WO2010104321A2 - Method for transmitting a reference signal in a downlink mimo system - Google Patents

Method for transmitting a reference signal in a downlink mimo system Download PDF

Info

Publication number
WO2010104321A2
WO2010104321A2 PCT/KR2010/001474 KR2010001474W WO2010104321A2 WO 2010104321 A2 WO2010104321 A2 WO 2010104321A2 KR 2010001474 W KR2010001474 W KR 2010001474W WO 2010104321 A2 WO2010104321 A2 WO 2010104321A2
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
reference signal
lte
mapped
transmit antennas
Prior art date
Application number
PCT/KR2010/001474
Other languages
French (fr)
Korean (ko)
Other versions
WO2010104321A3 (en
Inventor
이문일
구자호
정재훈
임빈철
고현수
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020090108644A external-priority patent/KR20100101510A/en
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2010104321A2 publication Critical patent/WO2010104321A2/en
Publication of WO2010104321A3 publication Critical patent/WO2010104321A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems

Definitions

  • the present invention relates to a method for efficiently providing a reference signal in an environment in which an antenna is added to an existing system in a multiple antenna (MIMO) communication system.
  • MIMO multiple antenna
  • LTE Long Term Evolution
  • type 1 the radio frame structure (Radio Frame Structure)
  • TDD Time Division Duplex
  • Type 2 the Radio Frame Structure
  • Type 1 shows a structure of a type 1 radio frame.
  • Type 1 radio frame consists of 10 subframes, one subframe consists of two slots (Slot).
  • Type 2 radio frames consist of two half frames, each of which has five subframes, a downlink pilot time slot (DwPTS), a guard period (GP), and an uplink pilot time slot (UpPTS).
  • DwPTS downlink pilot time slot
  • GP guard period
  • UpPTS uplink pilot time slot
  • One subframe consists of two slots.
  • DwPTS is used for initial cell search, synchronization or channel estimation at the terminal.
  • UpPTS is used for channel estimation at the base station and synchronization of uplink transmission of the terminal.
  • the guard period is a period for removing interference generated in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink. That is, regardless of the type of radio frame, one subframe consists of two slots.
  • FIG. 3 shows a slot structure of an LTE downlink.
  • a signal transmitted in each slot is Subcarriers and It may be depicted by a resource grid composed of four Orthogonal Frequency Division Multiplexing (OFDM) symbols.
  • OFDM Orthogonal Frequency Division Multiplexing
  • a signal transmitted in each slot is Subcarriers It may be depicted by a resource grid consisting of OFDM symbols.
  • Represents the number of RBs in the uplink Represents the number of subcarriers constituting one RB, Denotes the number of OFDM symbols in one uplink slot.
  • a resource element represents one subcarrier and one OFDM symbol in a resource unit defined by indexes (a, b) in the uplink slot and the downlink slot. Where a is an index on the frequency axis and b is an index on the time axis.
  • FIG. 5 is a diagram illustrating a structure of a downlink subframe.
  • at most three OFDM symbols located at the front of the first slot in one subframe correspond to the control region allocated to the control channel.
  • the remaining OFDM symbols correspond to data regions allocated to a physical downlink shared channel (PDSCH).
  • Examples of downlink control channels used in 3GPP LTE include a physical control format indicator channel (PCFICH), a physical downlink control channel (PDCCH), and a physical hybrid ARQ indicator channel (PHICH).
  • PCFICH physical control format indicator channel
  • PDCCH physical downlink control channel
  • PHICH physical hybrid ARQ indicator channel
  • MIMO Multiple Antenna
  • MIMO stands for Multiple-Input Multiple-Output, and it is a method that can improve the transmission / reception data efficiency by adopting multiple transmission antennas and multiple reception antennas, away from the use of one transmission antenna and one reception antenna. . That is, a technique of increasing capacity or improving performance by using multiple antennas in a transmitter or receiver in a wireless communication system. MIMO will be referred to herein as multiple antennas.
  • Multi-antenna technology is an application of a technique of gathering and completing fragmented pieces of data received from multiple antennas without relying on a single antenna path to receive a message.
  • the multi-antenna technology is a next generation mobile communication technology that can be widely used in a mobile communication terminal and a repeater because it can improve the data transmission speed in a specific range or increase the system range for a specific data transmission speed.
  • the technology is attracting attention as a next generation technology capable of overcoming the transmission limitation of mobile communication, which has reached a limit situation due to the expansion of data communication.
  • FIG. 6 is a configuration diagram of a general multiple antenna (MIMO) communication system.
  • MIMO general multiple antenna
  • the research trends related to multi-antennas to date include information theory aspects related to calculation of multi-antenna communication capacity in various channel environments and multi-access environments, research on wireless channel measurement and model derivation of multi-antenna systems, and improvement of transmission reliability and transmission rate.
  • Active research is being conducted from various viewpoints, such as the study of space-time signal processing technology.
  • one frame is transmitted at a time of 10 msec.
  • the frame is divided into 10 subframes composed of 1 msec intervals. It is composed.
  • One subframe consists of 14 or 12 OFDM symbols, and the number of subcarriers in one OFDM symbol is selected from 128, 256, 512, 1024, 1536, and 2048.
  • FIG. 7 is a diagram illustrating a downlink reference signal structure dedicated to a terminal in a subframe in which 1TTI (transmission time interval) uses a normal cyclic prefix (normal CP) having 14 OFDM symbols.
  • R5 represents a UE-specific reference signal. Denotes the position of the OFDM symbol on the subframe.
  • FIG. 8 is a diagram illustrating a structure of a downlink reference signal dedicated to a terminal in a subframe in which 1TTI uses an extended cyclic prefix (extended CP) having 12 OFDM symbols.
  • extended CP extended cyclic prefix
  • FIG. 9 is a diagram illustrating a structure of a CRS according to an antenna port.
  • the CRS pattern for each antenna port is orthogonal to each other in a time and frequency domain. If the LTE system has one antenna port, only the CRS for antenna port 0 in FIG. 3 is used. Also, if 4Tx MIMO transmission is applied to the LTE downlink, CRSs for antenna ports 0 to 3 are used simultaneously. In this case, R0 represents a pilot symbol for transmission antenna 0, R1 represents a transmission antenna 1, R2 represents a transmission antenna 2 and R3 represents a pilot symbol for transmission antenna 3, respectively. A subcarrier using a pilot symbol of each transmit antenna does not transmit a signal to eliminate interference with all other transmit antennas except the transmit antenna transmitting the pilot symbol.
  • the receiver reduces the interference of a signal of a pilot symbol received from an adjacent cell at a receiver and estimates a channel. It can improve performance.
  • a predetermined sequence eg, Pseudo-random (PN), m-sequence, etc.
  • PN Pseudo-random
  • the PN sequence is applied in units of OFDM symbols in one subframe, and different PN sequences may be applied according to a cell ID, a subframe number, an OFDM symbol position, and an ID of a UE.
  • the number of pilot symbols of one transmit antenna in one OFDM symbol including pilot symbols is It must have a length of. At this time, Denotes the number of RBs according to the bandwidth, and the sequence may use a binary sequence or a complex sequence. Equation 2 below Shows one example of a complex sequence.
  • Equation 2 Since is the number of RBs corresponding to the maximum bandwidth, it can be determined as 110 according to the above description. May be defined as a Gold sequence of length-31 as a PN sequence. In case of the UE-specific downlink reference signal, Equation 2 may be expressed as Equation 3 below.
  • Equation 3 above Denotes the number of RBs corresponding to downlink data allocated by a specific terminal. Therefore, the length of the sequence may vary according to the amount of UE assignment.
  • LTE-A LTE-Advanced
  • LTE-A terminal a terminal supported by the new LTE-A system
  • the base station transmits a reference signal to the LTE-A terminal
  • the terminal operating in the existing LTE system recognizes the reference signal as data
  • the reference signal transmitted to the LTE-A terminal is the performance of the existing LTE terminal Will affect. Therefore, when the base station transmits a reference signal to the LTE-A terminal, a method of designing a reference signal that can minimize the impact on the performance of the LTE terminal is required.
  • the problem to be solved by the present invention is to provide a reference signal design method for the LTE-A terminal to minimize the impact on the performance of the existing LTE terminal.
  • a first user device supporting N transmit antennas out of a total of M transmit antennas and a second user device supporting M (M> N) transmit antennas may be performed by a base station in a common reference signal for the M transmit antennas.
  • DRS dedicated dedicated reference signal
  • the RE included in the OFDM symbol in which the reference signals for the N transmit antennas are mapped may be excluded from the RE in which the CRSs for the M transmit antennas are mapped.
  • an RE included in an OFDM symbol in which a synchronization channel (SCH) for the N transmission antennas is transmitted may be excluded from an RE in which CRSs of the M transmission antennas are mapped.
  • an RE included in an OFDM symbol in which a broadcasting channel (BCH) for the N transmission antennas is transmitted may be excluded from an RE in which CRSs of the M transmission antennas are mapped.
  • BCH broadcasting channel
  • the arbitrary even number may be any one of 2, 4, 6, and 8.
  • M and N may be 8 and 4, respectively.
  • a downlink MIMO supporting a first user device supporting N transmit antennas among a total of M transmit antennas and a second user device supporting M (M> N) transmit antennas is provided.
  • a channel information feedback method includes: receiving, from a base station, a subframe on which a common reference signal (CRS) for the M transmit antennas is mapped; Generating channel information using the CRS included in the subframe; And feeding back the generated channel information, wherein a location of a resource element (RE) in which CRSs for the M transmission antennas are mapped in the subframe is a user-specific reference signal for the first user.
  • CRS common reference signal
  • a location of a resource element (RE) in which CRSs for the M transmission antennas are mapped in the subframe is a user-specific reference signal for the first user.
  • DRS Dedicated Reference Signal
  • the RE included in the OFDM symbol in which the reference signals for the N transmit antennas are mapped may be excluded from the RE in which the CRSs for the M transmit antennas are mapped.
  • an RE included in an OFDM symbol in which a synchronization channel (SCH) for the N transmission antennas is transmitted may be excluded from an RE in which CRSs of the M transmission antennas are mapped.
  • an RE included in an OFDM symbol in which a broadcasting channel (BCH) for the N transmission antennas is transmitted may be excluded from an RE in which CRSs of the M transmission antennas are mapped.
  • BCH broadcasting channel
  • the arbitrary even number may be any one of 2, 4, 6, and 8.
  • M and N may be 8 and 4, respectively.
  • the reference signal can be efficiently transmitted to both the user device of the existing system and the user device newly added to the system.
  • the influence on the performance of the existing LTE terminal by the reference signal transmitted to the LTE-A terminal can be minimized.
  • 3 shows a slot structure of an LTE downlink.
  • 5 is a diagram illustrating a structure of a downlink subframe.
  • MIMO 6 is a configuration diagram of a general multiple antenna (MIMO) communication system.
  • FIG. 7 is a diagram illustrating a downlink reference signal structure dedicated to a UE in a subframe in which 1TTI uses a normal cyclic prefix (normal CP) having 14 OFDM symbols.
  • normal CP normal cyclic prefix
  • FIG. 8 is a diagram illustrating a structure of a downlink reference signal dedicated to a terminal in a subframe in which 1TTI uses an extended cyclic prefix (extended CP) having 12 OFDM symbols.
  • extended CP extended cyclic prefix
  • FIG. 9 is a diagram illustrating a structure of a CRS according to an antenna port.
  • FIG. 10 illustrates the structure of a multi-antenna transmitter when precoded RS is used.
  • FIG. 11 is a diagram illustrating the structure of a multi-antenna transmitter when CRS is used.
  • FIG. 12 is a diagram illustrating an LTE radio frame structure.
  • FIG. 13 illustrates an example of an RS structure when a CRS and a DRS for a single stream beamforming are used at the same time.
  • FIG. 14 is a diagram illustrating a resource element for transmitting LTE-A C_port # 0 to 7 to one resource block (RB) in a normal cyclic prefix (normal CP) according to an embodiment of the present invention; Resource Element) location.
  • FIG. 15 is a diagram illustrating a location of an RE capable of transmitting LTE-A C_ports # 0 to 7 except for an RE that may be affected by interference from another cell.
  • FIG. 16 is a diagram illustrating a location of an RE capable of transmitting LTE-A C_port # 0 to 7 except for the SCH region in FIG. 15.
  • FIG. 17 is a diagram illustrating a location of an RE capable of transmitting LTE-A C_port # 0 to 7 except for the BCH region in FIG. 16.
  • FIG. 18 is a diagram illustrating a case in which a plurality of component carriers are used for a terminal when each component carrier is regarded as an independent physical or LTE channel according to an embodiment of the present invention.
  • 19 is a block diagram illustrating a configuration of a device applicable to a base station and a user equipment and capable of performing the above-described method.
  • a dedicated reference signal is used only for a specific terminal and no other terminal can use the DRS.
  • the DRS is mainly used for demodulation, and may be classified into a precoded RS and a non-precoded RS.
  • 10 illustrates the structure of a multi-antenna transmitter when precoded RS is used.
  • the precoded RS is precoded with the same precoding as the precoding used for data symbols.
  • Nt represents the number of physical antennas
  • K represents a spatial multiplexing rate. K is less than or equal to Nt.
  • K streams may be allocated to one terminal or multiple terminals. If a plurality of terminals share K streams, 1 to K terminals may simultaneously share the same time and frequency resources.
  • the common reference signal may be used for demodulation or measurement, and all terminals share a CRS in one cell.
  • the measurement includes the behavior of all terminals including channel state information feedback, synchronization, and the like.
  • 11 is a diagram illustrating the structure of a multi-antenna transmitter when CRS is used. As shown in FIG. 11, the RS is transmitted to the antenna as it is without being affected by the multiple antenna scheme. Therefore, Nt RSs are always transmitted regardless of the spatial multiplexing rate of the terminal. However, if there is a cell specific precoder in a particular system, the precoder is considered virtualization and not precoder. The RS sequences should be transmitted for all antenna ports regardless of the number of streams.
  • an RS structure In order to support 8Tx MIMO transmission in LTE-Advanced (LTE-A) downlink, an RS structure must be designed so that the LTE terminal supports the LTE-A terminal together with the LTE-A terminal.
  • the RS structure for the LTE-A terminal should be designed in view of performance, RS overhead, and backward compatibility with the LTE terminal.
  • FIG. 12 is a diagram illustrating an LTE radio frame structure. As shown in FIG. 12, one radio frame consists of ten subframes and one subframe consists of 1 ms.
  • CRSs of 0th transmission antennas, 0th and 1st transmission antennas, and 0th to 3rd transmission antennas are transmitted in all transmission antennas according to the number of transmission antennas, respectively, and the CRS is used for measurement or demodulation purposes. Can be used.
  • the CRS does not include terminal specific information such as PMI (Precoding Matrix Index) and rank, the information must be transmitted through a control channel.
  • PMI Precoding Matrix Index
  • FIG. 13 illustrates an example of an RS structure when a CRS and a DRS for a single stream beamforming are used at the same time.
  • CRS may be applied as shown in FIG. 13 to improve performance using non-coddebook based precoding.
  • DRS since DRS supports single stream transmission in LTE, CRS should be used for larger rank transmission.
  • DRS means the same as a User Equipment-Specific Reference Signal (UE-specific RS), and R5 means DRS of antenna port 5 in the LTE system.
  • UE-specific RS User Equipment-Specific Reference Signal
  • antenna ports are defined from 0 to 5
  • antenna ports 0 to 3 are defined for the CRS
  • antenna port 4 is an antenna port for a multi-media broadcast over a single frequency network (MBSFN) subframe.
  • MSSFN single frequency network
  • another type of RS structure for antenna port 4 is defined. Therefore, when a combination of CRS and DRS is introduced for measurement and demodulation purposes in the LTE-A system, DRS antenna ports 0 to 7 and CRS antenna ports 0 to 7 should be further defined.
  • antenna ports 0 to 5 of the LTE system are for convenience, LTE ports # 0 to 5, and CRS and DRS of the LTE-A system are divided into LTE-A C_port # 0 to 7 and D_port # 0 to 7, respectively. Shall be.
  • LTE port # 5 and LTE-A D_port # 0 are the same means that the position of RS for each antenna port is the same.
  • LTE-A C_port # 0 to 7 should be transmitted for measurement in LTE-A system.
  • PDSCH Physical Downlink Shared Channel
  • LTE-A C_port # 0 may be the same as LTE antenna port 0.
  • One method of transmitting the LTE-A C_port # 0-7 is a method of allowing the transmission of the LTE-A C_port # 0-7 to the PDSCH region regardless of whether the LTE-A C_port # 0 ⁇ 7 is allocated. If the CRS is transmitted in the PDSCH region allocated to the LTE terminal, since the CRS is regarded as interference to the LTE terminal, performance of the LTE terminal may be degraded. Therefore, LTE-A C_port # 0 ⁇ 7 should be properly designed so as not to degrade the performance of the LTE terminal.
  • FIG. 14 is a diagram illustrating a resource element for transmitting LTE-A C_port # 0 to 7 to one resource block (RB) in a normal cyclic prefix (normal CP) according to an embodiment of the present invention; Resource Element) location.
  • FIG. 14 it is assumed that the first three OFDM symbols are used for physical downlink control channel (PDCCH) transmission and four antenna ports are used. However, the possible positions are the same regardless of the number of antenna ports for the LTE terminal.
  • a total of 104 RE locations for transmission of LTE-A C_port # 0-7 may be defined.
  • various numbers of REs may be separately provided for transmission of LTE-A C_port # 0 to 7 as shown in Table 1 below.
  • Table 1 Reserved RE sets for LTE-A C_port in figure 14 2 REs Any of two possible RE position 4 REs Any of four possible RE position 6 REs Any of six possible RE position 8 REs Any of eight possible RE position
  • the location of an RE capable of transmitting LTE-A C_port # 0-7 in an OFDM symbol including RSs (R0 to R3) of the LTE system may be affected by interference from other cells. Accordingly, the location of the RE capable of transmitting LTE-A C_port # 0-7 in the OFDM symbol including RS (R0 to R3) of the LTE system may transmit LTE-A C_port # 0-7 shown in Table 1 above. May be excluded from a candidate RE.
  • FIG. 15 is a diagram illustrating a location of an RE capable of transmitting LTE-A C_ports # 0 to 7 except for an RE that may be affected by interference from another cell.
  • FIG. 15 it is assumed that the first three OFDM symbols are used for physical downlink control channel (PDCCH) transmission and four antenna ports are used.
  • PDCCH physical downlink control channel
  • 72 RE locations for transmission of LTE-A C_port # 0-7 may be defined as shown in FIG. 15.
  • various numbers of REs for transmitting LTE-A C_port # 0 to 7 may be separately provided as shown in Table 2 below.
  • FIG. 16 is a diagram illustrating a location of an RE capable of transmitting LTE-A C_port # 0 to 7 except for the SCH region in FIG. 15.
  • the location of the RE for transmitting the LTE-A C_port # 0 to 7 may be defined as shown in FIG. 16.
  • FIG. 16 it is assumed that the first three OFDM symbols are used for physical downlink control channel (PDCCH) transmission and four antenna ports are used.
  • 51 RE positions for transmission of LTE-A C_port # 0-7 may be defined as shown in FIG. 16.
  • various numbers of REs for transmitting LTE-A C_port # 0 to 7 may be separately provided as shown in Table 3 below.
  • FIG. 17 is a diagram illustrating a location of an RE capable of transmitting LTE-A C_port # 0 to 7 except for the BCH region in FIG. 16.
  • FIG. 17 it is assumed that the first three OFDM symbols are used for physical downlink control channel (PDCCH) transmission and four antenna ports are used.
  • PDCCH physical downlink control channel
  • 30 RE locations for transmission of LTE-A C_port # 0-7 may be defined as shown in FIG. 17.
  • various numbers of REs for transmitting LTE-A C_port # 0 to 7 may be separately provided as shown in Table 4 below.
  • LTE-A CRS overhead and pattern may be determined by the base station in the cell, time and component carrier (Component Carrier).
  • the component carrier CC refers to an element carrier constituting a multicarrier. That is, the plurality of component carriers configure a multicarrier through carrier aggregation.
  • the component carrier includes a plurality of lower bands. In this case, when the term multicarrier is replaced with the term full band, the component carrier may be replaced with a subband and the lower band may be replaced with a partial band. Carrier aggregation is also referred to as bandwidth aggregation.
  • Carrier aggregation is to expand the bandwidth by collecting a plurality of carriers in order to increase the data rate (data rate). For example, in LTE system, one carrier is 20MHz, and LTE-A system gathers five 20Mhz carriers to expand the bandwidth to 100MHz. And, carrier aggregation includes aggregating carriers in different frequency bands.
  • the plurality of CRS patterns may be predefined and selected by the base station. Or it may be fully defined by the base station.
  • 18 is a diagram illustrating a case in which a plurality of component carriers are used for a terminal when each component carrier is regarded as an independent physical or LTE channel according to an embodiment of the present invention.
  • each component carrier (indicated by PHY # in FIG. 18) or a group of component carriers has a different number of space frequency block code (SFBC) blocks per RB, and each of the component carriers or component carrier groups Is configured by the base station.
  • SFBC space frequency block code
  • LTE-A DRS should be mutually orthogonal (orthogonal) with the LTE-A CRS.
  • LTE-A DRS does not degrade the performance of the LTE terminal, LTE-A D_port # 0-7 need not be designed based on the SFBC block.
  • the device 100 includes a processing unit 101, a memory unit 102, a radio frequency (RF) unit 103, a display unit 104, and a user interface unit 105. .
  • the layer of physical interface protocol is performed in the processing unit 101.
  • the processing unit 101 provides a control plane and a user plane. The function of each layer may be performed in the processing unit 101.
  • the memory unit 102 is electrically connected to the processing unit 101 and stores an operating system, an application, and a general file.
  • the display unit 104 may display a variety of information, and may be implemented by using a known liquid crystal display (LCD), an organic light emitting diode (OLED), or the like.
  • the user interface unit 105 can be configured in combination with known user interfaces such as keypads, touch screens, and the like.
  • the RF unit 103 is electrically connected to the processing unit 101 and transmits or receives a radio signal.
  • each component or feature is to be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
  • a user equipment may be replaced with terms such as a mobile station (MS), a subscriber station (SS), a mobile subscriber station (MSS), or a mobile terminal.
  • MS mobile station
  • SS subscriber station
  • MSS mobile subscriber station
  • mobile terminal a mobile terminal
  • the UE of the present invention includes a PDA (Personal Digital Assistant), a cellular phone, a Personal Communication Service (PCS) phone, a Global System for Mobile (GSM) phone, a Wideband CDMA (WCDMA) phone, a Mobile Broadband System (MBS) phone, and the like. Can be used.
  • PDA Personal Digital Assistant
  • GSM Global System for Mobile
  • WCDMA Wideband CDMA
  • MBS Mobile Broadband System
  • Embodiments of the invention may be implemented through various means.
  • embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
  • the method according to embodiments of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs). Field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs Field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • the method according to the embodiments of the present invention may be implemented in the form of a module, a procedure, or a function that performs the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • the present invention can be used in a terminal, base station, or other equipment of a wireless mobile communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

The present invention relates to a method for transmitting a CRS (Common Reference Signal) for channel measurement in a downlink MIMO (Multi Input Multi Output) system which supports first user equipment that supports N transmitting antennas from among M transmitting antennas in total, and second user equipment that supports said M (wherein, M>N) transmitting antennas. The method comprises: a step in which a base station maps the CRS (Common Reference Signal) for said M transmitting antennas to a RE (Resource Element) of a subframe; and a step in which the base station transmits the subframe. The position of the RE to which the CRS for said M transmitting antennas is mapped in the subframe falls within the random even-numbered REs which are consecutively arranged in a frequency domain, excluding the RE to which a DRS (dedicated reference signal) for the first user equipment is mapped.

Description

하향링크 MIMO 시스템에 있어서, 참조 신호 전송 방법Method for transmitting a reference signal in a downlink MIMO system
본 발명은 다중 안테나(MIMO)통신 시스템에 있어서, 기존 시스템에 안테나가 추가되는 환경에서 효율적으로 참조 신호(Reference Signal)를 제공하기 위한 방법에 관한 것이다.The present invention relates to a method for efficiently providing a reference signal in an environment in which an antenna is added to an existing system in a multiple antenna (MIMO) communication system.
LTE 물리 구조LTE physical structure
3GPP(3rd Generation Project Partnership) LTE(Long Term Evolution)는 FDD (Frequency Division Duplex)에 적용 가능한 타입 1 (type 1) 무선 프레임 구조 (Radio Frame Structure)와 TDD (Time Division Duplex)에 적용 가능한 타입 2의 무선 프레임 구조 (Radio Frame Structure)를 지원한다. 3GPP (3 rd Generation Project Partnership) LTE (Long Term Evolution) is a FDD (Frequency Division Duplex) can be applied to type 1 (type 1) the radio frame structure (Radio Frame Structure) and TDD (Time Division Duplex) possible type 2 applied to the It supports the Radio Frame Structure.
도 1은 타입 1 무선 프레임의 구조를 도시한다. 타입 1 무선 프레임은 10개의 서브프레임으로 구성되며, 1개의 서브프레임은 2개의 슬롯(Slot)으로 구성된다. 1 shows a structure of a type 1 radio frame. Type 1 radio frame consists of 10 subframes, one subframe consists of two slots (Slot).
도 2는 타입 2 무선 프레임의 구조를 도시한다. 타입 2 무선 프레임은 2개의 해프 프레임 (half frame)으로 구성되며, 각 해프 프레임은 5개의 서브프레임과 DwPTS (Downlink Pilot Time Slot), 보호구간(Guard Period; GP), UpPTS (Uplink Pilot Time Slot)로 구성되며, 이 중 1개의 서브프레임은 2개의 슬롯으로 구성된다. DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향 전송 동기를 맞추는 데 사용된다. 보호구간은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다. 즉, 무선 프레임의 타입에 관계 없이 1개의 서브프레임은 2개의 슬롯으로 구성된다.2 shows a structure of a type 2 radio frame. Type 2 radio frames consist of two half frames, each of which has five subframes, a downlink pilot time slot (DwPTS), a guard period (GP), and an uplink pilot time slot (UpPTS). One subframe consists of two slots. DwPTS is used for initial cell search, synchronization or channel estimation at the terminal. UpPTS is used for channel estimation at the base station and synchronization of uplink transmission of the terminal. The guard period is a period for removing interference generated in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink. That is, regardless of the type of radio frame, one subframe consists of two slots.
도 3은 LTE 하향링크의 슬롯 구조를 나타낸다. 상기 도 3에 도시된 바와 같이 각 슬롯(slot)에서 전송되는 신호는
Figure PCTKR2010001474-appb-I000001
Figure PCTKR2010001474-appb-I000002
개의 부반송파(subcarrier)와
Figure PCTKR2010001474-appb-I000003
개의 OFDM(Orthogonal Frequency Division Multiplexing) 심볼(symbol)로 구성되는 자원 격자 (Resource Grid)에 의해 묘사될 수 있다. 여기서,
Figure PCTKR2010001474-appb-I000004
은 하향링크에서의 자원 블록 (Resource Block; RB)의 개수를 나타내고,
Figure PCTKR2010001474-appb-I000005
는 하나의 RB을 구성하는 부반송파의 개수를 나타내고,
Figure PCTKR2010001474-appb-I000006
는 하나의 하향링크 슬롯에서의 OFDM 심볼의 개수를 나타낸다.
3 shows a slot structure of an LTE downlink. As shown in FIG. 3, a signal transmitted in each slot is
Figure PCTKR2010001474-appb-I000001
Figure PCTKR2010001474-appb-I000002
Subcarriers and
Figure PCTKR2010001474-appb-I000003
It may be depicted by a resource grid composed of four Orthogonal Frequency Division Multiplexing (OFDM) symbols. here,
Figure PCTKR2010001474-appb-I000004
Represents the number of resource blocks (RBs) in downlink,
Figure PCTKR2010001474-appb-I000005
Represents the number of subcarriers constituting one RB,
Figure PCTKR2010001474-appb-I000006
Denotes the number of OFDM symbols in one downlink slot.
도 4는 LTE 상향링크 슬롯 구조를 나타낸다. 상기 도 8에 도시된 바와 같이 각 슬롯에서 전송되는 신호는
Figure PCTKR2010001474-appb-I000007
Figure PCTKR2010001474-appb-I000008
개의 부반송파와
Figure PCTKR2010001474-appb-I000009
개의 OFDM 심볼로 구성되는 자원 격자에 의해 묘사될 수 있다. 여기서,
Figure PCTKR2010001474-appb-I000010
은 상향링크에서의 RB의 개수를 나타내고,
Figure PCTKR2010001474-appb-I000011
는 하나의 RB을 구성하는 부반송파의 개수를 나타내고,
Figure PCTKR2010001474-appb-I000012
은 하나의 상향링크 슬롯에서의 OFDM 심볼의 개수를 나타낸다.
4 shows an LTE uplink slot structure. As shown in FIG. 8, a signal transmitted in each slot is
Figure PCTKR2010001474-appb-I000007
Figure PCTKR2010001474-appb-I000008
Subcarriers
Figure PCTKR2010001474-appb-I000009
It may be depicted by a resource grid consisting of OFDM symbols. here,
Figure PCTKR2010001474-appb-I000010
Represents the number of RBs in the uplink,
Figure PCTKR2010001474-appb-I000011
Represents the number of subcarriers constituting one RB,
Figure PCTKR2010001474-appb-I000012
Denotes the number of OFDM symbols in one uplink slot.
자원 요소(Resource Element)는 상기 상향링크 슬롯과 하향링크 슬롯 내에서 인덱스 (a, b)로 정의되는 자원 단위로 1개의 부반송파와 1개의 OFDM심볼을 나타낸다. 여기서, a는 주파수 축 상의 인덱스이고, b은 시간 축 상의 인덱스이다.A resource element represents one subcarrier and one OFDM symbol in a resource unit defined by indexes (a, b) in the uplink slot and the downlink slot. Where a is an index on the frequency axis and b is an index on the time axis.
도 5는 하향링크 서브프레임의 구조를 나타내는 도면이다. 상기 도 5에서 하나의 서브프레임 안에서 첫 번째 슬롯의 앞 부분에 위치한 최대 3개의 OFDM 심볼은 제어 채널에 할당된 제어 영역에 대응한다. 나머지 OFDM 심볼들은 물리 하향링크 공유 채널(Physical Downlink Shared Channel; PDSCH)에 할당된 데이터 영역에 대응한다. 3GPP LTE 에서 사용되는 하향링크 제어 채널의 예로는 PCFICH(Physical Control Format Indicator Channel), PDCCH(Physical Downlink Control Channel)과 PHICH(Physical Hybrid ARQ Indicator Channel) 등이 있다.5 is a diagram illustrating a structure of a downlink subframe. In FIG. 5, at most three OFDM symbols located at the front of the first slot in one subframe correspond to the control region allocated to the control channel. The remaining OFDM symbols correspond to data regions allocated to a physical downlink shared channel (PDSCH). Examples of downlink control channels used in 3GPP LTE include a physical control format indicator channel (PCFICH), a physical downlink control channel (PDCCH), and a physical hybrid ARQ indicator channel (PHICH).
다중 안테나(MIMO) 기술의 정의Definition of Multiple Antenna (MIMO) Technology
MIMO는 Multiple-Input Multiple-Output의 준말로 지금까지 한 개의 송신안테나와 한 개의 수신안테나를 사용했던 것에서 탈피하여, 다중송신안테나와 다중수신안테나를 채택하여 송수신 데이터 효율을 향상시킬 수 있는 방법을 말한다. 즉, 무선통신시스템의 송신 단(transmitter) 혹은 수신 단(receiver)에서 다중안테나를 사용하여 용량을 증대시키거나 성능을 개선하는 기술이다. 여기서는 MIMO를 다중안테나라고 칭하기로 한다.MIMO stands for Multiple-Input Multiple-Output, and it is a method that can improve the transmission / reception data efficiency by adopting multiple transmission antennas and multiple reception antennas, away from the use of one transmission antenna and one reception antenna. . That is, a technique of increasing capacity or improving performance by using multiple antennas in a transmitter or receiver in a wireless communication system. MIMO will be referred to herein as multiple antennas.
다중안테나 기술이란, 메시지를 수신하기 위해 단일 안테나 경로에 의존하지 않고 여러 안테나에서 수신된 단편적인 데이터 조각을 한데 모아 완성하는 기술을 응용한 것이다. 상기 다중안테나 기술은 특정 범위에서 데이터 전송 속도를 향상시키거나 특정 데이터 전송 속도에 대해 시스템 범위를 증가시킬 수 있기 때문에 이동 통신 단말과 중계기 등에 폭넓게 사용할 수 있는 차세대 이동통신기술이다. 상기 기술은 데이터 통신 확대 등으로 인해 한계 상황에 이른 이동통신의 전송량 한계를 극복할 수 있는 차세대 기술로 관심을 모으고 있다.Multi-antenna technology is an application of a technique of gathering and completing fragmented pieces of data received from multiple antennas without relying on a single antenna path to receive a message. The multi-antenna technology is a next generation mobile communication technology that can be widely used in a mobile communication terminal and a repeater because it can improve the data transmission speed in a specific range or increase the system range for a specific data transmission speed. The technology is attracting attention as a next generation technology capable of overcoming the transmission limitation of mobile communication, which has reached a limit situation due to the expansion of data communication.
도 6은 일반적인 다중 안테나(MIMO) 통신 시스템의 구성도이다. 도 6에 도시된 바와 같이 송신 안테나의 수를 NT개로, 수신 안테나의 수를 NR개로 동시에 늘리게 되면, 송신기나 수신기에서만 다수의 안테나를 사용하게 되는 경우와 달리 안테나 수에 비례하여 이론적으로 채널 전송 용량이 증가한다. 따라서 전송률(transmission rate)를 향상시키고, 주파수 효율을 획기적으로 향상시키는 것이 가능하다. 채널 전송 용량의 증가에 따른 전송률은 이론적으로 하나의 안테나를 이용하는 경우의 최대 전송률(
Figure PCTKR2010001474-appb-I000013
)에 하기의 수학식 1의 증가율(
Figure PCTKR2010001474-appb-I000014
)이 곱해진 만큼 증가할 수 있다.
6 is a configuration diagram of a general multiple antenna (MIMO) communication system. As shown in FIG. 6, when the number of transmitting antennas is increased to N T and the number of receiving antennas is increased to N R at the same time, unlike a case where only a plurality of antennas are used in a transmitter or a receiver, the number of channels is theoretically proportional to the number of antennas. The transmission capacity is increased. Therefore, it is possible to improve the transmission rate and to significantly improve the frequency efficiency. According to the increase in channel transmission capacity, theoretically, the maximum transmission rate when using one antenna is
Figure PCTKR2010001474-appb-I000013
Increase rate of the following equation (1)
Figure PCTKR2010001474-appb-I000014
Can be multiplied by
수학식 1
Figure PCTKR2010001474-appb-M000001
Equation 1
Figure PCTKR2010001474-appb-M000001
예를 들어, 4개의 송신 안테나와 4개의 수신 안테나를 이용하는 MIMO 통신 시스템에서는 단일 안테나 시스템에 대하여 이론상 4배의 전송률을 획득할 수 있다. 이와 같은 다중안테나 시스템의 이론적 용량 증가가 90년대 중반에 증명된 이후 실질적인 데이터 전송률 향상으로 이끌어 내기 위하여 다양한 기술들이 현재까지 활발히 연구되고 있으며, 이들 중 몇몇 기술들은 이미 3 세대 이동 통신과 차세대 무선랜 등의 다양한 무선 통신의 표준에 반영되고 있다.For example, in a MIMO communication system using four transmit antennas and four receive antennas, a theoretical transmission rate of four times can be obtained for a single antenna system. Since the theoretical capacity increase of the multi-antenna system was proved in the mid-90s, various technologies have been actively studied to lead to substantial data rate improvement. Some of these technologies have already been developed for 3G mobile communication and next generation WLAN. Is reflected in the various standards of wireless communication.
현재까지의 다중안테나 관련 연구 동향을 살펴보면 다양한 채널 환경 및 다중접속 환경에서의 다중안테나 통신 용량 계산 등과 관련된 정보 이론 측면 연구, 다중안테나 시스템의 무선 채널 측정 및 모형 도출 연구, 그리고 전송 신뢰도 향상 및 전송률 향상을 위한 시공간 신호 처리 기술 연구 등 다양한 관점에서 활발한 연구가 진행되고 있다.The research trends related to multi-antennas to date include information theory aspects related to calculation of multi-antenna communication capacity in various channel environments and multi-access environments, research on wireless channel measurement and model derivation of multi-antenna systems, and improvement of transmission reliability and transmission rate. Active research is being conducted from various viewpoints, such as the study of space-time signal processing technology.
3GPP LTE 하향링크 시스템에서의 단말 전용 참조 신호 할당 방식UE-specific reference signal allocation scheme in 3GPP LTE downlink system
상기에서 설명한 3GPP LTE가 지원하는 무선 프레임 구조 중에서 FDD에 적용 가능한 무선 프레임의 구조를 자세히 살펴보면, 10msec 동안의 시간에 한 개의 프레임이 전송되는데 이 프레임은 1msec의 구간에 걸쳐 이루어져 있는 10개의 서브 프레임으로 구성된다. 한 개의 서브 프레임은 14개 혹은 12개의 OFDM심볼로 구성되며 한 개의 OFDM심볼에서 부반송파의 개수를 128, 256, 512, 1024, 1536, 2048 중의 하나로 선정하여 사용하게 된다.Looking at the structure of a radio frame applicable to FDD among the radio frame structures supported by 3GPP LTE described above in detail, one frame is transmitted at a time of 10 msec. The frame is divided into 10 subframes composed of 1 msec intervals. It is composed. One subframe consists of 14 or 12 OFDM symbols, and the number of subcarriers in one OFDM symbol is selected from 128, 256, 512, 1024, 1536, and 2048.
도 7은 1TTI(Transmission Time Interval)가 14개의 OFDM 심볼을 갖는 표준 순환전치(normal Cyclic Prefix; normal CP)를 사용하는 서브프레임에 있어서 단말 전용의 하향링크 참조 신호 구조를 도시한 도면이다. 상기 도 7에서 R5는 단말 전용의 참조 신호를 나타내며
Figure PCTKR2010001474-appb-I000015
은 서브프레임 상의 OFDM 심볼의 위치를 나타낸다.
FIG. 7 is a diagram illustrating a downlink reference signal structure dedicated to a terminal in a subframe in which 1TTI (transmission time interval) uses a normal cyclic prefix (normal CP) having 14 OFDM symbols. In FIG. 7, R5 represents a UE-specific reference signal.
Figure PCTKR2010001474-appb-I000015
Denotes the position of the OFDM symbol on the subframe.
도 8은 1TTI가 12개의 OFDM심볼을 가지는 확장 순환 전치(extended Cyclic Prefix; extended CP)를 사용하는 서브프레임에 있어서, 단말 전용의 하향링크 참조 신호의 구조를 도시한 도면이다.FIG. 8 is a diagram illustrating a structure of a downlink reference signal dedicated to a terminal in a subframe in which 1TTI uses an extended cyclic prefix (extended CP) having 12 OFDM symbols.
도 9는 안테나 포트(antenna port)에 따른 CRS의 구조를 도시한 도면이다. 상기 도 9에 도시된 바와 같이, 각 안테나 포트에 대한 CRS 패턴은 시간 및 주파수 영역(domain)에 있어서 서로 직교(orthogonal)한다. 만약, LTE 시스템이 하나의 안테나 포트를 가지면, 상기 도 3에서 안테나 포트 0에 대한 CRS만이 사용된다. 또한, 만약 4Tx MIMO 전송이 LTE 하향링크에 적용된다면, 안테나 포트 0 내지 3에 대한 CRS가 동시에 사용된다. 이때, R0는 송신안테나 0에 대한 파일럿 심볼을 나타내며, R1은 송신안테나 1, R2는 송신안테나 2 그리고 R3는 송신안테나 3에 대한 파일럿 심볼을 각각 나타낸다. 각 송신안테나의 파일럿 심볼이 사용된 부반송파에는 파일럿 심볼을 전송하는 송신안테나를 제외한 다른 모든 송신안테나와의 간섭을 없애기 위해 신호를 전송하지 않는다.9 is a diagram illustrating a structure of a CRS according to an antenna port. As shown in FIG. 9, the CRS pattern for each antenna port is orthogonal to each other in a time and frequency domain. If the LTE system has one antenna port, only the CRS for antenna port 0 in FIG. 3 is used. Also, if 4Tx MIMO transmission is applied to the LTE downlink, CRSs for antenna ports 0 to 3 are used simultaneously. In this case, R0 represents a pilot symbol for transmission antenna 0, R1 represents a transmission antenna 1, R2 represents a transmission antenna 2 and R3 represents a pilot symbol for transmission antenna 3, respectively. A subcarrier using a pilot symbol of each transmit antenna does not transmit a signal to eliminate interference with all other transmit antennas except the transmit antenna transmitting the pilot symbol.
한편, 미리 정의된 시퀀스(예, Pseudo-random (PN), m-sequence 등)를 셀 별 하향링크 참조 신호에 곱하여 전송함으로써 수신기에서 인접 셀로부터 수신되는 파일럿 심볼의 신호의 간섭을 감소시켜 채널추정 성능을 향상시킬 수 있다. PN 시퀀스는 하나의 서브프레임내의 OFDM 심볼단위로 적용되며, 셀 ID와 서브프레임 번호 그리고 OFDM심볼 위치, 단말의 ID에 따라 다른 PN 시퀀스가 적용될 수 있다.Meanwhile, by multiplying a predetermined sequence (eg, Pseudo-random (PN), m-sequence, etc.) by a downlink reference signal for each cell, the receiver reduces the interference of a signal of a pilot symbol received from an adjacent cell at a receiver and estimates a channel. It can improve performance. The PN sequence is applied in units of OFDM symbols in one subframe, and different PN sequences may be applied according to a cell ID, a subframe number, an OFDM symbol position, and an ID of a UE.
하나의 일례로, 상기 도 9의 4Tx 파일럿 심볼의 구조의 경우 파일럿 심볼을 포함하는 특정 OFDM 심볼에 하나의 송신안테나의 파일럿 심볼이 2개 사용되고 있음을 알 수 있다. 3GPP LTE 시스템의 경우 여러 종류의 대역폭으로 구성된 시스템이 있는데 그 종류는 6 RB(Resource Block) 내지 110 RB이다. 따라서, 파일럿 심볼을 포함하는 하나의 OFDM심볼에 1개의 송신안테나의 파일럿 심볼의 개수는
Figure PCTKR2010001474-appb-I000016
이며 각 셀 별 하향링크 참조 신호에 곱하여 사용되는 시퀀스는
Figure PCTKR2010001474-appb-I000017
의 길이를 가져야 한다. 이때,
Figure PCTKR2010001474-appb-I000018
는 대역폭에 따른 RB의 개수를 나타내며 시퀀스는 이진시퀀스 또는 복소시퀀스(complex sequence) 등을 사용할 수 있다. 아래의 수학식 2의
Figure PCTKR2010001474-appb-I000019
은 복소시퀀스의 하나의 일례를 보이고 있다.
As an example, in the structure of the 4Tx pilot symbol of FIG. 9, it can be seen that two pilot symbols of one transmission antenna are used for a specific OFDM symbol including a pilot symbol. In the case of 3GPP LTE system, there are systems composed of several types of bandwidths, which range from 6 RB (Resource Block) to 110 RB. Therefore, the number of pilot symbols of one transmit antenna in one OFDM symbol including pilot symbols
Figure PCTKR2010001474-appb-I000016
The sequence used by multiplying the downlink reference signal for each cell is
Figure PCTKR2010001474-appb-I000017
It must have a length of. At this time,
Figure PCTKR2010001474-appb-I000018
Denotes the number of RBs according to the bandwidth, and the sequence may use a binary sequence or a complex sequence. Equation 2 below
Figure PCTKR2010001474-appb-I000019
Shows one example of a complex sequence.
수학식 2
Figure PCTKR2010001474-appb-M000002
Equation 2
Figure PCTKR2010001474-appb-M000002
위의 수학식 2에서
Figure PCTKR2010001474-appb-I000020
는 최대 대역폭에 해당하는 RB의 개수이므로 상기 설명을 따르면 110으로 결정할 수 있고
Figure PCTKR2010001474-appb-I000021
는 PN 시퀀스로 길이-31의 Gold 시퀀스로 정의될 수 있다. 단말 전용 하향링크 참조 신호의 경우 상기 수학식 2은 아래의 수학식 3과 같이 표현할 수 있다.
In Equation 2 above
Figure PCTKR2010001474-appb-I000020
Since is the number of RBs corresponding to the maximum bandwidth, it can be determined as 110 according to the above description.
Figure PCTKR2010001474-appb-I000021
May be defined as a Gold sequence of length-31 as a PN sequence. In case of the UE-specific downlink reference signal, Equation 2 may be expressed as Equation 3 below.
수학식 3
Figure PCTKR2010001474-appb-M000003
Equation 3
Figure PCTKR2010001474-appb-M000003
상기 수학식 3서,
Figure PCTKR2010001474-appb-I000022
는 특정 단말이 할당 받은 하향링크 데이터에 해당하는 RB의 개수를 나타낸다. 따라서 단말이 할당 받는 양에 따라 시퀀스의 길이가 달라질 수 있다.
Equation 3 above,
Figure PCTKR2010001474-appb-I000022
Denotes the number of RBs corresponding to downlink data allocated by a specific terminal. Therefore, the length of the sequence may vary according to the amount of UE assignment.
한편, LTE-A(LTE-Advanced) 시스템은 기존 LTE 시스템에서 보다 많은 개수의 전송 안테나를 지원하는데, 이하에서는 새로운 LTE-A 시스템이 지원하는 단말을 LTE-A 단말이라 칭하고, 기존 LTE 시스템이 지원하는 단말을 LTE 단말로 칭하기로 한다.Meanwhile, the LTE-Advanced (LTE-A) system supports a larger number of transmit antennas in the existing LTE system. Hereinafter, a terminal supported by the new LTE-A system is called an LTE-A terminal and is supported by the existing LTE system. A terminal to be referred to as an LTE terminal.
기지국이 LTE-A 단말에게 참조 신호를 전송하는 경우에, 기존 LTE 시스템에서 작동하고 있는 단말은 상기 참조 신호를 데이터로 인식하기 때문에, 상기 LTE-A 단말에게 전송한 참조 신호는 기존 LTE 단말의 성능에 영향을 주게 된다. 따라서, 기지국이 LTE-A 단말에게 참조 신호를 전송하는 경우에, 상기 LTE 단말의 성능에 주는 영향을 최소화할 수 있는 참조 신호의 설계방법이 요구된다.When the base station transmits a reference signal to the LTE-A terminal, since the terminal operating in the existing LTE system recognizes the reference signal as data, the reference signal transmitted to the LTE-A terminal is the performance of the existing LTE terminal Will affect. Therefore, when the base station transmits a reference signal to the LTE-A terminal, a method of designing a reference signal that can minimize the impact on the performance of the LTE terminal is required.
본 발명이 해결하고자 하는 과제는 기존 LTE 단말의 성능에 주는 영향을 최소화 하는 LTE-A 단말을 위한 참조 신호 설계 방법을 제공하는 것이다.The problem to be solved by the present invention is to provide a reference signal design method for the LTE-A terminal to minimize the impact on the performance of the existing LTE terminal.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The technical problems to be achieved in the present invention are not limited to the technical problems mentioned above, and other technical problems not mentioned above will be clearly understood by those skilled in the art from the following description. Could be.
상기 과제를 해결하기 위한 본 발명의 일 양상에 따른 총 M개의 송신 안테나 중 N개의 송신 안테나를 지원하는 제1 사용자 기기와 상기 M(M>N)개의 송신 안테나를 지원하는 제2 사용자 기기를 지원하는 하향링크 MIMO(Multi Input Multi Output) 시스템에 있어서, 채널 측정을 위한 공통 참조 신호(Common Reference Signal; RS)를 전송하는 방법은, 기지국에서, 상기 M개의 송신안테나에 대한 공통 참조 신호(Common Reference Signal; CRS)를 서브프레임상의 자원 요소(Resource Element; RE)에 사상(mapping)하는 단계; 및 상기 서브프레임을 전송하는 단계를 포함하고, 상기 서브프레임에서 상기 M개의 송신안테나에 대한 CRS가 사상되는 RE의 위치는 상기 제1 사용자를 위한 사용자 전용 참조 신호(Dedicated Reference Signal; DRS)가 사상되는 RE를 제외한 주파수 축 상으로 연속된 임의의 짝수 개의 RE이다.To solve the above problems, a first user device supporting N transmit antennas out of a total of M transmit antennas and a second user device supporting M (M> N) transmit antennas according to an aspect of the present invention. In a downlink MIMO system, a method of transmitting a common reference signal (RS) for channel measurement may be performed by a base station in a common reference signal for the M transmit antennas. Mapping a Signal (CRS) to a Resource Element (RE) on a subframe; And transmitting the subframe, wherein the location of the RE where the CRSs for the M transmission antennas are mapped in the subframe is mapped by a dedicated dedicated reference signal (DRS) for the first user. Any even number of REs contiguous on the frequency axis except for REs.
상기 서브프레임에서, 상기 N개의 송신 안테나에 대한 참조 신호가 사상되는 OFDM심볼에 포함된 RE는 상기 M개의 송신 안테나에 대한 CRS가 사상되는 RE에서 제외될 수 있다. In the subframe, the RE included in the OFDM symbol in which the reference signals for the N transmit antennas are mapped may be excluded from the RE in which the CRSs for the M transmit antennas are mapped.
상기 서브프레임에서, 상기 N개의 송신안테나에 대한 동기채널(Synchronization Channel; SCH)이 전송되는 OFDM심볼에 포함된 RE는 상기 M개의 송신 안테나에 대한 CRS가 사상되는 RE에서 제외될 수 있다.In the subframe, an RE included in an OFDM symbol in which a synchronization channel (SCH) for the N transmission antennas is transmitted may be excluded from an RE in which CRSs of the M transmission antennas are mapped.
상기 서브프레임에서, 상기 N개의 송신안테나에 대한 방송채널(Broadcasting Channel; BCH)이 전송되는 OFDM심볼에 포함된 RE는 상기 M개의 송신 안테나에 대한 CRS가 사상되는 RE에서 제외될 수 있다. In the subframe, an RE included in an OFDM symbol in which a broadcasting channel (BCH) for the N transmission antennas is transmitted may be excluded from an RE in which CRSs of the M transmission antennas are mapped.
상기 임의의 짝수는, 2, 4, 6 및 8중 어느 하나일 수 있다.The arbitrary even number may be any one of 2, 4, 6, and 8.
상기 M과 N은 각각 8과 4일 수 있다.M and N may be 8 and 4, respectively.
본 발명의 다른 양상에 따른 총 M개의 송신 안테나 중 N개의 송신 안테나를 지원하는 제1 사용자 기기와 상기 M(M>N)개의 송신 안테나를 지원하는 제2 사용자 기기를 지원하는 하향링크 MIMO(Multi Input Multi Output) 시스템에 있어서, 채널 정보 피드백 방법은 기지국으로부터, 상기 M개의 송신안테나에 대한 공통 참조 신호(Common Reference Signal; CRS)가 사상된 서브프레임상을 수신하는 단계; 상기 서브프레임 상에 포함된 상기 CRS를 이용하여 채널 정보를 생성하는 단계; 및 상기 생성된 채널 정보를 피드백 하는 단계를 포함하고, 상기 서브프레임에서 상기 M개의 송신안테나에 대한 CRS가 사상되는 자원 요소(Resource Element; RE)의 위치는 상기 제1 사용자를 위한 사용자 전용 참조 신호(Dedicated Reference Signal; DRS)가 사상되는 RE를 제외한 주파수 축 상으로 연속된 임의의 짝수 개의 RE이다. According to another aspect of the present invention, a downlink MIMO supporting a first user device supporting N transmit antennas among a total of M transmit antennas and a second user device supporting M (M> N) transmit antennas is provided. In an input multi output) system, a channel information feedback method includes: receiving, from a base station, a subframe on which a common reference signal (CRS) for the M transmit antennas is mapped; Generating channel information using the CRS included in the subframe; And feeding back the generated channel information, wherein a location of a resource element (RE) in which CRSs for the M transmission antennas are mapped in the subframe is a user-specific reference signal for the first user. (Dedicated Reference Signal (DRS)) is any even number of REs contiguous on the frequency axis except for the RE to which it maps.
상기 서브프레임에서, 상기 N개의 송신 안테나에 대한 참조 신호가 사상되는 OFDM심볼에 포함된 RE는 상기 M개의 송신 안테나에 대한 CRS가 사상되는 RE에서 제외될 수 있다. In the subframe, the RE included in the OFDM symbol in which the reference signals for the N transmit antennas are mapped may be excluded from the RE in which the CRSs for the M transmit antennas are mapped.
상기 서브프레임에서, 상기 N개의 송신안테나에 대한 동기채널(Synchronization Channel; SCH)이 전송되는 OFDM심볼에 포함된 RE는 상기 M개의 송신 안테나에 대한 CRS가 사상되는 RE에서 제외될 수 있다.In the subframe, an RE included in an OFDM symbol in which a synchronization channel (SCH) for the N transmission antennas is transmitted may be excluded from an RE in which CRSs of the M transmission antennas are mapped.
상기 서브프레임에서, 상기 N개의 송신안테나에 대한 방송채널(Broadcasting Channel; BCH)이 전송되는 OFDM심볼에 포함된 RE는 상기 M개의 송신 안테나에 대한 CRS가 사상되는 RE에서 제외될 수 있다.In the subframe, an RE included in an OFDM symbol in which a broadcasting channel (BCH) for the N transmission antennas is transmitted may be excluded from an RE in which CRSs of the M transmission antennas are mapped.
상기 임의의 짝수는, 2, 4, 6 및 8중 어느 하나일 수 있다. The arbitrary even number may be any one of 2, 4, 6, and 8.
상기 M과 N은 각각 8과 4일 수 있다.M and N may be 8 and 4, respectively.
본 발명의 실시예에 따르면 기존 시스템의 사용자 기기와 새로 시스템에 추가된 사용자 기기 모두에게 효율적으로 참조신호를 전송할 수 있다. 특히, LTE-A 단말에게 전송하는 참조신호에 의한 기존 LTE 단말의 성능에 주는 영향을 최소화 할 수 있다.According to an embodiment of the present invention, the reference signal can be efficiently transmitted to both the user device of the existing system and the user device newly added to the system. In particular, the influence on the performance of the existing LTE terminal by the reference signal transmitted to the LTE-A terminal can be minimized.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The effects obtainable in the present invention are not limited to the above-mentioned effects, and other effects not mentioned above may be clearly understood by those skilled in the art from the following description. will be.
도 1은 타입 1 무선 프레임의 구조를 도시한다.1 shows a structure of a type 1 radio frame.
도 2는 타입 2 무선 프레임의 구조를 도시한다.2 shows a structure of a type 2 radio frame.
도 3은 LTE 하향링크의 슬롯 구조를 나타낸다.3 shows a slot structure of an LTE downlink.
도 4는 LTE 상향링크 슬롯 구조를 나타낸다.4 shows an LTE uplink slot structure.
도 5는 하향링크 서브프레임의 구조를 나타내는 도면이다.5 is a diagram illustrating a structure of a downlink subframe.
도 6은 일반적인 다중 안테나(MIMO) 통신 시스템의 구성도이다.6 is a configuration diagram of a general multiple antenna (MIMO) communication system.
도 7은 1TTI(Transmission Time Interval)가 14개의 OFDM 심볼을 갖는 표준 순환전치(normal Cyclic Prefix; normal CP)를 사용하는 서브프레임에 있어서 단말 전용의 하향링크 참조 신호 구조를 도시한 도면이다.FIG. 7 is a diagram illustrating a downlink reference signal structure dedicated to a UE in a subframe in which 1TTI uses a normal cyclic prefix (normal CP) having 14 OFDM symbols.
도 8은 1TTI가 12개의 OFDM심볼을 가지는 확장 순환 전치(extended Cyclic Prefix; extended CP)를 사용하는 서브프레임에 있어서, 단말 전용의 하향링크 참조 신호의 구조를 도시한 도면이다.FIG. 8 is a diagram illustrating a structure of a downlink reference signal dedicated to a terminal in a subframe in which 1TTI uses an extended cyclic prefix (extended CP) having 12 OFDM symbols.
도 9는 안테나 포트(antenna port)에 따른 CRS의 구조를 도시한 도면이다.9 is a diagram illustrating a structure of a CRS according to an antenna port.
도 10은 프리코딩된 RS가 사용될 때의 다중안테나 송신기의 구조를 도시한 도면이다.10 illustrates the structure of a multi-antenna transmitter when precoded RS is used.
도 11은 CRS가 사용될 때의 다중안테나 송신기의 구조를 도시한 도면이다.11 is a diagram illustrating the structure of a multi-antenna transmitter when CRS is used.
도 12는 LTE 무선 프레임(radio frame) 구조를 도시한 도면이다.12 is a diagram illustrating an LTE radio frame structure.
도 13은 CRS와 단일 스트림 빔포밍을 위한 DRS가 동시에 사용된 경우의 RS 구조의 일례를 도시한 도면이다.FIG. 13 illustrates an example of an RS structure when a CRS and a DRS for a single stream beamforming are used at the same time.
도 14는 본 발명의 일 실시예에 따른 표준 순환 전치(normal Cyclic Prefix; normal CP)에 있어서 하나의 자원 블록(Resource Block; RB)에 LTE-A C_port #0~7를 전송하기 위한 자원 요소(Resource Element) 위치를 도시한 도면이다.FIG. 14 is a diagram illustrating a resource element for transmitting LTE-A C_port # 0 to 7 to one resource block (RB) in a normal cyclic prefix (normal CP) according to an embodiment of the present invention; Resource Element) location.
도 15는 도 14에 있어서, 다른 셀로부터 간섭의 영향을 받을 수 있는 RE를 제외한 LTE-A C_port #0~7를 전송할 수 있는 RE의 위치를 도시한 도면이다.FIG. 15 is a diagram illustrating a location of an RE capable of transmitting LTE-A C_ports # 0 to 7 except for an RE that may be affected by interference from another cell.
도 16은 상기 도 15에 있어서, SCH 영역을 제외한 LTE-A C_port #0~7를 전송할 수 있는 RE의 위치를 도시한 도면이다.FIG. 16 is a diagram illustrating a location of an RE capable of transmitting LTE-A C_port # 0 to 7 except for the SCH region in FIG. 15.
도 17은 상기 도 16에 있어서, BCH 영역을 제외한 LTE-A C_port #0~7를 전송할 수 있는 RE의 위치를 도시한 도면이다.FIG. 17 is a diagram illustrating a location of an RE capable of transmitting LTE-A C_port # 0 to 7 except for the BCH region in FIG. 16.
도 18은 본 발명의 일 실시예에 따른 각 컴포넌트 캐리어가 독립적인 물리 또는 LTE 채널로 간주되는 경우에, 복수개의 컴포넌트 캐리어가 단말을 위해 사용되는 경우를 도시한 도면이다.18 is a diagram illustrating a case in which a plurality of component carriers are used for a terminal when each component carrier is regarded as an independent physical or LTE channel according to an embodiment of the present invention.
도 19는 기지국과 사용자 기기에 적용 가능하고 상기에서 설명한 방법을 수행할 수 있는 디바이스의 구성을 나타내는 블록도이다.19 is a block diagram illustrating a configuration of a device applicable to a base station and a user equipment and capable of performing the above-described method.
이하 본 발명에 따른 바람직한 실시형태들을 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시되는 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 돕기 위해 구체적인 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 알 것이다. 예를 들어, 이하의 설명에서 일정 용어를 중심으로 설명하나, 이들 용어에 한정될 필요는 없으며 임의의 용어로서 지칭되는 경우에도 동일한 의미를 나타낼 수 있다. 또한, 본 명세서 전체에서 동일하거나 유사한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. The detailed description set forth below in conjunction with the appended drawings is intended to explain exemplary embodiments of the present invention and is not intended to represent the only embodiments in which the present invention may be practiced. The following detailed description includes specific details to assist in a thorough understanding of the present invention. However, those skilled in the art will appreciate that the invention may be practiced without these specific details. For example, the following description will focus on certain terms, but need not be limited to these terms and may refer to the same meaning even when referred to as any term. In addition, the same or similar components throughout the present specification will be described using the same reference numerals.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "…부", "…기", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.Throughout the specification, when a part is said to "include" a certain component, it means that it can further include other components, without excluding other components unless specifically stated otherwise. In addition, the terms “… unit”, “… unit”, “module”, etc. described in the specification mean a unit that processes at least one function or operation, which may be implemented by hardware or software or a combination of hardware and software. have.
우선, 참조 신호의 구조에 대하여 설명하기 전에 참조 신호의 유형에 대하여 설명하기로 한다.First, the type of the reference signal will be described before explaining the structure of the reference signal.
전용 참조 신호(Dedicated Reference Signal; DRS)는 특정 단말만을 위해 사용되고 다른 단말은 상기 DRS를 사용할 수 없다. 상기 DRS는 주로 복조(demodulation)를 위하여 사용되며 프리코딩된 RS(precoded RS)와 프리코딩되지 않은 RS(non-precoded RS)로 구분할 수 있다. 도 10은 프리코딩된 RS가 사용될 때의 다중안테나 송신기의 구조를 도시한 도면이다. 상기 프리코딩된 RS는 데이터 심볼을 위해 사용하는 프리코딩과 동일한 프리코딩으로 프리코딩된다. 상기 도 10에서, Nt는 물리안테나의 개수를 나타내고, K는 공간다중화율(spatial multiplexing rate)을 나타낸다. 이때, K는 Nt보다 작거나 같다.A dedicated reference signal (DRS) is used only for a specific terminal and no other terminal can use the DRS. The DRS is mainly used for demodulation, and may be classified into a precoded RS and a non-precoded RS. 10 illustrates the structure of a multi-antenna transmitter when precoded RS is used. The precoded RS is precoded with the same precoding as the precoding used for data symbols. In FIG. 10, Nt represents the number of physical antennas, and K represents a spatial multiplexing rate. K is less than or equal to Nt.
상기 도 10에 도시된 바와 같이, K개의 스트림(stream)은 하나의 단말 또는 다수의(multiple) 단말에 할당될 수 있다. 만약 다수의 단말이 K개의 스트림을 공유하는 경우, 1 내지 K개의 단말은 동시에 동일한 시간 및 주파수 자원을 공유할 수 있다.As shown in FIG. 10, K streams may be allocated to one terminal or multiple terminals. If a plurality of terminals share K streams, 1 to K terminals may simultaneously share the same time and frequency resources.
공통 참조 신호(Common Reference Signal; CRS)는 복조 또는 측정(measurement) 용도로 사용할 수 있으며, 한 셀 내에서 모든 단말이 CRS를 공유한다. 이때, 측정은 채널상태정보 피드백, 동기 등을 포함한 모든 단말기의 행동을 포함한다. 도 11은 CRS가 사용될 때의 다중안테나 송신기의 구조를 도시한 도면이다. 상기 도 11에 도시된 바와 같이, RS는 다중안테나 기법에 영향을 받지 않고 그대로 안테나로 송신된다. 따라서, 단말의 공간다중화율(spatial multiplexing rate)에 상관없이 항상 Nt개의 RS가 송신된다. 그러나, 만약 특정 시스템에서 셀 특정 프리코더가 존재한다면, 상기 프리코더(precoder)는 프리코더가 아닌 가상화(virtualization)로 간주된다. 상기 RS 시퀀스들은 스트림(stream)의 개수에 관계 없이 모든 안테나 포트에 대하여 전송되어야 한다.The common reference signal (CRS) may be used for demodulation or measurement, and all terminals share a CRS in one cell. In this case, the measurement includes the behavior of all terminals including channel state information feedback, synchronization, and the like. 11 is a diagram illustrating the structure of a multi-antenna transmitter when CRS is used. As shown in FIG. 11, the RS is transmitted to the antenna as it is without being affected by the multiple antenna scheme. Therefore, Nt RSs are always transmitted regardless of the spatial multiplexing rate of the terminal. However, if there is a cell specific precoder in a particular system, the precoder is considered virtualization and not precoder. The RS sequences should be transmitted for all antenna ports regardless of the number of streams.
LTE-A(LTE-Advanced) 하향링크에서 8Tx MIMO 전송을 지원하기 위해서는, LTE 단말이 LTE-A 단말과 함께 지원하도록 RS 구조가 설계되어야 한다. 특히, LTE-A 단말을 위한 RS구조는 성능, RS 오버헤드 및 LTE 단말과의 호환성(backward compatibility)의 관점에서 설계되어야 한다. In order to support 8Tx MIMO transmission in LTE-Advanced (LTE-A) downlink, an RS structure must be designed so that the LTE terminal supports the LTE-A terminal together with the LTE-A terminal. In particular, the RS structure for the LTE-A terminal should be designed in view of performance, RS overhead, and backward compatibility with the LTE terminal.
이하, 상기 관점에서 RS의 최적 설계에 대하여 설명하기로 한다. Hereinafter, the optimum design of the RS from the above point of view will be described.
도 12는 LTE 무선 프레임(radio frame) 구조를 도시한 도면이다. 상기 도 12에서 도시된 바와 같이, 하나의 무선 프레임은 열 개의 서브프레임(subframe)로 구성되고 하나의 서브프레임은 1ms로 구성된다. LTE 시스템의 경우 0번째 송신 안테나, 0번째 및 1번째 송신 안테나, 0번 내지 3번의 송신 안테나의 CRS가 각각 송신안테나의 개수에 따라 모든 송신안테나에서 전송되며, 상기 CRS는 측정 용도 또는 복조 용도로 사용이 가능하다. 그러나, CRS는 PMI(Precoding Matrix Index)와 랭크와 같은 단말 특정 정보는 포함하지 않기 때문에, 상기 정보는 제어 채널을 통해 전송되어야 한다.12 is a diagram illustrating an LTE radio frame structure. As shown in FIG. 12, one radio frame consists of ten subframes and one subframe consists of 1 ms. In the LTE system, CRSs of 0th transmission antennas, 0th and 1st transmission antennas, and 0th to 3rd transmission antennas are transmitted in all transmission antennas according to the number of transmission antennas, respectively, and the CRS is used for measurement or demodulation purposes. Can be used. However, since the CRS does not include terminal specific information such as PMI (Precoding Matrix Index) and rank, the information must be transmitted through a control channel.
도 13은 CRS와 단일 스트림 빔포밍을 위한 DRS가 동시에 사용된 경우의 RS 구조의 일례를 도시한 도면이다. 비코드북 기반(non-coddebook based) 프리코딩을 이용하여 성능을 향상시키기 위하여 상기 도 13에 도시된 바와 같이 CRS를 적용할 수 있다. 그러나, LTE에서 DRS는 단일 스트림 전송을 지원하기 때문에 보다 큰 랭크 전송을 위해서는 CRS가 사용되어야 한다. 상기 도 13에서, 예를 들어, CRS가 4Tx를 지원한다고 하더라도, 2Tx 와 1Tx와 같은 DRS를 전송하는 것이 가능한 다른 경우가 있을 수 있다. 상기 도 13에서, DRS는 사용자기기 특정 RS(User Equipment-specific Reference Signal; UE-specific RS)와 동일한 의미이며, R5는 LTE 시스템에서의 안테나 포트 5의 DRS를 의미한다.FIG. 13 illustrates an example of an RS structure when a CRS and a DRS for a single stream beamforming are used at the same time. CRS may be applied as shown in FIG. 13 to improve performance using non-coddebook based precoding. However, since DRS supports single stream transmission in LTE, CRS should be used for larger rank transmission. In FIG. 13, for example, even if the CRS supports 4Tx, there may be another case where it is possible to transmit DRS such as 2Tx and 1Tx. In FIG. 13, DRS means the same as a User Equipment-Specific Reference Signal (UE-specific RS), and R5 means DRS of antenna port 5 in the LTE system.
이와 같이 LTE 시스템에서는 안테나 포트가 0 내지 5까지 정의되어 있으며, 안테나 포트 0 내지 3은 CRS를 위하여 정해져 있고, 안테나 포트 4는 MBSFN(Multi-media Broadcast over a Single Frequency Network) 서브프레임을 위한 안테나 포트이며 상기 안테나 포트 4를 위한 다른 형태의 RS 구조가 정의되어있다. 따라서, LTE-A 시스템에 있어서 CRS와 DRS의 조합이 각각 측정과 복조의 목적을 위하여 도입되는 경우, DRS 안테나 포트 0 내지 7과 CRS 안테나 포트 0 내지 7이 추가로 정의되어야 한다. As described above, in the LTE system, antenna ports are defined from 0 to 5, antenna ports 0 to 3 are defined for the CRS, and antenna port 4 is an antenna port for a multi-media broadcast over a single frequency network (MBSFN) subframe. And another type of RS structure for antenna port 4 is defined. Therefore, when a combination of CRS and DRS is introduced for measurement and demodulation purposes in the LTE-A system, DRS antenna ports 0 to 7 and CRS antenna ports 0 to 7 should be further defined.
이하에서, LTE 시스템의 안테나 포트 0 내지 5는 편의상, LTE port #0~5로 하고, LTE-A 시스템의 CRS와 DRS는 각각 LTE-A C_port #0~7과 D_port #0~7로 구분하기로 한다. 또한, LTE port #5 와 LTE-A D_port #0가 같다는 의미는 각각의 안테나 포트를 위한 RS의 위치가 동일함을 의미하는 것으로 한다.Hereinafter, antenna ports 0 to 5 of the LTE system are for convenience, LTE ports # 0 to 5, and CRS and DRS of the LTE-A system are divided into LTE-A C_port # 0 to 7 and D_port # 0 to 7, respectively. Shall be. In addition, the fact that LTE port # 5 and LTE-A D_port # 0 are the same means that the position of RS for each antenna port is the same.
우선, PDSCH(Physical Downlink Shared Channel)를 통해 LTE-A C_port #0~7를 전송하는 방법에 대하여 설명하기로 한다. LTE-A C_port #0~7는 LTE-A 시스템에 있어서 측정을 위해 전송되어야 한다. First, a method of transmitting LTE-A C_port # 0 to 7 through PDSCH (Physical Downlink Shared Channel) will be described. LTE-A C_port # 0 ~ 7 should be transmitted for measurement in LTE-A system.
소정 개수의 LTE-A CRS는 LTE 안테나 포트와 공유가 가능하다. 예를 들어, LTE-A C_port #0는 LTE 안테나 포트 0과 동일할 수 있다. LTE-A C_port #0~7를 전송하는 하나의 방법은 LTE 단말에게 할당되었는지 여부에 상관없이 PDSCH 영역에 LTE-A C_port #0~7의 전송을 허락하는 방법이다. 만약, LTE 단말에 할당된 PDSCH 영역에 CRS가 전송된다면, CRS는 LTE 단말에게 간섭으로 여겨지기 때문에, LTE 단말의 성능을 열화시킬 수 있다. 따라서, LTE-A C_port #0~7는 LTE 단말의 성능을 열화시키기 않도록 적절히 설계되어야 한다. A certain number of LTE-A CRS can be shared with the LTE antenna port. For example, LTE-A C_port # 0 may be the same as LTE antenna port 0. One method of transmitting the LTE-A C_port # 0-7 is a method of allowing the transmission of the LTE-A C_port # 0-7 to the PDSCH region regardless of whether the LTE-A C_port # 0 ~ 7 is allocated. If the CRS is transmitted in the PDSCH region allocated to the LTE terminal, since the CRS is regarded as interference to the LTE terminal, performance of the LTE terminal may be degraded. Therefore, LTE-A C_port # 0 ~ 7 should be properly designed so as not to degrade the performance of the LTE terminal.
도 14는 본 발명의 일 실시예에 따른 표준 순환 전치(normal Cyclic Prefix; normal CP)에 있어서 하나의 자원 블록(Resource Block; RB)에 LTE-A C_port #0~7를 전송하기 위한 자원 요소(Resource Element) 위치를 도시한 도면이다. FIG. 14 is a diagram illustrating a resource element for transmitting LTE-A C_port # 0 to 7 to one resource block (RB) in a normal cyclic prefix (normal CP) according to an embodiment of the present invention; Resource Element) location.
도 14에 있어서, 첫 세 개의 OFDM 심볼들은 PDCCH(Physical Downlink Control Channel) 전송을 위해 사용되고, 네 개의 안테나 포트들이 사용되는 것으로 가정한다. 그러나, 가능한 위치는 LTE단말에 대한 안테나 포트의 개수에 관계 없이 동일하다. 본 경우에, 상기 도 14에 도시된 바와 같이 LTE-A C_port #0~7의 전송을 위한 총 104개의 RE 위치들을 정의할 수 있다. 상기 도 14에서, 다양한 개수의 RE들은 아래의 표 1에서와 같이 LTE-A C_port #0~7의 전송을 위해 따로 마련해 둘 수 있다. In FIG. 14, it is assumed that the first three OFDM symbols are used for physical downlink control channel (PDCCH) transmission and four antenna ports are used. However, the possible positions are the same regardless of the number of antenna ports for the LTE terminal. In this case, as shown in FIG. 14, a total of 104 RE locations for transmission of LTE-A C_port # 0-7 may be defined. In FIG. 14, various numbers of REs may be separately provided for transmission of LTE-A C_port # 0 to 7 as shown in Table 1 below.
표 1
Reserved RE sets for LTE-A C_port in figure 14
2 REs Any of two possible RE position
4 REs Any of four possible RE position
6 REs Any of six possible RE position
8 REs Any of eight possible RE position
Table 1
Reserved RE sets for LTE-A C_port in figure 14
2 REs Any of two possible RE position
4 REs Any of four possible RE position
6 REs Any of six possible RE position
8 REs Any of eight possible RE position
LTE-A C_port #0~7의 전송을 위해, 상기 표 1에서와 같이 짝수개의 RE를 사용하는 이유는 SFBC(Space Frequency Block Coding)으로 인한, LTE 단말의 성능을 열화시키지 않기 위함이다. In order to transmit LTE-A C_port # 0-7, an even number of REs are used as shown in Table 1 in order not to deteriorate the performance of the LTE terminal due to Space Frequency Block Coding (SFBC).
상기 도 14에서, LTE 시스템의 RS(R0 내지 R3)를 포함하는 OFDM 심볼 내에서 LTE-A C_port #0~7를 전송할 수 있는 RE의 위치는 다른 셀들로부터 간섭으로 인해 영향을 받을 수 있다. 따라서, LTE 시스템의 RS(R0 내지 R3)를 포함하는 OFDM 심볼 내에서 LTE-A C_port #0~7를 전송할 수 있는 RE의 위치는 상기 표1에서 나타난 LTE-A C_port #0~7를 전송할 수 있는 RE의 후보에서 제외할 수 있다. 도 15는 도 14에 있어서, 다른 셀로부터 간섭의 영향을 받을 수 있는 RE를 제외한 LTE-A C_port #0~7를 전송할 수 있는 RE의 위치를 도시한 도면이다. In FIG. 14, the location of an RE capable of transmitting LTE-A C_port # 0-7 in an OFDM symbol including RSs (R0 to R3) of the LTE system may be affected by interference from other cells. Accordingly, the location of the RE capable of transmitting LTE-A C_port # 0-7 in the OFDM symbol including RS (R0 to R3) of the LTE system may transmit LTE-A C_port # 0-7 shown in Table 1 above. May be excluded from a candidate RE. FIG. 15 is a diagram illustrating a location of an RE capable of transmitting LTE-A C_ports # 0 to 7 except for an RE that may be affected by interference from another cell.
상기 도 15에 있어서, 첫 세 개의 OFDM 심볼들은 PDCCH(Physical Downlink Control Channel) 전송을 위해 사용되고, 네 개의 안테나 포트들이 사용되는 것으로 가정한다. 본 경우에, LTE-A C_port #0~7의 전송을 위한 72개의 RE 위치들을 상기 도 15에 도시된 바와 같이 정의할 수 있다. 상기 도 15에서, LTE-A C_port #0~7를 전송하기 위한 다양한 개수의 RE들은 아래의 표 2에서와 같이 따로 마련해 둘 수 있다.In FIG. 15, it is assumed that the first three OFDM symbols are used for physical downlink control channel (PDCCH) transmission and four antenna ports are used. In this case, 72 RE locations for transmission of LTE-A C_port # 0-7 may be defined as shown in FIG. 15. In FIG. 15, various numbers of REs for transmitting LTE-A C_port # 0 to 7 may be separately provided as shown in Table 2 below.
표 2
Reserved RE sets for LTE-A C_port in figure 15
2 REs {10+n, 16+n}, {40+n, 46+n}, {61+n, 67+n} where
Figure PCTKR2010001474-appb-I000023
{1+n, 6+n}, {10+n, 15+n}, where
Figure PCTKR2010001474-appb-I000024
{10+n, 14+n}, {40+n, 44+n}, where
Figure PCTKR2010001474-appb-I000025
{10+n, 16+n}, {31+n, 36+n}, where
Figure PCTKR2010001474-appb-I000026
{10+n, 14+n}, where
Figure PCTKR2010001474-appb-I000027
{19+n, 24+n}, where
Figure PCTKR2010001474-appb-I000028
4 REs {1+n, 5+n, 22+k, 25+k}, where
Figure PCTKR2010001474-appb-I000029
and
Figure PCTKR2010001474-appb-I000030
{1+n, 6+n, 22+k, 26+k}, where
Figure PCTKR2010001474-appb-I000031
and
Figure PCTKR2010001474-appb-I000032
{1+n, 5+n, 10+k, 15+k}, where
Figure PCTKR2010001474-appb-I000033
and
Figure PCTKR2010001474-appb-I000034
{1+n, 5+n, 31+k, 35+k}, where
Figure PCTKR2010001474-appb-I000035
and
Figure PCTKR2010001474-appb-I000036
{1+n, 5+n, 40+k, 46+k}, where
Figure PCTKR2010001474-appb-I000037
and
Figure PCTKR2010001474-appb-I000038
{10+n, 15+n, 10+k, 15+k}, where
Figure PCTKR2010001474-appb-I000039
and
Figure PCTKR2010001474-appb-I000040
{10+n, 13+n, 16+n, 19+n}, where
Figure PCTKR2010001474-appb-I000041
6 REs {1+n, 4+n, 7+n, 10+k, 13+k, 16+k}, where where
Figure PCTKR2010001474-appb-I000042
and
Figure PCTKR2010001474-appb-I000043
{1+n, 4+n, 7+n, 19+k, 22+k, 25+k}, where where
Figure PCTKR2010001474-appb-I000044
and
Figure PCTKR2010001474-appb-I000045
{10+n, 13+n, 16+n, 19+k, 22+k, 25+k}, where where
Figure PCTKR2010001474-appb-I000046
and
Figure PCTKR2010001474-appb-I000047
{1+n, 4+n, 10+k, 13+k, 19+m, 23+m}, where where
Figure PCTKR2010001474-appb-I000048
,
Figure PCTKR2010001474-appb-I000049
and
Figure PCTKR2010001474-appb-I000050
{1+n, 6+n, 11+k, 15+k, 20+m, 26+m}, where where
Figure PCTKR2010001474-appb-I000051
,
Figure PCTKR2010001474-appb-I000052
and
Figure PCTKR2010001474-appb-I000053
8 REs {1+n, 5+n, 10+k, 16+k, 24+m, 29+m, 32+j, 36+j}, where
Figure PCTKR2010001474-appb-I000054
,
Figure PCTKR2010001474-appb-I000055
,
Figure PCTKR2010001474-appb-I000056
and
Figure PCTKR2010001474-appb-I000057
{1+n, 5+n, 10+k, 16+k, 24+m, 29+m, 40+j, 46+j}, where
Figure PCTKR2010001474-appb-I000058
,
Figure PCTKR2010001474-appb-I000059
,
Figure PCTKR2010001474-appb-I000060
and
Figure PCTKR2010001474-appb-I000061
{1+n, 5+n, 10+k, 16+k, 24+m, 29+m, 54+j, 59+j}, where
Figure PCTKR2010001474-appb-I000062
,
Figure PCTKR2010001474-appb-I000063
,
Figure PCTKR2010001474-appb-I000064
and
Figure PCTKR2010001474-appb-I000065
{1+n, 5+n, 10+k, 16+k, 24+m, 29+m, 64+j, 70+j}, where
Figure PCTKR2010001474-appb-I000066
,
Figure PCTKR2010001474-appb-I000067
,
Figure PCTKR2010001474-appb-I000068
and
Figure PCTKR2010001474-appb-I000069
TABLE 2
Reserved RE sets for LTE-A C_port in figure 15
2 REs {10 + n, 16 + n}, {40 + n, 46 + n}, {61 + n, 67 + n} where
Figure PCTKR2010001474-appb-I000023
{1 + n, 6 + n}, {10 + n, 15 + n}, where
Figure PCTKR2010001474-appb-I000024
{10 + n, 14 + n}, {40 + n, 44 + n}, where
Figure PCTKR2010001474-appb-I000025
{10 + n, 16 + n}, {31 + n, 36 + n}, where
Figure PCTKR2010001474-appb-I000026
{10 + n, 14 + n}, where
Figure PCTKR2010001474-appb-I000027
{19 + n, 24 + n}, where
Figure PCTKR2010001474-appb-I000028
4 REs {1 + n, 5 + n, 22 + k, 25 + k}, where
Figure PCTKR2010001474-appb-I000029
and
Figure PCTKR2010001474-appb-I000030
{1 + n, 6 + n, 22 + k, 26 + k}, where
Figure PCTKR2010001474-appb-I000031
and
Figure PCTKR2010001474-appb-I000032
{1 + n, 5 + n, 10 + k, 15 + k}, where
Figure PCTKR2010001474-appb-I000033
and
Figure PCTKR2010001474-appb-I000034
{1 + n, 5 + n, 31 + k, 35 + k}, where
Figure PCTKR2010001474-appb-I000035
and
Figure PCTKR2010001474-appb-I000036
{1 + n, 5 + n, 40 + k, 46 + k}, where
Figure PCTKR2010001474-appb-I000037
and
Figure PCTKR2010001474-appb-I000038
{10 + n, 15 + n, 10 + k, 15 + k}, where
Figure PCTKR2010001474-appb-I000039
and
Figure PCTKR2010001474-appb-I000040
{10 + n, 13 + n, 16 + n, 19 + n}, where
Figure PCTKR2010001474-appb-I000041
6 REs {1 + n, 4 + n, 7 + n, 10 + k, 13 + k, 16 + k}, where where
Figure PCTKR2010001474-appb-I000042
and
Figure PCTKR2010001474-appb-I000043
{1 + n, 4 + n, 7 + n, 19 + k, 22 + k, 25 + k}, where where
Figure PCTKR2010001474-appb-I000044
and
Figure PCTKR2010001474-appb-I000045
{10 + n, 13 + n, 16 + n, 19 + k, 22 + k, 25 + k}, where where
Figure PCTKR2010001474-appb-I000046
and
Figure PCTKR2010001474-appb-I000047
{1 + n, 4 + n, 10 + k, 13 + k, 19 + m, 23 + m}, where where
Figure PCTKR2010001474-appb-I000048
,
Figure PCTKR2010001474-appb-I000049
and
Figure PCTKR2010001474-appb-I000050
{1 + n, 6 + n, 11 + k, 15 + k, 20 + m, 26 + m}, where where
Figure PCTKR2010001474-appb-I000051
,
Figure PCTKR2010001474-appb-I000052
and
Figure PCTKR2010001474-appb-I000053
8 REs {1 + n, 5 + n, 10 + k, 16 + k, 24 + m, 29 + m, 32 + j, 36 + j}, where
Figure PCTKR2010001474-appb-I000054
,
Figure PCTKR2010001474-appb-I000055
,
Figure PCTKR2010001474-appb-I000056
and
Figure PCTKR2010001474-appb-I000057
{1 + n, 5 + n, 10 + k, 16 + k, 24 + m, 29 + m, 40 + j, 46 + j}, where
Figure PCTKR2010001474-appb-I000058
,
Figure PCTKR2010001474-appb-I000059
,
Figure PCTKR2010001474-appb-I000060
and
Figure PCTKR2010001474-appb-I000061
{1 + n, 5 + n, 10 + k, 16 + k, 24 + m, 29 + m, 54 + j, 59 + j}, where
Figure PCTKR2010001474-appb-I000062
,
Figure PCTKR2010001474-appb-I000063
,
Figure PCTKR2010001474-appb-I000064
and
Figure PCTKR2010001474-appb-I000065
{1 + n, 5 + n, 10 + k, 16 + k, 24 + m, 29 + m, 64 + j, 70 + j}, where
Figure PCTKR2010001474-appb-I000066
,
Figure PCTKR2010001474-appb-I000067
,
Figure PCTKR2010001474-appb-I000068
and
Figure PCTKR2010001474-appb-I000069
만약, LTE-A CRS가 동기 채널(Synchronization Channel; SCH)을 포함하는 서브프레임을 통해 전송된다면, LTE-A CRS와 SCH의 충돌을 피하기 위하여 다른 제한 사항을 추가할 수 있다. 즉, LTE-A CRS는 SCH를 포함하는 OFDM 심볼에는 할당하지 않을 수 있다. 상기 제한 사항을 두 가지 방법으로 수행할 수 있다. 예를 들어, SCH가 서브프레임에서 전송되는 경우, SCH 영역에 위치하는 LTE-A CRS를 천공(puncturing)하거나, LTE-A CRS 패턴이 항상 SCH 영역을 피하도록 설계할 수 있다. 도 16은 상기 도 15에 있어서, SCH 영역을 제외한 LTE-A C_port #0~7를 전송할 수 있는 RE의 위치를 도시한 도면이다. LTE-A CRS 패턴이 항상 SCH 영역을 피하도록 설계하는 경우의 LTE-A C_port #0~7의 전송을 위한 RE의 위치는 상기 도 16과 같이 정의될 수 있다.If the LTE-A CRS is transmitted through a subframe including a synchronization channel (SCH), another restriction may be added to avoid collision of the LTE-A CRS and the SCH. That is, the LTE-A CRS may not be allocated to the OFDM symbol including the SCH. This restriction can be accomplished in two ways. For example, when the SCH is transmitted in a subframe, the LTE-A CRS located in the SCH region may be punched or the LTE-A CRS pattern may be designed to avoid the SCH region at all times. FIG. 16 is a diagram illustrating a location of an RE capable of transmitting LTE-A C_port # 0 to 7 except for the SCH region in FIG. 15. When the LTE-A CRS pattern is designed to always avoid the SCH region, the location of the RE for transmitting the LTE-A C_port # 0 to 7 may be defined as shown in FIG. 16.
상기 도 16에 있어서, 첫 세개의 OFDM 심볼들은 PDCCH(Physical Downlink Control Channel) 전송을 위해 사용되고, 네 개의 안테나 포트들이 사용되는 것으로 가정한다. 본 경우에, LTE-A C_port #0~7의 전송을 위한 51개의 RE 위치들을 상기 도 16에 도시된 바와 같이 정의할 수 있다. 상기 도 16에서, LTE-A C_port #0~7를 전송하기 위한 다양한 개수의 RE들은 아래의 표 3에서와 같이 따로 마련해 둘 수 있다.In FIG. 16, it is assumed that the first three OFDM symbols are used for physical downlink control channel (PDCCH) transmission and four antenna ports are used. In this case, 51 RE positions for transmission of LTE-A C_port # 0-7 may be defined as shown in FIG. 16. In FIG. 16, various numbers of REs for transmitting LTE-A C_port # 0 to 7 may be separately provided as shown in Table 3 below.
표 3
Reserved RE sets for C_port in figure 10
2 REs {1+n, 5+n}, {10+n, 14+n}, where
Figure PCTKR2010001474-appb-I000070
{1+n, 6+n}, {10+n, 15+n}, where
Figure PCTKR2010001474-appb-I000071
{10+n, 14+n}, {31+n, 35+n}, where
Figure PCTKR2010001474-appb-I000072
{10+n, 15+n}, {31+n, 36+n}, where
Figure PCTKR2010001474-appb-I000073
{19+n, 25+n}, where
Figure PCTKR2010001474-appb-I000074
{19+n, 24+n}, where
Figure PCTKR2010001474-appb-I000075
4 REs {1+n, 5+n, 10+k, 14+k}, where
Figure PCTKR2010001474-appb-I000076
and
Figure PCTKR2010001474-appb-I000077
{1+n, 6+n, 10+k, 15+k}, where
Figure PCTKR2010001474-appb-I000078
and
Figure PCTKR2010001474-appb-I000079
{1+n, 5+n, 10+k, 15+k}, where
Figure PCTKR2010001474-appb-I000080
and
Figure PCTKR2010001474-appb-I000081
{1+n, 5+n, 19+k, 25+k}, where
Figure PCTKR2010001474-appb-I000082
and
Figure PCTKR2010001474-appb-I000083
{1+n, 5+n, 19+k, 24+k}, where
Figure PCTKR2010001474-appb-I000084
and
Figure PCTKR2010001474-appb-I000085
{1+n, 6+n, 10+k, 15+k}, where
Figure PCTKR2010001474-appb-I000086
and
Figure PCTKR2010001474-appb-I000087
{1+n, 6+n, 19+k, 25+k}, where
Figure PCTKR2010001474-appb-I000088
and
Figure PCTKR2010001474-appb-I000089
{1+n, 6+n, 19+k, 24+k}, where
Figure PCTKR2010001474-appb-I000090
and
Figure PCTKR2010001474-appb-I000091
{10+n, 14+n, 19+k, 25+k}, where
Figure PCTKR2010001474-appb-I000092
and
Figure PCTKR2010001474-appb-I000093
{10+n, 14+n, 19+k, 24+k}, where
Figure PCTKR2010001474-appb-I000094
and
Figure PCTKR2010001474-appb-I000095
{10+n, 15+n, 10+k, 15+k}, where
Figure PCTKR2010001474-appb-I000096
and
Figure PCTKR2010001474-appb-I000097
{10+n, 15+n, 19+k, 25+k}, where
Figure PCTKR2010001474-appb-I000098
and
Figure PCTKR2010001474-appb-I000099
{10+n, 15+n, 19+k, 24+k}, where
Figure PCTKR2010001474-appb-I000100
and
Figure PCTKR2010001474-appb-I000101
{10+n, 14+n, 19+k, 25+k}, where
Figure PCTKR2010001474-appb-I000102
and
Figure PCTKR2010001474-appb-I000103
{19+n, 22+n, 25+n, 28+n}, where
Figure PCTKR2010001474-appb-I000104
{40+n, 43+n, 46+n, 49+n}, where
Figure PCTKR2010001474-appb-I000105
6 REs {1+n, 4+n, 7+n, 10+k, 13+k, 16+k}, where where
Figure PCTKR2010001474-appb-I000106
and
Figure PCTKR2010001474-appb-I000107
{1+n, 4+n, 7+n, 19+k, 22+k, 25+k}, where where
Figure PCTKR2010001474-appb-I000108
and
Figure PCTKR2010001474-appb-I000109
{10+n, 13+n, 16+n, 19+k, 22+k, 25+k}, where where
Figure PCTKR2010001474-appb-I000110
and
Figure PCTKR2010001474-appb-I000111
{1+n, 4+n, 10+k, 13+k, 19+m, 23+m}, where where
Figure PCTKR2010001474-appb-I000112
,
Figure PCTKR2010001474-appb-I000113
and
Figure PCTKR2010001474-appb-I000114
{1+n, 6+n, 11+k, 15+k, 20+m, 26+m}, where where
Figure PCTKR2010001474-appb-I000115
,
Figure PCTKR2010001474-appb-I000116
and
Figure PCTKR2010001474-appb-I000117
8 REs {1+n, 5+n, 10+k, 16+k, 19+m, 25+m, 40+j, 46+j}, where
Figure PCTKR2010001474-appb-I000118
,
Figure PCTKR2010001474-appb-I000119
,
Figure PCTKR2010001474-appb-I000120
and
Figure PCTKR2010001474-appb-I000121
{1+n, 5+n, 12+k, 16+k, 19+m, 25+m, 33+j, 38+j}, where
Figure PCTKR2010001474-appb-I000122
,
Figure PCTKR2010001474-appb-I000123
,
Figure PCTKR2010001474-appb-I000124
and
Figure PCTKR2010001474-appb-I000125
{10+n, 15+n, 19+k, 25+k, 32+m, 36+m, 40+j, 46+j}, where
Figure PCTKR2010001474-appb-I000126
,
Figure PCTKR2010001474-appb-I000127
,
Figure PCTKR2010001474-appb-I000128
and
Figure PCTKR2010001474-appb-I000129
{19+n, 22+n, 25+n, 28+n, 40+k, 43+k, 46+k, 49+k}, where
Figure PCTKR2010001474-appb-I000130
and
Figure PCTKR2010001474-appb-I000131
TABLE 3
Reserved RE sets for C_port in figure 10
2 REs {1+ n , 5+ n }, {10+ n , 14+ n }, where
Figure PCTKR2010001474-appb-I000070
{1+ n , 6+ n }, {10+ n , 15+ n }, where
Figure PCTKR2010001474-appb-I000071
{10+ n , 14+ n }, {31+ n , 35+ n }, where
Figure PCTKR2010001474-appb-I000072
{10+ n , 15+ n }, {31+ n , 36+ n }, where
Figure PCTKR2010001474-appb-I000073
{19+ n , 25+ n }, where
Figure PCTKR2010001474-appb-I000074
{19+ n , 24+ n }, where
Figure PCTKR2010001474-appb-I000075
4 REs {1+ n , 5+ n , 10+ k , 14+ k }, where
Figure PCTKR2010001474-appb-I000076
and
Figure PCTKR2010001474-appb-I000077
{1+ n , 6+ n , 10+ k , 15+ k }, where
Figure PCTKR2010001474-appb-I000078
and
Figure PCTKR2010001474-appb-I000079
{1+ n , 5+ n , 10+ k , 15+ k }, where
Figure PCTKR2010001474-appb-I000080
and
Figure PCTKR2010001474-appb-I000081
{1+ n , 5+ n , 19+ k , 25+ k }, where
Figure PCTKR2010001474-appb-I000082
and
Figure PCTKR2010001474-appb-I000083
{1+ n , 5+ n , 19+ k , 24+ k }, where
Figure PCTKR2010001474-appb-I000084
and
Figure PCTKR2010001474-appb-I000085
{1+ n , 6+ n , 10+ k , 15+ k }, where
Figure PCTKR2010001474-appb-I000086
and
Figure PCTKR2010001474-appb-I000087
{1+ n , 6+ n , 19+ k , 25+ k }, where
Figure PCTKR2010001474-appb-I000088
and
Figure PCTKR2010001474-appb-I000089
{1+ n , 6+ n , 19+ k , 24+ k }, where
Figure PCTKR2010001474-appb-I000090
and
Figure PCTKR2010001474-appb-I000091
{10+ n , 14+ n , 19+ k , 25+ k }, where
Figure PCTKR2010001474-appb-I000092
and
Figure PCTKR2010001474-appb-I000093
{10+ n , 14+ n , 19+ k , 24+ k }, where
Figure PCTKR2010001474-appb-I000094
and
Figure PCTKR2010001474-appb-I000095
{10+ n , 15+ n , 10+ k , 15+ k }, where
Figure PCTKR2010001474-appb-I000096
and
Figure PCTKR2010001474-appb-I000097
{10+ n , 15+ n , 19+ k , 25+ k }, where
Figure PCTKR2010001474-appb-I000098
and
Figure PCTKR2010001474-appb-I000099
{10+ n , 15+ n , 19+ k , 24+ k }, where
Figure PCTKR2010001474-appb-I000100
and
Figure PCTKR2010001474-appb-I000101
{10+ n , 14+ n , 19+ k , 25+ k }, where
Figure PCTKR2010001474-appb-I000102
and
Figure PCTKR2010001474-appb-I000103
{19+ n, 22+ n, 25+ n, 28+ n}, where
Figure PCTKR2010001474-appb-I000104
{40+ n , 43+ n , 46+ n , 49+ n }, where
Figure PCTKR2010001474-appb-I000105
6 REs {1+ n , 4+ n , 7+ n , 10+ k , 13+ k , 16+ k }, where where
Figure PCTKR2010001474-appb-I000106
and
Figure PCTKR2010001474-appb-I000107
{1+ n , 4+ n , 7+ n , 19+ k , 22+ k , 25+ k }, where where
Figure PCTKR2010001474-appb-I000108
and
Figure PCTKR2010001474-appb-I000109
{10+ n , 13+ n , 16+ n , 19+ k , 22+ k , 25+ k }, where where
Figure PCTKR2010001474-appb-I000110
and
Figure PCTKR2010001474-appb-I000111
{1+ n , 4+ n , 10+ k , 13+ k , 19+ m , 23+ m }, where where
Figure PCTKR2010001474-appb-I000112
,
Figure PCTKR2010001474-appb-I000113
and
Figure PCTKR2010001474-appb-I000114
{1+ n , 6+ n , 11+ k , 15+ k , 20+ m , 26+ m }, where where
Figure PCTKR2010001474-appb-I000115
,
Figure PCTKR2010001474-appb-I000116
and
Figure PCTKR2010001474-appb-I000117
8 REs {1+ n , 5+ n , 10+ k , 16+ k , 19+ m , 25+ m, 40 + j, 46 + j }, where
Figure PCTKR2010001474-appb-I000118
,
Figure PCTKR2010001474-appb-I000119
,
Figure PCTKR2010001474-appb-I000120
and
Figure PCTKR2010001474-appb-I000121
{1+ n , 5+ n , 12+ k , 16+ k , 19+ m , 25+ m, 33 + j, 38 + j }, where
Figure PCTKR2010001474-appb-I000122
,
Figure PCTKR2010001474-appb-I000123
,
Figure PCTKR2010001474-appb-I000124
and
Figure PCTKR2010001474-appb-I000125
{10+ n , 15+ n , 19+ k , 25+ k, 32 + m, 36 + m, 40 + j, 46 + j }, where
Figure PCTKR2010001474-appb-I000126
,
Figure PCTKR2010001474-appb-I000127
,
Figure PCTKR2010001474-appb-I000128
and
Figure PCTKR2010001474-appb-I000129
{19+ n, 22+ n, 25+ n, 28+ n, 40+ k, 43+ k, 46 + k, 49 + k}, where
Figure PCTKR2010001474-appb-I000130
and
Figure PCTKR2010001474-appb-I000131
만약, LTE-A CRS가 방송채널(Broadcasting Channel; BCH)을 포함하는 서브프레임을 통해 전송된다면, LTE-A CRS와 BCH의 충돌을 피하기 위하여 다른 제한 사항을 추가할 수 있다. 즉, LTE-A CRS는 BCH를 포함하는 OFDM 심볼에는 할당하지 않을 수 있다. 도 17은 상기 도 16에 있어서, BCH 영역을 제외한 LTE-A C_port #0~7를 전송할 수 있는 RE의 위치를 도시한 도면이다.If the LTE-A CRS is transmitted through a subframe including a broadcasting channel (BCH), another restriction may be added to avoid collision of the LTE-A CRS and the BCH. That is, the LTE-A CRS may not be allocated to the OFDM symbol including the BCH. FIG. 17 is a diagram illustrating a location of an RE capable of transmitting LTE-A C_port # 0 to 7 except for the BCH region in FIG. 16.
상기 도 17에 있어서, 첫 세개의 OFDM 심볼들은 PDCCH(Physical Downlink Control Channel) 전송을 위해 사용되고, 네 개의 안테나 포트들이 사용되는 것으로 가정한다. 본 경우에, LTE-A C_port #0~7의 전송을 위한 30개의 RE 위치들을 상기 도 17에 도시된 바와 같이 정의할 수 있다. 상기 도 17에서, LTE-A C_port #0~7를 전송하기 위한 다양한 개수의 RE들은 아래의 표 4에서와 같이 따로 마련해 둘 수 있다.In FIG. 17, it is assumed that the first three OFDM symbols are used for physical downlink control channel (PDCCH) transmission and four antenna ports are used. In this case, 30 RE locations for transmission of LTE-A C_port # 0-7 may be defined as shown in FIG. 17. In FIG. 17, various numbers of REs for transmitting LTE-A C_port # 0 to 7 may be separately provided as shown in Table 4 below.
표 4
Reserved RE sets for C_port in figure 11
2 REs {1+n, 5+n}, {10+n, 14+n}, where
Figure PCTKR2010001474-appb-I000132
{1+n, 6+n}, {10+n, 15+n}, where
Figure PCTKR2010001474-appb-I000133
{19+n, 25+n}, where
Figure PCTKR2010001474-appb-I000134
{19+n, 24+n}, where
Figure PCTKR2010001474-appb-I000135
4 REs {1+n, 5+n, 10+k, 14+k}, where
Figure PCTKR2010001474-appb-I000136
and
Figure PCTKR2010001474-appb-I000137
{1+n, 6+n, 10+k, 15+k}, where
Figure PCTKR2010001474-appb-I000138
and
Figure PCTKR2010001474-appb-I000139
{1+n, 5+n, 10+k, 15+k}, where
Figure PCTKR2010001474-appb-I000140
and
Figure PCTKR2010001474-appb-I000141
{1+n, 5+n, 19+k, 25+k}, where
Figure PCTKR2010001474-appb-I000142
and
Figure PCTKR2010001474-appb-I000143
{1+n, 5+n, 19+k, 24+k}, where
Figure PCTKR2010001474-appb-I000144
and
Figure PCTKR2010001474-appb-I000145
{1+n, 6+n, 10+k, 15+k}, where
Figure PCTKR2010001474-appb-I000146
and
Figure PCTKR2010001474-appb-I000147
{1+n, 6+n, 19+k, 25+k}, where
Figure PCTKR2010001474-appb-I000148
and
Figure PCTKR2010001474-appb-I000149
{1+n, 6+n, 19+k, 24+k}, where
Figure PCTKR2010001474-appb-I000150
and
Figure PCTKR2010001474-appb-I000151
{10+n, 14+n, 19+k, 25+k}, where
Figure PCTKR2010001474-appb-I000152
and
Figure PCTKR2010001474-appb-I000153
{10+n, 14+n, 19+k, 24+k}, where
Figure PCTKR2010001474-appb-I000154
and
Figure PCTKR2010001474-appb-I000155
{10+n, 15+n, 19+k, 25+k}, where
Figure PCTKR2010001474-appb-I000156
and
Figure PCTKR2010001474-appb-I000157
{10+n, 15+n, 19+k, 24+k}, where
Figure PCTKR2010001474-appb-I000158
and
Figure PCTKR2010001474-appb-I000159
{19+n, 22+n, 25+n, 28+n}, where
Figure PCTKR2010001474-appb-I000160
6 REs {1+n, 4+n, 7+n, 10+k, 13+k, 16+k}, where where
Figure PCTKR2010001474-appb-I000161
and
Figure PCTKR2010001474-appb-I000162
{1+n, 4+n, 7+n, 19+k, 22+k, 25+k}, where where
Figure PCTKR2010001474-appb-I000163
and
Figure PCTKR2010001474-appb-I000164
{10+n, 13+n, 16+n, 19+k, 22+k, 25+k}, where where
Figure PCTKR2010001474-appb-I000165
and
Figure PCTKR2010001474-appb-I000166
{1+n, 4+n, 10+k, 13+k, 19+m, 23+m}, where where
Figure PCTKR2010001474-appb-I000167
,
Figure PCTKR2010001474-appb-I000168
and
Figure PCTKR2010001474-appb-I000169
{1+n, 6+n, 11+k, 15+k, 20+m, 26+m}, where where
Figure PCTKR2010001474-appb-I000170
,
Figure PCTKR2010001474-appb-I000171
and
Figure PCTKR2010001474-appb-I000172
8 REs {1+n, 5+n, 10+k, 14+k, 19+m, 22+m, 25+m, 28+m}, where
Figure PCTKR2010001474-appb-I000173
,
Figure PCTKR2010001474-appb-I000174
and
Figure PCTKR2010001474-appb-I000175
{1+n, 4+n, 10+k, 13+k, 19+m, 22+m, 25+m, 28+m}, where
Figure PCTKR2010001474-appb-I000176
,
Figure PCTKR2010001474-appb-I000177
and
Figure PCTKR2010001474-appb-I000178
Table 4
Reserved RE sets for C_port in figure 11
2 REs {1+ n , 5+ n }, {10+ n , 14+ n }, where
Figure PCTKR2010001474-appb-I000132
{1+ n , 6+ n }, {10+ n , 15+ n }, where
Figure PCTKR2010001474-appb-I000133
{19+ n , 25+ n }, where
Figure PCTKR2010001474-appb-I000134
{19+ n , 24+ n }, where
Figure PCTKR2010001474-appb-I000135
4 REs {1+ n , 5+ n , 10+ k , 14+ k }, where
Figure PCTKR2010001474-appb-I000136
and
Figure PCTKR2010001474-appb-I000137
{1+ n , 6+ n , 10+ k , 15+ k }, where
Figure PCTKR2010001474-appb-I000138
and
Figure PCTKR2010001474-appb-I000139
{1+ n , 5+ n , 10+ k , 15+ k }, where
Figure PCTKR2010001474-appb-I000140
and
Figure PCTKR2010001474-appb-I000141
{1+ n , 5+ n , 19+ k , 25+ k }, where
Figure PCTKR2010001474-appb-I000142
and
Figure PCTKR2010001474-appb-I000143
{1+ n , 5+ n , 19+ k , 24+ k }, where
Figure PCTKR2010001474-appb-I000144
and
Figure PCTKR2010001474-appb-I000145
{1+ n , 6+ n , 10+ k , 15+ k }, where
Figure PCTKR2010001474-appb-I000146
and
Figure PCTKR2010001474-appb-I000147
{1+ n , 6+ n , 19+ k , 25+ k }, where
Figure PCTKR2010001474-appb-I000148
and
Figure PCTKR2010001474-appb-I000149
{1+ n , 6+ n , 19+ k , 24+ k }, where
Figure PCTKR2010001474-appb-I000150
and
Figure PCTKR2010001474-appb-I000151
{10+ n , 14+ n , 19+ k , 25+ k }, where
Figure PCTKR2010001474-appb-I000152
and
Figure PCTKR2010001474-appb-I000153
{10+ n , 14+ n , 19+ k , 24+ k }, where
Figure PCTKR2010001474-appb-I000154
and
Figure PCTKR2010001474-appb-I000155
{10+ n , 15+ n , 19+ k , 25+ k }, where
Figure PCTKR2010001474-appb-I000156
and
Figure PCTKR2010001474-appb-I000157
{10+ n , 15+ n , 19+ k , 24+ k }, where
Figure PCTKR2010001474-appb-I000158
and
Figure PCTKR2010001474-appb-I000159
{19+ n, 22+ n, 25+ n, 28+ n}, where
Figure PCTKR2010001474-appb-I000160
6 REs {1+ n , 4+ n , 7+ n , 10+ k , 13+ k , 16+ k }, where where
Figure PCTKR2010001474-appb-I000161
and
Figure PCTKR2010001474-appb-I000162
{1+ n , 4+ n , 7+ n , 19+ k , 22+ k , 25+ k }, where where
Figure PCTKR2010001474-appb-I000163
and
Figure PCTKR2010001474-appb-I000164
{10+ n , 13+ n , 16+ n , 19+ k , 22+ k , 25+ k }, where where
Figure PCTKR2010001474-appb-I000165
and
Figure PCTKR2010001474-appb-I000166
{1+ n , 4+ n , 10+ k , 13+ k , 19+ m , 23+ m }, where where
Figure PCTKR2010001474-appb-I000167
,
Figure PCTKR2010001474-appb-I000168
and
Figure PCTKR2010001474-appb-I000169
{1+ n , 6+ n , 11+ k , 15+ k , 20+ m , 26+ m }, where where
Figure PCTKR2010001474-appb-I000170
,
Figure PCTKR2010001474-appb-I000171
and
Figure PCTKR2010001474-appb-I000172
8 REs {1+ n , 5+ n , 10+ k , 14+ k , 19+ m , 22+ m, 25 + m, 28 + m }, where
Figure PCTKR2010001474-appb-I000173
,
Figure PCTKR2010001474-appb-I000174
and
Figure PCTKR2010001474-appb-I000175
{1+ n , 4+ n , 10+ k , 13+ k , 19+ m , 22+ m, 25 + m, 28 + m }, where
Figure PCTKR2010001474-appb-I000176
,
Figure PCTKR2010001474-appb-I000177
and
Figure PCTKR2010001474-appb-I000178
이하에서는, 기지국에 의해 결정 가능한 CRS 패턴에 대하여 설명하기로 한다. LTE-A CRS 오버헤드와 패턴은 셀, 시간 및 컴포넌트 캐리어(Component Carrier)에 기지국에 의해 결정될 수 있다. 컴포넌트 캐리어(Component Carrier, CC)는 멀티 캐리어를 구성하는 원소 캐리어를 의미한다. 즉, 복수의 컴포넌트 캐리어들이 캐리어 집합(carrier aggregation)을 통해 멀티 캐리어를 구성한다. 그리고, 컴포넌트 캐리어는 복수의 하위 밴드(lower band)들을 포함한다. 이때, 멀티 캐리어라는 용어가 전체 밴드라는 용어로 대체되는 경우 컴포넌트 캐리어는 서브 밴드로, 하위 밴드는 부분밴드(partial band)로 대체될 수 있다. 또한, 캐리어 집합은 대역폭 집합(bandwidth aggregation)이라고도 불린다. 캐리어 집합은 전송율(data rate)을 높이기 위해 복수의 캐리어들을 모아 대역폭을 확장하는 것이다. 예를 들어, LTE 시스템은 하나의 캐리어가 20MHz인데, LTE-A 시스템은 20Mhz 캐리어 5개를 모아 대역폭을 100MHz까지 확장한다. 그리고, 캐리어 집합은 서로 다른 주파수 대역에 있는 캐리어들을 집합하는 것을 포함한다.Hereinafter, the CRS pattern that can be determined by the base station will be described. LTE-A CRS overhead and pattern may be determined by the base station in the cell, time and component carrier (Component Carrier). The component carrier CC refers to an element carrier constituting a multicarrier. That is, the plurality of component carriers configure a multicarrier through carrier aggregation. The component carrier includes a plurality of lower bands. In this case, when the term multicarrier is replaced with the term full band, the component carrier may be replaced with a subband and the lower band may be replaced with a partial band. Carrier aggregation is also referred to as bandwidth aggregation. Carrier aggregation is to expand the bandwidth by collecting a plurality of carriers in order to increase the data rate (data rate). For example, in LTE system, one carrier is 20MHz, and LTE-A system gathers five 20Mhz carriers to expand the bandwidth to 100MHz. And, carrier aggregation includes aggregating carriers in different frequency bands.
본 경우에, 복수개의 CRS 패턴은 미리 정의될 수 있고, 기지국에 의해 선택될 수 있다. 또는, 기지국에 의해 완전히 정의될 수 있다. 도 18은 본 발명의 일 실시예에 따른 각 컴포넌트 캐리어가 독립적인 물리 또는 LTE 채널로 간주되는 경우에, 복수개의 컴포넌트 캐리어가 단말을 위해 사용되는 경우를 도시한 도면이다. 상기 도 18에서, 각 컴포넌트 캐리어(상기 도 18에서, PHY #으로 표시) 또는 컴포넌트 캐리어의 그룹은 RB 당 서로 다른 개수의 SFBC(Space Frequency Block Code) 블록을 가지고, 상기 각 컴포넌트 캐리어 또는 컴포넌트 캐리어 그룹은 기지국에 의해 구성된다.In this case, the plurality of CRS patterns may be predefined and selected by the base station. Or it may be fully defined by the base station. 18 is a diagram illustrating a case in which a plurality of component carriers are used for a terminal when each component carrier is regarded as an independent physical or LTE channel according to an embodiment of the present invention. In FIG. 18, each component carrier (indicated by PHY # in FIG. 18) or a group of component carriers has a different number of space frequency block code (SFBC) blocks per RB, and each of the component carriers or component carrier groups Is configured by the base station.
한편, LTE-A DRS의 설계와 관련하여, LTE-A DRS는 LTE-A CRS와 상호 직교(mutually orthogonal)해야 한다. 또한, LTE-A DRS는 LTE 단말의 성능을 열화시키지 않기 때문에 LTE-A D_port #0~7는 SFBC 블록에 기초하여 설계될 필요가 없다. On the other hand, with respect to the design of the LTE-A DRS, LTE-A DRS should be mutually orthogonal (orthogonal) with the LTE-A CRS. In addition, since LTE-A DRS does not degrade the performance of the LTE terminal, LTE-A D_port # 0-7 need not be designed based on the SFBC block.
도 19는 기지국과 사용자 기기에 적용 가능하고 상기에서 설명한 방법을 수행할 수 있는 디바이스의 구성을 나타내는 블록도이다. 도 25에 도시된 바와 같이, 디바이스(100)는 처리 유닛(101), 메모리 유닛(102), RF(Radio Frequency) 유닛(103), 디스플레이 유닛(104)과 사용자 인터페이스 유닛(105)을 포함한다. 물리 인터페이스 프로토콜의 계층은 상기 처리 유닛(101)에서 수행된다. 상기 처리 유닛(101)은 제어 플레인(plane)과 사용자 플레인(plane)을 제공한다. 각 계층의 기능은 처리 유닛(101)에서 수행될 수 있다. 메모리 유닛(102)은 처리 유닛(101)과 전기적으로 연결되어 있고, 오퍼레이팅 시스템(operating system), 응용 프로그램(application) 및 일반 파일을 저장하고 있다. 만약 상기 디바이스(100)가 사용자 기기라면, 디스플레이 유닛(104)은 다양한 정보를 표시할 수 있으며, 공지의 LCD(Liquid Crystal Display), OLED(Organic Light Emitting Diode)등을 이용하여 구현될 수 있다. 사용자 인터페이스 유닛(105)은 키패드, 터치 스크린 등과 같은 공지의 사용자 인터페이스와 결합하여 구성될 수 있다. RF 유닛(103)은 처리 유닛(101)과 전기적으로 연결되어 있고, 무선 신호를 전송하거나 수신한다. 19 is a block diagram illustrating a configuration of a device applicable to a base station and a user equipment and capable of performing the above-described method. As shown in FIG. 25, the device 100 includes a processing unit 101, a memory unit 102, a radio frequency (RF) unit 103, a display unit 104, and a user interface unit 105. . The layer of physical interface protocol is performed in the processing unit 101. The processing unit 101 provides a control plane and a user plane. The function of each layer may be performed in the processing unit 101. The memory unit 102 is electrically connected to the processing unit 101 and stores an operating system, an application, and a general file. If the device 100 is a user device, the display unit 104 may display a variety of information, and may be implemented by using a known liquid crystal display (LCD), an organic light emitting diode (OLED), or the like. The user interface unit 105 can be configured in combination with known user interfaces such as keypads, touch screens, and the like. The RF unit 103 is electrically connected to the processing unit 101 and transmits or receives a radio signal.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.The embodiments described above are the components and features of the present invention are combined in a predetermined form. Each component or feature is to be considered optional unless stated otherwise. Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention. The order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
본 발명에서 사용자 기기(User Equipment; UE)는 이동 단말(MS: Mobile Station), SS(Subscriber Station), MSS(Mobile Subscriber Station) 또는 단말(Mobile Terminal) 등의 용어로 대체될 수 있다.In the present invention, a user equipment (UE) may be replaced with terms such as a mobile station (MS), a subscriber station (SS), a mobile subscriber station (MSS), or a mobile terminal.
한편, 본 발명의 UE로는 PDA(Personal Digital Assistant), 셀룰러폰, PCS(Personal Communication Service)폰, GSM(Global System for Mobile)폰, WCDMA(Wideband CDMA)폰, MBS(Mobile Broadband System)폰 등이 이용될 수 있다.Meanwhile, the UE of the present invention includes a PDA (Personal Digital Assistant), a cellular phone, a Personal Communication Service (PCS) phone, a Global System for Mobile (GSM) phone, a Wideband CDMA (WCDMA) phone, a Mobile Broadband System (MBS) phone, and the like. Can be used.
본 발명의 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다.Embodiments of the invention may be implemented through various means. For example, embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
하드웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.In the case of a hardware implementation, the method according to embodiments of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs). Field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, and the like.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.In the case of an implementation by firmware or software, the method according to the embodiments of the present invention may be implemented in the form of a module, a procedure, or a function that performs the functions or operations described above. The software code may be stored in a memory unit and driven by a processor. The memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 안되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다. 또한, 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있다.The invention can be embodied in other specific forms without departing from the spirit and essential features of the invention. Accordingly, the above detailed description should not be construed as limiting in all aspects and should be considered as illustrative. The scope of the invention should be determined by reasonable interpretation of the appended claims, and all changes within the equivalent scope of the invention are included in the scope of the invention. It is also possible to form embodiments by combining claims that do not have an explicit citation in the claims or to include them as new claims by post-application correction.
본 발명은 무선 이동 통신 시스템의 단말, 기지국, 또는 기타 다른 장비에 사용될 수 있다.The present invention can be used in a terminal, base station, or other equipment of a wireless mobile communication system.

Claims (12)

  1. 총 M개의 송신 안테나 중 N개의 송신 안테나를 지원하는 제1 사용자 기기와 상기 M(M>N)개의 송신 안테나를 지원하는 제2 사용자 기기를 지원하는 하향링크 MIMO(Multi Input Multi Output) 시스템에 있어서, 채널 측정을 위한 공통 참조 신호(Common Reference Signal; RS)를 전송하는 방법으로서,In a downlink multi-input multi-output (MIMO) system supporting a first user equipment supporting N transmit antennas out of a total of M transmit antennas and a second user equipment supporting M (M> N) transmit antennas. As a method of transmitting a common reference signal (RS) for channel measurement,
    기지국에서, 상기 M개의 송신안테나에 대한 공통 참조 신호(Common Reference Signal; CRS)를 서브프레임상의 자원 요소(Resource Element; RE)에 사상(mapping)하는 단계; 및Mapping, at a base station, a common reference signal (CRS) for the M transmit antennas to a resource element (RE) on a subframe; And
    상기 서브프레임을 전송하는 단계를 포함하고,Transmitting the subframe;
    상기 서브프레임에서 상기 M개의 송신안테나에 대한 CRS가 사상되는 RE의 위치는 상기 제1 사용자를 위한 사용자 전용 참조 신호(Dedicated Reference Signal; DRS)가 사상되는 RE를 제외한 주파수 축 상으로 연속된 임의의 짝수 개의 RE인,The position of the RE where the CRSs are mapped to the M transmit antennas in the subframe may be any consecutive on the frequency axis except for the RE where a dedicated dedicated reference signal (DRS) for the first user is mapped. Even number of REs,
    참조 신호 전송 방법. How to send reference signal.
  2. 제1항에 있어서,The method of claim 1,
    상기 서브프레임에서, 상기 N개의 송신 안테나에 대한 참조 신호가 사상되는 OFDM심볼에 포함된 RE는 상기 M개의 송신 안테나에 대한 CRS가 사상되는 RE에서 제외되는,In the subframe, an RE included in an OFDM symbol in which reference signals for the N transmit antennas are mapped is excluded from an RE in which CRSs for the M transmit antennas are mapped.
    참조 신호 전송 방법.How to send reference signal.
  3. 제2항에 있어서,The method of claim 2,
    상기 서브프레임에서, 상기 N개의 송신안테나에 대한 동기채널(Synchronization Channel; SCH)이 전송되는 OFDM심볼에 포함된 RE는 상기 M개의 송신 안테나에 대한 CRS가 사상되는 RE에서 제외되는,In the subframe, an RE included in an OFDM symbol in which a synchronization channel (SCH) for the N transmit antennas is transmitted is excluded from an RE in which CRSs for the M transmit antennas are mapped.
    참조 신호 전송 방법. How to send reference signal.
  4. 제3항에 있어서,The method of claim 3,
    상기 서브프레임에서, 상기 N개의 송신안테나에 대한 방송채널(Broadcasting Channel; BCH)이 전송되는 OFDM심볼에 포함된 RE는 상기 M개의 송신 안테나에 대한 CRS가 사상되는 RE에서 제외되는,In the subframe, an RE included in an OFDM symbol in which a broadcasting channel (BCH) for the N transmission antennas is transmitted is excluded from an RE in which CRSs of the M transmission antennas are mapped.
    참조 신호 전송 방법. How to send reference signal.
  5. 제1항에 있어서,The method of claim 1,
    상기 임의의 짝수는, 2, 4, 6 및 8중 어느 하나인The arbitrary even number is any one of 2, 4, 6, and 8
    참조 신호 전송 방법.How to send reference signal.
  6. 제1항에 있어서,The method of claim 1,
    상기 M과 N은 각각 8과 4인,M and N are 8 and 4, respectively
    참조 신호 전송 방법. How to send reference signal.
  7. 총 M개의 송신 안테나 중 N개의 송신 안테나를 지원하는 제1 사용자 기기와 상기 M(M>N)개의 송신 안테나를 지원하는 제2 사용자 기기를 지원하는 하향링크 MIMO(Multi Input Multi Output) 시스템에 있어서, 채널 정보 피드백 방법으로서,In a downlink multi-input multi-output (MIMO) system supporting a first user equipment supporting N transmit antennas out of a total of M transmit antennas and a second user equipment supporting M (M> N) transmit antennas. As a channel information feedback method,
    기지국으로부터, 상기 M개의 송신안테나에 대한 공통 참조 신호(Common Reference Signal; CRS)가 사상된 서브프레임상을 수신하는 단계; Receiving, from a base station, on a subframe in which a common reference signal (CRS) for the M transmit antennas is mapped;
    상기 서브프레임 상에 포함된 상기 CRS를 이용하여 채널 정보를 생성하는 단계; 및Generating channel information using the CRS included in the subframe; And
    상기 생성된 채널 정보를 피드백 하는 단계를 포함하고,Feeding back the generated channel information;
    상기 서브프레임에서 상기 M개의 송신안테나에 대한 CRS가 사상되는 자원 요소(Resource Element; RE)의 위치는 상기 제1 사용자를 위한 사용자 전용 참조 신호(Dedicated Reference Signal; DRS)가 사상되는 RE를 제외한 주파수 축 상으로 연속된 임의의 짝수 개의 RE인,The location of a resource element (RE) in which CRSs of the M transmission antennas are mapped in the subframe is a frequency other than an RE in which a dedicated reference signal (DRS) for the first user is mapped. Any even number of REs contiguous on the axis,
    채널 정보 피드백 방법. Channel information feedback method.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 서브프레임에서, 상기 N개의 송신 안테나에 대한 참조 신호가 사상되는 OFDM심볼에 포함된 RE는 상기 M개의 송신 안테나에 대한 CRS가 사상되는 RE에서 제외되는,In the subframe, an RE included in an OFDM symbol in which reference signals for the N transmit antennas are mapped is excluded from an RE in which CRSs for the M transmit antennas are mapped.
    채널 정보 피드백 방법.Channel information feedback method.
  9. 제8항에 있어서,The method of claim 8,
    상기 서브프레임에서, 상기 N개의 송신안테나에 대한 동기채널(Synchronization Channel; SCH)이 전송되는 OFDM심볼에 포함된 RE는 상기 M개의 송신 안테나에 대한 CRS가 사상되는 RE에서 제외되는,In the subframe, an RE included in an OFDM symbol in which a synchronization channel (SCH) for the N transmit antennas is transmitted is excluded from an RE in which CRSs for the M transmit antennas are mapped.
    채널 정보 피드백 방법. Channel information feedback method.
  10. 제9항에 있어서,The method of claim 9,
    상기 서브프레임에서, 상기 N개의 송신안테나에 대한 방송채널(Broadcasting Channel; BCH)이 전송되는 OFDM심볼에 포함된 RE는 상기 M개의 송신 안테나에 대한 CRS가 사상되는 RE에서 제외되는,In the subframe, an RE included in an OFDM symbol in which a broadcasting channel (BCH) for the N transmission antennas is transmitted is excluded from an RE in which CRSs of the M transmission antennas are mapped.
    채널 정보 피드백 방법.Channel information feedback method.
  11. 제7항에 있어서,The method of claim 7, wherein
    상기 임의의 짝수는, 2, 4, 6 및 8중 어느 하나인,The arbitrary even number is any one of 2, 4, 6, and 8,
    채널 정보 피드백 방법.Channel information feedback method.
  12. 제7항에 있어서,The method of claim 7, wherein
    상기 M과 N은 각각 8과 4인,M and N are 8 and 4, respectively
    채널 정보 피드백 방법. Channel information feedback method.
PCT/KR2010/001474 2009-03-09 2010-03-09 Method for transmitting a reference signal in a downlink mimo system WO2010104321A2 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US15840909P 2009-03-09 2009-03-09
US61/158,409 2009-03-09
US16071709P 2009-03-17 2009-03-17
US61/160,717 2009-03-17
KR1020090108644A KR20100101510A (en) 2009-03-09 2009-11-11 Method for transmitting reference signals in downlink multiple input multiple output
KR10-2009-0108644 2009-11-11

Publications (2)

Publication Number Publication Date
WO2010104321A2 true WO2010104321A2 (en) 2010-09-16
WO2010104321A3 WO2010104321A3 (en) 2010-12-16

Family

ID=42728939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/001474 WO2010104321A2 (en) 2009-03-09 2010-03-09 Method for transmitting a reference signal in a downlink mimo system

Country Status (1)

Country Link
WO (1) WO2010104321A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012045200A1 (en) * 2010-10-03 2012-04-12 Zte Corporation Method of interference management for radio link monitoring in hetnet
WO2013133673A1 (en) * 2012-03-08 2013-09-12 엘지전자 주식회사 Method and user equipment for receiving reference signals, and method and base station for transmitting reference signals

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070046976A (en) * 2004-08-02 2007-05-03 인터디지탈 테크날러지 코포레이션 Quality control scheme for multiple-input multiple-output(mimo) orthogonal frequency division multiplexing(ofdm) systems
KR20080033060A (en) * 2006-10-12 2008-04-16 엘지전자 주식회사 Method of allocating reference signals in mimo system
KR20080036939A (en) * 2006-10-24 2008-04-29 삼성전자주식회사 System and method for generating reference signals in a wireless communication system
US20080225960A1 (en) * 2007-03-16 2008-09-18 Kotecha Jayesh H Generalized reference signaling scheme for MU-MIMO using arbitrarily precoded reference signals

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070046976A (en) * 2004-08-02 2007-05-03 인터디지탈 테크날러지 코포레이션 Quality control scheme for multiple-input multiple-output(mimo) orthogonal frequency division multiplexing(ofdm) systems
KR20080033060A (en) * 2006-10-12 2008-04-16 엘지전자 주식회사 Method of allocating reference signals in mimo system
KR20080036939A (en) * 2006-10-24 2008-04-29 삼성전자주식회사 System and method for generating reference signals in a wireless communication system
US20080225960A1 (en) * 2007-03-16 2008-09-18 Kotecha Jayesh H Generalized reference signaling scheme for MU-MIMO using arbitrarily precoded reference signals

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012045200A1 (en) * 2010-10-03 2012-04-12 Zte Corporation Method of interference management for radio link monitoring in hetnet
WO2013133673A1 (en) * 2012-03-08 2013-09-12 엘지전자 주식회사 Method and user equipment for receiving reference signals, and method and base station for transmitting reference signals
US9553704B2 (en) 2012-03-08 2017-01-24 Lg Electronics Inc. Method and user equipment for receiving reference signals, and method and base station for transmitting reference signals

Also Published As

Publication number Publication date
WO2010104321A3 (en) 2010-12-16

Similar Documents

Publication Publication Date Title
WO2021015596A1 (en) Method and apparatus of control signaling for improved resource utilization
WO2022055333A1 (en) Multi-cell scheduling with reduced control overhead
WO2021006618A1 (en) Monitoring of downlink control channels for communication with multiple transmission-reception points
WO2010090501A2 (en) Method for transmitting common reference signal in downlink mimo system
WO2014157921A1 (en) Uplink demodulation reference signals in advanced wireless communication systems
WO2022035278A1 (en) Method and apparatus for measurement and reporting for multi-beam operations
WO2012021008A2 (en) Method and apparatus for transmitting and receiving reference signal in wireless communication system
WO2013169086A1 (en) Method and apparatus for transmitting and receiving reference signal in wireless communication system
WO2014107056A1 (en) Obtaining control channel elements of physical downlink control channels for cross-carrier scheduling
WO2011053073A2 (en) Method and apparatus for transmitting dedicated reference signal
WO2014025140A1 (en) Control information transmission and uplink control channel resource mapping
WO2017039400A1 (en) Method and device for transmitting information related to reference signal
WO2016117968A1 (en) Uplink mimo communication method in wireless communication system and apparatus therefor
WO2016060466A1 (en) Method for measuring inter-device interference in wireless communication system supporting fdr transmission, and apparatus therefor
WO2010071311A2 (en) Method for transmitting pilot symbols in downlink multiple-input multiple-output system
KR20100069558A (en) Method for pilot symbols in downlink multiple input multiple output
KR20100088518A (en) Method for transmitting reference signals in downlink multiple input multiple output
WO2010095824A2 (en) Method and apparatus for data communication through a coordinated multi-point transmission
KR20120091309A (en) System and method for mapping reference signal sequence in advanced long term evolution system
WO2021162433A1 (en) Method and apparatus for reduced pdcch monitoring
WO2019066631A1 (en) Method and equipment for transmitting uplink control information and setting uplink time advance
EP3676983A1 (en) Method and equipment for transmitting uplink control information and setting uplink time advance
WO2021154013A1 (en) Dynamic adaptation on pdcch monitoring behavior across multi-trps
WO2013024985A2 (en) Transmission point, method for configuring reference signal for same, terminal, and method for transmitting reference signal for same
WO2010104321A2 (en) Method for transmitting a reference signal in a downlink mimo system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10751012

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10751012

Country of ref document: EP

Kind code of ref document: A2