WO2010095636A1 - Method and device for estimating muscle tension - Google Patents

Method and device for estimating muscle tension Download PDF

Info

Publication number
WO2010095636A1
WO2010095636A1 PCT/JP2010/052322 JP2010052322W WO2010095636A1 WO 2010095636 A1 WO2010095636 A1 WO 2010095636A1 JP 2010052322 W JP2010052322 W JP 2010052322W WO 2010095636 A1 WO2010095636 A1 WO 2010095636A1
Authority
WO
WIPO (PCT)
Prior art keywords
muscle
muscles
tension
group
activity
Prior art date
Application number
PCT/JP2010/052322
Other languages
French (fr)
Japanese (ja)
Inventor
仁彦 中村
克 山根
昭彦 村井
浩介 黒崎
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Priority to JP2011500620A priority Critical patent/JP5540386B2/en
Publication of WO2010095636A1 publication Critical patent/WO2010095636A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/22Ergometry; Measuring muscular strength or the force of a muscular blow
    • A61B5/224Measuring muscular strength
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/389Electromyography [EMG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/45For evaluating or diagnosing the musculoskeletal system or teeth
    • A61B5/4519Muscles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/45For evaluating or diagnosing the musculoskeletal system or teeth
    • A61B5/4523Tendons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/45For evaluating or diagnosing the musculoskeletal system or teeth
    • A61B5/4528Joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/45For evaluating or diagnosing the musculoskeletal system or teeth
    • A61B5/4533Ligaments

Definitions

  • the present invention relates to estimation of muscle tension and presentation of activity information inside the body based on the estimated muscle tension.
  • Non-patent document 1 Non-patent document 2
  • One solution is to model muscle contraction characteristics, such as the Hill-Stroeve muscle model (Non-patent document 1, Non-patent document 2), and calculate the parameters and muscle lengths obtained from physiology and experiments, and muscles calculated from the measured EMG.
  • a biomechanical approach to calculate muscle tension from the degree of activity can be mentioned. Since myoelectric potential, which is a parameter that can be measured relatively easily and best represents muscle tension, is used, it can be said that the estimated value is the most accurate. There is also an advantage that the calculation cost is small and the calculation can be performed at high speed.
  • it is necessary to measure EMG it is necessary to measure EMG, and it is necessary to attach electromyographs to all muscles that estimate muscle tension. Therefore, there is a limit to the number of muscles for which muscle tension is estimated from the limitation of the number of electromyographs. Even if countless electromyographs are available, it is impossible to attach them to all the muscles, and this restricts the behavior of the subject.
  • the optimization calculation at the time of muscle tension distribution involves calculations such as linear programming and quadratic programming, and there is a problem that the calculation cost is large and a lot of time is required.
  • More accurate calculation of muscle tension in the whole body by taking into account the error term with muscle tension obtained from the muscle activity measured with the Hill-Stroeve muscle model and electromyograph in the objective function in the optimization calculation (Patent Document 1, Non-Patent Document 3, Non-Patent Document 4)
  • the optimization calculation of muscle tension using inverse dynamics calculation is calculated when real-time estimation of muscle tension is considered. Cost becomes a problem.
  • the object of the present invention is to reduce the scale of the optimization calculation by reducing the variables in the optimization calculation for muscle tension estimation.
  • Another object of the present invention is to estimate the muscle tension during exercise in real time and to present the activity status inside the body acquired based on the muscle tension and / or muscle tension in real time.
  • the plurality of muscle groups M i at least one, one representative muscle and the representative muscle and bones origin stop electromyograph is mounted in one of said one or more sub-groups Is a first subgroup formed from muscles that are the same,
  • the muscle tension of the muscles belonging to the first subgroup is obtained from the myoelectric potential of the representative muscle measured during the exercise of the subject without using the optimization calculation, and is excluded from the optimization calculation target, thereby performing the optimization calculation.
  • the muscle activity representing each subgroup is estimated by the optimization calculation, thereby reducing variables in the optimization calculation. This is an estimation method of muscle tension.
  • the number n of the number of channels and muscle groups M i of electromyograph is not necessarily the same.
  • the muscle group in which the first group is formed typically one first group is formed per one muscle group, but two or more representative muscles in one muscle group. May be selected to form two or more first groups.
  • the muscle tension of the muscle belonging to the first subgroup is acquired from the myoelectric potential of the representative muscle measured during exercise of the subject, Optimizing muscle tension of muscles not belonging to the first subgroup so as to realize joint torque that cannot be realized by muscles belonging to the first subgroup in joint torque necessary to realize exercise of the subject; Estimated by
  • each muscle group M i the one or more subgroups are classified into the first subgroup and the muscles that do not belong to the first subgroup from the same muscle whose start and stop bones are the same.
  • the muscle activity representing each subgroup is estimated by optimization calculation.
  • the muscle activity obtained from the myoelectric potential should match the muscle activity calculated by the optimization calculation.
  • the measured muscle activity of the representative muscle is used as a reference value.
  • muscle grouping based on muscle movement directivity means, in other words, “muscle grouping related to each movement direction of each joint” or “based on the direction of torque that the muscle is involved in each joint. It can be called “grouping”. These represent the geometrical relationship between movement and muscle placement. Specifically, it means, for example, “muscle related to elbow joint extension” and “muscle related to hip joint flexion”. That is, the grouping of the muscle group M i is a classification according to the role of muscles involved in the direction of motion of each joint as such extend the elbow joint (extension) muscle for, bending the elbow (bend) muscle for .
  • the muscle groups M i of a joint contributes to a direction of bending the (contributing joints identical) muscle, a plurality of streaks of bones origin stop is different belongs, by bone to further origin stop this Classify into subgroups.
  • grouping of the muscle group M i is, the multi-joint muscle of influence ignored the movement directed by muscle classification, grouping of the sub-group is also considering the influence of the multi-joint muscle, to directly exercise when the muscle is contracted It can be said that the muscles of the affected joints are classified into the same group.
  • “Grouping based on alias muscle facilitation” represents muscles controlled by the same nerve bundle as a group.
  • the former is determined from the running of the muscle, and the latter is determined from the connection between the muscles by nerves. It has been shown that there is a relationship between these two in the field of sports science.
  • muscle grouping is “classified into cooperative muscles based on kinematics”.
  • the “cooperative muscle” can be defined as “a muscle that works to bend a certain joint in the same direction as the main muscle”.
  • Muscle directionality” and “cooperative muscle” are both thoughts from the viewpoint of kinematics, and as mentioned above, “sympathetic muscle facilitation” is an idea from the viewpoint of neurophysiology.
  • muscle grouping is performed in accordance with “muscle directionality” and “cooperative muscle”. For example, even with respect to flexion and extension, it may be an antagonistic muscle in adduction and abduction, even if it is a cooperative muscle. If necessary, it is desirable to confirm the grouping by “unknown muscle facilitation”.
  • the classification of the muscle group M i of cooperative muscle has been known to change by the displacement of the body posture and joint.
  • the classification can be treated as a static one that does not change approximately, the classification can be changed dynamically according to the posture of the body or the displacement of the joint in order to further improve the accuracy.
  • the second technical means is an invention of the device, Each joint torque during exercise of the subject is calculated by inverse dynamics calculation using a musculoskeletal model, and the muscle tension of each muscle is estimated by distributing the joint torque to the muscle tension by optimization calculation.
  • second grouping means in which the bones that start and stop form one or more subgroups from the same muscle; Become The muscle tension acquisition means regards the muscle activity level of muscles belonging to the same subgroup as the same, and estimates the muscle activity level representing each subgroup in the one or more subgroups by optimization calculation.
  • one of electromyograph is mounted A first subgroup formed of a representative muscle and a muscle having the same bone that starts and stops; For muscles belonging to the first group, it is assumed that the muscle activity obtained from the myoelectric potential should match the muscle activity calculated by the optimization calculation, and the muscle of the representative muscle measured in the optimization calculation Use activity as a reference value.
  • a first incision group M iEMG comprising the representative muscle of each muscle group M i
  • bones and origin stopped first muscle group M iEMG are the same (contributing joints are exactly the same) and the second incision group M Ihigh consisting muscle, A first muscle group M iEMG , a third muscle group consisting of muscles not included in the second muscle group M high ;
  • Divided into Obtaining the muscle tension of the muscles belonging to the first muscle group MiEMG and the second muscle group Mhigh from the myoelectric potential of the representative muscle measured during the exercise of the subject;
  • the muscle tension of the muscles belonging to the third muscle group is calculated by inverse dynamics calculation to calculate the joint torque necessary to realize the exercise of the subject, and in the joint torque, the first muscle group MiEMG and Estimating by optimizing to realize joint torque that cannot be realized by muscles belonging to the second muscle group M high , This is an estimation method of muscle
  • each electromyograph is attached to one representative muscle selected from the muscle group M i
  • the second grouping means includes the plurality of lines, A first incision group M iEMG comprising the representative muscle of each muscle group M i, In each muscle group M i, and a second incision group M Ihigh consisting muscle is a bone to the origin stop first muscle group M iEMG the same, A first muscle group M iEMG , a third muscle group consisting of muscles not included in the second muscle group M high ; Divided into The first muscle tension acquisition means acquires the muscle tension of the muscles belonging to the first muscle group MiEMG and the second muscle group Mhigh from the myoelectric potential of the representative muscle measured during the exercise of the subject, The second muscle tension acquisition means calculates the muscle torque of the muscles belonging to the third muscle group, and calculates the joint torque necessary for realizing the movement of the subject measured by inverse dynamics calculation. Estimating by optimizing to realize joint torque that cannot be realized by the muscles belonging to the first muscle group MiEMG and the second muscle group Mihigh ,
  • the third technical means has several modes.
  • the muscle that does not belong to any muscle group M i and muscle groups M others wherein the third muscle group, in each muscle group M i, contained the first muscle group M iEMG, and the second muscle group M are not included in ihigh muscle groups M Ilow, and the muscles M others, is .
  • a plurality of streaks, all muscle are classified as belonging to one of the muscle groups M i, Wherein the third muscle group, in each muscle group M i, the first muscle group M iEMG, include muscle which is not included in the second muscle group M Ihigh.
  • each muscle group M i a plurality of muscles belonging to the muscle group M high do not antagonize.
  • multi-joint muscles in one aspect, they are grouped so as to include mainly the joints involved.
  • the muscle tension of the muscles included in the first muscle group MiEMG and the second muscle group Mihigh is determined by measuring the muscle activity obtained from myoelectric potential data, muscle parameters obtained by empirical rules, and measurement. It is acquired from the muscle length obtained by the inverse kinematics calculation based on the exercise data and the change speed of the muscle length.
  • the myoelectric potential of the muscles included in the second muscle group M high is determined as a function of the myoelectric potential of the representative muscle.
  • the myoelectric potential of the muscle included in the second muscle group M high is regarded as the same as that of the representative muscle, but the myoelectric potential of the second muscle group M high is the muscle of the first muscle group Mi EMG. It does not have to be exactly the same as the electric potential, and can be determined by a function obtained from the geometric position, posture, etc. of these muscles.
  • the number n of the number of channels and muscle groups M i of electromyograph are the same. If the number n of the number of channels and muscle groups M i of electromyograph do not match, for example, when the number of channels of the myoelectric potential is small, sets the M iEMG for any group of muscle groups M i, myoelectric Wear a meter.
  • the optimization calculation is Assuming that the plurality of muscle groups drive the skeleton, a first step of estimating for each muscle group the joint torque to be output by each muscle group; A second step for estimating the muscle tension output by each muscle so as to realize the joint torque estimated in the first step in each muscle group; Consists of.
  • the idea of reducing the size of the optimization calculation problem by the number of muscles that can be solved using EMG information is also advantageous when obtaining some muscle tensions.
  • grouping is used to determine the line that EMG solves, but grouping is also useful for reducing the dimension of the line that is solved by the remaining optimization calculations.
  • the constraint condition means an inequality constraint condition in which the muscle does not exert a force in the extending direction.
  • an accurate solution can be obtained even if the constraint condition is only ambiguous if the relationship between the muscles considered in the optimization is not included. Therefore, by first grouping muscles, assuming that a plurality of muscle groups drive the skeleton, a torque to be output by each muscle group is obtained by the former method with high calculation cost.
  • the muscle dimension means the number of muscles. More specifically, the muscle dimension refers to the number of independent variables in determining the muscle tension throughout the body. If the tension is determined independently for each muscle, the total number of muscles becomes a dimension, which in this case becomes a large-scale optimization problem. If the muscles are grouped and the distribution rule of the tension within the group is determined, the independent variable in determining the muscle tension of the whole body is the number of groups. The muscle dimension in this case is the number of muscle groups.
  • muscle tension is estimated in real time as the subject exercises.
  • the muscle tension estimation device is a real-time muscle tension estimation device that estimates muscle tension in real time during exercise of a subject.
  • the fourth technical means adopted by the present invention is a method invention.
  • the subject's captured image or / and a composite image based on the captured image are displayed on the display unit, and a musculoskeletal model is overlaid on the displayed subject's image,
  • the activity information inside the body based on the muscle tension obtained by the above estimation method is reflected in the musculoskeletal model and displayed visually. It is a method for presenting activity information inside the body.
  • the fourth technical means is the invention of the device.
  • a real-time muscle tension estimation device Means for photographing the subject during exercise; Display means for displaying a photographed image of the subject or / and a composite image based on the photographed image; With The musculoskeletal model is overlaid on the image of the subject displayed on the display means, and the activity information inside the body based on the muscular tension estimated in real time by the real-time muscular tension estimation device is reflected in the musculoskeletal model to visually Configured to display real-time, A device for presenting activity information inside the body. In one aspect, internal body activity information is displayed in real time as the subject exercises.
  • the activity information inside the body is muscle activity.
  • muscle activity is visually displayed by a change in muscle color or / and shape of the musculoskeletal model.
  • the activity information inside the body represents muscle activity as activity of a spinal nerve bundle that governs the muscle activity.
  • the spinal nerves control a plurality of muscles, and the activity of all the muscles that control them is calculated as the activity of the spinal nerve bundle.
  • spinal nerve bundle activity is displayed visually by changing the color or / and shape of the symbol at each spinal nerve bundle location on the musculoskeletal model.
  • the scale of the optimization calculation is reduced.
  • muscle tension can be estimated in real time, and muscle activity based on muscle tension can be visualized in real time.
  • the scale of optimization calculation can be reduced by EMG information (used together with the Hill-Strove model) and grouping.
  • EMG information used together with the Hill-Strove model
  • the muscle tension of the whole body can be estimated in real time by combining optimization calculation methods with a comparatively small calculation amount. Therefore, somatosensory information can be presented during sports training or rehabilitation.
  • FIG. 5 shows a real-time overlay of a musculoskeletal model and estimated muscle tension information on a subject image during exercise of the subject.
  • the upper figure shows squats, and the lower figure shows pitching motion. Actually, when the muscle tension increases, the color of the muscle changes from yellow to red. It is a figure which shows the squat of FIG. 6 in the time series of several frames. It is a figure which shows the pitching operation
  • Embodiments of the present invention will be described in detail. First, the concept and technique that are the background of the present invention will be described. These concepts and techniques are not only the background art of the present invention, but also the techniques that can be used to implement the embodiments of the present invention. Next, an embodiment of muscle tension estimation according to the present invention will be described. In addition, about the number of a numerical formula, it assign
  • F max is the maximum muscle tension
  • F l (l) and F v (l (dot)) are functions representing the relationship between the normalized muscle tension, the muscle length, and the rate of change of the muscle length, respectively.
  • F l (l) corresponds to FIG. 1 and is approximated by a Gaussian function of Equation (2).
  • l 0 is the natural length of the muscle.
  • F v (l (dot)) corresponds to FIG. 2 and is approximated by equation (3).
  • K l , V sh , V shl , and V ml are constants, and in one embodiment, values shown in Stroeve (Table 1) are used. These values may be identified based on the motion capture data.
  • Data necessary for estimating muscle tension using the Hill-Stroeve muscle model includes muscle length, muscle length change rate, and muscle activity.
  • the muscle tension f * of each muscle is expressed by the following expression.
  • a i , l i , l (dot) i , and F max represent the activity, muscle length, muscle activity, and maximum muscle tension of the i-th muscle, respectively, and F l and F v are normalized, respectively. It is a function showing the relationship between the made muscle tension, muscle length, and muscle length change speed.
  • Nmus represents the total number of muscles included in the musculoskeletal model. Muscle length l 1 ,... L Nmus and muscle length change speed l (dot) 1 ,... L (dot) Nmus can all be calculated from motion data obtained from motion capture.
  • the myoelectric potential of multiple muscles for each joint was measured with an electromyograph, and the force expressed as% MVC (Maximal Voluntary Contraction (MVC)). Etc.) is used as the activity level of the muscle.
  • MVC Maximum Voluntary Contraction
  • FIG. 1 Musculoskeletal model A detailed whole body musculoskeletal model used in the embodiment of the present invention will be described.
  • the designed detailed human body model is composed of a skeletal rigid body model grouped with appropriate fineness and a muscle / tendon / ligament wire model stretched on the skeleton.
  • the skeletal model consists of 206 bones throughout the body. Of these, the skull, hand, and toe are treated as a single rigid body, and the model is composed of a total of 53 links. Between each link is a spherical 3 degrees of freedom joint, except for the tarsal bone-toe toe rotation 1 free joint and the first thoracic vertebra 6 breast joint.
  • the skeletal model has a total of 155 degrees of freedom, adding 6 degrees of freedom for the entire translational rotation.
  • Muscles, tendons, and ligaments are modeled as wires that pass through the start point, end point, and waypoint at each link.
  • Bones, muscles, tendons and ligaments have the following properties. Bone: A rigid link with mass. Muscle: A wire that actively generates tension. Tendon: A passively tensioning wire that connects to muscles and transmits muscle tension to bone. Ligaments: Passive tension wires that connect bones and constrain their relative movement. Differences in muscle, tendon, and ligament functions are modeled as follows. A simple part consisting of a series connection of muscles and tendons is represented by a single muscle wire.
  • tendons such as the upper arm bilateral muscle branch and the branched tendons connect to different bones. Since the start point, end point, and waypoint of the wire are all fixed to the link, a virtual link is placed at this branch point. The virtual link has no mass but transmits tension. The virtual link can move freely so that the force and moment are zero. Wide muscles such as the great pectoral muscle and latissimus dorsi are expressed by a plurality of parallel muscle wires.
  • a musculoskeletal model is also described in Patent Document 1, for example, and can be referred to.
  • the above-mentioned musculoskeletal model is merely an example, and the musculoskeletal model that can be applied to the present invention is not limited to these.
  • the device for acquiring muscle tension includes a plurality of imaging means (camera) for imaging a subject to which a marker is attached, a floor reaction force measuring means (force plate), and an electromyograph means (myoelectric meter).
  • the computer apparatus includes an arithmetic processing unit that performs various calculations, an input unit, an output unit, a display unit, and a storage unit that stores various data.
  • motion capture data exercise data
  • myoelectric potential myoelectric potential
  • floor reaction force are simultaneously measured and used for optimizing muscle strength, thereby obtaining appropriate muscle strength both mechanically and physiologically.
  • muscle tension is calculated as follows. (1) The motion of the subject is measured by the motion capture system, and time-series data of the three-dimensional position of the marker is obtained. (2) The motion information including the joint angle, the joint angular velocity, and the joint angular acceleration is calculated from the three-dimensional position of the marker by inverse kinematics calculation. (3) The joint torque required to realize the motion is calculated by inverse dynamics calculation using the Newton oiler method or the like. (4) The joint torque obtained in (3) is mapped to the floor reaction force and the tension of the muscle, tendon, and ligament using the relationship between the muscle, tendon, ligament length change obtained from the joint angle and each joint angular velocity.
  • inverse dynamics the tension of muscles, tendons, and ligaments that realize the movement is obtained based on the movement data obtained by the movement measurement.
  • the flow of inverse dynamics calculation is as follows: 1. Calculation of joint torque by inverse dynamics of rigid link system; 2. Calculation of Jacobian for wire length joint value; The joint torque is converted into wire tension.
  • the joint torque ⁇ g necessary for realizing the motion in the skeleton model.
  • muscle, tendon, and ligament tension f equivalent to ⁇ g is obtained by using Jacobian J of muscle, tendon, and ligament length l for joint angle ⁇ g . It is expressed.
  • Jacobian J Since the calculation method of Jacobian J is well known to those skilled in the art, detailed description thereof is omitted here for the purpose of avoiding complicated description. As for the calculation method of Jacobian J, for example, JP 2003-339673 or “DE Orin and WW Schrader. Efficient computation of the jacobian” for robot manipulators. Inter-national Journal of Robotics Research, Vol. 3, No. 4, pp. 66.75, 1984 ”can be referred to.
  • the wire tension f Non-patent document 3 in the non-patent document 4 models a 989-dimensional. Therefore, there arises a redundancy problem in which f is not uniquely determined from ⁇ g .
  • the inverse dynamics calculation of the musculoskeletal model there is an undetermined problem that the number of elements of muscles, tendons, and ligaments is very large with respect to the parameters that determine movement, and the force cannot be determined uniquely. It is well known to those skilled in the art, and the joint moment obtained by the inverse dynamics calculation is distributed to the muscle tension of the muscle that drives each joint by the optimization calculation.
  • Patent Document 1 A method of setting some evaluation function and constraint conditions in order to determine f and solving using optimization by mathematical programming or the like is disclosed in, for example, Patent Document 1 and Non-Patent Documents 3 and 4. Specific examples of optimization calculation are shown below. However, it is known to those skilled in the art that several methods have been proposed as optimization calculation used for muscle tension calculation, and optimization calculation that can be applied to the present invention. Those skilled in the art will appreciate that is not limited to what is described herein.
  • ⁇ G Generalization force
  • J Jacobian matrix from generalized coordinates to wire length
  • f wire tension
  • J C Jacobian matrix from the generalized coordinates to the point of contact with the floor
  • ⁇ C contact force with the floor
  • Equation (4) is solved by the following flow.
  • the contact force ⁇ C with the floor is calculated considering only the row corresponding to 6DOF of the hip joint in the equation (4).
  • optimization is performed using quadratic programming.
  • muscle tension is calculated using linear programming or quadratic programming.
  • the contact force with the floor is a typical example of the contact force with the outside world.
  • the contact force with a wall other than the floor can be used.
  • Such muscle tension estimation by subtracting the contact force with the outside world is disclosed in Patent Document 1, Non-Patent Document 3, and Non-Patent Document 4.
  • Equation (6) The first term of Equation (6), Equation (7), and Equation (8) are intended to minimize the error in Equation (5) and ensure dynamic consistency.
  • Equation (5) can be written in the form of an equation, but the condition is relaxed in consideration of the case where equation (5) has no solution. Since the objective function formula (6) includes a ⁇ T ⁇ ⁇ , the minimum ⁇ ⁇ positively constrained by the formula (8) is obtained. On the other hand, by the equation (7) is made smaller than the [delta] tau error of formula (5). Considering these constraint conditions, the error in equation (5) can be minimized.
  • Equation (6), Equation (9), and Equation (10) have the effect of bringing f closer to the given target value f * .
  • Equation (11) is the upper limit and lower limit constraints of muscle / tendon / ligament tension
  • f max ⁇ 0 represents the maximum muscle tension.
  • the maximum muscle tension f max can be determined independently for each muscle. Using the Hill-Stroeve muscle model, f max can be calculated from the muscle length and its rate of change to give the maximum muscle tension.
  • Equation (6) Equation (12), and Equation (13) have the effect of smoothing the muscle tension as much as possible within the cooperative muscle group.
  • This effect can be realized by adding a term of sum of squares of muscle tension to the objective function in quadratic programming.
  • n m made from this muscle m-th cooperative muscles G m.
  • the average value of muscle tension in this cooperative muscle group is Is calculated by
  • f k represents the muscle tension of the k-th muscle.
  • the difference between the muscle tension of the k (k ⁇ Gm) th muscle and the average muscle tension in the cooperative muscle group that contains it is Can be expressed as Where EGmk is the i-th element Is a row vector.
  • FIG. 5 shows a schematic diagram of a real-time muscle tension visualization system.
  • the muscle tension visualization system includes a muscle tension estimation means, a means for acquiring activity information inside the body using the estimated muscle tension, an image of a subject taken during exercise and an estimated muscle tension / acquired body. Means for displaying internal activity information. More specifically, the muscle tension visualization system displays a plurality of imaging means (camera 1) for photographing a subject having a plurality of markers attached to a plurality of predetermined parts of the body, and displays the subject in motion on the display means.
  • imaging means camera 1
  • Photographing means for photographing, ground reaction force measuring means (force plate 3), myoelectric meter means (wireless myoelectric meter 4) such as myoelectric meter, and one or more computer devices 5 and display means (screen 6).
  • the computer device includes an arithmetic processing unit that performs various calculations, an input unit, an output unit, a display unit, and a storage unit that stores various data. By simultaneously measuring motion capture data (exercise data), myoelectric potential, and floor reaction force, and using them in optimizing muscle force, a muscle tension that is appropriate mechanically and physiologically is acquired.
  • FIG. 5A shows a flow diagram of the real-time muscle tension visualization system.
  • Human body motion data and floor reaction force are measured using an optical motion capture and force plate, and myoelectric potential data is measured using a wireless electromyograph.
  • Each data is acquired in real time in synchronization with the system control PC.
  • IK inverse kinetic calculation
  • the joint angle, the muscle length, and the muscle length change speed can be obtained.
  • IK inverse kinetic calculation
  • ID inverse dynamics calculation
  • the estimated muscle tension is visualized by a change in the color of the muscles arranged on the musculoskeletal model (for example, the color is changed from yellow to red as the muscle tension increases). Furthermore, the actual experimental scenery is photographed using a DV camera synchronously, and the viewpoints are matched and superimposed on the musculoskeletal model for visualization.
  • FIG. 6 shows a screen shot of the actually presented video.
  • Muscle tension acquisition is roughly divided into the following two steps. First, using EMG data, the muscle tension of a muscle to which an EMG electrode is attached and the muscle tension of a muscle closely related to the muscle are obtained. Next, the relationship between muscle tension f and joint torque ⁇ G ′ Is used to estimate the muscle tension of other muscles. In addition to reducing the number of unknowns, the EMG data enables efficient estimation of solutions that satisfy the following constraint (3).
  • Table 2 shows the number of elements and the degree of freedom of the musculoskeletal model.
  • the left column is a model for conventional analysis in which all muscles such as the standing spine of the trunk are modeled.
  • the objective function of the optimization calculation is And inequality constraints Optimization calculation is performed so as to satisfy (see Non-Patent Document 3).
  • the simplified model in the right column is a model in which elements of low importance are thinned out from a complex model that is a detailed model in the left column.
  • the models shown in Table 2 are examples, and the present invention is not limited to these models.
  • the number of muscles in the simplified model is increased from 274 to 314.
  • the scale of the optimization calculation is reduced by reducing the number of elements by reducing the number of elements by further grouping the simplified model for the purpose of reducing the calculation cost for real-time estimation.
  • the muscle tension can be estimated at 16 ms (10 times or more faster than the conventional optimization calculation).
  • Nerve connection is the connection of muscles via interneurons, and facilitating and inhibitory properties are considered.
  • Muscles with spectacular bonds act as cooperative muscles and muscles with inhibitory bonds act as antagonistic muscles.
  • muscle groups cooperative muscles
  • This is based on the premise of synonymous muscle facilitation and antagonistic muscle suppression, which can be expected to be facilitating within the same muscle group, and suppressive binding between muscle groups that exhibit antagonism. This is because the function of nerve connection can be considered in a simplified manner.
  • the muscles of the whole body are classified into groups of aliasing muscles, one muscle is selected as the representative muscle in the group, and an electromyograph is provided to measure the myoelectric potential of the representative muscle.
  • the activity level is set as a representative value of the activity levels of all muscles in the group.
  • muscles of the whole body are measured with 16 channels, which is the number of channels of a general wireless electromyograph.
  • the muscles represented in each group are the anterior deltoid muscle, the posterior deltoid muscle, the long biceps long head, the triceps lateral head, the rectus femoris, the biceps long head, the anterior tibial muscle, the gastrocnemius lateral head and To do.
  • The% MVC of each muscle is measured, and the muscle activity is obtained from the muscle length and the muscle length change rate obtained from the motion capture, and the muscle tension is obtained from the muscle activity levels of all the muscles in the alias muscle promotion group including the muscle.
  • attention is paid to the movement of the limbs, and the five joints (10 in total) on the left and right sides of the body are considered.
  • the muscles are divided into 8 groups as shown in Table 3.
  • MiEMG Muscle groups of representative muscles whose EMG signals are measured.
  • M high A muscle group composed of muscles that have exactly the same joints as the M iEMG .
  • M ilow A muscle group composed of muscles that are the same in part of the joints that contribute to the muscle group MiEMG .
  • M EMG , M high , and M low are respectively
  • M EMG M 1EMG ⁇ M 2EMG ⁇ ... EMM 8EMG A muscle that does not belong to any of the muscle groups of Table 3, M others.
  • the muscle tension of these muscles is acquired in the following flow. First, for the muscles included in M EMG and M high , muscle tension is acquired from the myoelectric potential and the Hill-Stroeve muscle model. Then, the muscle tension of the muscles included in the remaining muscles, that is, the muscles included in M low and Others , is estimated by inverse dynamics calculation and optimization calculation.
  • the evolution of muscle activity a i is modeled by a first-order differential equation.
  • T is a time constant
  • u i is an input from a motor nerve calculated from an EMG signal normalized by MVC.
  • Several methods are known to those skilled in the art for calculating the degree of muscle activity from the EMG signal. For example, the calculation methods described in the following documents can be used. S.Stroeve. Learning combined feedback and feedforward control of a musculoskeletal system. Biological Cybernetics, Vol. 75, pp. 73.83, 1996.
  • the muscle tension of the representative muscle of each group can be calculated directly from Equation (4).
  • the muscle k ⁇ M high can be estimated from the activity of the representative muscle r ⁇ M iEMG of the same group by the following equation.
  • E r ⁇ k (*) represents the activity of a i of muscle k included in the group M i, the relationship between the activity of a r of the measurement representative muscle.
  • a method according to cosine tuning claimed by Georgepoulos et al. Can be considered, but here it is defined by the following equation.
  • the muscle tension f and Jacobian J in equation (1) are distributed to each muscle group.
  • J EMG , J high , J low , J others are the muscle length Jacobian matrix for each joint angle
  • M EMG , M high , M low , M others , f EMG , f high , f low , f others are , Muscle tension in each group.
  • ⁇ G ′ is a generalized force from which the floor reaction force ⁇ C has already been subtracted.
  • the deformation is made as follows. here, although the number of unknowns is reduced, it has an inequality constraint f ⁇ 0, and therefore it is necessary to perform an optimization calculation with an iterative calculation.
  • Equation (6) an initial estimated value of M low muscle tension is obtained.
  • k ⁇ M ilow is r ⁇ M iEMG. Since the muscle r and the muscle k belong to the same synonymous muscle promotion group, it can be said that the expression (11) is appropriate as an initial value.
  • the muscle tension is corrected using the joint torque obtained by the inverse dynamics calculation.
  • the algorithm repeats the following steps for each joint j.
  • Step 1 Drive joint j and collect all muscles belonging to M low and M others to form muscle group M Jj . Further, a matrix corresponding to the joint j in equation (9) and the muscle in the muscle group M Jj is extracted, And
  • Step 2 For all muscles k ⁇ M Jj , obtain an initial estimate of f jk0 by the following formula: By correcting f * jk0 for all k, f * j0 is formed.
  • Step 3 Subtract J T j f * j0 from equation (12) to obtain the following equation.
  • Step 4 J T j of SR-inverse, using J T * j, solving Delta] f j0, obtain f j updated by the following equation.
  • Step 5 Form a vector f j1max having the same size as f j1 and the element being the maximum value (positive) of f j1 .
  • Computing the second estimated value f * j1 f j1 -f j1max ⁇ 0.
  • Step 6 Subtract J T j f * j0 from equation (12) to obtain the following equation.
  • Step 7 Again, ⁇ f j1 is solved using SR-inverse of J T j and f j is updated by the following equation. Similar to the discussion in step 4 above, many elements of f j2 are negative and, if positive, are expected to be at least small. Therefore, f j2 can be used as an approximation of f j .
  • the above algorithm uses only J T j SR-inverse, and only the muscles that drive the joint j need to be considered, so the size of J j is small. Therefore, this algorithm is faster than the optimization calculation by iterative calculation.
  • the time required to estimate muscle tension of the whole body was 16 ms, and the time required to visualize somatosensory information was 68 ms (the computer used was 3.33 GHz Intel Xeon processor (3.25 GB RAM, NVIDIA Quadro FX3700). As a result, a 15fps frame rate visualization system was constructed.
  • a photographed image of a subject and / or a composite image based on the photographed image is displayed on a display unit, and the musculoskeletal is displayed on the displayed subject image.
  • the model is overlaid, and the activity information (somatosensory information) inside the body based on the muscle tension acquired by the above estimation method is reflected in the musculoskeletal model and displayed visually.
  • the ⁇ motor neurons in the spinal cord are activated in an excitatory manner by motor command signals from the upper center or signals from muscle proper sensory receptors. This signal goes out of the spinal cord through the spinal nerve bundle. From the ⁇ motor neuron to the endplate structure on each muscle, the “spinal nerve bundle” differentiates and signals are transmitted. In the endplate structure, excitatory signals are combined to give action potentials to the muscles. This leads to “muscle activity”. “Muscle tension” is generated when action potential is transmitted on the muscle. Therefore, in order to acquire and present the muscle activity level and spinal nerve bundle activity in real time, it is important to acquire muscle tension in real time.
  • the musculoskeletal model is overlaid and displayed on the video taken by the video camera, and the muscle activity is expressed by the color and shape of the muscle on the musculoskeletal model.
  • the muscle tension / muscle activity level is displayed by continuously changing the color of the muscle, for example, from yellow to red. Accordingly, in the overlay, the portion where the muscle is active is displayed in red, for example.
  • muscle fatigue may be expressed by muscle thickness. In one aspect, a value obtained by integrating the muscle tension over time is used as muscle fatigue.
  • a symbol for example, a sphere
  • the activity is expressed by its color (see FIG. 9).
  • a sphere is displayed at the position of the spinal nerve bundle in the musculoskeletal model displayed on the display unit, but this can be further overlaid on the image of the subject.
  • the following documents can be referred to. Murai, A, Yamane, K, and Nakamura, Y, "Modeling and Identification of Human Neuromusculoskeletal Network Based on Biomechanical Property of Muscle, "the 30 th IEEE EMBS Annual International Conference, pages 3706-3709, Vancouver, August 2008.
  • FIG. 5A the joint angle of the subject is obtained by optical motion capture and inverse kinematics calculation.
  • the joint torque is obtained by performing the reverse dynamics calculation from the joint angle obtained from the reverse kinematics and the floor reaction force obtained from the force plate.
  • optimization calculation is performed based on muscle grouping from EMG and joint torque, and muscle tension is estimated.
  • Muscle proper receptors sense changes in muscle length, rate of change, and muscle tension. Muscle length and the rate of change are sensed by the muscle spindle, and muscle tension is sensed by the Golgi tendon organ.
  • Properceptors contribute to central motor regulation from two aspects. One is the reflex effect, and the other is that information from proper receptors conveys the state of movement and posture to the upper brain. When movement occurs in response to a movement command, the state of the muscle changes, and the proper receptor reflex is inevitably triggered. The reflection effect is reflected in the motion program and contributes to the formation and correction of the motion pattern.
  • Stretch reflex is the firing of nerve fibers derived from the main spindle of the main muscle, which is the motor neuron that controls the muscle (Same muscle motor neuron ) And its synergistic motor neurons cause monosynaptic excitement.
  • the signal returned from the Ia group nerve fiber of that muscle gives excitement effect to the motor neuron of the synergistic muscle and signals to the synergistic muscle Will be sent.
  • muscle tension is distributed among the cooperative muscles in order to generate joint torque.
  • cooperative muscles are expected to have the same degree of muscle activity. Therefore, paying attention to the cooperative muscles, the cooperative muscles have the same degree of muscle activity, and the grouping is performed to reduce the calculation.
  • the synergistic muscle has not been clarified from the connection of group Ia nerve fibers and motor neurons.
  • cooperative muscles are considered from the viewpoint of kinematics rather than anatomy, and grouping of cooperative muscles is performed.
  • i and j are used as the muscle group index, and k is used as the muscle index.
  • n G is the number of groups of M i. Each group is further classified into the following two groups.
  • M ihigh Muscle where EMG representing the group is measured, and muscle where EMG is measured and the bone that starts and stops are the same. Muscles belonging to the same group are expected to have similar muscle activity.
  • M high in the second embodiment corresponds to M EMG + M high in the first embodiment.
  • M ilow A muscle not belonging to the above Mi high . Further, it is classified into M i, 1low , ..., M i, nilow according to the bone that has started and stopped.
  • n i is the number of groups of M i, jlow in M ilow .
  • M high M 1high ⁇ M 2high ⁇ ... ⁇ M nGhigh
  • M low M 1low ⁇ M 2low ⁇ ... ⁇ M nGlow defines M high and M low .
  • the number of muscles measuring myoelectric potential is n EMG ( ⁇ n G )
  • the group containing the muscles measuring myoelectric potential is M 1 , ..., M nEMG , M (nEMG + 1) high , ..., M nghigh is an empty set.
  • Table 4 can be referred to for the muscle that measures EMG and the movement of the joint to which the muscle contributes.
  • the reason why the number of muscles belonging to each group is slightly different from that in Table 3 is that the number of muscles in the musculoskeletal model (simplified model) that is a premise of grouping differs between the first embodiment and the second embodiment.
  • the muscles belonging to M high the muscles representing the group and for which the myoelectric potential is measured are shown in bold.
  • a musculoskeletal model such as the great pectoral muscle or latissimus dorsi muscle, one muscle may be represented by multiple wires, but here it is also represented as a single muscle when represented by multiple wires.
  • Groups 1-8 correspond to M 1 ,..., M nEMG (corresponding to groups 1-8 in Table 4).
  • M high is an empty set. It should be noted that the following grouping is merely an example, and those skilled in the art will understand that groupings that can be applied to the present invention are not limited to those described in this specification.
  • Group 1 Horizontal adduction of shoulder joint Group 2: Horizontal abduction of shoulder joint Group 3: Elbow joint flexion Group 4: Elbow joint extension Group 5: Hip joint extension and knee joint flexion Group 6: Hip flexion and knee extension Group 7: Ankle joint dorsiflexion Group 8: Ankle joint plantar flexion Group 9: Flexion of neck joint Group 10: Shoulder joint control Group 11: Raising the shoulder joint Group 12: wrist flexion Group 13: Wrist joint extension Group 14: External rotation of hip joint Group 15: Flexion of tarsal metatarsal joint Group 16: Trunk flexion Group 17: Trunk extension Group 18: Raising the trunk
  • the muscle tension f k of muscle k ( ⁇ M * ) is It can be expressed as F maxk is the maximum muscle tension of muscle k, F l (l k ) is the ratio of muscle tension that the muscle can exert when the length of muscle k is l k , F v (l (dot) k ) Is the ratio of muscle tension to maximum tension that can be exerted when the contraction speed of muscle k is l (dot) k .
  • the muscle activity vector a representing each group is obtained by quadratic programming.
  • Quadratic programming is an objective function, Is a method for obtaining x that minimizes x under linear equality constraints and inequality constraints on x.
  • x and c are n-dimensional vectors
  • Q is an n ⁇ n matrix.
  • the muscle tension of a muscle belonging to M high is obtained using the Hill-Stroeve muscle model using the muscle activity obtained from the myoelectric potential as it is, and the muscle tension of a muscle belonging to M low is reversed. It is calculated by kinematics and quadratic programming.
  • the muscle activity calculated by EMG is given as a reference value, and the muscle tension of all the muscles including the muscle belonging to M high is obtained by the quadratic programming method.
  • the reduction in the amount of calculation for optimization calculation mainly depends on the grouping of muscles. Further, the calculation speed can be increased by performing parallel processing of IK, ID / muscle tension estimation, and drawing calculation.
  • Condition 1 Muscle torque generated by joint torque and muscle tension obtained by inverse kinematics is equal. That is, Expression (7) is satisfied.
  • Condition 2 A muscle activity pattern is generated such that the sum of muscle activity is minimized.
  • Condition 3 The muscle activity of the muscle whose myoelectric potential is measured is equal to the muscle activity calculated from the myoelectric potential.
  • Condition 4 Muscle activity a * is between 0 and 1.
  • the muscle activity calculated by quadratic programming should match the muscle activity calculated from the measured myoelectric potential.
  • Equation (13) has the form of the quadratic programming objective function shown in Equation (8). Can be considered.
  • the inequality constraint condition is It becomes. If a is obtained by quadratic programming under the objective function Z and the inequality constraint condition (17), the muscle tension of the muscle k ( ⁇ M * ) can be obtained from the equation (1).
  • FIGS. 10 and 11 show the grouping of the technique of the first embodiment
  • FIG. 11 shows the grouping of the technique of the second embodiment. 10 and 11, the number of electromyographs is three for simplicity. In FIG. 11, a broken line is an empty set.
  • Activity of the muscle of the M ihigh is uniformly on which were the same as the M iEMG, put it together than the rest of all of the muscle (M ilow and M others).
  • All the remaining streaks are calculated from dynamic force balance using SR-Inverse (like a stable inverse matrix).
  • Each one of all the remaining streaks (about 350 in the first embodiment) is calculated as a variable, and the quadratic programming method is not used. In the previous optimization calculation, quadratic programming or linear programming was used to calculate about 1000 muscle activities.
  • the muscle group M i is further classified into a plurality of subgroups by grouping them into cooperative muscle groups having the same activity (muscle groups having common bones that start and stop).
  • muscle M Ihigh is all muscle other than M Ilow, classified into M Ilow further subgroup by summarized M Ilow each cooperative muscles (M i, consists Jlow) Is done.
  • M i, jlow is a muscle group having common bones that start and stop in M ilow .
  • the total number of subgroups is about 70.
  • the muscle activity belonging to each subgroup is uniformly expressed by about 70 variables, and this is subjected to optimization calculation of the quadratic programming method.
  • the muscle activity of the muscle M iEMG to which myoelectricity is applied is used as a reference value for the muscle of Mi high .
  • the present invention can be used in the fields of sports training, rehabilitation, medical diagnosis, health management, entertainment, and the like.

Abstract

The scale of optimization calculations for estimating muscle tension is reduced. A multiplicity of muscles is categorized into a multiplicity of muscle groups Mi (i = 1, 2, … n) based on muscle movement directionality or heteronymous muscle facilitation, one or a multiplicity of muscle subgroups is formed from the muscles in each muscle group originating or inserting on the same bone, and the level of muscle activity is treated as the same for muscles affiliated with the same subgroup. One of the aforementioned one or multiplicity of subgroups of some or all of the multiplicity of muscle groups Mi is a first subgroup, which is formed from a single representative muscle, to which an electromyograph has been attached, and the muscles originating or inserting on the same bone as said representative muscle. The number of variables in the optimization calculations is reduced by acquiring the muscle tension of the muscles affiliated with the first subgroup from the myoelectric potential of the aforementioned representative muscle measured during subject activity, or the number of variables in the optimization calculations is reduced by using optimization calculations to estimate the level of muscle activity representing each subgroup.

Description

筋張力推定法及び装置Muscle tension estimation method and apparatus
 本発明は、筋張力の推定及び推定された筋張力に基づく身体内部の活動情報の提示に関するものである。 The present invention relates to estimation of muscle tension and presentation of activity information inside the body based on the estimated muscle tension.
 人間の動作を解析するには、人体においてアクチュエータとして働く筋の筋張力パターンを知ることが重要である。例えば、筋肉の活動や筋肉を支配する脊髄神経束の活動を運動データから推定するためには、運動データから筋張力を取得することが必要である。
 従来の筋張力推定手法としては、代表的に2つの手法が知られている。
In order to analyze human movements, it is important to know the muscle tension pattern of muscles acting as actuators in the human body. For example, in order to estimate the muscle activity and the activity of the spinal nerve bundle that controls the muscle from the motion data, it is necessary to obtain the muscle tension from the motion data.
As a conventional muscle tension estimation method, two methods are typically known.
 一つの解法として、Hill-Stroeve筋モデル(非特許文献1、非特許文献2)のように筋の収縮特性をモデル化し、生理学や実験より求まるパラメータや筋長、計測したEMGから計算される筋活動度から筋張力を算出する生体力学的なアプローチが挙げられる。比較的簡便に測定可能で最も筋張力を良く表すパラメータである筋電位を用いていることから最も精度の高い推定値であると言える。また計算コストが小さく高速に計算できるという利点もある。しかし、筋張力を計測するためには EMGを測定する必要があり、筋張力を推定する筋すべてに筋電計を装着する必要がある。そのため筋電計の数の制限から筋張力の推定を行う筋の数には限界が生じる。仮に筋電計が無数に利用可能であったとしても、それらをすべての筋に装着することは不可能であり、被験者の行動を制限することにもなる。 One solution is to model muscle contraction characteristics, such as the Hill-Stroeve muscle model (Non-patent document 1, Non-patent document 2), and calculate the parameters and muscle lengths obtained from physiology and experiments, and muscles calculated from the measured EMG. A biomechanical approach to calculate muscle tension from the degree of activity can be mentioned. Since myoelectric potential, which is a parameter that can be measured relatively easily and best represents muscle tension, is used, it can be said that the estimated value is the most accurate. There is also an advantage that the calculation cost is small and the calculation can be performed at high speed. However, in order to measure muscle tension, it is necessary to measure EMG, and it is necessary to attach electromyographs to all muscles that estimate muscle tension. Therefore, there is a limit to the number of muscles for which muscle tension is estimated from the limitation of the number of electromyographs. Even if countless electromyographs are available, it is impossible to attach them to all the muscles, and this restricts the behavior of the subject.
 もう一つの解法として、ロボティクスの分野で発達した逆動力学計算と最適化計算を用いた動力学的なアプローチがある。この解法では、逆運動学、逆動力学を基に、筋骨格モデルを用いて各関節トルクを算出することで、動力学的に整合性のとれた解を求めることができる。特許文献1、非特許文献3、非特許文献4では、モーションキャプチャにより得られた関節角度や床反力計のデータを用いて逆動力学計算を行って関節トルクを算出し、それらをもとに最適化計算によって筋張力を推定している。
 このアプローチでは、モデルの自由度に対してそれらを駆動する筋の数が大きく逆動力学計算のみでは関節トルクから筋張力を一意に定めることはできず、最適化計算を用いて解を1つに絞る必要がある。すなわち、筋張力分配時の最適化計算において線形計画法や二次計画法などの計算が含まれるため計算コストが大きく多くの時間を要するという課題がある。
 最適化計算の際の目的関数の中にHill-Stroeve筋モデル及び筋電計で計測する筋活動度から求まる筋張力との誤差項を考慮することで、より精度の高い全身の筋張力の算出が可能となるが(特許文献1、非特許文献3、非特許文献4)、逆動力学計算を用いて筋張力の最適化計算を行うことは、筋張力のリアルタイム推定を考えた場合、計算コストが問題となる。
As another solution, there is a dynamic approach using inverse dynamics calculation and optimization calculation developed in the field of robotics. In this solution, by calculating each joint torque using a musculoskeletal model based on inverse kinematics and inverse dynamics, it is possible to obtain a solution that is dynamically consistent. In Patent Document 1, Non-Patent Document 3, and Non-Patent Document 4, joint dynamics are calculated using joint angles and floor reaction force meter data obtained by motion capture, and joint torque is calculated. The muscle tension is estimated by optimization calculation.
In this approach, the number of muscles that drive them with respect to the degree of freedom of the model is large, and it is not possible to uniquely determine muscle tension from joint torque only by inverse dynamics calculation, but one solution using optimization calculation It is necessary to focus on. In other words, the optimization calculation at the time of muscle tension distribution involves calculations such as linear programming and quadratic programming, and there is a problem that the calculation cost is large and a lot of time is required.
More accurate calculation of muscle tension in the whole body by taking into account the error term with muscle tension obtained from the muscle activity measured with the Hill-Stroeve muscle model and electromyograph in the objective function in the optimization calculation (Patent Document 1, Non-Patent Document 3, Non-Patent Document 4) However, the optimization calculation of muscle tension using inverse dynamics calculation is calculated when real-time estimation of muscle tension is considered. Cost becomes a problem.
 このように様々な筋張力推定法が提案されているが、未だ完全な方法は確立しておらず、それぞれの方法は一長一短を有している。これら筋張力推定はトレーニング支援やリハビリテーションに応用されることが期待されており、リアルタイムで筋張力の推定を行い、それを理解しやすい形で提示することができれば効率のよい運動支援が行えるものと考えられる。しかし、生体力学的な方法は全身の筋張力を推定することが事実上不可能であり、最適化計算を用いる方法では計算に時間がかかるであるなどの問題を抱えている。そのため従来の方法を用いて全身の筋張力をリアルタイムで推定することは困難である。 Although various muscle tension estimation methods have been proposed in this way, a complete method has not yet been established, and each method has advantages and disadvantages. These muscle tension estimations are expected to be applied to training support and rehabilitation. If muscle tension is estimated in real time and presented in an easy-to-understand form, efficient exercise support can be achieved. Conceivable. However, the biomechanical method cannot effectively estimate the muscle tension of the whole body, and the method using the optimization calculation has a problem that the calculation takes time. Therefore, it is difficult to estimate the muscle tension of the whole body in real time using the conventional method.
国際公開番号WO2005-122900International Publication Number WO2005-122900
 本発明は、筋張力推定のための最適化計算における変数を削減することで、最適化計算の規模を縮小することを目的とするものである。 The object of the present invention is to reduce the scale of the optimization calculation by reducing the variables in the optimization calculation for muscle tension estimation.
 本発明の他の目的は、運動時の筋張力をリアルタイムで推定すると共に、筋張力および/あるいは筋張力に基づいて取得される身体内部の活動状況をリアルタイムで提示することにある。 Another object of the present invention is to estimate the muscle tension during exercise in real time and to present the activity status inside the body acquired based on the muscle tension and / or muscle tension in real time.
 本発明が採用した第1の技術手段は、
 被験者の運動時の各関節トルクを、筋骨格モデルを用いて逆動力学計算により算出し、該関節トルクを最適化計算により筋張力へ分配することで各筋の筋張力を推定する方法において、
 被験者の複数の筋を、筋の運動指向性あるいは異名筋促通に基づいて複数の筋グループM(i=1,2,...n)に分類し、
 複数の筋グループM(i=1,2,...n)の各筋グループにおいて、起始停止する骨が同じ筋から1つあるいは複数のサブグループを形成し、同じサブグループに属する筋の筋活動度を同じとみなし、
 複数の筋グループMの一部あるいは全部において、前記1つあるいは複数のサブグループのうちの少なくとも1つは、筋電計が装着された1つの代表筋と当該代表筋と起始停止する骨が同じである筋とから形成される第1サブグループであり、
 前記第1サブグループに属する筋の筋張力を、最適化計算を用いずに被験者の運動時に計測された前記代表筋の筋電位から取得し、最適化計算の対象から外すことで、最適化計算における変数を削減し、
 あるいは、
 前記1つあるいは複数のサブグループにおいて、各サブグループを代表する筋活動度を最適化計算で推定することで、最適化計算における変数を削減する、
 筋張力の推定法、である。
 第1の技術手段において、筋電計のチャンネル数と筋グループMの数nは必ずしも同じである必要はない。
 第1の技術手段において、第1グループが形成されている筋グループでは、典型的には1つの筋グループにつき1つの第1グループが形成されるが、1つの筋グループにおいて2つ以上の代表筋を選択して2つ以上の第1グループを形成してもよい。
The first technical means adopted by the present invention is:
In the method of estimating the muscle tension of each muscle by calculating each joint torque during exercise of the subject by inverse dynamics calculation using a musculoskeletal model and distributing the joint torque to the muscle tension by optimization calculation,
Classifying a plurality of muscles of a subject into a plurality of muscle groups M i (i = 1, 2,... N) based on muscle movement directivity or alias muscle facilitation;
In each muscle group of a plurality of muscle groups M i (i = 1, 2,... N), bones that start and stop form one or more subgroups from the same muscle, and belong to the same subgroup. Are considered to be the same muscle activity,
In some or all of the plurality of muscle groups M i, at least one, one representative muscle and the representative muscle and bones origin stop electromyograph is mounted in one of said one or more sub-groups Is a first subgroup formed from muscles that are the same,
The muscle tension of the muscles belonging to the first subgroup is obtained from the myoelectric potential of the representative muscle measured during the exercise of the subject without using the optimization calculation, and is excluded from the optimization calculation target, thereby performing the optimization calculation. Reduce the variables in
Or
In the one or a plurality of subgroups, the muscle activity representing each subgroup is estimated by the optimization calculation, thereby reducing variables in the optimization calculation.
This is an estimation method of muscle tension.
In the first technical means, the number n of the number of channels and muscle groups M i of electromyograph is not necessarily the same.
In the first technical means, in the muscle group in which the first group is formed, typically one first group is formed per one muscle group, but two or more representative muscles in one muscle group. May be selected to form two or more first groups.
 1つの態様では、前記第1サブグループに属する筋の筋張力を、被験者の運動時に計測された前記代表筋の筋電位から取得し、
 前記第1サブグループに属しない筋の筋張力を、被験者の運動を実現するのに必要な関節トルクにおいて、前記第1サブグループに属する筋により実現できない関節トルクを実現するように最適化することで推定する。
In one aspect, the muscle tension of the muscle belonging to the first subgroup is acquired from the myoelectric potential of the representative muscle measured during exercise of the subject,
Optimizing muscle tension of muscles not belonging to the first subgroup so as to realize joint torque that cannot be realized by muscles belonging to the first subgroup in joint torque necessary to realize exercise of the subject; Estimated by
 1つの態様では、各筋グループMにおいて、前記1つあるいは複数のサブグループは、前記第1サブグループと、前記第1サブグループに属しない筋について、起始停止する骨が同じ筋から分類された零個以上のサブグループと、を含み、
 各サブグループを代表する筋活動度を最適化計算で推定する。
 さらに、1つの態様では、前記第1グループに属する筋については、筋電位から取得した筋活動度と最適化計算により計算される筋活動度が一致すべきであるとして、
 最適化計算において、計測された前記代表筋の筋活動度を参照値として用いる。
In one aspect, in each muscle group M i , the one or more subgroups are classified into the first subgroup and the muscles that do not belong to the first subgroup from the same muscle whose start and stop bones are the same. Zero or more subgroups, and
The muscle activity representing each subgroup is estimated by optimization calculation.
Furthermore, in one aspect, for the muscles belonging to the first group, the muscle activity obtained from the myoelectric potential should match the muscle activity calculated by the optimization calculation.
In the optimization calculation, the measured muscle activity of the representative muscle is used as a reference value.
 本明細書において、「筋の運動指向性に基づく筋のグルーピング」とは、言い換えると、「各関節の各運動方向に関わる筋のグルーピング」あるいは「各関節において筋が関与するトルクの向きに基づくグルーピング」ということができる。これらは、運動と筋のつき方の幾何学的な関係を表すものである。具体的には、例えば、「肘関節伸張に関わる筋」、「股関節屈曲に関わる筋」のような意味である。
 すなわち、筋グループMへのグルーピングは、肘関節を伸ばす(伸展)ための筋、肘関節を曲げる(屈曲)ための筋といったように各関節の運動の方向に関わる筋の役目による分類である。筋グループMへのグルーピングを行うことによって、起始停止する骨のみによる筋のグルーピングで、関節を曲げるための筋と関節を伸ばすための筋とが同じグループに分類されてしまうことが防止される。
 ある関節を屈曲させる方向に寄与する(寄与する関節が全く同じ)筋の筋グループMには、起始停止する骨が違う複数の筋が属しており、これをさらに起始停止する骨によってサブグループに分類する。筋グループMへのグルーピングを行うことによって、厳密に関与する関節に基づいてさらに下位のサブグループへの分類が可能となる。
 また、筋グループMへのグルーピングは、多関節筋の影響を無視した運動指向性による筋の分類、サブグループへのグルーピングは多関節筋の影響も考慮し、筋が収縮した時に直接運動に影響を与える関節の一致する筋を同じグループに分類するということができる。
 「異名筋促通に基づくグルーピング」は、同じ神経束で支配される筋同士をグループとして表したものである。
 筋をグルーピングする際、力学的な面からと神経生理学的な面からの2つのアプローチがある。前者は、筋の走行から決定されるもの、後者は筋同士の神経による結合から決定されるものである。スポーツ科学の分野において、これら2つの間に関係があることは示されている。
 サブグループへのグルーピングは、「運動学に基づいて協同筋に分類」しているということができる。「協同筋」とは、「ある関節について、主動筋と同じ方向へ曲げるのに働く筋」と定義することができる。「筋の運動指向性」、「協同筋」は、両方とも運動学の見地からの考えであり、上述のように「異名筋促通」は神経生理学の見地からの考えである。
 1つの態様では、筋のグルーピングは、「筋の運動指向性」、「協同筋」に従って行うが、例えば、屈曲伸展に関しては協同筋でも、内転外転では拮抗筋になる場合等があるため、必要に応じて、「異名筋促通」でグルーピングを確認することが望ましい。
 また、協同筋の筋グループMiへの分類は体の姿勢や関節の変位によって変化することが知られている。近似的には分類は変化しない静的なものとして扱えるが、さらに精度を高めるためには分類を体の姿勢や関節の変位によって動的に変化させることもできる。
In this specification, “muscle grouping based on muscle movement directivity” means, in other words, “muscle grouping related to each movement direction of each joint” or “based on the direction of torque that the muscle is involved in each joint. It can be called "grouping". These represent the geometrical relationship between movement and muscle placement. Specifically, it means, for example, “muscle related to elbow joint extension” and “muscle related to hip joint flexion”.
That is, the grouping of the muscle group M i is a classification according to the role of muscles involved in the direction of motion of each joint as such extend the elbow joint (extension) muscle for, bending the elbow (bend) muscle for . By performing the grouping into muscle group M i, in the grouping of muscle by only bones origin stopped, it is prevented that the muscle to stretch the muscle and joint for bending joints from being classified in the same group The
The muscle groups M i of a joint contributes to a direction of bending the (contributing joints identical) muscle, a plurality of streaks of bones origin stop is different belongs, by bone to further origin stop this Classify into subgroups. By performing the grouping into muscle group M i, further it is possible to classify into the lower sub-groups based on the joint to strictly involved.
In addition, the grouping of the muscle group M i is, the multi-joint muscle of influence ignored the movement directed by muscle classification, grouping of the sub-group is also considering the influence of the multi-joint muscle, to directly exercise when the muscle is contracted It can be said that the muscles of the affected joints are classified into the same group.
“Grouping based on alias muscle facilitation” represents muscles controlled by the same nerve bundle as a group.
When grouping muscles, there are two approaches from the mechanical and neurophysiological aspects. The former is determined from the running of the muscle, and the latter is determined from the connection between the muscles by nerves. It has been shown that there is a relationship between these two in the field of sports science.
It can be said that the grouping into subgroups is “classified into cooperative muscles based on kinematics”. The “cooperative muscle” can be defined as “a muscle that works to bend a certain joint in the same direction as the main muscle”. “Muscle directionality” and “cooperative muscle” are both thoughts from the viewpoint of kinematics, and as mentioned above, “sympathetic muscle facilitation” is an idea from the viewpoint of neurophysiology.
In one aspect, muscle grouping is performed in accordance with “muscle directionality” and “cooperative muscle”. For example, even with respect to flexion and extension, it may be an antagonistic muscle in adduction and abduction, even if it is a cooperative muscle. If necessary, it is desirable to confirm the grouping by “unknown muscle facilitation”.
In addition, the classification of the muscle group M i of cooperative muscle has been known to change by the displacement of the body posture and joint. Although the classification can be treated as a static one that does not change approximately, the classification can be changed dynamically according to the posture of the body or the displacement of the joint in order to further improve the accuracy.
 本発明が採用した第2の技術手段は、方法の発明としては、
 被験者の運動時の各関節トルクを、筋骨格モデルを用いて逆動力学計算により算出し、該関節トルクを最適化計算により筋張力へ分配することで各筋の筋張力を推定する方法において、
 被験者の複数の筋を、筋の運動指向性あるいは異名筋促通に基づいて複数の筋グループM(i=1,2,...n)に分類し、
 複数の筋グループM(i=1,2,...n)の各筋グループにおいて、起始停止する骨が同じ筋から1つあるいは複数のサブグループを形成し、同じサブグループに属する筋の筋活動度を同じとみなし、
 前記1つあるいは複数のサブグループにおいて、各サブグループを代表する筋活動度を最適化計算で推定することで、最適化計算における変数を削減する、
 筋張力の推定法、である、
The second technical means adopted by the present invention is as a method invention,
In the method of estimating the muscle tension of each muscle by calculating each joint torque during exercise of the subject by inverse dynamics calculation using a musculoskeletal model and distributing the joint torque to the muscle tension by optimization calculation,
Classifying a plurality of muscles of a subject into a plurality of muscle groups M i (i = 1, 2,... N) based on muscle movement directivity or alias muscle facilitation;
In each muscle group of a plurality of muscle groups M i (i = 1, 2,... N), bones that start and stop form one or more subgroups from the same muscle, and belong to the same subgroup. Are considered to be the same muscle activity,
In the one or a plurality of subgroups, the muscle activity representing each subgroup is estimated by the optimization calculation, thereby reducing variables in the optimization calculation.
Muscle tension estimation method,
 また、第2の技術手段は、装置の発明としては、
 被験者の運動時の各関節トルクを、筋骨格モデルを用いて逆動力学計算により算出し、該関節トルクを最適化計算により筋張力へ分配することで各筋の筋張力を推定する筋張力取得手段と、
 被験者の複数の筋を分類するグルーピング手段と、
を備え、
 前記グルーピング手段は、
 前記複数の筋を、筋の運動指向性あるいは異名筋促通に基づいて複数の筋グループM(i=1,2,...n)に分類する第1グルーピング手段と、
 複数の筋グループM(i=1,2,...n)の各筋グループにおいて、起始停止する骨が同じ筋から1つあるいは複数のサブグループを形成する第2グルーピング手段と、からなり、
 前記筋張力取得手段は、同じサブグループに属する筋の筋活動度を同じとみなし、前記1つあるいは複数のサブグループにおいて、各サブグループを代表する筋活動度を最適化計算で推定する、
 筋張力の推定装置、である。
The second technical means is an invention of the device,
Each joint torque during exercise of the subject is calculated by inverse dynamics calculation using a musculoskeletal model, and the muscle tension of each muscle is estimated by distributing the joint torque to the muscle tension by optimization calculation. Means,
A grouping means for classifying a plurality of muscles of a subject;
With
The grouping means includes
First grouping means for classifying the plurality of muscles into a plurality of muscle groups M i (i = 1, 2,... N) based on muscle movement directivity or alias muscle facilitation;
In each muscle group of the plurality of muscle groups M i (i = 1, 2,... N), second grouping means in which the bones that start and stop form one or more subgroups from the same muscle; Become
The muscle tension acquisition means regards the muscle activity level of muscles belonging to the same subgroup as the same, and estimates the muscle activity level representing each subgroup in the one or more subgroups by optimization calculation.
An apparatus for estimating muscle tension.
 第2の技術手段において、1つの態様では、複数の筋グループMの一部あるいは全部において、前記1つあるいは複数のサブグループのうちの少なくとも1つは、筋電計が装着された1つの代表筋と当該代表筋と起始停止する骨が同じである筋とから形成される第1サブグループであり、
 前記第1グループに属する筋については、筋電位から取得した筋活動度と最適化計算により計算される筋活動度が一致すべきであるとして、最適化計算において、計測された前記代表筋の筋活動度を参照値として用いる。
In the second technical means, in one aspect, in some or all of the plurality of muscle groups M i, at least one of the one or more sub-groups, one of electromyograph is mounted A first subgroup formed of a representative muscle and a muscle having the same bone that starts and stops;
For muscles belonging to the first group, it is assumed that the muscle activity obtained from the myoelectric potential should match the muscle activity calculated by the optimization calculation, and the muscle of the representative muscle measured in the optimization calculation Use activity as a reference value.
 本発明が採用した第3の技術手段は、方法の発明としては、
 被験者の全身あるいは身体の一部の複数の筋の少なくとも一部を、筋の運動指向性あるいは異名筋促通に基づいて複数の筋グループM(i=1,2,...n)に分類し、各筋グループMから1つの代表筋を選択して当該代表筋に筋電計を装着し、
 前記複数の筋を、
 各筋グループMの前記代表筋からなる第1筋群MiEMGと、
 各筋グループMにおいて、第1筋群MiEMGと起始停止する骨が同じである(寄与する関節が全く同じである)筋からなる第2筋群Mihighと、
 前記第1筋群MiEMG、前記第2筋群Mihighに含まれない筋からなる第3筋群と、
 に分け、
 第1筋群MiEMGと第2筋群Mihighに属する筋の筋張力を、被験者の運動時に計測された前記代表筋の筋電位から取得し、
 前記第3筋群に属する筋の筋張力を、逆動力学計算により、計測した被験者の運動を実現するのに必要な関節トルクを計算し、前記関節トルクにおいて、前記第1筋群MiEMG及び前記第2筋群Mihighに属する筋により実現できない関節トルクを実現するように最適化することで推定する、
 筋張力の推定法、である。
The third technical means adopted by the present invention is a method invention.
At least a part of a plurality of muscles of the subject's whole body or a part of the body is divided into a plurality of muscle groups M i (i = 1, 2,... N) based on the movement direction of the muscles or the aliasing muscle facilitation. classifying the electromyograph attached to the representative muscle by selecting one representative muscles from each muscle group M i,
The plurality of muscles,
A first incision group M iEMG comprising the representative muscle of each muscle group M i,
In each muscle group M i, bones and origin stopped first muscle group M iEMG are the same (contributing joints are exactly the same) and the second incision group M Ihigh consisting muscle,
A first muscle group M iEMG , a third muscle group consisting of muscles not included in the second muscle group M high ;
Divided into
Obtaining the muscle tension of the muscles belonging to the first muscle group MiEMG and the second muscle group Mhigh from the myoelectric potential of the representative muscle measured during the exercise of the subject;
The muscle tension of the muscles belonging to the third muscle group is calculated by inverse dynamics calculation to calculate the joint torque necessary to realize the exercise of the subject, and in the joint torque, the first muscle group MiEMG and Estimating by optimizing to realize joint torque that cannot be realized by muscles belonging to the second muscle group M high ,
This is an estimation method of muscle tension.
 また、第3の技術手段は、装置の発明としては、
 複数の筋電計と、
 筋電位から筋張力を取得する第1筋張力取得手段と、
 逆動力学計算により関節トルクを計算し、当該関節トルクを実現するように最適化計算を行うことで筋張力を推定する第2筋張力取得手段と、
 被験者の複数の筋を分類するグルーピング手段と、
 を備え、
 前記グルーピング手段は、第1グルーピング手段と第2グルーピング手段とを備え、
 前記第1グルーピング手段は、前記複数の筋を、筋の運動指向性あるいは異名筋促通に基づいて複数の筋グループM(i=1,2,...n)に分類するものであり、各筋電計は、各筋グループMから選択された1つの代表筋に装着されており、
 前記第2グルーピング手段は、前記複数の筋を、
 各筋グループMの前記代表筋からなる第1筋群MiEMGと、
 各筋グループMにおいて、第1筋群MiEMGと起始停止する骨が同じである筋からなる第2筋群Mihighと、
 前記第1筋群MiEMG、前記第2筋群Mihighに含まれない筋からなる第3筋群と、
 に分けるものであり、
 前記第1筋張力取得手段は、第1筋群MiEMGと第2筋群Mihighに属する筋の筋張力を、被験者の運動時に計測された前記代表筋の筋電位から取得し、
 前記第2筋張力取得手段は、前記第3筋群に属する筋の筋張力を、逆動力学計算により、計測した被験者の運動を実現するのに必要な関節トルクを計算し、前記関節トルクにおいて、前記第1筋群MiEMG及び前記第2筋群Mihighに属する筋により実現できない関節トルクを実現するように最適化することで推定する、
 筋張力の推定装置、
である。
The third technical means is the invention of the device,
Multiple electromyographs,
First muscle tension acquisition means for acquiring muscle tension from myoelectric potential;
Second muscle tension acquisition means for calculating joint torque by inverse dynamics calculation and estimating muscle tension by performing optimization calculation so as to realize the joint torque;
A grouping means for classifying a plurality of muscles of a subject;
With
The grouping means includes a first grouping means and a second grouping means,
The first grouping means classifies the plurality of muscles into a plurality of muscle groups M i (i = 1, 2,... N) based on muscle movement directivity or alias muscle facilitation. each electromyograph is attached to one representative muscle selected from the muscle group M i,
The second grouping means includes the plurality of lines,
A first incision group M iEMG comprising the representative muscle of each muscle group M i,
In each muscle group M i, and a second incision group M Ihigh consisting muscle is a bone to the origin stop first muscle group M iEMG the same,
A first muscle group M iEMG , a third muscle group consisting of muscles not included in the second muscle group M high ;
Divided into
The first muscle tension acquisition means acquires the muscle tension of the muscles belonging to the first muscle group MiEMG and the second muscle group Mhigh from the myoelectric potential of the representative muscle measured during the exercise of the subject,
The second muscle tension acquisition means calculates the muscle torque of the muscles belonging to the third muscle group, and calculates the joint torque necessary for realizing the movement of the subject measured by inverse dynamics calculation. Estimating by optimizing to realize joint torque that cannot be realized by the muscles belonging to the first muscle group MiEMG and the second muscle group Mihigh ,
Muscle tension estimation device,
It is.
 第3の技術手段には幾つかの態様がある。
 1つの態様では、前記複数の筋において、いずれの筋グループMにも属しない筋を筋群Mothersとし、
 前記第3筋群には、各筋グループMにおいて、前記第1筋群MiEMG、前記第2筋群Mihighに含まれない筋群Milowと、前記筋群Mothersと、が含まれる。
 1つの態様では、前記複数の筋を、全ての筋がいずれかの筋グループMに属するように分類し、
 前記第3筋群には、各筋グループMにおいて、前記第1筋群MiEMG、前記第2筋群Mihighに含まれない筋が含まれる。
 1つの態様では、各筋グループMにおいて、筋群Mihighに属する複数の筋同士が拮抗しない。また、多関節筋に関しては、1つの態様では、主に関与する関節の方に含むようにグルーピングされる。
 1つの態様では、前記第1筋群MiEMGと前記第2筋群Mihighに含まれる筋の筋張力は、筋電位データから得られる筋活動度、経験則により得られた筋のパラメータ、計測した運動データに基づく逆運動学計算により取得される筋長及び筋長の変化速度、から取得される。
 1つの態様では、各筋グループMにおいて、前記第2筋群Mihighに含まれる筋の筋電位は、前記代表筋の筋電位の関数として決定する。
 典型的には、第2筋群Mihighに含まれる筋の筋電位は、前記代表筋の筋電位と同じと見なすが、第2筋群Mihighの筋電位は第1筋群MiEMGの筋電位と全く同じである必要はなく、これらの筋同士の幾何学的な位置、姿勢等から得られる関数により決定さ得る。
 1つの態様では、筋電計のチャンネル数と筋グループMの数nが同じである。
 筋電計のチャンネル数と筋グループMの数nが一致しない場合、例えば筋電位のチャンネル数が少ない場合には、筋グループMの任意のグループに対してMiEMGを設定し、筋電計を装着する。MiEMGが設定されなかった筋グループMに関しては、当該筋グループMに属する全ての筋がMilow、結果的に第3筋群に属する筋、となる。すなわち、EMGのチャンネル数などの制限から全てのMiにおいてMiEMGが決定できるわけではなく、その場合はMiの全ての筋は第3筋群に属することになる。
The third technical means has several modes.
In one embodiment, in the plurality of muscle, the muscle that does not belong to any muscle group M i and muscle groups M others,
Wherein the third muscle group, in each muscle group M i, contained the first muscle group M iEMG, and the second muscle group M are not included in ihigh muscle groups M Ilow, and the muscles M others, is .
In one embodiment, a plurality of streaks, all muscle are classified as belonging to one of the muscle groups M i,
Wherein the third muscle group, in each muscle group M i, the first muscle group M iEMG, include muscle which is not included in the second muscle group M Ihigh.
In one aspect, in each muscle group M i , a plurality of muscles belonging to the muscle group M high do not antagonize. In addition, regarding multi-joint muscles, in one aspect, they are grouped so as to include mainly the joints involved.
In one aspect, the muscle tension of the muscles included in the first muscle group MiEMG and the second muscle group Mihigh is determined by measuring the muscle activity obtained from myoelectric potential data, muscle parameters obtained by empirical rules, and measurement. It is acquired from the muscle length obtained by the inverse kinematics calculation based on the exercise data and the change speed of the muscle length.
In one aspect, in each muscle group M i , the myoelectric potential of the muscles included in the second muscle group M high is determined as a function of the myoelectric potential of the representative muscle.
Typically, the myoelectric potential of the muscle included in the second muscle group M high is regarded as the same as that of the representative muscle, but the myoelectric potential of the second muscle group M high is the muscle of the first muscle group Mi EMG. It does not have to be exactly the same as the electric potential, and can be determined by a function obtained from the geometric position, posture, etc. of these muscles.
In one embodiment, the number n of the number of channels and muscle groups M i of electromyograph are the same.
If the number n of the number of channels and muscle groups M i of electromyograph do not match, for example, when the number of channels of the myoelectric potential is small, sets the M iEMG for any group of muscle groups M i, myoelectric Wear a meter. Regarding the muscle group M i for which Mi EMG is not set, all the muscles belonging to the muscle group M i become M ilow , and consequently the muscles belonging to the third muscle group. That, not M iEMG can be determined in all M i from restrictions such as the number of channels of EMG, all muscle case M i will belong to the third muscle group.
 1つの態様では、
 前記最適化計算は、
 前記複数の筋群が骨格を駆動するとして、各筋群が出力すべき関節トルクを筋群毎に推定する第1ステップと、
 各筋群において、前記第1ステップで推定された関節トルクを実現するように、各筋が出力する筋張力を推定する第2ステップと、
 からなる。
 最適化計算の問題の規模をEMG情報を用いて解決できる筋の数だけ減らすという考えは、一部の筋張力を求める場合にも有利である。このときにEMGが解決する筋を決めるためにグルーピングが使われるが、残る最適化計算で解決される筋の次元をさげることにもグルーピングが役立つ。
 最適化手法には様々な方法があり、計算コストが大きく拘束条件を正確に満たすものと、計算コストが低く拘束条件を曖昧にしか満たさないものがある。ここでいう拘束条件とは、筋が伸張方向には力を出さないという不等式拘束条件を意味する。ただし後者の場合においても、最適化の際に考慮する筋同士の関係が拮抗するものを含まない場合、拘束条件を曖昧にしか満たさなくとも正確な解を得ることができる。
 そこで、まず筋をグルーピングすることで、複数の筋グループが骨格を駆動するとして、前者の計算コストが大きい手法にて各筋グループが出力すべきトルクを求める。
 そして、各筋グループにおいてそれらのトルクを実現するよう、後者の計算コストが小さい手法にて各筋が出力する筋張力を求めることができる。
 筋の次元とは、大雑把に言うと、筋の本数を意味する。より具体的には、筋の次元とは、全身の筋の張力を決める上での独立な変数の数をさす。筋を一本一本独立に張力が決まるとする場合には、筋の総数が次元になり、この場合は大規模な最適化問題になる。筋をグループ化してグループ内での張力の分配規則を決めておくと、全身の筋張力を決める上で独立な変数は、グループの数になる。この場合の筋の次元は筋のグループの数になる。
In one aspect,
The optimization calculation is
Assuming that the plurality of muscle groups drive the skeleton, a first step of estimating for each muscle group the joint torque to be output by each muscle group;
A second step for estimating the muscle tension output by each muscle so as to realize the joint torque estimated in the first step in each muscle group;
Consists of.
The idea of reducing the size of the optimization calculation problem by the number of muscles that can be solved using EMG information is also advantageous when obtaining some muscle tensions. At this time, grouping is used to determine the line that EMG solves, but grouping is also useful for reducing the dimension of the line that is solved by the remaining optimization calculations.
There are various optimization methods, one of which has a high calculation cost and satisfies the constraint condition accurately, and the other of which is a low calculation cost and satisfies the constraint condition only vaguely. The constraint condition here means an inequality constraint condition in which the muscle does not exert a force in the extending direction. However, even in the latter case, an accurate solution can be obtained even if the constraint condition is only ambiguous if the relationship between the muscles considered in the optimization is not included.
Therefore, by first grouping muscles, assuming that a plurality of muscle groups drive the skeleton, a torque to be output by each muscle group is obtained by the former method with high calculation cost.
And the muscle tension which each muscle outputs can be calculated | required with the method with the latter calculation cost small so that those torques may be implement | achieved in each muscle group.
Roughly speaking, the muscle dimension means the number of muscles. More specifically, the muscle dimension refers to the number of independent variables in determining the muscle tension throughout the body. If the tension is determined independently for each muscle, the total number of muscles becomes a dimension, which in this case becomes a large-scale optimization problem. If the muscles are grouped and the distribution rule of the tension within the group is determined, the independent variable in determining the muscle tension of the whole body is the number of groups. The muscle dimension in this case is the number of muscle groups.
 1つの態様では、筋張力を、被験者の運動時に実時間で推定する。上記筋張力推定装置は、筋張力を、被験者の運動時に実時間で推定するリアルタイム筋張力推定装置である。 In one aspect, muscle tension is estimated in real time as the subject exercises. The muscle tension estimation device is a real-time muscle tension estimation device that estimates muscle tension in real time during exercise of a subject.
 本発明が採用した第4の技術手段は、方法の発明としては、
 被験者の撮影画像あるいは/および当該撮影画像に基づく合成画像を表示部に表示すると共に、表示された被験者の画像に筋骨格モデルをオーバーレイし、
 上記推定法により取得した筋張力に基づく身体内部の活動情報を筋骨格モデルに反映させて視覚的に表示する、
 身体内部の活動情報提示法、である。
 また、第4の技術手段は、装置の発明としては、
 リアルタイム筋張力推定装置と、
 運動時の被験者を撮影する手段と、
 被験者の撮影画像あるいは/および当該撮影画像に基づく合成画像を表示する表示手段と、
 を備え、
 前記表示手段に表示された被験者の画像に筋骨格モデルをオーバーレイし、前記リアルタイム筋張力推定装置により実時間で推定した筋張力に基づく身体内部の活動情報を前記筋骨格モデルに反映させて、視覚的に実時間表示するように構成されている、
 身体内部の活動情報提示装置、である。
 1つの態様では、身体内部活動情報を、被験者の運動時に実時間で表示する。
The fourth technical means adopted by the present invention is a method invention.
The subject's captured image or / and a composite image based on the captured image are displayed on the display unit, and a musculoskeletal model is overlaid on the displayed subject's image,
The activity information inside the body based on the muscle tension obtained by the above estimation method is reflected in the musculoskeletal model and displayed visually.
It is a method for presenting activity information inside the body.
The fourth technical means is the invention of the device.
A real-time muscle tension estimation device;
Means for photographing the subject during exercise;
Display means for displaying a photographed image of the subject or / and a composite image based on the photographed image;
With
The musculoskeletal model is overlaid on the image of the subject displayed on the display means, and the activity information inside the body based on the muscular tension estimated in real time by the real-time muscular tension estimation device is reflected in the musculoskeletal model to visually Configured to display real-time,
A device for presenting activity information inside the body.
In one aspect, internal body activity information is displayed in real time as the subject exercises.
 1つの態様では、前記身体内部の活動情報は、筋活動である。
 1つの態様では、筋活動を、筋骨格モデルの筋の色あるいは/および形状の変化によって視覚的に表示する。
In one aspect, the activity information inside the body is muscle activity.
In one aspect, muscle activity is visually displayed by a change in muscle color or / and shape of the musculoskeletal model.
 1つの態様では、前記身体内部の活動情報は、筋活動を、当該筋活動を支配する脊髄神経束の活動として表わしたものである。脊髄神経は複数の筋を支配しており、支配する全ての筋の活動をまとめたものを脊髄神経束の活動として計算している。
 1つの態様では、脊髄神経束の活動は、筋骨格モデル上の各脊髄神経束の位置にシンボルを表示し、シンボルの色あるいは/および形状の変化によって視覚的に表示する。
In one aspect, the activity information inside the body represents muscle activity as activity of a spinal nerve bundle that governs the muscle activity. The spinal nerves control a plurality of muscles, and the activity of all the muscles that control them is calculated as the activity of the spinal nerve bundle.
In one aspect, spinal nerve bundle activity is displayed visually by changing the color or / and shape of the symbol at each spinal nerve bundle location on the musculoskeletal model.
 本発明では、被験者の複数の筋をグルーピングすることによって、筋張力推定のための最適化計算における変数を削減し、最適化計算の規模を縮小する。
 最適化計算の規模を縮小することによって、リアルタイムに筋張力を推定し、また、筋張力に基づく筋活動等をリアルタイムで可視化することがでる。
 本発明によれば、EMG情報(Hill-Stroveモデルと共に利用)とグルーピングによって最適化計算の規模を縮小することができる。
 さらに、限られた数の筋電計を用いるものでありながら、計算量が比較的小規模の最適化計算手法を組み合わせることで、全身の筋張力をリアルタイムで推定することができる。
 したがって、スポーツトレーニングやリハビリテーション時に体性感覚情報を提示することも可能となる。筋張力や関節負荷を中心とする体性感覚情報をリアルタイムに提示することで、トレーナの代替となるシステムの構築が可能になる。
 人間の筋肉の活動やそれを支配する脊髄神経束の活動を運動データから高速に推定し、それを実時間で本人の映像にオーバーレイするなどの方法で提示することによって、身体内部の活動状況を直感的に理解させることがきる。自分自身の運動とその時の身体内部の活動を直感的に見ることができ、運動の効果を確認できる。
 スポーツトレーニング、リハビリテーション、医療診断、健康管理、エンターテイメントなどにおいて、運動の効果を確認させることができる。
In the present invention, by grouping a plurality of muscles of the subject, the variables in the optimization calculation for muscle tension estimation are reduced, and the scale of the optimization calculation is reduced.
By reducing the scale of the optimization calculation, muscle tension can be estimated in real time, and muscle activity based on muscle tension can be visualized in real time.
According to the present invention, the scale of optimization calculation can be reduced by EMG information (used together with the Hill-Strove model) and grouping.
Furthermore, while using a limited number of electromyographs, the muscle tension of the whole body can be estimated in real time by combining optimization calculation methods with a comparatively small calculation amount.
Therefore, somatosensory information can be presented during sports training or rehabilitation. By presenting somatosensory information centered on muscle tension and joint load in real time, it is possible to construct a system that can replace the trainer.
By estimating the activity of the human muscle and the spinal nerve bundle that controls it from the movement data at high speed and overlaying it on the person's video in real time, the activity status inside the body is shown. Intuitive understanding. You can intuitively see your own exercise and the activities inside the body at that time, and you can confirm the effect of the exercise.
The effects of exercise can be confirmed in sports training, rehabilitation, medical diagnosis, health management, entertainment, and the like.
筋長と最大等尺性筋力との関係を示す図である。It is a figure which shows the relationship between muscle length and the maximum isometric strength. 筋長の変化率と最大筋張力との関係を示す図である。It is a figure which shows the relationship between the change rate of muscle length, and the maximum muscle tension. 人体の筋骨格モデルを示す図である。It is a figure which shows the musculoskeletal model of a human body. 従来の最適化計算による筋張力推定の流れを示す図である。It is a figure which shows the flow of muscle tension estimation by the conventional optimization calculation. リアルタイム筋張力可視化システムの概略図である。It is the schematic of a real-time muscle tension visualization system. リアルタイム筋張力可視化システムの概略フロー図である。It is a schematic flow diagram of a real-time muscle tension visualization system. リアルタイム筋張力可視化システムにおける各スレッドとデータの受け渡しの概略図である。It is the schematic of the delivery of each thread | sled and data in a real-time muscle tension visualization system. 被験者の運動時に、被験者の画像上に、筋骨格モデル及び推定された筋張力情報をリアルタイムでオーバーレイした図を示す。上図は、スクワット、下図は投球動作である。実際には、筋張力が大きくなると、筋の色が黄色から赤色に変化するようになっている。FIG. 5 shows a real-time overlay of a musculoskeletal model and estimated muscle tension information on a subject image during exercise of the subject. The upper figure shows squats, and the lower figure shows pitching motion. Actually, when the muscle tension increases, the color of the muscle changes from yellow to red. 図6のスクワットを複数フレームの時系列で示す図である。It is a figure which shows the squat of FIG. 6 in the time series of several frames. 図6の投球動作を複数フレームの時系列で示す図である。It is a figure which shows the pitching operation | movement of FIG. 6 in the time series of several frames. 表示された筋骨格モデルに脊髄神経束をシンボルで示す図である。画像中において各脊髄ごとに四方に配置されている球が脊髄神経束をシンボル化したものであり、各シンボルは該当脊髄神経束が活動すると赤色に変化する。It is a figure which shows a spinal nerve bundle | flux with a symbol on the displayed musculoskeletal model. In the image, spheres arranged in four directions for each spinal cord symbolize the spinal nerve bundle, and each symbol changes to red when the corresponding spinal nerve bundle is activated. 本発明の第1の実施形態に係る筋のグルーピングを示す図である。It is a figure which shows the grouping of the line | wire which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る筋のグルーピングを示す図である。It is a figure which shows the grouping of the line | wire which concerns on the 2nd Embodiment of this invention.
 本発明の実施形態について詳細に説明する。先ず、本発明の背景となる概念および手法について説明する。これらの概念および手法は本発明の背景技術であると同時に、本発明の実施形態を実施する上でも用いられ得る技術である。次いで、本発明に係る筋張力推定の実施形態について説明する。尚、数式の番号についてはセクション毎で独立に付与している。 Embodiments of the present invention will be described in detail. First, the concept and technique that are the background of the present invention will be described. These concepts and techniques are not only the background art of the present invention, but also the techniques that can be used to implement the embodiments of the present invention. Next, an embodiment of muscle tension estimation according to the present invention will be described. In addition, about the number of a numerical formula, it assign | provides independently for every section.
[A]Hill-Stroeve筋モデル
 HillとWilkieの筋モデルを定式化したStroeveの筋モデルでは、筋長と最大等尺性筋力の関係は図1のように表される。また、筋長の変化速度と最大筋張力の関係は図2のように表される。最大収縮速度vmaxでは筋張力は0になり、筋長が変化しない時の最大筋張力が最大等尺性筋力に対応する。また、最大等尺性筋力より大きい力が加わった場合には筋は伸張する。
[A] Hill-Stroeve Muscle Model In the Stroeve muscle model formulated from Hill and Wilkie muscle models, the relationship between muscle length and maximum isometric muscle strength is expressed as shown in FIG. The relationship between the change rate of the muscle length and the maximum muscle tension is expressed as shown in FIG. At the maximum contraction speed vmax , the muscle tension is 0, and the maximum muscle tension when the muscle length does not change corresponds to the maximum isometric muscle strength. In addition, when a force greater than the maximum isometric muscle force is applied, the muscle stretches.
 筋活動度aと筋張力fの関係は式(1)で表される。
Figure JPOXMLDOC01-appb-I000001
 ここで、Fmaxは最大筋張力、Fl(l)とFv(l(ドット))はそれぞれ正規化された筋張力と筋長、筋長の変化速度との関係を表す関数である。Fl(l)は図1に対応し、式(2)のガウス関数で近似する。
Figure JPOXMLDOC01-appb-I000002
 ここで、l0は筋の自然長である。また、Fv(l(ドット))は図2に対応し式(3)で近似する。
Figure JPOXMLDOC01-appb-I000003
 ここで、Kl,Vsh,Vshl,Vmlは定数であり、1つの態様では、Stroeveが示した値(表1)を用いる。また、これらの値をモーションキャプチャデータに基づいて同定してもよい。
Figure JPOXMLDOC01-appb-T000004
The relationship between the muscle activity level a and the muscle tension f * is expressed by equation (1).
Figure JPOXMLDOC01-appb-I000001
Here, F max is the maximum muscle tension, and F l (l) and F v (l (dot)) are functions representing the relationship between the normalized muscle tension, the muscle length, and the rate of change of the muscle length, respectively. F l (l) corresponds to FIG. 1 and is approximated by a Gaussian function of Equation (2).
Figure JPOXMLDOC01-appb-I000002
Here, l 0 is the natural length of the muscle. F v (l (dot)) corresponds to FIG. 2 and is approximated by equation (3).
Figure JPOXMLDOC01-appb-I000003
Here, K l , V sh , V shl , and V ml are constants, and in one embodiment, values shown in Stroeve (Table 1) are used. These values may be identified based on the motion capture data.
Figure JPOXMLDOC01-appb-T000004
 Hill-Stroeve筋モデルを用いて筋張力推定をする場合に必要なデータとして、筋長、筋長変化速度、筋活動度がある。全ての筋の筋長、筋長変化速度、筋活動度が得られた場合、各筋の筋張力fは次の式で表される。
Figure JPOXMLDOC01-appb-I000005
 ここで、ai,li,l(ドット)i,Fmaxは、各々i番目の筋の活動度、筋長、筋活動度、最大筋張力を表し、Fl,Fvはそれぞれ正規化された筋張力と筋長、筋長変化速度の関係を表す関数である。そして、Nmusは筋骨格モデルに含まれる筋の総数を表す。筋長l1,……lNmus及び筋長変化速度l(ドット)1,……l(ドット)Nmusについては、全てモーションキャプチャから得られる運動データから算出できる。
Data necessary for estimating muscle tension using the Hill-Stroeve muscle model includes muscle length, muscle length change rate, and muscle activity. When the muscle length, the muscle length change rate, and the muscle activity of all muscles are obtained, the muscle tension f * of each muscle is expressed by the following expression.
Figure JPOXMLDOC01-appb-I000005
Here, a i , l i , l (dot) i , and F max represent the activity, muscle length, muscle activity, and maximum muscle tension of the i-th muscle, respectively, and F l and F v are normalized, respectively. It is a function showing the relationship between the made muscle tension, muscle length, and muscle length change speed. Nmus represents the total number of muscles included in the musculoskeletal model. Muscle length l 1 ,... L Nmus and muscle length change speed l (dot) 1 ,... L (dot) Nmus can all be calculated from motion data obtained from motion capture.
 筋活動度については、体幹、肘、肩、膝、足首等体の各部位において筋電位を用いた筋張力推定のモデルが考案されている。これらのモデルは、例えば、下記の文献に記載されている。 Regarding muscle activity, models for muscle tension estimation using myoelectric potentials have been devised at various parts of the body such as the trunk, elbows, shoulders, knees, and ankles. These models are described in the following documents, for example.
S.M.
McGill, A myoelectrically based dynamic three-dimensional model to predict
loads on lumbar spine tissues during lateral bending, Journal of Biomechanics,
Vol. 25, pp. 395-414, 1992.
SM
McGill, A myoelectrically based dynamic three-dimensional model to predict
loads on lumbar spine tissues during lateral bending, Journal of Biomechanics,
Vol. 25, pp. 395-414, 1992.
T.S. Buchanan,
S.L. Delp, and J.A. Solbeck, muscular resistance to varus and valgus loads at
the elbow, Journal of Biomechanics, Vol. 120, pp. 634-639, 1998.
TS Buchanan,
SL Delp, and JA Solbeck, muscular resistance to varus and valgus loads at
the elbow, Journal of Biomechanics, Vol. 120, pp. 634-639, 1998.
B.
Laursen, B. Jenson, G. Nemeth, and G. Sjogaard, A model predicting individual
shoulder muscle forces based on relationship between electromyographic and 3D
external forces in static position, Journal of Biomechanics, Vol. 31, pp.
731-739, 1998.
B.
Laursen, B. Jenson, G. Nemeth, and G. Sjogaard, A model predicting individual
shoulder muscle forces based on relationship between electromyographic and 3D
external forces in static position, Journal of Biomechanics, Vol. 31, pp.
731-739, 1998.
David G.
Lloyd, Thomas S. Buchanan, and Thor F. Besier, Neuromuscular Biomechanical Modeling
to Understand Knee Ligament Loading, Medicine & Science in Sports & Exercise,
Vol. 37, pp. 1939-1947, 2005.
David G.
Lloyd, Thomas S. Buchanan, and Thor F. Besier, Neuromuscular Biomechanical Modeling
to Understand Knee Ligament Loading, Medicine & Science in Sports & Exercise,
Vol. 37, pp. 1939-1947, 2005.
A.L. Hof
and J.W. van den Berg, EMG-to-force processing. II. Estimation of parameters of
the Hill Muscle model for the human triceps surae by means of calf ergometer,
Journal of Biomechanics, Vol. 14, pp. 759770, 1981.
AL Hof
and JW van den Berg, EMG-to-force processing. II. Estimation of parameters of
the Hill Muscle model for the human triceps surae by means of calf ergometer,
Journal of Biomechanics, Vol. 14, pp. 759770, 1981.
 これらのモデルにおいて、各関節に対して複数の筋の筋電位を筋電計で計測し、その%MVC(Maximal Voluntary Contraction(MVC、最大随意努力時の筋活動)を100%として表した力の入れ具合を表す値)等をその筋の活動度として使用している。 In these models, the myoelectric potential of multiple muscles for each joint was measured with an electromyograph, and the force expressed as% MVC (Maximal Voluntary Contraction (MVC)). Etc.) is used as the activity level of the muscle.
[B]逆動力学・最適化計算を用いた筋張力算出
 全身詳細筋骨格モデルにおける逆動力学計算の手法を示す(特許文献1、非特許文献3、非特許文献4)
[B] Muscle tension calculation using inverse dynamics / optimization calculation The method of inverse dynamics calculation in the whole body detailed musculoskeletal model is shown (Patent Document 1, Non-Patent Document 3, Non-Patent Document 4).
[B―1]筋骨格モデル
 本発明の実施形態で用いられる全身詳細筋骨格モデルについて述べる。図1に示すように、設計した詳細人体モデルは、適当な細かさでグループ分けされた骨格系剛体モデルと、骨格上に張られた筋・腱・靭帯系ワイヤモデルとからなる。骨格モデルは全身206個の骨からなる。そのうち頭蓋部、手部、足先部などは一つの剛体として扱い、計53個のリンクからなるモデルとなっている。各リンク間は、足根骨-足先部の回転1自由関節、第1胸椎-胸骨の6自由度関節を除いて全て球面3自由度関節となっている。骨格モデルは、全体の並進回転の6自由度を加えて、計155の自由度を持つ。
[B-1] Musculoskeletal model A detailed whole body musculoskeletal model used in the embodiment of the present invention will be described. As shown in FIG. 1, the designed detailed human body model is composed of a skeletal rigid body model grouped with appropriate fineness and a muscle / tendon / ligament wire model stretched on the skeleton. The skeletal model consists of 206 bones throughout the body. Of these, the skull, hand, and toe are treated as a single rigid body, and the model is composed of a total of 53 links. Between each link is a spherical 3 degrees of freedom joint, except for the tarsal bone-toe toe rotation 1 free joint and the first thoracic vertebra 6 breast joint. The skeletal model has a total of 155 degrees of freedom, adding 6 degrees of freedom for the entire translational rotation.
 次に骨格モデルに筋、腱、靭帯を配置する。筋、腱、靭帯は各リンクに始点、終点及び経由点を通るワイヤとしてモデル化する。骨、筋、腱、靭帯はそれぞれ以下の性質を持つ。
 骨:質量を持つ剛体リンク
 筋:能動的に張力を発生するワイヤである。
 腱:受動的に張力を発生するワイヤで、筋と接続し筋張力を骨へ伝達する。
 靭帯:受動的に張力を発生するワイヤで、骨と骨とを接続し、それらの相対的な運動を拘束する。
 また筋、腱、靭帯の機能の違いは、以下のようにモデル化する。
 筋と腱の直列接続からなるような簡単な部位は、1本の筋ワイヤで代表する。
 筋が骨の一部分に引っ掛かっている場合や腱鞘による腱の拘束をモデル化する場合には経由点を置く。
 上腕二等筋など腱が分岐し、分岐した腱がそれぞれ別々の骨に接続するという配置になっている場合がある。ワイヤの始点、終点、経由点は全てリンクに固定されるため、この分岐点にヴァーチャルリンクを置く。ヴァーチャルリンクは質量を持たないが張力を伝達する。ヴァーチャルリンクは力、モーメントが0になるように自由に移動できる。
 大胸筋や広背筋等の広い筋は、複数の並行な筋ワイヤで表現する。
 このような筋骨格モデルについては、例えば特許文献1にも記載されており、この文献を参照することができる。
 上述の筋骨格モデルは、例示に過ぎないものであり、本発明に適用される得る筋骨格モデルは、これらに限定されるものではない。
Next, muscles, tendons, and ligaments are placed in the skeletal model. Muscles, tendons, and ligaments are modeled as wires that pass through the start point, end point, and waypoint at each link. Bones, muscles, tendons and ligaments have the following properties.
Bone: A rigid link with mass. Muscle: A wire that actively generates tension.
Tendon: A passively tensioning wire that connects to muscles and transmits muscle tension to bone.
Ligaments: Passive tension wires that connect bones and constrain their relative movement.
Differences in muscle, tendon, and ligament functions are modeled as follows.
A simple part consisting of a series connection of muscles and tendons is represented by a single muscle wire.
If the muscle is caught in a part of the bone or if you want to model the tendon restraint by the tendon sheath, place a via point.
There is a case where tendons such as the upper arm bilateral muscle branch and the branched tendons connect to different bones. Since the start point, end point, and waypoint of the wire are all fixed to the link, a virtual link is placed at this branch point. The virtual link has no mass but transmits tension. The virtual link can move freely so that the force and moment are zero.
Wide muscles such as the great pectoral muscle and latissimus dorsi are expressed by a plurality of parallel muscle wires.
Such a musculoskeletal model is also described in Patent Document 1, for example, and can be referred to.
The above-mentioned musculoskeletal model is merely an example, and the musculoskeletal model that can be applied to the present invention is not limited to these.
[B-2]筋骨格モデルを用いた筋張力の取得
 筋骨格モデルを用いた筋張力の取得について説明する。一つの態様では、筋張力の取得装置は、マーカが付された被験者を撮影する複数の撮像手段(カメラ)と、床反力計測手段(フォースプレート)と、筋電位計手段(筋電位計)と、一つ又は複数のコンピュータ装置とを含み、コンピュータ装置は、各種計算を行う演算処理部、入力部、出力部、表示部、各種データを格納する記憶部を備えている。ここでは、モーションキャプチャデータ(運動データ)、筋電位、床反力を同時計測し、これを筋力の最適化において用いることで、力学的にも生理的にも妥当な筋力を得る。
[B-2] Acquisition of Muscle Tension Using Musculoskeletal Model Acquisition of muscle tension using the musculoskeletal model will be described. In one aspect, the device for acquiring muscle tension includes a plurality of imaging means (camera) for imaging a subject to which a marker is attached, a floor reaction force measuring means (force plate), and an electromyograph means (myoelectric meter). The computer apparatus includes an arithmetic processing unit that performs various calculations, an input unit, an output unit, a display unit, and a storage unit that stores various data. Here, motion capture data (exercise data), myoelectric potential, and floor reaction force are simultaneously measured and used for optimizing muscle strength, thereby obtaining appropriate muscle strength both mechanically and physiologically.
 全身詳細筋骨格モデルの筋張力計算について説明する。
 特許文献1、非特許文献3、4に開示された方法では以下のように筋張力を計算する。
(1)モーションキャプチャシステムにより被験者の運動計測を行い、マーカの三次元位置の時系列データを得る。
(2)逆運動学計算によりマーカの三次元位置から関節角、関節角速度、関節角加速度を含む運動情報を計算する。
(3)ニュートンオイラ法などを用いた逆動力学計算により運動を実現するのに必要な関節トルクを計算する。
(4)関節角から得られる筋、腱、靭帯長変化と各関節角速度の関係を用いて(3)で求めた関節トルクを、床反力及び筋、腱、靭帯の張力に写像する。
The muscle tension calculation of the whole body detailed musculoskeletal model will be described.
In the methods disclosed in Patent Document 1, Non-Patent Documents 3 and 4, muscle tension is calculated as follows.
(1) The motion of the subject is measured by the motion capture system, and time-series data of the three-dimensional position of the marker is obtained.
(2) The motion information including the joint angle, the joint angular velocity, and the joint angular acceleration is calculated from the three-dimensional position of the marker by inverse kinematics calculation.
(3) The joint torque required to realize the motion is calculated by inverse dynamics calculation using the Newton oiler method or the like.
(4) The joint torque obtained in (3) is mapped to the floor reaction force and the tension of the muscle, tendon, and ligament using the relationship between the muscle, tendon, ligament length change obtained from the joint angle and each joint angular velocity.
 逆動力学では、運動計測によって得られる運動データを元に、その運動を実現する筋・腱・靭帯の張力を求める。逆動力学の計算法の流れは、1.剛体リンク系の逆動力学による関節トルクの計算;2.ワイヤ長さの関節値に対するヤコビアンの計算;3.関節トルクのワイヤ張力への変換、となる。
 剛体リンク系の逆動力学計算を用いると骨格モデルにおいて運動を実現するのに必要な関節トルクτが計算できる。ダランベールの原理と仮想仕事の原理を用いるとτと等価な筋、腱、靭帯張力fは、関節角θに対する筋、腱、靭帯長lのヤコビアンJを用いて、
Figure JPOXMLDOC01-appb-I000006
と表される。
 ヤコビアンJの計算方法については、当業者によく知られているので、説明が煩雑になることを避ける目的で、ここでの詳述は省略する。ヤコビアンJの計算方法については、例えば、特開2003-339673号、あるいは、「D.E. Orin and W.W. Schrader. Efficient computation of the jacobian
for robot manipulators. Inter-national Journal of Robotics Research, Vol. 3,
No. 4, pp. 66.75, 1984」を参照することができる。
In inverse dynamics, the tension of muscles, tendons, and ligaments that realize the movement is obtained based on the movement data obtained by the movement measurement. The flow of inverse dynamics calculation is as follows: 1. Calculation of joint torque by inverse dynamics of rigid link system; 2. Calculation of Jacobian for wire length joint value; The joint torque is converted into wire tension.
By using the inverse dynamics calculation of the rigid link system, it is possible to calculate the joint torque τ g necessary for realizing the motion in the skeleton model. Using D'Alembert's principle and virtual work's principle, muscle, tendon, and ligament tension f equivalent to τ g is obtained by using Jacobian J of muscle, tendon, and ligament length l for joint angle θ g .
Figure JPOXMLDOC01-appb-I000006
It is expressed.
Since the calculation method of Jacobian J is well known to those skilled in the art, detailed description thereof is omitted here for the purpose of avoiding complicated description. As for the calculation method of Jacobian J, for example, JP 2003-339673 or “DE Orin and WW Schrader. Efficient computation of the jacobian”
for robot manipulators. Inter-national Journal of Robotics Research, Vol. 3,
No. 4, pp. 66.75, 1984 ”can be referred to.
 本実施形態において関節角ベクトルθは155次元であるのに対し、ワイヤ張力fは非特許文献3、非特許文献4のモデルでは989次元である。そのためτからfが一意には定まらない冗長問題が生じる。ここで、筋骨格モデルの逆動力学計算において、運動を決定するパラメータに対して筋・腱・靭帯の要素数が非常に多く、力が一意に決まらないという未決定性問題が存在することは当業者に良く知られており、逆動力学計算により求められた関節モーメントを、最適化計算よって、各関節を駆動する筋の筋張力へ分配することが行なわれている。 While the joint angle vector theta G is a 155-dimensional in the present embodiment, the wire tension f Non-patent document 3, in the non-patent document 4 models a 989-dimensional. Therefore, there arises a redundancy problem in which f is not uniquely determined from τ g . Here, in the inverse dynamics calculation of the musculoskeletal model, there is an undetermined problem that the number of elements of muscles, tendons, and ligaments is very large with respect to the parameters that determine movement, and the force cannot be determined uniquely. It is well known to those skilled in the art, and the joint moment obtained by the inverse dynamics calculation is distributed to the muscle tension of the muscle that drives each joint by the optimization calculation.
 fを決定するために、何らかの評価関数と拘束条件を設定し、数理計画法等による最適化を用いて解決する方法は、例えば、特許文献1、非特許文献3、4に開示されている。以下に最適化計算の具体例を示すが、筋張力計算に用いられる最適化計算としては幾つもの手法が提案されていることは当業者に知られており、本発明に適用され得る最適化計算は、本明細書に記載されたものに限定されないことは当業者に理解される。 A method of setting some evaluation function and constraint conditions in order to determine f and solving using optimization by mathematical programming or the like is disclosed in, for example, Patent Document 1 and Non-Patent Documents 3 and 4. Specific examples of optimization calculation are shown below. However, it is known to those skilled in the art that several methods have been proposed as optimization calculation used for muscle tension calculation, and optimization calculation that can be applied to the present invention. Those skilled in the art will appreciate that is not limited to what is described herein.
 全身詳細筋骨格モデルにおける逆動力学計算の1つの態様を説明する。以下の式を解くことにより、床との接触力及び全身の筋張力を算出する。
Figure JPOXMLDOC01-appb-I000007
 ここで、
 τ:一般化力;
 J:一般化座標からワイヤ長へのヤコビ行列;
 f:ワイヤ張力;
 J:一般化座標から床との接触点へのヤコビ行列;
 τ:床との接触力;
である。
One aspect of inverse dynamics calculation in the whole body detailed musculoskeletal model will be described. By solving the following equations, the contact force with the floor and the muscle tension of the whole body are calculated.
Figure JPOXMLDOC01-appb-I000007
here,
τ G : Generalization force;
J: Jacobian matrix from generalized coordinates to wire length;
f: wire tension;
J C : Jacobian matrix from the generalized coordinates to the point of contact with the floor;
τ C : contact force with the floor;
It is.
 式(4)を以下の流れで解く。
 式(4)の内、腰関節の6DOFに対応する行のみを考慮して、床との接触力τを算出する。ここでは2次計画法を用いて最適化を行う。
 式(4)からτを除き、下式を得る。
Figure JPOXMLDOC01-appb-I000008
 ここで線形計画法もしくは2次計画法を用いて筋張力を算出する。
 床との接触力は、外界との接触力の典型例であり、床以外、例えば壁との接触力を用いることもできる。このような外界との接触力を差し引くことによる筋張力推定については、特許文献1、非特許文献3、非特許文献4に開示されている。
Equation (4) is solved by the following flow.
The contact force τ C with the floor is calculated considering only the row corresponding to 6DOF of the hip joint in the equation (4). Here, optimization is performed using quadratic programming.
By removing τ C from equation (4), the following equation is obtained.
Figure JPOXMLDOC01-appb-I000008
Here, muscle tension is calculated using linear programming or quadratic programming.
The contact force with the floor is a typical example of the contact force with the outside world. For example, the contact force with a wall other than the floor can be used. Such muscle tension estimation by subtracting the contact force with the outside world is disclosed in Patent Document 1, Non-Patent Document 3, and Non-Patent Document 4.
 以下に、接触力τの最適化を考慮した関節トルクτ´の求め方について述べる。筋張力を求める複雑な最適化は2次計画法、または更に単純化して線形計画法で解くことができる。ここでは、高速な解法として線形計画法を用いた方法を考える。しかし、線形計画法特有の問題として、結果として得られる筋張力データが時間方向・空間方向に不連続になる。空間的不連続は、幾何学的に近い筋同士において筋張力が大きく異なることを示し、これは人体においては不自然である。 Hereinafter, a method for obtaining the joint torque τ G ′ considering the optimization of the contact force τ C will be described. Complex optimization to determine muscle tension can be solved with quadratic programming, or more simply with linear programming. Here, a method using linear programming as a fast solution is considered. However, as a problem specific to linear programming, the resulting muscle tension data is discontinuous in the time and space directions. Spatial discontinuities indicate that muscle tensions differ greatly between muscles that are close to geometry, which is unnatural in the human body.
 この問題を、協同筋グループ内における筋張力の平滑化によって解決する。以下の式を用いて、各要素が正であるベクトルaτ,a,aに対して、次式である目的関数を最小化するδτ,δ,δ,fを求める最適化問題を線形計画法を用いて解く。
Figure JPOXMLDOC01-appb-I000009
ここで、拘束条件は以下のように書ける。
Figure JPOXMLDOC01-appb-I000010
式(6)の第3項は筋張力の平滑化のために付加している。以下式(6)から式(13)について説明する。
This problem is solved by smoothing the muscle tension within the cooperative muscle group. Using the following equation, the optimization vector a tau each element is positive, a f, with respect to a m, [delta] tau minimizes the objective function is the following formula, where [delta] f, obtaining the [delta] m, f Solve the problem using linear programming.
Figure JPOXMLDOC01-appb-I000009
Here, the constraint condition can be written as follows.
Figure JPOXMLDOC01-appb-I000010
The third term of equation (6) is added to smooth muscle tension. Equations (6) to (13) will be described below.
 式(6)の第1項及び式(7)、式(8)は、式(5)における誤差の最小化を目的とし、動力学的な整合性を保障している。式(5)は等式の形で書けるが、式(5)が解を持たない場合を考慮して条件を緩和している。目的関数式(6)がaτ δτを含むことで、式(8)により正に拘束された最小のδτが得られる。一方、式(7)により、式(5)の誤差をδτより小さくしている。これらの拘束条件を考慮することで式(5)の誤差を最小化することができる。
 式(6)の第2項及び式(9)、式(10)は、fを与えられた目標値fに近づける効果を持つ。例えば、適当な値のfを与えることで、屈筋・伸筋間の筋力の関係を一意に定めることができる。バイオメカニカルなアプリケーションとして筋電計の測定値を用いるなどが考えられる(特許文献1、非特許文献3、非特許文献4)。f=0とすると、最小の筋・腱・靱帯張力が得られる。
The first term of Equation (6), Equation (7), and Equation (8) are intended to minimize the error in Equation (5) and ensure dynamic consistency. Equation (5) can be written in the form of an equation, but the condition is relaxed in consideration of the case where equation (5) has no solution. Since the objective function formula (6) includes a τ T δ τ , the minimum δ τ positively constrained by the formula (8) is obtained. On the other hand, by the equation (7) is made smaller than the [delta] tau error of formula (5). Considering these constraint conditions, the error in equation (5) can be minimized.
The second term of Equation (6), Equation (9), and Equation (10) have the effect of bringing f closer to the given target value f * . For example, by giving an appropriate value of f * , it is possible to uniquely determine the relationship of the muscular strength between the flexors and extensors. It is conceivable to use a measurement value of an electromyograph as a biomechanical application (Patent Document 1, Non-Patent Document 3, Non-Patent Document 4). When f * = 0, the minimum muscle / tendon / ligament tension can be obtained.
 式(11)は筋・腱・靱帯張力の上限と下限の拘束であり、fmax≧0は最大筋張力を表す。最大筋張力fmaxは各筋ごとに独立に決めることができる。Hill-Stroeve筋モデルを用いて、筋長とその変化速度からfmaxを算出し、最大筋張力を与えることもできる。 Equation (11) is the upper limit and lower limit constraints of muscle / tendon / ligament tension, and f max ≧ 0 represents the maximum muscle tension. The maximum muscle tension f max can be determined independently for each muscle. Using the Hill-Stroeve muscle model, f max can be calculated from the muscle length and its rate of change to give the maximum muscle tension.
 最後に、式(6)の第3項及び式(12)、式(13)は協同筋群内において可能な限り筋張力を平滑化する効果を持つ。この効果は、2次計画法においては筋張力の2乗和の項を目的関数に付加することで実現できる。n本の筋からなるm番目の協同筋群Gを考える。
 この協同筋群内の筋張力の平均値は、
Figure JPOXMLDOC01-appb-I000011
で算出される。ここでfkはk番目の筋の筋張力を表す。k(k∈Gm)番目の筋の筋張力とそれが含まれる協同筋群における平均筋張力の差は、
Figure JPOXMLDOC01-appb-I000012
で表すことができる。ここでEGmkは、i番目の要素が、
Figure JPOXMLDOC01-appb-I000013
である行ベクトルである。全ての協同筋群についてのEGmk(k∈G)を並べることで、式(12)に示すEが得られる。
Finally, the third term of Equation (6), Equation (12), and Equation (13) have the effect of smoothing the muscle tension as much as possible within the cooperative muscle group. This effect can be realized by adding a term of sum of squares of muscle tension to the objective function in quadratic programming. Consider the n m made from this muscle m-th cooperative muscles G m.
The average value of muscle tension in this cooperative muscle group is
Figure JPOXMLDOC01-appb-I000011
Is calculated by Here, f k represents the muscle tension of the k-th muscle. The difference between the muscle tension of the k (k∈Gm) th muscle and the average muscle tension in the cooperative muscle group that contains it is
Figure JPOXMLDOC01-appb-I000012
Can be expressed as Where EGmk is the i-th element
Figure JPOXMLDOC01-appb-I000013
Is a row vector. By arranging the E Gmk (k∈G m) for all cooperating muscles, E G shown in Equation (12) is obtained.
 上記の例では、線形計画法を用いた最適化方法について説明したが、次に、二次計画法による筋張力の最適化方法の1つの態様を示す。不等式拘束条件つきの二次計画法「M. Renouf and P. Alart. Conjugate gradient type algorithms forfricional
multi-contact problems: Applications to granular materials. Vol. 194, pp. 2019.2041,
2005」に基づき、評価関数Zを、
Figure JPOXMLDOC01-appb-I000014
として、Zを最小にするfを求める。なお、K、Kは重みである。τG´は、τGからJc Tτcが差し引かれた一般化力である。
 これにより、筋張力を計測値に近づけることができる。また(τG´-Jf)も小さくなるので、力学的にも妥当な筋張力が計算できる。
In the above example, the optimization method using linear programming has been described. Next, one aspect of muscle tension optimization using quadratic programming will be described. Quadratic programming with inequality constraints `` M. Renouf and P. Alart. Conjugate gradient type algorithms forfricional
multi-contact problems: Applications to granular materials.Vol. 194, pp. 2019.2041,
2005 ", the evaluation function Z is
Figure JPOXMLDOC01-appb-I000014
Then, f that minimizes Z is obtained. K 1 and K 2 are weights. τ G ′ is a generalization force obtained by subtracting J c T τ c from τ G.
Thereby, muscle tension can be approximated to a measured value. In addition, (τ G ′ −J T f) is also small, so that a muscle tension that is mechanically reasonable can be calculated.
[C]リアルタイム全身筋張力推定法
[C-1]リアルタイム筋張力可視化システム
 図5に、リアルタイム筋張力可視化システムの概略図を示す。筋張力可視化システムは、筋張力推定手段と、推定された筋張力を用いて身体内部の活動情報を取得する手段と、運動時に撮影された被験者の画像及び推定された筋張力/取得された身体内部の活動情報を表示する手段と、を備えている。より具体的には、筋張力可視化システムは、身体の複数の所定部位に複数のマーカが付された被験者を撮影する複数の撮像手段(カメラ1)と、運動中の被験者を表示手段に表示するために撮影する撮影手段(DVカメラ2)と、床反力計測手段(フォースプレート3)と、筋電位計などの筋電位計手段(無線筋電位計4)と、一つ又は複数のコンピュータ装置5と、表示手段(スクリーン6)と、を含む。コンピュータ装置は、各種計算を行う演算処理部、入力部、出力部、表示部、各種データを格納する記憶部を備えている。モーションキャプチャデータ(運動データ)、筋電位、床反力を同時計測し、これを筋力の最適化において用いることで、力学的にも生理的にも妥当な筋張力を取得する。
[C] Real-time whole body muscle tension estimation method [C-1] Real-time muscle tension visualization system FIG. 5 shows a schematic diagram of a real-time muscle tension visualization system. The muscle tension visualization system includes a muscle tension estimation means, a means for acquiring activity information inside the body using the estimated muscle tension, an image of a subject taken during exercise and an estimated muscle tension / acquired body. Means for displaying internal activity information. More specifically, the muscle tension visualization system displays a plurality of imaging means (camera 1) for photographing a subject having a plurality of markers attached to a plurality of predetermined parts of the body, and displays the subject in motion on the display means. Photographing means (DV camera 2) for photographing, ground reaction force measuring means (force plate 3), myoelectric meter means (wireless myoelectric meter 4) such as myoelectric meter, and one or more computer devices 5 and display means (screen 6). The computer device includes an arithmetic processing unit that performs various calculations, an input unit, an output unit, a display unit, and a storage unit that stores various data. By simultaneously measuring motion capture data (exercise data), myoelectric potential, and floor reaction force, and using them in optimizing muscle force, a muscle tension that is appropriate mechanically and physiologically is acquired.
 図5Aに、リアルタイム筋張力可視化システムのフロー図を示す。人体の運動データ、床反力は光学式モーションキャプチャ及びフォースプレートを用いて計測し、筋電位データは無線筋電計を用いて計測する。それぞれのデータはシステム制御PCに同期してリアルタイムで取得される。その後、運動データから筋骨格モデルの逆運動学計算(IK)を解くことで、関節角、筋長、筋長変化速度が得られる。このようにして、Hill-Stroeve筋モデルに基づく筋の筋張力の取得及び逆動力学計算(ID)及び最適化計算を用いた筋張力の推定に必要な情報を取得する。推定された筋張力は、筋骨格モデル上に配置された筋の色の変化(例えば、筋張力が大きくなるにしたがって黄色から赤色に変化させる)で可視化される。更に、同期してDVカメラを用いて実際の実験風景を撮影し、視点を合わせた上で上記筋骨格モデルに重ね合わせて可視化する。図6に実際に提示された映像のスクリーンショットを示す。 FIG. 5A shows a flow diagram of the real-time muscle tension visualization system. Human body motion data and floor reaction force are measured using an optical motion capture and force plate, and myoelectric potential data is measured using a wireless electromyograph. Each data is acquired in real time in synchronization with the system control PC. Thereafter, by solving inverse kinetic calculation (IK) of the musculoskeletal model from the motion data, the joint angle, the muscle length, and the muscle length change speed can be obtained. In this manner, information necessary for acquiring muscle tension of the muscle based on the Hill-Stroeve muscle model and estimating muscle tension using inverse dynamics calculation (ID) and optimization calculation is acquired. The estimated muscle tension is visualized by a change in the color of the muscles arranged on the musculoskeletal model (for example, the color is changed from yellow to red as the muscle tension increases). Furthermore, the actual experimental scenery is photographed using a DV camera synchronously, and the viewpoints are matched and superimposed on the musculoskeletal model for visualization. FIG. 6 shows a screen shot of the actually presented video.
[C-2]筋張力推定の全体構成
 本実施形態に係る筋張力取得は大きく分けて次の2つの工程を備えている。
 先ず、EMGデータを用いて、EMG電極が装着された筋の筋張力、及び、この筋に密接に関連する筋の筋張力を求める。
 次いで、筋張力fと関節トルクτ´との関係
Figure JPOXMLDOC01-appb-I000015
を用いて他の筋の筋張力を推定する。また、未知数の数を低減することに加えて、EMGデータは、下記制約(3)を満足させる解の効率的な推定を可能とする。
[C-2] Overall Configuration of Muscle Tension Estimation Muscle tension acquisition according to this embodiment is roughly divided into the following two steps.
First, using EMG data, the muscle tension of a muscle to which an EMG electrode is attached and the muscle tension of a muscle closely related to the muscle are obtained.
Next, the relationship between muscle tension f and joint torque τ G
Figure JPOXMLDOC01-appb-I000015
Is used to estimate the muscle tension of other muscles. In addition to reducing the number of unknowns, the EMG data enables efficient estimation of solutions that satisfy the following constraint (3).
 表2に、筋骨格モデルの要素数及び自由度を示す。
 左列は体幹の脊柱起立筋群等細部の筋まで全てモデル化した従来の解析用のモデルである。最適化計算の目的関数は、
Figure JPOXMLDOC01-appb-I000016
であり、不等式拘束条件
Figure JPOXMLDOC01-appb-I000017
を満たすように最適化計算が行われる(非特許文献3参照)。
 表2において、右列のsimplified modelは、左列の詳細なモデルであるcomplex modelから重要度の低い要素を間引いたモデルである。表2に示すモデルは例示であって、本発明がこれらのモデルに限定されるものではない。また、後述する第2実施形態では、simplified modelにおける筋の本数を274から314に増加させている。
Figure JPOXMLDOC01-appb-T000018
 本発明の実施形態では、リアルタイム推定のために計算コスト低減を目的として、simplified modelをさらにグルーピングによって要素数を減らして低次元化することで、最適化計算の規模を縮小している。実際、本実施形態では、16ms(従来の最適化計算に比べて10倍以上の速度)で筋張力を推定することができる。
Table 2 shows the number of elements and the degree of freedom of the musculoskeletal model.
The left column is a model for conventional analysis in which all muscles such as the standing spine of the trunk are modeled. The objective function of the optimization calculation is
Figure JPOXMLDOC01-appb-I000016
And inequality constraints
Figure JPOXMLDOC01-appb-I000017
Optimization calculation is performed so as to satisfy (see Non-Patent Document 3).
In Table 2, the simplified model in the right column is a model in which elements of low importance are thinned out from a complex model that is a detailed model in the left column. The models shown in Table 2 are examples, and the present invention is not limited to these models. In the second embodiment to be described later, the number of muscles in the simplified model is increased from 274 to 314.
Figure JPOXMLDOC01-appb-T000018
In the embodiment of the present invention, the scale of the optimization calculation is reduced by reducing the number of elements by reducing the number of elements by further grouping the simplified model for the purpose of reducing the calculation cost for real-time estimation. In fact, in the present embodiment, the muscle tension can be estimated at 16 ms (10 times or more faster than the conventional optimization calculation).
[C-3]筋のグルーピング
 ここで神経生理学の分野における筋同士の神経結合について考える。神経結合は介在ニューロンを介した筋同士の結合であり、促通性と抑制性が考えられている。促通性の結合を持つ筋は協同筋として働き、抑制性の結合を持つ筋は拮抗筋として働く。この神経結合の機能的意義について考える場合、筋の作用ごとに分類し、例えば肘の屈筋群と伸筋群などの筋群(協同筋)に分けて論じられることが多い。これは、異名筋促通や拮抗筋抑制の考えを前提にすると、同一筋群の中では促通性の、拮抗作用を示す筋群の間では抑制性の結合が予想でき、筋群にまとめることで神経結合の機能をより単純化して考えることができるからである。
[C-3] Muscle Grouping Here, consider the nerve connection between muscles in the field of neurophysiology. Nerve connection is the connection of muscles via interneurons, and facilitating and inhibitory properties are considered. Muscles with fascinating bonds act as cooperative muscles and muscles with inhibitory bonds act as antagonistic muscles. When considering the functional significance of this nerve connection, it is often classified according to the action of the muscles and divided into muscle groups (cooperative muscles) such as the elbow flexor muscle group and the extensor muscle group in many cases. This is based on the premise of synonymous muscle facilitation and antagonistic muscle suppression, which can be expected to be facilitating within the same muscle group, and suppressive binding between muscle groups that exhibit antagonism. This is because the function of nerve connection can be considered in a simplified manner.
 このことから、本実施形態では、全身の筋を異名筋促通のグループに分類し、グループ内で1つの筋を代表筋として選択して筋電計を設け、代表する筋の筋電位を計測し、その活動度をグループ内の全筋の活動度の代表値とする。本実施形態では、一般的な無線筋電計のチャンネル数である16chで全身の筋を計測する。 For this reason, in this embodiment, the muscles of the whole body are classified into groups of aliasing muscles, one muscle is selected as the representative muscle in the group, and an electromyograph is provided to measure the myoelectric potential of the representative muscle. The activity level is set as a representative value of the activity levels of all muscles in the group. In this embodiment, muscles of the whole body are measured with 16 channels, which is the number of channels of a general wireless electromyograph.
 筋の分割については、四肢の関節の運動に注目し、肩関節(水平)屈曲/伸展、肘関節屈曲/伸展、股関節屈曲/伸展、足首関節背屈/底屈に分類する(膝関節については、股関節と連動する部分が多いため、まとめる)。各グループにおいて代表する筋を、三角筋前部、三角筋後部、上腕二頭筋長頭、上腕三頭筋外側頭、大腿直筋、大腿二頭筋長頭、前脛骨筋、腓腹筋外側頭とする。各筋の%MVCを計測し、その筋が含まれる異名筋促通のグループ全ての筋の筋活動度とし、モーションキャプチャから得られた筋長及び筋長変化速度から筋張力を求める。
 本態様では、手足の運動に着目し、身体の左右のそれぞれの5つの関節(合計10個)について考える。さらに、筋は表3に示すように、8つの群に分けられる。
Figure JPOXMLDOC01-appb-T000019
For muscle division, focus on the movement of the joints of the limbs and classify them into shoulder joint (horizontal) flexion / extension, elbow joint flexion / extension, hip joint flexion / extension, ankle joint dorsiflexion / plantar flexion (for knee joints) Because there are many parts that are linked to the hip joints, they are summarized.) The muscles represented in each group are the anterior deltoid muscle, the posterior deltoid muscle, the long biceps long head, the triceps lateral head, the rectus femoris, the biceps long head, the anterior tibial muscle, the gastrocnemius lateral head and To do. The% MVC of each muscle is measured, and the muscle activity is obtained from the muscle length and the muscle length change rate obtained from the motion capture, and the muscle tension is obtained from the muscle activity levels of all the muscles in the alias muscle promotion group including the muscle.
In this embodiment, attention is paid to the movement of the limbs, and the five joints (10 in total) on the left and right sides of the body are considered. Furthermore, the muscles are divided into 8 groups as shown in Table 3.
Figure JPOXMLDOC01-appb-T000019
 各筋グループMi(i=1, 2, . . . , 8)のそれぞれの筋は、さらに、次の3つの組に分けられる。
 1.MiEMG:それらのEMG信号が測定される代表筋の筋群。
 2.Mihigh: 筋群MiEMGと寄与する関節が全く同じである筋からなる筋群。
 3.Milow: 筋群MiEMGと寄与する関節一部において同じである筋からなる筋群。
 MEMG、Mhigh、Mlowは、それぞれ、
 MEMG=M1EMG∪M2EMG∪…∪M8EMGのように規定する。
 表3のいずれの筋グループにも属しない筋をMothersとする。
Each muscle group M i (i = 1, 2 ,..., 8) each muscle is further divided into the following three sets.
1. MiEMG : Muscle groups of representative muscles whose EMG signals are measured.
2. M high : A muscle group composed of muscles that have exactly the same joints as the M iEMG .
3. M ilow : A muscle group composed of muscles that are the same in part of the joints that contribute to the muscle group MiEMG .
M EMG , M high , and M low are respectively
M EMG = M 1EMG ∪M 2EMG ∪... EMM 8EMG
A muscle that does not belong to any of the muscle groups of Table 3, M others.
 これらの筋の筋張力を以下の流れで取得する。
 まず、MEMG、Mhighに含まれる筋については、筋電位及びHill-Stroeve筋モデルから筋張力を取得する。
 そして、逆動力学計算及び最適化計算によって、残りの筋、すなわち、Mlow、Mothersに含まれる筋の筋張力を推定する。
The muscle tension of these muscles is acquired in the following flow.
First, for the muscles included in M EMG and M high , muscle tension is acquired from the myoelectric potential and the Hill-Stroeve muscle model.
Then, the muscle tension of the muscles included in the remaining muscles, that is, the muscles included in M low and Others , is estimated by inverse dynamics calculation and optimization calculation.
[C-4]Hill-Stroeve筋モデルを用いた筋張力の取得
 Hill-Stroeve筋モデルを用いて筋張力推定をする場合に必要なデータとして、筋長、筋長変化速度、筋活動度がある。全ての筋の筋長、筋長変化速度、筋活動度が得られた場合、各筋の筋張力fは次の式で表される。
Figure JPOXMLDOC01-appb-I000020
 ここで、a、l、Fmaxiは、それぞれ、筋肉iの筋活動度、筋長、筋長の変化速度、最大等尺性筋力、であり、Fl(*)、Fv(*)は、筋張力と筋長、筋張力と筋長の変化速度、を表す関数である。関節角及び速度を用いた順動力学計算によって、li、l(ドット)iが与えられる。
[C-4] Acquisition of muscle tension using the Hill-Stroeve muscle model Data necessary for estimating muscle tension using the Hill-Stroeve muscle model includes muscle length, muscle length change rate, and muscle activity. . When the muscle length, the muscle length change rate, and the muscle activity of all muscles are obtained, the muscle tension f * of each muscle is expressed by the following expression.
Figure JPOXMLDOC01-appb-I000020
Here, a i , l i , and F maxi are the muscle activity, muscle length, muscle length change speed, and maximum isometric strength of muscle i, respectively, and F 1 (*), F v (* ) Is a function that represents muscle tension and muscle length, and the rate of change of muscle tension and muscle length. The forward dynamics calculation using the joint angle and velocity gives l i , l (dot ) i .
 筋活動度aiの進展を、1次微分方程式でモデル化する。
Figure JPOXMLDOC01-appb-I000021
 ここで、Tは時定数であり、uiはMVCによって正規化されたEMG信号から計算される運動神経からの入力である。
 EMG信号からの筋活動度の算出には幾つかのやり方が当業者に知られており、例えば、以下の文献に記載された算出法を用いることができる。
 S.Stroeve. Learning combined feedback and feedforward
control of a musculoskeletal system. Biological Cybernetics, Vol. 75, pp. 73.83,
1996.
The evolution of muscle activity a i is modeled by a first-order differential equation.
Figure JPOXMLDOC01-appb-I000021
Here, T is a time constant, and u i is an input from a motor nerve calculated from an EMG signal normalized by MVC.
Several methods are known to those skilled in the art for calculating the degree of muscle activity from the EMG signal. For example, the calculation methods described in the following documents can be used.
S.Stroeve. Learning combined feedback and feedforward
control of a musculoskeletal system. Biological Cybernetics, Vol. 75, pp. 73.83,
1996.
 各グループの代表筋の筋張力は、式(4)から直接計算することができる。
 筋k∈Mihighは、以下の式によって、同じグループの代表筋r∈MiEMGの活動度から推定することができる。
Figure JPOXMLDOC01-appb-I000022
 ここで、Er→k(*)は、グループMに含まれる筋kの活動度aiと、計測された代表筋の活動度aの関係を表す。Er→k(*)の関数としては、Georgepoulosらにより主張されるコサインチューニングに従う方法等が考えられるが、ここでは次式で定義する。
Figure JPOXMLDOC01-appb-I000023
The muscle tension of the representative muscle of each group can be calculated directly from Equation (4).
The muscle kεM high can be estimated from the activity of the representative muscle rεM iEMG of the same group by the following equation.
Figure JPOXMLDOC01-appb-I000022
Here, E r → k (*) represents the activity of a i of muscle k included in the group M i, the relationship between the activity of a r of the measurement representative muscle. As a function of E r → k (*), a method according to cosine tuning claimed by Georgepoulos et al. Can be considered, but here it is defined by the following equation.
Figure JPOXMLDOC01-appb-I000023
[C-5]逆動力学計算及び最適化計算による筋張力推定
 ここまで、第1筋群、第2筋群の筋張力が取得され、したがって、最適化のための未知数の数を削減することができる。しかしながら、依然として、不等式拘束条件を備えた最適化計算の計算コストは大きい。以下に、不等式拘束条件を用いない効率的な筋張力推定について説明する。
[C-5] Muscle tension estimation by inverse dynamics calculation and optimization calculation Up to this point, the muscle tensions of the first muscle group and the second muscle group have been acquired, and therefore the number of unknowns for optimization is reduced. Can do. However, the computational cost of optimization calculation with inequality constraints is still high. Below, efficient muscle tension estimation which does not use an inequality constraint condition is demonstrated.
先ず、式(1)における筋張力f、ヤコビアンJを各筋群に分配する。
Figure JPOXMLDOC01-appb-I000024
 ここで、JEMG,Jhigh,Jlow,Jothersは、関節角に対する各MEMG,Mhigh,Mlow,Mothersにおける筋長のヤコビ行列、fEMG,fhigh,flow,fothersは、各群における筋張力である。
 τ´は、既に床反力τが差し引かれた一般化力である。
 さらに、以下のように変形する。
Figure JPOXMLDOC01-appb-I000025
 ここで、
Figure JPOXMLDOC01-appb-I000026
 未知数の数は低減されているが、不等式拘束条件f≦0を備え、したがって、反復計算を伴う最適化計算を行う必要がある。
 ここで、singularity-robust
(SR) inverse [NAKAMURA, Y., AND HANAFUSA, H. 1986.“Inverse Kinematics Solutions
with Singularity Robustness for Robot Manipulator Control”. Journal of Dynamic Systems,
Measurement, and Control 108, 163.171.]を用いることで、不等式拘束条件を用いないで、反復計算を伴わない最適化計算を提案する。
First, the muscle tension f and Jacobian J in equation (1) are distributed to each muscle group.
Figure JPOXMLDOC01-appb-I000024
Here, J EMG , J high , J low , J others are the muscle length Jacobian matrix for each joint angle, M EMG , M high , M low , M others , f EMG , f high , f low , f others are , Muscle tension in each group.
τ G ′ is a generalized force from which the floor reaction force τ C has already been subtracted.
Further, the deformation is made as follows.
Figure JPOXMLDOC01-appb-I000025
here,
Figure JPOXMLDOC01-appb-I000026
Although the number of unknowns is reduced, it has an inequality constraint f ≦ 0, and therefore it is necessary to perform an optimization calculation with an iterative calculation.
Where singularity-robust
(SR) inverse [NAKAMURA, Y., AND HANAFUSA, H. 1986. “Inverse Kinematics Solutions
with Singularity Robustness for Robot Manipulator Control ”. Journal of Dynamic Systems,
Using Measurement, and Control 108, 163.171.], We propose an optimization calculation without iterative calculation without using inequality constraints.
 先ず、式(6)を用いて、Mlowの筋張力の初期推定値を求める。
Figure JPOXMLDOC01-appb-I000027
 ここで、k∈Milow、r∈MiEMGである。筋rと筋kは、同じ異名筋促通グループに属するので、式(11)は初期値としては適当であると言える。
First, using Equation (6), an initial estimated value of M low muscle tension is obtained.
Figure JPOXMLDOC01-appb-I000027
Here, k∈M ilow, is r∈M iEMG. Since the muscle r and the muscle k belong to the same synonymous muscle promotion group, it can be said that the expression (11) is appropriate as an initial value.
 ついで、逆動力学計算によって得られた関節トルクを用いて、筋張力を補正していく。アルゴリズムは、各関節jについて、以下の工程を繰り返す。 Next, the muscle tension is corrected using the joint torque obtained by the inverse dynamics calculation. The algorithm repeats the following steps for each joint j.
 ステップ1:関節jを駆動し、かつ、Mlow及びMothersに属する全ての筋を集めて、筋群MJjを形成する。また、式(9)における関節j、筋群MJjにおける筋に対応する行列を抽出して、
Figure JPOXMLDOC01-appb-I000028
とする。
Step 1: Drive joint j and collect all muscles belonging to M low and M others to form muscle group M Jj . Further, a matrix corresponding to the joint j in equation (9) and the muscle in the muscle group M Jj is extracted,
Figure JPOXMLDOC01-appb-I000028
And
 ステップ2:全ての筋k∈MJjについて、以下の式によって、fjk0の初期推定値を取得し、
Figure JPOXMLDOC01-appb-I000029
全てのkに対してf jk0を補正することで、f j0を形成する。
Step 2: For all muscles k∈M Jj , obtain an initial estimate of f jk0 by the following formula:
Figure JPOXMLDOC01-appb-I000029
By correcting f * jk0 for all k, f * j0 is formed.
 ステップ3:式(12)からJ j0を差し引いて、次の式を得る。
Figure JPOXMLDOC01-appb-I000030
Step 3: Subtract J T j f * j0 from equation (12) to obtain the following equation.
Figure JPOXMLDOC01-appb-I000030
 ステップ4:J のSR-inverse、JT* を用いて、Δfj0を解き、次式によって更新されたfを得る。
Figure JPOXMLDOC01-appb-I000031
 SR-inverseは、
Figure JPOXMLDOC01-appb-I000032
 を最小化するものであり、ここで、tは正の重みである。Δfj0の要素は、十分に小さく、fj1が正とはならないことが予想される。
 もし、fj1≦0が保持されれば、f=fj1として終了する。
 さもなければ、ステップ5に進む。
Step 4: J T j of SR-inverse, using J T * j, solving Delta] f j0, obtain f j updated by the following equation.
Figure JPOXMLDOC01-appb-I000031
SR-inverse
Figure JPOXMLDOC01-appb-I000032
, Where t is a positive weight. The element of Δf j0 is expected to be small enough that f j1 will not be positive.
If f j1 ≦ 0 is held, the processing ends with f j = f j1 .
Otherwise, go to step 5.
 ステップ5:大きさがfj1と同じで、要素がfj1の最大値(正)であるベクトルfj1max を形成する。第2の推定値f*j1=fj1―fj1max≦0で計算する。 Step 5: Form a vector f j1max having the same size as f j1 and the element being the maximum value (positive) of f j1 . Computing the second estimated value f * j1 = f j1 -f j1max ≦ 0.
 ステップ6:式(12)からJ j0を差し引いて、次の式を得る。
Figure JPOXMLDOC01-appb-I000033
Step 6: Subtract J T j f * j0 from equation (12) to obtain the following equation.
Figure JPOXMLDOC01-appb-I000033
 ステップ7:再び、JT jのSR-inverseを用いてΔfj1を解き、次式によってfjを更新する。
Figure JPOXMLDOC01-appb-I000034
 上記ステップ4における議論と同様に、fj2の多くの要素は負であり、正であったとしても、少なくとも、小さいことが予想される。したがって、fj2をfjの近似として用いることができる。
Step 7: Again, Δf j1 is solved using SR-inverse of J T j and f j is updated by the following equation.
Figure JPOXMLDOC01-appb-I000034
Similar to the discussion in step 4 above, many elements of f j2 are negative and, if positive, are expected to be at least small. Therefore, f j2 can be used as an approximation of f j .
 上記アルゴリズムはJT jのSR-inverseのみを用いるものであり、関節jを駆動する筋のみ考慮すればよいので、Jjのサイズは小さいものとなる。したがって、このアルゴリズムは、反復計算による最適化計算に比べて高速である。
 本実施形態に係る筋張力推定法によれば、全身の筋張力推定に要する時間は16msであり、体性感覚情報の可視化に要した時間は68msであった(用いた計算機は、3.33 GHz Intel Xeon processor (3.25 GB RAM, NVIDIA Quadro FX3700)である)。結果として、15fpsのフレーム速度の視覚化システムが構築できた。
The above algorithm uses only J T j SR-inverse, and only the muscles that drive the joint j need to be considered, so the size of J j is small. Therefore, this algorithm is faster than the optimization calculation by iterative calculation.
According to the muscle tension estimation method according to this embodiment, the time required to estimate muscle tension of the whole body was 16 ms, and the time required to visualize somatosensory information was 68 ms (the computer used was 3.33 GHz Intel Xeon processor (3.25 GB RAM, NVIDIA Quadro FX3700). As a result, a 15fps frame rate visualization system was constructed.
[C-6]体性感覚情報のリアルタイム提示
 本発明の実施形態では、被験者の撮影画像あるいは/および当該撮影画像に基づく合成画像を表示部に表示すると共に、表示された被験者の画像に筋骨格モデルをオーバーレイし、上記推定法により取得した筋張力に基づく身体内部の活動情報(体性感覚情報)を筋骨格モデルに反映させて視覚的に表示する。
 自分の動きに同期して動く自分の実写映像の上に筋活動の画像を被せることで、いかにも自分の体の中が透けて見えているような感覚を自然に感じさせる、すなわち、体内の体性感覚を透視できているという状況を実現することができる(図6参照)。
[C-6] Real-time presentation of somatosensory information In the embodiment of the present invention, a photographed image of a subject and / or a composite image based on the photographed image is displayed on a display unit, and the musculoskeletal is displayed on the displayed subject image. The model is overlaid, and the activity information (somatosensory information) inside the body based on the muscle tension acquired by the above estimation method is reflected in the musculoskeletal model and displayed visually.
By putting an image of muscle activity on your live-action video that moves in synchronization with your movement, you can naturally feel the sensation of seeing through your body. A situation where the sexual sense can be seen through can be realized (see FIG. 6).
 ここで、筋が活動する際の流れについて説明する。脊髄内のα運動ニューロンが、上位中枢からの運動指令信号あるいは筋の固有感覚受容器からの信号により興奮性に活動する。この信号は「脊髄神経束」を通って脊髄外へ出る。α運動ニューロンから各筋上の終板構造に向かい「脊髄神経束」が分化して信号が伝達される。終板構造において興奮性の信号がまとめられ、筋に活動電位を与える。これが「筋肉の活動」に繋がる。筋上を活動電位が伝達されていく際に「筋張力」が生じる。したがって、筋活動度や脊髄神経束の活動をリアルタイムで取得して提示するためには、筋張力をリアルタイムで取得することが重要である。 Here, the flow when the muscles are active will be explained. The α motor neurons in the spinal cord are activated in an excitatory manner by motor command signals from the upper center or signals from muscle proper sensory receptors. This signal goes out of the spinal cord through the spinal nerve bundle. From the α motor neuron to the endplate structure on each muscle, the “spinal nerve bundle” differentiates and signals are transmitted. In the endplate structure, excitatory signals are combined to give action potentials to the muscles. This leads to “muscle activity”. “Muscle tension” is generated when action potential is transmitted on the muscle. Therefore, in order to acquire and present the muscle activity level and spinal nerve bundle activity in real time, it is important to acquire muscle tension in real time.
 より具体的には、ビデオカメラにより撮られる映像の上に筋骨格モデルをオーバーレイして表示し、その筋骨格モデル上の筋の色や形状により筋活動度を表現する。筋張力/筋活動度は筋の色を、例えば、黄色→赤色に連続的に変化させることで表示する。したがって、オーバーレイにおいて、筋が活動している部分は、例えば赤色で表示される。また、筋の疲労を筋の太さで表現してもよい。1つの態様では、筋の疲労として、筋張力を時間積分した値を用いる。 More specifically, the musculoskeletal model is overlaid and displayed on the video taken by the video camera, and the muscle activity is expressed by the color and shape of the muscle on the musculoskeletal model. The muscle tension / muscle activity level is displayed by continuously changing the color of the muscle, for example, from yellow to red. Accordingly, in the overlay, the portion where the muscle is active is displayed in red, for example. Further, muscle fatigue may be expressed by muscle thickness. In one aspect, a value obtained by integrating the muscle tension over time is used as muscle fatigue.
 脊髄神経束の活動は、各脊髄神経束の位置にシンボル、例えば球、を表示し、その色で活動を表現する(図9参照)。図9では、便宜上、表示部に表示された筋骨格モデルにおいて脊髄神経束の位置に球を表示しているが、これをさらに被験者の画像にオーバーレイすることができる。
 脊髄神経束の活動の推定については、例えば、下記の文献を参照することができる。
 Murai, A, Yamane, K, and Nakamura,
Y, "Modeling and Identification of Human Neuromusculoskeletal Network Based
on Biomechanical Property of Muscle," the 30th IEEE EMBS Annual
International Conference, pages 3706-3709, Vancouver, August 2008.
For the activity of the spinal nerve bundle, a symbol, for example, a sphere, is displayed at the position of each spinal nerve bundle, and the activity is expressed by its color (see FIG. 9). In FIG. 9, for convenience, a sphere is displayed at the position of the spinal nerve bundle in the musculoskeletal model displayed on the display unit, but this can be further overlaid on the image of the subject.
For estimation of spinal nerve bundle activity, for example, the following documents can be referred to.
Murai, A, Yamane, K, and Nakamura,
Y, "Modeling and Identification of Human Neuromusculoskeletal Network Based
on Biomechanical Property of Muscle, "the 30 th IEEE EMBS Annual
International Conference, pages 3706-3709, Vancouver, August 2008.
[D]筋張力推定の第2実施形態
 第2実施形態における装置の全体構成や全体の処理の流れは、筋のグルーピング及び最適化計算を除いて、第1実施形態と同じであり、図5、図5Aに示す通りである。まず光学式モーションキャプチャと逆運動学計算により被験者の関節角度を得る。次に逆運動学から求まった関節角度、フォースプレートから得られる床反力から逆動力学計算を行って関節トルクを得る。最後にEMGや関節トルクから筋のグルーピングに基づいて最適化計算を行い筋張力の推定を行う。
[D] Second Embodiment of Muscle Tension Estimation The overall configuration of the apparatus and the overall processing flow in the second embodiment are the same as in the first embodiment except for muscle grouping and optimization calculation, and FIG. This is as shown in FIG. 5A. First, the joint angle of the subject is obtained by optical motion capture and inverse kinematics calculation. Next, the joint torque is obtained by performing the reverse dynamics calculation from the joint angle obtained from the reverse kinematics and the floor reaction force obtained from the force plate. Finally, optimization calculation is performed based on muscle grouping from EMG and joint torque, and muscle tension is estimated.
 生体における反射の一つとして、骨格筋を収縮させる体性反射がある。筋の固有受容器は筋長やその変化速度、筋張力の変化を感知する。筋長やその変化の速度は筋紡錘によって、また筋張力はGolgi腱器官によって感知される。固有受容器は中枢の運動調節に2つの側面から貢献している。1つは反射効果であり、もう1つは固有受容器からの情報が運動や姿勢の状態を上位脳に伝える事である。運動指令で運動が起こると筋の状態は変化し、固有受容器反射は必然的に誘発される。その反射効果は運動プログラムに反映され、運動パターンの形成と修正に寄与する。
 筋紡錘に由来する反射には伸張反射、拮抗抑制、α-γ関連などが挙げられるが、伸張反射に注目する。伸張反射とはある主動筋の筋紡錘に由来する神経線維の発火は、その筋を支配する運動ニューロン
(同名筋運動ニューロン
)とその協同筋の運動ニューロンに単シナプス性の興奮が引き起こされることである。
 伸張反射により、或る動作に必要な主動筋に上位中枢から信号が送られると、その筋のIa群神経線維から戻ってきた信号が協同筋の運動ニューロンに興奮効果を与え、協同筋に信号が送られる。その結果、関節トルクを出す為に協同筋の間で筋張力の分配が行われる。よって協同筋同士は同程度の筋活動度を持つことが期待される。そこで協同筋に注目し、協同筋同士は同程度の筋活動度を持つものとしグルーピングを行うことで計算の低次元化を図る。ただし、解剖学に基づきIa群神経線維と運動ニューロンの接続から協同筋は明らかにされていない。本実施形態では、解剖学ではなく運動学の面から協同筋について考え、協同筋のグルーピングを行う。
One of the reflections in the living body is somatic reflection that contracts skeletal muscle. Muscle proper receptors sense changes in muscle length, rate of change, and muscle tension. Muscle length and the rate of change are sensed by the muscle spindle, and muscle tension is sensed by the Golgi tendon organ. Properceptors contribute to central motor regulation from two aspects. One is the reflex effect, and the other is that information from proper receptors conveys the state of movement and posture to the upper brain. When movement occurs in response to a movement command, the state of the muscle changes, and the proper receptor reflex is inevitably triggered. The reflection effect is reflected in the motion program and contributes to the formation and correction of the motion pattern.
Reflexes derived from muscle spindles include stretch reflex, antagonistic inhibition, α-γ related, etc., but pay attention to stretch reflex. Stretch reflex is the firing of nerve fibers derived from the main spindle of the main muscle, which is the motor neuron that controls the muscle
(Same muscle motor neuron
) And its synergistic motor neurons cause monosynaptic excitement.
When a signal is sent from the upper center to the main muscle required for certain movements due to stretch reflex, the signal returned from the Ia group nerve fiber of that muscle gives excitement effect to the motor neuron of the synergistic muscle and signals to the synergistic muscle Will be sent. As a result, muscle tension is distributed among the cooperative muscles in order to generate joint torque. Therefore, cooperative muscles are expected to have the same degree of muscle activity. Therefore, paying attention to the cooperative muscles, the cooperative muscles have the same degree of muscle activity, and the grouping is performed to reduce the calculation. However, based on anatomy, the synergistic muscle has not been clarified from the connection of group Ia nerve fibers and motor neurons. In this embodiment, cooperative muscles are considered from the viewpoint of kinematics rather than anatomy, and grouping of cooperative muscles is performed.
[D-1]筋のグルーピング
 以下の記述において、i,jを筋のグループのインデックス、kを筋のインデックスとして用いる。
 まず四肢と体幹の動きに注目し、全身の筋を異名筋促通のグループMi(i=1,2,...,nG)に分類する。nGはMiのグループ数である。各グループはさらに以下の2つのグループに分類される。
[D-1] Muscle Grouping In the following description, i and j are used as the muscle group index, and k is used as the muscle index.
First, attention to the movement of the limbs and trunk, group the muscle of the whole body of the nickname muscle facilitation M i (i = 1,2, ... , n G) be classified into. n G is the number of groups of M i. Each group is further classified into the following two groups.
1.Mihigh:グループを代表するEMGが計測されている筋、及び、EMGが計測されている筋と起始停止する骨が同じである筋。同じグループに属する筋は筋活動度が同程度であることが期待される。第2実施形態におけるMhighは、第1実施形態におけるMEMG+Mhighに対応する。
2.Milow:上記のMihighに属さない筋。さらに起始停止している骨によってMi,1low,..., Mi,nilowに分類する。ただし、niはMilow内のMi,jlowのグループ数である。
1. M ihigh : Muscle where EMG representing the group is measured, and muscle where EMG is measured and the bone that starts and stops are the same. Muscles belonging to the same group are expected to have similar muscle activity. M high in the second embodiment corresponds to M EMG + M high in the first embodiment.
2. M ilow : A muscle not belonging to the above Mi high . Further, it is classified into M i, 1low , ..., M i, nilow according to the bone that has started and stopped. Here, n i is the number of groups of M i, jlow in M ilow .
 各グループMiにはEMGを計測される筋は2つ以上存在しないものとする。さらに、Mhigh =M1high∪M2high∪...∪MnGhigh,Mlow=M1low∪M2low∪...∪MnGlowによりMhigh,Mlowを定義する。なお、筋電位を計測している筋の本数をnEMG(≦nG)としたとき、筋電位を計測している筋が含まれているグループはM1,...,MnEMGであり、M(nEMG+1)high,..., Mnghighは空集合である。なお、本実施形態ではnG=36,nEMG=16とした。EMGを計測する筋及びその筋が寄与する関節の動きについては表4を参照することができる。表3と比べて各グループに属する筋本数が若干異なるのは、グルーピングの前提となる筋骨格モデル(simplified model)における筋本数が第1実施形態と第2実施形態とで異なるためである。
Figure JPOXMLDOC01-appb-T000035
Each group M i streaks to be measured EMG shall not exist two or more. Furthermore, M high = M 1high ∪M 2high ∪ ... ∪M nGhigh , M low = M 1low ∪M 2low ∪ ... ∪M nGlow defines M high and M low . If the number of muscles measuring myoelectric potential is n EMG (≦ n G ), the group containing the muscles measuring myoelectric potential is M 1 , ..., M nEMG , M (nEMG + 1) high , ..., M nghigh is an empty set. In this embodiment, n G = 36 and n EMG = 16. Table 4 can be referred to for the muscle that measures EMG and the movement of the joint to which the muscle contributes. The reason why the number of muscles belonging to each group is slightly different from that in Table 3 is that the number of muscles in the musculoskeletal model (simplified model) that is a premise of grouping differs between the first embodiment and the second embodiment.
Figure JPOXMLDOC01-appb-T000035
 本実施形態で用いた筋のグループの詳細について以下に示す。Mhighに属する筋のうち、グループを代表し筋電位が計測されている筋は太字で示した。大胸筋や広背筋など筋骨格モデルにおいては1つの筋が複数本のワイヤで表現されている場合もあるが、ここでは複数本のワイヤで表現されている場合も一つの筋として表記した。グループ1~8は、M1,...,MnEMG(表4のグループ1~8に対応する)に対応する。グループ9~18において、Mhighは空集合である。尚、以下のグルーピングは一つの態様を例示するに過ぎないものであり、本発明に適用され得るグルーピングは、本明細書に記載されたものに限定されないことは当業者に理解される。 Details of the muscle group used in the present embodiment will be described below. Among the muscles belonging to M high , the muscles representing the group and for which the myoelectric potential is measured are shown in bold. In a musculoskeletal model such as the great pectoral muscle or latissimus dorsi muscle, one muscle may be represented by multiple wires, but here it is also represented as a single muscle when represented by multiple wires. Groups 1-8 correspond to M 1 ,..., M nEMG (corresponding to groups 1-8 in Table 4). In groups 9 to 18, M high is an empty set. It should be noted that the following grouping is merely an example, and those skilled in the art will understand that groupings that can be applied to the present invention are not limited to those described in this specification.
グループ1:肩関節の水平内転
Figure JPOXMLDOC01-appb-I000036
グループ2:肩関節の水平外転
Figure JPOXMLDOC01-appb-I000037
グループ3:肘関節の屈曲
Figure JPOXMLDOC01-appb-I000038
グループ4:肘関節の伸展
Figure JPOXMLDOC01-appb-I000039
グループ5:股関節の伸展と膝関節の屈曲
Figure JPOXMLDOC01-appb-I000040
グループ6:股関節の屈曲と膝関節の伸展
Figure JPOXMLDOC01-appb-I000041
グループ7:足首関節の背屈
Figure JPOXMLDOC01-appb-I000042
グループ8:足首関節の底屈
Figure JPOXMLDOC01-appb-I000043
グループ9:首関節の屈曲
Figure JPOXMLDOC01-appb-I000044
グループ10:肩関節の下制
Figure JPOXMLDOC01-appb-I000045
グループ11:肩関節の挙上
Figure JPOXMLDOC01-appb-I000046
グループ12:手首関節の屈曲
Figure JPOXMLDOC01-appb-I000047
グループ13:手首関節の伸展
Figure JPOXMLDOC01-appb-I000048
グループ14:股関節の外旋
Figure JPOXMLDOC01-appb-I000049
グループ15:足根中足関節の屈曲
Figure JPOXMLDOC01-appb-I000050
グループ16:体幹の屈曲
Figure JPOXMLDOC01-appb-I000051
グループ17:体幹の伸展
Figure JPOXMLDOC01-appb-I000052
グループ18:体幹の挙上
Figure JPOXMLDOC01-appb-I000053
Group 1: Horizontal adduction of shoulder joint
Figure JPOXMLDOC01-appb-I000036
Group 2: Horizontal abduction of shoulder joint
Figure JPOXMLDOC01-appb-I000037
Group 3: Elbow joint flexion
Figure JPOXMLDOC01-appb-I000038
Group 4: Elbow joint extension
Figure JPOXMLDOC01-appb-I000039
Group 5: Hip joint extension and knee joint flexion
Figure JPOXMLDOC01-appb-I000040
Group 6: Hip flexion and knee extension
Figure JPOXMLDOC01-appb-I000041
Group 7: Ankle joint dorsiflexion
Figure JPOXMLDOC01-appb-I000042
Group 8: Ankle joint plantar flexion
Figure JPOXMLDOC01-appb-I000043
Group 9: Flexion of neck joint
Figure JPOXMLDOC01-appb-I000044
Group 10: Shoulder joint control
Figure JPOXMLDOC01-appb-I000045
Group 11: Raising the shoulder joint
Figure JPOXMLDOC01-appb-I000046
Group 12: wrist flexion
Figure JPOXMLDOC01-appb-I000047
Group 13: Wrist joint extension
Figure JPOXMLDOC01-appb-I000048
Group 14: External rotation of hip joint
Figure JPOXMLDOC01-appb-I000049
Group 15: Flexion of tarsal metatarsal joint
Figure JPOXMLDOC01-appb-I000050
Group 16: Trunk flexion
Figure JPOXMLDOC01-appb-I000051
Group 17: Trunk extension
Figure JPOXMLDOC01-appb-I000052
Group 18: Raising the trunk
Figure JPOXMLDOC01-appb-I000053
[D-2]2次計画法による筋張力推定
 各筋グループ
Figure JPOXMLDOC01-appb-I000054
に関しては、同じグループ
Figure JPOXMLDOC01-appb-I000055
に属する筋は同じ関節の動きに寄与し異名筋促通により協同筋として働くと考えられるため、Mに属する筋は全て同程度の筋活動度
Figure JPOXMLDOC01-appb-I000056
を持つことが期待される。Hill-Stroeve筋モデル(非特許文献1、2)により筋k(∈M)の筋張力fk
Figure JPOXMLDOC01-appb-I000057
のように表すことができる。
 Fmaxkは筋kの最大筋張力、Fl(lk)は筋kの長さがlkのときに筋の発揮しうる筋張力の最大張力に対する比、Fv(l(ドット)k)は筋kの収縮速度がl(ドット)kのときに発揮しうる筋張力の最大張力に対する比である。
[D-2] Muscle tension estimation by quadratic programming method Each muscle group
Figure JPOXMLDOC01-appb-I000054
As for the same group
Figure JPOXMLDOC01-appb-I000055
The muscles belonging to M * contribute to the movement of the same joint and work as synergistic muscles by facilitating synonymous muscles, so all muscles belonging to M * have the same degree of muscle activity.
Figure JPOXMLDOC01-appb-I000056
Is expected to have According to the Hill-Stroeve muscle model (Non-patent Documents 1 and 2), the muscle tension f k of muscle k (∈M * ) is
Figure JPOXMLDOC01-appb-I000057
It can be expressed as
F maxk is the maximum muscle tension of muscle k, F l (l k ) is the ratio of muscle tension that the muscle can exert when the length of muscle k is l k , F v (l (dot) k ) Is the ratio of muscle tension to maximum tension that can be exerted when the contraction speed of muscle k is l (dot) k .
 ここで、式(1)中のFl(lk),Fv(l(ドット)k),Fmaxkは逆運動学計算により求まるため、筋kが発生させる関節トルクτGk´は定数項と変数項を分離して、
Figure JPOXMLDOC01-appb-I000058
とあらわすことができる。
 ただし、Jk∈R1×ndofは、関節角度に対する筋kの筋長のヤコビ行列、Hk∈R1×ndofは、
Figure JPOXMLDOC01-appb-I000059
である。さらに
Figure JPOXMLDOC01-appb-I000060
を、
Figure JPOXMLDOC01-appb-I000061
とおくと、式(2)より関節トルクτG´は、
Figure JPOXMLDOC01-appb-I000062
となる。
Here, since F l (l k ), F v (l (dot) k ), and F maxk in equation (1) are obtained by inverse kinematics calculation, the joint torque τ Gk ′ generated by the muscle k is a constant term. And the variable term
Figure JPOXMLDOC01-appb-I000058
It can be expressed.
However, J k ∈ R 1 × ndof is the Jacobian matrix of muscle length of muscle k with respect to the joint angle, and H k ∈ R 1 × ndof is
Figure JPOXMLDOC01-appb-I000059
It is. further
Figure JPOXMLDOC01-appb-I000060
The
Figure JPOXMLDOC01-appb-I000061
Then, from equation (2), the joint torque τ G ′ is
Figure JPOXMLDOC01-appb-I000062
It becomes.
 以上を踏まえて各グループを代表する筋活動度ベクトルaを二次計画法により求める。二次計画法とはある目的関数、
Figure JPOXMLDOC01-appb-I000063
を最小にするようなxを、xに関する線形な等式拘束条件や不等式拘束条件の下で求める手法である。ただしx,cはn次元ベクトル、Qはn×n行列である。
Based on the above, the muscle activity vector a representing each group is obtained by quadratic programming. Quadratic programming is an objective function,
Figure JPOXMLDOC01-appb-I000063
Is a method for obtaining x that minimizes x under linear equality constraints and inequality constraints on x. However, x and c are n-dimensional vectors, and Q is an n × n matrix.
 第1の実施形態では、Mhighに属する筋の筋張力は、筋電位から求めた筋活動度をそのまま用いてHill-Stroeve筋モデルにより筋張力を求め、Mlowに属する筋の筋張力は逆運動学と二次計画法により求めている。
 第2の実施形態では、EMGにより計算された筋活動度を参照値として与え、Mhighに属する筋を含むすべての筋の筋張力を二次計画法により求める。
 第2の実施形態では、最適化計算の計算量の減少は主に筋のグルーピングに依存する。また、IK、ID・筋張力推定、描画計算を並列処理することで計算の高速化を図ることができる。これらの各処理にそれぞれスレッドを割り当てることで全体として並列処理を行う(図5B参照)。複数の時刻のデータに対して、IK、ID・筋張力推定、描画計算が同時に行われるので、システムのスループットが向上する。並列計算により描画計算が律速されているため、二次計画法に少々時間がかかるようになっても出力画像のフレームレートが変わらない。
In the first embodiment, the muscle tension of a muscle belonging to M high is obtained using the Hill-Stroeve muscle model using the muscle activity obtained from the myoelectric potential as it is, and the muscle tension of a muscle belonging to M low is reversed. It is calculated by kinematics and quadratic programming.
In the second embodiment, the muscle activity calculated by EMG is given as a reference value, and the muscle tension of all the muscles including the muscle belonging to M high is obtained by the quadratic programming method.
In the second embodiment, the reduction in the amount of calculation for optimization calculation mainly depends on the grouping of muscles. Further, the calculation speed can be increased by performing parallel processing of IK, ID / muscle tension estimation, and drawing calculation. By assigning a thread to each of these processes, parallel processing is performed as a whole (see FIG. 5B). Since IK, ID / muscle tension estimation, and drawing calculation are simultaneously performed on data at a plurality of times, the throughput of the system is improved. Since the drawing calculation is rate-limited by the parallel calculation, the frame rate of the output image does not change even if the quadratic programming method takes a little time.
 以下の4つの条件を考慮して目的関数及び不等式拘束条件を決定する。
 条件1:逆運動学により求められた関節トルクと筋張力により発生する筋張力が等しい。つまり式(7)を満たす。
 条件2:筋活動度の総和が最小となるような筋活動度のパターンが発生している。
 条件3:筋電位が計測されている筋の筋活動度は筋電位から計算された筋活動度と等しい。
 条件4:筋活動度aは0から1の間である。
The objective function and inequality constraint conditions are determined in consideration of the following four conditions.
Condition 1: Muscle torque generated by joint torque and muscle tension obtained by inverse kinematics is equal. That is, Expression (7) is satisfied.
Condition 2: A muscle activity pattern is generated such that the sum of muscle activity is minimized.
Condition 3: The muscle activity of the muscle whose myoelectric potential is measured is equal to the muscle activity calculated from the myoelectric potential.
Condition 4: Muscle activity a * is between 0 and 1.
 条件1から、逆運動学によって求まった関節トルクτG´と筋活動度より計算される関節トルクHTaが一致して欲しいので、これらの差HTa-τG´の大きさの2乗を考える。これにより条件1を満たすような解を得るための目的関数
Figure JPOXMLDOC01-appb-I000064
が得られる。
 ただし、Wdyn∈Rndofは重み行列である。
Since the joint torque τ G ′ obtained by inverse kinematics from condition 1 and the joint torque H T a calculated from the degree of muscle activity are desired to coincide with each other, the difference H T a−τ G ′ of 2 Think of power. As a result, an objective function for obtaining a solution satisfying condition 1
Figure JPOXMLDOC01-appb-I000064
Is obtained.
However, W dyn ∈ R ndof is a weight matrix.
 条件2より筋活動度の総和を最小とするために次の目的関数を考える。
Figure JPOXMLDOC01-appb-I000065
 ただし、Wtot∈Rngは重み行列である。
Considering the following objective function in order to minimize the total sum of muscle activity from condition 2.
Figure JPOXMLDOC01-appb-I000065
Where W tot ∈R ng is a weight matrix.
 条件3より筋活動度がHill-Stroeveモデルにより計算されている筋のグループに関しては二次計画法により計算される筋活動度と計測された筋電位より計算される筋活動度が一致すべきであるので、筋活動度がHill-Stroeveモデルにより計算されている筋のグループMhighのみの筋活動度を考える。
 aiEMG(i=1,…,nEMG)を筋電位により計算されるMihighの筋活動度であるとし、aEMGを以下のように定義する。
Figure JPOXMLDOC01-appb-I000066
 以上より、条件3の目的関数を重み行列WEMG∈Rngを用いて
Figure JPOXMLDOC01-appb-I000067
とする。
For muscle groups whose muscle activity is calculated by Hill-Stroeve model from condition 3, the muscle activity calculated by quadratic programming should match the muscle activity calculated from the measured myoelectric potential. Consider the muscle activity of only the muscle group M high whose muscle activity is calculated by the Hill-Stroeve model.
Let a iEMG (i = 1,..., n EMG ) be the Mihigh muscle activity calculated from the myoelectric potential, and define a EMG as follows.
Figure JPOXMLDOC01-appb-I000066
From the above, the objective function of condition 3 is expressed using the weight matrix W EMG ∈R ng
Figure JPOXMLDOC01-appb-I000067
And
 以上の条件1、条件2、条件3より目的関数Zを、
Figure JPOXMLDOC01-appb-I000068
とする。
 ただし、ktot、kEMG(<0)は重み係数である。
 式(13)は式(8)において示した二次計画法の目的関数の形となっており、
Figure JPOXMLDOC01-appb-I000069
と考えることができる。
From the above conditions 1, 2 and 3, the objective function Z is
Figure JPOXMLDOC01-appb-I000068
And
Here, k tot and k EMG (<0) are weighting factors.
Equation (13) has the form of the quadratic programming objective function shown in Equation (8).
Figure JPOXMLDOC01-appb-I000069
Can be considered.
 次に条件4より不等式拘束条件は、
Figure JPOXMLDOC01-appb-I000070
となる。以上の目的関数Z及び不等式拘束条件(17)の下、二次計画法によりaを求めれば、筋k(∈M)の筋張力は式(1)により得ることができる。
Next, from condition 4, the inequality constraint condition is
Figure JPOXMLDOC01-appb-I000070
It becomes. If a is obtained by quadratic programming under the objective function Z and the inequality constraint condition (17), the muscle tension of the muscle k (εM * ) can be obtained from the equation (1).
 次に、目的関数中に含まれる重み行列について述べる。
 Wdyn,Wtot,WEMGは対角行列であるとし、それぞれ
Figure JPOXMLDOC01-appb-I000071
のように表される。
 なお、σidyn 2(i =1,...,ndof ),σjtot 2(j =1,...,ng),σkEMG 2(k =1,...,nEMG)
は、それぞれ、Wdyn=Endof×ndof,Wtot =Eng×ng,W EMG=EnEMG×nEMGとおいた時に求まる(τG´-HTa),a,(ahigh-aEMG)の各要素の分散である。これにより目的関数Zは無次元化される。
 さらにユーザが必要に応じて重み係数ktot,kEMGを決定するものとする。
Next, the weight matrix included in the objective function will be described.
W dyn , W tot , and W EMG are diagonal matrices,
Figure JPOXMLDOC01-appb-I000071
It is expressed as
Incidentally, σ idyn 2 (i = 1 , ..., n dof), σ jtot 2 (j = 1, ..., n g), σ kEMG 2 (k = 1, ..., n EMG)
Are obtained when W dyn = E ndof × ndof , W tot = E ng × ng , and W EMG = E nEMG × nEMG , respectively (τ G ′ −H T a), a, (a high −a EMG ) Is the variance of each element. This makes the objective function Z dimensionless.
Further, it is assumed that the user determines the weighting factors k tot and k EMG as necessary.
 最後に、図10、図11に基づいて第1の実施形態の手法、第2の実施形態の手法を比較整理して説明する。図10は、第1の実施形態の手法のグルーピングを示し、図11は、第2の実施形態の手法のグルーピングを示す。図10、図11において、簡略のため、筋電計の数を3個とする。図11において破線は空集合である。 Finally, the method according to the first embodiment and the method according to the second embodiment will be compared and arranged based on FIGS. 10 and 11. FIG. 10 shows the grouping of the technique of the first embodiment, and FIG. 11 shows the grouping of the technique of the second embodiment. 10 and 11, the number of electromyographs is three for simplicity. In FIG. 11, a broken line is an empty set.
 図10において、被験者の複数の筋の一部は、筋グループM(i=1,2,3)に分類されている。筋グループMは、筋電計の付いている1つの筋MiEMG(i=1~3)と、MiEMGとおなじ働きをする1つあるいは複数の協同筋をMihighとする。Mihighの筋の活動度は一様にMiEMGと同じとした上で、それ以外の残りの全ての筋(MilowとMothers)をまとめる。この残りの全ての筋を動的な力のつり合いから、SR-Inverse(計算が安定な逆行列のようなもの)を使って計算する。この残りの全ての筋(第1の実施形態では約350本)の各一本を変数として計算しており、二次計画法は使ってない。従前の最適化計算では、約1000本の筋活動を計算する場合に二次計画法や線形計画法を使っていた。 In FIG. 10, some of the plurality of muscles of the subject are classified into the muscle group M i (i = 1, 2, 3). In the muscle group M i , one muscle M iEMG (i = 1 to 3) with an electromyograph and one or a plurality of cooperative muscles that perform the same function as M iEMG are defined as M ihigh . Activity of the muscle of the M ihigh is uniformly on which were the same as the M iEMG, put it together than the rest of all of the muscle (M ilow and M others). All the remaining streaks are calculated from dynamic force balance using SR-Inverse (like a stable inverse matrix). Each one of all the remaining streaks (about 350 in the first embodiment) is calculated as a variable, and the quadratic programming method is not used. In the previous optimization calculation, quadratic programming or linear programming was used to calculate about 1000 muscle activities.
 図11において、被験者の複数の全ての筋は、筋グループM(i=1,2,3,4,5)に分類されている。筋グループMは、さらに、活動を同じくする協同筋群毎(起始停止する骨が共通する筋群)にまとめることで複数のサブグループに分類される。筋電計の付いている筋を含むサブグループ(Mihighから構成される)は3つあり、これらのサブグループには、筋電計の付いている1つの筋とおなじ働きをする1つあるいは複数の協同筋も含まれる。すなわち、図11におけるMihighは、図10におけるMiEMG+Mihighに相当する。
 各筋グループMにおいて、筋Mihighは以外の筋は全てMilowとされ、Milowを協同筋群毎にまとめることでMilowはさらにサブグループ(Mi,jlowから構成される)に分類される。Mi,jlowはMilowのなかで起始停止する骨が共通する筋群である。
 第2の実施形態において、サブグループの総数は70個程度になる。この各サブグループに属する筋の活動は一様として70個程度の変数で表し、これを二次計画法の最適化計算を行う。このとき筋電が張られた筋MiEMGの筋活動度は Mihighの筋の参考値として使用される。
In FIG. 11, all the plurality of muscles of the subject are classified into muscle groups M i (i = 1, 2, 3, 4, 5). The muscle group M i is further classified into a plurality of subgroups by grouping them into cooperative muscle groups having the same activity (muscle groups having common bones that start and stop). There are three subgroups (consisting of Mihigh ) that contain muscles with electromyographs, and these subgroups have one or the same as one muscle with an electromyograph or Multiple cooperative sources are also included. That is, Mi high in FIG. 11 corresponds to MiEMG + Mihigh in FIG.
In each muscle group M i, muscle M Ihigh is all muscle other than M Ilow, classified into M Ilow further subgroup by summarized M Ilow each cooperative muscles (M i, consists Jlow) Is done. M i, jlow is a muscle group having common bones that start and stop in M ilow .
In the second embodiment, the total number of subgroups is about 70. The muscle activity belonging to each subgroup is uniformly expressed by about 70 variables, and this is subjected to optimization calculation of the quadratic programming method. At this time, the muscle activity of the muscle M iEMG to which myoelectricity is applied is used as a reference value for the muscle of Mi high .
 本発明は、スポーツトレーニング、リハビリテーション、医療診断、健康管理、エンターテイメント等の分野において利用することができる。 The present invention can be used in the fields of sports training, rehabilitation, medical diagnosis, health management, entertainment, and the like.

Claims (18)

  1.  被験者の運動時の各関節トルクを、筋骨格モデルを用いて逆動力学計算により算出し、該関節トルクを最適化計算により筋張力へ分配することで各筋の筋張力を推定する方法において、
     被験者の複数の筋を、筋の運動指向性あるいは異名筋促通に基づいて複数の筋グループM(i=1,2,...n)に分類し、
     複数の筋グループM(i=1,2,...n)の各筋グループにおいて、起始停止する骨が同じ筋から1つあるいは複数のサブグループを形成し、同じサブグループに属する筋の筋活動度を同じとみなし、
     複数の筋グループMの一部あるいは全部において、前記1つあるいは複数のサブグループのうちの少なくとも1つは、筋電計が装着された1つの代表筋と当該代表筋と起始停止する骨が同じである筋とから形成される第1サブグループであり、
     前記第1サブグループに属する筋の筋張力を、最適化計算を用いずに被験者の運動時に計測された前記代表筋の筋電位から取得し、最適化計算の対象から外すことで、最適化計算における変数を削減し、
     あるいは、
     前記1つあるいは複数のサブグループにおいて、各サブグループを代表する筋活動度を最適化計算で推定することで、最適化計算における変数を削減する、
     筋張力の推定法。
    In the method of estimating the muscle tension of each muscle by calculating each joint torque during exercise of the subject by inverse dynamics calculation using a musculoskeletal model and distributing the joint torque to the muscle tension by optimization calculation,
    Classifying a plurality of muscles of a subject into a plurality of muscle groups M i (i = 1, 2,... N) based on muscle movement directivity or alias muscle facilitation;
    In each muscle group of a plurality of muscle groups M i (i = 1, 2,... N), bones that start and stop form one or more subgroups from the same muscle, and belong to the same subgroup. Are considered to be the same muscle activity,
    In some or all of the plurality of muscle groups M i, at least one, one representative muscle and the representative muscle and bones origin stop electromyograph is mounted in one of said one or more sub-groups Is a first subgroup formed from muscles that are the same,
    The muscle tension of the muscles belonging to the first subgroup is obtained from the myoelectric potential of the representative muscle measured during the exercise of the subject without using the optimization calculation, and is excluded from the optimization calculation target, thereby performing the optimization calculation. Reduce the variables in
    Or
    In the one or a plurality of subgroups, the muscle activity representing each subgroup is estimated by the optimization calculation, thereby reducing variables in the optimization calculation.
    Muscle tension estimation method.
  2.  前記第1サブグループに属する筋の筋張力を、被験者の運動時に計測された前記代表筋の筋電位から取得し、
     前記第1サブグループに属しない筋の筋張力を、被験者の運動を実現するのに必要な関節トルクにおいて、前記第1サブグループに属する筋により実現できない関節トルクを実現するように最適化することで推定する、
     請求項1に記載の筋張力の推定法。
    Obtaining the muscle tension of the muscle belonging to the first subgroup from the myoelectric potential of the representative muscle measured during the exercise of the subject;
    Optimizing muscle tension of muscles not belonging to the first subgroup so as to realize joint torque that cannot be realized by muscles belonging to the first subgroup in joint torque necessary to realize exercise of the subject; Estimated by
    The method for estimating muscle tension according to claim 1.
  3.  各筋グループMにおいて、前記1つあるいは複数のサブグループは、前記第1サブグループと、前記第1サブグループに属しない筋について、起始停止する骨が同じ筋から分類された零個以上のサブグループと、を含み、
     各サブグループを代表する筋活動度を最適化計算で推定する、
     請求項1に記載の筋張力の推定法。
    In each muscle group M i, wherein one or more subgroups, the first subgroup, the muscles do not belong to the first sub-group, zero or more bone to origin stop is classified from the same muscle And a subgroup of
    Estimate the muscle activity that represents each subgroup with optimization calculations.
    The method for estimating muscle tension according to claim 1.
  4.  前記第1グループに属する筋については、筋電位から取得した筋活動度と最適化計算により計算される筋活動度が一致すべきであるとして、
     最適化計算において、計測された前記代表筋の筋活動度を参照値として用いる、
     請求項3に記載の筋張力の推定法。
    For muscles belonging to the first group, the muscle activity obtained from the myoelectric potential should match the muscle activity calculated by the optimization calculation.
    In the optimization calculation, the measured muscle activity of the representative muscle is used as a reference value.
    The method for estimating muscle tension according to claim 3.
  5.  筋張力を、被験者の運動時に実時間で推定する、請求項1乃至4いずれかに記載の筋張力の推定法。 The method for estimating muscle tension according to any one of claims 1 to 4, wherein the muscle tension is estimated in real time during exercise of the subject.
  6.  被験者の撮影画像あるいは/および当該撮影画像に基づく合成画像を表示部に表示すると共に、表示された被験者の画像に筋骨格モデルをオーバーレイし、
     請求項1乃至5いずれかに記載の推定法により取得した筋張力に基づく身体内部の活動情報を筋骨格モデルに反映させて視覚的に表示する、
     身体内部の活動情報提示法。
    The subject's captured image or / and a composite image based on the captured image are displayed on the display unit, and a musculoskeletal model is overlaid on the displayed subject's image,
    The activity information inside the body based on the muscle tension acquired by the estimation method according to claim 1 is reflected in a musculoskeletal model and displayed visually.
    Activity information presentation method inside the body.
  7.  身体内部活動情報を、被験者の運動時に実時間で表示する、請求項6に記載の身体内部の活動情報提示法。 The internal body activity information presentation method according to claim 6, wherein the internal body activity information is displayed in real time during exercise of the subject.
  8.  前記身体内部の活動情報は、筋活動である、請求項6、7いずれかに記載の身体内部の活動情報提示法。 The method for presenting internal activity information according to claim 6 or 7, wherein the internal activity information is muscle activity.
  9.  筋活動を、筋骨格モデルの筋の色あるいは/および形状の変化によって視覚的に表示する、請求項8に記載の身体内部の活動情報提示法。 The method for presenting activity information inside the body according to claim 8, wherein the muscle activity is visually displayed by a change in the color or / and shape of the muscle of the musculoskeletal model.
  10.  前記身体内部の活動情報は、筋活動を、当該筋活動を支配する脊髄神経束の活動として表わしたものである、請求項6乃至9いずれかに記載の身体内部の活動情報提示法。 The method for presenting internal activity information according to any one of claims 6 to 9, wherein the activity information inside the body represents muscle activity as activity of a spinal nerve bundle that governs the muscle activity.
  11.  脊髄神経束の活動は、筋骨格モデル上の各脊髄神経束の位置にシンボルを表示し、シンボルの色あるいは/および形状の変化によって視覚的に表示する、請求項10に記載の身体内部の活動情報提示法。 The activity of the spinal nerve bundle according to claim 10, wherein a symbol is displayed at a position of each spinal nerve bundle on the musculoskeletal model and is visually displayed by a change in the color or / and shape of the symbol. Information presentation method.
  12.  被験者の運動時の各関節トルクを、筋骨格モデルを用いて逆動力学計算により算出し、該関節トルクを最適化計算により筋張力へ分配することで各筋の筋張力を推定する方法において、
     被験者の複数の筋を、筋の運動指向性あるいは異名筋促通に基づいて複数の筋グループM(i=1,2,...n)に分類し、
     複数の筋グループM(i=1,2,...n)の各筋グループにおいて、起始停止する骨が同じ筋から1つあるいは複数のサブグループを形成し、同じサブグループに属する筋の筋活動度を同じとみなし、
     前記1つあるいは複数のサブグループにおいて、各サブグループを代表する筋活動度を最適化計算で推定することで、最適化計算における変数を削減する、
     筋張力の推定法。
    In the method of estimating the muscle tension of each muscle by calculating each joint torque during exercise of the subject by inverse dynamics calculation using a musculoskeletal model and distributing the joint torque to the muscle tension by optimization calculation,
    Classifying a plurality of muscles of a subject into a plurality of muscle groups M i (i = 1, 2,... N) based on muscle movement directivity or alias muscle facilitation;
    In each muscle group of a plurality of muscle groups M i (i = 1, 2,... N), bones that start and stop form one or more subgroups from the same muscle, and belong to the same subgroup. Are considered to be the same muscle activity,
    In the one or a plurality of subgroups, the muscle activity representing each subgroup is estimated by the optimization calculation, thereby reducing variables in the optimization calculation.
    Muscle tension estimation method.
  13.  複数の筋グループMの一部あるいは全部において、前記1つあるいは複数のサブグループのうちの少なくとも1つは、筋電計が装着された1つの代表筋と当該代表筋と起始停止する骨が同じである筋とから形成される第1サブグループであり、
     前記第1グループに属する筋については、筋電位から取得した筋活動度と最適化計算により計算される筋活動度が一致すべきであるとして、最適化計算において、計測された前記代表筋の筋活動度を参照値として用いる、
     請求項12に記載の筋張力の推定法。
    In some or all of the plurality of muscle groups M i, at least one, one representative muscle and the representative muscle and bones origin stop electromyograph is mounted in one of said one or more sub-groups Is a first subgroup formed from muscles that are the same,
    For muscles belonging to the first group, it is assumed that the muscle activity obtained from the myoelectric potential should match the muscle activity calculated by the optimization calculation, and the muscle of the representative muscle measured in the optimization calculation Use activity as a reference value,
    The method for estimating muscle tension according to claim 12.
  14.  被験者の運動時の各関節トルクを、筋骨格モデルを用いて逆動力学計算により算出し、該関節トルクを最適化計算により筋張力へ分配することで各筋の筋張力を推定する筋張力取得手段と、
     被験者の複数の筋を分類するグルーピング手段と、
    を備え、
     前記グルーピング手段は、
     前記被験者の複数の筋を、筋の運動指向性あるいは異名筋促通に基づいて複数の筋グループM(i=1,2,...n)に分類する第1グルーピング手段と、
     複数の筋グループM(i=1,2,...n)の各筋グループにおいて、起始停止する骨が同じ筋から1つあるいは複数のサブグループを形成する第2グルーピング手段と、からなり、
     前記筋張力取得手段は、同じサブグループに属する筋の筋活動度を同じとみなし、前記1つあるいは複数のサブグループにおいて、各サブグループを代表する筋活動度を最適化計算で推定する、
     筋張力の推定装置。
    Each joint torque during exercise of the subject is calculated by inverse dynamics calculation using a musculoskeletal model, and muscle tension of each muscle is estimated by distributing the joint torque to muscle tension by optimization calculation Means,
    A grouping means for classifying a plurality of muscles of a subject;
    With
    The grouping means includes
    First grouping means for classifying the plurality of muscles of the subject into a plurality of muscle groups M i (i = 1, 2,... N) based on muscle movement directivity or alias muscle facilitation;
    In each muscle group of the plurality of muscle groups M i (i = 1, 2,... N), second grouping means in which the bones that start and stop form one or more subgroups from the same muscle; Become
    The muscle tension acquisition means regards the muscle activity level of muscles belonging to the same subgroup as the same, and estimates the muscle activity level representing each subgroup in the one or more subgroups by optimization calculation.
    Muscle tension estimation device.
  15.  被験者の全身あるいは身体の一部の複数の筋の少なくとも一部を、筋の運動指向性あるいは異名筋促通に基づいて複数の筋グループM(i=1,2,...n)に分類し、各筋グループMから1つの代表筋を選択して当該代表筋に筋電計を装着し、
     前記複数の筋を、
     各筋グループMの前記代表筋からなる第1筋群MiEMGと、
     各筋グループMにおいて、第1筋群MiEMGと起始停止する骨が同じである筋からなる第2筋群Mihighと、
     前記第1筋群MiEMG、前記第2筋群Mihighに含まれない筋からなる第3筋群と、
     に分け、
     第1筋群MiEMGと第2筋群Mihighに属する筋の筋張力を、被験者の運動時に計測された前記代表筋の筋電位から取得し、
     前記第3筋群に属する筋の筋張力を、逆動力学計算により、計測した被験者の運動を実現するのに必要な関節トルクを計算し、前記関節トルクにおいて、前記第1筋群MiEMG及び前記第2筋群Mihighに属する筋により実現できない関節トルクを実現するように最適化することで推定する、
     筋張力の推定法。
    At least a part of a plurality of muscles of the subject's whole body or a part of the body is divided into a plurality of muscle groups M i (i = 1, 2,. classifying the electromyograph attached to the representative muscle by selecting one representative muscles from each muscle group M i,
    The plurality of muscles,
    A first incision group M iEMG comprising the representative muscle of each muscle group M i,
    In each muscle group M i, and a second incision group M Ihigh consisting muscle is a bone to the origin stop first muscle group M iEMG the same,
    A first muscle group M iEMG , a third muscle group consisting of muscles not included in the second muscle group M high ;
    Divided into
    Obtaining the muscle tension of the muscles belonging to the first muscle group MiEMG and the second muscle group Mhigh from the myoelectric potential of the representative muscle measured during the exercise of the subject;
    The muscle tension of the muscles belonging to the third muscle group is calculated by inverse dynamics calculation to calculate the joint torque necessary to realize the exercise of the subject, and in the joint torque, the first muscle group MiEMG and Estimating by optimizing to realize joint torque that cannot be realized by muscles belonging to the second muscle group M high ,
    Muscle tension estimation method.
  16.  複数の筋電計と、
     筋電位から筋張力を取得する第1筋張力取得手段と、
     逆動力学計算により関節トルクを計算し、当該関節トルクを実現するように最適化計算を行うことで筋張力を推定する第2筋張力取得手段と、
     被験者の複数の筋を分類するグルーピング手段と、
     を備え、
     前記グルーピング手段は、第1グルーピング手段と第2グルーピング手段とを備え、
     前記第1グルーピング手段は、前記被験者の複数の筋の一部あるいは全部を、筋の運動指向性あるいは異名筋促通に基づいて複数の筋グループM(i=1,2,...n)に分類するものであり、各筋電計は、各筋グループMから選択された1つの代表筋に装着されており、
     前記第2グルーピング手段は、前記被験者の複数の筋を、
     各筋グループMの前記代表筋からなる第1筋群MiEMGと、
     各筋グループMにおいて、第1筋群MiEMGと起始停止する骨が同じである筋からなる第2筋群Mihighと、
     前記第1筋群MiEMG、前記第2筋群Mihighに含まれない筋からなる第3筋群と、
     に分けるものであり、
     前記第1筋張力取得手段は、第1筋群MiEMGと第2筋群Mihighに属する筋の筋張力を、被験者の運動時に計測された前記代表筋の筋電位から取得し、
     前記第2筋張力取得手段は、前記第3筋群に属する筋の筋張力を、逆動力学計算により、計測した被験者の運動を実現するのに必要な関節トルクを計算し、前記関節トルクにおいて、前記第1筋群MiEMG及び前記第2筋群Mihighに属する筋により実現できない関節トルクを実現するように最適化することで推定する、
     筋張力の推定装置。
    Multiple electromyographs,
    First muscle tension acquisition means for acquiring muscle tension from myoelectric potential;
    Second muscle tension acquisition means for calculating joint torque by inverse dynamics calculation and estimating muscle tension by performing optimization calculation so as to realize the joint torque;
    A grouping means for classifying a plurality of muscles of a subject;
    With
    The grouping means includes a first grouping means and a second grouping means,
    The first grouping means may include a plurality of muscle groups M i (i = 1, 2,... N) based on the movement directionality of the muscles or alias muscle promotion. ) in are those classified, each electromyograph is attached to one representative muscle selected from the muscle group M i,
    The second grouping means includes a plurality of muscles of the subject,
    A first incision group M iEMG comprising the representative muscle of each muscle group M i,
    In each muscle group M i, and a second incision group M Ihigh consisting muscle is a bone to the origin stop first muscle group M iEMG the same,
    A first muscle group M iEMG , a third muscle group consisting of muscles not included in the second muscle group M high ;
    Divided into
    The first muscle tension acquisition means acquires the muscle tension of the muscles belonging to the first muscle group MiEMG and the second muscle group Mhigh from the myoelectric potential of the representative muscle measured during the exercise of the subject,
    The second muscle tension acquisition means calculates the muscle torque of the muscles belonging to the third muscle group, and calculates the joint torque necessary for realizing the movement of the subject measured by inverse dynamics calculation. Estimating by optimizing to realize joint torque that cannot be realized by the muscles belonging to the first muscle group MiEMG and the second muscle group Mihigh ,
    Muscle tension estimation device.
  17.  請求項14、16いずれかに記載の筋張力の推定装置において、筋張力を、被験者の運動時に実時間で推定する、リアルタイム筋張力推定装置。 The apparatus for estimating muscle tension according to any one of claims 14 and 16, wherein the muscle tension is estimated in real time during exercise of the subject.
  18.  請求項17に記載のリアルタイム筋張力推定装置と、
     運動時の被験者を撮影する手段と、
     被験者の撮影画像あるいは/および当該撮影画像に基づく合成画像を表示する表示手段と、
     を備え、
     前記表示手段に表示された被験者の画像に筋骨格モデルをオーバーレイし、前記リアルタイム筋張力推定装置により実時間で推定した筋張力に基づく身体内部の活動情報を前記筋骨格モデルに反映させて、視覚的に実時間表示するように構成されている、
     身体内部の活動情報提示装置。
    The real-time muscle tension estimating device according to claim 17,
    Means for photographing the subject during exercise;
    Display means for displaying a photographed image of the subject or / and a composite image based on the photographed image;
    With
    The musculoskeletal model is overlaid on the image of the subject displayed on the display means, and the activity information inside the body based on the muscular tension estimated in real time by the real-time muscular tension estimation device is reflected on the musculoskeletal model to visually Configured to display real-time,
    Activity information presentation device inside the body.
PCT/JP2010/052322 2009-02-20 2010-02-17 Method and device for estimating muscle tension WO2010095636A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011500620A JP5540386B2 (en) 2009-02-20 2010-02-17 Muscle tension estimation method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-037252 2009-02-20
JP2009037252 2009-02-20

Publications (1)

Publication Number Publication Date
WO2010095636A1 true WO2010095636A1 (en) 2010-08-26

Family

ID=42633916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052322 WO2010095636A1 (en) 2009-02-20 2010-02-17 Method and device for estimating muscle tension

Country Status (2)

Country Link
JP (1) JP5540386B2 (en)
WO (1) WO2010095636A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20120494A1 (en) * 2012-03-27 2013-09-28 B10Nix S R L APPARATUS AND METHOD FOR THE ACQUISITION AND ANALYSIS OF A MUSCULAR ACTIVITY
JP2014113225A (en) * 2012-12-07 2014-06-26 Hiroshima Univ Apparatus, method, and program for evaluating human body motion
JP2016202612A (en) * 2015-04-23 2016-12-08 学校法人立命館 Lower limb training device
CN110403609A (en) * 2019-09-03 2019-11-05 北京海益同展信息科技有限公司 Movement velocity analysis method, device and wearable device
CN113180672A (en) * 2021-03-31 2021-07-30 中南大学 Muscle strength detection method and device and computer readable storage medium
CN113367698A (en) * 2021-05-14 2021-09-10 华南理工大学 Muscle movement state monitoring method and system based on machine learning
CN114469142A (en) * 2022-01-06 2022-05-13 中南大学 Muscle force decoding method based on human muscle dynamics model and myoelectric signal
CN114918914A (en) * 2022-04-26 2022-08-19 中国科学院自动化研究所 Human body musculoskeletal simulation control system and simulation device
CN115983037A (en) * 2023-01-17 2023-04-18 首都体育学院 Muscle force calculation model for myoelectricity and optimized coupling of muscle cooperative constraint
US11907423B2 (en) 2019-11-25 2024-02-20 Meta Platforms Technologies, Llc Systems and methods for contextualized interactions with an environment
US11941176B1 (en) 2018-11-27 2024-03-26 Meta Platforms Technologies, Llc Methods and apparatus for autocalibration of a wearable electrode sensor system
US11961494B1 (en) 2019-03-29 2024-04-16 Meta Platforms Technologies, Llc Electromagnetic interference reduction in extended reality environments

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7623944B2 (en) * 2001-06-29 2009-11-24 Honda Motor Co., Ltd. System and method of estimating joint loads in a three-dimensional system
JP4212022B2 (en) * 2002-05-29 2009-01-21 独立行政法人科学技術振興機構 Body mechanics calculation method, body mechanics calculation program and recording medium recording the same, body mechanics model and recording medium storing the model data
JP4054879B2 (en) * 2004-09-10 2008-03-05 国立大学法人 東京大学 Motor learning support apparatus and method, motor learning support program, and recording medium recording the program
JP2007236663A (en) * 2006-03-09 2007-09-20 Shigeki Toyama Method and device for evaluating muscular fatigue, and exercise support system reflecting physiological situation of user in real-time

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Annual Conference of the Robotics Society of Japan Yokoshu, vol.20th, The Robotics Society of Japan, 12 October 2002 (12.10.2002)", vol. 20, 12 October 2002, article KAZUTAKA KURIHARA ET AL.: "Motion Capture to Shosai Jintai Model o Mochiita Gyakuundogaku Keisan ni yoru Kinkokkaku Rikigaku Keisan", pages: 3C15 *
"Japan Society of Mechanical Engineers Conference on Robotics and Mechatronics Koen Ronbunshu, vol.2003, The Japan Society of Mechanical Engineers, 23 May 2003 (23.05.2003)", vol. 2003, 23 May 2003, article YUSUKE FUJITA ET AL.: "Mathematical Programming Problem to Solve Muscle Tensions of Musculo- Skeletal Human Model", XP002998113 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20120494A1 (en) * 2012-03-27 2013-09-28 B10Nix S R L APPARATUS AND METHOD FOR THE ACQUISITION AND ANALYSIS OF A MUSCULAR ACTIVITY
WO2013144866A1 (en) 2012-03-27 2013-10-03 B10Nix S.R.L. System for the acquisition and analysis of muscle activity and operation method thereof
EP3069656A1 (en) 2012-03-27 2016-09-21 B10NIX S.r.l. System for the acquisition and analysis of muscle activity and operation method thereof
JP2014113225A (en) * 2012-12-07 2014-06-26 Hiroshima Univ Apparatus, method, and program for evaluating human body motion
JP2016202612A (en) * 2015-04-23 2016-12-08 学校法人立命館 Lower limb training device
US11941176B1 (en) 2018-11-27 2024-03-26 Meta Platforms Technologies, Llc Methods and apparatus for autocalibration of a wearable electrode sensor system
US11961494B1 (en) 2019-03-29 2024-04-16 Meta Platforms Technologies, Llc Electromagnetic interference reduction in extended reality environments
CN110403609A (en) * 2019-09-03 2019-11-05 北京海益同展信息科技有限公司 Movement velocity analysis method, device and wearable device
US11907423B2 (en) 2019-11-25 2024-02-20 Meta Platforms Technologies, Llc Systems and methods for contextualized interactions with an environment
CN113180672A (en) * 2021-03-31 2021-07-30 中南大学 Muscle strength detection method and device and computer readable storage medium
CN113180672B (en) * 2021-03-31 2023-01-06 中南大学 Muscle strength detection method and device and computer readable storage medium
CN113367698B (en) * 2021-05-14 2023-07-18 华南理工大学 Muscle movement state monitoring method and system based on machine learning
CN113367698A (en) * 2021-05-14 2021-09-10 华南理工大学 Muscle movement state monitoring method and system based on machine learning
CN114469142A (en) * 2022-01-06 2022-05-13 中南大学 Muscle force decoding method based on human muscle dynamics model and myoelectric signal
CN114918914A (en) * 2022-04-26 2022-08-19 中国科学院自动化研究所 Human body musculoskeletal simulation control system and simulation device
CN114918914B (en) * 2022-04-26 2024-03-22 中国科学院自动化研究所 Simulation control system and simulation device for human musculature
CN115983037A (en) * 2023-01-17 2023-04-18 首都体育学院 Muscle force calculation model for myoelectricity and optimized coupling of muscle cooperative constraint
CN115983037B (en) * 2023-01-17 2023-08-11 首都体育学院 Myoelectricity and optimized coupling muscle force calculation method based on muscle cooperative constraint

Also Published As

Publication number Publication date
JPWO2010095636A1 (en) 2012-08-23
JP5540386B2 (en) 2014-07-02

Similar Documents

Publication Publication Date Title
JP5540386B2 (en) Muscle tension estimation method and apparatus
JP4590640B2 (en) Method and apparatus for acquiring muscle strength based on musculoskeletal model
Durandau et al. Robust real-time musculoskeletal modeling driven by electromyograms
JP5229796B2 (en) Muscle tension database construction method, muscle tension calculation method and apparatus using muscle tension database
JP5016687B2 (en) A method to interactively visualize muscle strength and joint moments in the human body in real time
WO2015093224A1 (en) Movement analysis device, movement analysis method, and movement analysis program
JP2001025510A (en) Electric stimulus device and kinesthesiometer using electric stimulus and their control method
KR20100052408A (en) A diagnostic system for joint and muscle disorders and a diagnostic method thereof
Pinter et al. Isometric torque–angle relationships of the elbow flexors and extensors in the transverse plane
Arslan et al. Exoskeletons, exomusculatures, exosuits: dynamic modeling and simulation
Yamane et al. Estimation of physically and physiologically valid somatosensory information
Gurchiek et al. Wearables-only analysis of muscle and joint mechanics: an EMG-driven approach
JPH11192214A (en) Manufacture of numerical model with respect to vertebrate animal or robot imitating same
Hayashibe et al. Muscle strength and mass distribution identification toward subject-specific musculoskeletal modeling
Yu et al. A passive movement method for parameter estimation of a musculo-skeletal arm model incorporating a modified hill muscle model
Blanpied et al. Biomechanical principles
Manzano et al. A factorization‐based algorithm to predict EMG data using only kinematics information
Song et al. A muscle-specific rehabilitation training method based on muscle activation and the optimal load orientation concept
JP4016112B2 (en) Exercise information-neural information conversion apparatus and method, exercise information-neural information conversion program, and recording medium recording the program
Agarwal Quantification of Mechanisms of Human Seated Balance using System Identification
Dereshgi The rest-pause biceps curl exercise effect on biceps brachii muscle of women: A study of mechanical responsiveness
Hulleck Quantification of Disease Induced Motion Impairment using simulation techniques.
Jun A home-based rehabilitation system for deficient knee patients
Pan Analysis and Improvement of Three Kinds of Exoskeleton Sensors
Van Veen Variability in neuromotor control of the musculoskeletal system dynamics-A stochastic modelling approach

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10743762

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011500620

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10743762

Country of ref document: EP

Kind code of ref document: A1