WO2010103852A1 - Thermally conductive material, process for producing same, and inductor for high current - Google Patents

Thermally conductive material, process for producing same, and inductor for high current Download PDF

Info

Publication number
WO2010103852A1
WO2010103852A1 PCT/JP2010/001784 JP2010001784W WO2010103852A1 WO 2010103852 A1 WO2010103852 A1 WO 2010103852A1 JP 2010001784 W JP2010001784 W JP 2010001784W WO 2010103852 A1 WO2010103852 A1 WO 2010103852A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin binder
heat conductive
thermosetting resin
coil
range
Prior art date
Application number
PCT/JP2010/001784
Other languages
French (fr)
Japanese (ja)
Inventor
村上泰
細尾昇平
竜野三千生
前島浩治
池田健二
内藤壮介
Original Assignee
国立大学法人信州大学
東京精電株式会社
マイクロコーテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人信州大学, 東京精電株式会社, マイクロコーテック株式会社 filed Critical 国立大学法人信州大学
Priority to JP2011503735A priority Critical patent/JPWO2010103852A1/en
Publication of WO2010103852A1 publication Critical patent/WO2010103852A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/323Insulation between winding turns, between winding layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2847Sheets; Strips

Definitions

  • the present invention relates to a heat conductive material in which a heat conductive filler is mixed with a thermosetting resin binder, a method for manufacturing the heat conductive material, and a large current inductor using the heat conductive material.
  • a hybrid vehicle, a fuel cell vehicle, and the like are equipped with a large current inductor capable of flowing a large current, and a reactor device disclosed in Patent Document 1 is known as such a large current inductor. ing.
  • this type of large current inductor (reactor device) accommodates an iron core and a coil wound around the iron core in a package, and further protects the potting material by filling it. Sufficient thermal conductivity and heat dissipation are required to release heat generated from the coil through which the gas flows.
  • Patent Document 2 has fluidity.
  • a heat conductive sheet mixed at a ratio of 1 to 3: 1 is disclosed, and
  • Patent Document 3 discloses wax and / or paraffin having a melting point of 40 to 100 ° C., a thermoplastic resin softened at 40 to 100 ° C.
  • a highly thermally conductive composition obtained by mixing spherical alumina having a sphericity of 0.78 or more and an average particle diameter of 3 ⁇ m or more is disclosed.
  • the conventional heat conductive material in which the above-mentioned binder is mixed with the heat conductive filler has the following problems.
  • An object of the present invention is to provide a thermally conductive material, a method for manufacturing the same, and an inductor for large current that solve the problems existing in the background art.
  • the thermally conductive material Ri is a thermally conductive material in which a thermally conductive filler is mixed with a thermosetting resin binder.
  • a dispersant selected in the range of 1 to 180 [wt%] is blended with 100 [wt%], and 350 to 2000 [wt%] with respect to 100 [wt%] of the thermosetting resin binder.
  • the thermally conductive filler having a particle size of 0.1 to 100 [ ⁇ m] is uniformly dispersed, and at least the thermal conductivity is 3.5 [W / (m ⁇ K)] or more,
  • the composition is characterized in that the viscosity is 0.2 to 100 [Pa ⁇ s] at a temperature of 60 ° C. or lower.
  • thermosetting resin binder when mix
  • a dispersant selected in the range of 1 to 180 [wt%] is blended with the resin binder 100 [wt%], and 350 to 2000 [wt%] with respect to the thermosetting resin binder 100 [wt%].
  • the heat conductive filler selected in the range of 0.1 to 100 [ ⁇ m] is mixed and stirred to uniformly disperse the heat conductive filler, and at least the heat conductivity is 3 It is characterized in that a composition having a viscosity of 0.2 to 100 [Pa ⁇ s] at a temperature of not less than 5 [W / (m ⁇ K)] and a temperature of 60 [° C.] or less is obtained.
  • the large current inductor 1 accommodates one or more coils 2 wound with a vertical rectangular conductor, a core 3 loaded on the coil 2, and a coil 2 loaded with the core 3.
  • the thermosetting resin binder is selected from 1 to 180 [wt%] with respect to 100 [wt%] of the thermosetting resin binder.
  • the dispersant is blended, and the particle size is selected in the range of 350 to 2000 [wt%] and the particle diameter in the range of 0.1 to 100 [ ⁇ m] with respect to 100 [wt%] of the thermosetting resin binder.
  • the thermally conductive filler is uniformly dispersed, and at least 0.2 to 100 [Pa ⁇ s] when the thermal conductivity is 3.5 [W / (m ⁇ K)] or more and the viscosity is 60 [° C.] or less.
  • the conductive material Ri characterized by comprising filling a potting material 5 inside of the package 4.
  • the thermosetting resin binder in the heat conductive material Ri includes at least an epoxy resin having a viscosity selected in the range of 0.01 to 1 [Pa ⁇ s].
  • the thermosetting resin binder can include a resin binder using one liquid or a resin binder using at least two liquids including a main agent and a curing agent.
  • the heat conductive filler can have electrical insulation. Therefore, the thermally conductive filler can include at least a single material or a composite material using one or more of magnesium oxide, aluminum oxide, silicon oxide, aluminum nitride, and boron nitride. A single particle size or a plurality of different particle sizes can be included.
  • the coil 2 in the large current inductor 1 a coil produced by sequentially folding the coil pattern plate As continuously formed of a sheet material can be used.
  • the heat conductive filler selected in (1) is uniformly dispersed, at least the dielectric breakdown strength is 14 [kV / mm] (however, 10 [kHz], the breaking current is 10 [mA]) and the viscosity is 0.05 to 3
  • the heat dissipating insulating material Rc having a composition of [Pa ⁇ s] can be coated as the coating agent 6.
  • thermosetting resin binder a dispersant selected in the range of 1 to 180 [wt%] with respect to 100 [wt%] of the thermosetting resin binder is added to the thermosetting resin binder.
  • the heat conductive filler selected in the range of 350 to 2000 [wt%] and the particle size in the range of 0.1 to 100 [ ⁇ m] with respect to 100 [wt%] of the thermosetting resin binder is uniform. Since it has a composition that is dispersed and has a thermal conductivity of 3.5 [W / (m ⁇ K)] or more and a viscosity of 0.2 to 100 [Pa ⁇ s] at a temperature of 60 ° C.
  • the large current inductor 1 accommodates one or more coils 2 wound with a vertical rectangular conductor, a core 3 loaded on the coil 2, and a coil 2 loaded with the core 3.
  • the package 4 made of a heat conductive material is provided, and the inside of the package 4 is filled with the heat conductive material Ri as the potting material 5, so that the heat conduction performance between the coil 2 (core 3) and the package 4 is further enhanced.
  • the protection performance for the coil 2 and the durability of the large current inductor 1 can be further enhanced.
  • thermosetting resin binder when an epoxy resin selected at least in the range of 0.01 to 1 [Pa ⁇ s] is used as the thermosetting resin binder, heat conduction to the low viscosity epoxy resin is achieved. Since the conductive filler is mixed, the uniform dispersion of the heat conductive filler can be further optimized.
  • thermally conductive filler has electrical insulation
  • a coating agent or potting material that is more desirable for electronic components (electrical components) can be obtained.
  • thermally conductive filler if a single material or a composite material containing at least one of magnesium oxide, aluminum oxide, silicon oxide, aluminum nitride, and boron nitride is used as the thermally conductive filler, Greater performance can be obtained from the viewpoint of ensuring good thermal conductivity and heat dissipation.
  • thermosetting resin binder a thermally conductive filler having a plurality of different particle diameters
  • the thermally conductive filler is uniformly dispersed at a high density in the thermosetting resin binder, From the viewpoint of increasing the thermal conductivity (heat dissipation), further optimization can be achieved.
  • thermosetting resin binder when the thermosetting resin binder includes a resin binder using one liquid or a resin binder using at least two liquids including a main agent and a curing agent, the heat conductive material Ri can be manufactured. Further, the reactivity and handling at the time of production can be made more flexible.
  • a coil produced by sequentially folding coil pattern plates As continuously formed of a sheet material is used for the coil 2 of the high-current inductor 1, the manufacturing process can be simplified and simplified. Since the manufacturing man-hours associated therewith can be reduced, it is possible to improve the mass productivity and the low cost related to the high current inductor 1. Moreover, since the corner
  • the resin binder is blended with a dispersant selected in the range of 0.01 to 50 [wt%] with respect to the resin binder 100 [wt%], and the resin binder 100 [wt %],
  • the thermally conductive filler selected in the range of 100 to 600 [wt%] and the particle size in the range of 0.1 to 20 [ ⁇ m] is uniformly dispersed, and at least the dielectric breakdown strength is
  • a heat dissipating insulating material Rc having a composition of 14 [kV / mm] (10 [kHz], breaking current 10 [mA]) or more and a viscosity of 0.05 to 3 [Pa ⁇ s] , Core 3, package 4, if a part or all of one or more surfaces are coated as coating agent 6, a heat-dissipating insulating material having a predetermined thickness for coil 2, core 3, and package 4 Rc
  • With a coating layer can be provided easily and reliably, it is possible to coil 2, increase the core 3 and the package 4
  • Manufacturing process diagram of a thermally conductive material according to the best embodiment of the present invention, The manufacturing process figure of the heat-radiating insulating material used for the inductor for large currents according to the best embodiment of the present invention, The perspective view which shows the principle structure of the coil used for the inductor for the same large current, Plan view of the intermediate assembly of the same high-current inductor, Front sectional view of the same large current inductor, Viscosity characteristic diagram with respect to temperature of raw materials used for the heat conductive material, Mass reduction rate characteristic diagram with respect to heating time of heat-dissipating insulating material used for the same high-current inductor, Dielectric breakdown strength characteristic diagram with respect to heating time of the heat-dissipating insulating material, Figure of rising temperature characteristics with respect to operating time of the inductor for the same large current, Manufacturing process diagram showing a part of the thermally conductive material according to a modified embodiment of the present invention, Filler filling rate vs.
  • thermal conductivity characteristics diagram used for the thermally conductive material Example of heat conductive material and temperature vs. viscosity characteristic diagram of commercially available product, Examples of thermal conductive materials and evaluation test result table of commercially available products, Figure of rising temperature characteristics with respect to operating time when using the same thermally conductive material for high current inductors,
  • thermal conductive material Ri according to the present embodiment and the manufacturing method thereof will be described with reference to the manufacturing process diagram shown in FIG. 1 and FIG.
  • thermosetting resin binder basically, a dispersing agent selected in the range of 1 to 180 [wt%] with respect to 100 [wt%] of the thermosetting resin binder is blended in the thermosetting resin binder.
  • a thermally conductive filler selected in the range of 350 to 2000 [wt%] and the particle size in the range of 0.1 to 100 [ ⁇ m] with respect to 100 [wt%] of the thermosetting resin binder is provided. It has a uniformly dispersed composition. Therefore, when manufacturing the heat conductive material Ri, a thermosetting resin binder, a dispersant, and a heat conductive filler as raw materials are prepared.
  • thermosetting resin binder an epoxy resin having a relatively high heat resistance as an organic material, in particular, an epoxy resin composed of a main agent and a curing agent (a two-component mixed thermosetting type) is used.
  • Various curing agents such as acid anhydrides, polyamines, and imidazoles can be used as the curing agent.
  • the main agent and the curing agent low viscosity epoxy resins having a viscosity selected in the range of 0.01 to 1 [Pa ⁇ s] are used.
  • FIG. 6 shows the relationship between the temperature [° C.] and the viscosity [Pa ⁇ s] of the raw materials (main agent and curing agent).
  • Mim shows the characteristics of the main agent (epoxy resin) used in this embodiment, Mih. Shows the characteristics of the curing agent used in this embodiment.
  • Mam and Mah are characteristics of a commercially available general main agent (epoxy resin) and a curing agent, and Mbm and Mbh are other general main agents (epoxy resin) and a curing agent that are commercially available.
  • thermosetting resin binder epoxy resin is desirable, but in addition, when heat resistance is required, silicone resin can be used, and when heat resistance is not required, urethane resin Phenol resin, melamine resin, urea resin, unsaturated polyester resin, alkyd resin, thermosetting polyimide resin, etc. can also be used.
  • the dispersing agent is selected in the range of 1 to 180 [wt%] with respect to 100 [wt%] of the main agent or curing agent.
  • various known dispersants can be used as the dispersant, and the dispersant is not limited to a specific dispersant. If a suitable amount of dispersant is blended with the main agent or curing agent, it becomes possible to achieve good dispersibility even when a high-density thermal conductive filler described later is mixed with the main agent or curing agent. The densification of the heat conductive filler with respect to the main agent or the curing agent can be made more uniform.
  • magnesium oxide for the thermally conductive filler.
  • Magnesium oxide is excellent in cost merit, has high thermal conductivity, and has electrical insulation. By providing electrical insulation, it is possible to obtain a coating agent or potting material that is more desirable for electronic components (electrical components).
  • the magnesium oxide particles used as the heat conductive filler are selected in the range of 350 to 2000 [wt%] with respect to 100 [wt%] of the main agent or curing agent. Further, the particle diameter of the magnesium oxide particles is selected in the range of 0.1 to 100 [ ⁇ m], and it is particularly desirable to include a plurality of different particle diameters.
  • a large filler of about 5 to 100 [ ⁇ m], a medium filler of about 0.5 to 20 [ ⁇ m], and a small filler of about 0.1 to 10 [ ⁇ m] are mixed.
  • a single particle diameter may be used as long as the particle diameter is in the range of 0.1 to 100 [ ⁇ m].
  • magnesium oxide particles a single material of aluminum nitride particles or boron nitride particles, or aluminum oxide particles or silicon oxide particles may be used.
  • Magnesium oxide particles, aluminum nitride particles, boron nitride particles, oxidation A composite material including two or more of aluminum particles and silicon oxide particles may be used.
  • thermally conductive filler As described above, if a single material or a composite material containing at least one of magnesium oxide, aluminum nitride, boron nitride, aluminum oxide, and silicon oxide is used for the thermally conductive filler, good thermal conductivity is obtained. In addition, from the viewpoint of ensuring heat dissipation, greater performance can be obtained, and if fillers having a plurality of different particle sizes are selected, each filler is uniformly dispersed at a high density with respect to the main agent or curing agent as a binder. In doing so, the mixture of different particle sizes can be further optimized from the viewpoint of enhancing thermal conductivity (heat dissipation). As the thermal conductive filler, other various ceramic particles such as silicon nitride, titanium oxide, zirconium oxide, tin oxide, zinc oxide and silicon carbide that can ensure electrical insulation and thermal conductivity can be used depending on the application. is there.
  • the main agent solution and the curing agent solution are separately prepared in advance.
  • the prepared dispersant is blended with the prepared main agent (epoxy resin) (steps S1 and S2).
  • the prepared magnesium oxide particles thermalally conductive filler
  • the obtained mixed solution fully stirs with a stirring apparatus, and performs sufficient defoaming with a defoaming apparatus (process S4).
  • a main agent solution in which high-density magnesium oxide particles are uniformly dispersed with respect to the epoxy resin (main agent) can be obtained (step S5).
  • the prepared dispersant is blended with the prepared curing agent (steps S6 and S7).
  • the prepared magnesium oxide particles are mixed (steps S7 and S8).
  • the obtained mixed solution fully stirs with a stirring apparatus, and performs sufficient defoaming with a defoaming apparatus (process S9).
  • curing agent can be obtained (process S10).
  • step S12 a target thermal conductive material Ri having a total viscosity of 0.2 to 100 [Pa ⁇ s] can be obtained (step S12).
  • the heat conductive material Ri having a viscosity of 0.2 to 100 [Pa ⁇ s] is optimal as the potting material 5 of the inductor 1 for large current described later.
  • the heat conductive material Ri 4.12 [W / (m ⁇ K)] with a conductivity of 3.5 [W / (m ⁇ K)] or more is ensured, and the dielectric breakdown strength is 7 [kV / mm] (however, In addition to optimum viscosity, such as 10 [kHz] and a breaking current of 10 [mA]), sufficient heat conductivity and electrical insulation as the potting material 5 can be secured.
  • the step (S12) of mixing the main agent solution and the curing agent solution is injected into the package 4 (case portion 4p) immediately before actual use, that is, when used as the potting material 5 of the inductor 1 for large current. (Just before filling).
  • the thermosetting resin binder is 1 to 180 [wt%] with respect to 100 [wt%] of the thermosetting resin binder. In the range of 350 to 2000 [wt%] and a particle size of 0.1 to 100 [ ⁇ m] with respect to 100 [wt%] of the thermosetting resin binder.
  • the heat conductive filler selected in the range is uniformly dispersed, at least the thermal conductivity is 3.5 [W / (m ⁇ K)] or more, and the viscosity is 0.2 to 100 [Pa ⁇ s].
  • heat conductive material R Since it has a composition, for example, even in the case of a part with many minute gaps, there is no risk of unfilled gaps, and it is possible to improve heat conduction efficiency and heat dissipation efficiency and increase versatility.
  • heat conductive material R Also it can contribute to the quality (homogenization) improve.
  • FIG. 4 shows a method of manufacturing the intermediate assembly 1m of the high current inductor to which the potting material 5 is used. The description will be given with reference.
  • the coil 2, the core 3 and the package 4 which are the main parts are manufactured.
  • a hoop base material made of a copper material having a thickness of about 0.5 to 1.0 [mm] and a width corresponding to the design specifications of the coil 2 is prepared.
  • this hoop base material is supplied to a predetermined coil manufacturing machine.
  • a hoop base material is punched out by a pressing process to obtain a coil pattern plate As continuously formed from a sheet material as shown in FIG.
  • This coil pattern plate As has coil pattern portions 2pc,... Constituting one turn, and connection pattern portions 2jx, 2ji, which connect the coil pattern portions 2pc.
  • connection pattern portions 2jx, 2ji,... Have two types of connection pattern portions 2jx, 2ji,... With different lengths (offset lengths) protruding from the coil pattern portions 2pc, and are alternately provided.
  • the width (maximum part) of the illustrated coil pattern portions 2pc is 10 [mm].
  • the coil pattern plate As performs rounding with a predetermined curvature at all corners (corner portions) and performs a burr-free process that does not cause burrs on all edge portions. These rounding and burr-free treatment can be performed simultaneously with the pressing step or in the subsequent step of the pressing step. By performing such rounding and burr-free treatment, a coating agent described later can be uniformly coated.
  • connection pattern portions 2jx, 2ji,... two positions in the connection pattern portions 2jx, 2ji,..., That is, end positions K1... And intermediate portion positions K2 of the connection pattern portions 2jx, 2ji.
  • the coil pattern portions 2pc... are sequentially stacked, and the coil 2 shown in FIGS. 4 and 5 can be manufactured.
  • the two types of connection pattern portions 2jx, 2jy, 2jx, 2jy... Are arranged at positions offset from each other when viewed in the axial direction, and the overlapping of both is avoided. Therefore, the thickness of the connection pattern portions 2jx... 2jy.
  • the manufacturing process can be simplified and simplified, and the manufacturing man-hours associated therewith can be reduced. Therefore, it is possible to improve the mass productivity of the high-current inductor 1 and the low cost. realizable.
  • the coil pattern plate As can be produced by sequentially folding back, the number of turns in producing a coil obtained between any turns can be increased to 1 turn (360 °), and the winding efficiency can be increased. Since the shapes when punching are aligned in one direction, the coil manufacturing machine (manufacturing process) can be simplified, and the manufacturing cost can be reduced and the manufacturing accuracy can be improved.
  • angular part of the coil 2 can be made into a right angle, thermal conductivity and thermal radiation can be improved more by the further flattening of the inductor 1 for large currents.
  • the degree of freedom in design can be drastically increased, for example, the overall shape of the coil portion 2 can be selected as an arbitrary shape.
  • the obtained coil 2 is coated with a coating agent using the heat-dissipating insulating material Rc.
  • This heat dissipating insulating material Rc also basically has the same composition structure as that of the above-described heat conductive material Ri, and the silicone resin binder has 0% with respect to 100 [wt%] of the silicone resin binder.
  • a dispersant selected in the range of 0.01 to 50 wt% is blended, and the particle size is 0.1 to 100 wt% with respect to 100 wt% of the silicone resin binder. It has a composition in which the thermally conductive filler selected in the range of ⁇ 20 [ ⁇ m] is uniformly dispersed. Therefore, in manufacturing the heat-radiating insulating material Rc, a silicone resin binder, a dispersant, a diluting solvent, and a heat conductive filler are prepared as raw materials.
  • silicone resin binder a low-viscosity silicone resin with a relatively high heat resistance, which is an organic material, is used.
  • a low-viscosity silicone resin is used, the uniform dispersion of the thermally conductive filler can be further optimized when the thermally conductive filler described later is mixed.
  • Silicone resin is desirable as the binder, but as an alternative to silicone resin, epoxy resin can be used when heat resistance is required, and urethane resin or phenol resin when heat resistance is not required Melamine resin, urea resin, unsaturated polyester resin, alkyd resin, thermosetting polyimide resin, etc. can also be used.
  • the dispersant and the diluent solvent various known dispersants and various known diluent solvents can be used, and are not limited to specific dispersants and diluent solvents.
  • the dispersing agent is selected in the range of 0.01 to 50 [wt%] with respect to 100 [wt%] of the silicone resin (thermosetting resin binder), and the diluent solvent is used for adjusting the viscosity. . Therefore, when it is not necessary to adjust the viscosity, a diluting solvent is also unnecessary, and this diluting solvent may be used as necessary.
  • a single material of magnesium oxide and silicon oxide (silica) particles with high electrical insulation are used in combination for the thermally conductive filler.
  • Magnesium oxide is excellent in cost merit, has high thermal conductivity, and also has electrical insulation. It is desirable that the magnesium oxide particles used as the thermally conductive filler have a particle size selected in the range of 0.1 to 20 [ ⁇ m] and that the silicon oxide particles have a plurality of different particle sizes.
  • a mixed material (composite material) of medium filler of about 1 to 20 [ ⁇ m] and small filler of about 0.1 to 10 [ ⁇ m] is used.
  • the entire magnesium oxide particles and silicon oxide particles are selected in the range of 100 to 600 [wt%], preferably around 195 [wt%].
  • a single particle size may be used as long as the particle size is in the range of 0.1 to 20 [ ⁇ m].
  • this heat conductive filler may be composed of only one of the magnesium oxide particles and the silicon oxide particles.
  • magnesium oxide particles or silicon oxide particles instead of magnesium oxide particles or silicon oxide particles, a single material of aluminum nitride particles, boron nitride particles, aluminum oxide particles may be used, or magnesium oxide particles, aluminum nitride particles, boron nitride particles, silicon oxide A composite material including two or more of particles and aluminum oxide may be used. As described above, when a single material or a composite material containing at least one of magnesium oxide, aluminum nitride, boron nitride, silicon oxide particles, and aluminum oxide particles is used as the thermally conductive filler, good heat can be obtained.
  • each filler can be used for the silicone resin as a binder.
  • the thermal conductive filler other various ceramic particles such as silicon nitride, titanium oxide, zirconium oxide, tin oxide, zinc oxide and silicon carbide that can ensure electrical insulation and thermal conductivity can be used depending on the application. is there.
  • the prepared dispersing agent, diluent solvent, magnesium oxide particles and silicon oxide particles are blended (mixed) with the prepared silicone resin (thermosetting resin binder) (steps S21, S22, S23, S24, S25). . And it fully stirs with a stirring apparatus (process S26). At this time, beads having a specific gravity remarkably different from that of the heat conductive filler are added to the material to be stirred, and the magnesium oxide particles and silicon oxide particles are uniformly dispersed using a stirring method capable of uniform dispersion such as planetary stirring. Is desirable.
  • the entire viscosity is adjusted to about 1 [Pa ⁇ s] by blending an appropriate amount of a diluting solvent, and sufficient defoaming is performed by a defoaming device for bubbles generated during stirring (step S27). .
  • the heat-radiating insulating material Rc having a high density structure in which the magnesium oxide particles and the silicon oxide particles are uniformly dispersed in the silicone resin can be obtained (step S28).
  • Table 1 shows the characteristics (performance) of the heat-dissipating insulating material Rc obtained.
  • the characteristic (performance) of the heat-radiation insulating material Rr using the polyamideimide resin generally marketed as a heat-resistant insulating coating agent of the same use as a comparative example was shown.
  • FIG. 7 shows the heating time [H] (250) of the heat-dissipating insulating material Rr using a polyamideimide resin that is generally commercially available as a heat-resistant insulating coating agent having the same use as the comparative heat-releasing insulating material Rc.
  • 8 shows the characteristics of the mass reduction rate [%] with respect to [° C.]
  • FIG. 8 shows the heating time [H] (200 [° C.] of the heat dissipating insulating material Rc and the heat insulating insulating material Rr as a comparative example ) Shows the characteristics of dielectric breakdown strength [kV / mm].
  • the heat dissipating insulating material Rc has a thermal conductivity of 1.30 [sufficient for the coil 2, the core 3, and the package 4 of the large current inductor. W / (m ⁇ K)] or more is secured, and 14 [kV / mm] (10 [kHz, breaking current 10 [mA]) or more is secured, which is sufficient for dielectric breakdown strength. Also, the mass reduction rate, which is an evaluation of heat resistance, is ensured to be within -3 [%] at 1000 hours. Further, in the thermal stability evaluation (heat cycle test), no peeling or cracking was observed even after 3000 times ( ⁇ 30 to 200 ° C.).
  • the coating process is performed by a dip coating process in which the coil 2 is dipped in a dip tank containing the heat-radiating insulating material Rc (step S29).
  • the lead portions at both ends of the coil 2 are gripped by a chuck or the like, and dipping is performed with a gap between each conductor turn portion 2m.
  • the lifting speed is set in advance.
  • the pulling speed can be set in the range of 0.1 to 2.0 [mm / s] so that the thickness of the coating layer is about 60 to 80 [ ⁇ m].
  • various coating processes such as a spray coating process and an electrodeposition coating process can be used for the coating process.
  • the coil 2 coated with the heat dissipating insulating material Rc is fired.
  • the firing treatment is performed in an environment where the firing temperature is set to 200 [° C.] and the firing time is set to 15 [min].
  • the coil 2 in which a coating layer having a thickness of 60 to 80 ⁇ m is provided on the surface of the coil 2 can be obtained.
  • the coating of the heat-radiating insulating material Rc on the coil 2 and the formation of the coating layer on the coil 2 can be easily and reliably performed.
  • a coil having a shape portion that is difficult to apply such as the coil 2 manufactured by sequentially folding the coil pattern plate As that is continuously formed, can be easily and uniformly coated.
  • the entire core 3 is manufactured in a donut shape.
  • the core 3 is a laminated core in which silicon steel plates are laminated, but may be a sintered core using an integrally sintered amorphous material or the like.
  • the core 3 is configured by a combination of a plurality (two in the illustrated example) of the core dividing portions 3a and 3b so that the coil 2 can be mounted.
  • segmentation part 3a, 3b) also dip-coats using the dip tank which accommodated heat dissipation insulating material Rc similarly to the coil 2 (process S30).
  • the coating process is performed so that the thickness of the coating layer is about 60 to 80 [ ⁇ m] as in the above-described coating process of the coil 2.
  • a baking process is performed.
  • the package 4 includes a case portion 4p that opens upward to accommodate the coil 2, and a cover portion 4c that covers the opening of the case portion 4p.
  • the case portion 4p and the cover portion 4c are integrally formed of a heat conductive material, for example, an aluminum material. Further, the obtained case portion 4p and cover portion 4c are subjected to a coating treatment with the heat-dissipating insulating material Rc (step S31). In this case, a dip coating process is performed to dip the case portion 4p and the cover portion 4c into the dip tank containing the heat-radiating insulating material Rc.
  • the coating process is performed so that the thickness of the coating layer is about 60 to 80 [ ⁇ m], as in the above-described coating process of the core dividing section 3a.
  • a baking process is performed on the case portion 4p and the cover portion 4c. Therefore, through these processing steps, it is possible to obtain a package 4 in which a coating layer having a predetermined thickness is provided on the surface 4f of the case portion 4p and the cover portion 4c (package 4).
  • step S32 a coil assembly is manufactured by assembling the core dividing portions 3a and 3b to the coil 2.
  • a pair of coil parts 21 and 22 are used for the coil 2, and each core division
  • the coil 2 to which the core 3 is attached that is, a coil assembly as shown in FIG. 4 is obtained.
  • each of the coil portions 21 and 22 is connected by an intermediate lead 18m, and the other end of each of the coil portions 21 and 22 is connected to an end portion of the lead-out leads 18p and 18n, respectively.
  • the obtained coil assembly is accommodated in the case portion 4p as shown in FIG.
  • a plurality of holding members 17 using silicon rubber or the like are laid on the inner bottom surface of the case portion 4p, and the coil assembly (coil 2) is placed thereon. If necessary, similar holding members 17 may be interposed between the inner wall portion of the case portion 4p and the coil 2.
  • the intermediate assembly 1m of the high-current inductor 1 can be obtained (steps S33 and S13).
  • step S14 the above-described thermally conductive material Ri is filled (injected) into the case portion 4p as the potting material 5 (step S14). And the hardening process with respect to the potting material 5 is performed by heating at the temperature corresponding to the curing temperature of the epoxy resin used for the heat conductive material Ri (process S15). At this time, sufficient defoaming is performed by a defoaming apparatus (step S16).
  • step S17 final assembly is performed (step S17).
  • the cover portion 4c is placed on the case portion 4p and fixed by a plurality of fixing screws 16. 15 are screw holes on the side of the case portion 4p to which the fixing screws 16 are screwed. Further, as shown in FIG. 5, the leading ends of the lead leads 18p and 18n are led to the outside through an opening provided in the cover 4c.
  • FIG. 9 shows the rising temperature characteristics of each part with respect to the operating time [minute] when the obtained large current inductor 1 is energized.
  • Tci is the surface temperature of the coil 2 in the present embodiment
  • Tcr is the surface temperature of the coil 2 in the comparative example
  • Tbi is the surface temperature of the core 3 in the present embodiment
  • Tbr is the surface temperature of the core 3 in the comparative example
  • Tpi is the present embodiment
  • the surface temperature and Tpr of the package 4 in the form respectively indicate the surface temperature of the package 4 in the comparative example.
  • the present embodiment is an inductor 1 using the heat conductive material Ri and the heat dissipating insulating material Rc
  • the comparative example is an inductor using the heat conductive material Rb and the heat dissipating insulating material Rr.
  • FIG. 9 when attention is paid to the surface temperature of the coil 2, in this embodiment, it is about 120 [° C.], in the comparative example is about 150 [° C.], and in this embodiment, 30 [° C.] relative to the comparative example. An improvement effect that decreases to a certain extent is observed.
  • the large current inductor 1 according to the present embodiment has good thermal conductivity and thermal radiation.
  • a large current inductor 1 according to the present embodiment, one or two or more coils 2 wound with a vertical rectangular conductive wire, a core 3 loaded in the coil 2, and the core 3 are
  • the package 2 is provided with a package 4 formed of a thermally conductive material and containing the loaded coil 2, and the package 4 is filled with the thermally conductive material Ri as the potting material 5, so that the coil 2 (core 3)
  • a part or all of one or more surfaces of the coil 2, the core 3 and the package 4 are coated with a heat-dissipating insulating material Rc as a coating agent 6, and the heat-dissipating insulating material Rc is applied to a silicone resin binder.
  • a dispersant selected in the range of 0.01 to 50 [wt%] is blended with respect to 100 [wt%] of the silicone resin binder, and 100 to 600 with respect to 100 [wt%] of the silicone resin binder.
  • the thermally conductive filler selected in the range of [wt%] and the particle size in the range of 0.1 to 20 [ ⁇ m] is uniformly dispersed, at least the dielectric breakdown strength is 14 [kV / mm] or more, and Since the composition has a viscosity of 0.05 to 3 [Pa ⁇ s], the coil 2, the core 3 and the package 4 are coated with a heat-dissipating insulating material Rc having a predetermined thickness. It is possible to provide a coating layer can be easily and reliably coil 2, increase the core 3 and the package 4 itself thermal conductivity and heat dissipation.
  • the thermally conductive material Ri according to the modified embodiment is obtained by changing the thermally conductive filler. That is, in the above-described embodiment (basic embodiment), an example in which a single material of magnesium oxide is used as the thermally conductive filler has been shown. However, in the modified embodiment, aluminum oxide (alumina) and magnesium oxide (magnesia) are used. And three samples X, Y, and Z were used. Table 2 shows the mixing ratio of alumina and magnesia in each sample X, Y, and Z.
  • FIG. 10 shows the change characteristics of the thermal conductivity [W / (m ⁇ K)] with respect to the blending ratio [%] of each sample X, Y, Z (thermal conductive filler) with respect to the thermosetting resin binder.
  • the thermal conductivity tends to increase as the mixing ratio of alumina with respect to magnesia is increased. That is, the thermal conductivity increases in the order of samples X, Y, and Z.
  • the thermal conductivity tends to increase as the mixing ratio of each sample X, Y, Z with respect to the thermosetting resin binder increases.
  • the heat conductive material Ri according to the modified embodiment is the same as that of the basic embodiment described above except that the heat conductive filler is changed. That is, an epoxy resin (epoxy resin + curing agent) is used as a thermosetting resin binder, and a dispersing agent selected within a range of 1 to 180 [wt%] with respect to 100 [wt%] of the thermosetting resin binder. Furthermore, the thermal conductivity is selected in the range of 350 to 2000 [wt%] and the particle size in the range of 0.1 to 100 [ ⁇ m] with respect to 100 [wt%] of the thermosetting resin binder. Use a filler.
  • an epoxy resin epoxy resin + curing agent
  • a dispersing agent selected within a range of 1 to 180 [wt%] with respect to 100 [wt%] of the thermosetting resin binder.
  • the thermal conductivity is selected in the range of 350 to 2000 [wt%] and the particle size in the range of 0.1 to 100 [ ⁇ m] with respect to 100 [wt%] of the
  • the particle size of the heat conductive filler is mixed with a large filler of about 5 to 100 [ ⁇ m], a medium filler of about 0.5 to 20 [ ⁇ m], and a small filler of about 0.1 to 10 [ ⁇ m].
  • Table 3 each raw material and compounding ratio which are used by modified embodiment (Example) are shown.
  • the manufacturing method of the thermally conductive material Ri according to the modified embodiment is basically the same as that of the basic embodiment described above, and FIG. 11 is a part of the manufacturing process diagram shown in FIG. As shown in the manufacturing process diagram, steps 3 and 8 may be changed from “magnesium oxide particles” to “alumina particles + magnesia particles”. The other steps are the same as the manufacturing process diagram shown in FIG.
  • FIG. 12 to 14 show various characteristics of the thermally conductive material Ri according to the manufactured modified embodiment
  • FIG. 12 is a temperature vs. viscosity characteristic diagram of the thermally conductive material Ri
  • FIG. 13 is an evaluation of the thermally conductive material Ri.
  • FIG. 14 is a test result table
  • FIG. 14 is a graph showing a rise in temperature with respect to operating time when the heat conductive material Ri is used for a large current inductor.
  • Example OP1 uses Sample Y as the thermally conductive filler, and the filler blending ratio with respect to the thermosetting resin binder is 91.2 wt%.
  • Example OP2 uses Sample Z as the thermally conductive filler. And the filler compounding ratio with respect to the thermosetting resin binder is 93.3 [wt%].
  • three typical commercial products TR1, TR2 and TR3 were used.
  • Thermal shock resistance was evaluated by potting plate materials (silicone rubber, Cu, Fe, Al, alumite, aramid paper) having different thermal expansion coefficients together with the heat conductive material Ri and heating to 150 [° C.] The thermal shock treatment in 3 [° C.] water was repeated 5 times. And the presence or absence of peeling and a crack was confirmed by observing the interface state of heat conductive material Ri and board
  • Example OP1 has a viscosity of 25 [° C.] as very low as 58 [Pa ⁇ s] and is sufficient even at room temperature. In addition to exhibiting good viscosity characteristics such as being capable of casting, the defoaming property was 6.5 [min], and good workability was obtained. The thermal conductivity was 6.2 [W / (m ⁇ K)], showing a high value, and the thermal shock resistance was “ ⁇ ” for all plate materials. Furthermore, the temperature rise characteristic with respect to the operating time when the thermally conductive material Ri of Example OP1 was used for a large current inductor is as shown in FIG.
  • Example OP1c is the surface temperature of the coil 2 when using the embodiment PO1
  • TR2c is the surface temperature of the coil 2 when using the commercially available product TR2
  • OP1b is the core 3 when using the embodiment PO1.
  • TR2b is the surface temperature of the core 3 when using the commercially available product TR2
  • OP1p is the surface temperature of the package 4 when using the embodiment PO1
  • TR2p is the surface of the package 4 when using the commercially available product TR2.
  • Example OP1 is particularly suitable for applications that require a balance between thermal conductivity and workability.
  • Example OP2 has a high viscosity of 25 [° C.], but when heated to 60 [° C.], the viscosity decreased to 56 [Pa ⁇ s], and casting was possible. Moreover, although defoaming property became longer than Example OP1, defoaming was completed in 30 [min]. Although Example OP2 is inferior to Example OP1 in terms of workability, the thermal conductivity is 8.8 [W / (m ⁇ K)], showing a very high value and thermal shock resistance. Also became “ ⁇ ” for all plate materials. Therefore, Example OP2 is particularly suitable for applications that require high thermal conductivity.
  • thermosetting resin binder an epoxy resin
  • a silicone resin binder can also be selected from various silicone resins.
  • thermosetting resin binder which consists of a main ingredient and a hardening
  • curing agent ie, the heat-curable epoxy resin of two-component mixing
  • curing agent ie, the heat-curable epoxy resin of two-component mixing
  • curing agent ie, the heat-curable epoxy resin of two-component mixing
  • curing agent ie, the heat-curable epoxy resin of two-component mixing
  • curing agent ie, the heat-curable epoxy resin of two-component mixing
  • curing agent ie, the heat-curable epoxy resin of two-component mixing
  • the coil 2 the core 3, and the package 4 are not limited to the illustrated materials, and can be implemented by other various materials.
  • the coil 2 is preferably a copper material, but may be another material such as an aluminum material.
  • the coil 2 is preferably manufactured using the coil pattern plate As, but does not exclude other manufacturing methods.
  • the core 3 can be a sintered type such as permalloy, nanocrystalline alloy, ferrite, Fe—Al—Si alloy, pure iron, or the like.
  • the large current inductor 1 using the pair of coil portions 21 and 22 is illustrated.
  • the package 4 is formed in a shape capable of accommodating a plurality of coils 2 (including the cores 3).
  • it may be configured as an inductor 1 having a plurality of coils 2.
  • you may comprise as a transformer etc. which utilized a part of coil 2, or several coils 2 ....
  • the thermal conductive material Ri according to the present invention is optimal as a potting material for the exemplified large current inductor, but in addition, an electronic component (electrical component) including at least a substrate, a power source, a circuit, etc. that require thermal conductivity.
  • an electronic component electrical component
  • the heat conductive material Ri can be potted or coated by various methods such as spin coating, roll coating, spray coating, dip coating, spray coating, printing, and ink jet.
  • the inductor 1 for large currents according to the present invention can be used for various coil products.

Abstract

A material having a composition which comprises a thermosetting resin binder, a dispersant incorporated therein in an amount in the range of 1-180 wt.% per 100 wt.% the thermosetting resin binder, and a thermally conductive filler evenly dispersed therein in an amount in the range of 350-2,000 wt.% per 100 wt.% the thermosetting resin binder, the filler having a particle diameter in the range of 0.1-100 µm, and which makes the material at least have a thermal conductivity of 3.5 W/(m∙K) or higher and a viscosity at 60ºC or lower of 0.2-100 Pa∙s.

Description

熱伝導性材料及びその製造方法並びに大電流用インダクタThermally conductive material, method for producing the same, and inductor for large current
 本発明は、熱硬化性樹脂バインダーに熱伝導性フィラーを混合した熱伝導性材料及びその製造方法並びに熱伝導性材料を利用した大電流用インダクタに関する。 The present invention relates to a heat conductive material in which a heat conductive filler is mixed with a thermosetting resin binder, a method for manufacturing the heat conductive material, and a large current inductor using the heat conductive material.
 一般に、ハイブリッド自動車や燃料電池自動車等には、大電流を流すことができる大電流用インダクタを搭載しており、このような大電流用インダクタとしては特許文献1で開示されるリアクトル装置が知られている。ところで、この種の大電流用インダクタ(リアクトル装置)は、鉄心とこの鉄心に巻回したコイルをパッケージに収容し、さらに、ポッティング材を充填して保護するため、特に、ポッティング材には大電流が流れるコイルからの発熱を外部に逃がすための十分な熱伝導性及び放熱性が要求される。 Generally, a hybrid vehicle, a fuel cell vehicle, and the like are equipped with a large current inductor capable of flowing a large current, and a reactor device disclosed in Patent Document 1 is known as such a large current inductor. ing. By the way, this type of large current inductor (reactor device) accommodates an iron core and a coil wound around the iron core in a package, and further protects the potting material by filling it. Sufficient thermal conductivity and heat dissipation are required to release heat generated from the coil through which the gas flows.
 このため、従来より、バインダーに熱伝導性フィラーを混合し、電気部品の発熱を効率的に伝導及び放熱させるための熱伝導性材料も知られており、特許文献2には、流動性を有するゴムに熱伝導フィラーを充填し、混練・成形してなる熱伝導シートであって、熱伝導フィラーとして、平均粒径50~100μmのものと平均粒径10μm以下のものとを、重量比1:1~3:1の割合で混合した熱伝導シートが開示され、また、特許文献3には、40~100℃に融点を有するワックス及び/又はパラフィン、40~100℃で軟化する熱可塑性樹脂、球形度0.78以上で且つ平均粒径が3μm以上の球状アルミナを混合してなる高熱伝導性組成物が開示されている。 For this reason, conventionally, there is also known a heat conductive material for mixing a heat conductive filler in a binder to efficiently conduct and dissipate heat generated by an electrical component. Patent Document 2 has fluidity. A heat conductive sheet obtained by filling a rubber with a heat conductive filler and kneading and molding the heat conductive filler having an average particle diameter of 50 to 100 μm and an average particle diameter of 10 μm or less in a weight ratio of 1: A heat conductive sheet mixed at a ratio of 1 to 3: 1 is disclosed, and Patent Document 3 discloses wax and / or paraffin having a melting point of 40 to 100 ° C., a thermoplastic resin softened at 40 to 100 ° C., A highly thermally conductive composition obtained by mixing spherical alumina having a sphericity of 0.78 or more and an average particle diameter of 3 μm or more is disclosed.
特開2004-193398号公報JP 2004-193398 A 特開2001-139733号公報JP 2001-139733 A 特開2002-003830号公報JP 2002-003830 A
 しかし、上述したバインダーに熱伝導性フィラーを混合する従来の熱伝導性材料は、次のような問題点があった。 However, the conventional heat conductive material in which the above-mentioned binder is mixed with the heat conductive filler has the following problems.
 第一に、電子部品(電気部品)の表面とヒートシンク間に介在させて使用するなど、熱伝導性材料の使用方法や用途が特化される傾向があるため、他の電子部品等に適用した場合、必ずしもベストマッチングにならない難点がある。例えば、大電流用インダクタのように、微小隙間が多い部品の場合には、未充填の隙間が生じる虞れもあり、この場合には熱伝導効率及び放熱効率の低下を招いてしまう。 First, because it tends to be specialized in the use and use of heat conductive materials, such as interposing between the surface of an electronic component (electrical component) and a heat sink, it was applied to other electronic components. In some cases, there is a drawback that is not always best matching. For example, in the case of a component having many minute gaps such as a large current inductor, an unfilled gap may be generated. In this case, the heat conduction efficiency and the heat radiation efficiency are lowered.
 第二に、微小隙間への充填性を高めるため、熱伝導性材料に流動性を持たせた場合、バインダーと熱伝導性フィラーを混合撹拌する際にシェアをかけにくくなる。即ち、混練しにくくなるため、バインダーに対して熱伝導性フィラーを高密度で混合させ、かつ均一分散させることが難しくなる。結局、この場合も熱伝導効率及び放熱効率の低下を招くとともに、熱伝導性材料自身の品質(均質化)低下を招きやすい。 Secondly, in order to enhance the filling property in the minute gaps, if the heat conductive material is made fluid, it becomes difficult to apply a share when mixing and stirring the binder and the heat conductive filler. That is, since it becomes difficult to knead | mix, it becomes difficult to mix a heat conductive filler with a high density with respect to a binder, and to make it disperse | distribute uniformly. Eventually, in this case as well, the heat conduction efficiency and the heat dissipation efficiency are lowered, and the quality (homogenization) of the heat conductive material itself is liable to be lowered.
 本発明は、このような背景技術に存在する課題を解決した熱伝導性材料及びその製造方法並びに大電流用インダクタの提供を目的とするものである。 An object of the present invention is to provide a thermally conductive material, a method for manufacturing the same, and an inductor for large current that solve the problems existing in the background art.
 本発明に係る熱伝導性材料Riは、上述した課題を解決するため、熱硬化性樹脂バインダーに熱伝導性フィラーを混合した熱伝導性材料において、熱硬化性樹脂バインダーに、熱硬化性樹脂バインダー100〔wt%〕に対して、1~180〔wt%〕の範囲で選定した分散剤を配合するとともに、当該熱硬化性樹脂バインダー100〔wt%〕に対して、350~2000〔wt%〕の範囲であって粒径を0.1~100〔μm〕の範囲で選定した熱伝導性フィラーが均一分散し、少なくとも、熱伝導率が3.5〔W/(m・K)〕以上、かつ粘度が温度60〔℃〕以下で0.2~100〔Pa・s〕となる組成を有することを特徴とする。 In order to solve the above-described problems, the thermally conductive material Ri according to the present invention is a thermally conductive material in which a thermally conductive filler is mixed with a thermosetting resin binder. A dispersant selected in the range of 1 to 180 [wt%] is blended with 100 [wt%], and 350 to 2000 [wt%] with respect to 100 [wt%] of the thermosetting resin binder. The thermally conductive filler having a particle size of 0.1 to 100 [μm] is uniformly dispersed, and at least the thermal conductivity is 3.5 [W / (m · K)] or more, The composition is characterized in that the viscosity is 0.2 to 100 [Pa · s] at a temperature of 60 ° C. or lower.
 また、本発明に係る熱伝導性材料の製造方法は、熱硬化性樹脂バインダーに熱伝導性フィラーを配合して熱伝導性材料Riを製造するに際し、熱硬化性樹脂バインダーに、当該熱硬化性樹脂バインダー100〔wt%〕に対して、1~180〔wt%〕の範囲で選定した分散剤を配合するとともに、熱硬化性樹脂バインダー100〔wt%〕に対して、350~2000〔wt%〕の範囲であって粒径を0.1~100〔μm〕の範囲で選定した熱伝導性フィラーを混合し、撹拌することにより熱伝導性フィラーを均一分散させ、少なくとも、熱伝導率が3.5〔W/(m・K)〕以上、かつ粘度が温度60〔℃〕以下で0.2~100〔Pa・s〕となる組成を得るようにしたことを特徴とする。 Moreover, the manufacturing method of the heat conductive material which concerns on this invention, when mix | blending a heat conductive filler with a thermosetting resin binder and manufacturing heat conductive material Ri, the said thermosetting resin binder is made into the said thermosetting resin. A dispersant selected in the range of 1 to 180 [wt%] is blended with the resin binder 100 [wt%], and 350 to 2000 [wt%] with respect to the thermosetting resin binder 100 [wt%]. The heat conductive filler selected in the range of 0.1 to 100 [μm] is mixed and stirred to uniformly disperse the heat conductive filler, and at least the heat conductivity is 3 It is characterized in that a composition having a viscosity of 0.2 to 100 [Pa · s] at a temperature of not less than 5 [W / (m · K)] and a temperature of 60 [° C.] or less is obtained.
 さらに、本発明に係る大電流用インダクタ1は、縦形の平角導線を巻回した一又は二以上のコイル2と、このコイル2に装填するコア3と、このコア3を装填したコイル2を収容し、かつ熱伝導性素材により形成したパッケージ4とを備えるインダクタにおいて、熱硬化性樹脂バインダーに、熱硬化性樹脂バインダー100〔wt%〕に対して、1~180〔wt%〕の範囲で選定した分散剤を配合するとともに、当該熱硬化性樹脂バインダー100〔wt%〕に対して、350~2000〔wt%〕の範囲であって粒径を0.1~100〔μm〕の範囲で選定した熱伝導性フィラーが均一分散し、少なくとも、熱伝導率が3.5〔W/(m・K)〕以上、かつ粘度が温度60〔℃〕以下で0.2~100〔Pa・s〕となる組成を有する熱伝導性材料Riを、パッケージ4の内部にポッティング材5として充填してなることを特徴とする。 Furthermore, the large current inductor 1 according to the present invention accommodates one or more coils 2 wound with a vertical rectangular conductor, a core 3 loaded on the coil 2, and a coil 2 loaded with the core 3. In addition, in the inductor including the package 4 formed of a heat conductive material, the thermosetting resin binder is selected from 1 to 180 [wt%] with respect to 100 [wt%] of the thermosetting resin binder. In addition, the dispersant is blended, and the particle size is selected in the range of 350 to 2000 [wt%] and the particle diameter in the range of 0.1 to 100 [μm] with respect to 100 [wt%] of the thermosetting resin binder. The thermally conductive filler is uniformly dispersed, and at least 0.2 to 100 [Pa · s] when the thermal conductivity is 3.5 [W / (m · K)] or more and the viscosity is 60 [° C.] or less. Having a composition The conductive material Ri, characterized by comprising filling a potting material 5 inside of the package 4.
 一方、本発明は、その好適な態様により、熱伝導性材料Riにおける熱硬化性樹脂バインダーには、少なくとも、粘度を0.01~1〔Pa・s〕の範囲で選定したエポキシ系樹脂を含ませることができる。なお、この熱硬化性樹脂バインダーには、一液を用いる樹脂バインダー又は少なくとも主剤と硬化剤を含む二液以上を用いる樹脂バインダーを含ませることができる。また、熱伝導性フィラーには、電気絶縁性を持たせることができる。したがって、この熱伝導性フィラーには、少なくとも、酸化マグネシウム,酸化アルミニウム,酸化ケイ素,窒化アルミニウム,窒化ホウ素,の一つ又は二つ以上を用いた単一材又は複合材を含ませることができるとともに、単一の粒径又は複数の異なる粒径を含ませることができる。他方、大電流用インダクタ1におけるコイル2には、シート材により連続形成したコイルパターンプレートAsを順次折り畳んで製作したコイルを用いることができる。また、コイル2,コア3,パッケージ4、の一又は二以上の表面の一部又は全部には、少なくとも樹脂バインダーに、当該樹脂バインダー100〔wt%〕に対して、0.01~50〔wt%〕の範囲で選定した分散剤を配合するとともに、樹脂バインダー100〔wt%〕に対して、100~600〔wt%〕の範囲であって粒径を0.1~20〔μm〕の範囲で選定した熱伝導性フィラーが均一分散し、少なくとも、絶縁破壊強さが14〔kV/mm〕(ただし、10〔kHz〕,遮断電流10〔mA〕)以上、かつ粘度が0.05~3〔Pa・s〕となる組成を有する放熱性絶縁材料Rcを、コーティング剤6としてコーティングすることができる。なお、この樹脂バインダーには、シリコーン系樹脂バインダーを用いることが望ましい。 On the other hand, according to a preferred embodiment of the present invention, the thermosetting resin binder in the heat conductive material Ri includes at least an epoxy resin having a viscosity selected in the range of 0.01 to 1 [Pa · s]. Can be made. The thermosetting resin binder can include a resin binder using one liquid or a resin binder using at least two liquids including a main agent and a curing agent. Further, the heat conductive filler can have electrical insulation. Therefore, the thermally conductive filler can include at least a single material or a composite material using one or more of magnesium oxide, aluminum oxide, silicon oxide, aluminum nitride, and boron nitride. A single particle size or a plurality of different particle sizes can be included. On the other hand, as the coil 2 in the large current inductor 1, a coil produced by sequentially folding the coil pattern plate As continuously formed of a sheet material can be used. In addition, at least a part of one or two or more surfaces of the coil 2, the core 3, and the package 4, at least a resin binder, 0.01 to 50 [wt] with respect to 100 [wt%] of the resin binder. %] In the range of 100 to 600 [wt%] and the particle size in the range of 0.1 to 20 [μm] with respect to 100 [wt%] of the resin binder. The heat conductive filler selected in (1) is uniformly dispersed, at least the dielectric breakdown strength is 14 [kV / mm] (however, 10 [kHz], the breaking current is 10 [mA]) and the viscosity is 0.05 to 3 The heat dissipating insulating material Rc having a composition of [Pa · s] can be coated as the coating agent 6. In addition, it is desirable to use a silicone resin binder for this resin binder.
 このような本発明に係る熱伝導性材料Ri及びその製造方法並びに大電流用インダクタ1によれば、次のような顕著な効果を奏する。 According to the heat conductive material Ri and the manufacturing method thereof and the large current inductor 1 according to the present invention as described above, the following remarkable effects can be obtained.
 (1) 熱伝導性材料Riは、熱硬化性樹脂バインダーに、当該熱硬化性樹脂バインダー100〔wt%〕に対して、1~180〔wt%〕の範囲で選定した分散剤を配合するとともに、当該熱硬化性樹脂バインダー100〔wt%〕に対して、350~2000〔wt%〕の範囲であって粒径を0.1~100〔μm〕の範囲で選定した熱伝導性フィラーが均一分散し、少なくとも、熱伝導率が3.5〔W/(m・K)〕以上、かつ粘度が温度60〔℃〕以下で0.2~100〔Pa・s〕となる組成を有するため、例えば、微小隙間が多い部品の場合であっても未充填の隙間が生じる虞れがなく、熱伝導効率及び放熱効率の向上を図ることができるとともに、汎用性を高めることができ、加えて熱伝導性材料Riの品質(均質化)向上にも寄与できる。 (1) In the heat conductive material Ri, a dispersant selected in the range of 1 to 180 [wt%] with respect to 100 [wt%] of the thermosetting resin binder is added to the thermosetting resin binder. The heat conductive filler selected in the range of 350 to 2000 [wt%] and the particle size in the range of 0.1 to 100 [μm] with respect to 100 [wt%] of the thermosetting resin binder is uniform. Since it has a composition that is dispersed and has a thermal conductivity of 3.5 [W / (m · K)] or more and a viscosity of 0.2 to 100 [Pa · s] at a temperature of 60 ° C. or less, For example, even in the case of parts with many minute gaps, there is no risk of unfilled gaps, and heat conduction efficiency and heat dissipation efficiency can be improved, and versatility can be improved. Improved quality (homogenization) of conductive material Ri Also it can contribute.
 (2) 大電流用インダクタ1は、縦形の平角導線を巻回した一又は二以上のコイル2と、このコイル2に装填するコア3と、このコア3を装填したコイル2を収容し、かつ熱伝導性素材により形成したパッケージ4とを備え、このパッケージ4の内部に熱伝導性材料Riをポッティング材5として充填したため、コイル2(コア3)とパッケージ4間の熱伝導性能をより高めることができるとともに、コイル2に対する保護性能及び大電流用インダクタ1の耐久性をより高めることができる。 (2) The large current inductor 1 accommodates one or more coils 2 wound with a vertical rectangular conductor, a core 3 loaded on the coil 2, and a coil 2 loaded with the core 3. The package 4 made of a heat conductive material is provided, and the inside of the package 4 is filled with the heat conductive material Ri as the potting material 5, so that the heat conduction performance between the coil 2 (core 3) and the package 4 is further enhanced. In addition, the protection performance for the coil 2 and the durability of the large current inductor 1 can be further enhanced.
 (3) 好適な態様により、熱硬化性樹脂バインダーに、少なくとも、粘度を0.01~1〔Pa・s〕の範囲で選定したエポキシ系樹脂を用いれば、低粘度のエポキシ系樹脂に熱伝導性フィラーを混合させるため、熱伝導性フィラーの均一分散をより最適化させることができる。 (3) According to a preferred embodiment, when an epoxy resin selected at least in the range of 0.01 to 1 [Pa · s] is used as the thermosetting resin binder, heat conduction to the low viscosity epoxy resin is achieved. Since the conductive filler is mixed, the uniform dispersion of the heat conductive filler can be further optimized.
 (4) 好適な態様により、熱伝導性フィラーに、電気絶縁性を持たせれば、電子部品(電気部品)にとって、より望ましいコーティング剤或いはポッティング材を得ることができる。 (4) According to a preferred embodiment, if the thermally conductive filler has electrical insulation, a coating agent or potting material that is more desirable for electronic components (electrical components) can be obtained.
 (5) 好適な態様により、熱伝導性フィラーに、少なくとも、酸化マグネシウム,酸化アルミニウム,酸化ケイ素,窒化アルミニウム,窒化ホウ素,の一つ又は二つ以上を含む単一材又は複合材を用いれば、良好な熱伝導性及び放熱性を確保する観点から、より大きなパフォーマンスを得ることができる。 (5) According to a preferred embodiment, if a single material or a composite material containing at least one of magnesium oxide, aluminum oxide, silicon oxide, aluminum nitride, and boron nitride is used as the thermally conductive filler, Greater performance can be obtained from the viewpoint of ensuring good thermal conductivity and heat dissipation.
 (6) 好適な態様により、複数の異なる粒径を有する熱伝導性フィラーを用いれば、熱硬化性樹脂バインダーに対して熱伝導性フィラーを高密度で均一分散させるに際し、異なる粒径の混在により、熱伝導性(放熱性)を高める観点から、より最適化を図ることができる。 (6) If a thermally conductive filler having a plurality of different particle diameters is used according to a preferred embodiment, when the thermally conductive filler is uniformly dispersed at a high density in the thermosetting resin binder, From the viewpoint of increasing the thermal conductivity (heat dissipation), further optimization can be achieved.
 (7) 好適な態様により、熱硬化性樹脂バインダーに、一液を用いる樹脂バインダー又は少なくとも主剤と硬化剤を含む二液以上を用いる樹脂バインダーを含ませれば、熱伝導性材料Riを製造するに際し、製造時の反応性及び取扱性等をより柔軟化させることができる。 (7) According to a preferred embodiment, when the thermosetting resin binder includes a resin binder using one liquid or a resin binder using at least two liquids including a main agent and a curing agent, the heat conductive material Ri can be manufactured. Further, the reactivity and handling at the time of production can be made more flexible.
 (8) 好適な態様により、大電流用インダクタ1のコイル2に、シート材により連続形成したコイルパターンプレートAsを順次折り畳んで製作したコイルを用いれば、製造プロセスの簡易化及び単純化、更には、これに伴う製造工数の削減を図れるため、大電流用インダクタ1に係わる量産性の向上及び低コスト性の向上を実現できる。また、コイル2の角部を直角にできるため、大電流用インダクタ1の更なる偏平化により熱伝導性及び熱放射性をより高めることができる。 (8) According to a preferred embodiment, if a coil produced by sequentially folding coil pattern plates As continuously formed of a sheet material is used for the coil 2 of the high-current inductor 1, the manufacturing process can be simplified and simplified. Since the manufacturing man-hours associated therewith can be reduced, it is possible to improve the mass productivity and the low cost related to the high current inductor 1. Moreover, since the corner | angular part of the coil 2 can be made into a right angle, thermal conductivity and thermal radiation can be improved more by the further flattening of the inductor 1 for large currents.
 (9) 好適な態様により、樹脂バインダーに、当該樹脂バインダー100〔wt%〕に対して、0.01~50〔wt%〕の範囲で選定した分散剤を配合するとともに、樹脂バインダー100〔wt%〕に対して、100~600〔wt%〕の範囲であって粒径を0.1~20〔μm〕の範囲で選定した熱伝導性フィラーが均一分散し、少なくとも、絶縁破壊強さが14〔kV/mm〕(ただし、10〔kHz〕,遮断電流10〔mA〕)以上、かつ粘度が0.05~3〔Pa・s〕となる組成を有する放熱性絶縁材料Rcを、コイル2,コア3,パッケージ4、の一又は二以上の表面の一部又は全部にコーティング剤6としてコーティングすれば、コイル2,コア3及びパッケージ4に対して、所定の厚さを有する放熱性絶縁材料Rcのコーティング層を容易かつ確実に設けることができるとともに、コイル2,コア3及びパッケージ4自身の熱伝導性及び放熱性をより高めることができる。この際、樹脂バインダーに、シリコーン系樹脂バインダーを用いれば、コイル2,コア3及びパッケージ4自身の熱伝導性及び放熱性を高める観点からより望ましいパフォーマンスを得ることができる。 (9) According to a preferred embodiment, the resin binder is blended with a dispersant selected in the range of 0.01 to 50 [wt%] with respect to the resin binder 100 [wt%], and the resin binder 100 [wt %], The thermally conductive filler selected in the range of 100 to 600 [wt%] and the particle size in the range of 0.1 to 20 [μm] is uniformly dispersed, and at least the dielectric breakdown strength is A heat dissipating insulating material Rc having a composition of 14 [kV / mm] (10 [kHz], breaking current 10 [mA]) or more and a viscosity of 0.05 to 3 [Pa · s] , Core 3, package 4, if a part or all of one or more surfaces are coated as coating agent 6, a heat-dissipating insulating material having a predetermined thickness for coil 2, core 3, and package 4 Rc With a coating layer can be provided easily and reliably, it is possible to coil 2, increase the core 3 and the package 4 itself thermal conductivity and heat dissipation. At this time, if a silicone-based resin binder is used as the resin binder, more desirable performance can be obtained from the viewpoint of improving the thermal conductivity and heat dissipation of the coil 2, the core 3 and the package 4 itself.
本発明の最良実施形態に係る熱伝導性材料の製造工程図、Manufacturing process diagram of a thermally conductive material according to the best embodiment of the present invention, 本発明の最良実施形態に係る大電流用インダクタに用いる放熱性絶縁材料の製造工程図、The manufacturing process figure of the heat-radiating insulating material used for the inductor for large currents according to the best embodiment of the present invention, 同大電流用インダクタに用いるコイルの原理構成を示す斜視図、The perspective view which shows the principle structure of the coil used for the inductor for the same large current, 同大電流用インダクタの中間アッセンブリの平面図、Plan view of the intermediate assembly of the same high-current inductor, 同大電流用インダクタの正面断面図、Front sectional view of the same large current inductor, 同熱伝導性材料に用いる原料の温度に対する粘度特性図、Viscosity characteristic diagram with respect to temperature of raw materials used for the heat conductive material, 同大電流用インダクタに用いる放熱性絶縁材料の加熱時間に対する質量減少率特性図、Mass reduction rate characteristic diagram with respect to heating time of heat-dissipating insulating material used for the same high-current inductor, 同放熱性絶縁材料の加熱時間に対する絶縁破壊強さ特性図、Dielectric breakdown strength characteristic diagram with respect to heating time of the heat-dissipating insulating material, 同大電流用インダクタの作動時間に対する上昇温度特性図、Figure of rising temperature characteristics with respect to operating time of the inductor for the same large current, 本発明の変更実施形態に係る熱伝導性材料の一部を示す製造工程図、Manufacturing process diagram showing a part of the thermally conductive material according to a modified embodiment of the present invention, 同熱伝導性材料に用いるフィラー充填率対熱伝導率特性図、Filler filling rate vs. thermal conductivity characteristics diagram used for the thermally conductive material, 同熱伝導性材料の実施例及び市販品の温度対粘度特性図、Example of heat conductive material and temperature vs. viscosity characteristic diagram of commercially available product, 同熱伝導性材料の実施例及び市販品の評価試験結果表、Examples of thermal conductive materials and evaluation test result table of commercially available products, 同熱伝導性材料を大電流用インダクタに用いた際の作動時間に対する上昇温度特性図、Figure of rising temperature characteristics with respect to operating time when using the same thermally conductive material for high current inductors,
 1:大電流用インダクタ,2:コイル,3:コア,4:パッケージ,5:ポッティング材,6:コーティング剤,Ri:熱伝導性材料,Rc:放熱性絶縁材料,As:コイルパターンプレート 1: Inductor for large current, 2: Coil, 3: Core, 4: Package, 5: Potting material, 6: Coating agent, Ri: Thermally conductive material, Rc: Heat radiation insulating material, As: Coil pattern plate
 次に、本発明に係る最良実施形態を挙げ、図面に基づき詳細に説明する。 Next, the best embodiment according to the present invention will be given and described in detail with reference to the drawings.
 最初に、本実施形態に係る熱伝導性材料Ri及びその製造方法について、図1に示す製造工程図,図6を参照して説明する。 First, the thermal conductive material Ri according to the present embodiment and the manufacturing method thereof will be described with reference to the manufacturing process diagram shown in FIG. 1 and FIG.
 熱伝導性材料Riは、基本的に、熱硬化性樹脂バインダーに、当該熱硬化性樹脂バインダー100〔wt%〕に対して、1~180〔wt%〕の範囲で選定した分散剤を配合するとともに、当該熱硬化性樹脂バインダー100〔wt%〕に対して、350~2000〔wt%〕の範囲であって粒径を0.1~100〔μm〕の範囲で選定した熱伝導性フィラーが均一分散した組成を有している。したがって、熱伝導性材料Riを製造するに際しては、原料となる熱硬化性樹脂バインダー,分散剤及び熱伝導性フィラーを用意する。 In the heat conductive material Ri, basically, a dispersing agent selected in the range of 1 to 180 [wt%] with respect to 100 [wt%] of the thermosetting resin binder is blended in the thermosetting resin binder. In addition, a thermally conductive filler selected in the range of 350 to 2000 [wt%] and the particle size in the range of 0.1 to 100 [μm] with respect to 100 [wt%] of the thermosetting resin binder is provided. It has a uniformly dispersed composition. Therefore, when manufacturing the heat conductive material Ri, a thermosetting resin binder, a dispersant, and a heat conductive filler as raw materials are prepared.
 熱硬化性樹脂バインダーには、有機材料となる耐熱性の比較的高いエポキシ樹脂、特に、主剤と硬化剤(二液混合の加熱硬化型)からなるエポキシ樹脂を使用する。なお、硬化剤には、酸無水物,ポリアミン,イミダゾール等の各種硬化剤を用いることができる。このような主剤と硬化剤からなるエポキシ樹脂を用いれば、熱伝導性材料Riを製造するに際し、製造時の反応性及び取扱性等をより柔軟化させることができる。主剤及び硬化剤は、いずれも粘度を0.01~1〔Pa・s〕の範囲で選定した低粘度のエポキシ樹脂を使用する。これにより、比較的低粘度のエポキシ樹脂に対して後述する熱伝導性フィラーを混合させることができるため、熱伝導性フィラーの均一分散をより最適化させることができる。図6は、温度〔℃〕と原料(主剤と硬化剤)の粘度〔Pa・s〕の関係を示しており、同図中、Mimが本実施形態で用いる主剤(エポキシ樹脂)の特性、Mihが本実施形態で用いる硬化剤の特性を示す。なお、図6中、MamとMahは市販されている一般的な主剤(エポキシ樹脂)と硬化剤の特性、MbmとMbhは市販されている他の一般的な主剤(エポキシ樹脂)と硬化剤の特性であり、それぞれ比較例として示す。いずれも大電流用インダクタのポッティング材に用いる熱伝導性材料としては十分といえない。なお、熱硬化性樹脂バインダーとしては、エポキシ樹脂が望ましいが、その他、耐熱性が必要な場合には、シリコーン系樹脂が使用可能であるとともに、耐熱性を必要としない場合には、ウレタン系樹脂,フェノール樹脂,メラミン樹脂,ユリア樹脂,不飽和ポリエステル樹脂,アルキド樹脂,熱硬化性ポリイミド樹脂なども使用可能である。 As the thermosetting resin binder, an epoxy resin having a relatively high heat resistance as an organic material, in particular, an epoxy resin composed of a main agent and a curing agent (a two-component mixed thermosetting type) is used. Various curing agents such as acid anhydrides, polyamines, and imidazoles can be used as the curing agent. When an epoxy resin composed of such a main agent and a curing agent is used, the reactivity and handling at the time of production can be made more flexible when producing the heat conductive material Ri. As the main agent and the curing agent, low viscosity epoxy resins having a viscosity selected in the range of 0.01 to 1 [Pa · s] are used. Thereby, since the heat conductive filler mentioned later can be mixed with the epoxy resin of comparatively low viscosity, the uniform dispersion | distribution of a heat conductive filler can be optimized more. FIG. 6 shows the relationship between the temperature [° C.] and the viscosity [Pa · s] of the raw materials (main agent and curing agent). In FIG. 6, Mim shows the characteristics of the main agent (epoxy resin) used in this embodiment, Mih. Shows the characteristics of the curing agent used in this embodiment. In FIG. 6, Mam and Mah are characteristics of a commercially available general main agent (epoxy resin) and a curing agent, and Mbm and Mbh are other general main agents (epoxy resin) and a curing agent that are commercially available. This is a characteristic and is shown as a comparative example. Neither of them is sufficient as a heat conductive material used for a potting material of a large current inductor. As the thermosetting resin binder, epoxy resin is desirable, but in addition, when heat resistance is required, silicone resin can be used, and when heat resistance is not required, urethane resin Phenol resin, melamine resin, urea resin, unsaturated polyester resin, alkyd resin, thermosetting polyimide resin, etc. can also be used.
 分散剤は、主剤又は硬化剤の100〔wt%〕に対して、1~180〔wt%〕の範囲で選定する。この場合、分散剤には公知の各種分散剤を使用することが可能であり、特定の分散剤には限定されない。主剤又は硬化剤に対して適量の分散剤を配合すれば、主剤又は硬化剤に後述する高密度の熱伝導性フィラーを混合した場合であっても良好な分散性を実現することが可能となり、主剤又は硬化剤に対する熱伝導性フィラーの高密度化をより均一化することができる。 The dispersing agent is selected in the range of 1 to 180 [wt%] with respect to 100 [wt%] of the main agent or curing agent. In this case, various known dispersants can be used as the dispersant, and the dispersant is not limited to a specific dispersant. If a suitable amount of dispersant is blended with the main agent or curing agent, it becomes possible to achieve good dispersibility even when a high-density thermal conductive filler described later is mixed with the main agent or curing agent. The densification of the heat conductive filler with respect to the main agent or the curing agent can be made more uniform.
 熱伝導性フィラーには、酸化マグネシウムの単一材を使用する。酸化マグネシウムは、コストメリットに優れるとともに、熱伝導性が高く、電気絶縁性を有している。電気絶縁性を持たせることにより、電子部品(電気部品)にとって、より望ましいコーティング剤或いはポッティング材を得ることができる。また、熱伝導性フィラーとして用いる酸化マグネシウム粒子は、主剤又は硬化剤の100〔wt%〕に対して、350~2000〔wt%〕の範囲で選定する。さらに、酸化マグネシウム粒子の粒径は、0.1~100〔μm〕の範囲で選定し、特に、複数の異なる粒径を含ませることが望ましい。本実施形態では、5~100〔μm〕程度の大粒フィラー、0.5~20〔μm〕程度の中粒フィラー、0.1~10〔μm〕程度の小粒フィラーを混在させた。勿論、粒径が0.1~100〔μm〕の範囲であれば、単一の粒径であってもよい。その他、酸化マグネシウム粒子の代わりとしては、窒化アルミニウム粒子又は窒化ホウ素粒子の単一材、或いは酸化アルミニウム粒子又は酸化ケイ素粒子を用いてもよいし、酸化マグネシウム粒子,窒化アルミニウム粒子,窒化ホウ素粒子,酸化アルミニウム粒子,酸化ケイ素粒子の二つ以上を含む複合材を用いてもよい。このように、熱伝導性フィラーに、少なくとも、酸化マグネシウム,窒化アルミニウム,窒化ホウ素,酸化アルミニウム,酸化ケイ素の一つ又は二つ以上を含む単一材又は複合材を用いれば、良好な熱伝導性及び放熱性を確保する観点から、より大きなパフォーマンスを得ることができるとともに、複数の異なる粒径を有するフィラーを選定すれば、バインダーとなる主剤又は硬化剤に対して各フィラーを高密度で均一分散させるに際し、異なる粒径の混在により、熱伝導性(放熱性)を高める観点からより最適化させることができる。なお、熱伝導性フィラーは、用途によって、電気絶縁性及び熱伝導性が確保される窒化ケイ素,酸化チタン,酸化ジルコニウム,酸化スズ,酸化亜鉛,炭化ケイ素等の他の各種セラミックス粒子も使用可能である。 マ グ ネ シ ウ ム Use a single material of magnesium oxide for the thermally conductive filler. Magnesium oxide is excellent in cost merit, has high thermal conductivity, and has electrical insulation. By providing electrical insulation, it is possible to obtain a coating agent or potting material that is more desirable for electronic components (electrical components). The magnesium oxide particles used as the heat conductive filler are selected in the range of 350 to 2000 [wt%] with respect to 100 [wt%] of the main agent or curing agent. Further, the particle diameter of the magnesium oxide particles is selected in the range of 0.1 to 100 [μm], and it is particularly desirable to include a plurality of different particle diameters. In this embodiment, a large filler of about 5 to 100 [μm], a medium filler of about 0.5 to 20 [μm], and a small filler of about 0.1 to 10 [μm] are mixed. Of course, a single particle diameter may be used as long as the particle diameter is in the range of 0.1 to 100 [μm]. In addition, instead of magnesium oxide particles, a single material of aluminum nitride particles or boron nitride particles, or aluminum oxide particles or silicon oxide particles may be used. Magnesium oxide particles, aluminum nitride particles, boron nitride particles, oxidation A composite material including two or more of aluminum particles and silicon oxide particles may be used. As described above, if a single material or a composite material containing at least one of magnesium oxide, aluminum nitride, boron nitride, aluminum oxide, and silicon oxide is used for the thermally conductive filler, good thermal conductivity is obtained. In addition, from the viewpoint of ensuring heat dissipation, greater performance can be obtained, and if fillers having a plurality of different particle sizes are selected, each filler is uniformly dispersed at a high density with respect to the main agent or curing agent as a binder. In doing so, the mixture of different particle sizes can be further optimized from the viewpoint of enhancing thermal conductivity (heat dissipation). As the thermal conductive filler, other various ceramic particles such as silicon nitride, titanium oxide, zirconium oxide, tin oxide, zinc oxide and silicon carbide that can ensure electrical insulation and thermal conductivity can be used depending on the application. is there.
 次に、具体的な製造手順について説明する。まず、主剤と硬化剤を混合するに先だち、予め主剤溶液と硬化剤溶液を別々に製造する。主剤溶液の製造に際しては、最初に、用意した主剤(エポキシ樹脂)に対して、用意した分散剤を配合する(工程S1,S2)。次いで、用意した酸化マグネシウム粒子(熱伝導性フィラー)を混合する(工程S2,S3)。そして、得られた混合溶液は、撹拌装置により十分に撹拌するとともに、脱泡装置により十分な脱泡を行う(工程S4)。これにより、エポキシ樹脂(主剤)に対して高密度の酸化マグネシウム粒子が均一分散する主剤溶液を得ることができる(工程S5)。同様に、硬化剤溶液の製造に際しては、最初に、用意した硬化剤に対して、用意した分散剤を配合する(工程S6,S7)。次いで、用意した酸化マグネシウム粒子を混合する(工程S7,S8)。そして、得られた混合溶液は、撹拌装置により十分に撹拌するとともに、脱泡装置により十分な脱泡を行う(工程S9)。これにより、硬化剤に対して高密度の酸化マグネシウム粒子が均一分散する硬化剤溶液を得ることができる(工程S10)。 Next, a specific manufacturing procedure will be described. First, prior to mixing the main agent and the curing agent, the main agent solution and the curing agent solution are separately prepared in advance. In producing the main agent solution, first, the prepared dispersant is blended with the prepared main agent (epoxy resin) (steps S1 and S2). Next, the prepared magnesium oxide particles (thermally conductive filler) are mixed (steps S2 and S3). And the obtained mixed solution fully stirs with a stirring apparatus, and performs sufficient defoaming with a defoaming apparatus (process S4). Thereby, a main agent solution in which high-density magnesium oxide particles are uniformly dispersed with respect to the epoxy resin (main agent) can be obtained (step S5). Similarly, when manufacturing the curing agent solution, first, the prepared dispersant is blended with the prepared curing agent (steps S6 and S7). Next, the prepared magnesium oxide particles are mixed (steps S7 and S8). And the obtained mixed solution fully stirs with a stirring apparatus, and performs sufficient defoaming with a defoaming apparatus (process S9). Thereby, the hardening | curing agent solution in which a high-density magnesium oxide particle is uniformly disperse | distributed with respect to a hardening | curing agent can be obtained (process S10).
 次いで、得られた主剤溶液と硬化剤溶液を適度に撹拌しながら混合する(工程S5,S10,S11)。これにより、全体の粘度が0.2~100〔Pa・s〕となる目的の熱伝導性材料Riを得ることができる(工程S12)。粘度が0.2~100〔Pa・s〕となる熱伝導性材料Riは、後述する大電流用インダクタ1のポッティング材5として最適であり、本実施形態に係る熱伝導性材料Riでは、熱伝導率が3.5〔W/(m・K)〕以上となる4.12〔W/(m・K)〕を確保し、また、絶縁破壊強さが7〔kV/mm〕(ただし、10〔kHz〕,遮断電流10〔mA〕)を確保するなど、最適な粘性に加え、ポッティング材5として十分な熱伝導性及び電気絶縁性を確保できた。なお、主剤溶液と硬化剤溶液を混合する工程(S12)は、実際に使用する直前、即ち、大電流用インダクタ1のポッティング材5として使用する場合には、パッケージ4(ケース部4p)に注入(充填)する直前に行う。 Next, the obtained main agent solution and curing agent solution are mixed while being appropriately stirred (steps S5, S10, S11). As a result, a target thermal conductive material Ri having a total viscosity of 0.2 to 100 [Pa · s] can be obtained (step S12). The heat conductive material Ri having a viscosity of 0.2 to 100 [Pa · s] is optimal as the potting material 5 of the inductor 1 for large current described later. In the heat conductive material Ri according to this embodiment, the heat conductive material Ri 4.12 [W / (m · K)] with a conductivity of 3.5 [W / (m · K)] or more is ensured, and the dielectric breakdown strength is 7 [kV / mm] (however, In addition to optimum viscosity, such as 10 [kHz] and a breaking current of 10 [mA]), sufficient heat conductivity and electrical insulation as the potting material 5 can be secured. The step (S12) of mixing the main agent solution and the curing agent solution is injected into the package 4 (case portion 4p) immediately before actual use, that is, when used as the potting material 5 of the inductor 1 for large current. (Just before filling).
 このように、本実施形態に係る熱伝導性材料Ri及びその製造方法によれば、熱硬化性樹脂バインダーに、当該熱硬化性樹脂バインダー100〔wt%〕に対して、1~180〔wt%〕の範囲で選定した分散剤を配合するとともに、当該熱硬化性樹脂バインダー100〔wt%〕に対して、350~2000〔wt%〕の範囲であって粒径を0.1~100〔μm〕の範囲で選定した熱伝導性フィラーが均一分散し、少なくとも、熱伝導率が3.5〔W/(m・K)〕以上、かつ粘度が0.2~100〔Pa・s〕となる組成を有するため、例えば、微小隙間が多い部品の場合であっても未充填の隙間が生じる虞れがなく、熱伝導効率及び放熱効率の向上を図ることができるとともに、汎用性を高めることができ、加えて熱伝導性材料Riの品質(均質化)向上にも寄与できる。 Thus, according to the thermally conductive material Ri and the manufacturing method thereof according to the present embodiment, the thermosetting resin binder is 1 to 180 [wt%] with respect to 100 [wt%] of the thermosetting resin binder. In the range of 350 to 2000 [wt%] and a particle size of 0.1 to 100 [μm] with respect to 100 [wt%] of the thermosetting resin binder. The heat conductive filler selected in the range is uniformly dispersed, at least the thermal conductivity is 3.5 [W / (m · K)] or more, and the viscosity is 0.2 to 100 [Pa · s]. Since it has a composition, for example, even in the case of a part with many minute gaps, there is no risk of unfilled gaps, and it is possible to improve heat conduction efficiency and heat dissipation efficiency and increase versatility. In addition, heat conductive material R Also it can contribute to the quality (homogenization) improve.
 次に、このような熱伝導性材料Riを用いて好適な本実施形態に係る大電流用インダクタ1について、図3~図5を参照して説明する。 Next, a high-current inductor 1 according to the present preferred embodiment using such a heat conductive material Ri will be described with reference to FIGS.
 大電流用インダクタ1には、熱伝導性材料Riをポッティング材5として使用するため、最初に、ポッティング材5を使用する対象となる大電流用インダクタの中間アッセンブリ1mの製造方法について、図4を参照して説明する。 Since the heat conductive material Ri is used as the potting material 5 for the high current inductor 1, first, FIG. 4 shows a method of manufacturing the intermediate assembly 1m of the high current inductor to which the potting material 5 is used. The description will be given with reference.
 まず、主要部品となる、コイル2,コア3及びパッケージ4をそれぞれ製作する。コイル2の製作に際しては、厚さが0.5~1.0〔mm〕程度、幅がコイル2の設計仕様に対応した寸法の銅素材によるフープ母材を用意する。そして、このフープ母材を所定のコイル製造機に供給する。コイル製造機では、プレス工程によりフープ母材の打ち抜き処理を行い、図3に示すようなシート材により連続形成したコイルパターンプレートAsを得る。このコイルパターンプレートAsは、1ターン分を構成するコイルパターン部2pc…及びコイルパターン部2pc…同士を連結する連結パターン部2jx,2jy…を有する。この連結パターン部2jx,2jy…は、コイルパターン部2pc…から突出する長さ(オフセット長)の異なる二種類の連結パターン部2jx,2jy…を有し、順次交互に設ける。なお、例示するコイルパターン部2pc…の幅(最大部位)は10〔mm〕である。このコイルパターンプレートAsは、全ての角部(コーナー部)に所定の曲率によるアール形成を行うとともに、全てのエッジ部に対してバリを生じさせないバリフリー処理を行う。これらのアール形成及びバリフリー処理は、プレス工程と同時又はプレス工程の後工程で行うことができる。このようなアール形成及びバリフリー処理を行うことにより、後述するコーティング剤を均一にコーティングできる。 First, the coil 2, the core 3 and the package 4 which are the main parts are manufactured. When the coil 2 is manufactured, a hoop base material made of a copper material having a thickness of about 0.5 to 1.0 [mm] and a width corresponding to the design specifications of the coil 2 is prepared. And this hoop base material is supplied to a predetermined coil manufacturing machine. In the coil manufacturing machine, a hoop base material is punched out by a pressing process to obtain a coil pattern plate As continuously formed from a sheet material as shown in FIG. This coil pattern plate As has coil pattern portions 2pc,... Constituting one turn, and connection pattern portions 2jx, 2ji, which connect the coil pattern portions 2pc. The connection pattern portions 2jx, 2ji,... Have two types of connection pattern portions 2jx, 2ji,... With different lengths (offset lengths) protruding from the coil pattern portions 2pc, and are alternately provided. The width (maximum part) of the illustrated coil pattern portions 2pc is 10 [mm]. The coil pattern plate As performs rounding with a predetermined curvature at all corners (corner portions) and performs a burr-free process that does not cause burrs on all edge portions. These rounding and burr-free treatment can be performed simultaneously with the pressing step or in the subsequent step of the pressing step. By performing such rounding and burr-free treatment, a coating agent described later can be uniformly coated.
 次いで、折畳工程によりコイルパターンプレートAsを順次折り畳む折り畳み処理を行う。この場合、連結パターン部2jx,2jy…における二位置、即ち、図3に示す連結パターン部2jx,2jy…の端部位置K1…と中間部位置K2…をそれぞれ反対方向に折り返す。これにより、コイルパターン部2pc…は順次積層された状態となり、図4及び図5に示すコイル2を製作できる。この際、二種類の連結パターン部2jx,2jy,2jx,2jy…は、軸方向から見て相互にオフセットした位置に配されることになり、両者の重なりが回避される。したがって、各連結パターン部2jx…と2jy…の軸方向における積層時の厚さを1/2にできる。このようなコイル2を用いれば、製造プロセスの簡易化及び単純化、更には、これに伴う製造工数の削減を図れるため、大電流用インダクタ1に係わる量産性の向上及び低コスト性の向上を実現できる。特に、コイルパターンプレートAsを順次折り返して製作できるため、任意の折り返し間で得られるコイルを製造する際の巻数は1ターン(360〔゜〕)となり巻効率を高めることができるとともに、フープ母材を打ち抜く際の形状が一方向に整列するため、コイル製造機(製造工程)を単純化し、製造コストの低減及び製造精度の向上を図ることができる。また、コイル2の角部を直角にできるため、大電流用インダクタ1の更なる偏平化により、熱伝導性及び熱放射性をより高めることができる。加えて、コイル2を製造する際におけるコイル2自身の内部には折り返し部分が存在しないため、磁気回路としての磁気効率を高めることができるとともに、小型コンパクト化(薄型化)を図る上で有利になる。しかも、コイル部2の全体形状を任意の形状に選定できるなど、設計自由度を飛躍的に高めることができる。そして、得られたコイル2に対しては、放熱性絶縁材料Rcを用いたコーティング剤によりコーティング処理を行う。 Next, a folding process is performed in which the coil pattern plate As is sequentially folded by a folding process. In this case, two positions in the connection pattern portions 2jx, 2ji,..., That is, end positions K1... And intermediate portion positions K2 of the connection pattern portions 2jx, 2ji. As a result, the coil pattern portions 2pc... Are sequentially stacked, and the coil 2 shown in FIGS. 4 and 5 can be manufactured. At this time, the two types of connection pattern portions 2jx, 2jy, 2jx, 2jy... Are arranged at positions offset from each other when viewed in the axial direction, and the overlapping of both is avoided. Therefore, the thickness of the connection pattern portions 2jx... 2jy. If such a coil 2 is used, the manufacturing process can be simplified and simplified, and the manufacturing man-hours associated therewith can be reduced. Therefore, it is possible to improve the mass productivity of the high-current inductor 1 and the low cost. realizable. In particular, since the coil pattern plate As can be produced by sequentially folding back, the number of turns in producing a coil obtained between any turns can be increased to 1 turn (360 °), and the winding efficiency can be increased. Since the shapes when punching are aligned in one direction, the coil manufacturing machine (manufacturing process) can be simplified, and the manufacturing cost can be reduced and the manufacturing accuracy can be improved. Moreover, since the corner | angular part of the coil 2 can be made into a right angle, thermal conductivity and thermal radiation can be improved more by the further flattening of the inductor 1 for large currents. In addition, since there is no folded portion inside the coil 2 itself when the coil 2 is manufactured, it is possible to increase the magnetic efficiency as a magnetic circuit, and it is advantageous in reducing the size and size (thinning). Become. Moreover, the degree of freedom in design can be drastically increased, for example, the overall shape of the coil portion 2 can be selected as an arbitrary shape. And the obtained coil 2 is coated with a coating agent using the heat-dissipating insulating material Rc.
 次に、コーティング剤となる放熱性絶縁材料Rcの製造方法及びコイル2に対するコーティング方法について、図2に示す製造工程図,図7及び図8を参照して説明する。 Next, a method for manufacturing the heat-radiating insulating material Rc serving as a coating agent and a method for coating the coil 2 will be described with reference to the manufacturing process diagram shown in FIG. 2 and FIGS.
 まず、放熱性絶縁材料Rcの製造方法について説明する。この放熱性絶縁材料Rcも、基本的には、前述した熱伝導性材料Riと同様の組成構造を有しており、シリコーン樹脂バインダーに、当該シリコーン樹脂バインダー100〔wt%〕に対して、0.01~50〔wt%〕の範囲で選定した分散剤を配合するとともに、シリコーン樹脂バインダー100〔wt%〕に対して、100~600〔wt%〕の範囲であって粒径を0.1~20〔μm〕の範囲で選定した熱伝導性フィラーが均一分散する組成を有する。したがって、放熱性絶縁材料Rcの製造に際しては、原料として、シリコーン樹脂バインダー,分散剤,希釈溶剤及び熱伝導性フィラーを用意する。 First, a method for manufacturing the heat-radiating insulating material Rc will be described. This heat dissipating insulating material Rc also basically has the same composition structure as that of the above-described heat conductive material Ri, and the silicone resin binder has 0% with respect to 100 [wt%] of the silicone resin binder. A dispersant selected in the range of 0.01 to 50 wt% is blended, and the particle size is 0.1 to 100 wt% with respect to 100 wt% of the silicone resin binder. It has a composition in which the thermally conductive filler selected in the range of ˜20 [μm] is uniformly dispersed. Therefore, in manufacturing the heat-radiating insulating material Rc, a silicone resin binder, a dispersant, a diluting solvent, and a heat conductive filler are prepared as raw materials.
 シリコーン樹脂バインダーには、有機材料となる耐熱性の比較的高い低粘度のシリコーン樹脂を使用する。低粘度のシリコーン樹脂を用いれば、後述する熱伝導性フィラーを混合させる際に、熱伝導性フィラーの均一分散をより最適化させることができる。バインダーとしてはシリコーン樹脂が望ましいが、その他、シリコーン樹脂の代わりとしては、耐熱性が必要な場合、エポキシ系樹脂も使用可能であるとともに、耐熱性が必要でない場合には、ウレタン系樹脂,フェノール樹脂,メラミン樹脂,ユリア樹脂,不飽和ポリエステル樹脂,アルキド樹脂,熱硬化性ポリイミド樹脂なども使用可能である。 For the silicone resin binder, a low-viscosity silicone resin with a relatively high heat resistance, which is an organic material, is used. When a low-viscosity silicone resin is used, the uniform dispersion of the thermally conductive filler can be further optimized when the thermally conductive filler described later is mixed. Silicone resin is desirable as the binder, but as an alternative to silicone resin, epoxy resin can be used when heat resistance is required, and urethane resin or phenol resin when heat resistance is not required Melamine resin, urea resin, unsaturated polyester resin, alkyd resin, thermosetting polyimide resin, etc. can also be used.
 分散剤及び希釈溶剤は、公知の各種分散剤及び公知の各種希釈溶剤を使用することが可能であり、特定の分散剤及び希釈溶剤には限定されない。この場合、分散剤は、シリコーン樹脂(熱硬化性樹脂バインダー)の100〔wt%〕に対して、0.01~50〔wt%〕の範囲で選定するとともに、希釈溶剤は粘度の調製に用いる。したがって、粘度の調製が不要のときは、希釈溶剤も不要となり、この希釈溶剤は必要に応じて用いればよい。このように、シリコーン樹脂に対して適量の分散剤を配合すれば、シリコーン樹脂に後述する高密度の熱伝導性フィラーを混合した場合であっても良好な分散性を実現することが可能となり、シリコーン樹脂に対する熱伝導性フィラーの高密度化をより均一化することができる。 As the dispersant and the diluent solvent, various known dispersants and various known diluent solvents can be used, and are not limited to specific dispersants and diluent solvents. In this case, the dispersing agent is selected in the range of 0.01 to 50 [wt%] with respect to 100 [wt%] of the silicone resin (thermosetting resin binder), and the diluent solvent is used for adjusting the viscosity. . Therefore, when it is not necessary to adjust the viscosity, a diluting solvent is also unnecessary, and this diluting solvent may be used as necessary. Thus, if an appropriate amount of dispersant is blended with the silicone resin, it becomes possible to achieve good dispersibility even when the silicone resin is mixed with a high-density thermally conductive filler described later, The densification of the heat conductive filler with respect to the silicone resin can be made more uniform.
 熱伝導性フィラーには、酸化マグネシウムの単一材と電気絶縁性の高い酸化ケイ素(シリカ)粒子を組合わせて使用する。酸化マグネシウムは、コストメリットに優れるとともに、熱伝導性が高く、電気絶縁性も有している。熱伝導性フィラーとして用いる酸化マグネシウム粒子は、粒径を0.1~20〔μm〕の範囲で選定するとともに、酸化ケイ素粒子の粒径には複数の異なる粒径を含ませることが望ましい。本実施形態では、1~20〔μm〕程度の中粒フィラーと0.1~10〔μm〕程度の小粒フィラーの混合材(複合材)を使用した。そして、シリコーン樹脂の100〔wt%〕に対して、酸化マグネシウム粒子と酸化ケイ素粒子の全体を100~600〔wt%〕の範囲で選定、望ましくは195〔wt%〕前後で選定する。勿論、粒径が0.1~20〔μm〕の範囲であれば、単一の粒径であってもよい。なお、熱伝導性フィラーは酸化マグネシウム粒子と酸化ケイ素粒子の複合材を用いたが、この熱伝導性フィラーは酸化マグネシウム粒子又は酸化ケイ素粒子のいずれか一方のみで構成してもよい。その他、酸化マグネシウム粒子又は酸化ケイ素粒子の代わりとしては、窒化アルミニウム粒子,窒化ホウ素粒子,酸化アルミニウム粒子の単一材を用いてもよいし、酸化マグネシウム粒子,窒化アルミニウム粒子,窒化ホウ素粒子,酸化ケイ素粒子,酸化アルミニウムの二つ以上を含む複合材を用いてもよい。このように、熱伝導性フィラーに、少なくとも、酸化マグネシウム,窒化アルミニウム,窒化ホウ素,酸化ケイ素粒子,酸化アルミニウム粒子の一つ又は二つ以上を含む単一材又は複合材を用いれば、良好な熱伝導性及び放熱性を確保する観点から、より大きなパフォーマンスを得ることができるとともに、酸化ケイ素粒子のように複数の異なる粒径を有するフィラーを選定すれば、バインダーとなるシリコーン樹脂に対して各フィラーを高密度で均一分散させるに際し、異なる粒径の混在により、熱伝導性(放熱性)を高める観点からより最適化させることができる。なお、熱伝導性フィラーは、用途によって、電気絶縁性及び熱伝導性が確保される窒化ケイ素,酸化チタン,酸化ジルコニウム,酸化スズ,酸化亜鉛,炭化ケイ素等の他の各種セラミックス粒子も使用可能である。 熱 A single material of magnesium oxide and silicon oxide (silica) particles with high electrical insulation are used in combination for the thermally conductive filler. Magnesium oxide is excellent in cost merit, has high thermal conductivity, and also has electrical insulation. It is desirable that the magnesium oxide particles used as the thermally conductive filler have a particle size selected in the range of 0.1 to 20 [μm] and that the silicon oxide particles have a plurality of different particle sizes. In the present embodiment, a mixed material (composite material) of medium filler of about 1 to 20 [μm] and small filler of about 0.1 to 10 [μm] is used. Then, with respect to 100 [wt%] of the silicone resin, the entire magnesium oxide particles and silicon oxide particles are selected in the range of 100 to 600 [wt%], preferably around 195 [wt%]. Of course, a single particle size may be used as long as the particle size is in the range of 0.1 to 20 [μm]. In addition, although the composite material of the magnesium oxide particle and the silicon oxide particle was used for the heat conductive filler, this heat conductive filler may be composed of only one of the magnesium oxide particles and the silicon oxide particles. In addition, instead of magnesium oxide particles or silicon oxide particles, a single material of aluminum nitride particles, boron nitride particles, aluminum oxide particles may be used, or magnesium oxide particles, aluminum nitride particles, boron nitride particles, silicon oxide A composite material including two or more of particles and aluminum oxide may be used. As described above, when a single material or a composite material containing at least one of magnesium oxide, aluminum nitride, boron nitride, silicon oxide particles, and aluminum oxide particles is used as the thermally conductive filler, good heat can be obtained. From the viewpoint of ensuring conductivity and heat dissipation, it is possible to obtain greater performance, and if fillers having a plurality of different particle sizes such as silicon oxide particles are selected, each filler can be used for the silicone resin as a binder. Can be further optimized from the viewpoint of improving thermal conductivity (heat dissipation) by mixing different particle diameters. As the thermal conductive filler, other various ceramic particles such as silicon nitride, titanium oxide, zirconium oxide, tin oxide, zinc oxide and silicon carbide that can ensure electrical insulation and thermal conductivity can be used depending on the application. is there.
 次に、具体的な製造手順について説明する。まず、用意したシリコーン樹脂(熱硬化性樹脂バインダー)に対して、用意した分散剤,希釈溶剤,酸化マグネシウム粒子及び酸化ケイ素粒子を配合(混合)する(工程S21,S22,S23,S24,S25)。そして、撹拌装置により十分に撹拌する(工程S26)。この際、熱伝導性フィラーとは著しく比重の異なるビーズを被撹拌材料に添加し、遊星撹拌のような均一分散可能な撹拌手法を用いて、酸化マグネシウム粒子及び酸化ケイ素粒子の均一分散を行うことが望ましい。また、全体の粘度は、希釈溶剤を適量配合し、1〔Pa・s〕程度に調製するとともに、撹拌時に発生する気泡に対しては、脱泡装置により十分な脱泡を行う(工程S27)。これにより、シリコーン樹脂に対して酸化マグネシウム粒子及び酸化ケイ素粒子が均一分散する高密度構造の放熱性絶縁材料Rcを得ることができる(工程S28)。 Next, a specific manufacturing procedure will be described. First, the prepared dispersing agent, diluent solvent, magnesium oxide particles and silicon oxide particles are blended (mixed) with the prepared silicone resin (thermosetting resin binder) (steps S21, S22, S23, S24, S25). . And it fully stirs with a stirring apparatus (process S26). At this time, beads having a specific gravity remarkably different from that of the heat conductive filler are added to the material to be stirred, and the magnesium oxide particles and silicon oxide particles are uniformly dispersed using a stirring method capable of uniform dispersion such as planetary stirring. Is desirable. In addition, the entire viscosity is adjusted to about 1 [Pa · s] by blending an appropriate amount of a diluting solvent, and sufficient defoaming is performed by a defoaming device for bubbles generated during stirring (step S27). . Thereby, the heat-radiating insulating material Rc having a high density structure in which the magnesium oxide particles and the silicon oxide particles are uniformly dispersed in the silicone resin can be obtained (step S28).
 表1に、得られた放熱性絶縁材料Rcの特性(性能)を示す。なお、比較例として同様の用途の耐熱性絶縁コーティング剤として一般に市販されているポリアミドイミド樹脂を用いた放熱性絶縁材料Rrの特性(性能)を示した。
Figure JPOXMLDOC01-appb-T000001
Table 1 shows the characteristics (performance) of the heat-dissipating insulating material Rc obtained. In addition, the characteristic (performance) of the heat-radiation insulating material Rr using the polyamideimide resin generally marketed as a heat-resistant insulating coating agent of the same use as a comparative example was shown.
Figure JPOXMLDOC01-appb-T000001
 図7は、得られた放熱性絶縁材料Rcと比較例として同様の用途の耐熱性絶縁コーティング剤として一般に市販されているポリアミドイミド樹脂を用いた放熱性絶縁材料Rrの加熱時間〔H〕(250〔℃〕)に対する質量減少率〔%〕の特性を示すとともに、図8は、得られた放熱性絶縁材料Rcと比較例としての放熱性絶縁材料Rrの加熱時間〔H〕(200〔℃〕)に対する絶縁破壊強さ〔kV/mm〕の特性を示す。表1,図7及び図8から明らかなように、本実施形態に係る放熱性絶縁材料Rcは、大電流用インダクタのコイル2,コア3,パッケージ4にとって十分となる熱伝導率1.30〔W/(m・K)〕以上を確保しているとともに、絶縁破壊強さも十分となる14〔kV/mm〕(10〔kHz,遮断電流10〔mA〕)以上を確保している。また、耐熱性の評価となる質量減少率も1000時間において-3〔%〕以内を確保している。さらに、熱安定性評価(ヒートサイクル試験)において3000回(-30~200〔℃〕)後でも剥離やクラックは見られなかった。 FIG. 7 shows the heating time [H] (250) of the heat-dissipating insulating material Rr using a polyamideimide resin that is generally commercially available as a heat-resistant insulating coating agent having the same use as the comparative heat-releasing insulating material Rc. 8 shows the characteristics of the mass reduction rate [%] with respect to [° C.], and FIG. 8 shows the heating time [H] (200 [° C.] of the heat dissipating insulating material Rc and the heat insulating insulating material Rr as a comparative example ) Shows the characteristics of dielectric breakdown strength [kV / mm]. As is apparent from Tables 1, 7, and 8, the heat dissipating insulating material Rc according to the present embodiment has a thermal conductivity of 1.30 [sufficient for the coil 2, the core 3, and the package 4 of the large current inductor. W / (m · K)] or more is secured, and 14 [kV / mm] (10 [kHz, breaking current 10 [mA]) or more is secured, which is sufficient for dielectric breakdown strength. Also, the mass reduction rate, which is an evaluation of heat resistance, is ensured to be within -3 [%] at 1000 hours. Further, in the thermal stability evaluation (heat cycle test), no peeling or cracking was observed even after 3000 times (−30 to 200 ° C.).
 次に、この放熱性絶縁材料Rcをコーティング剤6として使用し、上述したコイル2の表面2f…をコーティング処理するコーティング方法について説明する。 Next, a coating method for coating the surface 2f of the coil 2 described above using the heat-dissipating insulating material Rc as the coating agent 6 will be described.
 コーティング処理は、放熱性絶縁材料Rcを収容したディップ槽に、コイル2をディップするディップコート処理により行う(工程S29)。この場合、コイル2の両端におけるリード部をチャック等により把持し、コイル2の各導体ターン部2m…間に隙間を空けた状態でディップを行う。ディップコート処理では、ディップ槽からの引き上げ速度によりコーティング層の厚さが決まるため、予め、引き上げ速度を設定する。引き上げ速度としては、コーティング層の厚さが60~80〔μm〕程度となるように、0.1~2.0〔mm/s〕の範囲で設定することができる。コーティング処理には、その他、スプレーコーティング処理や電着塗装処理等の各種コーティング処理を用いることができる。 The coating process is performed by a dip coating process in which the coil 2 is dipped in a dip tank containing the heat-radiating insulating material Rc (step S29). In this case, the lead portions at both ends of the coil 2 are gripped by a chuck or the like, and dipping is performed with a gap between each conductor turn portion 2m. In the dip coating process, since the thickness of the coating layer is determined by the lifting speed from the dip tank, the lifting speed is set in advance. The pulling speed can be set in the range of 0.1 to 2.0 [mm / s] so that the thickness of the coating layer is about 60 to 80 [μm]. In addition, various coating processes such as a spray coating process and an electrodeposition coating process can be used for the coating process.
 この後、放熱性絶縁材料Rcをコーティングしたコイル2に対する焼成処理を行う。焼成処理は、焼成温度を200〔℃〕、焼成時間を15〔min〕に設定した環境下で行う。これにより、コイル2の表面に、60~80〔μm〕の厚さを有するコーティング層を設けたコイル2を得ることができる。このようなディップコート処理及び焼成処理を行うことにより、コイル2に対する放熱性絶縁材料Rcのコーティング、更にはコイル2におけるコーティング層の成膜を容易かつ確実に行うことができるとともに、特に、シート材により連続形成したコイルパターンプレートAsを順次折り畳んで製作したコイル2のような塗布しにくい形状部分を有するコイルであっても容易かつ均質なコーティングを行うことができる。 Thereafter, the coil 2 coated with the heat dissipating insulating material Rc is fired. The firing treatment is performed in an environment where the firing temperature is set to 200 [° C.] and the firing time is set to 15 [min]. As a result, the coil 2 in which a coating layer having a thickness of 60 to 80 μm is provided on the surface of the coil 2 can be obtained. By performing such dip coating treatment and firing treatment, the coating of the heat-radiating insulating material Rc on the coil 2 and the formation of the coating layer on the coil 2 can be easily and reliably performed. Thus, even a coil having a shape portion that is difficult to apply, such as the coil 2 manufactured by sequentially folding the coil pattern plate As that is continuously formed, can be easily and uniformly coated.
 他方、コア3は、全体をドーナツ状に製作する。この場合、コア3は珪素鋼板を積層した積層コアを用いるが、一体に焼成したアモルファス等を用いた焼結コアであってもよい。コア3は、コイル2を装着できるように、複数(例示は二つ)のコア分割部3a,3bの組合わせにより構成する。そして、コア3(コア分割部3a,3b)もコイル2と同様に、放熱性絶縁材料Rcを収容したディップ槽を用いてディップコート処理を行う(工程S30)。この場合、基本的には、上述したコイル2のコーティング処理と同様に、コーティング層の厚さが60~80〔μm〕程度となるようにコーティング処理を行うとともに、この後、コア3の表面に対する焼成処理を行う。 On the other hand, the entire core 3 is manufactured in a donut shape. In this case, the core 3 is a laminated core in which silicon steel plates are laminated, but may be a sintered core using an integrally sintered amorphous material or the like. The core 3 is configured by a combination of a plurality (two in the illustrated example) of the core dividing portions 3a and 3b so that the coil 2 can be mounted. And the core 3 (core division | segmentation part 3a, 3b) also dip-coats using the dip tank which accommodated heat dissipation insulating material Rc similarly to the coil 2 (process S30). In this case, basically, the coating process is performed so that the thickness of the coating layer is about 60 to 80 [μm] as in the above-described coating process of the coil 2. A baking process is performed.
 また、パッケージ4は、コイル2を収容可能な上方に開口したケース部4pと、このケース部4pの開口を覆うカバー部4cを備える。ケース部4pとカバー部4cは、熱伝導性素材、例えば、アルミニウム素材等により、それぞれ一体成形する。さらに、得られたケース部4pとカバー部4cに対して、放熱性絶縁材料Rcによるコーティング処理を行う(工程S31)。この場合、放熱性絶縁材料Rcを収容したディップ槽に、ケース部4p及びカバー部4cをディップするディップコート処理を行う。ディップコート処理は、基本的に上述したコア分割部3a…のコーティング処理と同様に、コーティング層の厚さが60~80〔μm〕程度となるようにコーティング処理を行うとともに、この後、コーティングしたケース部4p及びカバー部4cに対する焼成処理を行う。よって、これらの処理工程を経て、ケース部4p及びカバー部4c(パッケージ4)の表面4fに所定の厚さを有するコーティング層を設けたパッケージ4を得ることができる。 The package 4 includes a case portion 4p that opens upward to accommodate the coil 2, and a cover portion 4c that covers the opening of the case portion 4p. The case portion 4p and the cover portion 4c are integrally formed of a heat conductive material, for example, an aluminum material. Further, the obtained case portion 4p and cover portion 4c are subjected to a coating treatment with the heat-dissipating insulating material Rc (step S31). In this case, a dip coating process is performed to dip the case portion 4p and the cover portion 4c into the dip tank containing the heat-radiating insulating material Rc. In the dip coating process, basically, the coating process is performed so that the thickness of the coating layer is about 60 to 80 [μm], as in the above-described coating process of the core dividing section 3a. A baking process is performed on the case portion 4p and the cover portion 4c. Therefore, through these processing steps, it is possible to obtain a package 4 in which a coating layer having a predetermined thickness is provided on the surface 4f of the case portion 4p and the cover portion 4c (package 4).
 そして、これらのコイル2,コア3,パッケージ4が得られたなら中間組立を行う(工程S32)。まず、コイル2にコア分割部3a,3bを組付けることによりコイルアッセンブリを製作する。この場合、コイル2には一対のコイル部21,22を使用し、各コア分割部3a,3bを、コイル部21,22の内部空間にそれぞれ収容するとともに、各コア分割部3a,3bの相互間に、厚さ1〔mm〕程度のガラスエポキシ樹脂製のセパレータシートを介在させ、接着剤を用いて各コア分割部3a,3bの相互間を結合する。これにより、コア3を装着したコイル2、即ち、図4に示すようなコイルアッセンブリが得られる。また、コイル部21,22の一端同士は、中間リード18mにより接続するとともに、コイル部21,22の他端には、それぞれ導出リード18p,18nの端部を接続する。さらに、得られたコイルアッセンブリは、同図に示すように、ケース部4pの内部に収容する。この際、例えば、シリコンゴム等を用いた複数の保持部材17…をケース部4pの内部底面上に敷き、この上にコイルアッセンブリ(コイル2)を載せる。なお、必要によりケース部4pの内壁部とコイル2間にも同様の保持部材17…を介在させてもよい。これにより、大電流用インダクタ1の中間アッセンブリ1mを得ることができる(工程S33,S13)。 Then, if these coils 2, cores 3, and packages 4 are obtained, intermediate assembly is performed (step S32). First, a coil assembly is manufactured by assembling the core dividing portions 3a and 3b to the coil 2. In this case, a pair of coil parts 21 and 22 are used for the coil 2, and each core division | segmentation part 3a, 3b is each accommodated in the internal space of the coil parts 21 and 22, and each core division part 3a, 3b mutual A separator sheet made of glass epoxy resin having a thickness of about 1 mm is interposed therebetween, and the core divided portions 3a and 3b are bonded to each other using an adhesive. Thereby, the coil 2 to which the core 3 is attached, that is, a coil assembly as shown in FIG. 4 is obtained. Further, one end of each of the coil portions 21 and 22 is connected by an intermediate lead 18m, and the other end of each of the coil portions 21 and 22 is connected to an end portion of the lead-out leads 18p and 18n, respectively. Further, the obtained coil assembly is accommodated in the case portion 4p as shown in FIG. At this time, for example, a plurality of holding members 17 using silicon rubber or the like are laid on the inner bottom surface of the case portion 4p, and the coil assembly (coil 2) is placed thereon. If necessary, similar holding members 17 may be interposed between the inner wall portion of the case portion 4p and the coil 2. Thereby, the intermediate assembly 1m of the high-current inductor 1 can be obtained (steps S33 and S13).
 次いで、ケース部4pの内部に、前述した熱伝導性材料Riをポッティング材5として充填(注入)する(工程S14)。そして、熱伝導性材料Riに使用したエポキシ樹脂の硬化温度に対応する温度で加熱することによりポッティング材5に対する硬化処理を行う(工程S15)。また、この際、脱泡装置により十分な脱泡を行う(工程S16)。ポッティング材5に対する硬化処理が終了したなら最終組立を行う(工程S17)。この場合、ケース部4pの上にカバー部4cを載せ、複数の固定ネジ16…により固定する。15…は固定ネジ16…が螺着するケース部4p側のネジ孔である。さらに、導出リード18p,18nの先端側は、図5に示すように、カバー4cに設けた開口部から外部に導出する。以上の製造工程を経て、図5に示す目的の大電流用インダクタ1を得ることができる(工程S18)。 Next, the above-described thermally conductive material Ri is filled (injected) into the case portion 4p as the potting material 5 (step S14). And the hardening process with respect to the potting material 5 is performed by heating at the temperature corresponding to the curing temperature of the epoxy resin used for the heat conductive material Ri (process S15). At this time, sufficient defoaming is performed by a defoaming apparatus (step S16). When the curing process for the potting material 5 is completed, final assembly is performed (step S17). In this case, the cover portion 4c is placed on the case portion 4p and fixed by a plurality of fixing screws 16. 15 are screw holes on the side of the case portion 4p to which the fixing screws 16 are screwed. Further, as shown in FIG. 5, the leading ends of the lead leads 18p and 18n are led to the outside through an opening provided in the cover 4c. Through the above manufacturing steps, the intended high current inductor 1 shown in FIG. 5 can be obtained (step S18).
 図9は、得られた大電流用インダクタ1に通電した際における作動時間〔分〕に対する各部の上昇温度特性を示す。Tciは本実施形態におけるコイル2の表面温度、Tcrは比較例におけるコイル2の表面温度、Tbiは本実施形態におけるコア3の表面温度、Tbrは比較例におけるコア3の表面温度、Tpiは本実施形態におけるパッケージ4の表面温度、Tprは比較例におけるパッケージ4の表面温度をそれぞれ示す。この場合、本実施形態は、熱伝導性材料Ri及び放熱性絶縁材料Rcを使用したインダクタ1であり、比較例は、熱伝導性材料Rb及び放熱性絶縁材料Rrを使用したインダクタである。図9に示すように、コイル2の表面温度に着目した場合、本実施形態では120〔℃〕程度、比較例では150〔℃〕程度となり、本実施形態では比較例に対して30〔℃〕程度低下する改善効果が認められる。また、パッケージ4の表面温度に着目した場合、本実施形態では75〔℃〕程度、比較例では85〔℃〕程度となり、本実施形態では概ね10〔℃〕程度低下する改善効果が認められる。このように、本実施形態に係る大電流用インダクタ1は良好な熱伝導性及び熱放射性を有している。 FIG. 9 shows the rising temperature characteristics of each part with respect to the operating time [minute] when the obtained large current inductor 1 is energized. Tci is the surface temperature of the coil 2 in the present embodiment, Tcr is the surface temperature of the coil 2 in the comparative example, Tbi is the surface temperature of the core 3 in the present embodiment, Tbr is the surface temperature of the core 3 in the comparative example, and Tpi is the present embodiment The surface temperature and Tpr of the package 4 in the form respectively indicate the surface temperature of the package 4 in the comparative example. In this case, the present embodiment is an inductor 1 using the heat conductive material Ri and the heat dissipating insulating material Rc, and the comparative example is an inductor using the heat conductive material Rb and the heat dissipating insulating material Rr. As shown in FIG. 9, when attention is paid to the surface temperature of the coil 2, in this embodiment, it is about 120 [° C.], in the comparative example is about 150 [° C.], and in this embodiment, 30 [° C.] relative to the comparative example. An improvement effect that decreases to a certain extent is observed. Further, when attention is paid to the surface temperature of the package 4, an improvement effect of about 75 [° C.] in the present embodiment and about 85 [° C.] in the comparative example and about 10 [° C.] in the present embodiment is recognized. Thus, the large current inductor 1 according to the present embodiment has good thermal conductivity and thermal radiation.
 よって、このような本実施形態に係る大電流用インダクタ1によれば、縦形の平角導線を巻回した一又は二以上のコイル2と、このコイル2に装填するコア3と、このコア3を装填したコイル2を収容し、かつ熱伝導性素材により形成したパッケージ4とを備え、このパッケージ4の内部に熱伝導性材料Riをポッティング材5として充填するようにしたため、コイル2(コア3)とパッケージ4間の熱伝導性能をより高めることができるとともに、コイル2に対する保護性能及び大電流用インダクタ1の耐久性をより高めることができる。また、コイル2,コア3,パッケージ4、の一又は二以上の表面の一部又は全部に放熱性絶縁材料Rcをコーティング剤6としてコーティングするとともに、この放熱性絶縁材料Rcは、シリコーン樹脂バインダーに、当該シリコーン樹脂バインダー100〔wt%〕に対して、0.01~50〔wt%〕の範囲で選定した分散剤を配合するとともに、シリコーン樹脂バインダー100〔wt%〕に対して、100~600〔wt%〕の範囲であって粒径を0.1~20〔μm〕の範囲で選定した熱伝導性フィラーが均一分散し、少なくとも、絶縁破壊強さが14〔kV/mm〕以上、かつ粘度が0.05~3〔Pa・s〕となる組成を有するため、コイル2,コア3及びパッケージ4に対して、所定の厚さを有する放熱性絶縁材料Rcのコーティング層を容易かつ確実に設けることができるとともに、コイル2,コア3及びパッケージ4自身の熱伝導性及び放熱性をより高めることができる。 Therefore, according to such a large current inductor 1 according to the present embodiment, one or two or more coils 2 wound with a vertical rectangular conductive wire, a core 3 loaded in the coil 2, and the core 3 are The package 2 is provided with a package 4 formed of a thermally conductive material and containing the loaded coil 2, and the package 4 is filled with the thermally conductive material Ri as the potting material 5, so that the coil 2 (core 3) In addition, it is possible to further improve the heat conduction performance between the package 4 and the protection performance for the coil 2 and the durability of the large current inductor 1. Further, a part or all of one or more surfaces of the coil 2, the core 3 and the package 4 are coated with a heat-dissipating insulating material Rc as a coating agent 6, and the heat-dissipating insulating material Rc is applied to a silicone resin binder. In addition, a dispersant selected in the range of 0.01 to 50 [wt%] is blended with respect to 100 [wt%] of the silicone resin binder, and 100 to 600 with respect to 100 [wt%] of the silicone resin binder. The thermally conductive filler selected in the range of [wt%] and the particle size in the range of 0.1 to 20 [μm] is uniformly dispersed, at least the dielectric breakdown strength is 14 [kV / mm] or more, and Since the composition has a viscosity of 0.05 to 3 [Pa · s], the coil 2, the core 3 and the package 4 are coated with a heat-dissipating insulating material Rc having a predetermined thickness. It is possible to provide a coating layer can be easily and reliably coil 2, increase the core 3 and the package 4 itself thermal conductivity and heat dissipation.
 次に、本発明の変更実施形態に係る熱伝導性材料Riの実施例について、図10~図14を参照して説明する。 Next, examples of the thermally conductive material Ri according to the modified embodiment of the present invention will be described with reference to FIGS.
 変更実施形態に係る熱伝導性材料Riは、特に、熱伝導性フィラーを変更したものである。即ち、前述した実施形態(基本実施形態)では、熱伝導性フィラーとして、酸化マグネシウムの単一材を用いた例を示したが、変更実施形態は、酸化アルミニウム(アルミナ)と酸化マグネシウム(マグネシア)の複合材を用いたものであり、三つの試料X,Y,Zを用いた。表2に、各試料X,Y,Zにおけるアルミナとマグネシアの配合比を示す。
Figure JPOXMLDOC01-appb-T000002
In particular, the thermally conductive material Ri according to the modified embodiment is obtained by changing the thermally conductive filler. That is, in the above-described embodiment (basic embodiment), an example in which a single material of magnesium oxide is used as the thermally conductive filler has been shown. However, in the modified embodiment, aluminum oxide (alumina) and magnesium oxide (magnesia) are used. And three samples X, Y, and Z were used. Table 2 shows the mixing ratio of alumina and magnesia in each sample X, Y, and Z.
Figure JPOXMLDOC01-appb-T000002
 一方、図10には、熱硬化性樹脂バインダーに対する各試料X,Y,Z(熱伝導性フィラー)の配合率〔%〕に対する熱伝導率〔W/(m・K)〕の変化特性を示す。図10から明らかなように、マグネシアに対してアルミナの配合比を高くしたほうが熱伝導率が高くなる傾向がある。即ち、試料X,Y,Zの順に熱伝導率が高くなる。また、マグネシアとアルミナの配合比を一定とした場合、熱硬化性樹脂バインダーに対する各試料X,Y,Zの配合率を高くしたほうが熱伝導率が高くなる傾向がある。 On the other hand, FIG. 10 shows the change characteristics of the thermal conductivity [W / (m · K)] with respect to the blending ratio [%] of each sample X, Y, Z (thermal conductive filler) with respect to the thermosetting resin binder. . As is apparent from FIG. 10, the thermal conductivity tends to increase as the mixing ratio of alumina with respect to magnesia is increased. That is, the thermal conductivity increases in the order of samples X, Y, and Z. Further, when the mixing ratio of magnesia and alumina is constant, the thermal conductivity tends to increase as the mixing ratio of each sample X, Y, Z with respect to the thermosetting resin binder increases.
 変更実施形態に係る熱伝導性材料Riは、熱伝導性フィラーを変更した点を除き、他の原料は前述した基本実施形態の場合と同じである。即ち、熱硬化性樹脂バインダーとしてエポキシ樹脂(エポキシ樹脂+硬化剤)を用いるとともに、この熱硬化性樹脂バインダー100〔wt%〕に対して、1~180〔wt%〕の範囲で選定した分散剤、更には、熱硬化性樹脂バインダー100〔wt%〕に対して、350~2000〔wt%〕の範囲であって、粒径を0.1~100〔μm〕の範囲で選定した熱伝導性フィラーを用いる。熱伝導性フィラーの粒径は、5~100〔μm〕程度の大粒フィラー、0.5~20〔μm〕程度の中粒フィラー、0.1~10〔μm〕程度の小粒フィラーを混在させる。表3に、変更実施形態(実施例)で用いる各原料及び配合率を示す。
Figure JPOXMLDOC01-appb-T000003
The heat conductive material Ri according to the modified embodiment is the same as that of the basic embodiment described above except that the heat conductive filler is changed. That is, an epoxy resin (epoxy resin + curing agent) is used as a thermosetting resin binder, and a dispersing agent selected within a range of 1 to 180 [wt%] with respect to 100 [wt%] of the thermosetting resin binder. Furthermore, the thermal conductivity is selected in the range of 350 to 2000 [wt%] and the particle size in the range of 0.1 to 100 [μm] with respect to 100 [wt%] of the thermosetting resin binder. Use a filler. The particle size of the heat conductive filler is mixed with a large filler of about 5 to 100 [μm], a medium filler of about 0.5 to 20 [μm], and a small filler of about 0.1 to 10 [μm]. In Table 3, each raw material and compounding ratio which are used by modified embodiment (Example) are shown.
Figure JPOXMLDOC01-appb-T000003
 したがって、変更実施形態に係る熱伝導性材料Riの製造方法も、基本的には前述した基本実施形態の場合と同じになり、図1に示した製造工程図の一部を抽出した図11に示す製造工程図のように、ステップ3及びステップ8を、「酸化マグネシウム粒子」から「アルミナ粒子+マグネシア粒子」に変更すればよい。それ以外の工程は、図1に示した製造工程図と同じになる。 Therefore, the manufacturing method of the thermally conductive material Ri according to the modified embodiment is basically the same as that of the basic embodiment described above, and FIG. 11 is a part of the manufacturing process diagram shown in FIG. As shown in the manufacturing process diagram, steps 3 and 8 may be changed from “magnesium oxide particles” to “alumina particles + magnesia particles”. The other steps are the same as the manufacturing process diagram shown in FIG.
 図12~図14は、製造した変更実施形態に係る熱伝導性材料Riの各種特性を示し、図12は熱伝導性材料Riの温度対粘度特性図、図13は熱伝導性材料Riの評価試験結果表、図14は熱伝導性材料Riを大電流用インダクタに用いた際の作動時間に対する上昇温度特性図である。 12 to 14 show various characteristics of the thermally conductive material Ri according to the manufactured modified embodiment, FIG. 12 is a temperature vs. viscosity characteristic diagram of the thermally conductive material Ri, and FIG. 13 is an evaluation of the thermally conductive material Ri. FIG. 14 is a test result table, and FIG. 14 is a graph showing a rise in temperature with respect to operating time when the heat conductive material Ri is used for a large current inductor.
 熱伝導性材料Riとしては、二つの実施例OP1及びOP2を用いた。実施例OP1は、熱伝導性フィラーとして、試料Yを使用するとともに、熱硬化性樹脂バインダーに対するフィラー配合率を91.2〔wt%〕とし、実施例OP2は、熱伝導性フィラーとして、試料Zを使用するとともに、熱硬化性樹脂バインダーに対するフィラー配合率を93.3〔wt%〕としたものである。また、比較例として代表的な三つの市販品TR1,TR2及びTR3を用いた。 Two examples OP1 and OP2 were used as the thermally conductive material Ri. Example OP1 uses Sample Y as the thermally conductive filler, and the filler blending ratio with respect to the thermosetting resin binder is 91.2 wt%. Example OP2 uses Sample Z as the thermally conductive filler. And the filler compounding ratio with respect to the thermosetting resin binder is 93.3 [wt%]. Moreover, as a comparative example, three typical commercial products TR1, TR2 and TR3 were used.
 なお、評価試験(図13)において、作業性は、粘度と脱泡性により評価し、熱的特性は、熱伝導率,ガラス転移温度及び耐熱衝撃性により評価し、電気的特性は、体積抵抗率と絶縁破壊強さにより評価した。この場合、脱泡性の評価は、パッケージ4に、25〔ミリリットル〕の熱伝導性材料Riをポッティング後、圧力50〔hPa〕,温度70〔℃〕の条件により気泡が抜けるまでの時間を用いた。ガラス転移温度は、150〔℃〕以上の温度であり、耐熱性を評価した。耐熱衝撃性の評価は、熱膨張率の異なる板材料(シリコーンゴム,Cu,Fe,Al,アルマイト,アラミド紙)を熱伝導性材料Riと一緒にポッティングし、150〔℃〕に加熱した後、3〔℃〕の水に入れる熱衝撃処理を5回繰り返した。そして、熱伝導性材料Riと板材料の界面状態を観察することにより剥離及びクラックの有無を確認し、剥離及びクラックが無ければ「○」、有れば「×」として評価した。絶縁破壊強さの評価は、車載用インダクタとして使用される周波数に近い10〔kHz〕により評価するとともに、遮断電流は10〔mA〕を用いた。 In the evaluation test (FIG. 13), workability is evaluated by viscosity and defoaming property, thermal characteristics are evaluated by thermal conductivity, glass transition temperature and thermal shock resistance, and electrical characteristics are volume resistance. The rate and dielectric breakdown strength were evaluated. In this case, the evaluation of the defoaming property is based on the time taken for the bubbles to escape depending on the conditions of pressure 50 [hPa] and temperature 70 [° C.] after potting 25 [milliliter] of the heat conductive material Ri on the package 4. It was. The glass transition temperature was 150 [° C.] or higher, and the heat resistance was evaluated. Thermal shock resistance was evaluated by potting plate materials (silicone rubber, Cu, Fe, Al, alumite, aramid paper) having different thermal expansion coefficients together with the heat conductive material Ri and heating to 150 [° C.] The thermal shock treatment in 3 [° C.] water was repeated 5 times. And the presence or absence of peeling and a crack was confirmed by observing the interface state of heat conductive material Ri and board | plate material, and it evaluated as "(circle)" when there was no peeling and a crack, and "x". The dielectric breakdown strength was evaluated at 10 [kHz] close to the frequency used as the in-vehicle inductor, and the breaking current was 10 [mA].
 変更実施形態に係る熱伝導性材料Riの特性(評価)において、実施例OP1は、図12に示すように、25〔℃〕の粘度が58〔Pa・s〕と非常に低く、常温でも十分に注型が可能となるなど、良好な粘度特性を示すとともに、脱泡性も6.5〔分〕となり、作業性については良好な結果を得た。また、熱伝導率も6.2〔W/(m・K)〕となり、高い値を示すとともに、耐熱衝撃性についても全ての板材料に対して「○」となった。さらに、実施例OP1の熱伝導性材料Riを大電流用インダクタに用いた際の作動時間に対する上昇温度特性は、図14に示すようになり、市販品TR2に対しても良好な結果を得た。なお、図14において、OP1cは実施例PO1を用いた際のコイル2の表面温度、TR2cは市販品TR2を用いた際のコイル2の表面温度、OP1bは実施例PO1を用いた際のコア3の表面温度、TR2bは市販品TR2を用いた際のコア3の表面温度、OP1pは実施例PO1を用いた際のパッケージ4の表面温度、TR2pは市販品TR2を用いた際のパッケージ4の表面温度をそれぞれ示す。このように、実施例OP1は、特に、熱伝導率と作業性のバランスが求められる用途に最適である。 In the characteristics (evaluation) of the thermally conductive material Ri according to the modified embodiment, as shown in FIG. 12, Example OP1 has a viscosity of 25 [° C.] as very low as 58 [Pa · s] and is sufficient even at room temperature. In addition to exhibiting good viscosity characteristics such as being capable of casting, the defoaming property was 6.5 [min], and good workability was obtained. The thermal conductivity was 6.2 [W / (m · K)], showing a high value, and the thermal shock resistance was “◯” for all plate materials. Furthermore, the temperature rise characteristic with respect to the operating time when the thermally conductive material Ri of Example OP1 was used for a large current inductor is as shown in FIG. 14, and good results were obtained even for the commercial product TR2. . In FIG. 14, OP1c is the surface temperature of the coil 2 when using the embodiment PO1, TR2c is the surface temperature of the coil 2 when using the commercially available product TR2, and OP1b is the core 3 when using the embodiment PO1. , TR2b is the surface temperature of the core 3 when using the commercially available product TR2, OP1p is the surface temperature of the package 4 when using the embodiment PO1, and TR2p is the surface of the package 4 when using the commercially available product TR2. Each temperature is indicated. Thus, Example OP1 is particularly suitable for applications that require a balance between thermal conductivity and workability.
 一方、実施例OP2は、25〔℃〕の粘度が高いが、60〔℃〕まで加熱することにより、粘度は56〔Pa・s〕まで低下し、注型が可能となった。また、脱泡性は、実施例OP1よりも長くなるものの、30〔分〕で脱泡が完了した。実施例OP2は、実施例OP1に対して、作業性については劣るものの、熱伝導率は、8.8〔W/(m・K)〕となり、非常に高い値を示すとともに、耐熱衝撃性についても全ての板材料に対して「○」となった。したがって、実施例OP2は、特に、高い熱伝導率が要求される用途に最適である。 On the other hand, Example OP2 has a high viscosity of 25 [° C.], but when heated to 60 [° C.], the viscosity decreased to 56 [Pa · s], and casting was possible. Moreover, although defoaming property became longer than Example OP1, defoaming was completed in 30 [min]. Although Example OP2 is inferior to Example OP1 in terms of workability, the thermal conductivity is 8.8 [W / (m · K)], showing a very high value and thermal shock resistance. Also became “○” for all plate materials. Therefore, Example OP2 is particularly suitable for applications that require high thermal conductivity.
 他方、市販品TR1,TR2及びTR3は、いずれも脱泡性に難がある。また、熱伝導率は、5.0〔W/(m・K)〕以下となり、いずれも実施例OP1及びOP2よりも劣る結果となった。 On the other hand, commercial products TR1, TR2 and TR3 are all difficult to defoam. Further, the thermal conductivity was 5.0 [W / (m · K)] or less, and both were inferior to Examples OP1 and OP2.
 以上、最良実施形態及び変更実施形態について詳細に説明したが、本発明は、このような各実施形態に限定されるものではなく、細部の構成,形状,素材(材料),数量,数値,手法等において、本発明の精神を逸脱しない範囲で、任意に変更,追加,削除することができる。 As described above, the best embodiment and the modified embodiment have been described in detail. However, the present invention is not limited to each of such embodiments, and the detailed configuration, shape, material (material), quantity, numerical value, and method are described. In this manner, any change, addition, or deletion can be made without departing from the spirit of the present invention.
 例えば、熱硬化性樹脂バインダーとして、エポキシ樹脂を例示したが各種エポキシ系樹脂から選択して使用することができるとともに、シリコーン樹脂バインダーも各種シリコーン系樹脂から選択して使用することができる。また、主剤と硬化剤からなる熱硬化性樹脂バインダー、即ち、二液混合の加熱硬化型のエポキシ樹脂を使用する場合を例示したが、勿論、一液タイプのエポキシ樹脂(熱硬化性樹脂バインダー)であってもよい。一方、コイル2,コア3,パッケージ4は、例示の素材に限定されるものではなく、他の各種素材により実施可能である。特に、コイル2は、銅素材が望ましいがアルミニウム素材等の他の素材であってもよい。また、コイル2は、コイルパターンプレートAsを利用する製作方法が望ましいが、他の製作方法を排除するものではない。さらに、コア3も、パーマロイ,ナノ結晶合金,フェライト,Fe-Al-Si系合金,純鉄等の焼結タイプを利用可能である。なお、実施形態では、一対のコイル部21,22を用いた大電流用インダクタ1を例示したが、例えば、パッケージ4を複数のコイル2…(コア3…を含む)を収容可能な形状に形成し、複数のコイル2…を有するインダクタ1として構成してもよい。また、コイル2の一部又は複数のコイル2…を利用したトランス等として構成してもよい。 For example, although an epoxy resin is exemplified as the thermosetting resin binder, it can be selected from various epoxy resins and used, and a silicone resin binder can also be selected from various silicone resins. Moreover, although the case where the thermosetting resin binder which consists of a main ingredient and a hardening | curing agent, ie, the heat-curable epoxy resin of two-component mixing, was used was illustrated, of course, one-component type epoxy resin (thermosetting resin binder) It may be. On the other hand, the coil 2, the core 3, and the package 4 are not limited to the illustrated materials, and can be implemented by other various materials. In particular, the coil 2 is preferably a copper material, but may be another material such as an aluminum material. The coil 2 is preferably manufactured using the coil pattern plate As, but does not exclude other manufacturing methods. Further, the core 3 can be a sintered type such as permalloy, nanocrystalline alloy, ferrite, Fe—Al—Si alloy, pure iron, or the like. In the embodiment, the large current inductor 1 using the pair of coil portions 21 and 22 is illustrated. However, for example, the package 4 is formed in a shape capable of accommodating a plurality of coils 2 (including the cores 3). However, it may be configured as an inductor 1 having a plurality of coils 2. Moreover, you may comprise as a transformer etc. which utilized a part of coil 2, or several coils 2 ....
 本発明に係る熱伝導性材料Riは、例示した大電流用インダクタのポッティング材として最適であるが、その他、熱伝導性が要求される少なくとも基板,電源,回路等を含む電子部品(電気部品)をはじめ、各種物品に利用できるとともに、ポッティング材のみならず、コーティング剤など、各種目的において利用することができる。したがって、熱伝導性材料Riは、スピンコート,ロールコート,スプレーコート,ディップコート,スプレーコート,プリント,インクジェット等の各種手法によりポッティング又はコーティング可能である。また、本発明に係る大電流用インダクタ1は、各種コイル製品に利用することができる。 The thermal conductive material Ri according to the present invention is optimal as a potting material for the exemplified large current inductor, but in addition, an electronic component (electrical component) including at least a substrate, a power source, a circuit, etc. that require thermal conductivity. In addition to the potting material, it can be used for various purposes such as a coating agent. Therefore, the heat conductive material Ri can be potted or coated by various methods such as spin coating, roll coating, spray coating, dip coating, spray coating, printing, and ink jet. Moreover, the inductor 1 for large currents according to the present invention can be used for various coil products.

Claims (17)

  1.  熱硬化性樹脂バインダーに熱伝導性フィラーを混合した熱伝導性材料において、前記熱硬化性樹脂バインダーに、当該熱硬化性樹脂バインダー100〔wt%〕に対して、1~180〔wt%〕の範囲で選定した分散剤を配合するとともに、当該熱硬化性樹脂バインダー100〔wt%〕に対して、350~2000〔wt%〕の範囲であって粒径を0.1~100〔μm〕の範囲で選定した熱伝導性フィラーが均一分散し、少なくとも、熱伝導率が3.5〔W/(m・K)〕以上、かつ粘度が温度60〔℃〕以下で0.2~100〔Pa・s〕となる組成を有することを特徴とする熱伝導性材料。 In a heat conductive material in which a heat conductive filler is mixed with a thermosetting resin binder, the thermosetting resin binder includes 1 to 180 [wt%] with respect to 100 [wt%] of the thermosetting resin binder. In addition to blending the dispersant selected in the range, the particle size is 0.1 to 100 [μm] in the range of 350 to 2000 [wt%] with respect to 100 [wt%] of the thermosetting resin binder. The heat conductive filler selected in the range is uniformly dispersed, at least 0.2 to 100 [Pa] when the thermal conductivity is 3.5 [W / (m · K)] or more and the viscosity is 60 [° C.] or less. A heat conductive material having a composition of s].
  2.  前記熱硬化性樹脂バインダーには、少なくとも、粘度を0.01~1〔Pa・s〕の範囲で選定したエポキシ系樹脂を含むことを特徴とする請求項1記載の熱伝導性材料。 2. The heat conductive material according to claim 1, wherein the thermosetting resin binder includes at least an epoxy resin having a viscosity selected within a range of 0.01 to 1 [Pa · s].
  3.  前記熱伝導性フィラーは、電気絶縁性を有することを特徴とする請求項1又は2記載の熱伝導性材料。 The heat conductive material according to claim 1 or 2, wherein the heat conductive filler has electrical insulation.
  4.  前記熱伝導性フィラーには、少なくとも、酸化マグネシウム,酸化アルミニウム,酸化ケイ素,窒化アルミニウム,窒化ホウ素,の一つ又は二つ以上を用いた単一材又は複合材を含むことを特徴とする請求項1,2又は3記載の熱伝導性材料。 The heat conductive filler includes a single material or a composite material using at least one of magnesium oxide, aluminum oxide, silicon oxide, aluminum nitride, and boron nitride. The heat conductive material according to 1, 2 or 3.
  5.  前記熱伝導性フィラーは、単一の粒径又は複数の異なる粒径を含むことを特徴とする請求項1~4のいずれかに記載の熱伝導性材料。 The heat conductive material according to any one of claims 1 to 4, wherein the heat conductive filler includes a single particle size or a plurality of different particle sizes.
  6.  熱硬化性樹脂バインダーに熱伝導性フィラーを配合して製造する熱伝導性材料の製造方法において、前記熱硬化性樹脂バインダーに、当該熱硬化性樹脂バインダー100〔wt%〕に対して、1~180〔wt%〕の範囲で選定した分散剤を配合するとともに、当該熱硬化性樹脂バインダー100〔wt%〕に対して、350~2000〔wt%〕の範囲であって粒径を0.1~100〔μm〕の範囲で選定した熱伝導性フィラーを混合し、撹拌することにより熱伝導性フィラーを均一分散させ、少なくとも、熱伝導率が3.5〔W/(m・K)〕以上、かつ粘度が温度60〔℃〕以下で0.2~100〔Pa・s〕となる組成を得るようにしたことを特徴とする熱伝導性材料の製造方法。 In the method for producing a thermally conductive material, which is produced by blending a thermally curable resin binder with a thermally conductive filler, the thermosetting resin binder contains 1 to 1 wt% relative to 100 wt% of the thermosetting resin binder. A dispersant selected in the range of 180 [wt%] is blended, and the particle diameter is 0.1 to 350 [wt%] with respect to 100 [wt%] of the thermosetting resin binder. The heat conductive filler selected in the range of up to 100 [μm] is mixed and stirred to uniformly disperse the heat conductive filler, and at least the heat conductivity is 3.5 [W / (m · K)] or more. And producing a composition having a viscosity of 0.2 to 100 [Pa · s] at a temperature of 60 ° C. or lower.
  7.  前記熱硬化性樹脂バインダーには、少なくとも、粘度を0.01~1〔Pa・s〕の範囲で選定したエポキシ系樹脂を含むことを特徴とする請求項6記載の熱伝導性材料の製造方法。 7. The method for producing a heat conductive material according to claim 6, wherein the thermosetting resin binder includes at least an epoxy resin having a viscosity selected in a range of 0.01 to 1 [Pa · s]. .
  8.  前記熱硬化性樹脂バインダーには、一液を用いる樹脂バインダーを含むことを特徴とする請求項6記載の熱伝導性材料の製造方法。 The method for producing a thermally conductive material according to claim 6, wherein the thermosetting resin binder includes a resin binder using one liquid.
  9.  前記熱硬化性樹脂バインダーには、少なくとも主剤と硬化剤を含む二液以上を用いる樹脂バインダーを含むことを特徴とする請求項6記載の熱伝導性材料の製造方法。 The method for producing a thermally conductive material according to claim 6, wherein the thermosetting resin binder includes a resin binder using at least two liquids including a main agent and a curing agent.
  10.  前記熱伝導性フィラーには、少なくとも、酸化マグネシウム,酸化アルミニウム,酸化ケイ素,窒化アルミニウム,窒化ホウ素,の一つ又は二つ以上を用いた単一材又は複合材を含むことを特徴とする請求項6記載の熱伝導性材料の製造方法。 The heat conductive filler includes a single material or a composite material using at least one of magnesium oxide, aluminum oxide, silicon oxide, aluminum nitride, and boron nitride. 6. A method for producing a thermally conductive material according to 6.
  11.  縦形の平角導線を巻回した一又は二以上のコイルと、このコイルに装填するコアと、このコアを装填したコイルを収容し、かつ熱伝導性素材により形成したパッケージとを備える大電流用インダクタにおいて、熱硬化性樹脂バインダーに、当該熱硬化性樹脂バインダー100〔wt%〕に対して、1~180〔wt%〕の範囲で選定した分散剤を配合するとともに、当該熱硬化性樹脂バインダー100〔wt%〕に対して、350~2000〔wt%〕の範囲であって粒径を0.1~100〔μm〕の範囲で選定した熱伝導性フィラーが均一分散し、少なくとも、熱伝導率が3.5〔W/(m・K)〕以上、かつ粘度が温度60〔℃〕以下で0.2~100〔Pa・s〕となる組成を有する熱伝導性材料を、パッケージの内部にポッティング材として充填してなることを特徴とする大電流用インダクタ。 Inductor for large current comprising one or two or more coils wound with a vertical rectangular conductive wire, a core to be loaded on the coil, and a package containing the coil loaded with the core and formed of a heat conductive material In the thermosetting resin binder, a dispersing agent selected in the range of 1 to 180 [wt%] is blended with the thermosetting resin binder 100 [wt%], and the thermosetting resin binder 100 is mixed. With respect to [wt%], the thermally conductive filler selected in the range of 350 to 2000 [wt%] and the particle size in the range of 0.1 to 100 [μm] is uniformly dispersed, and at least the thermal conductivity A thermally conductive material having a composition of not less than 3.5 [W / (m · K)] and a viscosity of 0.2 to 100 [Pa · s] at a temperature of 60 [° C.] or less. Pottin High-current inductor, characterized by comprising filling a timber.
  12.  前記熱伝導性フィラーは、電気絶縁性を有することを特徴とする請求項11記載の大電流用インダクタ。 The inductor for high current according to claim 11, wherein the thermally conductive filler has electrical insulation.
  13.  前記熱伝導性フィラーには、少なくとも、酸化マグネシウム,酸化アルミニウム,酸化ケイ素,窒化アルミニウム,窒化ホウ素,の一つ又は二つ以上を用いた単一材又は複合材を含むことを特徴とする請求項11記載の大電流用インダクタ。 The heat conductive filler includes a single material or a composite material using at least one of magnesium oxide, aluminum oxide, silicon oxide, aluminum nitride, and boron nitride. 11. The large current inductor according to 11.
  14.  前記熱伝導性フィラーは、単一の粒径又は複数の異なる粒径を含むことを特徴とする請求項13記載の大電流用インダクタ。 The high-current inductor according to claim 13, wherein the thermally conductive filler includes a single particle size or a plurality of different particle sizes.
  15.  前記コイルには、シート材により連続形成したコイルパターンプレートを順次折り畳んで製作したコイルを用いることを特徴とする請求項11のいずれかに記載の大電流用インダクタ。 12. The large current inductor according to claim 11, wherein a coil produced by sequentially folding a coil pattern plate continuously formed of a sheet material is used as the coil.
  16.  前記コイル,前記コア,前記パッケージ、の一又は二以上の表面の一部又は全部に、少なくとも樹脂バインダーに、当該樹脂バインダー100〔wt%〕に対して、0.01~50〔wt%〕の範囲で選定した分散剤を配合するとともに、樹脂バインダー100〔wt%〕に対して、100~600〔wt%〕の範囲であって粒径を0.1~20〔μm〕の範囲で選定した熱伝導性フィラーが均一分散し、少なくとも、絶縁破壊強さが14〔kV/mm〕(ただし、10〔kHz〕,遮断電流10〔mA〕)以上、かつ粘度が温度60〔℃〕以下で0.05~3〔Pa・s〕となる組成を有する放熱性絶縁材料をコーティングしてなることを特徴とする請求項10記載の大電流用インダクタ。 One part or all of one or more surfaces of the coil, the core, and the package have at least a resin binder of 0.01 to 50 wt% with respect to 100 wt% of the resin binder. In addition to blending the dispersant selected in the range, the particle size was selected in the range of 100 to 600 [wt%] and the particle size in the range of 0.1 to 20 [μm] with respect to 100 [wt%] of the resin binder. Thermally conductive filler is uniformly dispersed, at least with a dielectric breakdown strength of 14 [kV / mm] (however, 10 [kHz], breaking current 10 [mA]) and a viscosity of 0 or less at a temperature of 60 [° C.] or less. 11. The high-current inductor according to claim 10, wherein a heat-dissipating insulating material having a composition of .05 to 3 [Pa · s] is coated.
  17.  前記樹脂バインダーには、少なくともシリコーン系樹脂バインダーを含むことを特徴とする請求項16記載の大電流用インダクタ。 The high-current inductor according to claim 16, wherein the resin binder contains at least a silicone-based resin binder.
PCT/JP2010/001784 2009-03-12 2010-03-12 Thermally conductive material, process for producing same, and inductor for high current WO2010103852A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011503735A JPWO2010103852A1 (en) 2009-03-12 2010-03-12 Thermally conductive material, method for producing the same, and inductor for large current

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-060315 2009-03-12
JP2009060315 2009-03-12

Publications (1)

Publication Number Publication Date
WO2010103852A1 true WO2010103852A1 (en) 2010-09-16

Family

ID=42728149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001784 WO2010103852A1 (en) 2009-03-12 2010-03-12 Thermally conductive material, process for producing same, and inductor for high current

Country Status (2)

Country Link
JP (1) JPWO2010103852A1 (en)
WO (1) WO2010103852A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012072312A1 (en) * 2010-12-02 2012-06-07 Robert Bosch Gmbh Ignition coil having integrated electronics
JP2012119454A (en) * 2010-11-30 2012-06-21 Sumitomo Electric Ind Ltd Reactor
JP2015216166A (en) * 2014-05-08 2015-12-03 パナソニックIpマネジメント株式会社 Manufacturing method of coil
JP2018050018A (en) * 2016-09-23 2018-03-29 Koa株式会社 Encapsulant
KR20210084466A (en) * 2018-10-29 2021-07-07 헨켈 아게 운트 코. 카게아아 Thermally Conductive Potting Composition
CN114507379A (en) * 2020-10-28 2022-05-17 中国石油化工股份有限公司 Heat-conducting composite filler, preparation method thereof, heat-conducting thermoplastic resin composite material and application thereof
US20220403113A1 (en) * 2019-11-14 2022-12-22 Shin-Etsu Chemical Co., Ltd. Thermally conductive silicone composition and thermally conductive silicone sheet
US20230047058A1 (en) * 2019-12-26 2023-02-16 Shin-Etsu Chemical Co., Ltd. Thermally conductive silicone resin composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015204352A (en) * 2014-04-14 2015-11-16 株式会社オートネットワーク技術研究所 reactor and cast resin

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02117914A (en) * 1988-06-24 1990-05-02 Somar Corp Epoxy resin composition
JPH09213526A (en) * 1996-01-25 1997-08-15 Robert Bosch Gmbh Coil and manufacturing method thereof
JP2004193398A (en) * 2002-12-12 2004-07-08 Tokyo Seiden Kk Reactor apparatus
JP2008266406A (en) * 2007-04-18 2008-11-06 Nitto Denko Corp Dispersant, boron nitride particle with dispersant supported on its surface, epoxy resin composition containing dispersant, and its preparation
JP2009212147A (en) * 2008-02-29 2009-09-17 Shinshu Univ Inductor for large current and method of manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1736998A1 (en) * 2005-06-21 2006-12-27 Abb Research Ltd. Varistor field control tape
JP2008028290A (en) * 2006-07-25 2008-02-07 Sumitomo Electric Ind Ltd Reactor device and assembly method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02117914A (en) * 1988-06-24 1990-05-02 Somar Corp Epoxy resin composition
JPH09213526A (en) * 1996-01-25 1997-08-15 Robert Bosch Gmbh Coil and manufacturing method thereof
JP2004193398A (en) * 2002-12-12 2004-07-08 Tokyo Seiden Kk Reactor apparatus
JP2008266406A (en) * 2007-04-18 2008-11-06 Nitto Denko Corp Dispersant, boron nitride particle with dispersant supported on its surface, epoxy resin composition containing dispersant, and its preparation
JP2009212147A (en) * 2008-02-29 2009-09-17 Shinshu Univ Inductor for large current and method of manufacturing the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012119454A (en) * 2010-11-30 2012-06-21 Sumitomo Electric Ind Ltd Reactor
WO2012072312A1 (en) * 2010-12-02 2012-06-07 Robert Bosch Gmbh Ignition coil having integrated electronics
US9129740B2 (en) 2010-12-02 2015-09-08 Robert Bosch Gmbh Ignition coil having integrated electronics
JP2015216166A (en) * 2014-05-08 2015-12-03 パナソニックIpマネジメント株式会社 Manufacturing method of coil
JP2018050018A (en) * 2016-09-23 2018-03-29 Koa株式会社 Encapsulant
KR20210084466A (en) * 2018-10-29 2021-07-07 헨켈 아게 운트 코. 카게아아 Thermally Conductive Potting Composition
KR102644123B1 (en) * 2018-10-29 2024-03-07 헨켈 아게 운트 코. 카게아아 Thermally conductive potting composition
US20220403113A1 (en) * 2019-11-14 2022-12-22 Shin-Etsu Chemical Co., Ltd. Thermally conductive silicone composition and thermally conductive silicone sheet
US20230047058A1 (en) * 2019-12-26 2023-02-16 Shin-Etsu Chemical Co., Ltd. Thermally conductive silicone resin composition
CN114507379A (en) * 2020-10-28 2022-05-17 中国石油化工股份有限公司 Heat-conducting composite filler, preparation method thereof, heat-conducting thermoplastic resin composite material and application thereof
CN114507379B (en) * 2020-10-28 2024-02-13 中国石油化工股份有限公司 Heat-conducting composite filler, preparation method thereof, heat-conducting thermoplastic resin composite material and application thereof

Also Published As

Publication number Publication date
JPWO2010103852A1 (en) 2012-09-13

Similar Documents

Publication Publication Date Title
WO2010103852A1 (en) Thermally conductive material, process for producing same, and inductor for high current
US10381149B2 (en) Composite material, reactor, converter, and power conversion device
US8922327B2 (en) Reactor and manufacturing method for reactor
US8686820B2 (en) Reactor
US8928447B2 (en) Reactor and method for producing same
US8525632B2 (en) Reactor
WO2011118507A1 (en) Reactor and method of manufacture for same
US20140050001A1 (en) Reactor, composite material, reactor core, converter, and power conversion device
CN1627457A (en) Magnetic component and its making method
CN102782783A (en) Reactor and method for manufacturing reactor
JP2010218688A (en) Heat dissipating insulating material, manufacturing method thereof, and large current inductor
JP2017037888A (en) Magnetic powder mold coil and method of manufacturing the same
WO2016031993A1 (en) Reactor
JP5644860B2 (en) Magnetite-containing resin and electronic parts
KR101759168B1 (en) The manufacturing method of a coil-embedded heat-radiating inductor using heat-radiating powder paste and soft-magnetic powder paste and the coil-embedded heat-radiating inductor manufactured thereby
JP2013162069A (en) Reactor, converter, and power converter
WO2013168538A1 (en) Reactor, converter, electric power conversion device, and manufacturing method for resin core piece
JP6615850B2 (en) Composite magnetic material and core manufacturing method
JP2013222741A (en) Reactor
KR102119173B1 (en) Hybrid type inductor
US20210398735A1 (en) Reactor
US20180240578A1 (en) Composite material molded article and reactor
US8618899B2 (en) Converter and power conversion device
JP2021158148A (en) Powder magnetic core
US11557423B2 (en) Coil and reactor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10750608

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011503735

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10750608

Country of ref document: EP

Kind code of ref document: A1