WO2010095650A1 - Complex conductive polymer composition, manufacturing method thereof, solution containing said composition, and applications for said composition - Google Patents

Complex conductive polymer composition, manufacturing method thereof, solution containing said composition, and applications for said composition Download PDF

Info

Publication number
WO2010095650A1
WO2010095650A1 PCT/JP2010/052354 JP2010052354W WO2010095650A1 WO 2010095650 A1 WO2010095650 A1 WO 2010095650A1 JP 2010052354 W JP2010052354 W JP 2010052354W WO 2010095650 A1 WO2010095650 A1 WO 2010095650A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive polymer
meth
polymer composition
acrylate
composite conductive
Prior art date
Application number
PCT/JP2010/052354
Other languages
French (fr)
Japanese (ja)
Inventor
文明 小林
岡本 秀二
目黒 晃
Original Assignee
綜研化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 綜研化学株式会社 filed Critical 綜研化学株式会社
Priority to JP2011500628A priority Critical patent/JP5738178B2/en
Publication of WO2010095650A1 publication Critical patent/WO2010095650A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/127Intrinsically conductive polymers comprising five-membered aromatic rings in the main chain, e.g. polypyrroles, polythiophenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1806C6-(meth)acrylate, e.g. (cyclo)hexyl (meth)acrylate or phenyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1807C7-(meth)acrylate, e.g. heptyl (meth)acrylate or benzyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • H01M4/606Polymers containing aromatic main chain polymers
    • H01M4/608Polymers containing aromatic main chain polymers containing heterocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • C08F212/30Sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/38Esters containing sulfur
    • C08F220/382Esters containing sulfur and containing oxygen, e.g. 2-sulfoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3221Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more nitrogen atoms as the only heteroatom, e.g. pyrrole, pyridine or triazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/79Post-treatment doping
    • C08G2261/794Post-treatment doping with polymeric dopants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a composite conductive polymer composition, a production method thereof, a solution containing the composition, and a use of the composition. More specifically, the present invention relates to an aromatic system such as aniline, thiophene, and pyrrole, and a heterocyclic ring. In order to impart solvent solubility to a ⁇ -conjugated polymer having a monomer compound as a monomer component, a composite conductive polymer composition doped with a polymer emulsifier, a production method thereof, a solution containing the composition, and the The present invention relates to the use of the composition for a dye-sensitized solar electrode or an antistatic film.
  • Doping with a dopant is essential for imparting high conductivity in a ⁇ -conjugated polymer.
  • a polymer in which ⁇ conjugation has originally developed has a structure in which the polymer chain has high planarity and crystallinity (stacking property) between polymer chains due to the affinity of ⁇ bond.
  • the ⁇ -conjugated polymer doped with the dopant has higher planarity and higher affinity due to ⁇ -conjugation, and the stacking property becomes more remarkable. For this reason, it is a difficult problem to achieve both the dissolution (by heat or solvent) of the ⁇ -conjugated polymer and the electrical conductivity.
  • Patent Document 1 a polymer in which an alkyl group, an alkoxyl group, or the like is introduced into the side chain of a ⁇ -conjugated polymer has been proposed.
  • Patent Document 1 In order to increase the electrical conductivity up to, doping is necessary. If this doping is performed, there is a problem that sufficient solvent solubility cannot be obtained due to the development of the planarity of the conductive polymer and the development of ⁇ -conjugate affinity.
  • a self-supporting film or a self-supporting body that can be dissolved by a solvent or melted by heat, and has sufficient electrical conductivity after molding.
  • a polymer film is formed by electrolytic polymerization or vapor exposure on a substrate to which direct conductivity is desired, an oxidizing agent and a conductive polymer. After being immersed in the precursor monomer solution, a thin film polymerization or the like is performed by heating or the like, and then a treatment such as doping of the obtained polymer film is performed.
  • the electrolytic polymerization requires the substrate to be a semiconductor or a conductor, and corrosion resistance to the electrolytic solution is also required, so that usable substrates are limited.
  • the oxidant homogeneously present in the thin film that becomes the polymerization field, which is not sufficient in terms of film formation control.
  • fine irregularities were formed, and it was difficult to form a conductive polymer on a sufficiently homogeneous surface.
  • Patent Document 2 discloses a method for producing poly (3,4-disubstituted thiophene) in which 3,4-disubstituted thiophene is polymerized using an inorganic ferric salt and an oxidizing agent.
  • 3 discloses a water dispersible powder having a polymer T having predominantly repeating thiophene units and at least one other polyanionic polymer P.
  • Patent Document 2 is a method for obtaining a powdered material or a method for performing oxidative polymerization directly on the surface of the target adherend, and it is impossible to dissolve the polymer obtained in this method in a solvent or water.
  • Patent Document 3 is only a dispersion having good water dispersibility, and is not such that it is molecularly soluble in an organic solvent.
  • Patent Document 4 polyaniline, which is essentially insoluble in a solvent, is pulverized and pulverized to a nano-size level and has an affinity for polyaniline and the solvent.
  • a high sulfonic acid anion emulsifier such as SDS (dodecylbenzenesulfonic acid) or PTS (paratoluenesulfonic acid) is used as a dispersant, it is disclosed to provide a fine dispersion solution at a nano level.
  • the surface of the coating film is uneven because it is not substantially soluble in a solvent, and is also a self-supporting film made of only polyaniline (also called a homogeneous film. It is impossible to form a film after coating unless it is combined with a binder or the like.
  • polythiophene having a molecular weight in the range of 2,000 to 500,000 and oxidized and chemically polymerized in the presence of a polyanion of polystyrene sulfonate and a molecular weight of 2,000 to 500,000 are disclosed.
  • a solution of polythiophene comprising a polyanion derived from polystyrene sulfonic acid in water or a mixed solvent of water and a water-miscible organic solvent is disclosed.
  • This patent document proposes a method for producing poly (ethylene dioxide substituted thiophene) (PEDOT) that can be dissolved or dispersed in water or an alcohol solvent by oxidative polymerization in the presence of polystyrene sulfonic acid (PSS) and an oxidizing agent.
  • PEDOT poly(ethylene dioxide substituted thiophene)
  • PSS polystyrene sulfonic acid
  • the PEDOT / PSS obtained here is dispersed in water, it is not completely dissolved, it is difficult to suppress stacking between partial PEDOTs, and it is difficult to dissolve the conductive polymer. It was enough.
  • Patent Document 6 discloses precipitation, isolation, and purification by oxidative polymerization of aniline or aniline derivatives in a solvent containing an organic acid or an inorganic acid in the presence of a highly hydrophobic anionic surfactant. And then extracting with an organic solvent immiscible with water to form an organic solution.
  • the emulsifier used in this patent document is a low molecular sulfonic acid type, and aniline is converted to hydrochloric acid before polymerization, and then aniline salt substitution is performed with the sulfonic acid type emulsifier.
  • the exchange hardly occurs, and the polyaniline obtained by the synthesis method of this patent document does not actually dissolve in the solvent, and there is a problem that only a finely dispersed solvent dispersion can be obtained.
  • Patent Document 7 a solution in which (A) a monomer having a sulfonic acid functional group and a radical polymerizable functional group and (B) a monomer soot made of aniline or a derivative thereof is dissolved in water or an organic solvent is emulsified. ), The sulfonic acid structure derived from the monomer (A) is introduced into the monomer, the polymerization initiator (A) and the monomer (B) are polymerized in the coexistence of the following, and the polymer (B): A method for producing a conductive polymer in an intertwined state with the polymer (A) is disclosed.
  • Patent Document 8 discloses a conductive material containing (a) a protonated substituted or unsubstituted polyaniline complex and (b) a compound having a phenolic hydroxyl group dissolved in an organic solvent that is substantially immiscible with water.
  • a functional polyaniline composition is disclosed.
  • Non-Patent Document 1 This is a technique described in Non-Patent Document 1, although the description is not sufficient, and by adjusting the donor strength in the polyaniline coating, the affinity of the phenolic compound is remarkable, and the conductivity in the polyaniline coating is It is disclosed that it is useful for improving the performance. In other words, by mixing non-volatile additives that have good solubility in toluene and good compatibility with polyaniline, such as phenols, not only improve the conductivity of the dried coating, but also allow toluene.
  • Patent Document 10 discloses a counter electrode of a dye-sensitized solar cell in which a conductive polymer layer is provided on a plastic film provided with a transparent conductive layer.
  • a dispersion containing conductive polymer is applied and the solvent is removed to form a conductive polymer layer.
  • the conductive polymer is a dispersion film of fine particles, it is transparent. Adhesion to the conductive layer is poor, and it is necessary to increase the surface energy of the transparent conductive layer by performing plasma treatment or the like in advance.
  • Patent Document 11 discloses an antistatic film in which an antistatic material containing a polythiophene compound, an acidic polymer, and a sugar alcohol is applied to a thermoplastic resin film.
  • the antistatic film obtained has good transparency and antistatic properties, but polystyrene sulfonic acid is used as a doping agent for polythiophene compounds. Since only an acidic polymer such as the above is used, the antistatic film absorbs moisture over time, and there is a problem that adhesion and antistatic properties are lowered.
  • the present invention provides a conductive polymer composition that is excellent in solubility in a solvent and is a self-supporting film, that is, a homogeneous film or a molded body that does not cause pinholes alone, and a method for producing the same. Is an issue.
  • the present inventors have found that when a polymer compound copolymerized with a specific monomer is used as an additive during the polymerization of a ⁇ -conjugated polymer, the function of making the polymerization field as an emulsifier uniform. In addition, it exhibits a function as a doping material and has an appropriate steric hindrance to a ⁇ -conjugated polymer, so that a composite conductive polymer composition excellent in solubility in a specific solvent can be obtained. I found. In addition, the present inventors have found that the composite conductive polymer composition can be used for a dye-sensitized solar counter electrode, an antistatic film, and the like, and have completed the present invention.
  • the present invention provides the following components (a-1) and (a-2) (A-1) Monomer containing sulfonic acid group and polymerizable vinyl group 20 to 45 mol% (A-2) Monomer having aromatic group or alicyclic group and polymerizable vinyl group 55 to 80 mol% (A-2) Monomer having aromatic group or alicyclic group and polymerizable vinyl group 55 to 80 mol% A polymer compound (A) having the following components (I) to (III) (In each formula, R 1 to 7 represent a hydrogen atom or an alkyl group having 1 to 12 carbon atoms) A composite conductive polymer composition obtained by doping a ⁇ -conjugated polymer ( ⁇ ) having a monomer component as a monomer constituent.
  • the present invention also provides the following components (a-1) and (a-2) (A-1) Monomer having sulfonic acid group and polymerizable vinyl group 20 to 45 mol% (A-2) Monomer having aromatic group or alicyclic group and polymerizable vinyl group 55 to 80 mol% Characterized in that the polymer compound (A) obtained by radical polymerization of the compound and a compound selected from the formulas (I) to (III) are coexisted in an electrolytic substrate solvent and chemically oxidatively polymerized using an oxidizing agent. This is a method for producing a composite conductive polymer composition.
  • the present invention provides a composite conductive polymer composition
  • a composite conductive polymer composition comprising the composite conductive polymer composition described above in a dissolved state of 0.1 to 10% by weight in an aromatic solvent selected from toluene, benzene and xylene. It is a solution.
  • the present invention provides a counter electrode for a dye-sensitized solar cell using the above composite conductive polymer composition.
  • the present invention is an antistatic film using the composite conductive polymer composition.
  • the composite conductive polymer obtained by polymerization by the action of an oxidizing agent in the presence of the polymer emulsifier of the present invention is one that dissolves stably in an aromatic solvent such as toluene.
  • a conductive film can be easily obtained by applying a solution obtained by dissolving this composite conductive polymer in an aromatic solvent to a site requiring conductivity and drying it. .
  • the polymer compound (A) used in the present invention comprises a monomer having a sulfonic acid group and a polymerizable vinyl group in component (a-1) and an aromatic group or alicyclic component in component (a-2) according to a conventional method. It is produced by radical polymerization of a monomer having an aromatic group and a polymerizable vinyl group.
  • Examples of the monomer (a-1) having a sulfonic acid group and a polymerizable vinyl group include monomers having a sulfonic acid group such as a styrenesulfonic acid group and a sulfoethyl group.
  • Examples thereof include styrenesulfonic acid and Styrene sulfonates such as sodium styrene sulfonate, potassium styrene sulfonate, calcium styrene sulfonate, ethyl 2-methacrylate (meth) acrylate, ethyl 2-methacrylate (sodium 2-sulfonate), (meth) acrylic acid Examples thereof include ethyl 2-methacrylate (sulfonate) such as potassium ethyl 2-sulfonate, ethyl (meth) acrylate 2-calcium sulfonate, and the like.
  • Styrene sulfonates such as sodium styrene sulfonate, potassium styrene sulfonate, calcium styrene sulfonate, ethyl 2-methacrylate (meth) acrylate, ethyl 2-
  • Examples of the monomer (a-2) having an aromatic group or alicyclic group and a polymerizable vinyl group include benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, ethyl (meth) acrylate 2- Phthalic acid methyl ester, (meth) acrylic acid ethyl 2-phthalic acid ethyl ester, cyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentanyloxyethyl (meth) acrylate, isobornyl (meth) acrylate, t-butylcyclohexyl (meth) acrylate, cyclohexyl (meth) acrylate, (meth) acrylate morpholine, styrene, dimethylstyrene, naphthalene (meth) acrylate, vinyl naphthalene, vinyl n-ethyl
  • the molar ratio of the component (a-1) to the component (a-2) is important. That is, the polymer emulsifier of the present invention acts on the conductive polymer composition by appropriately balancing the hydrophobicity due to the aromatic group or alicyclic group and the hydrophilicity due to the sulfonic acid group. This is to enable dissolution.
  • the amount of component (a-1) for producing the polymer compound (A) used in the present invention is 20 to 45 mol%, preferably 25 to 40 mol%.
  • the amount of component (a-2) is 55 to 80 mol%, preferably 60 to 75 mol%.
  • the polymer compound (A) of the present invention may contain a polymerizable component other than the above components (a-1) and (a-2).
  • the polymerizable component include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, alkyl (meth) acrylate such as lauryl (meth) acrylate, (meth) Acrylic acid, 2-hydroxy (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, acetoacetoxyethyl (meth) acrylate, tetrahydrofurfuryl ( Examples thereof include meth) acrylate and N, N-dimethylaminoethyl (meth) acrylate, and the blending amount when blended is about 0 to 20 mol%.
  • the radical polymerization reaction of the component (a-1), the component (a-2) and the polymerizable component added as necessary can be performed by a known method. For example, after mixing each of these components, a polymerization initiator can be added thereto and polymerization can be started by heating, light irradiation, or the like.
  • the polymerization method that can be employed for producing the polymer compound (A) is not particularly limited as long as it can be carried out in a state where the component (a-1) is not separated from the monomer mixture.
  • a polymerization method, a bulk (bulk) polymerization method, a precipitation polymerization method, or the like is employed.
  • the polymerization initiator used in the polymerization reaction is not particularly limited as long as it can be dissolved in each of the above components and the solvent used during the reaction.
  • this polymerization initiator include oil-soluble peroxide-based thermal polymerization initiators such as benzoyl peroxide (BPO), oil-soluble azo-based thermal polymerization initiators such as azobisisobutyronitrile (AIBN), azobiscyano Examples thereof include water-soluble azo-based thermal polymerization initiators such as herbal acid (ACVA).
  • water-soluble peroxide thermal polymerization initiators such as ammonium persulfate and potassium persulfate, hydrogen peroxide water, and the like can also be used.
  • redox agents such as ferrocene and amines are possible.
  • polymerization initiators can be used arbitrarily in the range of 0.001 to 0.1 mol with respect to 1 mol of the above compound, and any method of batch charging, dropping charging and sequential charging can be used. . Further, in the case of bulk polymerization or solution polymerization using a small amount of solvent (50 wt% or less based on the monomer), a polymerization method using a combination of mercaptan and metallocene (Patent Document 9) is also possible.
  • solvent used in the above polymerization reaction examples include alcohol solvents such as methanol, ethanol, isopropyl alcohol and butanol, ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone, methyl cellosolve, ethyl cellosolve, propylene glycol methyl ether, propylene
  • examples of the solvent include glycol solvents such as glycol ethyl ether, and lactic acid solvents such as methyl lactate and ethyl lactate.
  • a chain transfer agent may be used in addition to the polymerization initiator at the time of polymerization, and can be appropriately used when adjusting the molecular weight.
  • the chain transfer agent that can be used any compound can be used as long as it is soluble in the above-mentioned monomers and solvents.
  • polar thiols such as alkylthiols such as dodecyl mercaptan and heptyl mercaptan, and mercaptopropionic acid (BMPA).
  • a water-soluble thiol having a group, an oily radical inhibitor such as ⁇ -styrene dimer (ASD), and the like can be used as appropriate.
  • this polymerization reaction is preferably carried out below the boiling point of the solvent used (except for bulk polymerization), for example, about 65 ° C. to 80 ° C. is preferable.
  • it is preferably performed at 25 ° C. to 80 ° C.
  • the polymer thus obtained can be purified as necessary to obtain a polymer compound (A).
  • an oily poor solvent such as hexane is used to remove oily low molecular impurities and residual monomers and low molecular impurities, and then polymer precipitation with an aqueous poor solvent such as acetonitrile, methanol, ethanol, acetone, etc. And removing water-based impurities and residues.
  • the polymer compound (A) is introduced as a dopant into the conductive polymer composition and acts as a stack inhibitor and a solvent solubilizer. If other polymerization initiator residue, monomer, oligomer, heterogeneous composition, etc. remain as a product, the functional degradation of the conductive polymer composition becomes a problem, and it is necessary to remove these. As a result of such purification, the heterogeneous radical polymer as in Patent Document 7 is not mixed, and the composition of the uniform conductive polymer composition and the composition of the polymer compound (A) are uniformly matched. A solubilized state can be expressed.
  • the polymer compound (A) obtained as described above preferably has a GPC equivalent weight average molecular weight of 3,000 to 100,000.
  • the weight average molecular weight is less than 3,000, the function as a polymer emulsifier is insufficient.
  • the solubility in the polymerization field (acidic aqueous solution) at the time of synthesis of the conductive polymer may not be sufficient, and the solvent solubility of the polymer emulsifier itself deteriorates. May significantly affect solubilization.
  • the composite conductive polymer composition of the present invention is produced as follows using the polymer compound (A) obtained as described above. That is, the compound represented by the above formulas (I) to (III), which is a raw material for the ⁇ -conjugated polymer ( ⁇ ), which is obtained by dissolving the polymer compound (A) in an electrolytic substrate solvent. Is added to the ⁇ -conjugated polymer ( ⁇ ) containing the compounds represented by the formulas (I) to (III) as monomer constituents. ) Can be obtained.
  • the compound represented by the formula (I) is aniline whose substituent is a hydrogen atom or an alkyl group.
  • this compound include aniline, o-toluidine, m-toluidine, 3,5-dimethylaniline, 2,3-dimethylaniline, 2,5-dimethylaniline, 2,6-dimethylaniline, and 2-ethylaniline.
  • the compound represented by the formula (II) is a thiophene whose substituent is hydrogen or an alkyl group, and specific examples thereof include thiophene, 3-methylthiophene, 3-ethylthiophene, 3-propylthiophene, 3- Examples thereof include butylthiophene, 3-pentylthiophene, 3-hexylthiophene, 3-heptylthiophene, and 3-n-octylthiophene.
  • the compound represented by the formula (III) is pyrrole whose substituent is hydrogen or an alkyl group, and specific examples thereof include pyrrole, 3-methylpyrrole, 3-heptylpyrrole, 3-n-octylpyrrole and the like. Can be mentioned.
  • a specific method for producing a composite conductive polymer composition by the method of the present invention first, ion-exchanged water is acidified as necessary, and then the polymer compound obtained as described above is used.
  • examples thereof include a method in which one or more of the compounds of the formulas (I) to (III), which are raw materials, are added to this, and an oxidant is further added for oxidative polymerization after adding (A).
  • a ketone solvent such as acetone or methyl ethyl ketone
  • an alcohol solvent such as methanol, ethanol or isopropyl alcohol
  • a highly hydrophilic organic solvent such as acetonitrile
  • Examples of the acidic component used for acidifying the electrolytic substrate solvent in the above reaction include hydrochloric acid, sulfuric acid, perchloric acid, periodic acid, iron (II) chloride, iron (II) sulfate, and the like.
  • the amount may be about 0.5 to 3.0 mol with respect to 1 mol of the compounds of formulas (I) to (III).
  • the oxidizing agent used in the reaction also needs to be appropriately adjusted depending on the redox potential of the aromatic compound (monomer) forming the composite conductive polymer composition.
  • ammonium peroxodisulfate, potassium peroxodisulfate, sodium peroxodisulfate Iron (III) chloride, iron (III) sulfate, iron (III) tetrafluoroborate, iron (III) hexafluorophosphate, copper (II) sulfate, copper (II) chloride, copper (II) tetrafluoroborate
  • copper (II) hexafluorophosphate can be used.
  • the ratio of the polymer compound (A) to the compounds (I) to (III) in the reaction depends on the properties of the finally obtained composite conductive polymer composition, and therefore cannot be determined simply.
  • an example of a preferable range can be shown as follows by the number of sulfonic acid groups in the polymer compound (A) and the molar ratio of the compounds (I) to (III) used.
  • the polymer compound (A) is present in an amount such that the molar ratio of the sulfonic acid groups in the compound is 0.2 to 1.5 with respect to 1 mol of the compound selected from the formulas (I) to (III). You just have to let them know.
  • the amount of the oxidizing agent used is usually about 1.5 to 2.5 mol (monovalent conversion) per 1 mol of the compounds (I) to (III), depending on the oxidation degree (acidity) in the system.
  • the polymerization can be sufficiently carried out even with 1 mol or less per 1 mol of the monomer.
  • the temperature of the polymerization reaction for obtaining the composite conductive polymer composition varies depending on the types of the compounds (I) to (III)
  • the calorific value after the oxidation reaction and the ease of extracting hydrogen vary depending on the types of the compounds (I) to (III). The range is different.
  • the temperature is preferably 40 ° C. or lower
  • the compound (II) is preferably 90 ° C. or lower
  • the compound (III) is preferably 20 ° C. or lower.
  • the reaction temperature should be relatively low and the reaction time should be relatively long, and vice versa. It ’s fine.
  • the polymer obtained in this manner can be made into a composite conductive polymer composition as a target product after further washing and the like as necessary. As described later, this dissolves stably in an aromatic solvent such as toluene in which the conventional conductive polymer composition has not dissolved.
  • An example of a method of using the composite conductive polymer composition of the present invention thus obtained includes a composite conductive polymer composition solution in which this is dissolved in an aromatic solvent in a homogeneous state.
  • This composite conductive polymer composition solution is uniformly applied to the target portion by applying it to the portion where the formation of the conductive film is required and then volatilizing the aromatic solvent in the composition by means such as drying.
  • a conductive film can be formed.
  • the composite conductive polymer composition is preferably dissolved in an aromatic solvent such as toluene, benzene, xylene or the like at about 0.1 to 10% by mass. Is.
  • the above composite conductive polymer composition solution further includes benzyl alcohol, phenol, m-cresol, o-cresol, 2-ethyl alcohol for the purpose of improving the stability of the solution and improving the conductivity in the coating film state.
  • Aromatic compounds having a hydroxyl group such as naphthanol, 1-naphthanol, guaicol and 2,6-dimethylphenol can be added. These hydroxyl group-containing compounds are preferably added in an amount of about 0.01 to 45 parts by weight with respect to 100 parts by weight of the solvent in the composite conductive polymer composition solution.
  • the above composite conductive polymer composition solution further includes copper, silver, aluminum for the purpose of improving the conductivity of a self-supporting film as an antistatic coating and improving the catalytic performance as a counter electrode material for solar cells.
  • Metals such as platinum, titanium oxide, indium tin oxide, fluorine-doped tin oxide, metal oxides such as alumina and silica, conductive polymer compositions, carbon powders such as carbon nanotubes (CNT), fullerenes, carbon black, or dispersion
  • the body can be included as a filler component. These powders or dispersions are preferably added in an amount of 0.01 to 50 parts by weight with respect to 100 parts by weight of the solid content of the composite conductive polymer composition solution.
  • the composite conductive polymer composition can be used for a counter electrode for a dye-sensitized solar cell.
  • the counter electrode for dye-sensitized solar cell is formed by laminating the composite conductive polymer composition on one side of a transparent substrate when transparency is required, or by providing a light transmissive electrode on one side of the transparent substrate. It can be formed by arranging and laminating the composite conductive polymer composition on the light transmissive electrode. Moreover, when transparency is not requested
  • the thickness of the composite conductive polymer composition is usually in the range of 0.01 to 100 ⁇ m, preferably 0.1 to 50 ⁇ m.
  • a film or plate having a light transmittance of usually 50% or more, preferably 80% or more can be used.
  • transparent substrates include inorganic transparent substrates such as glass, polyethylene terephthalate (PET), polycarbonate (PC), polyphenylene sulfide, polysulfone, polyester sulfone, polyalkyl (meth) acrylate, polyethylene naphthalate (PEN), Examples thereof include polymer transparent substrates such as polyethersulfone (PES) and polycycloolefin.
  • metal foil metal foil, such as gold
  • the thickness of these transparent substrates is usually in the range of 200 to 7000 ⁇ m in the case of the inorganic transparent substrate, and is usually in the range of 20 to 4000 ⁇ m, preferably in the range of 20 to 2000 ⁇ m in the case of the polymer transparent substrate. It is in. In the case of a metal foil substrate, it is in the range of 0.1 ⁇ m to 1000 ⁇ m, preferably 1 ⁇ m to 500 ⁇ m.
  • the polymer transparent substrate and the metal foil substrate having a thickness within this range can impart flexibility to the resulting dye-sensitized solar cell.
  • a light transmissive electrode may be disposed on one surface of the transparent substrate as necessary.
  • Examples of the light transmissive electrode used here include a film-like conductive metal electrode and a mesh-like conductive metal electrode.
  • the film-like conductive metal electrode is formed by forming a film of tin oxide, tin-doped indium oxide (ITO), fluorine-doped tin oxide (FTO) or the like.
  • This film-like conductive metal electrode can be formed by vapor-depositing or sputtering tin oxide, ITO, FTO or the like on the surface of the transparent substrate. ⁇
  • the thickness of the film-like conductive metal electrode is usually in the range of 0.01 to 1 ⁇ m, preferably 0.01 to 0.5 ⁇ m.
  • the mesh-like conductive metal electrode is formed by forming a conductive metal such as copper, nickel, or aluminum in a mesh shape.
  • the mesh-like conductive metal electrode has a line width of usually 10 to 70 ⁇ m, preferably 10 to 20 ⁇ m, using a conductive metal such as copper, nickel, and aluminum, for example, by photolithography, and a pitch width. Is usually formed by etching to a mesh of 50 to 300 ⁇ m, preferably 50 to 200 ⁇ m.
  • the thickness of the conductive wire of the mesh-like conductive metal electrode is substantially the same as the thickness of the conductive metal used, and is usually in the range of 8 to 150 ⁇ m, preferably 8 to 15 ⁇ m.
  • This mesh-like conductive metal electrode can be attached to the surface of the transparent substrate using an adhesive or the like.
  • the counter electrode for dye-sensitized solar cell as a method of laminating the composite conductive polymer composition on the light transmissive electrode disposed on one side of the transparent substrate or one side of the transparent substrate, for example, A method of applying the composite conductive polymer composition solution to a light transmissive electrode disposed on one surface of the transparent substrate or one surface of the transparent substrate and removing the solvent in the solution one or more times is mentioned. It is done.
  • a known coater such as a dip coater, a micro bar coater, a roll coater, a comma coater, a die coater, or a gravure coater can be applied.
  • the solvent can be removed by a method such as natural drying by standing or forced drying under heating with hot air or infrared rays.
  • the composite conductive polymer composition used for the dye-sensitized solar cell counter electrode is soluble in an organic solvent, the conventional composite conductive polymer composition is dispersed in an aqueous medium. Compared with the liquid, the coating process is easy and the productivity is excellent. Moreover, the corrosion deterioration of the metal in the counter electrode preparation stage originating in acidic aqueous solution can be suppressed.
  • the composite conductive polymer composition used for the counter electrode has components (a-1), (a-2) and (a-3) in a predetermined range.
  • the composite electroconductive polymer composition used for the counter electrode comprises components (a-1), (a-2) and (a-3) in a predetermined range.
  • the counter electrode for the dye-sensitized solar cell is a composite conductive polymer film as a uniform oxidation resistant film against an expensive platinum electrode which has been used as an electrode having oxidation resistance with respect to an electrolytic solution. Since various metals can be used as a result of the action, it can be provided at a low price.
  • the antistatic film using the composite conductive polymer composition can be formed as a self-supporting film by applying and drying the composite conductive polymer composition alone, so that it has a low resistance charge. Preventive film can be processed. Moreover, when mixing a composite conductive polymer composition and a thermoplastic resin and / or a thermosetting resin as needed, (1) what was melt-kneaded with an extruder, an extruder, etc. T-die etc. (2) Applying the composite conductive polymer composition solution to one or both surfaces of a thermoplastic resin, a thermosetting resin, and a glass film, and removing the solvent in the solution Can be obtained by a method of forming an antistatic layer.
  • thermoplastic resin used in the antistatic film is polyolefin, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyvinyl acetate, polytetrafluoroethylene, polyacrylonitrile butadiene styrene, polyacrylonitrile styrene, polymethacryl, polyacryl, saturated.
  • examples thereof include polyester, polyamide, polycarbonate, poly-modified phenylene ether, polyphenylene sulfide, polysulfone, polyarylate, liquid crystal polymer, polyether ether ketone, polyamide imide, and the like, and polymer alloys and thermoplastic elastomers of these thermoplastic resins are also included.
  • thermosetting resin used in the antistatic film examples include polyphenol, polyepoxy, unsaturated polyester, polyurethane, polyimide, polyurea, silicone resin, melamine resin, fluorine resin, alkyd resin, and the like.
  • the antistatic film is obtained by using the polymer compound (A) obtained by copolymerizing the component (a-1), the component (a-2) and the component (a-3) within a predetermined range. It is possible to form an antistatic film having high permeability with little performance variation under various high and low humidity conditions.
  • A-1 (2-sodium sulfoethyl me
  • aniline was added to the emulsifier solution and stirred to obtain a uniform emulsion.
  • a solution prepared by dissolving 50 g of iron (III) sulfate in 150 g of ion-exchanged water was dropped into a flask kept at 25 ° C. over 10 hours. After completion of the dropwise addition, the temperature was raised to 50 ° C. and the polymerization reaction was continued for 48 hours.
  • the toluene solution was applied onto a glass substrate using a doctor blade so that the thickness after drying was 10 ⁇ m, and then dried, whereby a uniform green coating film was obtained.
  • the surface resistance value of the coating film was 100 k ⁇ / ⁇ .
  • aniline was added to the emulsifier solution and stirred to obtain a uniform emulsion.
  • a solution prepared by dissolving 10 g of ammonium peroxodisulfate in 30 g of ion-exchanged water was added dropwise over 10 hours while maintaining the inside of the flask at 0 ° C. After completion of the dropping, the temperature was returned to room temperature (25 ° C.), and the polymerization reaction was continued for 48 hours.
  • the composite conductive polymer composition (E-2) solution was applied onto a glass substrate with a doctor blade so that the thickness after drying was 10 ⁇ m, and then dried. A membrane was obtained.
  • the surface resistance value of the coating film was 250 k ⁇ / ⁇ .
  • A-3 (2-sodium sulfoethy
  • aniline was added to the emulsifier solution and stirred to obtain a uniform emulsion.
  • a solution prepared by dissolving 10 g of ammonium peroxodisulfate in 30 g of ion-exchanged water was added dropwise over 8 hours while maintaining the inside of the flask at 5 ° C. After completion of the dropping, the temperature was returned to room temperature (25 ° C.), and the polymerization reaction was continued for 36 hours.
  • This toluene solution of the composite conductive polymer composition (E-3) was applied on a glass substrate using a doctor blade so that the thickness after drying was 10 ⁇ m, and then dried. A coating film was obtained.
  • the surface resistance value of the coating film was 500 k ⁇ / ⁇ .
  • aniline was added to the emulsifier solution and stirred to obtain a uniform emulsion.
  • a solution prepared by dissolving 10 g of ammonium peroxodisulfate in 30 g of ion-exchanged water was added dropwise over 8 hours while maintaining the inside of the flask at 0 ° C. After completion of the dropwise addition, the polymerization reaction was continued for 30 hours while maintaining the temperature at 0 ° C.
  • This composite conductive polymer composition (E-5) was coated on a glass substrate with a doctor blade so that the thickness after drying was 10 ⁇ m and then dried. A coating film was obtained. The surface resistance value of the coating film was 30 k ⁇ / ⁇ .
  • This composite conductive polymer composition (E-6) was coated on a glass substrate with a doctor blade so that the thickness after drying was 10 ⁇ m and then dried. A coating film was obtained. The surface resistance value of the coating film was 70 k ⁇ / ⁇ .
  • A-7 comparative polymer compound (A-7) (2-sodium
  • the polymer (C-1) dispersion was filtered through a 200 mesh filter, and the filtrate was applied onto a glass substrate using a doctor blade so that the thickness after drying was 10 ⁇ m, followed by drying. As a result, a uniform film as a fine particle film was obtained. However, when the surface was rubbed with a finger, the film quality was such that it would fall off, and the uniform free-standing coating film obtained in Examples 1 to 6 was not obtained.
  • the resistance value was 10 7 ⁇ / ⁇ or more.
  • A-8 comparative polymer compound (A
  • aniline was added to the emulsifier solution and stirred to obtain a uniform emulsion.
  • a solution obtained by dissolving 10.0 g of ammonium peroxodisulfate in 30 g of ion-exchanged water was dropped into a flask kept at 0 ° C. over 10 hours. After completion of the dropwise addition, the polymerization reaction was continued for 30 hours while maintaining the temperature at 0 ° C.
  • the obtained reaction solution (CS-2) was a uniform solution.
  • the reaction solution (CS-2) was dried with a hot air circulating dryer at 80 ° C. to recover the solid content.
  • the obtained solid was redispersed in isopropyl alcohol (IPA), washed, and filtered again. This IPA washing and filtration was repeated 4 times to obtain a solid containing water.
  • This solid was dried under reduced pressure at 40 ° C. for 72 hours to obtain a polymer (C-2).
  • the volatile content was 2% or less.
  • the polymer (C-2) dispersion was filtered through a 200 mesh filter, and the filtrate was applied onto a glass substrate using a doctor blade so that the thickness after drying was 10 ⁇ m, followed by drying. As a result, a uniform film as a fine particle film was obtained. However, when the surface was rubbed with a finger, the film quality was such that it would fall off, and the uniform free-standing coating film obtained in Examples 1 to 6 was not obtained.
  • the resistance value was 10 7 ⁇ / ⁇ or more.
  • reaction solution (CS-2) was applied directly on a glass substrate so that the thickness after drying was 10 ⁇ m and dried, a non-uniform coating film was obtained, and the surface resistance was It was 10 6 ⁇ / ⁇ or more.
  • A-9 comparative polymer compound (A-9) (2-s
  • aniline was put into the emulsifier solution and stirred to obtain a uniform emulsion.
  • a solution obtained by dissolving 10.0 g of ammonium peroxodisulfate in 30 g of ion-exchanged water was added dropwise over 10 hours while maintaining the inside of the flask at 0 ° C. After completion of the dropwise addition, the polymerization reaction was continued for 30 hours while maintaining the temperature at 0 ° C.
  • the polymerization solution after the completion of the polymerization reaction was filtered off, and the resulting solid content was redispersed in water, washed, and filtered again. Further, washing with water and filtration were repeated 4 times to obtain a solid containing water. This solid was dried under reduced pressure at 40 ° C. for 72 hours to obtain a polymer (C-3). As a result of measuring the volatile content of this polymer (C-3), the volatile content was 1% or less.
  • the polymer (C-3) dispersion was filtered through a 200 mesh filter, and the filtrate was applied onto a glass substrate using a doctor blade so that the thickness after drying was 10 ⁇ m, followed by drying. As a result, a uniform film as a fine particle film was obtained. However, when the surface was rubbed with a finger, the film quality was such that it would fall off, and the uniform free-standing coating film obtained in Examples 1 to 6 was not obtained.
  • the surface resistance value was 10 7 ⁇ / ⁇ or more.
  • Comparative Example 4 Polymerization of comparative polymer compound (A-10) (sodium polystyrene sulfonate): 150 g of sodium p-styrenesulfonate, 150 g of ion-exchanged water and 300 g of isopropyl alcohol were charged into a four-necked flask having a capacity of 1000 cm 3 equipped with a stirrer, a nitrogen gas inlet tube, a reflux condenser, a charging port and a thermometer. While introducing nitrogen gas into the flask, the mixture in the flask was heated to the reflux temperature. Next, 0.7 g of azobisisobutyronitrile was put into the flask, and the polymer was obtained by carrying out a polymerization reaction for 18 hours while maintaining the reflux state.
  • A-10 sodium polystyrene sulfonate
  • aniline was added to the emulsifier solution and stirred to obtain a uniform emulsion.
  • a solution obtained by dissolving 10.0 g of ammonium peroxodisulfate in 30 g of ion-exchanged water was added dropwise over 10 hours while maintaining the inside of the flask at 0 ° C. After completion of the dropwise addition, the polymerization reaction was continued for 30 hours while maintaining the temperature at 0 ° C.
  • the polymer (C-4) dispersion was filtered through a 200 mesh filter, and the filtrate was applied onto a glass substrate using a doctor blade so that the thickness after drying was 10 ⁇ m, followed by drying. As a result, a uniform film as a fine particle film was obtained. However, when the surface was rubbed with a finger, the film quality was such that it would fall off, and the uniform free-standing coating film obtained in Examples 1 to 6 was not obtained.
  • the resistance value was 10 7 ⁇ / ⁇ or more.
  • Comparative Example 5 Polymerization of comparative polymer compound (A-11) (polystyrene sulfonate sodium): 150 g of sodium p-styrenesulfonate, 150 g of ion-exchanged water and 300 g of isopropyl alcohol were charged into a four-necked flask having a capacity of 1000 cm 3 equipped with a stirrer, a nitrogen gas inlet tube, a reflux condenser, a charging port and a thermometer. While introducing nitrogen gas into the flask, the mixture in the flask was heated to the reflux temperature. Subsequently, 0.7 g of azobisisobutyronitrile was put into the flask, and the refluxed state was maintained, and a polymerization reaction was performed for 20 hours to obtain a polymer.
  • A-11 polystyrene sulfonate sodium
  • aniline was put into the emulsifier solution and stirred to obtain a uniform emulsion.
  • a solution obtained by dissolving 10.0 g of ammonium peroxodisulfate in 30 g of ion-exchanged water was dropped into a flask kept at 0 ° C. over 10 hours. After completion of the dropwise addition, the polymerization reaction was continued for 30 hours while maintaining the temperature at 0 ° C.
  • the obtained reaction solution (CS-5) was a uniform solution.
  • the reaction solution (CS-5) was dried with a hot air circulating dryer at 80 ° C. to recover the solid content.
  • the obtained solid was re-dispersed in water, washed, and filtered again. This washing with water and filtration were repeated four times to obtain a solid containing water.
  • This solid was dried under reduced pressure at 100 ° C. for 72 hours to obtain a polymer (C-5).
  • the volatile content was 1% or less.
  • the polymer (C-5) aqueous dispersion was filtered through a 200 mesh filter, and the filtrate was applied onto a glass substrate using a doctor blade so that the thickness after drying was 10 ⁇ m, and then dried. As a result of drying, a green uniform coating film was obtained. When the surface resistance value of the coating film was measured, it was 3 M ⁇ / ⁇ .
  • Examples 7 to 11 and Comparative Examples 6 to 9 The counter electrode (opened copper mesh electrode) and the counter electrode substrate (80 ⁇ m thick PET film) used in Example 1 of International Publication No. WO / 2009/013942 were prepared in Examples 1 to 4. SUS foil, ITO PEN film, glass substrate, ITO glass substrate or FTO glass so that the thickness after drying the molecular composition solution or the conductive polymer composition solution prepared in Comparative Example 2 is 5 ⁇ m using a doctor blade It replaced with what was coated on the board
  • the dye-sensitized solar cell element using the composite conductive polymer composition of the present invention showed high photoelectric conversion efficiency.
  • Examples 14 to 15 and Comparative Examples 9 to 10 The composite conductive polymer composition solution prepared in Examples 1 and 2 or the conductive polymer composition solution prepared in Comparative Example 2 was readjusted to a solid content of 2.5%, respectively, and these were prepared by spin coating. The coating was applied to a glass substrate having a thickness of 1000 ⁇ m and a PET film substrate having a thickness of 1000 ⁇ m under a condition of 4000 rpm-15 sec, and the solvent was removed by a hot air dryer to produce an antistatic film having an antistatic layer formed thereon. In addition, when the film thickness of the antistatic layer was measured with a stylus type surface shape measuring instrument (Dektak 6M: manufactured by ULVAC), the thickness of each antistatic layer was approximately 25 nm.
  • Dektak 6M manufactured by ULVAC
  • the composite conductive polymer composition of the present invention uses a polymer compound (A) mainly composed of a highly hydrophobic aromatic ring or alicyclic group as a dopant, and is stable in an aromatic solvent such as toluene. Solubilized in water.
  • a composite conductive polymer forming composition solution obtained by dissolving the composite conductive polymer composition thus obtained in an aromatic solvent in a transparent state can easily be applied to a portion where conductivity is required.
  • a film can be formed and can be used very advantageously in the field of electronic components and the like.
  • a dye-sensitized solar electrode or an antistatic film using the composite conductive polymer composition of the present invention has excellent performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Hybrid Cells (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Conductive Materials (AREA)

Abstract

A technique that allows a wide variety of conductive polymer compositions to be dissolved in an organic solvent and allows a conductive film to be formed easily at a targeted part will be provided. Provided is a complex conductive polymer composition formulated by doping a π-conjugative conductive polymer (β) having a compound selected from formulas (I)‑(III) as a monomer element with a polymer compound (A), which is composed of 20‑45 mol% of a monomer comprising (a‑1) a sulfonate group and a polymerizable vinyl group, and 55‑80 mol% of a monomer having (a‑2) an aromatic group or an alicyclic group and a polymerizable vinyl group. Also provided are a manufacturing method for the same, and a solution obtained by dissolving said composition in an aromatic solvent. (In the formulas, R1‑R7 represent a hydrogen atom or an alkyl group having 1‑12 carbon atoms)

Description

複合導電性高分子組成物、その製造方法、当該組成物を含有する溶液、および当該組成物の用途Composite conductive polymer composition, production method thereof, solution containing the composition, and use of the composition
 本発明は、複合導電性高分子組成物、その製造方法、当該組成物を含有する溶液、および当該組成物の用途に関し、更に詳細には、アニリン、チオフェン、ピロール等の芳香族系、複素環系化合物をモノマー構成成分とするπ共役系高分子に溶剤可溶性を付与するために、高分子乳化剤をドーピングした複合導電性高分子組成物、その製造方法、当該組成物を含有する溶液、および当該組成物の色素増感型太陽電気用電極や帯電防止フィルムなどへの利用に関する。 The present invention relates to a composite conductive polymer composition, a production method thereof, a solution containing the composition, and a use of the composition. More specifically, the present invention relates to an aromatic system such as aniline, thiophene, and pyrrole, and a heterocyclic ring. In order to impart solvent solubility to a π-conjugated polymer having a monomer compound as a monomer component, a composite conductive polymer composition doped with a polymer emulsifier, a production method thereof, a solution containing the composition, and the The present invention relates to the use of the composition for a dye-sensitized solar electrode or an antistatic film.
 π共役系高分子における高い導電性付与にはドーパントによるドーピングが必須である。しかし、本来π共役が発達した高分子は、高分子鎖の平面性が高く、π結合の親和力による高分子鎖間の結晶性(スタッキング性)が高い構造となっている。しかも、ドーパントにより、ドーピングされたπ共役系高分子は、更に平面性およびπ共役による親和力が高くなり、スタッキング性が更に顕著となる。このため、π共役系高分子の溶解(熱または溶剤による)と電気伝導度の両立は難しい課題であった。 Doping with a dopant is essential for imparting high conductivity in a π-conjugated polymer. However, a polymer in which π conjugation has originally developed has a structure in which the polymer chain has high planarity and crystallinity (stacking property) between polymer chains due to the affinity of π bond. Moreover, the π-conjugated polymer doped with the dopant has higher planarity and higher affinity due to π-conjugation, and the stacking property becomes more remarkable. For this reason, it is a difficult problem to achieve both the dissolution (by heat or solvent) of the π-conjugated polymer and the electrical conductivity.
 そこで、π共役系高分子の側鎖へアルキル基やアルコキシル基等を導入した高分子が提案されているが(特許文献1)、実際に十分導電体と言える10のマイナス5乗s・m以下まで電気伝導度を上げるためには、ドーピングが必要となる。そして、このドーピングを行えば、その結果、導電性高分子の平面性発達とπ共役親和性の発達により、十分な溶剤可溶性が得られなくなってしまうという問題があった。 Thus, a polymer in which an alkyl group, an alkoxyl group, or the like is introduced into the side chain of a π-conjugated polymer has been proposed (Patent Document 1). In order to increase the electrical conductivity up to, doping is necessary. If this doping is performed, there is a problem that sufficient solvent solubility cannot be obtained due to the development of the planarity of the conductive polymer and the development of π-conjugate affinity.
 導電性高分子の利用を考えた場合、取り扱いの容易さからは、溶剤による溶解や、熱による溶融が可能で、且つ成型成膜後は十分な電気伝導度を有する自立膜や自立形成体が得られることが望まれており、従来、これら導電性ポリマーの使用の際には、直接導電性を付与したい基体上で電解重合や蒸気暴露による重合体膜の成膜、酸化剤と導電性ポリマー前躯体モノマー溶液に浸漬後加熱等による薄膜重合等を行い、その後、得られた重合体膜にドーピングする等の処理を行っている。 When considering the use of conductive polymers, from the viewpoint of ease of handling, it is possible to use a self-supporting film or a self-supporting body that can be dissolved by a solvent or melted by heat, and has sufficient electrical conductivity after molding. Conventionally, when these conductive polymers are used, a polymer film is formed by electrolytic polymerization or vapor exposure on a substrate to which direct conductivity is desired, an oxidizing agent and a conductive polymer. After being immersed in the precursor monomer solution, a thin film polymerization or the like is performed by heating or the like, and then a treatment such as doping of the obtained polymer film is performed.
 しかしこの場合、電解重合では基体が半導体若しくは導電体である必要が有り、また、電解液への耐腐食性も求められる為、使用できる基体が制限される。また、直接蒸気による薄膜重合では、重合場となる薄膜に酸化剤を均質に存在させる必要があり、成膜制御の面では十分と言えず、また、これら手法で用いられるポリマーコンデンサー用途では、表面積を大きくする為に微細な凹凸を形成しており、十分均質な表面への導電性ポリマー形成は困難であった。 However, in this case, the electrolytic polymerization requires the substrate to be a semiconductor or a conductor, and corrosion resistance to the electrolytic solution is also required, so that usable substrates are limited. In addition, in thin film polymerization using direct vapor, it is necessary to make the oxidant homogeneously present in the thin film that becomes the polymerization field, which is not sufficient in terms of film formation control. In order to increase the thickness, fine irregularities were formed, and it was difficult to form a conductive polymer on a sufficiently homogeneous surface.
 そこで、導電性ポリマーを有機溶媒に溶解させる試みがなされ、そのための手段がいくつか提案されている。特許文献2には、3,4-ジ置換チオフェンを無機第2鉄塩類および酸化剤を用いて重合させるポリ(3,4ージ置換チオフェン)の製造方法が開示されており、また、特許文献3には、主に繰り返しチオフェン単位を有するポリマーT および少なくとも1 個の他のポリアニオンポリマーP を有する水分散性粉末が開示されている。しかし、特許文献2の方法は、粉末物を得る手法若しくは直接対象被着体表面で酸化重合する方法であって、本手法では得られた重合物を溶剤若しくは水等へ溶解させることは不可能であり、また特許文献3のものも、水分散性良好な分散体でしかなく、有機溶剤に対し分子可溶するようなものではない。 Therefore, attempts have been made to dissolve the conductive polymer in an organic solvent, and several means for that purpose have been proposed. Patent Document 2 discloses a method for producing poly (3,4-disubstituted thiophene) in which 3,4-disubstituted thiophene is polymerized using an inorganic ferric salt and an oxidizing agent. 3 discloses a water dispersible powder having a polymer T having predominantly repeating thiophene units and at least one other polyanionic polymer P. However, the method of Patent Document 2 is a method for obtaining a powdered material or a method for performing oxidative polymerization directly on the surface of the target adherend, and it is impossible to dissolve the polymer obtained in this method in a solvent or water. Also, the one of Patent Document 3 is only a dispersion having good water dispersibility, and is not such that it is molecularly soluble in an organic solvent.
 また、より直接的な溶剤ナノ分散化の手段として各種検討がされており、特許文献4では、本質的に溶剤に可溶しないポリアニリンを、ナノサイズレベルまで粉砕微粉化しポリアニリンおよび溶剤に親和性の高いSDS(ドデシルベンゼンスルホン酸)やPTS(パラトルエンスルホン酸)等のスルホン酸アニオン乳化剤を分散剤として用いながら溶剤に共分散させ、ナノレベルでの微分散体溶液の提供を開示しているが、実質的に溶剤に可溶している訳ではないので、塗工膜の表面は凸凹としており、また、ポリアニリンのみでの自立膜(均質膜ともいう。単独でピンホールなどを生じずに膜化したものを意味する)とすることは出来ないため、バインダーなどと組み合わせない限りコーティング後に膜化させることは不可能である。 Further, various studies have been made as a more direct means for solvent nanodispersion. In Patent Document 4, polyaniline, which is essentially insoluble in a solvent, is pulverized and pulverized to a nano-size level and has an affinity for polyaniline and the solvent. Although a high sulfonic acid anion emulsifier such as SDS (dodecylbenzenesulfonic acid) or PTS (paratoluenesulfonic acid) is used as a dispersant, it is disclosed to provide a fine dispersion solution at a nano level. The surface of the coating film is uneven because it is not substantially soluble in a solvent, and is also a self-supporting film made of only polyaniline (also called a homogeneous film. It is impossible to form a film after coating unless it is combined with a binder or the like.
 更に、特許文献5では、分子量2,000~500,000の範囲の分子量を有する、ポリスチレンスルホン酸のポリ陰イオンの存在下で酸化化学重合されたポリチオフェンと、分子量2,000~500,000の、ポリスチレンスルホン酸由来のポリ陰イオンを水または水と水混和性有機溶媒の混合溶媒中に含んでなるポリチオフェンの溶液が開示されている。 Furthermore, in Patent Document 5, polythiophene having a molecular weight in the range of 2,000 to 500,000 and oxidized and chemically polymerized in the presence of a polyanion of polystyrene sulfonate and a molecular weight of 2,000 to 500,000 are disclosed. A solution of polythiophene comprising a polyanion derived from polystyrene sulfonic acid in water or a mixed solvent of water and a water-miscible organic solvent is disclosed.
 この特許文献は、ポリスチレンスルホン酸(PSS)と酸化剤共存下での酸化重合で、水またはアルコール溶剤へ溶解または分散可能なポリ(エチレンジオキサイド置換チオフェン)(PEDOT)の製造方法の提案であるが、ここで得られるPEDOT/PSSは水に分散はされているが、完全な溶解はされておらず、部分的なPEDOT間のスタッキングを抑えることは難しく、導電性ポリマーを溶解するには不十分なものであった。 This patent document proposes a method for producing poly (ethylene dioxide substituted thiophene) (PEDOT) that can be dissolved or dispersed in water or an alcohol solvent by oxidative polymerization in the presence of polystyrene sulfonic acid (PSS) and an oxidizing agent. However, although the PEDOT / PSS obtained here is dispersed in water, it is not completely dissolved, it is difficult to suppress stacking between partial PEDOTs, and it is difficult to dissolve the conductive polymer. It was enough.
 更にまた、特許文献6には、疎水性の大きなアニオン性界面活性剤の存在下において、アニリン、もしくはアニリン誘導体を、有機酸や無機酸を含む溶媒中で酸化重合して析出、単離、精製した後、水と混和しない有機溶媒で抽出して有機溶液を形成することが開示されている。 Furthermore, Patent Document 6 discloses precipitation, isolation, and purification by oxidative polymerization of aniline or aniline derivatives in a solvent containing an organic acid or an inorganic acid in the presence of a highly hydrophobic anionic surfactant. And then extracting with an organic solvent immiscible with water to form an organic solution.
 しかし、この特許文献で使用されている乳化剤は低分子スルホン酸系であり、重合前にアニリンを塩酸塩化し、その後スルホン酸系乳化剤によりアニリン塩置換を行っているが、実際には十分な塩交換は起こり難く、また、本特許文献の合成法により得られるポリアニリンは実際には溶剤に溶解せず、微分散状態の溶剤分散液しか得られないという問題がある。また、アニリンに対して等量モル以上のスルホン酸系乳化剤が使用される為、実質ドープされた乳化剤以外の乳化剤が50%以上残存し、使用に当たっては、これら乳化剤を取り除くことが必要であり、この為には洗浄工程が煩雑であるという問題がある。更には、低分子乳化剤では溶剤への溶解付与効果と、ポリアニリンのスタックを抑止する効果を1分子の設計として導入することは非常に困難であり、仮に一時的に溶剤に溶解したポリアニリンの状態でも直ぐにスタック(PANIの結晶化)による微凝集が発生してしまうという問題がある。 However, the emulsifier used in this patent document is a low molecular sulfonic acid type, and aniline is converted to hydrochloric acid before polymerization, and then aniline salt substitution is performed with the sulfonic acid type emulsifier. The exchange hardly occurs, and the polyaniline obtained by the synthesis method of this patent document does not actually dissolve in the solvent, and there is a problem that only a finely dispersed solvent dispersion can be obtained. Moreover, since sulfonic acid-based emulsifiers in an equimolar amount or more with respect to aniline are used, 50% or more of emulsifiers other than substantially doped emulsifiers remain, and in use, it is necessary to remove these emulsifiers, For this purpose, there is a problem that the cleaning process is complicated. Furthermore, it is very difficult to introduce the effect of imparting solubility in a solvent and the effect of inhibiting the stacking of polyaniline as a single molecule design with a low molecular emulsifier, and even in the state of polyaniline temporarily dissolved in a solvent. There is a problem that fine aggregation due to stacking (PANI crystallization) occurs immediately.
 また更に特許文献7では、(A)スルホン酸官能基とラジカル重合性官能基とを有するモノマーおよび(B)アニリンまたはその誘導体からなるモノマー を水もしくは有機溶剤に溶解した溶液を乳化し、(B)のモノマー中に(A)のモノマーに由来するスルホン酸構造を導入した後、重合開始剤下記の共存下に(A)および(B)のモノマーを重合して、(B)の重合体と(A)の重合体とが絡み合った状態の導電性ポリマーを作製する方法が開示されている。 Furthermore, in Patent Document 7, a solution in which (A) a monomer having a sulfonic acid functional group and a radical polymerizable functional group and (B) a monomer soot made of aniline or a derivative thereof is dissolved in water or an organic solvent is emulsified. ), The sulfonic acid structure derived from the monomer (A) is introduced into the monomer, the polymerization initiator (A) and the monomer (B) are polymerized in the coexistence of the following, and the polymer (B): A method for producing a conductive polymer in an intertwined state with the polymer (A) is disclosed.
 しかし、この特許文献の方法では、水系酸化剤兼ラジカル開始剤として過硫酸アンモニウム塩を使用している為、実際には本明細に書かれているような理想的なビニル系ポリマーとポリアニリンの相互網目状構造は困難である。従って、この特許文献方法では、実際には、PANIを含まないビニルポリマーが相当数存在したり、逆にビニルポリマーに取り込まれないドープモノマーがPANI中で存在したりして、非常に不均一且つ不安定な物となるという問題がある。 However, in the method of this patent document, an ammonium persulfate salt is used as an aqueous oxidant / radical initiator, so that an ideal vinyl polymer and polyaniline mutual network as described in this specification is actually used. The structure is difficult. Therefore, in this patent document method, there are actually a large number of vinyl polymers that do not contain PANI, and conversely, dope monomers that are not incorporated into the vinyl polymer exist in PANI. There is a problem of becoming unstable.
 例えば特許文献8には、実質的に水と混和しない有機溶剤に溶解している、(a)プロトネーションされた置換または未置換ポリアニリン複合体、および(b)フェノール性水酸基を有する化合物を含む導電性ポリアニリン組成物が開示されている。 For example, Patent Document 8 discloses a conductive material containing (a) a protonated substituted or unsubstituted polyaniline complex and (b) a compound having a phenolic hydroxyl group dissolved in an organic solvent that is substantially immiscible with water. A functional polyaniline composition is disclosed.
 しかしこの特許文献では、溶剤/水/モノマー/乳化剤の重合場において、水溶性酸化剤を用いてポリアニリンの合成を行っている為、本質的には水溶アニリンモノマーが重合しながら乳化剤を介してトルエンに分散する系でポリアニリンとなり、実質トルエン以外に水に対して幾分溶解するような溶剤への展開は不可能である。また、本特許文献の発明で、実際に使用しているジイソオクチルスルホコハク酸ナトリウム(AOT)では、ポリアニリンのスタッキングを十分に抑制することが出来ない為、フェノール類(クレゾール)等の併用が必須となっている。これは、明細書の記載は十分ではないが非特許文献1に記載されている技術であり、ポリアニリン被膜中におけるドナー強度の調整により、フェノール性化合物の親和性が顕著にあり、ポリアニリン被膜における導電性向上に有用であると開示されている。これは、つまりフェノール類の様にトルエンに対し溶解性が良好でポリアニリンへの相溶性が良好な不揮発性添加剤を混合することで、乾燥塗膜の導電性を向上させるだけでなく、トルエン可溶中のポリアニリン同士のスタックをフェノール類が抑制していると考えられ、これら添加剤が無い場合はAOTのような立体障害性でのポリアニリンの結晶性制御では十分な可溶性の安定化が不可能であり、このことは本発明者らの追試でも確認されている。 However, in this patent document, since polyaniline is synthesized using a water-soluble oxidant in a solvent / water / monomer / emulsifier polymerization field, essentially water-soluble aniline monomer is polymerized while toluene is passed through the emulsifier. It is impossible to develop into a solvent that becomes polyaniline in a system in which it is dispersed in water and is somewhat soluble in water other than toluene. In addition, the sodium diisooctylsulfosuccinate (AOT) actually used in the invention of this patent document cannot sufficiently suppress the stacking of polyaniline. Therefore, it is essential to use phenols (cresol) together. It has become. This is a technique described in Non-Patent Document 1, although the description is not sufficient, and by adjusting the donor strength in the polyaniline coating, the affinity of the phenolic compound is remarkable, and the conductivity in the polyaniline coating is It is disclosed that it is useful for improving the performance. In other words, by mixing non-volatile additives that have good solubility in toluene and good compatibility with polyaniline, such as phenols, not only improve the conductivity of the dried coating, but also allow toluene. It is thought that phenols suppress the stack of polyaniline in solution, and in the absence of these additives, it is impossible to stabilize the solubility sufficiently by controlling the crystallinity of polyaniline with steric hindrance like AOT This has been confirmed by the inventors' additional test.
 一方、導電性ポリマー組成物を用いた用途として、色素増感型太陽電池用対極や帯電防止フィルムがある。特許文献10には、透明導電層を設けられたプラスチックフィルムに導電性高分子層を設けてなる色素増感型太陽電池の対極が開示されている。 On the other hand, as an application using the conductive polymer composition, there are a counter electrode for a dye-sensitized solar cell and an antistatic film. Patent Document 10 discloses a counter electrode of a dye-sensitized solar cell in which a conductive polymer layer is provided on a plastic film provided with a transparent conductive layer.
 しかし、この特許文献では、導電性高分子を含む分散液を塗布し、溶媒を除去して導電性高分子層を形成しているが、導電性高分子は微粒子の分散膜であるため、透明導電層に対する密着性が悪く、予めプラズマ処理などを行い透明導電層の表面エネルギーを高める必要がある。また、この特許文献の実施例において、分散剤にポリスチレンスルホン酸を用いていることが記載されているが、この場合は導電性高分子のドープに寄与しないフリーのスルホン酸が存在することとなり、溶媒は水溶液となる為にフィルム基板上に塗工する場合に溶媒とフィルム基板表面の選択性が非常に大きく、導電性高分子塗膜の不均一性に由来するピンホールが発生し易いこと、残存スルホン酸基により塗膜の極性が高いことから電解質溶液で一般的に使用されるアセトニトリルやイオン性液体等への耐久性が悪く塗膜の剥がれが発生し易いこと、等を原因として透明導電膜が電解液中のヨウ素により腐食される問題が挙げられることから、対極としての長期的な安定性に問題があることで白金対極を置き換えるには不十分であった。 However, in this patent document, a dispersion containing conductive polymer is applied and the solvent is removed to form a conductive polymer layer. However, since the conductive polymer is a dispersion film of fine particles, it is transparent. Adhesion to the conductive layer is poor, and it is necessary to increase the surface energy of the transparent conductive layer by performing plasma treatment or the like in advance. In addition, in the examples of this patent document, it is described that polystyrene sulfonic acid is used as the dispersant, but in this case, there is free sulfonic acid that does not contribute to the doping of the conductive polymer, Since the solvent becomes an aqueous solution, the selectivity between the solvent and the film substrate surface is very large when applied on the film substrate, and pinholes derived from the non-uniformity of the conductive polymer coating film are likely to occur. Transparent conductivity due to the high polarity of the coating film due to residual sulfonic acid groups, and poor durability to acetonitrile and ionic liquids commonly used in electrolyte solutions, and the tendency of the coating film to peel off. Since the problem is that the membrane is corroded by iodine in the electrolyte, the long-term stability as a counter electrode is insufficient to replace the platinum counter electrode.
 また、特許文献11には、ポリチオフェン系化合物、酸性ポリマーおよび糖アルコールを含有する帯電防止材料を熱可塑性樹脂フィルムに塗布した帯電防止フィルムが開示されている。 Further, Patent Document 11 discloses an antistatic film in which an antistatic material containing a polythiophene compound, an acidic polymer, and a sugar alcohol is applied to a thermoplastic resin film.
 しかし、この特許文献では、帯電防止材料として糖アルコールを必須成分とすることにより、得られる帯電防止フィルムの透明性や帯電防止性は良好であるが、ポリチオフェン系化合物へのドーピング剤としてポリスチレンスルホン酸などの酸性ポリマーのみを使用しているため、帯電防止膜が経時で吸湿することによって、密着性および帯電防止性が低下する問題がある。 However, in this patent document, by using sugar alcohol as an essential component as an antistatic material, the antistatic film obtained has good transparency and antistatic properties, but polystyrene sulfonic acid is used as a doping agent for polythiophene compounds. Since only an acidic polymer such as the above is used, the antistatic film absorbs moisture over time, and there is a problem that adhesion and antistatic properties are lowered.
特表2002-539287Special Table 2002-539287 特開平01-313521JP-A-01-313521 特表2004-514753Special table 2004-514753 特表2007-518859Special table 2007-518859 特許第2636968Japanese Patent No. 2636968 特開2008-169255JP2008-169255 特開2007-314606JP2007-314606A WO2005/052058WO2005 / 052058 特開2000-344823JP 2000-344823 A 特開2006-155907JP 2006-155907 A 特開2008-179809JP2008-179809
 そこで、本発明は、溶剤への溶解性に優れ、自立膜、すなわち、単独でピンホールなどの生じない均質な膜若しくは成形体となる導電性高分子組成物およびその製造方法等を提供することを課題としている。 Accordingly, the present invention provides a conductive polymer composition that is excellent in solubility in a solvent and is a self-supporting film, that is, a homogeneous film or a molded body that does not cause pinholes alone, and a method for producing the same. Is an issue.
 本発明者らは、上記課題を解決すべく前記の先行技術を追試し検討した結果、<1>π共役系高分子の重合場では十分な電解資質溶媒を使用し、酸化が進むアニオン場を安定且つ均一系を与える必要が有ること、<2>重合成長中のπ共役系高分子のスタッキングを制御し且つ安定なモノマー供給を与える為の場が必要なこと、<3>これら重合成長場でのπ共役系ポリマーへのドーピングが積極的に進むこと、<4>これらドーピングの過程で水等の初期重合場電解資質溶媒から析出可能であること、<5>重合後のπ共役系高分子が何らかの立体的分子障害により主鎖骨格のスタッキングが抑止されていること、<6>これら立体障害性因子がこの物自身で結晶性を有しておらず、且つ溶剤や熱などでの溶融が可能であること等の要素が導電性ポリマー合成の初期から精製、溶剤への再溶解に必要である事実が明確になった。 As a result of further examination of the above prior art in order to solve the above problems, the present inventors have found that an anionic field in which oxidation is progressed by using a sufficient electrolytic solvent in the polymerization field of <1> π-conjugated polymer. It is necessary to provide a stable and homogeneous system, <2> a field for controlling the stacking of π-conjugated polymers during polymerization growth and providing a stable monomer supply, <3> these polymerization growth fields <4> Precipitation from an initial polymerization field electrolyte solvent such as water in the process of doping, <5> High π-conjugated system after polymerization Stacking of the main chain skeleton is suppressed due to some steric molecular hindrance, and <6> these steric hindrance factors do not have crystallinity themselves, and are melted by a solvent or heat. Such as being possible Purification from the initial conductive polymer synthesis, the fact is required to re-dissolution in a solvent became clear.
 そこで、本発明者らは更に検討した結果、特定のモノマーを共重合した高分子化合物を、π共役系高分子の重合時に添加剤として使用すると、乳化剤としての重合場を均一状態化する機能に加えて、ドープ材としての機能を発揮すると共に、π共役系高分子への適度な立体障害性を有するために、特定の溶剤への可溶性に優れた複合導電性高分子組成物が得られることを見いだした。また、本発明者らは前記の複合導電性高分子組成物が、色素増感型太陽電気用対極や帯電防止フィルムなどに利用できることを見いだし、本発明の完成に至った。 Therefore, as a result of further studies, the present inventors have found that when a polymer compound copolymerized with a specific monomer is used as an additive during the polymerization of a π-conjugated polymer, the function of making the polymerization field as an emulsifier uniform. In addition, it exhibits a function as a doping material and has an appropriate steric hindrance to a π-conjugated polymer, so that a composite conductive polymer composition excellent in solubility in a specific solvent can be obtained. I found. In addition, the present inventors have found that the composite conductive polymer composition can be used for a dye-sensitized solar counter electrode, an antistatic film, and the like, and have completed the present invention.
 すなわち本発明は、次の成分(a-1)および(a-2)
 (a-1)スルホン酸基と重合性ビニル基を含有モノマー
      20~45mol%
 (a-2)芳香族基または脂環族基と重合性ビニル基を有するモノマー
      55~80mol%
を構成成分とする高分子化合物(A)を、次式(I)~(III)
Figure JPOXMLDOC01-appb-C000003
(各式中、Rないしは、水素原子または炭素数1ないし12のアルキル基を示す)
から選ばれる化合物をモノマー構成成分とするπ共役系高分子(β)に、ドーピングさせてなる複合導電性高分子組成物である。
That is, the present invention provides the following components (a-1) and (a-2)
(A-1) Monomer containing sulfonic acid group and polymerizable vinyl group 20 to 45 mol%
(A-2) Monomer having aromatic group or alicyclic group and polymerizable vinyl group 55 to 80 mol%
A polymer compound (A) having the following components (I) to (III)
Figure JPOXMLDOC01-appb-C000003
(In each formula, R 1 to 7 represent a hydrogen atom or an alkyl group having 1 to 12 carbon atoms)
A composite conductive polymer composition obtained by doping a π-conjugated polymer (β) having a monomer component as a monomer constituent.
 また本発明は、次の成分(a-1)および(a-2)
 (a-1)スルホン酸基と重合性ビニル基を有するモノマー
      20~45mol%
 (a-2)芳香族基または脂環族基と重合性ビニル基を有するモノマー
      55~80mol%
をラジカル重合した高分子化合物(A)と、前記式(I)~(III)から選ばれる化合物とを電解性基質溶媒中にて共存させ、酸化剤を用いて化学酸化重合することを特徴とする複合導電性高分子組成物の製造方法である。
The present invention also provides the following components (a-1) and (a-2)
(A-1) Monomer having sulfonic acid group and polymerizable vinyl group 20 to 45 mol%
(A-2) Monomer having aromatic group or alicyclic group and polymerizable vinyl group 55 to 80 mol%
Characterized in that the polymer compound (A) obtained by radical polymerization of the compound and a compound selected from the formulas (I) to (III) are coexisted in an electrolytic substrate solvent and chemically oxidatively polymerized using an oxidizing agent. This is a method for producing a composite conductive polymer composition.
 更に本発明は、前記の複合導電性高分子組成物を、トルエン、ベンゼンおよびキシレンから選ばれる芳香族系溶媒に0.1~10重量%溶解状態で含有してなる複合導電性高分子組成物溶液である。 Furthermore, the present invention provides a composite conductive polymer composition comprising the composite conductive polymer composition described above in a dissolved state of 0.1 to 10% by weight in an aromatic solvent selected from toluene, benzene and xylene. It is a solution.
 また更に本発明は、前記の複合導電性高分子組成物を用いてなる色素増感型太陽電池用対極である。 Furthermore, the present invention provides a counter electrode for a dye-sensitized solar cell using the above composite conductive polymer composition.
 更にまた本発明は、前記の複合導電性高分子組成物を用いてなる帯電防止フィルムである。 Furthermore, the present invention is an antistatic film using the composite conductive polymer composition.
 本発明の高分子乳化剤の存在下で、酸化剤の作用により重合して得られた複合導電性高分子は、トルエン等の芳香族溶剤中に安定に溶解するものである。 The composite conductive polymer obtained by polymerization by the action of an oxidizing agent in the presence of the polymer emulsifier of the present invention is one that dissolves stably in an aromatic solvent such as toluene.
 従って、芳香族溶剤中にこの複合導電性高分子を溶解した溶液を、導電性付与を必要とする部位に塗布し、これを乾燥させることにより、簡単に導電性皮膜を得ることが可能となる。 Therefore, a conductive film can be easily obtained by applying a solution obtained by dissolving this composite conductive polymer in an aromatic solvent to a site requiring conductivity and drying it. .
 本発明において使用される高分子化合物(A)は、常法に従って成分(a-1)のスルホン酸基と重合性ビニル基を有するモノマーと、成分(a-2)の芳香族基または脂環族基と重合性ビニル基を有するモノマ-をラジカル重合させることにより製造される。 The polymer compound (A) used in the present invention comprises a monomer having a sulfonic acid group and a polymerizable vinyl group in component (a-1) and an aromatic group or alicyclic component in component (a-2) according to a conventional method. It is produced by radical polymerization of a monomer having an aromatic group and a polymerizable vinyl group.
 成分(a-1)のスルホン酸基と重合性ビニル基を有するモノマーとしては、スチレンスルホン酸基や、スルホエチル基等のスルホン酸基を有するモノマーが挙げられ、その例としては、スチレンスルホン酸やスチレンスルホン酸ナトリウム、スチレンスルホン酸カリウム、スチレンスルホン酸カルシウム等のスチレンスルホン酸塩、(メタ)アクリル酸エチル2-スルホン酸や、(メタ)アクリル酸エチル2-スルホン酸ナトリウム、(メタ)アクリル酸エチル2-スルホン酸カリウム、(メタ)アクリル酸エチル2-スルホン酸カルシウム等の(メタ)アクリル酸エチル2-スルホン酸塩が挙げられる。 Examples of the monomer (a-1) having a sulfonic acid group and a polymerizable vinyl group include monomers having a sulfonic acid group such as a styrenesulfonic acid group and a sulfoethyl group. Examples thereof include styrenesulfonic acid and Styrene sulfonates such as sodium styrene sulfonate, potassium styrene sulfonate, calcium styrene sulfonate, ethyl 2-methacrylate (meth) acrylate, ethyl 2-methacrylate (sodium 2-sulfonate), (meth) acrylic acid Examples thereof include ethyl 2-methacrylate (sulfonate) such as potassium ethyl 2-sulfonate, ethyl (meth) acrylate 2-calcium sulfonate, and the like.
 また成分(a-2)の芳香族基または脂環族基と重合性ビニル基を有するモノマーの例としては、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、(メタ)アクリル酸エチル2-フタル酸メチルエステル、(メタ)アクリル酸エチル2-フタル酸エチルエステル、シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンタニルオキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、t-ブチルシクロヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、(メタ)アクリレートモルホリン、スチレン、ジメチルスチレン、ナフタレン(メタ)アクリレート、ビニルナフタレン、ビニルn-エチルカルバゾール、ビニルフルオレン等が挙げられる。 Examples of the monomer (a-2) having an aromatic group or alicyclic group and a polymerizable vinyl group include benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, ethyl (meth) acrylate 2- Phthalic acid methyl ester, (meth) acrylic acid ethyl 2-phthalic acid ethyl ester, cyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentanyloxyethyl (meth) acrylate, isobornyl (meth) acrylate, t-butylcyclohexyl (meth) acrylate, cyclohexyl (meth) acrylate, (meth) acrylate morpholine, styrene, dimethylstyrene, naphthalene (meth) acrylate, vinyl naphthalene, vinyl n-ethylcarbazole, vinyl fluorene, etc. It is below.
 本発明で使用する高分子化合物(A)の製造に当たっては、成分(a-1)と成分(a-2)のモル比が重要である。すなわち、本発明の高分子乳化剤は、芳香族基または脂環族基による疎水性とスルホン酸基による親水性を適宜バランスさせることにより、導電性高分子組成物に作用し、これを溶剤中に溶解可能とするためである。 In the production of the polymer compound (A) used in the present invention, the molar ratio of the component (a-1) to the component (a-2) is important. That is, the polymer emulsifier of the present invention acts on the conductive polymer composition by appropriately balancing the hydrophobicity due to the aromatic group or alicyclic group and the hydrophilicity due to the sulfonic acid group. This is to enable dissolution.
 本発明で用いる高分子化合物(A)を製造するための、成分(a-1)の配合量は、20~45mol%であり、好ましくは、25~40mol%である。また、成分(a-2)の配合量は、55~80mol%であり、好ましくは、60~75mol%である。 The amount of component (a-1) for producing the polymer compound (A) used in the present invention is 20 to 45 mol%, preferably 25 to 40 mol%. The amount of component (a-2) is 55 to 80 mol%, preferably 60 to 75 mol%.
 本発明の高分子化合物(A)には、上記成分(a-1)および(a-2)以外の重合性成分を含有させることもできる。この重合性成分の例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート等アルキル(メタ)アクリレート、(メタ)アクリル酸、2-ヒドロキシ(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、アセトアセトキシエチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、N,N-ジメチルアミノエチル(メタ)アクリレート等が挙げられ、配合させる場合の配合量は、0~20mol%程度である。 The polymer compound (A) of the present invention may contain a polymerizable component other than the above components (a-1) and (a-2). Examples of the polymerizable component include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, alkyl (meth) acrylate such as lauryl (meth) acrylate, (meth) Acrylic acid, 2-hydroxy (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, acetoacetoxyethyl (meth) acrylate, tetrahydrofurfuryl ( Examples thereof include meth) acrylate and N, N-dimethylaminoethyl (meth) acrylate, and the blending amount when blended is about 0 to 20 mol%.
 上記成分(a-1)、成分(a-2)および必要により加える重合性成分のラジカル重合反応は、公知の方法で行うことができる。例えば、これら各成分を混合した後、これに重合開始剤を添加し、加熱、光照射等により重合を開始することで製造することができる。 The radical polymerization reaction of the component (a-1), the component (a-2) and the polymerizable component added as necessary can be performed by a known method. For example, after mixing each of these components, a polymerization initiator can be added thereto and polymerization can be started by heating, light irradiation, or the like.
 上記高分子化合物(A)を製造するために採用可能な重合法は、モノマー混合物から成分(a-1)が分離状態とならない状態で実施可能な方法であれば特に限定されず、例えば、溶液重合法、塊状(バルク)重合法、析出重合法等が採用される。 The polymerization method that can be employed for producing the polymer compound (A) is not particularly limited as long as it can be carried out in a state where the component (a-1) is not separated from the monomer mixture. A polymerization method, a bulk (bulk) polymerization method, a precipitation polymerization method, or the like is employed.
 また、重合反応に使用される重合開始剤は、上記各成分や、反応時に使用する溶媒に溶解可能なものであれば、特に限定されるものではない。この重合開始剤の例としては、過酸化ベンゾイル(BPO)等の油溶性過酸化物系熱重合開始剤、アゾビスイソブチロニトリル(AIBN)等の油溶性アゾ系熱重合開始剤、アゾビスシアノ吉草酸(ACVA)等の水溶性アゾ系熱重合開始剤等が挙げられる。また、溶液重合の溶媒中の水割合が多い場合は、過硫酸アンモニウムや過硫酸カリウム等の水溶性過酸化物系熱重合開始剤、過酸化水素水等も使用することができる。さらに、フェロセンやアミン類等のレドックス剤の組み合わせも可能である。 Further, the polymerization initiator used in the polymerization reaction is not particularly limited as long as it can be dissolved in each of the above components and the solvent used during the reaction. Examples of this polymerization initiator include oil-soluble peroxide-based thermal polymerization initiators such as benzoyl peroxide (BPO), oil-soluble azo-based thermal polymerization initiators such as azobisisobutyronitrile (AIBN), azobiscyano Examples thereof include water-soluble azo-based thermal polymerization initiators such as herbal acid (ACVA). In addition, when the water ratio in the solvent for solution polymerization is large, water-soluble peroxide thermal polymerization initiators such as ammonium persulfate and potassium persulfate, hydrogen peroxide water, and the like can also be used. Furthermore, combinations of redox agents such as ferrocene and amines are possible.
 これらの重合開始剤の使用範囲は、上記化合物1モルに対し0.001~0.1モルの範囲で任意に使用することができ、一括投入、滴下投入、逐次投入のいずれの方法も利用できる。また、塊状重合や少量(モノマーに対して50wt%以下)の溶剤を使用した溶液重合の場合は、メルカプタンとメタロセンの組み合わせによる重合方法(特許文献9)も可能である。 These polymerization initiators can be used arbitrarily in the range of 0.001 to 0.1 mol with respect to 1 mol of the above compound, and any method of batch charging, dropping charging and sequential charging can be used. . Further, in the case of bulk polymerization or solution polymerization using a small amount of solvent (50 wt% or less based on the monomer), a polymerization method using a combination of mercaptan and metallocene (Patent Document 9) is also possible.
 更に、上記重合反応に用いる溶媒としては、メタノール、エタノール、イソプロピルアルコール、ブタノール等のアルコール系溶剤、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶剤、メチルセロソルブ、エチルセロソルブ、プロピレングリコールメチルエーテル、プロピレングリコールエチルエーテル等のグリコール系溶剤、乳酸メチル、乳酸エチル等の乳酸系溶剤等の溶媒を挙げることができる。 Furthermore, as the solvent used in the above polymerization reaction, alcohol solvents such as methanol, ethanol, isopropyl alcohol and butanol, ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone, methyl cellosolve, ethyl cellosolve, propylene glycol methyl ether, propylene Examples of the solvent include glycol solvents such as glycol ethyl ether, and lactic acid solvents such as methyl lactate and ethyl lactate.
 更にまた、重合時には重合開始剤以外にも連鎖移動剤を併用しても良く、分子量を調整したい場合は、適宜使用可能である。使用できる連鎖移動剤としては、上記モノマーや溶剤に溶解する物であれば何れの化合物も使用可能であり、例えば、ドデシルメルカプタンやヘプチルメルカプタン等のアルキルチオール、メルカプトプロピオン酸(BMPA)の様な極性基を有する水溶性チオール、αスチレンダイマー(ASD)等の油性ラジカル抑止剤等も適宜使用可能である。 Furthermore, a chain transfer agent may be used in addition to the polymerization initiator at the time of polymerization, and can be appropriately used when adjusting the molecular weight. As the chain transfer agent that can be used, any compound can be used as long as it is soluble in the above-mentioned monomers and solvents. For example, polar thiols such as alkylthiols such as dodecyl mercaptan and heptyl mercaptan, and mercaptopropionic acid (BMPA). A water-soluble thiol having a group, an oily radical inhibitor such as α-styrene dimer (ASD), and the like can be used as appropriate.
 また更に、この重合反応は、使用する溶剤(バルク重合の場合を除く)の沸点以下で行うのが好ましく、例えば、65℃~80℃程度が好ましい。但し、バルク重合やメルカプタンとメタロセンで行う特許文献9の様な重合を行う際は、25℃~80℃で行うことが好ましい。 Furthermore, this polymerization reaction is preferably carried out below the boiling point of the solvent used (except for bulk polymerization), for example, about 65 ° C. to 80 ° C. is preferable. However, when performing bulk polymerization or polymerization as in Patent Document 9 performed with mercaptan and metallocene, it is preferably performed at 25 ° C. to 80 ° C.
 かくして得られる重合物は、必要により精製し、高分子化合物(A)とすることができる。この精製方法の例としては、ヘキサン等の油性貧溶媒を使用し、油性低分子不純物および残存モノマー、低分子不純物を取り除き、その後、アセトニトリル、メタノール、エタノール、アセトンなどの水性貧溶剤でポリマー析出等を行い、水系不純物、残存物を取り除く方法を挙げることができる。 The polymer thus obtained can be purified as necessary to obtain a polymer compound (A). As an example of this purification method, an oily poor solvent such as hexane is used to remove oily low molecular impurities and residual monomers and low molecular impurities, and then polymer precipitation with an aqueous poor solvent such as acetonitrile, methanol, ethanol, acetone, etc. And removing water-based impurities and residues.
 このように精製することが好ましい理由は、高分子化合物(A)は、導電性高分子組成物中へドープ剤として導入され、スタック抑止剤、かつ溶剤可溶剤として作用するため、重合後の残存物としてそれ以外の重合開始剤残物、モノマー、オリゴマー、不均一組成物等が残存すると導電性高分子組成物の機能低下が問題となるので、これらを除去する必要が有るのである。そして、このように精製する結果、特許文献7の様な不均一なラジカル重合物が混在せず、均一な導電性高分子組成物の組成と高分子化合物(A)の組成が一様に相溶化したような可溶状態を発現できるのである。 The reason why it is preferable to purify in this way is that the polymer compound (A) is introduced as a dopant into the conductive polymer composition and acts as a stack inhibitor and a solvent solubilizer. If other polymerization initiator residue, monomer, oligomer, heterogeneous composition, etc. remain as a product, the functional degradation of the conductive polymer composition becomes a problem, and it is necessary to remove these. As a result of such purification, the heterogeneous radical polymer as in Patent Document 7 is not mixed, and the composition of the uniform conductive polymer composition and the composition of the polymer compound (A) are uniformly matched. A solubilized state can be expressed.
 以上のようにして得られる高分子化合物(A)は、そのGPC換算重量平均分子量が、3,000~100,000であることが好ましい。重量平均分子量が3,000に満たない場合は、高分子乳化剤としての機能が不十分である。逆に10万以上になると、導電性ポリマー合成時の重合場(酸性水溶液)への溶解性が十分でない場合があり、また、高分子乳化剤自身の溶剤溶解性が悪くなり、導電性ポリマーの可溶化性に著しく悪い影響を与えることがある。 The polymer compound (A) obtained as described above preferably has a GPC equivalent weight average molecular weight of 3,000 to 100,000. When the weight average molecular weight is less than 3,000, the function as a polymer emulsifier is insufficient. On the other hand, if it exceeds 100,000, the solubility in the polymerization field (acidic aqueous solution) at the time of synthesis of the conductive polymer may not be sufficient, and the solvent solubility of the polymer emulsifier itself deteriorates. May significantly affect solubilization.
 本発明の複合導電性高分子組成物は、上記のようにして得られた高分子化合物(A)を用い、次のようにして製造される。すなわち、上記高分子化合物(A)を電解性基質溶媒に溶解し、次いでこの溶液中に、π共役系高分子(β)の原料となる前記式(I)ないし(III)で表される化合物を添加し、更にこれを酸化剤により酸化することにより、前記式(I)ないし(III)で表される化合物をモノマー構成成分とするπ共役系高分子(β)に前記高分子化合物(A)がドーピングされた、複合導電性高分子化合物を得ることができる。 The composite conductive polymer composition of the present invention is produced as follows using the polymer compound (A) obtained as described above. That is, the compound represented by the above formulas (I) to (III), which is a raw material for the π-conjugated polymer (β), which is obtained by dissolving the polymer compound (A) in an electrolytic substrate solvent. Is added to the π-conjugated polymer (β) containing the compounds represented by the formulas (I) to (III) as monomer constituents. ) Can be obtained.
 原料である化合物のうち、式(I)で表される化合物は、置換基が水素原子またはアルキル基であるアニリンである。この化合物の具体例としては、アニリン、o-トルイジン、m-トルイジン、3,5-ジメチルアニリン、2,3-ジメチルアニリン、2,5-ジメチルアニリン、2,6-ジメチルアニリン、2-エチルアニリン、3-エチルアニリン、2-イソプロピルアニリン、3-イソプロピルアニリン、2-メチル-6-エチルアニリン、2-n-プロピルアニリン、2-メチル-5-イソプロピルアニリン、2-ブチルアニリン、3-ブチルアニリン、5,6,7,8-テトラヒドロ-1-ナフチルアミン、2,6-ジエチルアニリン等を挙げることができる。 Among the compounds that are raw materials, the compound represented by the formula (I) is aniline whose substituent is a hydrogen atom or an alkyl group. Specific examples of this compound include aniline, o-toluidine, m-toluidine, 3,5-dimethylaniline, 2,3-dimethylaniline, 2,5-dimethylaniline, 2,6-dimethylaniline, and 2-ethylaniline. 3-ethylaniline, 2-isopropylaniline, 3-isopropylaniline, 2-methyl-6-ethylaniline, 2-n-propylaniline, 2-methyl-5-isopropylaniline, 2-butylaniline, 3-butylaniline Examples include 5,6,7,8-tetrahydro-1-naphthylamine, 2,6-diethylaniline, and the like.
 また、式(II)で表される化合物は、置換基が水素またはアルキル基のチオフェンであり、その具体例としては、チオフェン、3-メチルチオフェン、3-エチルチオフェン、3-プロピルチオフェン、3-ブチルチオフェン、3-ペンチルチオフェン、3-ヘキシルチオフェン、3-ヘプチルチオフェン、3-n-オクチルチオフェン等を挙げることができる。 In addition, the compound represented by the formula (II) is a thiophene whose substituent is hydrogen or an alkyl group, and specific examples thereof include thiophene, 3-methylthiophene, 3-ethylthiophene, 3-propylthiophene, 3- Examples thereof include butylthiophene, 3-pentylthiophene, 3-hexylthiophene, 3-heptylthiophene, and 3-n-octylthiophene.
 更に、式(III)で表される化合物は、置換基が水素またはアルキル基のピロールであり、その具体例としては、ピロール、3-メチルピロール、3-ヘプチルピロール、3-n-オクチルピロール等を挙げることができる。 Further, the compound represented by the formula (III) is pyrrole whose substituent is hydrogen or an alkyl group, and specific examples thereof include pyrrole, 3-methylpyrrole, 3-heptylpyrrole, 3-n-octylpyrrole and the like. Can be mentioned.
 本発明方法により複合導電性高分子組成物を製造する具体的方法の一例としては、まず、イオン交換水を、必要により酸性とした後、この中に、前記のようにして得た高分子化合物(A)を添加した後、この中に原料である式(I)ないし(III)の化合物の1種または2種以上を加え、更に酸化剤を加えて酸化重合させる方法を挙げることができる。
 また、高分子化合物(A)のイオン交換水への溶解性により、適宜アセトン、メチルエチルケトン等ケトン系溶剤、メタノール、エタノール、イソプロピルアルコール等アルコール系溶剤、アセトニトリル等の親水性の高い有機溶剤を併用しても良い。
As an example of a specific method for producing a composite conductive polymer composition by the method of the present invention, first, ion-exchanged water is acidified as necessary, and then the polymer compound obtained as described above is used. Examples thereof include a method in which one or more of the compounds of the formulas (I) to (III), which are raw materials, are added to this, and an oxidant is further added for oxidative polymerization after adding (A).
Depending on the solubility of the polymer compound (A) in ion-exchanged water, a ketone solvent such as acetone or methyl ethyl ketone, an alcohol solvent such as methanol, ethanol or isopropyl alcohol, or a highly hydrophilic organic solvent such as acetonitrile may be used in combination. May be.
 上記反応において電解性基質溶媒を酸性とするために使用される酸性成分としては、塩酸、硫酸、過塩素酸、過ヨウ素酸、塩化鉄(II)、硫酸鉄(II)等が挙げられ、その量は、式(I)~(III)の化合物1molに対し、0.5~3.0mol程度とすればよい。 Examples of the acidic component used for acidifying the electrolytic substrate solvent in the above reaction include hydrochloric acid, sulfuric acid, perchloric acid, periodic acid, iron (II) chloride, iron (II) sulfate, and the like. The amount may be about 0.5 to 3.0 mol with respect to 1 mol of the compounds of formulas (I) to (III).
 また、反応に使用する酸化剤も複合導電性高分子組成物を形成する芳香族化合物(モノマー)のレドックスポテンシャルによって適宜調整が必要であるが、ペルオキソ二硫酸アンモニウム、ペルオキソ二硫酸カリウム、ペルオキソ二硫酸ナトリウム、塩化鉄(III)、硫酸鉄(III)、テトラフルオロホウ酸鉄(III)、ヘキサフルオロ燐酸鉄(III)、硫酸銅(II)、塩化銅(II)、テトラフルオロホウ酸銅(II)、ヘキサフルオロ燐酸銅(II)等が使用可能である。 In addition, the oxidizing agent used in the reaction also needs to be appropriately adjusted depending on the redox potential of the aromatic compound (monomer) forming the composite conductive polymer composition. However, ammonium peroxodisulfate, potassium peroxodisulfate, sodium peroxodisulfate , Iron (III) chloride, iron (III) sulfate, iron (III) tetrafluoroborate, iron (III) hexafluorophosphate, copper (II) sulfate, copper (II) chloride, copper (II) tetrafluoroborate In addition, copper (II) hexafluorophosphate can be used.
 また、反応における高分子化合物(A)と化合物(I)ないし(III)との割合は、最終的に得られる複合導電性高分子組成物の性質にもよるため、単純に決定できるものではないが、たとえば、好ましい範囲の例は、高分子化合物(A)中のスルホン酸基の数と、使用する化合物(I)~(III)のモル比により次のように示すことができる。 Further, the ratio of the polymer compound (A) to the compounds (I) to (III) in the reaction depends on the properties of the finally obtained composite conductive polymer composition, and therefore cannot be determined simply. However, for example, an example of a preferable range can be shown as follows by the number of sulfonic acid groups in the polymer compound (A) and the molar ratio of the compounds (I) to (III) used.
 すなわち、式(I)~(III)から選ばれる化合物1モルに対し、高分子化合物(A)を、当該化合物中のスルホン酸基のモル比が0.2~1.5となる量で共存せしめればよい。 That is, the polymer compound (A) is present in an amount such that the molar ratio of the sulfonic acid groups in the compound is 0.2 to 1.5 with respect to 1 mol of the compound selected from the formulas (I) to (III). You just have to let them know.
 更に、酸化剤の使用量は、通常化合物(I)ないし(III)1モルに対し1.5~2.5モル(1価換算)程度使用するが、系内の酸化度(酸性度)によっては、モノマー1モルに対し1モル以下でも十分重合は可能である。 Further, the amount of the oxidizing agent used is usually about 1.5 to 2.5 mol (monovalent conversion) per 1 mol of the compounds (I) to (III), depending on the oxidation degree (acidity) in the system. The polymerization can be sufficiently carried out even with 1 mol or less per 1 mol of the monomer.
 更にまた、複合導電性高分子組成物を得るための重合反応の温度は、酸化反応後の発熱量や水素引き抜かれ易さが化合物(I)ないし(III)の種類により異なるため、好適な温度範囲が異なる。 Furthermore, since the temperature of the polymerization reaction for obtaining the composite conductive polymer composition varies depending on the types of the compounds (I) to (III), the calorific value after the oxidation reaction and the ease of extracting hydrogen vary depending on the types of the compounds (I) to (III). The range is different.
 一般的には、化合物(I)を利用する場合は、40℃以下が好ましく、化合物(II)の場合は、90℃以下、化合物(III)の場合は、20℃以下とすることが好ましい。 Generally, when the compound (I) is used, the temperature is preferably 40 ° C. or lower, the compound (II) is preferably 90 ° C. or lower, and the compound (III) is preferably 20 ° C. or lower.
 また更に、複合導電性高分子組成物を高分子量化したい場合は、反応温度を相対的に低くし、反応時間を相対的に長めにすれば良く、低分子量化する場合は、この逆とすれば良い。 Furthermore, when it is desired to increase the molecular weight of the composite conductive polymer composition, the reaction temperature should be relatively low and the reaction time should be relatively long, and vice versa. It ’s fine.
 このようにして得られた重合物は、必要により更に洗浄等を行った後、目的物である複合導電性高分子組成物とすることができる。このものは、後記するように従来の導電性高分子組成物が溶解しなかったトルエン等の芳香族溶剤中で、安定に溶解するものである。 The polymer obtained in this manner can be made into a composite conductive polymer composition as a target product after further washing and the like as necessary. As described later, this dissolves stably in an aromatic solvent such as toluene in which the conventional conductive polymer composition has not dissolved.
 かくして得られた本発明の複合導電性高分子組成物の利用方法の例としては、これを芳香族溶剤中に均質状態で溶解させた複合導電性高分子組成物溶液を挙げることができる。この複合導電性高分子組成物溶液は、これを導電性皮膜の形成が求められる部分に塗布し、次いで乾燥等の手段により当該組成物中の芳香族溶媒を揮発させることにより、目的部分に均一な導電性皮膜を形成することができる。 An example of a method of using the composite conductive polymer composition of the present invention thus obtained includes a composite conductive polymer composition solution in which this is dissolved in an aromatic solvent in a homogeneous state. This composite conductive polymer composition solution is uniformly applied to the target portion by applying it to the portion where the formation of the conductive film is required and then volatilizing the aromatic solvent in the composition by means such as drying. A conductive film can be formed.
 上記複合導電性高分子組成物溶液を調製するには、好ましくは、複合導電性高分子組成物をトルエン、ベンゼン、キシレン等の芳香族系溶媒に0.1~10質量%程度で溶解させたものである。 In order to prepare the composite conductive polymer composition solution, the composite conductive polymer composition is preferably dissolved in an aromatic solvent such as toluene, benzene, xylene or the like at about 0.1 to 10% by mass. Is.
 また、上記の複合導電性高分子組成物溶液には、更に、溶液の安定性向上および塗膜状態での導電性向上を目的として、ベンジルアルコール、フェノール、m-クレゾール、o-クレゾール、2-ナフタノール、1-ナフタノール、グアイコール、2,6-ジメチルフェノール等のヒドロキシル基を有する芳香族化合物を加えることができる。これらのヒドロキシル基を有する化合物は、複合導電性高分子組成物溶液の溶剤量100重量部に対し、0.01~45重量部程度加えることが好ましい。 In addition, the above composite conductive polymer composition solution further includes benzyl alcohol, phenol, m-cresol, o-cresol, 2-ethyl alcohol for the purpose of improving the stability of the solution and improving the conductivity in the coating film state. Aromatic compounds having a hydroxyl group such as naphthanol, 1-naphthanol, guaicol and 2,6-dimethylphenol can be added. These hydroxyl group-containing compounds are preferably added in an amount of about 0.01 to 45 parts by weight with respect to 100 parts by weight of the solvent in the composite conductive polymer composition solution.
 また、上記の複合導電性高分子組成物溶液には、更に、帯電防止塗料としての自立膜の導電性の向上および太陽電池用対極材としての触媒性能の向上を目的として、銅、銀、アルミニウム、白金等の金属、酸化チタン、酸化インジウムスズ、フッ素ドープ酸化スズ、アルミナ、シリカ等の金属酸化物、導電性ポリマー組成物、カーボンナノチューブ(CNT)、フラーレン、カーボンブラック等の炭素粉末、または分散体をフィラー成分として含むことができる。これらの粉末または分散体は複合導電性高分子組成物溶液の固形分100重量部に対し、固形分0.01~50重量部程度加えることが好ましい。 In addition, the above composite conductive polymer composition solution further includes copper, silver, aluminum for the purpose of improving the conductivity of a self-supporting film as an antistatic coating and improving the catalytic performance as a counter electrode material for solar cells. , Metals such as platinum, titanium oxide, indium tin oxide, fluorine-doped tin oxide, metal oxides such as alumina and silica, conductive polymer compositions, carbon powders such as carbon nanotubes (CNT), fullerenes, carbon black, or dispersion The body can be included as a filler component. These powders or dispersions are preferably added in an amount of 0.01 to 50 parts by weight with respect to 100 parts by weight of the solid content of the composite conductive polymer composition solution.
 さらに、上記複合導電性高分子組成物は色素増感型太陽電池用対極に用いることができる。この色素増感型太陽電池用対極は、透明性が要求される場合には透明基板の片面に上記複合導電性高分子組成物を積層する、または透明基板の一方の面に光透過性電極を配置し、その光透過性電極に上記複合導電性高分子組成物を積層することにより形成することができる。また、透明性が要求されない場合には、金属箔等に積層することで形成することができる。この複合導電性高分子組成物の厚さは通常は0.01~100μm、好ましくは0.1~50μmの範囲内にある。 Furthermore, the composite conductive polymer composition can be used for a counter electrode for a dye-sensitized solar cell. The counter electrode for dye-sensitized solar cell is formed by laminating the composite conductive polymer composition on one side of a transparent substrate when transparency is required, or by providing a light transmissive electrode on one side of the transparent substrate. It can be formed by arranging and laminating the composite conductive polymer composition on the light transmissive electrode. Moreover, when transparency is not requested | required, it can form by laminating | stacking on metal foil etc. The thickness of the composite conductive polymer composition is usually in the range of 0.01 to 100 μm, preferably 0.1 to 50 μm.
 上記で用いる透明基板としては、光透過率が通常は50%以上、好ましくは80%以上のフィルムまたは板を使用することができる。このような透明基板の例としては、ガラス等の無機透明基板、ポリエチレンテレフタレート(PET)、ポリカーボネート(PC)、ポリフェニレンスルフィド、ポリスルホン、ポリエステルスルホン、ポリアルキル(メタ)アクリレート、ポリエチレンナフタレート(PEN)、ポリエーテルサルフォン(PES)、ポリシクロオレフィン等の高分子透明基板等を挙げることができる。また、金属箔としては、金、白金、銀、錫、銅、アルミ、ステンレス、ニッケル等の金属箔を挙げることができる。 As the transparent substrate used above, a film or plate having a light transmittance of usually 50% or more, preferably 80% or more can be used. Examples of such transparent substrates include inorganic transparent substrates such as glass, polyethylene terephthalate (PET), polycarbonate (PC), polyphenylene sulfide, polysulfone, polyester sulfone, polyalkyl (meth) acrylate, polyethylene naphthalate (PEN), Examples thereof include polymer transparent substrates such as polyethersulfone (PES) and polycycloolefin. Moreover, as metal foil, metal foil, such as gold | metal | money, platinum, silver, tin, copper, aluminum, stainless steel, nickel, can be mentioned.
 これら透明基板の厚さは、無機透明基板の場合には、通常は200~7000μmの範囲内であり、高分子透明基板の場合には、通常は20~4000μm、好ましくは20~2000μmの範囲内にある。金属箔基板の場合には、0.1μm~1000μm、好ましくは1μm~500μmの範囲内にある。この範囲内の厚さの高分子透明基板および金属箔基板は、得られる色素増感太陽電池に可撓性を付与することができる。 The thickness of these transparent substrates is usually in the range of 200 to 7000 μm in the case of the inorganic transparent substrate, and is usually in the range of 20 to 4000 μm, preferably in the range of 20 to 2000 μm in the case of the polymer transparent substrate. It is in. In the case of a metal foil substrate, it is in the range of 0.1 μm to 1000 μm, preferably 1 μm to 500 μm. The polymer transparent substrate and the metal foil substrate having a thickness within this range can impart flexibility to the resulting dye-sensitized solar cell.
 また、上記透明基板の一方の面には必要に応じて光透過性電極を配置してもよい。ここで用いる光透過性電極としては、膜状導電性金属電極、メッシュ状導電性金属電極などを挙げることができる。 In addition, a light transmissive electrode may be disposed on one surface of the transparent substrate as necessary. Examples of the light transmissive electrode used here include a film-like conductive metal electrode and a mesh-like conductive metal electrode.
 上記膜状導電性金属電極は酸化錫、錫ドープ酸化インジウム(ITO)、フッ素ドープ酸化錫(FTO)などを膜状に形成させたものである。この膜状導電性金属電極は透明基板の表面に、酸化錫、ITO、FTOなどを蒸着あるいはスパッタリングなどすることにより形成することができる。 この膜状導電性金属電極の厚さは、通常は0.01~1μm、好ましくは0.01~0.5μmの範囲内にある。 The film-like conductive metal electrode is formed by forming a film of tin oxide, tin-doped indium oxide (ITO), fluorine-doped tin oxide (FTO) or the like. This film-like conductive metal electrode can be formed by vapor-depositing or sputtering tin oxide, ITO, FTO or the like on the surface of the transparent substrate.厚 The thickness of the film-like conductive metal electrode is usually in the range of 0.01 to 1 μm, preferably 0.01 to 0.5 μm.
 一方、メッシュ状導電性金属電極は、銅、ニッケル、アルミニウムなどの導電性金属をメッシュ状に形成させたものである。具体的にメッシュ状導電性金属電極は、銅、ニッケル、アルミニウムなどの導電性金属を用いて、例えばフォトリソグラフ法により、線幅が通常は10~70μm、好ましくは10~20μmであり、ピッチ幅が通常は50~300μm、好ましくは50~200μmのメッシュとなるようにエッチングすることにより形成することができる。このときのメッシュ状導電性金属電極の導線の厚さは、使用する導電性金属の厚さと略同一になり、通常は8~150μm、好ましくは8~15μmの範囲内にある。 このメッシュ状導電性金属電極は、透明基板の表面に粘着剤などを用いて貼着することができる。 On the other hand, the mesh-like conductive metal electrode is formed by forming a conductive metal such as copper, nickel, or aluminum in a mesh shape. Specifically, the mesh-like conductive metal electrode has a line width of usually 10 to 70 μm, preferably 10 to 20 μm, using a conductive metal such as copper, nickel, and aluminum, for example, by photolithography, and a pitch width. Is usually formed by etching to a mesh of 50 to 300 μm, preferably 50 to 200 μm. At this time, the thickness of the conductive wire of the mesh-like conductive metal electrode is substantially the same as the thickness of the conductive metal used, and is usually in the range of 8 to 150 μm, preferably 8 to 15 μm. This mesh-like conductive metal electrode can be attached to the surface of the transparent substrate using an adhesive or the like.
 上記色素増感型太陽電池用対極を製造するにあたり、複合導電性高分子組成物を上記透明基板の片面または透明基板の一方の面に配置した光透過性電極に積層する方法としては、例えば、上記透明基板の片面または透明基板の一方の面に配置した光透過性電極に上記複合導電性高分子組成物溶液を塗布し、溶液中の溶媒を除去することを1ないし複数回行う方法が挙げられる。 In producing the counter electrode for dye-sensitized solar cell, as a method of laminating the composite conductive polymer composition on the light transmissive electrode disposed on one side of the transparent substrate or one side of the transparent substrate, for example, A method of applying the composite conductive polymer composition solution to a light transmissive electrode disposed on one surface of the transparent substrate or one surface of the transparent substrate and removing the solvent in the solution one or more times is mentioned. It is done.
 上記複合導電性高分子組成物溶液の塗布は、ディップコーター、マイクロバーコーター、ロールコーター、コンマコーター、ダイコーター、グラビアコーターなど公知のコーターを適用できる。 For the application of the composite conductive polymer composition solution, a known coater such as a dip coater, a micro bar coater, a roll coater, a comma coater, a die coater, or a gravure coater can be applied.
 また、溶媒の除去は、放置による自然乾燥、熱風・赤外線による加熱条件下での強制乾燥などの方法を適用できる。 In addition, the solvent can be removed by a method such as natural drying by standing or forced drying under heating with hot air or infrared rays.
 上記色素増感型太陽電池用対極は、これに用いる上記複合導電性高分子組成物が、有機溶剤に可溶であるため、従来の複合導電性高分子組成物を水性媒体で分散された分散液に比べ、塗布工程が容易であり、生産性に優れている。また、酸性水溶液に由来する対極作製段階での金属の腐食劣化を抑制することができる。 Since the composite conductive polymer composition used for the dye-sensitized solar cell counter electrode is soluble in an organic solvent, the conventional composite conductive polymer composition is dispersed in an aqueous medium. Compared with the liquid, the coating process is easy and the productivity is excellent. Moreover, the corrosion deterioration of the metal in the counter electrode preparation stage originating in acidic aqueous solution can be suppressed.
 また、上記色素増感型太陽電池用対極は、これに用いる上記複合導電性高分子組成物が、上記成分(a-1)、成分(a-2)および成分(a-3)を所定範囲で共重合させた得られる高分子化合物(A)を用いることにより、上記透明基板や光透過性電極や金属箔に対する密着性に優れているので、長期間使用できる。 In the counter electrode for dye-sensitized solar cell, the composite conductive polymer composition used for the counter electrode has components (a-1), (a-2) and (a-3) in a predetermined range. By using the polymer compound (A) obtained by copolymerization with, the adhesiveness to the transparent substrate, the light transmissive electrode, and the metal foil is excellent, so that it can be used for a long time.
 更に、上記色素増感型太陽電池用対極は、これに用いる上記複合導電性高分子組成物が、上記成分(a-1)、成分(a-2)および成分(a-3)を所定範囲で共重合させて得られる酸性度が抑えられた高分子化合物(A)を用いることにより、光透過性電極(導電性金属)が腐食されにくくなる上、電解液に対する耐久性が向上するので、長期間使用できる。 Further, in the counter electrode for dye-sensitized solar cell, the composite electroconductive polymer composition used for the counter electrode comprises components (a-1), (a-2) and (a-3) in a predetermined range. By using the polymer compound (A) with reduced acidity obtained by copolymerization with the above, the light-transmitting electrode (conductive metal) is less likely to be corroded and the durability against the electrolytic solution is improved. Can be used for a long time.
 また更に、上記色素増感型太陽電池用対極は、従来電解液に対する耐酸化性を有する電極として用いられていた高価な白金電極に対して、均一な耐酸化性膜として複合導電性高分子膜が作用することで各種金属が使用可能となる為に廉価に提供できる。 Furthermore, the counter electrode for the dye-sensitized solar cell is a composite conductive polymer film as a uniform oxidation resistant film against an expensive platinum electrode which has been used as an electrode having oxidation resistance with respect to an electrolytic solution. Since various metals can be used as a result of the action, it can be provided at a low price.
 また、上記複合導電性高分子組成物を用いてなる帯電防止フィルムは、上記複合導電性高分子組成物単独で、塗工・乾燥を行い自立膜として成膜可能である為に低抵抗の帯電防止フィルムが加工できる。また、必要に応じて複合導電性高分子組成物と熱可塑性樹脂および/または熱硬化性樹脂とを混合する場合には、(1)押出機やエクストルーダーなどで溶融混練したものをTダイなどを用いて成膜する方法、(2)熱可塑性樹脂、熱硬化性樹脂、およびガラス製のフィルムの片面または両面に上記複合導電性高分子組成物溶液を塗布し、溶液中の溶媒を除去して帯電防止層を形成する方法などによって得ることができる。 In addition, the antistatic film using the composite conductive polymer composition can be formed as a self-supporting film by applying and drying the composite conductive polymer composition alone, so that it has a low resistance charge. Preventive film can be processed. Moreover, when mixing a composite conductive polymer composition and a thermoplastic resin and / or a thermosetting resin as needed, (1) what was melt-kneaded with an extruder, an extruder, etc. T-die etc. (2) Applying the composite conductive polymer composition solution to one or both surfaces of a thermoplastic resin, a thermosetting resin, and a glass film, and removing the solvent in the solution Can be obtained by a method of forming an antistatic layer.
 上記帯電防止フィルムで用いられる熱可塑性樹脂としては、ポリオレフィン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、ポリ酢酸ビニル、ポリテトラフルオロエチレン、ポリアクリロニトリルブタジエンスチレン、ポリアクリロニトリルスチレン、ポリメタクリル、ポリアクリル、飽和ポリエステル、ポリアミド、ポリカーボネート、ポリ変性フェニレンエーテル、ポリフェニレンサルファイド、ポリスルホン、ポリアリレート、液晶ポリマー、ポリエーテルエーテルケトン、ポリアミドイミドなどが挙げられ、これらの熱可塑性樹脂のポリマーアロイや熱可塑性エラストマーも含まれる。 The thermoplastic resin used in the antistatic film is polyolefin, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyvinyl acetate, polytetrafluoroethylene, polyacrylonitrile butadiene styrene, polyacrylonitrile styrene, polymethacryl, polyacryl, saturated. Examples thereof include polyester, polyamide, polycarbonate, poly-modified phenylene ether, polyphenylene sulfide, polysulfone, polyarylate, liquid crystal polymer, polyether ether ketone, polyamide imide, and the like, and polymer alloys and thermoplastic elastomers of these thermoplastic resins are also included.
 上記帯電防止フィルムで用いられる熱硬化性樹脂としては、ポリフェノール、ポリエポキシ、不飽和ポリエステル、ポリウレタン、ポリイミド、ポリ尿素、シリコーン樹脂、メラミン樹脂、フッ素樹脂、アルキド樹脂などが挙げられる。 Examples of the thermosetting resin used in the antistatic film include polyphenol, polyepoxy, unsaturated polyester, polyurethane, polyimide, polyurea, silicone resin, melamine resin, fluorine resin, alkyd resin, and the like.
 また、上記帯電防止フィルムは、上記成分(a-1)、成分(a-2)および成分(a-3)を所定範囲で共重合させて得られる高分子化合物(A)を用いることにより、各種高湿低湿環境条件下での性能バラツキが少なく、高い透過性を有した帯電防止膜の形成が可能となる。 Further, the antistatic film is obtained by using the polymer compound (A) obtained by copolymerizing the component (a-1), the component (a-2) and the component (a-3) within a predetermined range. It is possible to form an antistatic film having high permeability with little performance variation under various high and low humidity conditions.
 次に実施例を挙げ、本発明を更に詳しく説明するが、本発明はこれら実施例により何ら制約されるものではない。なお、本実施例中における分子量および表面抵抗値は下記方法により測定した。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited by these examples. The molecular weight and the surface resistance value in this example were measured by the following methods.
< 分子量 >
 下記条件でのGPCにより測定した。
  装置名:HLC-8120(東ソー(株)製)
  カラム:GF-1G7B+GF-510HQ(Asahipak:登録商標、
      昭和電工(株)製)
  基準物質:ポリスチレンおよびポリスチレンスルホン酸ナトリウム
  サンプル濃度:1.0mg/ml
  溶離液:50ミリモル塩化リチウム水溶液/CHCN=60/40wt
  流量:0.6ml/min
  カラム温度:30℃
  検出器:UV254nm
<Molecular weight>
It was measured by GPC under the following conditions.
Device name: HLC-8120 (manufactured by Tosoh Corporation)
Column: GF-1G7B + GF-510HQ (Asahipak: registered trademark,
Showa Denko Co., Ltd.)
Reference material: polystyrene and sodium polystyrene sulfonate Sample concentration: 1.0 mg / ml
Eluent: 50 mmol lithium chloride aqueous solution / CH 3 CN = 60/40 wt
Flow rate: 0.6 ml / min
Column temperature: 30 ° C
Detector: UV254nm
< 表面抵抗 >
 (株)ダイアインスツルメンツ製の、低抵抗率計ロレスタGP、PSPタイププローブを用い、四端子四探針法により測定した。
<Surface resistance>
Measurement was performed by a four-terminal four-probe method using a low resistivity meter Loresta GP, a PSP type probe manufactured by Dia Instruments Co., Ltd.
実 施 例 1
(1)高分子化合物(A-1)(2-ソジウムスルホエチルメタクリレート/ベンジルメタアクリレート=30/70)の重合:
 撹拌機、窒素ガス導入管、環流冷却器、投入口および温度計を備えた容量1000cmの四つ口フラスコに、2-ソジウムスルホエチルメタクリレート51.7g、ベンジルメタクリレート100g、イオン交換水150gおよびイソプロピルアルコール300gを投入した。フラスコ内に窒素ガスを導入しながら、フラスコ内の混合物をリフラックス温度まで昇温した。次いで、アゾビスイソブチロニトリル0.7gをフラスコ内に投入し、リフラックス状態を保ち、18時間重合反応を行ってポリマーを得た。
Example 1
(1) Polymerization of polymer compound (A-1) (2-sodium sulfoethyl methacrylate / benzyl methacrylate = 30/70):
In a four-necked flask with a capacity of 1000 cm 3 equipped with a stirrer, a nitrogen gas inlet tube, a reflux condenser, a charging port and a thermometer, 51.7 g of 2-sodium sulfoethyl methacrylate, 100 g of benzyl methacrylate, 150 g of ion-exchanged water and 300 g of isopropyl alcohol was added. While introducing nitrogen gas into the flask, the mixture in the flask was heated to the reflux temperature. Next, 0.7 g of azobisisobutyronitrile was put into the flask, and the polymer was obtained by performing a polymerization reaction for 18 hours while maintaining the reflux state.
(2)高分子化合物(A-1)の精製:
 上記(1)で得られたポリマー溶液の全量を、2000cmのビーカーに移し、スターラーにより撹拌しながらヘキサン500gを添加し、その後1時間静置して不純物を含む油層を除去した。油層を除去した後、1kgのメタノールを1時間かけて滴下し、固形分を析出させた。析出した固形分を濾別し、100℃で減圧下、24時間乾燥した。得られた乾燥物を乳鉢で粉砕して高分子化合物(A-1)(EP-1)の粉体を得た。得られた高分子化合物(A-1)(EP-1)をゲルパーミュエーションクロマトグラフ(GPC)で測定したところ、重量平均分子量(Mw)=41,000であった。
(2) Purification of polymer compound (A-1):
The total amount of the polymer solution obtained in the above (1) was transferred to a 2000 cm 3 beaker, 500 g of hexane was added while stirring with a stirrer, and then allowed to stand for 1 hour to remove the oil layer containing impurities. After removing the oil layer, 1 kg of methanol was added dropwise over 1 hour to precipitate a solid content. The precipitated solid was separated by filtration and dried at 100 ° C. under reduced pressure for 24 hours. The obtained dried product was pulverized in a mortar to obtain a powder of the polymer compound (A-1) (EP-1). When the obtained polymer compound (A-1) (EP-1) was measured by gel permeation chromatography (GPC), the weight average molecular weight (Mw) was 41,000.
(3)ポリアニリン重合と精製:
 撹拌機、窒素ガス導入管、環流冷却器、投入口および温度計を備えた容量500cmの四つ口フラスコに、上記(2)で得られた高分子化合物(A-1)(EP-1)15.6g、イオン交換水200gおよび35%塩酸水溶液6gを投入し、60℃に加熱し、3時間撹拌を行った後、25℃まで冷却した。フラスコ内の乳化剤溶液は、均一なものであった。
(3) Polyaniline polymerization and purification:
The polymer compound (A-1) (EP-1) obtained in (2) above was placed in a four-necked flask having a capacity of 500 cm 3 equipped with a stirrer, a nitrogen gas inlet tube, a reflux condenser, an inlet, and a thermometer. ) 15.6 g, ion-exchanged water 200 g and 35% aqueous hydrochloric acid 6 g were added, heated to 60 ° C., stirred for 3 hours, and then cooled to 25 ° C. The emulsifier solution in the flask was uniform.
 ついで、乳化剤溶液にアニリン4.65gを投入し、攪拌して均一な乳化液とした。50gの硫酸鉄(III)をイオン交換水150gに溶解したものを、25℃に保ったフラスコ内に10時間かけて滴下した。滴下終了後、50℃に昇温し、48時間重合反応を続けた。 Next, 4.65 g of aniline was added to the emulsifier solution and stirred to obtain a uniform emulsion. A solution prepared by dissolving 50 g of iron (III) sulfate in 150 g of ion-exchanged water was dropped into a flask kept at 25 ° C. over 10 hours. After completion of the dropwise addition, the temperature was raised to 50 ° C. and the polymerization reaction was continued for 48 hours.
 重合反応終了後の重合溶液を濾別し、得られた固形分を水に再分散して洗浄を行い、再度濾別を行った。さらに、水洗浄・濾別を4回繰り返し、水を含んだ固形物を得た。この固形物を、減圧下、40℃にて96時間乾燥して複合導電性高分子組成物(E-1)を得た。この複合導電性高分子組成物(E-1)の揮発分を測定した結果、2%以下だった。なお揮発分は、複合導電性高分子組成物を105℃の熱風循環式乾燥機に3時間投入し、その前後の質量減量率から求めた(以下同じ)。 The polymerization solution after the completion of the polymerization reaction was filtered off, and the resulting solid content was redispersed in water, washed, and filtered again. Further, washing with water and filtration were repeated 4 times to obtain a solid containing water. This solid was dried at 40 ° C. under reduced pressure for 96 hours to obtain a composite conductive polymer composition (E-1). The volatile content of this composite conductive polymer composition (E-1) was measured and found to be 2% or less. The volatile matter was determined from the weight loss rate before and after the composite conductive polymer composition was charged into a hot air circulation dryer at 105 ° C. for 3 hours (hereinafter the same).
(4)塗膜評価:
 ビーカーに、上記(3)で得た複合導電性高分子組成物(E-1)5gおよびトルエン95gを投入し、室温で攪拌して、複合導電性高分子組成物(E-1)のトルエン溶解液を得た。この溶液の外観は、黄緑色であった。
(4) Coating film evaluation:
Into a beaker, 5 g of the composite conductive polymer composition (E-1) obtained in (3) above and 95 g of toluene were added and stirred at room temperature, and toluene of the composite conductive polymer composition (E-1) was added. A solution was obtained. The appearance of this solution was yellowish green.
 ついで、そのトルエン溶解液をドクターブレードを用い、乾燥後の厚みが10μmとなるようガラス基板上に塗工した後、乾燥を行ったところ、緑色の均一な塗膜が得られた。その塗膜の表面抵抗値は、100kΩ/□であった。 Subsequently, the toluene solution was applied onto a glass substrate using a doctor blade so that the thickness after drying was 10 μm, and then dried, whereby a uniform green coating film was obtained. The surface resistance value of the coating film was 100 kΩ / □.
実 施 例 2
(1)高分子化合物(A-2)(2-ソジウムスルホエチルメタクリレート/シクロヘキシルメタクリレート=35/65)の重合:
 撹拌機、窒素ガス導入管、環流冷却器、投入口および温度計を備えた容量1000cmの四つ口フラスコに、2-ソジウムスルホエチルメタクリレート60.3g、シクロヘキシルメタクリレート88.6g、イオン交換水150gおよびイソプロピルアルコール300gを投入した。フラスコ内に窒素ガスを導入しながらフラスコ内の混合物をリフラックス温度まで昇温した。ついで、アゾビスイソブチロニトリル0.7gをフラスコ内に投入し、リフラックス状態を保ち、20時間重合反応を行ってポリマーを得た。
Example 2
(1) Polymerization of polymer compound (A-2) (2-sodium sulfoethyl methacrylate / cyclohexyl methacrylate = 35/65):
In a 1000 cm 3 four-necked flask equipped with a stirrer, nitrogen gas inlet tube, reflux condenser, inlet and thermometer, 60.3 g of 2-sodium sulfoethyl methacrylate, 88.6 g of cyclohexyl methacrylate, ion-exchanged water 150 g and 300 g of isopropyl alcohol were added. While introducing nitrogen gas into the flask, the mixture in the flask was heated to the reflux temperature. Subsequently, 0.7 g of azobisisobutyronitrile was put into the flask, and the polymer was obtained by carrying out a polymerization reaction for 20 hours while maintaining the reflux state.
(2)高分子化合物(A-2)の精製:
 上記(1)で得られたポリマー溶液の全量を、2000cmのビーカーに移し、スターラーにより撹拌しながらヘキサン500gを添加し、その後1時間静置して不純物を含む油層を除去した。油層を除去した後、1kgのメタノールを1時間かけて滴下し、固形分を析出させた。析出した固形分を濾別し、100℃で減圧下24時間乾燥した。得られた乾燥物を乳鉢で粉砕して高分子化合物(A-2)(EP-2)の粉体を得た。得られた高分子化合物(A-2)(EP-2)のMwは、45,000であった。
(2) Purification of polymer compound (A-2):
The total amount of the polymer solution obtained in the above (1) was transferred to a 2000 cm 3 beaker, 500 g of hexane was added while stirring with a stirrer, and then allowed to stand for 1 hour to remove the oil layer containing impurities. After removing the oil layer, 1 kg of methanol was added dropwise over 1 hour to precipitate a solid content. The precipitated solid was separated by filtration and dried at 100 ° C. under reduced pressure for 24 hours. The obtained dried product was pulverized in a mortar to obtain a powder of polymer compound (A-2) (EP-2). Mw of the obtained polymer compound (A-2) (EP-2) was 45,000.
(3)ポリアニリン重合と精製:
 撹拌機、窒素ガス導入管、環流冷却器、投入口および温度計を備えた容量500cmの四つ口フラスコに、上記(2)で得た高分子化合物(A-2)(EP-2)13.1g、イオン交換水200gおよび35%塩酸水溶液6gを投入し、加熱して60℃で3時間撹拌を行った後、25℃まで冷却した。フラスコ内の乳化剤溶液は、均一なものであった。
(3) Polyaniline polymerization and purification:
The polymer compound (A-2) (EP-2) obtained in (2) above was added to a four-necked flask having a capacity of 500 cm 3 equipped with a stirrer, a nitrogen gas inlet tube, a reflux condenser, an inlet, and a thermometer. 13.1 g, ion-exchanged water 200 g and 35% hydrochloric acid aqueous solution 6 g were added, heated and stirred at 60 ° C. for 3 hours, and then cooled to 25 ° C. The emulsifier solution in the flask was uniform.
 ついで、乳化剤溶液にアニリン4.65gを投入し、攪拌して均一な乳化液とした。ペルオキソ二硫酸アンモニウム10gをイオン交換水30gに溶解したものを、フラスコ内を0℃に保ちながら10時間かけて滴下した。滴下終了後、室温(25℃)に戻し、48時間重合反応を続けた。 Next, 4.65 g of aniline was added to the emulsifier solution and stirred to obtain a uniform emulsion. A solution prepared by dissolving 10 g of ammonium peroxodisulfate in 30 g of ion-exchanged water was added dropwise over 10 hours while maintaining the inside of the flask at 0 ° C. After completion of the dropping, the temperature was returned to room temperature (25 ° C.), and the polymerization reaction was continued for 48 hours.
 重合反応終了後の重合溶液を濾別し、得られた固形分を水に再分散して洗浄を行い、再度濾別を行った。さらに、水洗浄・濾別を4回繰り返し、水を含んだ固形物を得た。この固形物を、減圧下40℃にて96時間乾燥して複合導電性高分子組成物(E-2)を得た。この複合導電性高分子組成物(E-2)の揮発分を測定した結果、揮発分は2%以下だった。 The polymerization solution after the completion of the polymerization reaction was filtered off, and the resulting solid content was redispersed in water, washed, and filtered again. Further, washing with water and filtration were repeated 4 times to obtain a solid containing water. This solid was dried at 40 ° C. under reduced pressure for 96 hours to obtain a composite conductive polymer composition (E-2). As a result of measuring the volatile content of this composite conductive polymer composition (E-2), the volatile content was 2% or less.
(4)塗膜評価:
 ビーカーに、上記(3)で得た複合導電性高分子組成物(E-2)5g、トルエン90gおよびメチルエチルケトン5gを投入し、室温で撹拌して、複合導電性高分子組成物(E-2)のトルエン・メチルエチルケトン溶液を得た。この溶液の外観は、黄緑色であった。
(4) Coating film evaluation:
In a beaker, 5 g of the composite conductive polymer composition (E-2) obtained in the above (3), 90 g of toluene and 5 g of methyl ethyl ketone were added, and stirred at room temperature to obtain a composite conductive polymer composition (E-2). ) In toluene / methyl ethyl ketone. The appearance of this solution was yellowish green.
 その複合導電性高分子組成物(E-2)溶液を、ドクターブレードを用い、乾燥後の厚みが10μmとなるようガラス基板上に塗工した後、乾燥を行ったところ、緑色の均一な塗膜が得られた。その塗膜の表面抵抗値は、250kΩ/□だった。 The composite conductive polymer composition (E-2) solution was applied onto a glass substrate with a doctor blade so that the thickness after drying was 10 μm, and then dried. A membrane was obtained. The surface resistance value of the coating film was 250 kΩ / □.
実 施 例 3
(1)高分子化合物(A-3)(2-ソジウムスルホエチルメタクリレート/フェノキシエチルメタクリレート=35/65)の重合:
 撹拌機、窒素ガス導入管、環流冷却器、投入口および温度計を備えた容量1000cmの四つ口フラスコに、2-ソジウムスルホエチルメタクリレート60.3g、フェノキシエチルメタクリレート108.6g、イオン交換水150gおよびイソプロピルアルコール300gを投入した。フラスコ内に窒素ガスを導入しながら、フラスコ内の混合物をリフラックス温度まで昇温した。ついで、アゾビスイソブチロニトリル0.7gをフラスコ内に投入し、リフラックス状態を保ち20時間重合反応を行なってポリマーを得た。
Example 3
(1) Polymerization of polymer compound (A-3) (2-sodium sulfoethyl methacrylate / phenoxyethyl methacrylate = 35/65):
In a four-necked flask with a capacity of 1000 cm 3 equipped with a stirrer, nitrogen gas inlet tube, reflux condenser, inlet and thermometer, 60.3 g of 2-sodium sulfoethyl methacrylate, 108.6 g of phenoxyethyl methacrylate, ion exchange 150 g of water and 300 g of isopropyl alcohol were added. While introducing nitrogen gas into the flask, the mixture in the flask was heated to the reflux temperature. Subsequently, 0.7 g of azobisisobutyronitrile was put into the flask, and the polymer was obtained by carrying out a polymerization reaction for 20 hours while maintaining the reflux state.
(2)高分子化合物(A-3)の精製:
 上記(1)で得られたポリマー溶液の全量を、2000cmのビーカーに移し、スターラーにより撹拌しながらヘキサン500gを添加し、その後1時間静置して不純物を含む油層を除去した。油層を除去した後、1kgのメタノールを1時間かけて滴下し、固形分を析出させた。析出した固形分を濾別し、100℃で減圧下36時間乾燥した。得られた乾燥物を乳鉢で粉砕して高分子化合物(A-3)(EP-3)の粉体を得た。得られた高分子化合物(A-3)(EP-3)のMwは、44,000であった。
(2) Purification of polymer compound (A-3):
The total amount of the polymer solution obtained in the above (1) was transferred to a 2000 cm 3 beaker, 500 g of hexane was added while stirring with a stirrer, and then allowed to stand for 1 hour to remove the oil layer containing impurities. After removing the oil layer, 1 kg of methanol was added dropwise over 1 hour to precipitate a solid content. The precipitated solid was separated by filtration and dried at 100 ° C. under reduced pressure for 36 hours. The obtained dried product was pulverized in a mortar to obtain a powder of polymer compound (A-3) (EP-3). Mw of the obtained polymer compound (A-3) (EP-3) was 44,000.
(3)ポリアニリン重合:
 撹拌機、窒素ガス導入管、環流冷却器、投入口および温度計を備えた容量500cmの四つ口フラスコに、上記高分子化合物(A-3)(EP-3)14.9g、イオン交換水200g、35%塩酸水溶液6gを投入し、加熱して60℃で3時間撹拌を行った後、25℃まで冷却した。フラスコ内の乳化剤溶液は、均一なものであった。
(3) Polyaniline polymerization:
In a four-necked flask with a capacity of 500 cm 3 equipped with a stirrer, a nitrogen gas inlet tube, a reflux condenser, a charging port and a thermometer, 14.9 g of the above polymer compound (A-3) (EP-3), ion exchange 200 g of water and 6 g of 35% hydrochloric acid aqueous solution were added, heated and stirred at 60 ° C. for 3 hours, and then cooled to 25 ° C. The emulsifier solution in the flask was uniform.
 ついで、乳化剤溶液にアニリン4.65gを投入し、攪拌して均一な乳化液とした。ペルオキソ二硫酸アンモニウム10gをイオン交換水30gに溶解したものを、フラスコ内を5℃に保ちながら8時間かけて滴下した。滴下終了後、室温(25℃)に戻し、36時間重合反応を続けた。 Next, 4.65 g of aniline was added to the emulsifier solution and stirred to obtain a uniform emulsion. A solution prepared by dissolving 10 g of ammonium peroxodisulfate in 30 g of ion-exchanged water was added dropwise over 8 hours while maintaining the inside of the flask at 5 ° C. After completion of the dropping, the temperature was returned to room temperature (25 ° C.), and the polymerization reaction was continued for 36 hours.
 重合反応終了後の重合溶液を濾別し、得られた固形分を水に再分散して洗浄を行い、再度濾別を行った。さらに、水洗浄・濾別を4回繰り返し、水を含んだ固形物を得た。この固形物を、減圧下30℃にて110時間乾燥して複合導電性高分子組成物(E-3)を得た。この複合導電性高分子組成物(E-3)の揮発分を測定した結果、揮発分は1%以下だった。 The polymerization solution after the completion of the polymerization reaction was filtered off, and the resulting solid content was redispersed in water, washed, and filtered again. Further, washing with water and filtration were repeated 4 times to obtain a solid containing water. This solid was dried at 30 ° C. under reduced pressure for 110 hours to obtain a composite conductive polymer composition (E-3). As a result of measuring the volatile content of this composite conductive polymer composition (E-3), the volatile content was 1% or less.
(4)塗膜評価:
 ビーカーに、上記(3)で得た複合導電性高分子組成物(E-3)5gおよびトルエン95gを投入し、室温で撹拌して、複合導電性高分子組成物(E-3)のトルエン溶液を得た。この溶液の外観は、黄緑色であった。
(4) Coating film evaluation:
Into a beaker, 5 g of the composite conductive polymer composition (E-3) obtained in (3) above and 95 g of toluene were added and stirred at room temperature, and the toluene of the composite conductive polymer composition (E-3) was added. A solution was obtained. The appearance of this solution was yellowish green.
 この複合導電性高分子組成物(E-3)のトルエン溶液を、ドクターブレードを用い、乾燥後の厚みが10μmとなるようガラス基板上に塗工した後、乾燥を行ったところ、緑色の均一な塗膜が得られた。その塗膜の表面抵抗値は、500kΩ/□だった。 This toluene solution of the composite conductive polymer composition (E-3) was applied on a glass substrate using a doctor blade so that the thickness after drying was 10 μm, and then dried. A coating film was obtained. The surface resistance value of the coating film was 500 kΩ / □.
実 施 例 4
(1)高分子化合物(A-4)(p-スチレンスルホン酸ナトリウム/ベンジルメタクリレート=40/60)の重合:
 撹拌機、窒素ガス導入管、環流冷却器、投入口および温度計を備えた容量1000cmの四つ口フラスコに、p-スチレンスルホン酸ナトリウム67g、ベンジルメタクリレート85.9g、イオン交換水150gおよびイソプロピルアルコール300gを投入した。フラスコ内に窒素ガスを導入しながら、フラスコ内の混合物をリフラックス温度まで昇温した。ついで、アゾビスイソブチロニトリル0.7gをフラスコ内に投入し、リフラックス状態を保ち、18時間重合反応を行なってポリマーを得た。
Example 4
(1) Polymerization of polymer compound (A-4) (sodium styrenesulfonate / benzyl methacrylate = 40/60):
In a four-necked flask with a capacity of 1000 cm 3 equipped with a stirrer, nitrogen gas inlet tube, reflux condenser, inlet and thermometer, 67 g of sodium p-styrenesulfonate, 85.9 g of benzyl methacrylate, 150 g of ion-exchanged water and isopropyl 300 g of alcohol was added. While introducing nitrogen gas into the flask, the mixture in the flask was heated to the reflux temperature. Subsequently, 0.7 g of azobisisobutyronitrile was put into the flask, and the polymer was obtained by performing a polymerization reaction for 18 hours while maintaining the reflux state.
(2)高分子化合物(A-4)の精製:
 上記(1)で得られたポリマー溶液の全量を、2000cmのビーカーに移し、スターラーにより撹拌しながらヘキサン500gを添加し、その後1時間静置して不純物を含む油層を除去した。油層を除去した後、1kgのメタノールを1時間かけて滴下し、固形分を析出させた。析出した固形分を濾別し、70℃で減圧下24時間乾燥した。得られた乾燥物を乳鉢で粉砕して高分子化合物(A-4)(EP-4)の粉体を得た。得られた高分子化合物(A-4)(EP-4)のMwは、31,000であった。
(2) Purification of polymer compound (A-4):
The total amount of the polymer solution obtained in the above (1) was transferred to a 2000 cm 3 beaker, 500 g of hexane was added while stirring with a stirrer, and then allowed to stand for 1 hour to remove the oil layer containing impurities. After removing the oil layer, 1 kg of methanol was added dropwise over 1 hour to precipitate a solid content. The precipitated solid was separated by filtration and dried at 70 ° C. under reduced pressure for 24 hours. The obtained dried product was pulverized in a mortar to obtain a powder of polymer compound (A-4) (EP-4). Mw of the obtained polymer compound (A-4) (EP-4) was 31,000.
(3)ポリアニリン重合:
 撹拌機、窒素ガス導入管、環流冷却器、投入口および温度計を備えた容量500cmの四つ口フラスコに、上記(2)で得た高分子化合物(A-4)(EP-4)11.8g、イオン交換水100gおよび35%塩酸水溶液6gを投入し、加熱して60℃で3時間撹拌を行った後、飽和食塩水100g添加し、25℃まで冷却した。フラスコ内の乳化剤溶液は、均一なものであった。
(3) Polyaniline polymerization:
The polymer compound (A-4) (EP-4) obtained in the above (2) was added to a 500 cm 3 four-necked flask equipped with a stirrer, a nitrogen gas inlet tube, a reflux condenser, a charging port and a thermometer. 11.8 g, 100 g of ion-exchanged water and 6 g of 35% hydrochloric acid aqueous solution were added, and the mixture was heated and stirred at 60 ° C. for 3 hours, and then 100 g of saturated brine was added and cooled to 25 ° C. The emulsifier solution in the flask was uniform.
 ついで、乳化剤溶液にアニリン4.65gを投入し、攪拌して均一な乳化液とした。ペルオキソ二硫酸アンモニウム10gをイオン交換水30gに溶解したものを、フラスコ内を0℃に保ちながら8時間かけて滴下した。滴下終了後、さらに0℃に保ち、30時間重合反応を続けた。 Next, 4.65 g of aniline was added to the emulsifier solution and stirred to obtain a uniform emulsion. A solution prepared by dissolving 10 g of ammonium peroxodisulfate in 30 g of ion-exchanged water was added dropwise over 8 hours while maintaining the inside of the flask at 0 ° C. After completion of the dropwise addition, the polymerization reaction was continued for 30 hours while maintaining the temperature at 0 ° C.
 重合反応終了後の重合溶液を濾別し、得られた固形分を水に再分散して洗浄を行い、再度濾別を行った。さらに、水洗浄・濾別を5回繰り返し、水を含んだ固形物を得た。この固形物を、減圧下30℃にて110時間乾燥して複合導電性高分子組成物(E-4)を得た。この複合導電性高分子組成物(E-4)の揮発分を測定した結果、揮発分は1%以下だった。 The polymerization solution after the completion of the polymerization reaction was filtered off, and the resulting solid content was redispersed in water, washed, and filtered again. Further, washing with water and filtration were repeated 5 times to obtain a solid containing water. This solid was dried at 30 ° C. under reduced pressure for 110 hours to obtain a composite conductive polymer composition (E-4). As a result of measuring the volatile content of this composite conductive polymer composition (E-4), the volatile content was 1% or less.
(4)塗膜評価:
 ビーカーに上記(3)で得た複合導電性高分子組成物(E-4)5g、トルエン70gおよびシクロペンタノン25gを投入し、室温で撹拌して、複合導電性高分子組成物(E-4)のトルエン溶液を得た。この溶液の外観は、黄緑色であった。
(4) Coating film evaluation:
Into a beaker, 5 g of the composite conductive polymer composition (E-4) obtained in (3) above, 70 g of toluene and 25 g of cyclopentanone were added and stirred at room temperature, and the composite conductive polymer composition (E- A toluene solution of 4) was obtained. The appearance of this solution was yellowish green.
 この複合導電性高分子組成物(E-4)のトルエン溶液を、ドクターブレードを用い、乾燥後の厚みが10μmとなるようガラス基板上に塗工した後、乾燥を行ったところ、緑色の均一な塗膜が得られた。その塗膜の表面抵抗値は、120kΩ/□だった。 When this toluene solution of the composite conductive polymer composition (E-4) was applied on a glass substrate with a doctor blade so that the thickness after drying was 10 μm, and dried, green uniform color was obtained. A coating film was obtained. The surface resistance value of the coating film was 120 kΩ / □.
実 施 例 5
(1)高分子化合物(A-5)(p-スチレンスルホン酸ナトリウム/ベンジルメタクリレート=40/60)の重合:
 撹拌機、窒素ガス導入管、環流冷却器、投入口および温度計を備えた容量1000cmの四つ口フラスコに、p-スチレンスルホン酸ナトリウム67g、ベンジルメタクリレート85.9g、イオン交換水150gおよびイソプロピルアルコール300gを投入した。フラスコ内に窒素ガスを導入しながら、フラスコ内の混合物をリフラックス温度まで昇温した。ついで、アゾビスイソブチロニトリル0.7gをフラスコ内に投入し、リフラックス状態を保ち、18時間重合反応を行なってポリマーを得た。
Example 5
(1) Polymerization of polymer compound (A-5) (sodium styrenesulfonate / benzyl methacrylate = 40/60):
In a four-necked flask with a capacity of 1000 cm 3 equipped with a stirrer, nitrogen gas inlet tube, reflux condenser, inlet and thermometer, 67 g of sodium p-styrenesulfonate, 85.9 g of benzyl methacrylate, 150 g of ion-exchanged water and isopropyl 300 g of alcohol was added. While introducing nitrogen gas into the flask, the mixture in the flask was heated to the reflux temperature. Subsequently, 0.7 g of azobisisobutyronitrile was put into the flask, and the polymer was obtained by performing a polymerization reaction for 18 hours while maintaining the reflux state.
(2)高分子化合物(A-5)の精製:
 得られたポリマー溶液の全量を、2000cmのビーカーに移し、スターラーにより撹拌しながらヘキサン500gを添加し、その後1時間静置して不純物を含む油層を除去した。油層を除去した後、1kgのメタノールを1時間かけて滴下し、固形分を析出させた。析出した固形分を濾別し、70℃で減圧下24時間乾燥した。得られた乾燥物を乳鉢で粉砕して高分子化合物(A-5)(EP-5)の粉体を得た。得られた高分子化合物(A-5)(EP-5)のMwは、31,000だった。
(2) Purification of polymer compound (A-5):
The total amount of the resulting polymer solution was transferred to a 2000 cm 3 beaker, 500 g of hexane was added while stirring with a stirrer, and then allowed to stand for 1 hour to remove the oil layer containing impurities. After removing the oil layer, 1 kg of methanol was added dropwise over 1 hour to precipitate a solid content. The precipitated solid was separated by filtration and dried at 70 ° C. under reduced pressure for 24 hours. The obtained dried product was pulverized in a mortar to obtain a powder of polymer compound (A-5) (EP-5). Mw of the obtained polymer compound (A-5) (EP-5) was 31,000.
(3)ポリチオフェン重合:
 撹拌機、窒素ガス導入管、環流冷却器、投入口および温度計を備えた容量500cmの四つ口フラスコに、上記(2)で得た高分子化合物(A-5)(EP-4)1.6g、イオン交換水200gおよび35%塩酸水溶液4.8gを投入し、加熱して60℃で3時間撹拌を行った後、25℃まで冷却した。フラスコ内の乳化剤溶液は、均一なものであった。
(3) Polythiophene polymerization:
The polymer compound (A-5) (EP-4) obtained in (2) above was added to a four-necked flask having a capacity of 500 cm 3 equipped with a stirrer, a nitrogen gas inlet tube, a reflux condenser, an inlet, and a thermometer. 1.6 g, 200 g of ion-exchanged water, and 4.8 g of 35% aqueous hydrochloric acid solution were added, heated, stirred at 60 ° C. for 3 hours, and then cooled to 25 ° C. The emulsifier solution in the flask was uniform.
 ついで、乳化剤溶液にチオフェン3.2gを投入し、攪拌して均一な乳化液とした。塩化鉄(III)24.8gをイオン交換水100gに溶解したものを、フラスコ内を90℃に保ちながら10時間かけて滴下した。滴下終了後、さらに90℃に保ち、72時間重合反応を続けた。 Next, 3.2 g of thiophene was added to the emulsifier solution and stirred to obtain a uniform emulsion. A solution prepared by dissolving 24.8 g of iron (III) chloride in 100 g of ion-exchanged water was added dropwise over 10 hours while maintaining the inside of the flask at 90 ° C. After completion of the dropwise addition, the polymerization reaction was continued for 72 hours while maintaining at 90 ° C.
 重合反応終了後の重合溶液を濾別し、得られた固形分を水に再分散して洗浄を行い、再度濾別を行った。さらに、水洗浄・濾別を4回繰り返し、水を含んだ固形物を得た。この固形物を、減圧下40℃にて96時間乾燥して複合導電性高分子組成物(E-5)を得た。この複合導電性高分子組成物(E-5)の揮発分を測定した結果、揮発分は0.5%以下だった。 The polymerization solution after the completion of the polymerization reaction was filtered off, and the resulting solid content was redispersed in water, washed, and filtered again. Further, washing with water and filtration were repeated 4 times to obtain a solid containing water. This solid was dried at 40 ° C. under reduced pressure for 96 hours to obtain a composite conductive polymer composition (E-5). As a result of measuring the volatile content of this composite conductive polymer composition (E-5), the volatile content was 0.5% or less.
(4)塗膜評価:
 ビーカーに上記(3)で得た複合導電性高分子組成物(E-5)5g、トルエン70gおよびシクロペンタノン25gを投入し、室温で撹拌して、複合導電性高分子組成物(E-5)のトルエン・メチルエチルケトン溶液を得た。この溶液の外観は、黒緑色であった。
(4) Coating film evaluation:
In a beaker, 5 g of the composite conductive polymer composition (E-5) obtained in (3) above, 70 g of toluene and 25 g of cyclopentanone were added and stirred at room temperature, and the composite conductive polymer composition (E- A toluene / methyl ethyl ketone solution of 5) was obtained. The appearance of this solution was black-green.
 この複合導電性高分子組成物(E-5)の溶液を、ドクターブレードを用い、乾燥後の厚みが10μmとなるようガラス基板上に塗工した後、乾燥を行ったところ、黒緑色の均一な塗膜が得られた。その塗膜の表面抵抗値は、30kΩ/□だった。 The solution of this composite conductive polymer composition (E-5) was coated on a glass substrate with a doctor blade so that the thickness after drying was 10 μm and then dried. A coating film was obtained. The surface resistance value of the coating film was 30 kΩ / □.
実 施 例 6
(1)高分子化合物(A-6)(p-スチレンスルホン酸ナトリウム/BzMA=40/60)の重合:
 撹拌機、窒素ガス導入管、環流冷却器、投入口および温度計を備えた容量1000cmの四つ口フラスコに、p-スチレンスルホン酸ナトリウム67g、ベンジルメタクリレート85.9g、イオン交換水150gおよびイソプロピルアルコール300gを投入した。フラスコ内に窒素ガスを導入しながら、フラスコ内の混合物をリフラックス温度まで昇温した。ついで、アゾビスイソブチロニトリル0.7gをフラスコ内に投入し、リフラックス状態を保ち、18時間重合反応を行った。
Example 6
(1) Polymerization of polymer compound (A-6) (p-sodium styrenesulfonate / BzMA = 40/60):
In a four-necked flask with a capacity of 1000 cm 3 equipped with a stirrer, nitrogen gas inlet tube, reflux condenser, inlet and thermometer, 67 g of sodium p-styrenesulfonate, 85.9 g of benzyl methacrylate, 150 g of ion-exchanged water and isopropyl 300 g of alcohol was added. While introducing nitrogen gas into the flask, the mixture in the flask was heated to the reflux temperature. Next, 0.7 g of azobisisobutyronitrile was put into the flask, and the refluxing state was maintained, and a polymerization reaction was performed for 18 hours.
(2)高分子化合物(A-6)の精製:
 上記(1)で得られたポリマー溶液の全量を、2000cmのビーカーに移し、スターラーにより撹拌しながらヘキサン500gを添加し、その後1時間静置して不純物を含む油層を除去した。油層を除去した後、1kgのメタノールを1時間かけて滴下し、固形分を析出させた。析出した固形分を濾別し、70℃で減圧下24時間乾燥した。得られた乾燥物を乳鉢で粉砕して高分子化合物(A-6)(EP-6)の粉体を得た。得られた高分子化合物(A-6)(EP-6)のMwは、31,000だった。
(2) Purification of polymer compound (A-6):
The total amount of the polymer solution obtained in the above (1) was transferred to a 2000 cm 3 beaker, 500 g of hexane was added while stirring with a stirrer, and then allowed to stand for 1 hour to remove the oil layer containing impurities. After removing the oil layer, 1 kg of methanol was added dropwise over 1 hour to precipitate a solid content. The precipitated solid was separated by filtration and dried at 70 ° C. under reduced pressure for 24 hours. The obtained dried product was pulverized in a mortar to obtain a powder of polymer compound (A-6) (EP-6). Mw of the obtained polymer compound (A-6) (EP-6) was 31,000.
(3)ポリピロール重合(高分子化合物(A-6)50%仕込み、塩酸1.2倍量):
 撹拌機、窒素ガス導入管、環流冷却器、投入口および温度計を備えた容量500cmの四つ口フラスコに、上記(2)で得た高分子化合物(A-6)(EP-6)11.8g、水200gおよび35%塩酸水溶液6gを投入し、加熱して60℃で3時間撹拌を行った後、25℃まで冷却した。フラスコ内の乳化剤溶液は、均一なものであった。
(3) Polypyrrole polymerization (polymer compound (A-6) 50% charged, hydrochloric acid 1.2 times amount):
The polymer compound (A-6) (EP-6) obtained in (2) above was added to a four-necked flask having a capacity of 500 cm 3 equipped with a stirrer, a nitrogen gas inlet tube, a reflux condenser, an inlet, and a thermometer. 11.8 g, 200 g of water and 6 g of 35% hydrochloric acid aqueous solution were added, heated and stirred at 60 ° C. for 3 hours, and then cooled to 25 ° C. The emulsifier solution in the flask was uniform.
 ついで、乳化剤溶液にピロール3.3gを投入し、攪拌して均一な乳化液とした。10.0gのペルオキソ二硫酸アンモニウムをイオン交換水30gに溶解したものを、0℃に保ったフラスコ内に10時間かけて滴下した。滴下終了後、さらに0℃に保ち、30時間重合反応を続けた。 Next, 3.3 g of pyrrole was added to the emulsifier solution and stirred to obtain a uniform emulsion. A solution obtained by dissolving 10.0 g of ammonium peroxodisulfate in 30 g of ion-exchanged water was dropped into a flask kept at 0 ° C. over 10 hours. After completion of the dropwise addition, the polymerization reaction was continued for 30 hours while maintaining the temperature at 0 ° C.
 重合反応終了後の重合溶液を濾別し、得られた固形分を水に再分散して洗浄を行い、再度濾別を行った。さらに、水洗浄・濾別を4回繰り返し、水を含んだ固形物を得た。この固形物を、減圧下40℃にて72時間乾燥して複合導電性高分子組成物(E-6)を得た。この複合導電性高分子組成物(E-6)の揮発分を測定した結果、揮発分は1%以下だった。 The polymerization solution after the completion of the polymerization reaction was filtered off, and the resulting solid content was redispersed in water, washed, and filtered again. Further, washing with water and filtration were repeated 4 times to obtain a solid containing water. This solid was dried under reduced pressure at 40 ° C. for 72 hours to obtain a composite conductive polymer composition (E-6). As a result of measuring the volatile content of this composite conductive polymer composition (E-6), the volatile content was 1% or less.
(4)塗膜評価:
 ビーカーに、上記(3)で得た複合導電性高分子組成物(E-6)5g、トルエン90gおよびメチルエチルケトン5gを投入し、室温で撹拌して、複合導電性高分子組成物(E-5)のトルエン・メチルエチルケトン溶液を得た。この溶液の外観は、黒色であった。
(4) Coating film evaluation:
In a beaker, 5 g of the composite conductive polymer composition (E-6) obtained in the above (3), 90 g of toluene and 5 g of methyl ethyl ketone were added, and stirred at room temperature to obtain a composite conductive polymer composition (E-5). ) In toluene / methyl ethyl ketone. The appearance of this solution was black.
 この複合導電性高分子組成物(E-6)の溶液を、ドクターブレードを用い、乾燥後の厚みが10μmとなるようガラス基板上に塗工した後、乾燥を行ったところ、黒色の均一な塗膜が得られた。その塗膜の表面抵抗値は、70kΩ/□だった。 The solution of this composite conductive polymer composition (E-6) was coated on a glass substrate with a doctor blade so that the thickness after drying was 10 μm and then dried. A coating film was obtained. The surface resistance value of the coating film was 70 kΩ / □.
比 較 例 1
(1)比較高分子化合物(A-7)(2-ソジウムスルホエチルメタクリレート/ベンジルメタクリレート=15/85)の重合:
 撹拌機、窒素ガス導入管、環流冷却器、投入口および温度計を備えた容量1000cmの四つ口フラスコに、2-ソジウムスルホエチルメタクリレート25.9g、ベンジルメタクリレート121.4g、イオン交換水100gおよびイソプロピルアルコール400gを投入した。フラスコ内に窒素ガスを導入しながら、フラスコ内の混合物をリフラックス温度まで昇温した。ついで、アゾビスイソブチロニトリル0.7gをフラスコ内に投入し、リフラックス状態を保ち、18時間重合反応を行なってポリマーを得た。
Comparative Example 1
(1) Polymerization of comparative polymer compound (A-7) (2-sodium sulfoethyl methacrylate / benzyl methacrylate = 15/85):
In a four-necked flask with a capacity of 1000 cm 3 equipped with a stirrer, nitrogen gas inlet tube, reflux condenser, inlet and thermometer, 25.9 g of 2-sodium sulfoethyl methacrylate, 121.4 g of benzyl methacrylate, ion-exchanged water 100 g and 400 g of isopropyl alcohol were added. While introducing nitrogen gas into the flask, the mixture in the flask was heated to the reflux temperature. Subsequently, 0.7 g of azobisisobutyronitrile was put into the flask, and the polymer was obtained by performing a polymerization reaction for 18 hours while maintaining the reflux state.
(2)比較高分子化合物(A-7)の精製:
 上記(1)で得られたポリマー溶液の全量を、2000cmのビーカーに移し、スターラーにより撹拌しながらヘキサン500gを添加し、その後1時間静置して不純物を含む油層を除去した。油層を除去した後、1kgのメタノールを1時間かけて滴下し、固形分を析出させた。析出した固形分を濾別し、70℃で減圧下24時間乾燥した。得られた乾燥物を乳鉢で粉砕して高分子化合物(A-7)(CP-1)の粉体を得た。得られた高分子化合物(A-7)(CP-1)のMwは、35,000だった。
(2) Purification of comparative polymer compound (A-7):
The total amount of the polymer solution obtained in the above (1) was transferred to a 2000 cm 3 beaker, 500 g of hexane was added while stirring with a stirrer, and then allowed to stand for 1 hour to remove the oil layer containing impurities. After removing the oil layer, 1 kg of methanol was added dropwise over 1 hour to precipitate a solid content. The precipitated solid was separated by filtration and dried at 70 ° C. under reduced pressure for 24 hours. The obtained dried product was pulverized in a mortar to obtain a powder of polymer compound (A-7) (CP-1). Mw of the obtained polymer compound (A-7) (CP-1) was 35,000.
(3)ポリアニリン重合(高分子化合物(A-7)50%仕込み、塩酸1.2倍量)
 撹拌機、窒素ガス導入管、環流冷却器、投入口および温度計を備えた容量500cmの四つ口フラスコに、上記(2)で得た高分子化合物(A-7)(CP-2)30.2g、イオン交換水200g、35%塩酸水溶液6gをフラスコに秤量し、約60℃で加熱攪拌を行ったが不溶物が残存して完全に溶解しなかった。
(3) Polyaniline polymerization (polymer compound (A-7) 50% charged, hydrochloric acid 1.2 times amount)
The polymer compound (A-7) (CP-2) obtained in (2) above was added to a four-necked flask having a capacity of 500 cm 3 equipped with a stirrer, a nitrogen gas inlet tube, a reflux condenser, a charging port and a thermometer. 30.2 g, ion-exchanged water 200 g, and 35% hydrochloric acid aqueous solution 6 g were weighed in a flask and heated and stirred at about 60 ° C., but insoluble matters remained and were not completely dissolved.
 ついで、フラスコ中にアニリン4.65gを投入し、攪拌したところ不溶物が残存する不均一乳化液となった。10.0gのペルオキソ二硫酸アンモニウムをイオン交換水30gに溶解したものを、0℃に保ったフラスコ内に10時間かけて滴下した。滴下終了後、さらに0℃に保ち、10時間重合反応を続けたところ、反応液中に白色結晶物が見られるようになり一部は凝集物となったので、水50gを追加し室温に戻し更に36時間攪拌を行った。 Next, 4.65 g of aniline was put into the flask and stirred to obtain a heterogeneous emulsion in which insoluble matter remained. A solution obtained by dissolving 10.0 g of ammonium peroxodisulfate in 30 g of ion-exchanged water was dropped into a flask kept at 0 ° C. over 10 hours. After completion of the dropwise addition, the temperature was further maintained at 0 ° C., and the polymerization reaction was continued for 10 hours. As a result, white crystals were observed in the reaction solution and a part of the crystals became aggregates. The mixture was further stirred for 36 hours.
 重合反応終了後の重合溶液を濾別し、得られた固形分を水に再分散して洗浄を行い、再度濾別を行った。さらに、水洗浄・濾別を4回繰り返し、水を含んだ固形物を得た。この固形物を、減圧下40℃にて72時間乾燥してポリマー(C-1)を得た。このポリマー(C-1)の揮発分を測定した結果、揮発分は1%以下だった。 The polymerization solution after the completion of the polymerization reaction was filtered off, and the resulting solid content was redispersed in water, washed, and filtered again. Further, washing with water and filtration were repeated 4 times to obtain a solid containing water. This solid was dried under reduced pressure at 40 ° C. for 72 hours to obtain polymer (C-1). As a result of measuring the volatile content of this polymer (C-1), the volatile content was 1% or less.
(4)塗膜評価:
 ビーカーに前記(3)で得たポリマー(C-1)5gおよびトルエン95g投入し、室温で撹拌したが、ポリマー(C-1)は溶解せず、一部沈殿物を生じた微分散溶液が得られた。
(4) Coating film evaluation:
In a beaker, 5 g of the polymer (C-1) obtained in the above (3) and 95 g of toluene were added and stirred at room temperature, but the polymer (C-1) was not dissolved, and a finely dispersed solution partially producing a precipitate was obtained. Obtained.
 このポリマー(C-1)の分散液を、200メッシュフィルターにてろ過し、そのろ液をドクターブレードを用い、乾燥後の厚みが10μmとなるようガラス基板上に塗工した後、乾燥を行ったところ、微粒子膜としての均一膜は得られたが、表面を指で擦ると脱落するような膜質となり、実施例1~6で得られたような均一な自立塗膜にならず、その表面抵抗値は、10Ω/□以上であった。 The polymer (C-1) dispersion was filtered through a 200 mesh filter, and the filtrate was applied onto a glass substrate using a doctor blade so that the thickness after drying was 10 μm, followed by drying. As a result, a uniform film as a fine particle film was obtained. However, when the surface was rubbed with a finger, the film quality was such that it would fall off, and the uniform free-standing coating film obtained in Examples 1 to 6 was not obtained. The resistance value was 10 7 Ω / □ or more.
比 較 例 2
(1)比較高分子化合物(A-8)(2-ソジウムスルホエチルメタクリレート/ベンジルメタクリレート=70/30)の重合:
 撹拌機、窒素ガス導入管、環流冷却器、投入口および温度計を備えた容量1000cmの四つ口フラスコに、2-ソジウムスルホエチルメタクリレート120.9g、ベンジルメタクリレート42.8g、イオン交換水100gおよびイソプロピルアルコール400gを投入した。フラスコ内に窒素ガスを導入しながら、フラスコ内の混合物をリフラックス温度まで昇温した。ついで、アゾビスイソブチロニトリル0.7gをフラスコ内に投入し、リフラックス状態を保ち、18時間重合反応を行なってポリマーを得た。
Comparative Example 2
(1) Polymerization of comparative polymer compound (A-8) (2-sodium sulfoethyl methacrylate / benzyl methacrylate = 70/30):
In a four-necked flask with a capacity of 1000 cm 3 equipped with a stirrer, a nitrogen gas inlet tube, a reflux condenser, an inlet and a thermometer, 120.9 g of 2-sodium sulfoethyl methacrylate, 42.8 g of benzyl methacrylate, ion-exchanged water 100 g and 400 g of isopropyl alcohol were added. While introducing nitrogen gas into the flask, the mixture in the flask was heated to the reflux temperature. Subsequently, 0.7 g of azobisisobutyronitrile was put into the flask, and the polymer was obtained by performing a polymerization reaction for 18 hours while maintaining the reflux state.
(2)比較高分子化合物(A-8)の精製:
 上記(1)で得られたポリマー溶液の全量を、2000cmのビーカーに移し、スターラーにより撹拌しながらヘキサン500gを添加し、その後1時間静置して不純物を含む油層を除去した。油層を除去した後、1kgのメタノールを1時間かけて滴下し、固形分を析出させた。析出した固形分を濾別し、100℃で減圧下30時間乾燥した。得られた乾燥物を乳鉢で粉砕して高分子化合物(A-8)(CP-2)の粉体を得た。得られた高分子化合物(A-8)(CP-2)のMwは、49,000だった。
(2) Purification of comparative polymer compound (A-8):
The total amount of the polymer solution obtained in the above (1) was transferred to a 2000 cm 3 beaker, 500 g of hexane was added while stirring with a stirrer, and then allowed to stand for 1 hour to remove the oil layer containing impurities. After removing the oil layer, 1 kg of methanol was added dropwise over 1 hour to precipitate a solid content. The precipitated solid was separated by filtration and dried at 100 ° C. under reduced pressure for 30 hours. The obtained dried product was pulverized in a mortar to obtain a powder of polymer compound (A-8) (CP-2). Mw of the obtained polymer compound (A-8) (CP-2) was 49,000.
(3)ポリアニリン重合:
 撹拌機、窒素ガス導入管、環流冷却器、投入口および温度計を備えた容量500cmの四つ口フラスコに、上記(2)で得た高分子化合物(A-8)(CP-2)14.4g、イオン交換水200gおよび35%塩酸水溶液6gを投入し、加熱して60℃で3時間撹拌を行った後、25℃まで冷却した。フラスコ内の乳化剤溶液は、均一なものであった。
(3) Polyaniline polymerization:
The polymer compound (A-8) (CP-2) obtained in (2) above was added to a four-necked flask having a capacity of 500 cm 3 equipped with a stirrer, a nitrogen gas inlet tube, a reflux condenser, an inlet, and a thermometer. 14.4 g, ion-exchanged water 200 g and 35% hydrochloric acid aqueous solution 6 g were added, heated and stirred at 60 ° C. for 3 hours, and then cooled to 25 ° C. The emulsifier solution in the flask was uniform.
 ついで、乳化剤溶液にアニリン4.65gを投入し、攪拌して均一な乳化液とした。10.0gのペルオキソ二硫酸アンモニウムをイオン交換水30gに溶解したものを、0℃に保ったフラスコ内に10時間かけて滴下した。滴下終了後、さらに0℃に保ち、30時間重合反応を続けた。 Next, 4.65 g of aniline was added to the emulsifier solution and stirred to obtain a uniform emulsion. A solution obtained by dissolving 10.0 g of ammonium peroxodisulfate in 30 g of ion-exchanged water was dropped into a flask kept at 0 ° C. over 10 hours. After completion of the dropwise addition, the polymerization reaction was continued for 30 hours while maintaining the temperature at 0 ° C.
 得られた反応液(CS-2)は、均一な溶液であった。反応液(CS-2)を80℃の熱風循環式乾燥機で、乾燥して固形分を回収した。得られた固形分をイソプロピルアルコール(IPA)に再分散して洗浄を行い、再度濾別を行った。このIPA洗浄・濾別を4回繰り返し、水を含んだ固形物を得た。この固形物を、減圧下40℃にて72時間乾燥してポリマー(C-2)を得た。ポリマー(C-2)の揮発分を測定した結果、揮発分は2%以下だった。 The obtained reaction solution (CS-2) was a uniform solution. The reaction solution (CS-2) was dried with a hot air circulating dryer at 80 ° C. to recover the solid content. The obtained solid was redispersed in isopropyl alcohol (IPA), washed, and filtered again. This IPA washing and filtration was repeated 4 times to obtain a solid containing water. This solid was dried under reduced pressure at 40 ° C. for 72 hours to obtain a polymer (C-2). As a result of measuring the volatile content of the polymer (C-2), the volatile content was 2% or less.
(4)塗膜評価:
 ビーカーに、上記(3)で得たポリマー(C-2)5gおよびトルエン95gを投入し、室温で撹拌したが、ポリマー(C-2)は溶解せず、一部沈殿物を生じた微分散溶液が得られた。
(4) Coating film evaluation:
In a beaker, 5 g of the polymer (C-2) obtained in the above (3) and 95 g of toluene were added and stirred at room temperature, but the polymer (C-2) was not dissolved, and a fine dispersion in which a partial precipitate was formed. A solution was obtained.
 このポリマー(C-2)の分散液を、200メッシュフィルターにてろ過し、そのろ液をドクターブレードを用い、乾燥後の厚みが10μmとなるようガラス基板上に塗工した後、乾燥を行ったところ、微粒子膜としての均一膜は得られたが、表面を指で擦ると脱落するような膜質となり、実施例1~6で得られたような均一な自立塗膜にならず、その表面抵抗値は、10Ω/□以上であった。 The polymer (C-2) dispersion was filtered through a 200 mesh filter, and the filtrate was applied onto a glass substrate using a doctor blade so that the thickness after drying was 10 μm, followed by drying. As a result, a uniform film as a fine particle film was obtained. However, when the surface was rubbed with a finger, the film quality was such that it would fall off, and the uniform free-standing coating film obtained in Examples 1 to 6 was not obtained. The resistance value was 10 7 Ω / □ or more.
 また、反応液(CS-2)を直接ガラス基板上に、乾燥後の厚みが10μmとなるように塗工して、乾燥を行ったところ、不均一な塗膜が得られ、その表面抵抗は10Ω/□以上であった。 Also, when the reaction solution (CS-2) was applied directly on a glass substrate so that the thickness after drying was 10 μm and dried, a non-uniform coating film was obtained, and the surface resistance was It was 10 6 Ω / □ or more.
比 較 例 3
(1)比較高分子化合物(A-9)(2-ソジウムスルホエチルメタクリレート/2-エチルヘキシルメタクリレート=35/65)の重合:
 撹拌機、窒素ガス導入管、環流冷却器、投入口および温度計を備えた容量1000cmの四つ口フラスコに、2-ソジウムスルホエチルメタクリレート60.3g、2-エチルヘキシルメタクリレート104.4g、イオン交換水100gおよびイソプロピルアルコール400gを投入した。フラスコ内に窒素ガスを導入しながら、フラスコ内の混合物をリフラックス温度まで昇温した。ついで、アゾビスイソブチロニトリル0.7gをフラスコ内に投入し、リフラックス状態を保ち20時間重合反応を行なってポリマーを得た。
Comparative Example 3
(1) Polymerization of comparative polymer compound (A-9) (2-sodium sulfoethyl methacrylate / 2-ethylhexyl methacrylate = 35/65):
In a 1000 cm 3 four-necked flask equipped with a stirrer, nitrogen gas inlet tube, reflux condenser, inlet and thermometer, 60.3 g of 2-sodium sulfoethyl methacrylate, 104.4 g of 2-ethylhexyl methacrylate, ions 100 g of exchange water and 400 g of isopropyl alcohol were added. While introducing nitrogen gas into the flask, the mixture in the flask was heated to the reflux temperature. Subsequently, 0.7 g of azobisisobutyronitrile was put into the flask, and the polymer was obtained by carrying out a polymerization reaction for 20 hours while maintaining the reflux state.
(2)比較高分子化合物(A-9)の精製:
 上記(1)で得られたポリマー溶液の全量を、2000cmのビーカーに移し、スターラーにより撹拌しながらヘキサン500gを添加し、その後1時間静置して不純物を含む油層を除去した。油層を除去した後、1kgのメタノールを1時間かけて滴下し、固形分を析出させた。析出した固形分を濾別し、100℃で減圧下30時間乾燥した。得られた乾燥物を乳鉢で粉砕して高分子化合物(A-9)(CP-3)の粉体を得た。得られた高分子化合物(A-9)(CP-3)のMwは、42,000だった。
(2) Purification of comparative polymer compound (A-9):
The total amount of the polymer solution obtained in the above (1) was transferred to a 2000 cm 3 beaker, 500 g of hexane was added while stirring with a stirrer, and then allowed to stand for 1 hour to remove the oil layer containing impurities. After removing the oil layer, 1 kg of methanol was added dropwise over 1 hour to precipitate a solid content. The precipitated solid was separated by filtration and dried at 100 ° C. under reduced pressure for 30 hours. The obtained dried product was pulverized in a mortar to obtain a powder of polymer compound (A-9) (CP-3). Mw of the obtained polymer compound (A-9) (CP-3) was 42,000.
(3)ポリアニリン重合:
 撹拌機、窒素ガス導入管、環流冷却器、投入口および温度計を備えた容量500cmの四つ口フラスコに、上記(2)で得た高分子化合物(A-9)(CP-3)14.5g、イオン交換水200gおよび35%塩酸水溶液6gを投入し、加熱して60℃で3時間撹拌を行った後、25℃まで冷却した。フラスコ内の乳化剤溶液は、均一なものであった。
(3) Polyaniline polymerization:
The polymer compound (A-9) (CP-3) obtained in (2) above was added to a four-necked flask having a capacity of 500 cm 3 equipped with a stirrer, a nitrogen gas inlet tube, a reflux condenser, a charging port and a thermometer. 14.5 g, 200 g of ion-exchanged water and 6 g of 35% hydrochloric acid aqueous solution were added, heated and stirred at 60 ° C. for 3 hours, and then cooled to 25 ° C. The emulsifier solution in the flask was uniform.
 ついで、乳化剤溶液中にアニリン4.65gを投入し、攪拌して均一な乳化液とした。10.0gのペルオキソ二硫酸アンモニウムをイオン交換水30gに溶解したものを、フラスコ内を0℃に保ちながら10時間かけて滴下した。滴下終了後、さらに0℃に保ち、30時間重合反応を続けた。 Next, 4.65 g of aniline was put into the emulsifier solution and stirred to obtain a uniform emulsion. A solution obtained by dissolving 10.0 g of ammonium peroxodisulfate in 30 g of ion-exchanged water was added dropwise over 10 hours while maintaining the inside of the flask at 0 ° C. After completion of the dropwise addition, the polymerization reaction was continued for 30 hours while maintaining the temperature at 0 ° C.
 重合反応終了後の重合溶液を濾別し、得られた固形分を水に再分散して洗浄を行い、再度濾別を行った。さらに、水洗浄・濾別を4回繰り返し、水を含んだ固形物を得た。この固形物を、減圧下40℃にて72時間乾燥してポリマー(C-3)を得た。このポリマー(C-3)の揮発分を測定した結果、揮発分は1%以下だった。 The polymerization solution after the completion of the polymerization reaction was filtered off, and the resulting solid content was redispersed in water, washed, and filtered again. Further, washing with water and filtration were repeated 4 times to obtain a solid containing water. This solid was dried under reduced pressure at 40 ° C. for 72 hours to obtain a polymer (C-3). As a result of measuring the volatile content of this polymer (C-3), the volatile content was 1% or less.
(4)塗膜評価:
 ビーカーに前記ポリマー(C-3)5gおよびトルエン95gを投入し、室温で撹拌したが、ポリマー(C-3)は溶解せず、一部沈殿物を生じた微分散溶液が得られた。
(4) Coating film evaluation:
5 g of the polymer (C-3) and 95 g of toluene were put into a beaker and stirred at room temperature, but the polymer (C-3) was not dissolved, and a finely dispersed solution in which a partial precipitate was obtained was obtained.
 このポリマー(C-3)の分散液を、200メッシュフィルターにてろ過し、そのろ液をドクターブレードを用い、乾燥後の厚みが10μmとなるようガラス基板上に塗工した後、乾燥を行ったところ、微粒子膜としての均一膜は得られたが、表面を指で擦ると脱落するような膜質となり、実施例1~6で得られたような均一な自立塗膜にならず、またその表面抵抗値は、10Ω/□以上であった。 The polymer (C-3) dispersion was filtered through a 200 mesh filter, and the filtrate was applied onto a glass substrate using a doctor blade so that the thickness after drying was 10 μm, followed by drying. As a result, a uniform film as a fine particle film was obtained. However, when the surface was rubbed with a finger, the film quality was such that it would fall off, and the uniform free-standing coating film obtained in Examples 1 to 6 was not obtained. The surface resistance value was 10 7 Ω / □ or more.
比 較 例 4
(1)比較高分子化合物(A-10)(ポリスチレンスルホン酸ナトリウム)の重合:
 撹拌機、窒素ガス導入管、環流冷却器、投入口および温度計を備えた容量1000cmの四つ口フラスコに、p-スチレンスルホン酸ナトリウム150g、イオン交換水150gおよびイソプロピルアルコール300gを投入した。フラスコ内に窒素ガスを導入しながら、フラスコ内の混合物をリフラックス温度まで昇温した。ついで、アゾビスイソブチロニトリル0.7gをフラスコ内に投入し、リフラックス状態を保ち18時間重合反応を行なってポリマーを得た。
Comparative Example 4
(1) Polymerization of comparative polymer compound (A-10) (sodium polystyrene sulfonate):
150 g of sodium p-styrenesulfonate, 150 g of ion-exchanged water and 300 g of isopropyl alcohol were charged into a four-necked flask having a capacity of 1000 cm 3 equipped with a stirrer, a nitrogen gas inlet tube, a reflux condenser, a charging port and a thermometer. While introducing nitrogen gas into the flask, the mixture in the flask was heated to the reflux temperature. Next, 0.7 g of azobisisobutyronitrile was put into the flask, and the polymer was obtained by carrying out a polymerization reaction for 18 hours while maintaining the reflux state.
(2)比較高分子化合物(A-10)の精製:
 上記(1)で得られたポリマー溶液の全量を、2000cmのビーカーに移し、スターラーにより撹拌しながらヘキサン500gを添加し、その後1時間静置して不純物を含む油層を除去した。油層を除去した後、水層をエバポレーターで濃縮した。得られた固形物を100℃で減圧下24時間乾燥した。得られた乾燥物を乳鉢で粉砕して高分子化合物(A-10)(CP-4)の粉体を得た。得られた高分子化合物(A-10)(CP-4)のMwは、32,000だった。
(2) Purification of comparative polymer compound (A-10):
The total amount of the polymer solution obtained in the above (1) was transferred to a 2000 cm 3 beaker, 500 g of hexane was added while stirring with a stirrer, and then allowed to stand for 1 hour to remove the oil layer containing impurities. After removing the oil layer, the aqueous layer was concentrated with an evaporator. The obtained solid was dried at 100 ° C. under reduced pressure for 24 hours. The obtained dried product was pulverized in a mortar to obtain a powder of polymer compound (A-10) (CP-4). Mw of the obtained polymer compound (A-10) (CP-4) was 32,000.
(3)ポリアニリン重合(高分子化合物(A-10)50%仕込み、塩酸1.2倍量):
 撹拌機、窒素ガス導入管、環流冷却器、投入口および温度計を備えた容量500cmの四つ口フラスコに、上記(2)で得た高分子化合物(A-10)(CP-4)5.2g、イオン交換水200gおよび35%塩酸水溶液6gを投入し、加熱して60℃で3時間撹拌を行った後、25℃まで冷却した。フラスコ内の乳化剤溶液は、均一なものであった。
(3) Polyaniline polymerization (polymer compound (A-10) 50% charged, hydrochloric acid 1.2 times amount):
The polymer compound (A-10) (CP-4) obtained in (2) above was added to a four-necked flask having a capacity of 500 cm 3 equipped with a stirrer, a nitrogen gas inlet tube, a reflux condenser, a charging port and a thermometer. 5.2 g, 200 g of ion-exchanged water and 6 g of 35% hydrochloric acid aqueous solution were added, heated and stirred at 60 ° C. for 3 hours, and then cooled to 25 ° C. The emulsifier solution in the flask was uniform.
 ついで、乳化剤溶液にアニリン4.65gを投入し、攪拌して均一な乳化液とした。10.0gのペルオキソ二硫酸アンモニウムをイオン交換水30gに溶解したものを、フラスコ内を0℃に保ちながら10時間かけて滴下した。滴下終了後、さらに0℃に保ち、30時間重合反応を続けた。 Next, 4.65 g of aniline was added to the emulsifier solution and stirred to obtain a uniform emulsion. A solution obtained by dissolving 10.0 g of ammonium peroxodisulfate in 30 g of ion-exchanged water was added dropwise over 10 hours while maintaining the inside of the flask at 0 ° C. After completion of the dropwise addition, the polymerization reaction was continued for 30 hours while maintaining the temperature at 0 ° C.
 重合反応終了後の重合溶液を濾別し、得られた固形分を水に再分散して洗浄を行い、再度濾別を行った。さらに、水洗浄・濾別を4回繰り返し、水を含んだ固形物を得た。この固形物を、減圧下40℃にて72時間乾燥してポリマー(C-4)を得た。このポリマー(C-4)の揮発分を測定した結果、揮発分は1%以下だった。 The polymerization solution after the completion of the polymerization reaction was filtered off, and the resulting solid content was redispersed in water, washed, and filtered again. Further, washing with water and filtration were repeated 4 times to obtain a solid containing water. This solid was dried under reduced pressure at 40 ° C. for 72 hours to obtain polymer (C-4). As a result of measuring the volatile content of this polymer (C-4), the volatile content was 1% or less.
(4)塗膜評価:
 ビーカーに前記(3)で得たポリマー(C-4)5gおよびトルエン95gを投入し、室温で撹拌したが、ポリマー(C-4)は溶解せず、一部沈殿物を生じた微分散溶液が得られた。
(4) Coating film evaluation:
A beaker was charged with 5 g of the polymer (C-4) obtained in the above (3) and 95 g of toluene, and stirred at room temperature, but the polymer (C-4) did not dissolve and a finely dispersed solution in which a partial precipitate was formed. was gotten.
 このポリマー(C-4)の分散液を、200メッシュフィルターにてろ過し、そのろ液をドクターブレードを用い、乾燥後の厚みが10μmとなるようガラス基板上に塗工した後、乾燥を行ったところ、微粒子膜としての均一膜は得られたが、表面を指で擦ると脱落するような膜質となり、実施例1~6で得られたような均一な自立塗膜にならず、その表面抵抗値は、10Ω/□以上であった。 The polymer (C-4) dispersion was filtered through a 200 mesh filter, and the filtrate was applied onto a glass substrate using a doctor blade so that the thickness after drying was 10 μm, followed by drying. As a result, a uniform film as a fine particle film was obtained. However, when the surface was rubbed with a finger, the film quality was such that it would fall off, and the uniform free-standing coating film obtained in Examples 1 to 6 was not obtained. The resistance value was 10 7 Ω / □ or more.
比 較 例 5
(1)比較高分子化合物(A-11)(ポリスチレンスルホン酸ナトリウム)の重合:
 撹拌機、窒素ガス導入管、環流冷却器、投入口および温度計を備えた容量1000cmの四つ口フラスコに、p-スチレンスルホン酸ナトリウム150g、イオン交換水150gおよびイソプロピルアルコール300gを投入した。フラスコ内に窒素ガスを導入しながら、フラスコ内の混合物をリフラックス温度まで昇温した。ついで、アゾビスイソブチロニトリル0.7gをフラスコ内に投入し、リフラックス状態を保ち、20時間重合反応を行なってポリマーを得た。
Comparative Example 5
(1) Polymerization of comparative polymer compound (A-11) (polystyrene sulfonate sodium):
150 g of sodium p-styrenesulfonate, 150 g of ion-exchanged water and 300 g of isopropyl alcohol were charged into a four-necked flask having a capacity of 1000 cm 3 equipped with a stirrer, a nitrogen gas inlet tube, a reflux condenser, a charging port and a thermometer. While introducing nitrogen gas into the flask, the mixture in the flask was heated to the reflux temperature. Subsequently, 0.7 g of azobisisobutyronitrile was put into the flask, and the refluxed state was maintained, and a polymerization reaction was performed for 20 hours to obtain a polymer.
(2)比較高分子化合物(A-11)の精製:
 得られたポリマー溶液の全量を、2000cmのビーカーに移し、スターラーにより撹拌しながらヘキサン500gを添加し、その後1時間静置して不純物を含む油層を除去した。油層を除去した後、水層をエバポレーターで濃縮した。得られた固形物を100℃で減圧下24時間乾燥した。得られた乾燥物を乳鉢で粉砕して高分子化合物(A-11)(CP-5)の粉体を得た。得られた高分子化合物(A-11)(CP-5)のMwは、32,000だった。
(2) Purification of comparative polymer compound (A-11):
The total amount of the resulting polymer solution was transferred to a 2000 cm 3 beaker, 500 g of hexane was added while stirring with a stirrer, and then allowed to stand for 1 hour to remove the oil layer containing impurities. After removing the oil layer, the aqueous layer was concentrated with an evaporator. The obtained solid was dried at 100 ° C. under reduced pressure for 24 hours. The obtained dried product was pulverized in a mortar to obtain a powder of polymer compound (A-11) (CP-5). Mw of the obtained polymer compound (A-11) (CP-5) was 32,000.
(3)ポリアニリン重合:
 撹拌機、窒素ガス導入管、環流冷却器、投入口および温度計を備えた容量500cmの四つ口フラスコに、上記高分子化合物(A-11)(CP-3)20.6g、イオン交換水300gおよび35%塩酸水溶液10gを投入し、60℃に加熱して3時間撹拌を行った後、25℃まで冷却した。フラスコ内の乳化剤溶液は、均一なものであった。
(3) Polyaniline polymerization:
In a four-necked flask having a capacity of 500 cm 3 equipped with a stirrer, a nitrogen gas inlet tube, a reflux condenser, a charging port and a thermometer, 20.6 g of the above polymer compound (A-11) (CP-3), ion exchange 300 g of water and 10 g of 35% aqueous hydrochloric acid solution were added, heated to 60 ° C. and stirred for 3 hours, and then cooled to 25 ° C. The emulsifier solution in the flask was uniform.
 ついで、乳化剤溶液中にアニリン4.65gを投入し、攪拌して均一な乳化液とした。10.0gのペルオキソ二硫酸アンモニウムをイオン交換水30gに溶解したものを、0℃に保ったフラスコ内に10時間かけて滴下した。滴下終了後、さらに0℃に保ち、30時間重合反応を続けた。 Next, 4.65 g of aniline was put into the emulsifier solution and stirred to obtain a uniform emulsion. A solution obtained by dissolving 10.0 g of ammonium peroxodisulfate in 30 g of ion-exchanged water was dropped into a flask kept at 0 ° C. over 10 hours. After completion of the dropwise addition, the polymerization reaction was continued for 30 hours while maintaining the temperature at 0 ° C.
 得られた反応液(CS-5)は、均一な溶液であった。反応液(CS-5)を80℃の熱風循環式乾燥機で、乾燥して固形分を回収した。得られた固形分を水に再分散して洗浄を行い、再度濾別を行った。この水洗浄・濾別を4回繰り返し、水を含んだ固形物を得た。この固形物を、減圧下100℃にて72時間乾燥してポリマー(C-5)を得た。このポリマー(C-5)の揮発分を測定した結果、揮発分は1%以下だった。 The obtained reaction solution (CS-5) was a uniform solution. The reaction solution (CS-5) was dried with a hot air circulating dryer at 80 ° C. to recover the solid content. The obtained solid was re-dispersed in water, washed, and filtered again. This washing with water and filtration were repeated four times to obtain a solid containing water. This solid was dried under reduced pressure at 100 ° C. for 72 hours to obtain a polymer (C-5). As a result of measuring the volatile content of this polymer (C-5), the volatile content was 1% or less.
(4)塗膜評価:
 ビーカーに、ポリマー(C-5)5g、トルエン95gを投入し、室温で撹拌したが、ポリマー(C-5)は全く溶解しなかった。
(4) Coating film evaluation:
In a beaker, 5 g of polymer (C-5) and 95 g of toluene were added and stirred at room temperature, but polymer (C-5) was not dissolved at all.
 次に、ビーカーに、ポリマー(C-5)5g、イオン交換水95gを投入し、室温で撹拌して、ポリマー(C-5)の一部が溶解した水分散液が得られた。 Next, 5 g of the polymer (C-5) and 95 g of ion-exchanged water were put into a beaker and stirred at room temperature to obtain an aqueous dispersion in which a part of the polymer (C-5) was dissolved.
 このポリマー(C-5)の水分散液を、200メッシュフィルターにてろ過し、そのろ液をドクターブレードを用い、乾燥後の厚みが10μmとなるようガラス基板上に塗工した後、乾燥を行ったところ、乾燥を行ったところ、緑色の均一な塗膜が得られた。その塗膜の表面抵抗値を測定したところ、3MΩ/□だった。 The polymer (C-5) aqueous dispersion was filtered through a 200 mesh filter, and the filtrate was applied onto a glass substrate using a doctor blade so that the thickness after drying was 10 μm, and then dried. As a result of drying, a green uniform coating film was obtained. When the surface resistance value of the coating film was measured, it was 3 MΩ / □.
 実施例7~実施例11および比較例6~比較例9
 国際公開番号WO/2009/013942の実施例1で用いている対向電極(開口銅メッシュ電極)ならび対向電極基板(厚さ80μmのPETフィルム)を、実施例1~4で調製した複合導電性高分子組成物溶液もしくは比較例2で調製した導電性高分子組成物溶液をドクターブレードを用い乾燥後の厚みが5μmとなるように、SUS箔、ITO PENフィルム、ガラス基板、ITOガラス基板またはFTOガラス基板上に塗工したものに替えて色素増感型太陽電池素子を製造した。
Examples 7 to 11 and Comparative Examples 6 to 9
The counter electrode (opened copper mesh electrode) and the counter electrode substrate (80 μm thick PET film) used in Example 1 of International Publication No. WO / 2009/013942 were prepared in Examples 1 to 4. SUS foil, ITO PEN film, glass substrate, ITO glass substrate or FTO glass so that the thickness after drying the molecular composition solution or the conductive polymer composition solution prepared in Comparative Example 2 is 5 μm using a doctor blade It replaced with what was coated on the board | substrate, and manufactured the dye-sensitized solar cell element.
 得られた色素増感型太陽電池素子評価は山下電装(株)製のソーラーシュミレーターYSS-80Aを用いた。セル面積1cmの素子に対してAM1.5(1sun;100mW/cm2)照射下のI-V特性を調べることにより、セルの短絡電流、開放電圧、フィルファクターおよび発電効率を評価した。その結果を表1に示した。 For evaluation of the obtained dye-sensitized solar cell element, a solar simulator YSS-80A manufactured by Yamashita Denso Co., Ltd. was used. The cell short-circuit current, open-circuit voltage, fill factor, and power generation efficiency were evaluated by examining the IV characteristics under irradiation of AM 1.5 (1 sun; 100 mW / cm 2 ) for an element having a cell area of 1 cm 2 . The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 以上の結果より、本発明の複合導電性高分子組成物を用いてなる色素増感型太陽電池素子は高い光電変換効率を示した。 From the above results, the dye-sensitized solar cell element using the composite conductive polymer composition of the present invention showed high photoelectric conversion efficiency.
 実施例14~実施例15および比較例9~比較例10
 実施例1~2で調製した複合導電性高分子組成物溶液または比較例2で調製した導電性高分子組成物溶液を、それぞれ固形分2.5%に再調整し、それらをスピンコート法により4000rpm-15secの条件で、厚さが1000μmのガラス基板および100μmのPETフィルム基板に対して塗布し、熱風乾燥機で溶媒を除去させて帯電防止層を形成した帯電防止フィルムを作製した。なお、帯電防止層の膜厚を触針式表面形状測定器(Dektak 6M:アルバック製)で測定を行ったところ、帯電防止層の厚さはいずれもおよそ25nmであった。
Examples 14 to 15 and Comparative Examples 9 to 10
The composite conductive polymer composition solution prepared in Examples 1 and 2 or the conductive polymer composition solution prepared in Comparative Example 2 was readjusted to a solid content of 2.5%, respectively, and these were prepared by spin coating. The coating was applied to a glass substrate having a thickness of 1000 μm and a PET film substrate having a thickness of 1000 μm under a condition of 4000 rpm-15 sec, and the solvent was removed by a hot air dryer to produce an antistatic film having an antistatic layer formed thereon. In addition, when the film thickness of the antistatic layer was measured with a stylus type surface shape measuring instrument (Dektak 6M: manufactured by ULVAC), the thickness of each antistatic layer was approximately 25 nm.
 得られた帯電防止フィルムについて、以下のような条件下で静置した後に表面抵抗値の評価を行った。評価結果を表2に示した。
 条件(1):23℃50%RHにて192hr
 条件(2):40℃80%RHにて168hr
The obtained antistatic film was allowed to stand under the following conditions, and then the surface resistance value was evaluated. The evaluation results are shown in Table 2.
Condition (1): 192 hr at 23 ° C. and 50% RH
Condition (2): 168 hr at 40 ° C. and 80% RH
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 以上の結果より、本発明の帯電防止フィルムは、高温多湿下での環境で使用されても、帯電防止特性を十分に示す結果であった。 From the above results, even when the antistatic film of the present invention was used in an environment under high temperature and high humidity, it was a result that sufficiently exhibited antistatic properties.
 本発明の複合導電性高分子組成物は、疎水性の強い芳香環または脂環族を主成分とする高分子化合物(A)をドープ剤として使用したものであり、トルエン等芳香族溶剤に安定に可溶化させることが可能となったものである。 The composite conductive polymer composition of the present invention uses a polymer compound (A) mainly composed of a highly hydrophobic aromatic ring or alicyclic group as a dopant, and is stable in an aromatic solvent such as toluene. Solubilized in water.
 そして、このようにして得られる複合導電性高分子組成物を芳香族溶剤中に透明状態で溶解させた複合導電性高分子形成組成物溶液は、導電性が要求される部分に簡単に導電性皮膜を形成することが可能であり、電子部品等の分野において、きわめて有利に使用できるものである。 A composite conductive polymer forming composition solution obtained by dissolving the composite conductive polymer composition thus obtained in an aromatic solvent in a transparent state can easily be applied to a portion where conductivity is required. A film can be formed and can be used very advantageously in the field of electronic components and the like.
 さらに、本発明の複合導電性高分子組成物を用いた色素増感型太陽電気用電極や帯電防止フィルムは、優れた性能を有する。 Furthermore, a dye-sensitized solar electrode or an antistatic film using the composite conductive polymer composition of the present invention has excellent performance.

Claims (17)

  1.  次の成分(a-1)および(a-2)
     (a-1)スルホン酸基と重合性ビニル基を含有モノマー
                  20~45mol%
     (a-2)芳香族基または脂環族基と重合性ビニル基を有するモノ
          マー      55~80mol%
    を構成成分とする高分子化合物(A)を、次式(I)~(III)
    Figure JPOXMLDOC01-appb-C000001
    (各式中、Rないしは、水素原子または炭素数1ないし12のアルキル基を示す)
    から選ばれる化合物をモノマー構成成分とするπ共役系高分子(β)にドーピングさせてなる複合導電性高分子組成物。
    The following components (a-1) and (a-2)
    (A-1) Monomer containing sulfonic acid group and polymerizable vinyl group 20 to 45 mol%
    (A-2) Monomer having aromatic group or alicyclic group and polymerizable vinyl group 55-80 mol%
    A polymer compound (A) having the following components (I) to (III)
    Figure JPOXMLDOC01-appb-C000001
    (In each formula, R 1 to 7 represent a hydrogen atom or an alkyl group having 1 to 12 carbon atoms)
    A composite conductive polymer composition obtained by doping a π-conjugated polymer (β) having a compound selected from:
  2.  成分(a-1)が、スチレンスルホン酸若しくはその塩または(メタ)アクリル酸エチル2-スルホン酸若しくはその塩から選ばれたモノマーである請求項1記載の複合導電性高分子組成物。 The composite conductive polymer composition according to claim 1, wherein the component (a-1) is a monomer selected from styrene sulfonic acid or a salt thereof or ethyl (meth) acrylate 2-sulfonic acid or a salt thereof.
  3.  成分(a-2)が、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、(メタ)アクリル酸エチル2-フタル酸メチルエステル、(メタ)アクリル酸エチル2-フタル酸エチルエステル、シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンタニルオキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、t-ブチルシクロヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、(メタ)アクリレートモルホリン、スチレン、ジメチルスチレン、ナフタレン(メタ)アクリレート、ビニルナフタレン、ビニルn-エチルカルバゾールおよびビニルフルオレンからなる群から選ばれたものである請求項1記載の複合導電性高分子組成物。 Component (a-2) is benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, (meth) acrylic acid ethyl 2-phthalic acid methyl ester, (meth) acrylic acid ethyl 2-phthalic acid ethyl ester, cyclohexyl (meth) ) Acrylate, dicyclopentanyl (meth) acrylate, dicyclopentanyloxyethyl (meth) acrylate, isobornyl (meth) acrylate, t-butylcyclohexyl (meth) acrylate, cyclohexyl (meth) acrylate, (meth) acrylate morpholine, The composite conductive polymer composition according to claim 1, wherein the composite conductive polymer composition is selected from the group consisting of styrene, dimethylstyrene, naphthalene (meth) acrylate, vinyl naphthalene, vinyl n-ethylcarbazole and vinyl fluorene.
  4.  高分子化合物(A)のGPC換算重量平均分子量が、3,000~100,000である請求項1~3の何れかの項記載の複合導電性高分子組成物。 The composite conductive polymer composition according to any one of claims 1 to 3, wherein the polymer compound (A) has a GPC equivalent weight average molecular weight of 3,000 to 100,000.
  5.  次の成分(a-1)および(a-2)
     (a-1)スルホン酸基と重合性ビニル基を有するモノマー
                  20~45mol%
     (a-2)芳香族基または脂環族基と重合性ビニル基を有するモノ
          マー      55~80mol%
    をラジカル重合した高分子化合物(A)と、次式(I)~(III)
    Figure JPOXMLDOC01-appb-C000002
    (各式中、Rないしは、水素原子または炭素数1ないし12のアルキル基を示す)
    から選ばれる化合物とを電解性基質溶媒中にて共存させ、酸化剤を用いて化学酸化重合することを特徴とする複合導電性高分子組成物の製造方法。
    The following components (a-1) and (a-2)
    (A-1) Monomer having sulfonic acid group and polymerizable vinyl group 20 to 45 mol%
    (A-2) Monomer having aromatic group or alicyclic group and polymerizable vinyl group 55-80 mol%
    A polymer compound (A) obtained by radical polymerization of the following formulas (I) to (III)
    Figure JPOXMLDOC01-appb-C000002
    (In each formula, R 1 to 7 represent a hydrogen atom or an alkyl group having 1 to 12 carbon atoms)
    A method for producing a composite conductive polymer composition, comprising coexisting a compound selected from the group consisting of an organic substrate solvent and chemical oxidative polymerization using an oxidizing agent.
  6.  成分(a-1)が、スチレンスルホン酸またはその塩、(メタ)アクリル酸エチル2-スルホン酸およびスルホン酸またはその塩よりなる群から選ばれたスルホン酸基と重合性ビニル基を有するモノマーである請求項5記載の複合導電性高分子組成物の製造方法。 Component (a-1) is a monomer having a sulfonic acid group and a polymerizable vinyl group selected from the group consisting of styrene sulfonic acid or a salt thereof, ethyl (meth) acrylate 2-sulfonic acid and a sulfonic acid or a salt thereof. A method for producing a composite conductive polymer composition according to claim 5.
  7.  成分(a-2)が、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、(メタ)アクリル酸エチル2-フタル酸メチルエステル、(メタ)アクリル酸エチル2-フタル酸エチルエステル、シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンタニルオキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、t-ブチルシクロヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、(メタ)アクリレートモルホリン、スチレン、ジメチルスチレン、ナフタレン(メタ)アクリレート、ビニルナフタレン、ビニルn-エチルカルバゾールおよびビニルフルオレンからなる群から選ばれたものである請求項5記載の複合導電性高分子組成物の製造方法。 Component (a-2) is benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, (meth) acrylic acid ethyl 2-phthalic acid methyl ester, (meth) acrylic acid ethyl 2-phthalic acid ethyl ester, cyclohexyl (meth) ) Acrylate, dicyclopentanyl (meth) acrylate, dicyclopentanyloxyethyl (meth) acrylate, isobornyl (meth) acrylate, t-butylcyclohexyl (meth) acrylate, cyclohexyl (meth) acrylate, (meth) acrylate morpholine, 6. The composite conductive polymer composition according to claim 5, wherein the composite conductive polymer composition is selected from the group consisting of styrene, dimethylstyrene, naphthalene (meth) acrylate, vinyl naphthalene, vinyl n-ethylcarbazole, and vinyl fluorene. Production method.
  8.  式(I)~(III)から選ばれる化合物1モルに対し、高分子化合物(A)を、そのスルホン酸基モル比が0.2~1.5となるように共存せしめる請求項5~7の何れかの項記載の複合導電性高分子組成物の製造方法。 The polymer compound (A) is allowed to coexist so that the molar ratio of the sulfonic acid group is 0.2 to 1.5 with respect to 1 mol of the compound selected from the formulas (I) to (III). A method for producing a composite conductive polymer composition according to any one of the above.
  9.  酸化剤が、ペルオキソ二硫酸アンモニウム、ペルオキソ二硫酸カリウム、ペルオキソ二硫酸ナトリウム、塩化鉄(III)、硫酸鉄(III)、テトラフルオロホウ酸鉄(III)、ヘキサフルオロ燐酸鉄(III)、硫酸銅(II)、塩化銅(II)、テトラフルオロホウ酸銅(II)、ヘキサフルオロ燐酸銅(II)およびオキソ二硫酸アンモニウムからなる群より選ばれた酸化剤である請求項5~7の何れかの項記載の複合導電性高分子組成物の製造方法。 The oxidizing agent is ammonium peroxodisulfate, potassium peroxodisulfate, sodium peroxodisulfate, iron (III) chloride, iron (III) sulfate, iron (III) tetrafluoroborate, iron (III) hexafluorophosphate, copper sulfate ( The oxidant selected from the group consisting of II), copper (II) chloride, copper (II) tetrafluoroborate, copper (II) hexafluorophosphate, and ammonium oxodisulfate. The manufacturing method of the composite conductive polymer composition of description.
  10.  電解性基質溶媒がイオン交換水である請求項5~7の何れかの項記載の複合導電性高分子組成物の製造方法。 The method for producing a composite conductive polymer composition according to any one of claims 5 to 7, wherein the electrolytic substrate solvent is ion-exchanged water.
  11.  化学酸化重合を、1molの式(I)~(III)から選ばれる化合物に対し、0.5~3.0molの、塩酸、硫酸、過塩素酸、過ヨウ素酸、塩化鉄(II)および硫化鉄(II)から選ばれる酸性成分を加えて行う請求項5~7の何れかの項記載の複合導電性高分子組成物の製造方法。 For chemical oxidative polymerization, 0.5 to 3.0 mol of hydrochloric acid, sulfuric acid, perchloric acid, periodic acid, iron (II) chloride and sulfide for 1 mol of the compound selected from formulas (I) to (III) The method for producing a composite conductive polymer composition according to any one of claims 5 to 7, wherein an acidic component selected from iron (II) is added.
  12.  請求項1~4記載の複合導電性高分子組成物を、トルエン、ベンゼンおよびキシレンから選ばれる芳香族系溶媒に0.1~10質量%、溶解状態で含有してなる複合導電性高分子組成物溶液。 A composite conductive polymer composition comprising the composite conductive polymer composition according to any one of claims 1 to 4 in an dissolved state in an aromatic solvent selected from toluene, benzene and xylene in an amount of 0.1 to 10% by mass. Product solution.
  13.  請求項12記載の複合導電性高分子組成物溶液の溶剤100重量部に対して、ヒドロキシル基を有する芳香族化合物を0.01~45重量部混合してなる複合導電性高分子組成物溶液。 13. A composite conductive polymer composition solution obtained by mixing 0.01 to 45 parts by weight of an aromatic compound having a hydroxyl group with 100 parts by weight of the solvent of the composite conductive polymer composition solution according to claim 12.
  14.  ヒドロキシル基を有する芳香族化合物が、ベンジルアルコール、フェノール、m-クレゾール、o-クレゾール、2-ナフタノール、1-ナフタノール、グアイコールおよび2,6-ジメチルフェノールからなる群から選ばれた化合物である請求項13記載の複合導電性高分子組成物溶液。 The aromatic compound having a hydroxyl group is a compound selected from the group consisting of benzyl alcohol, phenol, m-cresol, o-cresol, 2-naphthanol, 1-naphthanol, guaicol and 2,6-dimethylphenol. 14. The composite conductive polymer composition solution according to 13.
  15.  更に、金属、酸化金属、導電性ポリマー組成物、炭素粉末または分散体を含有する請求項12~14の何れかの項記載の複合導電性高分子組成物溶液。 The composite conductive polymer composition solution according to any one of claims 12 to 14, further comprising a metal, a metal oxide, a conductive polymer composition, carbon powder, or a dispersion.
  16.  請求項1~4の何れかの項記載の複合導電性高分子組成物を用いてなる色素増感型太陽電池用対極。 A counter electrode for a dye-sensitized solar cell, comprising the composite conductive polymer composition according to any one of claims 1 to 4.
  17.  請求項1~4の何れかの項記載の複合導電性高分子組成物を用いてなる帯電防止フィルム。 An antistatic film comprising the composite conductive polymer composition according to any one of claims 1 to 4.
PCT/JP2010/052354 2009-02-17 2010-02-17 Complex conductive polymer composition, manufacturing method thereof, solution containing said composition, and applications for said composition WO2010095650A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011500628A JP5738178B2 (en) 2009-02-17 2010-02-17 Composite conductive polymer composition, production method thereof, solution containing the composition, and use of the composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-033645 2009-02-17
JP2009033645 2009-02-17

Publications (1)

Publication Number Publication Date
WO2010095650A1 true WO2010095650A1 (en) 2010-08-26

Family

ID=42633930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052354 WO2010095650A1 (en) 2009-02-17 2010-02-17 Complex conductive polymer composition, manufacturing method thereof, solution containing said composition, and applications for said composition

Country Status (3)

Country Link
JP (1) JP5738178B2 (en)
TW (1) TWI595036B (en)
WO (1) WO2010095650A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027578A1 (en) * 2009-09-07 2011-03-10 出光興産株式会社 Electrically conductive composition
WO2012042918A1 (en) * 2010-09-28 2012-04-05 積水化成品工業株式会社 Coloring resin particles, and production method and uses therefor
JP2012072264A (en) * 2010-09-28 2012-04-12 Sekisui Plastics Co Ltd Coloring resin particle and use thereof
WO2013035548A1 (en) * 2011-09-06 2013-03-14 テイカ株式会社 Dispersion of electrically conductive polymer, and electrically conductive polymer and use thereof
JP5435437B2 (en) * 2009-02-17 2014-03-05 綜研化学株式会社 COMPOSITE CONDUCTIVE POLYMER COMPOSITION, PROCESS FOR PRODUCING THE SAME, SOLUTION CONTAINING THE COMPOSITION, AND USE OF THE COMPOSITION
JP5435436B2 (en) * 2009-02-17 2014-03-05 綜研化学株式会社 Composite conductive polymer composition, method for producing the same, solution containing the composition, and use of the composition
WO2015030193A1 (en) * 2013-08-30 2015-03-05 積水化学工業株式会社 Method for reactivating counter electrode active material for dye-sensitive solar cell, method for regenerating dye-sensitive solar cell in which said method is used, catalyst layer for dye-sensitive solar cell, counter electrode, electrolyte, and dye-sensitive solar cell
JP5869881B2 (en) * 2009-02-17 2016-02-24 綜研化学株式会社 Composite conductive polymer solution and method for producing the same
JP5869880B2 (en) * 2009-02-17 2016-02-24 綜研化学株式会社 Composite conductive polymer solution and method for producing the same
JP2017045868A (en) * 2015-08-27 2017-03-02 テイカ株式会社 Electrolytic capacitor
US11114250B2 (en) 2018-08-10 2021-09-07 Avx Corporation Solid electrolytic capacitor formed from conductive polymer particles
US11183342B2 (en) 2018-08-10 2021-11-23 Avx Corporation Solid electrolytic capacitor containing polyaniline
US11462366B2 (en) 2018-08-10 2022-10-04 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing an intrinsically conductive polymer
US11631548B2 (en) 2020-06-08 2023-04-18 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing a moisture barrier
US11670461B2 (en) 2019-09-18 2023-06-06 KYOCERA AVX Components Corporation Solid electrolytic capacitor for use at high voltages
US11776759B2 (en) 2019-12-10 2023-10-03 KYOCER AVX Components Corporation Tantalum capacitor with increased stability
US11823846B2 (en) 2019-12-10 2023-11-21 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing a pre-coat and intrinsically conductive polymer
US11955294B2 (en) 2018-12-11 2024-04-09 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing an intrinsically conductive polymer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6438348B2 (en) * 2014-08-28 2018-12-12 信越化学工業株式会社 Conductive polymer composite and substrate

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0841321A (en) * 1994-08-01 1996-02-13 Toyobo Co Ltd Organic polymer composition, thin conductive film made thereof and production of thin film
JP2001106782A (en) * 1999-10-04 2001-04-17 Chemiprokasei Kaisha Ltd New polymer complex and electroluminescent element using the same
WO2005052058A1 (en) * 2003-11-28 2005-06-09 Idemitsu Kosan Co., Ltd. Conductive polyaniline composition, process for producing the same, and molded object thereof
JP2006155907A (en) * 2004-11-25 2006-06-15 Teijin Dupont Films Japan Ltd Counter electrode for dye-sensitized solar cell, and dye-sensitized solar cell using this
JP3906071B2 (en) * 2000-12-27 2007-04-18 日東電工株式会社 Conductive polyaniline composition, film thereof, and production method thereof
JP2007126507A (en) * 2005-11-01 2007-05-24 Yokohama Rubber Co Ltd:The Conductive composition and its manufacturing method
WO2008010978A2 (en) * 2006-07-17 2008-01-24 E. I. Du Pont De Nemours And Company Metal compositions, thermal imaging donors and patterned multilayer compositions derived therefrom
JP2008121014A (en) * 2006-11-08 2008-05-29 Cheil Industries Inc Conductive polymeric copolymer, conductive polymeric copolymer composition, conductive polymeric copolymer composition film, and organic photoelectric element using them
JP2008179809A (en) * 2006-12-27 2008-08-07 Toray Ind Inc Antistatic material and antistatic film
WO2009131012A1 (en) * 2008-04-21 2009-10-29 テイカ株式会社 Dispersion of electroconductive composition, electroconductive composition, and solid electrolytic capacitor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004307722A (en) * 2003-04-09 2004-11-04 Nippon Shokubai Co Ltd Emulsion-type electrically conductive polymer composition and manufacturing method thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0841321A (en) * 1994-08-01 1996-02-13 Toyobo Co Ltd Organic polymer composition, thin conductive film made thereof and production of thin film
JP2001106782A (en) * 1999-10-04 2001-04-17 Chemiprokasei Kaisha Ltd New polymer complex and electroluminescent element using the same
JP3906071B2 (en) * 2000-12-27 2007-04-18 日東電工株式会社 Conductive polyaniline composition, film thereof, and production method thereof
WO2005052058A1 (en) * 2003-11-28 2005-06-09 Idemitsu Kosan Co., Ltd. Conductive polyaniline composition, process for producing the same, and molded object thereof
JP2006155907A (en) * 2004-11-25 2006-06-15 Teijin Dupont Films Japan Ltd Counter electrode for dye-sensitized solar cell, and dye-sensitized solar cell using this
JP2007126507A (en) * 2005-11-01 2007-05-24 Yokohama Rubber Co Ltd:The Conductive composition and its manufacturing method
WO2008010978A2 (en) * 2006-07-17 2008-01-24 E. I. Du Pont De Nemours And Company Metal compositions, thermal imaging donors and patterned multilayer compositions derived therefrom
JP2008121014A (en) * 2006-11-08 2008-05-29 Cheil Industries Inc Conductive polymeric copolymer, conductive polymeric copolymer composition, conductive polymeric copolymer composition film, and organic photoelectric element using them
JP2008179809A (en) * 2006-12-27 2008-08-07 Toray Ind Inc Antistatic material and antistatic film
WO2009131012A1 (en) * 2008-04-21 2009-10-29 テイカ株式会社 Dispersion of electroconductive composition, electroconductive composition, and solid electrolytic capacitor

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9058916B2 (en) 2009-02-17 2015-06-16 Soken Chemical & Engineering Co., Ltd. Composite conductive polymer composition, method of manufacturing the same, solution containing the composition, use of the composition
JP5869880B2 (en) * 2009-02-17 2016-02-24 綜研化学株式会社 Composite conductive polymer solution and method for producing the same
JP5435437B2 (en) * 2009-02-17 2014-03-05 綜研化学株式会社 COMPOSITE CONDUCTIVE POLYMER COMPOSITION, PROCESS FOR PRODUCING THE SAME, SOLUTION CONTAINING THE COMPOSITION, AND USE OF THE COMPOSITION
JP5435436B2 (en) * 2009-02-17 2014-03-05 綜研化学株式会社 Composite conductive polymer composition, method for producing the same, solution containing the composition, and use of the composition
JP5869881B2 (en) * 2009-02-17 2016-02-24 綜研化学株式会社 Composite conductive polymer solution and method for producing the same
US9034211B2 (en) 2009-02-17 2015-05-19 Soken & Chemical & Engineering Co., Ltd. Composite conductive polymer composition, method of manufacturing the same, solution containing the composition, use of the composition
WO2011027578A1 (en) * 2009-09-07 2011-03-10 出光興産株式会社 Electrically conductive composition
US8535812B2 (en) 2009-09-07 2013-09-17 Idemitsu Kosan Co., Ltd. Electrically conductive composition
WO2012042918A1 (en) * 2010-09-28 2012-04-05 積水化成品工業株式会社 Coloring resin particles, and production method and uses therefor
JP2012072264A (en) * 2010-09-28 2012-04-12 Sekisui Plastics Co Ltd Coloring resin particle and use thereof
CN105348667A (en) * 2011-09-06 2016-02-24 帝化株式会社 Dispersion of electrically conductive polymer, and electrically conductive polymer and use thereof
JP5252669B1 (en) * 2011-09-06 2013-07-31 テイカ株式会社 Solid electrolytic capacitor
WO2013035548A1 (en) * 2011-09-06 2013-03-14 テイカ株式会社 Dispersion of electrically conductive polymer, and electrically conductive polymer and use thereof
US9460860B2 (en) 2011-09-06 2016-10-04 Tayca Corporation Dispersion of electrically conductive polymer, and electrically conductive polymer and use thereof
US9953767B2 (en) 2011-09-06 2018-04-24 Tayca Corporation Conductive polymer dispersion liquid, a conductive polymer, and use thereof
WO2015030193A1 (en) * 2013-08-30 2015-03-05 積水化学工業株式会社 Method for reactivating counter electrode active material for dye-sensitive solar cell, method for regenerating dye-sensitive solar cell in which said method is used, catalyst layer for dye-sensitive solar cell, counter electrode, electrolyte, and dye-sensitive solar cell
JP2017045868A (en) * 2015-08-27 2017-03-02 テイカ株式会社 Electrolytic capacitor
US11462366B2 (en) 2018-08-10 2022-10-04 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing an intrinsically conductive polymer
US11183342B2 (en) 2018-08-10 2021-11-23 Avx Corporation Solid electrolytic capacitor containing polyaniline
US11114250B2 (en) 2018-08-10 2021-09-07 Avx Corporation Solid electrolytic capacitor formed from conductive polymer particles
US11756746B2 (en) 2018-08-10 2023-09-12 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing an intrinsically conductive polymer
US11791106B2 (en) 2018-08-10 2023-10-17 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing polyaniline
US11955294B2 (en) 2018-12-11 2024-04-09 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing an intrinsically conductive polymer
US11670461B2 (en) 2019-09-18 2023-06-06 KYOCERA AVX Components Corporation Solid electrolytic capacitor for use at high voltages
US11776759B2 (en) 2019-12-10 2023-10-03 KYOCER AVX Components Corporation Tantalum capacitor with increased stability
US11823846B2 (en) 2019-12-10 2023-11-21 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing a pre-coat and intrinsically conductive polymer
US11631548B2 (en) 2020-06-08 2023-04-18 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing a moisture barrier

Also Published As

Publication number Publication date
JPWO2010095650A1 (en) 2012-08-30
TW201041963A (en) 2010-12-01
JP5738178B2 (en) 2015-06-17
TWI595036B (en) 2017-08-11

Similar Documents

Publication Publication Date Title
JP5738178B2 (en) Composite conductive polymer composition, production method thereof, solution containing the composition, and use of the composition
JP5435437B2 (en) COMPOSITE CONDUCTIVE POLYMER COMPOSITION, PROCESS FOR PRODUCING THE SAME, SOLUTION CONTAINING THE COMPOSITION, AND USE OF THE COMPOSITION
JP5435436B2 (en) Composite conductive polymer composition, method for producing the same, solution containing the composition, and use of the composition
JP5869880B2 (en) Composite conductive polymer solution and method for producing the same
JP5869881B2 (en) Composite conductive polymer solution and method for producing the same
TWI488909B (en) Composition for solid electrolyte and solar cell using the same
JP5417629B2 (en) Conductive polymer composition and method for producing the same
US9558861B2 (en) Block copolymers that disperse nanofillers in water

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10743776

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011500628

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10743776

Country of ref document: EP

Kind code of ref document: A1