部5を何度も信号が通って、S/Nが改善されるという効果がある。このような、S/N改善効果は、単純に2次元フィルタを強化するものとも大きく異なるものである。 In the image processing apparatus 1 of the present invention, such processing is repeatedly performed. That is, in the still state image, the cyclic coefficient is set high, and the weighted addition coefficient is weighted so as to be almost a three-dimensional filter output, and the signal passes through the noise removing unit 5 many times, and the S / N is reduced. There is an effect that it is improved. Such an S / N improvement effect is significantly different from that of simply strengthening the two-dimensional filter.
 画像処理装置1の基本性能としては、(動き状態から静止状態に変化した直後だけでなく)通常の静止状態の画像においても、できるだけ高いS/Nの画像が求められるが、本実施の形態では、上述のように、静止画像に対してもノイズ除去部5が巡回画像信号にノイズ除去処理を行うので、静止状態の画像においてもS/Nが改善される。 The basic performance of the image processing apparatus 1 is that an S / N image as high as possible is required even in a normal still state image (not only immediately after changing from a motion state to a still state). As described above, since the noise removal unit 5 also performs noise removal processing on the cyclic image signal for a still image, the S / N is also improved for a still image.
 また、本実施の形態では、ノイズ除去部5がメディアンフィルタであるので、3次元フィルタ7手段に入力される巡回画像信号に対して繰り返しノイズ除去処理が行われても、FIRフィルタやIIRフィルタなどのLPFのように必要な画像信号が失われてしまうことがなく、適正なノイズ低減処理がなされた高画質な画像を得ることができる。 Further, in the present embodiment, since the noise removing unit 5 is a median filter, an FIR filter, an IIR filter, etc., even if the noise removal processing is repeatedly performed on the cyclic image signal input to the three-dimensional filter 7 means. As in the case of LPF, a necessary image signal is not lost, and a high-quality image with appropriate noise reduction processing can be obtained.
 例えば、フィルタとしては、FIRフィルタやIIRフィルタなどのLPFが一般的であるが、これらのフィルタは、本実施の形態のノイズ除去部5への使用には適さない。その理由を図4を用いて説明する。 For example, LPFs such as FIR filters and IIR filters are common as filters, but these filters are not suitable for use in the noise removing unit 5 of the present embodiment. The reason will be described with reference to FIG.
 上述のとおり、画像が静止状態のとき、3次元フィルタ7の巡回係数は大きくなり、出力信号に占めるフレームメモリ2からの巡回信号の割合が大きくなる。図4には、簡単のために、巡回係数が100%に設定された場合の1回目の巡回画像信号が「菱形」の記号で示されており、2回目の巡回画像信号が「正方形」の記号で示されており、3回目の巡回画像信号が「三角形」の記号で示されている。図4に示すように、1回目、2回目、3回目と、巡回を繰り返すうちに、画像信号は広がって、信号レベルは下がっていることが分かる。つまり、巡回を繰り返すと、最終的には画像信号が無くなってしまう、あるいは、そこまで極端でなくても、信号が広がることで、静止物体の輪郭付近で静止部分を動き部分と誤検出してしまう不具合が起きるおそれがある。 As described above, when the image is stationary, the cyclic coefficient of the three-dimensional filter 7 increases, and the ratio of the cyclic signal from the frame memory 2 to the output signal increases. In FIG. 4, for the sake of simplicity, the first cyclic image signal when the cyclic coefficient is set to 100% is indicated by the symbol “rhombus”, and the second cyclic image signal is “square”. The third cyclic image signal is indicated by a “triangle” symbol. As shown in FIG. 4, it can be seen that the image signal spreads and the signal level decreases as the first, second, and third cycles are repeated. In other words, if the tour is repeated, the image signal will eventually disappear, or even if it is not so extreme, the signal spreads, and the stationary part is mistakenly detected as the moving part near the contour of the stationary object. There is a risk of failure.
 メディアンフィルタは順序選択型のフィルタであるため、信号が広がることは無く、前記のような不具合は生じない。また、メディアンフィルタは順序選択型のフィルタであるため、仮に巡回係数100%で巡回を繰り返したとしても、ある程度処理を繰り返すと出力値が収束するので、画像信号が無くなってしまうことは無い。 Since the median filter is an order selection type filter, the signal does not spread and the above-mentioned problems do not occur. Further, since the median filter is an order selection type filter, even if the circulation is repeated with a cyclic coefficient of 100%, the output value converges when the process is repeated to some extent, so that the image signal is not lost.
 以上の説明では、ノイズ除去部5をメディアンフィルタで構成した例について説明したが、本発明の範囲はこれに限定されるものではなく、ノイズ除去部5は、例えば、加重メディアンフィルタやスタックフィルタなどで構成されてもよい。 In the above description, the example in which the noise removing unit 5 is configured with a median filter has been described. However, the scope of the present invention is not limited to this, and the noise removing unit 5 may be, for example, a weighted median filter or a stack filter. It may be constituted by.
 加重メディアンフィルタは、メディアンフィルタを改良したもので、画像の細線部の保存性が良くなる。ある程度の回路規模の増加を許容できれば、画質改善の面から加重メディアンフィルタのほうが好ましい。 The weighted median filter is an improvement of the median filter and improves the preservation of the fine line portion of the image. The weighted median filter is preferable from the viewpoint of improving the image quality if a certain increase in circuit scale can be allowed.
 スタックフィルタは、入力信号を閾値分割し、各ビット毎にブール代数処理を行って、その後閾値分割の逆変換を行うことで、メディアンフィルタと同等の出力を得ることの出来るフィルタである。このスタックフィルタでは、加重メディアンフィルタやエッジ等の特定の構造を保存するメディアンフィルタの特性を構成することができるので、ある程度の回路規模の増加を許容できれば、画質改善の面からスタックフィルタのほうが好ましい。 The stack filter is a filter that can obtain an output equivalent to the median filter by dividing the input signal into threshold values, performing Boolean algebra processing for each bit, and then performing inverse transformation of the threshold division. In this stack filter, the characteristics of a median filter that preserves a specific structure such as a weighted median filter or an edge can be configured. Therefore, the stack filter is preferable from the aspect of image quality improvement if an increase in circuit scale can be allowed to some extent. .
 このような加重メディアンフィルタやスタックフィルタでノイズ除去部5を構成した場合でも、上記の実施の形態と同様に、3次元フィルタ7手段に入力される巡回画像信号に対して繰り返しノイズ除去処理が行われても、FIRフィルタやIIRフィルタなどのLPFのように必要な画像信号が失われてしまうことがなく、適正なノイズ低減処理がなされた高画質な画像を得ることができる。 Even when the noise removal unit 5 is configured with such a weighted median filter or a stack filter, the noise removal process is repeatedly performed on the cyclic image signal input to the three-dimensional filter 7 means, as in the above embodiment. Even in such a case, a necessary image signal is not lost like an LPF such as an FIR filter or an IIR filter, and a high-quality image subjected to appropriate noise reduction processing can be obtained.
(第2の実施の形態)
 次に、本発明の第2の実施の形態の画像処理装置1について、図面を参照して説明する。ここでは、本実施の形態が、第1の実施の形態と相違する点を中心に説明する。つまり、ここで特に言及しない限り、本実施の形態の構成や動作は、第1の実施の形態と同様である。
(Second Embodiment)
Next, an image processing apparatus 1 according to a second embodiment of the present invention will be described with reference to the drawings. Here, the present embodiment will be described with a focus on differences from the first embodiment. In other words, unless otherwise specified here, the configuration and operation of the present embodiment are the same as those of the first embodiment.
 本実施の形態の画像処理装置1では、ノイズ除去部5が、注目画素と周囲画素の信号レベルとの大小を比較し、注目画素の信号レベルが、周囲画素の最大信号レベルに基づいて決定される所定の上限値(周囲画素の最大値+閾値)より大きいとき、または、周囲画素の最小信号レベルに基づいて決定される所定の下限値(周囲画素の最小値-閾値)より小さいときに、注目画素の画素値を置き換える処理を行うことに特徴がある。 In the image processing apparatus 1 according to the present embodiment, the noise removing unit 5 compares the signal levels of the target pixel and the surrounding pixels, and the signal level of the target pixel is determined based on the maximum signal level of the surrounding pixels. Greater than a predetermined upper limit (maximum value of surrounding pixels + threshold) or smaller than a predetermined lower limit (minimum value of surrounding pixels−threshold) determined based on the minimum signal level of the surrounding pixels, It is characterized in that a process for replacing the pixel value of the target pixel is performed.
 ここで、図5を参照して、この本実施の形態の特徴について具体的に説明する。図5は、本実施の形態のノイズ除去処理の一例を示す図である。図5では、例えば、ある注目画素(i,j)とその周囲画素(3×3画素)の信号レベルを大小を比較してノイズ除去処理を行う例が示されている。 Here, the features of this embodiment will be described in detail with reference to FIG. FIG. 5 is a diagram illustrating an example of noise removal processing according to the present embodiment. FIG. 5 shows an example in which noise removal processing is performed by comparing the signal levels of a pixel of interest (i, j) and its surrounding pixels (3 × 3 pixels) in magnitude.
 図5に示すように、この場合には、まず、注目画素値x(i,j)を除いたその周囲3×3画素の値x(i-1,j-1)、x(i-1,j)、x(i-1,j+1)、x(i,j-1)、x(i-1,j+1)、x(i+1,j-1)、x(i+1,j)、x(i+1,j+1)の最大値、最小値を求める。 As shown in FIG. 5, in this case, first, values x (i−1, j−1) and x (i−1) of the surrounding 3 × 3 pixels excluding the target pixel value x (i, j). , J), x (i-1, j + 1), x (i, j-1), x (i-1, j + 1), x (i + 1, j-1), x (i + 1, j), x (i + 1) , J + 1) is determined.
 そして、最大値に対して閾値を加算した上限値と、最小値から閾値を減算した下限値と、注目画素値x(i,j)を比較する。注目画素値x(i,j)が上限値(=周囲画素の最大値+閾値)より大きい場合には、注目画素値x(i,j)をその上限値に置き換える。一方、注目画素値x(i,j)が下限値(=周囲画素の最小値-閾値)より小さい場合には、注目画素値x(i,j)をその下限値に置き換える。 Then, the upper limit value obtained by adding the threshold value to the maximum value, the lower limit value obtained by subtracting the threshold value from the minimum value, and the target pixel value x (i, j) are compared. When the target pixel value x (i, j) is larger than the upper limit value (= maximum value of surrounding pixels + threshold value), the target pixel value x (i, j) is replaced with the upper limit value. On the other hand, when the target pixel value x (i, j) is smaller than the lower limit value (= minimum value of surrounding pixels−threshold value), the target pixel value x (i, j) is replaced with the lower limit value.
 なお、閾値は固定値でも良いし、信号ゲイン量に合わせて制御を行っても良い。また、周囲画素信号の平均値に比例した値を信号比例閾値成分として、閾値に加算しても良い。 The threshold value may be a fixed value or may be controlled according to the signal gain amount. Further, a value proportional to the average value of the surrounding pixel signals may be added to the threshold as a signal proportional threshold component.
 本実施の形態のノイズ除去処理も、信号選択型のフィルタであるため、巡回によって処理を繰り返しても信号が広がることは無い。また、第1の実施の形態と同様に、仮に巡回係数100%で巡回を繰り返したとしても、ある程度処理を行った時点で出力値が収束するので、画像信号が無くなってしまうことも無い。 Since the noise removal processing according to the present embodiment is also a signal selection type filter, the signal does not spread even if the processing is repeated by circulation. Similarly to the first embodiment, even if the cycle is repeated with a cyclic coefficient of 100%, the output value converges when processing is performed to some extent, so that the image signal is not lost.
 なお、以上の例では、周囲3×3画素を用いて説明を行ったが、本発明の範囲はこれに限定されるものではない。つまり、ノイズ除去処理に使用する周囲画素は3×3画素に限定されるものではない。 In the above example, the description has been made using surrounding 3 × 3 pixels, but the scope of the present invention is not limited to this. That is, the surrounding pixels used for the noise removal process are not limited to 3 × 3 pixels.
 このような第2の実施の形態の画像処理装置1によっても、第1の実施の形態と同様の作用効果が奏される。 Also with the image processing apparatus 1 according to the second embodiment, the same effects as those of the first embodiment can be obtained.
 すなわち、本実施の形態のノイズ除去部5でも、3次元フィルタ7手段に入力される巡回画像信号に対して繰り返しノイズ除去処理が行われたとしても、FIRフィルタやIIRフィルタなどのLPFのように必要な画像信号が失われてしまうことがなく、適正なノイズ低減処理がなされた高画質な画像を得ることができる。 That is, even in the noise removing unit 5 of the present embodiment, even if the noise removal processing is repeatedly performed on the cyclic image signal input to the three-dimensional filter 7 means, like the LPF such as the FIR filter or the IIR filter. Necessary image signals are not lost, and a high-quality image with appropriate noise reduction processing can be obtained.
 以上、本発明の実施の形態を例示により説明したが、本発明の範囲はこれらに限定されるものではなく、請求項に記載された範囲内において目的に応じて変更・変形することが可能である。 The embodiments of the present invention have been described above by way of example, but the scope of the present invention is not limited to these embodiments, and can be changed or modified according to the purpose within the scope of the claims. is there.
 以上に現時点で考えられる本発明の好適な実施の形態を説明したが、本実施の形態に対して多様な変形が可能なことが理解され、そして、本発明の真実の精神と範囲内にあるそのようなすべての変形を添付の請求の範囲が含むことが意図されている。 Although the presently preferred embodiments of the present invention have been described above, it will be understood that various modifications can be made to the present embodiments and are within the true spirit and scope of the present invention. It is intended that the appended claims include all such variations.
 以上のように、本発明にかかる画像処理装置は、動き状態から静止状態に状態変化した物体に対してノイズが十分に低減されるまでの時間を短縮することができるという効果を有し、PTZ機能を備えたカメラで撮影された画像の画像処理等に用いられ、有用である。 As described above, the image processing apparatus according to the present invention has an effect that the time until noise is sufficiently reduced for an object whose state has changed from a moving state to a stationary state can be shortened. It is useful for image processing of images taken with cameras equipped with functions.
 1 画像処理装置
 2 フレームメモリ
 3 同時化部
 4 動き検出部
 5 ノイズ除去部
 6 2次元フィルタ
 7 3次元フィルタ
 8 信号合成部
DESCRIPTION OF SYMBOLS 1 Image processing apparatus 2 Frame memory 3 Synchronization part 4 Motion detection part 5 Noise removal part 6 Two-dimensional filter 7 Three-dimensional filter 8 Signal composition part

Claims (5)

  1.  1フレーム前の画像信号を巡回画像信号として蓄積するフレームメモリ部と、
     入力画像信号と前記フレームメモリ部から入力される前記巡回画像信号をそれぞれ複数ライン分同時化する同時化部と、
     同時化された前記入力画像信号と前記巡回画像信号に基づいて、画像の動きを検出する動き検出部と、
     画像中の注目画素とその周囲画素の相関に基づいて、前記入力画像信号のノイズ成分を低減する2次元フィルタ部と、
     検出された前記画像の動きに基づいて決定される巡回係数を用いて、前記入力画像信号と前記巡回画像信号を加重加算することにより、前記入力画像信号のノイズ成分を低減する3次元フィルタ部と、
     検出された前記画像の動きに基づいて決定される重み付け係数を用いて、前記2次元フィルタ部からの出力画像信号と前記3次元フィルタ部からの出力画像信号を加重加算する信号合成部と、
     前記3次元フィルタ部に入力される前記巡回画像信号に対するノイズ除去処理を行うノイズ除去部と、
    を備え、
     前記画像の動きが小さい場合の前記巡回係数は、前記画像の動きが大きい場合の前記巡回係数より小さい値に決定されることを特徴とする画像処理装置。
    A frame memory unit for accumulating the image signal of the previous frame as a cyclic image signal;
    A synchronization unit that simultaneously synchronizes the input image signal and the cyclic image signal input from the frame memory unit for a plurality of lines;
    A motion detector that detects the motion of an image based on the input image signal and the cyclic image signal that are synchronized;
    A two-dimensional filter unit that reduces a noise component of the input image signal based on a correlation between a target pixel in the image and surrounding pixels;
    A three-dimensional filter unit that reduces a noise component of the input image signal by weighted addition of the input image signal and the cyclic image signal using a cyclic coefficient determined based on the detected motion of the image; ,
    Using a weighting coefficient determined based on the detected motion of the image, a signal synthesizer that weights and adds the output image signal from the two-dimensional filter unit and the output image signal from the three-dimensional filter unit;
    A noise removing unit that performs a noise removing process on the cyclic image signal input to the three-dimensional filter unit;
    With
    The image processing apparatus, wherein the cyclic coefficient when the image motion is small is determined to be smaller than the cyclic coefficient when the image motion is large.
  2.  前記ノイズ除去部は、メディアンフィルタ、加重メディアンフィルタ、または、スタックフィルタであることを特徴とする請求項1に記載の画像処理装置。 The image processing apparatus according to claim 1, wherein the noise removing unit is a median filter, a weighted median filter, or a stack filter.
  3.  前記ノイズ除去部は、前記注目画素と前記周囲画素の信号レベルとの大小を比較し、前記注目画素の信号レベルが、前記周囲画素の最大信号レベルに基づいて決定される所定の上限値より大きいとき、または、前記周囲画素の最小信号レベルに基づいて決定される所定の下限値より小さいときに、前記注目画素の画素値を置き換える処理を行うことを特徴とする請求項1に記載の画像処理装置。 The noise removing unit compares the signal levels of the target pixel and the surrounding pixels, and the signal level of the target pixel is larger than a predetermined upper limit value determined based on the maximum signal level of the surrounding pixels. 2. The image processing according to claim 1, wherein the pixel value of the target pixel is replaced when the pixel value is smaller than a predetermined lower limit value determined based on a minimum signal level of the surrounding pixels. apparatus.
  4.  1フレーム前の画像信号を巡回画像信号として蓄積することと、
     入力画像信号と前記蓄積された巡回画像信号をそれぞれ複数ライン分同時化する同時化処理を行うことと、
     同時化された前記入力画像信号と前記巡回画像信号に基づいて、画像の動きを検出する動き検出処理を行うことと、
     画像中の注目画素とその周囲画素の相関に基づいて、前記入力画像信号のノイズ成分を低減する2次元フィルタ処理を行うことと、
     検出された前記画像の動きに基づいて決定される巡回係数であって、前記画像の動きが小さい場合のほうが記画像の動きが大きい場合より小さい値に決定される前記巡回係数を用いて、前記入力画像信号と前記巡回画像信号を加重加算することにより、前記入力画像信号のノイズ成分を低減する3次元フィルタ処理を行うことと、
     検出された前記画像の動きに基づいて決定される重み付け係数を用いて、前記2次元フィルタ処理後の出力画像信号と前記3次元フィルタ処理後の出力画像信号を加重加算する信号合成処理を行うことと、
     前記3次元フィルタ処理前の巡回画像信号に対してノイズ除去処理を行うことと、
    を含むことを特徴とする画像処理方法。
    Storing the image signal of the previous frame as a cyclic image signal;
    Performing a synchronization process for simultaneously synchronizing the input image signal and the accumulated cyclic image signal for each of a plurality of lines;
    Performing a motion detection process for detecting a motion of an image based on the synchronized input image signal and the cyclic image signal;
    Performing a two-dimensional filter process for reducing a noise component of the input image signal based on a correlation between a pixel of interest in the image and surrounding pixels;
    The cyclic coefficient determined based on the detected motion of the image, and the cyclic coefficient determined to be a smaller value when the motion of the image is smaller than when the motion of the image is large, Performing a three-dimensional filter process for reducing a noise component of the input image signal by weighted addition of the input image signal and the cyclic image signal;
    Performing a weighted addition of the output image signal after the two-dimensional filter processing and the output image signal after the three-dimensional filter processing using a weighting coefficient determined based on the detected motion of the image When,
    Performing noise removal processing on the cyclic image signal before the three-dimensional filter processing;
    An image processing method comprising:
  5.  1フレーム前の画像信号を巡回画像信号として蓄積する処理と、
     入力画像信号と前記蓄積された巡回画像信号をそれぞれ複数ライン分同時化する同時化処理を行う処理と、
     同時化された前記入力画像信号と前記巡回画像信号に基づいて、画像の動きを検出する動き検出処理と、
     画像中の注目画素とその周囲画素の相関に基づいて、前記入力画像信号のノイズ成分を低減する2次元フィルタ処理と、
     検出された前記画像の動きに基づいて決定される巡回係数であって、前記画像の動きが小さい場合のほうが記画像の動きが大きい場合より小さい値に決定される前記巡回係数を用いて、前記入力画像信号と前記巡回画像信号を加重加算することにより、前記入力画像信号のノイズ成分を低減する3次元フィルタ処理と、
     検出された前記画像の動きに基づいて決定される重み付け係数を用いて、前記2次元フィルタ処理後の出力画像信号と前記3次元フィルタ処理後の出力画像信号を加重加算する信号合成処理と、
     前記3次元フィルタ処理前の巡回画像信号に対してノイズ除去処理と、
    を、コンピュータに実行させることを特徴とする画像処理プログラム。
    A process of storing the image signal of the previous frame as a cyclic image signal;
    A process of performing a synchronization process for simultaneously synchronizing the input image signal and the accumulated cyclic image signal for a plurality of lines;
    A motion detection process for detecting a motion of an image based on the synchronized input image signal and the cyclic image signal;
    Two-dimensional filter processing for reducing the noise component of the input image signal based on the correlation between the pixel of interest in the image and its surrounding pixels;
    The cyclic coefficient determined based on the detected motion of the image, and the cyclic coefficient determined to be a smaller value when the motion of the image is smaller than when the motion of the image is large, Three-dimensional filter processing for reducing noise components of the input image signal by weighted addition of the input image signal and the cyclic image signal;
    Using a weighting coefficient determined based on the detected motion of the image, a signal synthesis process for weighted addition of the output image signal after the two-dimensional filter processing and the output image signal after the three-dimensional filter processing;
    Noise removal processing for the cyclic image signal before the three-dimensional filter processing;
    An image processing program for causing a computer to execute.
PCT/JP2010/001122 2009-03-16 2010-02-22 Image processing device, image processing method, and image processing program WO2010106739A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009063409A JP2010219807A (en) 2009-03-16 2009-03-16 Image processing device and image processing method
JP2009-063409 2009-03-16

Publications (1)

Publication Number Publication Date
WO2010106739A1 true WO2010106739A1 (en) 2010-09-23

Family

ID=42739406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001122 WO2010106739A1 (en) 2009-03-16 2010-02-22 Image processing device, image processing method, and image processing program

Country Status (2)

Country Link
JP (1) JP2010219807A (en)
WO (1) WO2010106739A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10200649B2 (en) * 2014-02-07 2019-02-05 Morpho, Inc. Image processing device, image processing method and recording medium for reducing noise in image
CN113037991A (en) * 2019-12-25 2021-06-25 瑞昱半导体股份有限公司 Signal processing device and signal processing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6045894B2 (en) * 2012-11-30 2016-12-14 ハンファテクウィン株式会社Hanwha Techwin Co.,Ltd. Image processing apparatus and image processing method
WO2016167014A1 (en) 2015-04-16 2016-10-20 三菱電機株式会社 Image processing device and method, program, and recording medium

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61248691A (en) * 1985-04-26 1986-11-05 Hitachi Ltd Signal processing circuit for high definition television receiver
JPH04101579A (en) * 1990-08-21 1992-04-03 Toshiba Corp Television signal processor
JPH0685608A (en) * 1992-09-02 1994-03-25 Matsushita Electric Ind Co Ltd Stack filter
JPH0773312A (en) * 1993-09-07 1995-03-17 Matsushita Electric Ind Co Ltd Image reader
JP2001160909A (en) * 1999-12-02 2001-06-12 Matsushita Electric Ind Co Ltd Noise reduction device
JP2001177737A (en) * 1999-12-15 2001-06-29 Fuji Photo Film Co Ltd Device and method for synchronizing image data
JP2003348383A (en) * 2002-05-24 2003-12-05 Matsushita Electric Ind Co Ltd Image processing method and image processing apparatus
JP2006048721A (en) * 1994-09-09 2006-02-16 Sony Corp Integrated circuit for processing digital signal

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61248691A (en) * 1985-04-26 1986-11-05 Hitachi Ltd Signal processing circuit for high definition television receiver
JPH04101579A (en) * 1990-08-21 1992-04-03 Toshiba Corp Television signal processor
JPH0685608A (en) * 1992-09-02 1994-03-25 Matsushita Electric Ind Co Ltd Stack filter
JPH0773312A (en) * 1993-09-07 1995-03-17 Matsushita Electric Ind Co Ltd Image reader
JP2006048721A (en) * 1994-09-09 2006-02-16 Sony Corp Integrated circuit for processing digital signal
JP2001160909A (en) * 1999-12-02 2001-06-12 Matsushita Electric Ind Co Ltd Noise reduction device
JP2001177737A (en) * 1999-12-15 2001-06-29 Fuji Photo Film Co Ltd Device and method for synchronizing image data
JP2003348383A (en) * 2002-05-24 2003-12-05 Matsushita Electric Ind Co Ltd Image processing method and image processing apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10200649B2 (en) * 2014-02-07 2019-02-05 Morpho, Inc. Image processing device, image processing method and recording medium for reducing noise in image
CN113037991A (en) * 2019-12-25 2021-06-25 瑞昱半导体股份有限公司 Signal processing device and signal processing method
CN113037991B (en) * 2019-12-25 2022-07-05 瑞昱半导体股份有限公司 Signal processing device and signal processing method

Also Published As

Publication number Publication date
JP2010219807A (en) 2010-09-30

Similar Documents

Publication Publication Date Title
JP4534715B2 (en) Imaging apparatus and image processing program
US8830360B1 (en) Method and apparatus for optimizing image quality based on scene content
JP6592523B2 (en) Image processing apparatus, imaging apparatus, image processing method, image processing program, and storage medium
JP2010258710A5 (en)
JP5417746B2 (en) Motion adaptive noise reduction device, image signal processing device, image input processing device, and motion adaptive noise reduction method
JPWO2006025396A1 (en) Image processing apparatus and image processing program
US7932955B2 (en) Method and system for content adaptive analog video noise detection
JP2014143530A (en) Information processing unit, information processing method, and imaging apparatus
WO2010106739A1 (en) Image processing device, image processing method, and image processing program
JP2006197455A (en) Noise reduction device
JP5927051B2 (en) Image processing apparatus, image processing method, and program
JP2005150903A (en) Image processing apparatus, noise elimination method, and noise elimination program
JPWO2010007777A1 (en) Image processing apparatus, image processing method, program, recording medium, and integrated circuit
JP6738053B2 (en) Image processing apparatus for reducing staircase artifacts from image signals
US11956539B2 (en) Correction control apparatus, image capturing apparatus, control method, and recording medium
US8040437B2 (en) Method and system for analog video noise detection
JP5188312B2 (en) Video signal processing apparatus and video signal processing method
JP2005012641A (en) Block noise detecting device and block noise eliminating device using the same
KR101238249B1 (en) Method of Improving Contrast and Apparatus using the method
JP5147655B2 (en) Video signal processing device and video display device
JP2010199994A (en) Image processing apparatus
JP5219771B2 (en) Video processing apparatus and video processing apparatus control method
KR100772405B1 (en) Methods for adaptive noise reduction based on global motion estimation and video processing system therefore
JP2008072428A (en) Image processor, electronic camera, and image processing program
JP5506623B2 (en) Video processing apparatus and video processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10753236

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10753236

Country of ref document: EP

Kind code of ref document: A1