WO2010095551A1 - Method for measuring external shape of rectangular plate-like object, and method for calibrating relative position of image-capturing means - Google Patents

Method for measuring external shape of rectangular plate-like object, and method for calibrating relative position of image-capturing means Download PDF

Info

Publication number
WO2010095551A1
WO2010095551A1 PCT/JP2010/051975 JP2010051975W WO2010095551A1 WO 2010095551 A1 WO2010095551 A1 WO 2010095551A1 JP 2010051975 W JP2010051975 W JP 2010051975W WO 2010095551 A1 WO2010095551 A1 WO 2010095551A1
Authority
WO
WIPO (PCT)
Prior art keywords
rectangular plate
corners
calibration
squareness
glass plate
Prior art date
Application number
PCT/JP2010/051975
Other languages
French (fr)
Japanese (ja)
Inventor
秀人 谷
静則 金子
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to KR1020117017865A priority Critical patent/KR101442895B1/en
Priority to CN2010800061700A priority patent/CN102301201B/en
Priority to JP2011500568A priority patent/JPWO2010095551A1/en
Publication of WO2010095551A1 publication Critical patent/WO2010095551A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/028Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring lateral position of a boundary of the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/04Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness specially adapted for measuring length or width of objects while moving
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/04Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness specially adapted for measuring length or width of objects while moving
    • G01B11/043Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness specially adapted for measuring length or width of objects while moving for measuring length
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/04Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness specially adapted for measuring length or width of objects while moving
    • G01B11/046Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness specially adapted for measuring length or width of objects while moving for measuring width
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes

Definitions

  • the present invention relates to a measuring method for measuring the outer shape (dimensions, squareness of four corners, etc.) of a rectangular plate-like material such as a glass plate, and in particular, the outer shape of a rectangular plate-like material such as a glass plate conveyed on a line (
  • the present invention relates to a measurement method capable of measuring dimensions, squareness of four corners, etc.) non-stop.
  • the outer shape of the rectangular glass plate (dimensions and dimensions) It is required to measure the squareness of the four corners in a non-contact manner in a short time with high precision and efficiency.
  • the glass plate is imaged, and the captured image, etc. Based on this, a shape measuring device that automatically measures the outer shape (such as dimensions and squareness of four corners) of a glass plate has been proposed (see, for example, Patent Document 1).
  • FIG. 10 is a front view of the shape measuring apparatus described in Patent Document 1.
  • FIG. 11 is a side view of the shape measuring apparatus described in Patent Document 1.
  • the shape measuring apparatus 100 described in Patent Document 1 includes an X-axis guide 102 extending in the X-axis direction, a Y-axis guide 104 extending in the Y-axis direction, an imaging unit 106, and an imaging unit 106.
  • a motor (not shown) that moves in the X and Y directions along the X and Y axis guides 102 and 104 is provided.
  • the edges of the glass plate 110 carried in an inclined posture and supported on the inspection table 108 are imaged while moving the imaging means 106 in the XY directions, Based on the captured image or the like, the external shape (size, squareness of four corners, etc.) of the glass plate 110 is automatically measured.
  • the shape measuring apparatus 100 is configured to image the edge or the like of the glass plate 110 using the imaging means 106 moving in the XY directions, the glass plate 110 must be fixed on the inspection table 108 for a certain period of time. In other words, it is not possible to measure the shape of each of the plurality of glass plates 110 conveyed on the line in a non-stop manner, and the measurement takes time, and feedback to manufacturing conditions is delayed when a defect occurs. For this reason, there is a problem that the yield cannot be improved.
  • This invention is made in view of such a situation, and measures the external shape (dimensions, squareness of four corners, etc.) of a rectangular plate such as a glass plate conveyed on a line in a non-stop manner.
  • An object is to provide a measurement method capable of performing
  • the present invention has a shape including four image pickup means arranged in advance corresponding to the four corners of a rectangular plate-like object, and a storage means for storing the relative coordinates of each of the four image pickup means.
  • the measuring method for measuring the outer shape of the rectangular plate conveyed so as to pass through the shape measuring section using the measuring device the step of determining whether or not the rectangular plate has reached the measuring section and, when it is determined that the rectangular plate-like object has reached the measurement section, the four imaging means captures images including the corners of the four corners of the rectangular plate-like object that has reached the measurement section.
  • Corner post coordinates which are coordinate values from the image origin of each of the four corners of the rectangular plate based on the captured image, and the calculation Calculating the length dimension of each of the four sides of the rectangular plate based on the corner post coordinates of the rectangular plate and the relative coordinates stored in the storage means; and the calculated corner post Calculating a squareness of each of the four corners of the rectangular plate based on the coordinates, the relative coordinates stored in the storage means, and the calculated length dimension.
  • a rectangular plate shape is formed simultaneously (or almost simultaneously) with four image pickup units arranged in advance corresponding to the four corners of the rectangular plate-like object without moving the image pickup unit in the XY directions as in the prior art. Taking an image including the corners of each of the four corners of the object, and based on the captured image, etc., the outer shape of the rectangular plate (the length dimension of each of the four sides of the rectangular plate and the four corners of the rectangular plate (Each squareness) is calculated. For this reason, it becomes possible to measure the shape in a non-stop manner for each of the plurality of rectangular plates conveyed on the line, and it is possible to improve the yield.
  • the external shape measuring method of the present invention includes a pre-measured length dimension of each of the four sides of the calibration standard rectangular plate, and a pre-measured squareness of each of the four corners of the calibration standard rectangular plate.
  • the step of correcting the squareness measured in advance at each of the four corners of the rectangular plate-like object, and the four imaging means capture images including the corner portions of the four corners of the standard rectangular plate for calibration Calculating the corner post coordinates of each of the four corners of the standard rectangular plate for calibration based on the captured image, and the corner post coordinates of the calculated standard rectangular plate for calibration, Based on the corrected squareness and the length dimension measured in advance on each of the four sides of the standard rectangular plate for calibration, the relative coordinates of the four imaging units are calculated.
  • storing in the storage means may further comprise a.
  • the outer shape of the rectangular plate (rectangular plate shape) It is possible to calculate the relative coordinates of each of the four imaging units that are the basis for calculating the length dimension of each of the four sides of the object and the squareness of each of the four corners of the rectangular plate-like object.
  • the present invention provides a calibration standard rectangular plate-like shape in a method for calibrating the relative coordinates of the four imaging means in a shape measuring apparatus provided with four imaging means previously arranged corresponding to the four corners of the rectangular plate-like object. Based on the pre-measured length dimension of each of the four sides of the object and the pre-measured squareness of each of the four corners of the standard rectangular plate for calibration, the four corners of the rectangular plate were measured in advance. A step of correcting the squareness, a step of capturing an image including each of the four corners of the standard rectangular plate for calibration by the four imaging means, and the calibration standard based on the captured image.
  • the outer shape of the rectangular plate (rectangular plate shape) It is possible to calculate the relative coordinates of each of the four imaging units that are the basis for calculating the length dimension of each of the four sides of the object and the squareness of each of the four corners of the rectangular plate-like object.
  • a measuring method capable of measuring the outer shape (dimensions, squareness of four corners, etc.) of a rectangular plate such as a glass plate conveyed on a line in a non-stop manner. Can be provided.
  • FIG. 4 is a plan view of the vicinity of a shape measurement section 32 on a measurement line 30. It is a figure for demonstrating the positional relationship of four sides and a corner part of the calibration standard glass plate 36, and the imaging means 18C0-18C3. This is an example of images P1 to P4 picked up by the image pickup means 18C0 to 18C3.
  • 10 is a flowchart for explaining a process of calculating relative coordinates of four imaging units 18C0 to 18C3.
  • FIG. 6 is a diagram for explaining the relationship between the lengths E1, E2, ER, EL of each of the four sides of the calibration standard glass plate 36 and the squareness ⁇ 1 to ⁇ 4 of each of the four corners of the calibration standard glass plate 36.
  • FIG. 6 is a diagram for explaining the relationship between relative coordinates S0 to S3, approximate correction angles R1 *, R2 *, etc. of four imaging means 18C0 to 18C3. It is a flowchart for demonstrating the method to measure the external shape of the work glass plate. It is a front view of the shape measuring apparatus of patent document 1. It is a side view of the shape measuring apparatus of patent document 1.
  • FIG. 1 is a system configuration diagram of a shape measuring apparatus applied to the method for measuring the outer shape of a rectangular plate according to the present embodiment.
  • FIG. 2 is a diagram for explaining a general manufacturing process of a glass plate.
  • FIG. 3 is a plan view of the vicinity of the shape measurement section 32 on the measurement line 30.
  • the glass plate is generally a cutting step for cutting a plate glass manufactured to a predetermined thickness into a predetermined size, a chamfering step for chamfering the cut glass plate, and after chamfering processing.
  • the glass plate is manufactured through a washing / drying step for washing / drying and a measurement step (measurement line) for measuring the outer shape of the glass plate after washing / drying.
  • the shape measuring apparatus 10 of this embodiment is an apparatus for measuring the outer shape of a glass plate, and is installed in a shape measuring section 32 on a measurement line 30 as shown in FIG.
  • the cleaned and dried glass plate 34 (for example, a rectangular glass plate of length L (several m) ⁇ width W (several m) shown in FIG. 3; hereinafter referred to as a work glass plate) is a known conveying means (not shown). ) On the measurement line 30 and pass through the shape measurement section 32.
  • the shape measuring apparatus 10 automatically measures the outer shape of the workpiece glass plate 34 passing through the shape measuring section 32 (the length dimension of each of the four sides of the workpiece glass plate 34 and the squareness of each of the four corners, etc.) in a non-stop manner.
  • the shape measuring apparatus 10 includes an image processing apparatus 12, four illumination units 16 connected to the image processing apparatus 12 via an LED power source 14 and a predetermined interface (not shown), and the image processing apparatus 12. Are provided with four imaging means 18C0 to 18C3 connected via a predetermined interface (not shown), a sensor 20 connected to the image processing device 12 via a predetermined interface (not shown), and the like.
  • the image processing apparatus 12 includes a calculation / control unit 12a such as an MPU or CPU, a storage unit 12b such as a RAM or ROM, and the like.
  • the image processing apparatus 12 includes a control unit that controls each illumination unit 16 and each imaging unit 18C0 to 18C3 by the calculation / control unit 12a executing a predetermined program read into the storage unit 12b, and the outer shape of the work glass plate 34. It functions as a calculation means for calculating the shape.
  • the illumination means 16 is for illuminating the four corners of the work glass plate 34, and is, for example, an illumination device including a plurality of LED light sources (not shown) arranged in a ring shape.
  • the illumination means 16 is arrange
  • the illumination unit 16 is turned on according to control from the image processing apparatus 12 and illuminates the four corners of the work glass plate 34.
  • the imaging means 18C0 to 18C3 are for imaging the four corners of the work glass plate 34, and are, for example, an imaging device including a CCD type or CMOS type imaging device (for example, resolution: several tens of ⁇ m / pic).
  • the corner portions C1 to C4 (see FIGS. 1, 3, and 4) of the four corners of the work glass plate 34 are in the visual field range (for example, visual field range: several tens mm ⁇ several tens mm). It is arranged at four locations corresponding to each of the four corners of the work glass plate 34 so as to be accommodated.
  • the imaging means 18C0 to 18C3 capture images P1 to P4 including the corner portions C1 to C4 at the four corners of the work glass plate 34 in accordance with control from the image processing device 12.
  • FIG. 5 is an example of images P1 to P4 picked up by the image pickup means 18C0 to 18C3. The captured images P1 to P4 are taken into the image processing device 12.
  • the sensor 20 is for detecting whether or not the workpiece glass plate 34 to be measured has reached the measurement section 32 (a predetermined imaging position in the measurement section 32), and is, for example, a photo interrupter.
  • the sensor 20 detects the edge 34a (edge) in the transport direction of the workpiece glass plate 34
  • the sensor 20 notifies the image processing apparatus 12 of a detection signal to that effect.
  • the image processing apparatus 12 controls each illumination unit 16 so as to illuminate the four corners of the work glass plate 34 that has reached the measurement section 32.
  • the imaging means 18C0 to 18C3 are controlled so as to capture images including the corner portions C1 to C4 at the four corners of the work glass plate 34, respectively.
  • FIG. 6 is a flowchart for explaining processing for calculating the relative coordinates of the four imaging units 18C0 to 18C3.
  • the following processing is realized by the image processing apparatus 12 (calculation / control means) executing a predetermined program read into the storage means 12b or the like.
  • the lengths E1, E2, EF, ER of the four sides of the calibration standard glass plate 36 and the squares ⁇ 1 to ⁇ 4 of the four corners of the calibration standard glass plate 36 are as follows. Measured in advance using a calibration gauge such as a linear gauge and stored in the storage means 12b as shown in Table 1.
  • the perpendicularity is the magnitude of the deviation from the right angle of each of the four corners of the calibration standard glass plate 36 that should be a right angle.
  • a point on the calibration standard glass plate 36 that is 1000 mm away from the corner portions C1 to C4 of each of the four corners of the calibration standard glass plate 36 and an inner angle of each of the four corners are perpendicular.
  • the distance (mm) to a point on the calibration standard glass plate 36 that is 1000 mm away from each of the corners C1 to C4 of the four corners of the calibration standard glass plate 36 was adopted as a squareness.
  • DWSn ⁇ ⁇ n / 1000 is obtained by dividing the squares ⁇ 1 to ⁇ 4 by 1000 mm, which is the distance between the squareness measurement points and the corners C1 to C4 at the four corners, to the variables DWS1 to DWS4. ⁇ 1 / 1000 to ⁇ 4 / 1000 are respectively substituted.
  • Rn # ATAN (DWSn)
  • RAD radians
  • aR ⁇ (R1 # + R2 # + R3 # + R4 #) / 4.0 substitutes the average value of the radians (RAD) of the internal angles Atan (DWS1 to DWS4) for the variable aR. It represents that.
  • Rn ⁇ Rn # -aR indicates that the values obtained by subtracting the variable aR from the variables R1 # to R4 # are assigned to the variables R1 to R4, respectively.
  • R1 # + R2 # + R3 # + R4 # of the measured value of the inner angle of the calibration standard glass plate 36 is not zero. Even so, R1 + R2 + R3 + R4 is zero as described below.
  • both R3 * and R4 * are set to zero. If at least one of
  • the above processing is based on the assumption that the calibration standard glass plate 36 is a substantially parallelogram, and the sum of the angles of both ends of the sides with which the difference in length between opposite sides is compared (in the case of a true parallelogram) The difference in length between the long sides, so that this difference is proportionally distributed to the original angle value and the difference in side length is reflected in the squareness, The difference in length between the short sides is corrected.
  • the image processing apparatus 12 controls each illumination means 16 so as to illuminate the four corners of the calibration standard glass plate 36.
  • the imaging means 18C0 to 18C3 are controlled so as to capture images including the corner portions C1 to C4 at the four corners of the calibration standard glass plate 36, respectively.
  • Each illumination means 16 is turned on according to the control from the image processing device 12 and illuminates the four corners of the calibration standard glass plate 36. Further, each of the imaging means 18C0 to 18C3 captures images P1 to P4 including the corner portions C1 to C4 at the four corners of the calibration standard glass plate 36 according to the control from the image processing apparatus 12 (step S12).
  • FIG. 5 is an example of images P1 to P4 picked up by the image pickup means 18C0 to 18C3. The captured images P1 to P4 are taken into the image processing device 12.
  • the image processing device 12 uses the corner post coordinates (hereinafter referred to as CP coordinates) which are mm-converted coordinate values from the image origins at the four corners of the calibration standard glass plate 36 based on the captured images P1 to P4.
  • CP coordinates are mm-converted coordinate values from the image origins at the four corners of the calibration standard glass plate 36 based on the captured images P1 to P4.
  • C1LX to C4LX, C1LY to C4LY are calculated (steps S14 and S16).
  • each edge (horizontal edge EH, vertical edge EV, oblique edge EB) is detected and the horizontal / vertical edge EH is detected.
  • the intersection of EV and the oblique edge EB is obtained (step S14).
  • CP coordinates C1PX to C4PX, C1PY to C4PY and CC dimensions C1LX to C4LX, C1LY to C4LY are calculated (step S16).
  • the image processing apparatus 12 measures in advance the calculated CP coordinates C1PX to C4PX, C1PY to C4PY of the calibration standard glass plate 36, and each of the four sides of the calibration standard glass plate 36 stored in the storage means 12b.
  • Relative coordinates of the four imaging means 18C0 to 18C3 based on the length dimensions E1, E2, ER, EL and the approximate correction angles R1 *, R2 *, R3 *, R4 * stored in the storage means 12b S0 to S3 are calculated and stored in the storage means 12b (step S18).
  • the relative coordinates S0 to S3 of each of the four imaging units 18C0 to 18C3 are calculated using the formulas shown in Table 4 below.
  • FIG. 8 shows the relationship between the relative coordinates S0 to S3, approximate correction angles R1 * and R2 *, etc. of the four imaging means 18C0 to 18C3.
  • FIG. 9 is a flowchart for explaining a method of measuring the outer shape of the work glass plate 34.
  • the following processing is realized by the image processing apparatus 12 (calculation / control means) executing a predetermined program read into the storage means 12b or the like. It is assumed that the storage unit 12b stores the relative coordinates S0 to S3 of the four imaging units 18C0 to 18C3 in advance.
  • the stored relative coordinates S0 to S3 are read out from the storage means 12b and used as long as the arrangement of the imaging means 18C0 to 18C3 is the same as before. It is possible. That is, as long as the arrangement of the imaging units 18C0 to 18C3 is the same as the previous arrangement, the previously stored relative coordinates S0 to S3 can be reused, and it is not necessary to perform steps S10 to S18 each time.
  • the image processing apparatus 12 determines whether or not the work glass plate 34 has reached the measurement section 32 (step S20).
  • step S20 determines that the workpiece glass plate 34 to be measured has reached the measurement section 32 (in the predetermined imaging position) (step S20: YES), that is, the conveyance direction of the workpiece glass plate 34 from the sensor 20
  • Each of the illumination means 16 is controlled so as to illuminate the four corners of the work glass plate 34 that has reached the measurement section 32.
  • the imaging means 18C0 to 18C3 are controlled so as to capture images including the corner portions C1 to C4 at the four corners of the work glass plate 34, respectively.
  • Each illumination means 16 lights up according to the control from the image processing apparatus 12 and illuminates the four corners of the work glass plate 34. Further, each of the imaging units 18C0 to 18C3 controls the images p1 to p4 including the corner portions C1 to C4 at the four corners of the work glass plate 34 according to the control from the image processing device 12 (similar to the images P1 to P4 shown in FIG. 5). Image) is captured (step S22). The captured images p1 to p4 are taken into the image processing device 12.
  • the image processing device 12 calculates the CP coordinates c1Px to c4Px, c1Py to c4Py and the CC dimensions c1Lx to c4Lx, c1Ly to c4Ly of the four corners of the work glass plate 34 based on the captured images p1 to p4. (Steps S24 and S26).
  • each edge (horizontal edge EH, vertical edge EV, oblique edge EB) is detected in the same manner as shown in FIG.
  • the intersection of the vertical edges EH and EV and the oblique edge EB is obtained (step S24).
  • CP coordinates c1Px to c4Px, c1Py to c4Py and CC dimensions c1Lx to c4Lx, c1Ly to c4Ly are calculated (step S26).
  • the image processing apparatus 12 uses the calculated CP coordinates c1Px to c4Px and c1Py to c4Py of the work glass plate 34 and the relative coordinates S0 to S3 stored in the storage unit 12b to perform the work glass plate 34. Are calculated and stored in the storage means 12b (step S28).
  • the length dimensions E1, E2, ER, and EL of each of the four sides of the work glass plate 34 are calculated using the following formula.
  • the length dimensions E1, E2, ER, EL of each of the four sides of the work glass plate 34 are calculated and stored in the storage means 12b.
  • the image processing apparatus 12 calculates the calculated CP coordinates c1Px to c4Px, c1Py to c4Py, the relative coordinates S0 to S3 stored in the storage unit 12b, and the calculated length dimensions E1, E2, ER. , EL, the squares ⁇ 1 to ⁇ 4 at the four corners of the work glass plate 34 are calculated (step S28).
  • the internal angles r1 to r4 converted to radians (RAD) of each corner portion of the work glass plate 34 are calculated using the following formula, and the work glass is further calculated based on the internal angles r1 to r4.
  • the squares ⁇ 1 to ⁇ 4 at the four corners of the plate 34 are calculated.
  • the squares ⁇ 1 to ⁇ 4 at the four corners of the work glass plate 34 are calculated and stored in the storage means 12b.
  • the image processing apparatus 12 calculates predetermined lengths (settings) such as the calculated length dimensions E1, E2, ER, EL and squareness ⁇ 1 to ⁇ ⁇ ⁇ 4 of the four sides of the workpiece glass plate 34. Range), and based on the comparison result, whether the calculated length dimensions E1, E2, ER, EL and squareness ⁇ 1 to ⁇ 4 are within the standard value (setting range), that is, The quality of the outer shape of the work glass plate 34 is determined (step S30). Then, if the calculated length dimensions E1, E2, ER, EL and the perpendicular angles ⁇ 1 to ⁇ 4 are within the standard value (setting range) (step S30: YES), the image processing device 12 performs step S20.
  • predetermined lengths such as the calculated length dimensions E1, E2, ER, EL and squareness ⁇ 1 to ⁇ ⁇ 4 of the four sides of the workpiece glass plate 34. Range
  • steps S20 to S30 are repeated for the workpiece glass plate 34 that has reached the measurement section 32. That is, the shape is measured in a non-stop manner for each of the plurality of work glass plates 34 (see FIG. 3) conveyed on the measurement line 30.
  • the image processing device 12 displays an alarm or the like on the display 22. To that effect.
  • the method for measuring the external shape of the work glass plate of the present embodiment it is possible to correspond to the four corners of the work glass plate 34 in advance without moving the imaging means 18C0 to 18C3 in the XY directions as in the prior art.
  • the four image pickup means 18C0 to 18C3 arranged in this manner simultaneously (or substantially simultaneously) pick up images including the corner portions C1 to C4 of the four corners of the work glass plate 34, and based on the picked up images p1 to p4, etc.
  • the outer shape of the work glass plate 34 (the length dimension of each of the four sides of the work glass plate 34 and the perpendicularity of each of the four corners of the rectangular plate-like object) is calculated (steps S20 to S28). For this reason, it becomes possible to measure the shape in a non-stop manner for each of the plurality of work glass plates 34 (see FIG. 3) conveyed on the measurement line 30 and to improve the yield.
  • the external shape measuring method of the work glass plate of the present embodiment by using the (standard) calibration standard glass plate 36 in which the length dimension of each of the four sides and the squareness of each of the four corners are measured in advance, It is possible to calculate the relative coordinates of each of the four imaging units 18C0 to 18C3 which are the basis for calculating the outer shape of the work glass plate 34 (the length dimension of each of the four sides of the work glass plate 34 and the perpendicularity of each of the four corners). Become.
  • the calibration since the calibration includes the step S10 for correcting the squareness measured in advance at each of the four corners of the calibration standard glass plate 36, the calibration measured in advance. Even if a measurement error is included in the length dimension of each of the four sides of the standard glass plate 36 and the squareness of each of the four corners, the measurement error is offset. Therefore, it is possible to calculate the relative coordinates of each of the four imaging units 18C0 to 18C3 with higher accuracy.
  • the measurement object is the standard glass plate 36 for calibration and the work glass plate 34 with the four corners cut as shown in FIG. 5
  • the present invention is not limited to this.
  • the relative coordinates S0 to S3 are calculated, and the lengths E1, E2, ER and EL of the four sides of the workpiece glass plate 34, and the squares ⁇ 1 to ⁇ 4 at the four corners of the workpiece glass plate 34 are calculated. It is possible.
  • the measurement target is a glass plate that has undergone a cutting process, a chamfering process, and a cleaning / drying process
  • the present invention is not limited to this.
  • a glass plate before the cutting step, a glass plate before the chamfering step after the cutting step, and a glass plate before the cleaning / drying step after the chamfering step can be measured.
  • the rectangular plate-like object to be measured is a glass plate
  • the present invention is not limited to this.
  • the present invention can be similarly applied to other rectangular plates such as a wooden plate, a metal plate, and a resin plate.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

Provided is a method for measuring the external shape of a rectangular plate-like object being conveyed by use of a shape measurement device which is provided with four image-capturing means previously arranged corresponding to the four corners of the rectangular plate-like object and a storage means for storing the relative coordinates of the respective four image-capturing means.  The method is provided with a step of determining whether or not the rectangular plate-like object has reached a measurement section, a step of causing the four image-capturing means to capture the images including the corner portions at the respective four corners of the rectangular plate-like object having reached the measurement section, a step of computing corner post coordinates which are coordinate values from image original point of the four corners of the rectangular plate-like object on the basis of the captured images, and a step of computing the lengths of the four sides and the squareness of the four corners of the rectangular plate-like objects on the basis of the computed corner post coordinates and the relative coordinates stored in the storage means.

Description

矩形板状物の外形形状測定方法、及び撮像手段の相対位置校正方法Method for measuring outer shape of rectangular plate-shaped object, and method for calibrating relative position of imaging means
 本発明は、ガラス板等の矩形板状物の外形形状(寸法及び四隅の直角度等)を測定する測定方法に関し、特にライン上を搬送されるガラス板等の矩形板状物の外形形状(寸法及び四隅の直角度等)をノンストップで測定することが可能な測定方法に関する。 The present invention relates to a measuring method for measuring the outer shape (dimensions, squareness of four corners, etc.) of a rectangular plate-like material such as a glass plate, and in particular, the outer shape of a rectangular plate-like material such as a glass plate conveyed on a line ( The present invention relates to a measurement method capable of measuring dimensions, squareness of four corners, etc.) non-stop.
 従来、液晶ディスプレイ用ガラス板、プラズマディスプレイ用ガラス板、フィールドエミッションディスプレイ用ガラス板、有機EL等のフラットディスプレイパネル用ガラス板等のガラス板の分野においては、矩形のガラス板の外形形状(寸法及び四隅の直角度等)を、非接触で、短時間に、高精度で効率的に測定することが求められており、この要求に応える装置として、ガラス板を撮像し、当該撮像した画像等に基づいて、ガラス板の外形形状(寸法及び四隅の直角度等)を自動測定する形状測定装置が提案されている(例えば、特許文献1参照)。 Conventionally, in the field of glass plates such as glass plates for liquid crystal displays, glass plates for plasma displays, glass plates for field emission displays, glass plates for flat display panels such as organic EL, etc., the outer shape of the rectangular glass plate (dimensions and dimensions) It is required to measure the squareness of the four corners in a non-contact manner in a short time with high precision and efficiency. As a device that meets this requirement, the glass plate is imaged, and the captured image, etc. Based on this, a shape measuring device that automatically measures the outer shape (such as dimensions and squareness of four corners) of a glass plate has been proposed (see, for example, Patent Document 1).
 図10は、特許文献1に記載の形状測定装置の正面図である。図11は、特許文献1に記載の形状測定装置の側面図である。 FIG. 10 is a front view of the shape measuring apparatus described in Patent Document 1. FIG. FIG. 11 is a side view of the shape measuring apparatus described in Patent Document 1.
 図10、図11に示すように、特許文献1に記載の形状測定装置100は、X軸方向に延びるX軸ガイド102及びY軸方向に延びるY軸ガイド104、撮像手段106、撮像手段106をX軸及びY軸ガイド102、104に沿ってXY方向に移動させるモータ(図示せず)等を備えている。 As shown in FIGS. 10 and 11, the shape measuring apparatus 100 described in Patent Document 1 includes an X-axis guide 102 extending in the X-axis direction, a Y-axis guide 104 extending in the Y-axis direction, an imaging unit 106, and an imaging unit 106. A motor (not shown) that moves in the X and Y directions along the X and Y axis guides 102 and 104 is provided.
 この形状測定装置100においては、図11に示すように、傾斜姿勢で搬入され、検査台108上に支持されたガラス板110のエッジ等を、撮像手段106をXY方向に移動させながら撮像し、当該撮像した画像等に基づいて、ガラス板110の外形形状(寸法及び四隅の直角度等)を自動測定するようになっている。 In this shape measuring apparatus 100, as shown in FIG. 11, the edges of the glass plate 110 carried in an inclined posture and supported on the inspection table 108 are imaged while moving the imaging means 106 in the XY directions, Based on the captured image or the like, the external shape (size, squareness of four corners, etc.) of the glass plate 110 is automatically measured.
日本国特開2007-205724号公報Japanese Unexamined Patent Publication No. 2007-205724
 しかしながら、この形状測定装置100は、XY方向に移動する撮像手段106を用いてガラス板110のエッジ等を撮像する構成であるため、当該ガラス板110を検査台108上に一定時間固定しなければならず、ライン上を搬送される複数のガラス板110それぞれに対し、ノンストップで形状測定することができず、測定に時間がかかり、不良発生時に製造条件へのフィードバックが遅くなる。このため、歩留まりを向上させることができない、という問題がある。 However, since the shape measuring apparatus 100 is configured to image the edge or the like of the glass plate 110 using the imaging means 106 moving in the XY directions, the glass plate 110 must be fixed on the inspection table 108 for a certain period of time. In other words, it is not possible to measure the shape of each of the plurality of glass plates 110 conveyed on the line in a non-stop manner, and the measurement takes time, and feedback to manufacturing conditions is delayed when a defect occurs. For this reason, there is a problem that the yield cannot be improved.
 本発明は、このような事情に鑑みてなされたものであり、ライン上を搬送されるガラス板等の矩形板状物の外形形状(寸法及び四隅の直角度等)をノンストップで測定することが可能な測定方法を提供することを目的とする。 This invention is made in view of such a situation, and measures the external shape (dimensions, squareness of four corners, etc.) of a rectangular plate such as a glass plate conveyed on a line in a non-stop manner. An object is to provide a measurement method capable of performing
 本発明は、前記目的を達成するため、予め矩形板状物の四隅に対応して配置された4つの撮像手段と、前記4つの撮像手段それぞれの相対座標を格納する記憶手段と、を備える形状測定装置を用いて、形状測定セクションを通過するように搬送される矩形板状物の外形形状を測定する測定方法において、前記矩形板状物が前記測定セクションに到達したか否かを判定するステップと、前記矩形板状物が前記測定セクションに到達したと判定された場合に、前記4つの撮像手段によって当該測定セクションに到達した矩形板状物の四隅それぞれのコーナー部を含む画像を撮像するステップと、前記撮像された画像に基づいて、前記矩形板状物の四隅それぞれの画像原点からの座標値であるコーナーポスト座標を演算するステップと、前記演算された矩形板状物のコーナーポスト座標、及び、前記記憶手段に格納された相対座標に基づいて、前記矩形板状物の四辺それぞれの長さ寸法を演算するステップと、前記演算されたコーナーポスト座標、前記記憶手段に格納された相対座標、及び、前記演算された長さ寸法に基づいて、前記矩形板状物の四隅それぞれの直角度を演算するステップと、を備えることを特徴とする矩形板状物の外形形状測定方法を提供する。 In order to achieve the above object, the present invention has a shape including four image pickup means arranged in advance corresponding to the four corners of a rectangular plate-like object, and a storage means for storing the relative coordinates of each of the four image pickup means. In the measuring method for measuring the outer shape of the rectangular plate conveyed so as to pass through the shape measuring section using the measuring device, the step of determining whether or not the rectangular plate has reached the measuring section And, when it is determined that the rectangular plate-like object has reached the measurement section, the four imaging means captures images including the corners of the four corners of the rectangular plate-like object that has reached the measurement section. Calculating corner post coordinates, which are coordinate values from the image origin of each of the four corners of the rectangular plate based on the captured image, and the calculation Calculating the length dimension of each of the four sides of the rectangular plate based on the corner post coordinates of the rectangular plate and the relative coordinates stored in the storage means; and the calculated corner post Calculating a squareness of each of the four corners of the rectangular plate based on the coordinates, the relative coordinates stored in the storage means, and the calculated length dimension. A method for measuring the outer shape of a plate-like object is provided.
 上記構成によれば、従来のように撮像手段をXY方向に移動させることなく、予め矩形板状物の四隅に対応して配置された4つの撮像手段で同時(又はほぼ同時)に矩形板状物の四隅それぞれのコーナー部を含む画像を撮像し、当該撮像された画像等に基づいて、矩形板状物の外形形状(矩形板状物の四辺それぞれの長さ寸法及び矩形板状物の四隅それぞれの直角度)を演算する。このため、ライン上を搬送される複数の矩形板状物それぞれに対し、ノンストップで形状測定することが可能となり、歩留まりを向上させることが可能となる。 According to the above configuration, a rectangular plate shape is formed simultaneously (or almost simultaneously) with four image pickup units arranged in advance corresponding to the four corners of the rectangular plate-like object without moving the image pickup unit in the XY directions as in the prior art. Taking an image including the corners of each of the four corners of the object, and based on the captured image, etc., the outer shape of the rectangular plate (the length dimension of each of the four sides of the rectangular plate and the four corners of the rectangular plate (Each squareness) is calculated. For this reason, it becomes possible to measure the shape in a non-stop manner for each of the plurality of rectangular plates conveyed on the line, and it is possible to improve the yield.
 さらに、本発明の外形形状測定方法は、前記演算された長さ寸法及び直角度と所定の規格値とを比較するステップと、前記比較結果に基づいて、前記矩形板状物の外形形状の良否判定を行うステップと、をさらに備えてもよい。 Furthermore, in the outer shape measuring method of the present invention, the step of comparing the calculated length dimension and squareness with a predetermined standard value, and the quality of the outer shape of the rectangular plate-like object based on the comparison result. And a step of making a determination.
 上記構成によれば、矩形板状物の外形形状の良否判定を行うことが可能となる。 According to the above configuration, it is possible to determine the quality of the outer shape of the rectangular plate-like object.
 さらに、本発明の外形形状測定方法は、校正用標準矩形板状物の四辺それぞれの予め測定された長さ寸法、及び、当該校正用標準矩形板状物の四隅それぞれの予め測定された直角度に基づいて、前記矩形板状物の四隅それぞれの予め測定された直角度を補正するステップと、前記4つの撮像手段によって前記校正用標準矩形板状物の四隅それぞれのコーナー部を含む画像を撮像するステップと、前記撮像された画像に基づいて、前記校正用標準矩形板状物の四隅それぞれのコーナーポスト座標を演算するステップと、前記演算された校正用標準矩形板状物のコーナーポスト座標、前記補正された直角度、及び、前記校正用標準矩形板状物の四辺それぞれの予め測定された長さ寸法に基づいて、前記4つの撮像手段それぞれの相対座標を演算し、前記記憶手段に格納するステップと、をさらに備えてもよい。 Further, the external shape measuring method of the present invention includes a pre-measured length dimension of each of the four sides of the calibration standard rectangular plate, and a pre-measured squareness of each of the four corners of the calibration standard rectangular plate. Based on the above, the step of correcting the squareness measured in advance at each of the four corners of the rectangular plate-like object, and the four imaging means capture images including the corner portions of the four corners of the standard rectangular plate for calibration Calculating the corner post coordinates of each of the four corners of the standard rectangular plate for calibration based on the captured image, and the corner post coordinates of the calculated standard rectangular plate for calibration, Based on the corrected squareness and the length dimension measured in advance on each of the four sides of the standard rectangular plate for calibration, the relative coordinates of the four imaging units are calculated. And storing in the storage means may further comprise a.
 上記構成によれば、四辺それぞれの長さ寸法及び四隅それぞれの直角度が予め測定された(既知の)校正用標準矩形板状物を用いることで、矩形板状物の外形形状(矩形板状物の四辺それぞれの長さ寸法及び矩形板状物の四隅それぞれの直角度)の演算の基礎となる4つの撮像手段それぞれの相対座標を演算することが可能となる。 According to the above configuration, by using the (known) standard rectangular plate for calibration in which the length dimension of each of the four sides and the squareness of each of the four corners are measured in advance, the outer shape of the rectangular plate (rectangular plate shape) It is possible to calculate the relative coordinates of each of the four imaging units that are the basis for calculating the length dimension of each of the four sides of the object and the squareness of each of the four corners of the rectangular plate-like object.
 しかも、矩形板状物の四隅それぞれの予め測定された直角度を補正するステップを備えているため、予め測定された校正用標準矩形板状物の四辺それぞれの長さ寸法及び四隅それぞれの直角度に計測誤差が含まれていたとしても、その計測誤差が相殺されることとなる。このため、4つの撮像手段それぞれの相対座標をより精度良く演算することが可能となる。 Moreover, since it includes a step of correcting the squareness measured in advance at each of the four corners of the rectangular plate, the length dimension of each of the four sides of the standard rectangular plate for calibration and the squareness of each of the four corners are measured. Even if a measurement error is included in, the measurement error is canceled out. For this reason, it becomes possible to calculate the relative coordinates of each of the four imaging units with higher accuracy.
 さらに、本発明は、予め矩形板状物の四隅に対応して配置された4つの撮像手段を備える形状測定装置における前記4つの撮像手段の相対座標を校正する方法において、校正用標準矩形板状物の四辺それぞれの予め測定された長さ寸法、及び、当該校正用標準矩形板状物の四隅それぞれの予め測定された直角度に基づいて、前記矩形板状物の四隅それぞれの予め測定された直角度を補正するステップと、前記4つの撮像手段によって前記校正用標準矩形板状物の四隅それぞれのコーナー部を含む画像を撮像するステップと、前記撮像された画像に基づいて、前記校正用標準矩形板状物の四隅それぞれのコーナーポスト座標を演算するステップと、前記演算された校正用標準矩形板状物のコーナーポスト座標、前記補正された直角度、及び、前記校正用標準矩形板状物の四辺それぞれの予め測定された長さ寸法に基づいて、前記4つの撮像手段それぞれの相対座標を演算するステップと、を備えることを特徴とする撮像手段の相対位置の校正方法を提供する。 Furthermore, the present invention provides a calibration standard rectangular plate-like shape in a method for calibrating the relative coordinates of the four imaging means in a shape measuring apparatus provided with four imaging means previously arranged corresponding to the four corners of the rectangular plate-like object. Based on the pre-measured length dimension of each of the four sides of the object and the pre-measured squareness of each of the four corners of the standard rectangular plate for calibration, the four corners of the rectangular plate were measured in advance. A step of correcting the squareness, a step of capturing an image including each of the four corners of the standard rectangular plate for calibration by the four imaging means, and the calibration standard based on the captured image. Calculating the corner post coordinates of each of the four corners of the rectangular plate, the calculated corner post coordinates of the standard rectangular plate for calibration, the corrected squareness, and Calculating the relative coordinates of each of the four imaging means based on the pre-measured length dimension of each of the four sides of the calibration standard rectangular plate-like object, the relative position of the imaging means Provide a calibration method.
 上記構成によれば、四辺それぞれの長さ寸法及び四隅それぞれの直角度が予め測定された(既知の)校正用標準矩形板状物を用いることで、矩形板状物の外形形状(矩形板状物の四辺それぞれの長さ寸法及び矩形板状物の四隅それぞれの直角度)の演算の基礎となる4つの撮像手段それぞれの相対座標を演算することが可能となる。 According to the above configuration, by using the (known) standard rectangular plate for calibration in which the length dimension of each of the four sides and the squareness of each of the four corners are measured in advance, the outer shape of the rectangular plate (rectangular plate shape) It is possible to calculate the relative coordinates of each of the four imaging units that are the basis for calculating the length dimension of each of the four sides of the object and the squareness of each of the four corners of the rectangular plate-like object.
 しかも、矩形板状物の四隅それぞれの予め測定された直角度を補正するステップを備えているため、予め測定された校正用標準矩形板状物の四辺それぞれの長さ寸法及び四隅それぞれの直角度に計測誤差が含まれていたとしても、その計測誤差が相殺されることとなる。このため、4つの撮像手段それぞれの相対座標をより精度良く演算することが可能となる。 Moreover, since it includes a step of correcting the squareness measured in advance at each of the four corners of the rectangular plate, the length dimension of each of the four sides of the standard rectangular plate for calibration and the squareness of each of the four corners are measured. Even if a measurement error is included in, the measurement error is canceled out. For this reason, it becomes possible to calculate the relative coordinates of each of the four imaging units with higher accuracy.
 以上説明したように、本発明によれば、ライン上を搬送されるガラス板等の矩形板状物の外形形状(寸法及び四隅の直角度等)をノンストップで測定することが可能な測定方法を提供することが可能となる。 As described above, according to the present invention, a measuring method capable of measuring the outer shape (dimensions, squareness of four corners, etc.) of a rectangular plate such as a glass plate conveyed on a line in a non-stop manner. Can be provided.
本実施形態の矩形板状物の外形形状測定方法に適用される形状測定装置のシステム構成図である。It is a system configuration figure of a shape measuring device applied to a shape measuring method of a rectangular plate object of this embodiment. ガラス板の一般的な製造工程を説明するための図である。It is a figure for demonstrating the general manufacturing process of a glass plate. 測定ライン30上の形状測定セクション32付近の平面図である。FIG. 4 is a plan view of the vicinity of a shape measurement section 32 on a measurement line 30. 校正用標準ガラス板36の四辺及びコーナー部と撮像手段18C0~18C3との位置関係を説明するための図である。It is a figure for demonstrating the positional relationship of four sides and a corner part of the calibration standard glass plate 36, and the imaging means 18C0-18C3. 各撮像手段18C0~18C3により撮像された画像P1~P4の例である。This is an example of images P1 to P4 picked up by the image pickup means 18C0 to 18C3. 4つの撮像手段18C0~18C3それぞれの相対座標を演算する処理を説明するためのフローチャートである。10 is a flowchart for explaining a process of calculating relative coordinates of four imaging units 18C0 to 18C3. 校正用標準ガラス板36の四辺それぞれの長さ寸法E1,E2,ER,EL及び当該校正用標準ガラス板36の四隅それぞれの直角度∠1~∠4の関係を説明するための図である。FIG. 6 is a diagram for explaining the relationship between the lengths E1, E2, ER, EL of each of the four sides of the calibration standard glass plate 36 and the squareness ∠1 to ∠4 of each of the four corners of the calibration standard glass plate 36. 4つの撮像手段18C0~18C3それぞれの相対座標S0~S3、近似補正角R1*,R2*等の関係を説明するための図である。FIG. 6 is a diagram for explaining the relationship between relative coordinates S0 to S3, approximate correction angles R1 *, R2 *, etc. of four imaging means 18C0 to 18C3. ワークガラス板34の外形形状を測定する方法を説明するためのフローチャートである。It is a flowchart for demonstrating the method to measure the external shape of the work glass plate. 特許文献1に記載の形状測定装置の正面図である。It is a front view of the shape measuring apparatus of patent document 1. 特許文献1に記載の形状測定装置の側面図である。It is a side view of the shape measuring apparatus of patent document 1.
 以下、添付図面に基づいて本発明に係る矩形板状物の外形形状測定方法の好ましい実施の形態を詳説する。 Hereinafter, a preferred embodiment of a method for measuring the outer shape of a rectangular plate according to the present invention will be described in detail with reference to the accompanying drawings.
 図1は、本実施形態の矩形板状物の外形形状測定方法に適用される形状測定装置のシステム構成図である。図2は、ガラス板の一般的な製造工程を説明するための図である。図3は、測定ライン30上の形状測定セクション32付近の平面図である。 FIG. 1 is a system configuration diagram of a shape measuring apparatus applied to the method for measuring the outer shape of a rectangular plate according to the present embodiment. FIG. 2 is a diagram for explaining a general manufacturing process of a glass plate. FIG. 3 is a plan view of the vicinity of the shape measurement section 32 on the measurement line 30.
 [形状測定装置の概要]
 図2に示すように、ガラス板は、一般的に、所定の厚みに製造された板ガラスを所定サイズに切断する切断工程、切断後のガラス板に対し、面取り加工を施す面取り工程、面取り加工後のガラス板に対し、洗浄・乾燥を行う洗浄・乾燥工程、洗浄・乾燥後のガラス板の外形形状を測定する測定工程(測定ライン)を経て製造される。
[Outline of shape measuring device]
As shown in FIG. 2, the glass plate is generally a cutting step for cutting a plate glass manufactured to a predetermined thickness into a predetermined size, a chamfering step for chamfering the cut glass plate, and after chamfering processing. The glass plate is manufactured through a washing / drying step for washing / drying and a measurement step (measurement line) for measuring the outer shape of the glass plate after washing / drying.
 本実施形態の形状測定装置10は、ガラス板の外形形状を測定するための装置であり、図3に示すように、測定ライン30上の形状測定セクション32に設置されている。洗浄・乾燥されたガラス板34(例えば、図3に示す長さL(数m)×幅W(数m)の矩形ガラス板。以下ワークガラス板と称す)は、公知の搬送手段(図示せず)により測定ライン30上を搬送され、形状測定セクション32を通過する。形状測定装置10は、形状測定セクション32を通過するワークガラス板34の外形形状(ワークガラス板34の四辺それぞれの長さ寸法及び四隅それぞれの直角度等)をノンストップで自動測定する。 The shape measuring apparatus 10 of this embodiment is an apparatus for measuring the outer shape of a glass plate, and is installed in a shape measuring section 32 on a measurement line 30 as shown in FIG. The cleaned and dried glass plate 34 (for example, a rectangular glass plate of length L (several m) × width W (several m) shown in FIG. 3; hereinafter referred to as a work glass plate) is a known conveying means (not shown). ) On the measurement line 30 and pass through the shape measurement section 32. The shape measuring apparatus 10 automatically measures the outer shape of the workpiece glass plate 34 passing through the shape measuring section 32 (the length dimension of each of the four sides of the workpiece glass plate 34 and the squareness of each of the four corners, etc.) in a non-stop manner.
 [形状測定装置の構成]
 図1に示すように、形状測定装置10は、画像処理装置12、画像処理装置12にLED電源14及び所定インターフェース(図示せず)を介して接続された4つの照明手段16、画像処理装置12に所定インターフェース(図示せず)を介して接続された4つの撮像手段18C0~18C3、画像処理装置12に所定インターフェース(図示せず)を介して接続されたセンサ20等を備えている。
[Configuration of shape measuring device]
As shown in FIG. 1, the shape measuring apparatus 10 includes an image processing apparatus 12, four illumination units 16 connected to the image processing apparatus 12 via an LED power source 14 and a predetermined interface (not shown), and the image processing apparatus 12. Are provided with four imaging means 18C0 to 18C3 connected via a predetermined interface (not shown), a sensor 20 connected to the image processing device 12 via a predetermined interface (not shown), and the like.
 画像処理装置12は、MPUやCPU等の演算・制御手段12a、RAMやROM等の記憶手段12b等を備えている。画像処理装置12は、演算・制御手段12aが記憶手段12bに読み込まれた所定プログラムを実行することにより、各照明手段16及び各撮像手段18C0~18C3を制御する制御手段、ワークガラス板34の外形形状を演算する演算手段等として機能する。 The image processing apparatus 12 includes a calculation / control unit 12a such as an MPU or CPU, a storage unit 12b such as a RAM or ROM, and the like. The image processing apparatus 12 includes a control unit that controls each illumination unit 16 and each imaging unit 18C0 to 18C3 by the calculation / control unit 12a executing a predetermined program read into the storage unit 12b, and the outer shape of the work glass plate 34. It functions as a calculation means for calculating the shape.
 照明手段16は、ワークガラス板34の四隅を照明するためのものであり、例えば、リング状に配置された複数のLED光源(図示せず)を含む照明装置である。照明手段16は、図1に示すように、ワークガラス板34の四隅それぞれに対応して4カ所に配置されている。照明手段16は、画像処理装置12からの制御に従って点灯し、ワークガラス板34の四隅を照明する。 The illumination means 16 is for illuminating the four corners of the work glass plate 34, and is, for example, an illumination device including a plurality of LED light sources (not shown) arranged in a ring shape. The illumination means 16 is arrange | positioned at four places corresponding to each of the four corners of the workpiece | work glass plate 34, as shown in FIG. The illumination unit 16 is turned on according to control from the image processing apparatus 12 and illuminates the four corners of the work glass plate 34.
 撮像手段18C0~18C3は、ワークガラス板34の四隅を撮像するためのものであり、例えば、CCD型又はCMOS型の撮像素子(例えば、解像度:数十μm/pic)を含む撮像装置である。撮像手段18C0~18C3は、ワークガラス板34の四隅それぞれのコーナー部C1~C4(図1、図3、図4等参照)が視野範囲(例えば、視野範囲:数十mm×数十mm)に収まるように、ワークガラス板34の四隅それぞれに対応して4カ所に配置されている。撮像手段18C0~18C3は、画像処理装置12からの制御に従ってワークガラス板34の四隅それぞれのコーナー部C1~C4を含む画像P1~P4を撮像する。図5は、各撮像手段18C0~18C3により撮像された画像P1~P4の例である。当該撮像された画像P1~P4は画像処理装置12に取り込まれる。 The imaging means 18C0 to 18C3 are for imaging the four corners of the work glass plate 34, and are, for example, an imaging device including a CCD type or CMOS type imaging device (for example, resolution: several tens of μm / pic). In the imaging means 18C0 to 18C3, the corner portions C1 to C4 (see FIGS. 1, 3, and 4) of the four corners of the work glass plate 34 are in the visual field range (for example, visual field range: several tens mm × several tens mm). It is arranged at four locations corresponding to each of the four corners of the work glass plate 34 so as to be accommodated. The imaging means 18C0 to 18C3 capture images P1 to P4 including the corner portions C1 to C4 at the four corners of the work glass plate 34 in accordance with control from the image processing device 12. FIG. 5 is an example of images P1 to P4 picked up by the image pickup means 18C0 to 18C3. The captured images P1 to P4 are taken into the image processing device 12.
 センサ20は、測定対象のワークガラス板34が測定セクション32(内の所定撮像位置)に到達したか否かを検出するためのものであり、例えば、フォトインタラプタである。センサ20は、ワークガラス板34の搬送方向の端縁34a(エッジ)を検出した場合には、その旨の検出信号を画像処理装置12に通知する。当該通知を受けた画像処理装置12は、当該測定セクション32に到達したワークガラス板34の四隅を照明するように各照明手段16を制御する。これとともに、当該ワークガラス板34の四隅それぞれのコーナー部C1~C4を含む画像を撮像するように、各撮像手段18C0~18C3を制御する。 The sensor 20 is for detecting whether or not the workpiece glass plate 34 to be measured has reached the measurement section 32 (a predetermined imaging position in the measurement section 32), and is, for example, a photo interrupter. When the sensor 20 detects the edge 34a (edge) in the transport direction of the workpiece glass plate 34, the sensor 20 notifies the image processing apparatus 12 of a detection signal to that effect. Upon receiving the notification, the image processing apparatus 12 controls each illumination unit 16 so as to illuminate the four corners of the work glass plate 34 that has reached the measurement section 32. At the same time, the imaging means 18C0 to 18C3 are controlled so as to capture images including the corner portions C1 to C4 at the four corners of the work glass plate 34, respectively.
 [校正用標準ガラス板を用いた相対座標演算処理(校正方法)]
 次に、校正用標準ガラス板を用いて、4つの撮像手段18C0~18C3それぞれの相対座標を演算する処理について、図6を参照しながら説明する。図6は、4つの撮像手段18C0~18C3それぞれの相対座標を演算する処理を説明するためのフローチャートである。以下の処理は、画像処理装置12(演算・制御手段)が、記憶手段12b等に読み込まれた所定プログラムを実行することにより実現される。
[Relative coordinate calculation using calibration standard glass plate (calibration method)]
Next, processing for calculating the relative coordinates of each of the four imaging units 18C0 to 18C3 using the calibration standard glass plate will be described with reference to FIG. FIG. 6 is a flowchart for explaining processing for calculating the relative coordinates of the four imaging units 18C0 to 18C3. The following processing is realized by the image processing apparatus 12 (calculation / control means) executing a predetermined program read into the storage means 12b or the like.
 図4、図7に示すように、校正用標準ガラス板36の四辺それぞれの長さ寸法E1,E2,EF,ER及び当該校正用標準ガラス板36の四隅それぞれの直角度∠1~∠4は、予めリニアゲージ等の校正ゲージを用いて測定され、表1に示すように記憶手段12b等に格納されている。 As shown in FIGS. 4 and 7, the lengths E1, E2, EF, ER of the four sides of the calibration standard glass plate 36 and the squares ∠1 to ∠4 of the four corners of the calibration standard glass plate 36 are as follows. Measured in advance using a calibration gauge such as a linear gauge and stored in the storage means 12b as shown in Table 1.
 直角度とは、直角であるべき校正用標準ガラス板36の四隅それぞれの内角の、直角からの狂いの大きさのことである。本実施形態においては、校正用標準ガラス板36の四隅それぞれのコーナー部C1~C4から1000mm離れた当該校正用標準ガラス板36上の点と、四隅それぞれの内角が直角であると仮定した場合の校正用標準ガラス板36の四隅それぞれのコーナー部C1~C4から1000mm離れた当該校正用標準ガラス板36上の点との距離(mm)を直角度として採用した。なお、校正用標準ガラス板36の四隅それぞれの内角と、四隅それぞれの内角が直角であると仮定した場合の校正用標準ガラス板36の四隅それぞれの内角(直角)との差(rad)を直角度として採用してもよい。 The perpendicularity is the magnitude of the deviation from the right angle of each of the four corners of the calibration standard glass plate 36 that should be a right angle. In this embodiment, it is assumed that a point on the calibration standard glass plate 36 that is 1000 mm away from the corner portions C1 to C4 of each of the four corners of the calibration standard glass plate 36 and an inner angle of each of the four corners are perpendicular. The distance (mm) to a point on the calibration standard glass plate 36 that is 1000 mm away from each of the corners C1 to C4 of the four corners of the calibration standard glass plate 36 was adopted as a squareness. Note that the difference (rad) between the inner angles of the four corners of the calibration standard glass plate 36 and the inner angles (right angles) of the four corners of the calibration standard glass plate 36 when the inner angles of the four corners are right angles is directly calculated. You may employ | adopt as an angle.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 しかし、これらの測定値自体(特に直角度∠1~∠4)に、既に計測誤差(校正ゲージのオフセット誤差)が含まれている。この計測誤差を相殺し、校正用標準ガラス板36の四隅の内角の和が4直角となるように、直角度∠1~∠4を補正する(ステップS10)。 However, these measurement values themselves (especially squares ∠1 to ∠4) already contain measurement errors (calibration gauge offset errors). The square errors ∠1 to ∠4 are corrected so that this measurement error is canceled and the sum of the inner angles of the four corners of the calibration standard glass plate 36 becomes four right angles (step S10).
 具体的には、次の表2、数1、表3に示すようにして、直角度∠1~∠4を補正する。 Specifically, the squares ∠1 to ∠4 are corrected as shown in the following Table 2, Equation 1, and Table 3.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2中、DWSn←∠n/1000は、変数DWS1~DWS4に、直角度∠1~∠4を、直角度測定点と四隅それぞれのコーナー部C1~C4との距離である1000mmで除した、∠1/1000~∠4/1000がそれぞれ代入されることを表している。また、表2中、Rn#←ATAN(DWSn)は、変数R1#~R4#に、コーナー部C1~C4のラジアン化(RAD化)された内角ATAN(DWS1~DWS4)がそれぞれ代入されることを表している。 In Table 2, DWSn ← ∠n / 1000 is obtained by dividing the squares ∠1 to ∠4 by 1000 mm, which is the distance between the squareness measurement points and the corners C1 to C4 at the four corners, to the variables DWS1 to DWS4. ∠1 / 1000 to ∠4 / 1000 are respectively substituted. In Table 2, for Rn # ← ATAN (DWSn), the radians (RAD) of the corner portions C1 to C4 are assigned to the variables R1 # to R4 #, respectively. Represents.
 また、表2中、aR←(R1#+R2#+R3#+R4#)/4.0は、変数aRに、上記ラジアン化(RAD化)された内角ATAN(DWS1~DWS4)の平均値が代入されることを表している。また、表2中、Rn←Rn#-aRは、変数R1~4に、変数R1#~R4#から変数aRを減算した値がそれぞれ代入されることを表している。 In Table 2, aR ← (R1 # + R2 # + R3 # + R4 #) / 4.0 substitutes the average value of the radians (RAD) of the internal angles Atan (DWS1 to DWS4) for the variable aR. It represents that. In Table 2, Rn ← Rn # -aR indicates that the values obtained by subtracting the variable aR from the variables R1 # to R4 # are assigned to the variables R1 to R4, respectively.
 これにより、校正用標準ガラス板36の内角の計測値に誤差が含まれており、校正用標準ガラス板36の内角の計測値の和R1#+R2#+R3#+R4#がゼロとならない場合であっても、下記の通り、R1+R2+R3+R4はゼロとなる。
R1+R2+R3+R4=(R1#-aR)+(R2#-aR)+(R3#-aR)+(R4#-aR)
         =R1#+R2#+R3#+R4#-4×aR
         =0 
Thereby, an error is included in the measured value of the inner angle of the calibration standard glass plate 36, and the sum R1 # + R2 # + R3 # + R4 # of the measured value of the inner angle of the calibration standard glass plate 36 is not zero. Even so, R1 + R2 + R3 + R4 is zero as described below.
R1 + R2 + R3 + R4 = (R1 # -aR) + (R2 # -aR) + (R3 # -aR) + (R4 # -aR)
= R1 # + R2 # + R3 # + R4 # -4xaR
= 0
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 上記処理において、|R3+R4|>0.000001または|AR12|>0.000001の少なくともいずれか一方を満たさない場合は、R3、R4はいずれもゼロとする。また、|R1+R2|>0.000001または|AR12|>0.000001の少なくともいずれか一方を満たさない場合は、R1、R2はいずれもゼロとする。 In the above processing, if at least one of | R3 + R4 |> 0.000001 or | AR12 |> 0.000001 is not satisfied, both R3 * and R4 * are set to zero. If at least one of | R1 + R2 |> 0.000001 or | AR12 |> 0.000001 is not satisfied, both R1 * and R2 * are set to zero.
 上記処理は、校正用標準ガラス板36が概略平行四辺形であることを前提にして、対辺の長さの差が比較している辺の両端の角度の和(真の平行四辺形の場合は180度となる)の差となることから、この差分を元の角度の値に比例配分して、辺の長さの差を直角度に反映させるように、長辺間の長さの差分、短辺間の長さの差分について補正している。 The above processing is based on the assumption that the calibration standard glass plate 36 is a substantially parallelogram, and the sum of the angles of both ends of the sides with which the difference in length between opposite sides is compared (in the case of a true parallelogram) The difference in length between the long sides, so that this difference is proportionally distributed to the original angle value and the difference in side length is reflected in the squareness, The difference in length between the short sides is corrected.
 この処理により、近似補正角R1*~R4*が演算され、記憶手段12bに格納される。 Through this process, the approximate correction angles R1 * to R4 * are calculated and stored in the storage means 12b.
 次に、画像処理装置12は、校正用標準ガラス板36の四隅を照明するように各照明手段16を制御する。これとともに、当該校正用標準ガラス板36の四隅それぞれのコーナー部C1~C4を含む画像を撮像するように、各撮像手段18C0~18C3を制御する。 Next, the image processing apparatus 12 controls each illumination means 16 so as to illuminate the four corners of the calibration standard glass plate 36. At the same time, the imaging means 18C0 to 18C3 are controlled so as to capture images including the corner portions C1 to C4 at the four corners of the calibration standard glass plate 36, respectively.
 各照明手段16は、画像処理装置12からの制御に従って点灯し、当該校正用標準ガラス板36の四隅を照明する。また、各撮像手段18C0~18C3は、画像処理装置12からの制御に従って当該校正用標準ガラス板36の四隅それぞれのコーナー部C1~C4を含む画像P1~P4を撮像する(ステップS12)。図5は、各撮像手段18C0~18C3により撮像された画像P1~P4の例である。当該撮像された画像P1~P4は画像処理装置12に取り込まれる。 Each illumination means 16 is turned on according to the control from the image processing device 12 and illuminates the four corners of the calibration standard glass plate 36. Further, each of the imaging means 18C0 to 18C3 captures images P1 to P4 including the corner portions C1 to C4 at the four corners of the calibration standard glass plate 36 according to the control from the image processing apparatus 12 (step S12). FIG. 5 is an example of images P1 to P4 picked up by the image pickup means 18C0 to 18C3. The captured images P1 to P4 are taken into the image processing device 12.
 次に、画像処理装置12は、その撮像された画像P1~P4に基づいて、校正用標準ガラス板36の四隅それぞれの画像原点からのmm換算座標値であるコーナーポスト座標(以下、CP座標と称す)C1PX~C4PX,C1PY~C4PY及びコーナーカット寸法(以下、CC寸法と称す)C1LX~C4LX,C1LY~C4LYを演算する(ステップS14、S16)。 Next, the image processing device 12 uses the corner post coordinates (hereinafter referred to as CP coordinates) which are mm-converted coordinate values from the image origins at the four corners of the calibration standard glass plate 36 based on the captured images P1 to P4. C1PX to C4PX, C1PY to C4PY and corner cut dimensions (hereinafter referred to as CC dimensions) C1LX to C4LX, C1LY to C4LY are calculated (steps S14 and S16).
 例えば、各画像P1~P4に対して所定の画像処理を施すことにより、図5に示すように、各エッジ(水平エッジEH、垂直エッジEV、斜めエッジEB)を検出し、水平・垂直エッジEH、EVと斜めエッジEBの交点を求める(ステップS14)。これらの交点等に基づいて、CP座標C1PX~C4PX,C1PY~C4PY及びCC寸法C1LX~C4LX,C1LY~C4LYを演算する(ステップS16)。 For example, by performing predetermined image processing on each of the images P1 to P4, as shown in FIG. 5, each edge (horizontal edge EH, vertical edge EV, oblique edge EB) is detected and the horizontal / vertical edge EH is detected. The intersection of EV and the oblique edge EB is obtained (step S14). Based on these intersections and the like, CP coordinates C1PX to C4PX, C1PY to C4PY and CC dimensions C1LX to C4LX, C1LY to C4LY are calculated (step S16).
 次に、画像処理装置12は、その演算された校正用標準ガラス板36のCP座標C1PX~C4PX,C1PY~C4PY、記憶手段12bに格納された校正用標準ガラス板36の四辺それぞれの予め測定された長さ寸法E1,E2,ER,EL、及び、記憶手段12bに格納された近似補正角R1*,R2*,R3*,R4*に基づいて、4つの撮像手段18C0~18C3それぞれの相対座標S0~S3を演算し、記憶手段12bに格納する(ステップS18)。 Next, the image processing apparatus 12 measures in advance the calculated CP coordinates C1PX to C4PX, C1PY to C4PY of the calibration standard glass plate 36, and each of the four sides of the calibration standard glass plate 36 stored in the storage means 12b. Relative coordinates of the four imaging means 18C0 to 18C3 based on the length dimensions E1, E2, ER, EL and the approximate correction angles R1 *, R2 *, R3 *, R4 * stored in the storage means 12b S0 to S3 are calculated and stored in the storage means 12b (step S18).
 具体的には、次の表4に記載の式を用いて、4つの撮像手段18C0~18C3それぞれの相対座標S0~S3を演算する。 Specifically, the relative coordinates S0 to S3 of each of the four imaging units 18C0 to 18C3 are calculated using the formulas shown in Table 4 below.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 以上の処理により、4つの撮像手段18C0~18C3それぞれの相対座標S0~S3が演算され、記憶手段12bに格納される。図8は、4つの撮像手段18C0~18C3それぞれの相対座標S0~S3、近似補正角R1*,R2*等の関係を示している。 Through the above processing, the relative coordinates S0 to S3 of the four imaging units 18C0 to 18C3 are calculated and stored in the storage unit 12b. FIG. 8 shows the relationship between the relative coordinates S0 to S3, approximate correction angles R1 * and R2 *, etc. of the four imaging means 18C0 to 18C3.
 [ワークガラス板の外形形状測定方法]
 次に、上記構成の形状測定装置10を用いて、形状測定セクション32を通過するように搬送されるワークガラス板34の外形形状を測定する方法について、図9を参照しながら説明する。図9は、ワークガラス板34の外形形状を測定する方法を説明するためのフローチャートである。以下の処理は、画像処理装置12(演算・制御手段)が、記憶手段12b等に読み込まれた所定プログラムを実行することにより実現される。なお、記憶手段12bには、予め4つの撮像手段18C0~18C3それぞれの相対座標S0~S3が格納されているものとする。なお、この格納された相対座標S0~S3は、撮像手段18C0~18C3の配置が従前と同様の配置である限り、従前に格納された相対座標S0~S3を記憶手段12bから読み出し、これを用いることが可能である。すなわち、撮像手段18C0~18C3の配置が従前と同様の配置である限り、従前に格納された相対座標S0~S3の再利用が可能であり、都度ステップS10~S18を行う必要はない。
[Measurement method of outer shape of workpiece glass plate]
Next, a method for measuring the outer shape of the work glass plate 34 conveyed so as to pass through the shape measuring section 32 using the shape measuring apparatus 10 having the above configuration will be described with reference to FIG. FIG. 9 is a flowchart for explaining a method of measuring the outer shape of the work glass plate 34. The following processing is realized by the image processing apparatus 12 (calculation / control means) executing a predetermined program read into the storage means 12b or the like. It is assumed that the storage unit 12b stores the relative coordinates S0 to S3 of the four imaging units 18C0 to 18C3 in advance. Note that the stored relative coordinates S0 to S3 are read out from the storage means 12b and used as long as the arrangement of the imaging means 18C0 to 18C3 is the same as before. It is possible. That is, as long as the arrangement of the imaging units 18C0 to 18C3 is the same as the previous arrangement, the previously stored relative coordinates S0 to S3 can be reused, and it is not necessary to perform steps S10 to S18 each time.
 まず、画像処理装置12は、ワークガラス板34が測定セクション32に到達したか否かを判定する(ステップS20)。画像処理装置12は、測定対象のワークガラス板34が測定セクション32(内の所定撮像位置)に到達したと判定した場合(ステップS20:YES)、すなわち、センサ20からワークガラス板34の搬送方向の端縁34a(エッジ)を検出した旨の検出信号の通知を受けた場合には、当該測定セクション32に到達したワークガラス板34の四隅を照明するように各照明手段16を制御する。これとともに、当該ワークガラス板34の四隅それぞれのコーナー部C1~C4を含む画像を撮像するように、各撮像手段18C0~18C3を制御する。 First, the image processing apparatus 12 determines whether or not the work glass plate 34 has reached the measurement section 32 (step S20). When the image processing apparatus 12 determines that the workpiece glass plate 34 to be measured has reached the measurement section 32 (in the predetermined imaging position) (step S20: YES), that is, the conveyance direction of the workpiece glass plate 34 from the sensor 20 Each of the illumination means 16 is controlled so as to illuminate the four corners of the work glass plate 34 that has reached the measurement section 32. At the same time, the imaging means 18C0 to 18C3 are controlled so as to capture images including the corner portions C1 to C4 at the four corners of the work glass plate 34, respectively.
 各照明手段16は、画像処理装置12からの制御に従って点灯し、当該ワークガラス板34の四隅を照明する。また、各撮像手段18C0~18C3は、画像処理装置12からの制御に従って当該ワークガラス板34の四隅それぞれのコーナー部C1~C4を含む画像p1~p4(図5に示した画像P1~P4と同様の画像)を撮像する(ステップS22)。当該撮像された画像p1~p4は画像処理装置12に取り込まれる。 Each illumination means 16 lights up according to the control from the image processing apparatus 12 and illuminates the four corners of the work glass plate 34. Further, each of the imaging units 18C0 to 18C3 controls the images p1 to p4 including the corner portions C1 to C4 at the four corners of the work glass plate 34 according to the control from the image processing device 12 (similar to the images P1 to P4 shown in FIG. 5). Image) is captured (step S22). The captured images p1 to p4 are taken into the image processing device 12.
 次に、画像処理装置12は、その撮像された画像p1~p4に基づいて、ワークガラス板34の四隅それぞれのCP座標c1Px~c4Px,c1Py~c4Py及びCC寸法c1Lx~c4Lx,c1Ly~c4Lyを演算する(ステップS24、S26)。 Next, the image processing device 12 calculates the CP coordinates c1Px to c4Px, c1Py to c4Py and the CC dimensions c1Lx to c4Lx, c1Ly to c4Ly of the four corners of the work glass plate 34 based on the captured images p1 to p4. (Steps S24 and S26).
 例えば、各画像p1~p4に対して所定の画像処理を施すことにより、図5に示したのと同様に、各エッジ(水平エッジEH、垂直エッジEV、斜めエッジEB)を検出し、水平・垂直エッジEH、EVと斜めエッジEBの交点を求める(ステップS24)。これらの交点等に基づいて、CP座標c1Px~c4Px,c1Py~c4Py及びCC寸法c1Lx~c4Lx,c1Ly~c4Lyを演算する(ステップS26)。 For example, by performing predetermined image processing on each of the images p1 to p4, each edge (horizontal edge EH, vertical edge EV, oblique edge EB) is detected in the same manner as shown in FIG. The intersection of the vertical edges EH and EV and the oblique edge EB is obtained (step S24). Based on these intersections and the like, CP coordinates c1Px to c4Px, c1Py to c4Py and CC dimensions c1Lx to c4Lx, c1Ly to c4Ly are calculated (step S26).
 次に、画像処理装置12は、その演算されたワークガラス板34のCP座標c1Px~c4Px,c1Py~c4Py、及び、記憶手段12bに格納された相対座標S0~S3に基づいて、ワークガラス板34の四辺それぞれの長さ寸法E1,E2,ER,ELを演算し、記憶手段12bに格納する(ステップS28)。 Next, the image processing apparatus 12 uses the calculated CP coordinates c1Px to c4Px and c1Py to c4Py of the work glass plate 34 and the relative coordinates S0 to S3 stored in the storage unit 12b to perform the work glass plate 34. Are calculated and stored in the storage means 12b (step S28).
 具体的には、次に記載の式を用いて、ワークガラス板34の四辺それぞれの長さ寸法E1,E2,ER,ELを演算する。 Specifically, the length dimensions E1, E2, ER, and EL of each of the four sides of the work glass plate 34 are calculated using the following formula.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 以上の処理により、ワークガラス板34の四辺それぞれの長さ寸法E1,E2,ER,ELが演算され、記憶手段12bに格納される。 Through the above processing, the length dimensions E1, E2, ER, EL of each of the four sides of the work glass plate 34 are calculated and stored in the storage means 12b.
 次に、画像処理装置12は、その演算されたCP座標c1Px~c4Px,c1Py~c4Py、記憶手段12bに格納された相対座標S0~S3、及び、その演算された長さ寸法E1,E2,ER,ELに基づいて、ワークガラス板34の四隅それぞれの直角度∠1~∠4を演算する(ステップS28)。 Next, the image processing apparatus 12 calculates the calculated CP coordinates c1Px to c4Px, c1Py to c4Py, the relative coordinates S0 to S3 stored in the storage unit 12b, and the calculated length dimensions E1, E2, ER. , EL, the squares ∠1 to ∠4 at the four corners of the work glass plate 34 are calculated (step S28).
 具体的には、次に記載の式を用いて、ワークガラス板34の各コーナー部のラジアン化(RAD化)された内角r1~r4を演算し、さらに当該内角r1~r4に基づいてワークガラス板34の四隅それぞれの直角度∠1~∠4を演算する。 Specifically, the internal angles r1 to r4 converted to radians (RAD) of each corner portion of the work glass plate 34 are calculated using the following formula, and the work glass is further calculated based on the internal angles r1 to r4. The squares ∠1 to ∠4 at the four corners of the plate 34 are calculated.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 以上の処理により、ワークガラス板34の四隅それぞれの直角度∠1~∠4が演算され、記憶手段12bに格納される。 Through the above processing, the squares ∠1 to ∠4 at the four corners of the work glass plate 34 are calculated and stored in the storage means 12b.
 次に、画像処理装置12は、その演算されたワークガラス板34の四辺それぞれの長さ寸法E1,E2,ER,EL及び直角度∠1~∠4と予め定められた所定の規格値(設定範囲)とを比較し、その比較結果に基づいて、当該演算された長さ寸法E1,E2,ER,EL及び直角度∠1~∠4が規格値(設定範囲)内か否か、すなわち、ワークガラス板34の外形形状の良否判定を行う(ステップS30)。そして、画像処理装置12は、当該演算された長さ寸法E1,E2,ER,EL及び直角度∠1~∠4が規格値(設定範囲)内であれば(ステップS30:YES)、ステップS20に戻って、次に測定セクション32に到達したワークガラス板34に対し、ステップS20~S30の処理を繰り返す。すなわち、測定ライン30上を搬送される複数のワークガラス板34(図3参照)それぞれに対し、ノンストップで形状測定する。一方、画像処理装置12は、当該演算された長さ寸法E1,E2,ER,EL及び直角度∠1~∠4が設定範囲内でなければ(ステップS30:NO)、アラーム等をディスプレイ22表示することによりその旨を報知する。 Next, the image processing apparatus 12 calculates predetermined lengths (settings) such as the calculated length dimensions E1, E2, ER, EL and squareness ∠1 to ワ ー ク 4 of the four sides of the workpiece glass plate 34. Range), and based on the comparison result, whether the calculated length dimensions E1, E2, ER, EL and squareness 直 1 to ∠4 are within the standard value (setting range), that is, The quality of the outer shape of the work glass plate 34 is determined (step S30). Then, if the calculated length dimensions E1, E2, ER, EL and the perpendicular angles ∠1 to ∠4 are within the standard value (setting range) (step S30: YES), the image processing device 12 performs step S20. Returning to step S20, steps S20 to S30 are repeated for the workpiece glass plate 34 that has reached the measurement section 32. That is, the shape is measured in a non-stop manner for each of the plurality of work glass plates 34 (see FIG. 3) conveyed on the measurement line 30. On the other hand, if the calculated length dimensions E1, E2, ER, EL and the perpendicular angles ∠1 to ∠4 are not within the set range (step S30: NO), the image processing device 12 displays an alarm or the like on the display 22. To that effect.
 以上説明したように、本実施形態のワークガラス板の外形形状測定方法によれば、従来のように撮像手段18C0~18C3をXY方向に移動させることなく、予めワークガラス板34の四隅に対応して配置された4つの撮像手段18C0~18C3で同時(又はほぼ同時)にワークガラス板34の四隅それぞれのコーナー部C1~C4を含む画像を撮像し、当該撮像された画像p1~p4等に基づいて、ワークガラス板34の外形形状(ワークガラス板34の四辺それぞれの長さ寸法及び矩形板状物の四隅それぞれの直角度)を演算する(ステップS20~S28)。このため、測定ライン30上を搬送される複数のワークガラス板34(図3参照)それぞれに対し、ノンストップで形状測定することが可能となり、歩留まりを向上させることが可能となる。 As described above, according to the method for measuring the external shape of the work glass plate of the present embodiment, it is possible to correspond to the four corners of the work glass plate 34 in advance without moving the imaging means 18C0 to 18C3 in the XY directions as in the prior art. The four image pickup means 18C0 to 18C3 arranged in this manner simultaneously (or substantially simultaneously) pick up images including the corner portions C1 to C4 of the four corners of the work glass plate 34, and based on the picked up images p1 to p4, etc. Then, the outer shape of the work glass plate 34 (the length dimension of each of the four sides of the work glass plate 34 and the perpendicularity of each of the four corners of the rectangular plate-like object) is calculated (steps S20 to S28). For this reason, it becomes possible to measure the shape in a non-stop manner for each of the plurality of work glass plates 34 (see FIG. 3) conveyed on the measurement line 30 and to improve the yield.
 また、本実施形態のワークガラス板の外形形状測定方法によれば、四辺それぞれの長さ寸法及び四隅それぞれの直角度が予め測定された(既知の)校正用標準ガラス板36を用いることで、ワークガラス板34の外形形状(ワークガラス板34の四辺それぞれの長さ寸法及び四隅それぞれの直角度)の演算の基礎となる4つの撮像手段18C0~18C3それぞれの相対座標を演算することが可能となる。 Moreover, according to the external shape measuring method of the work glass plate of the present embodiment, by using the (standard) calibration standard glass plate 36 in which the length dimension of each of the four sides and the squareness of each of the four corners are measured in advance, It is possible to calculate the relative coordinates of each of the four imaging units 18C0 to 18C3 which are the basis for calculating the outer shape of the work glass plate 34 (the length dimension of each of the four sides of the work glass plate 34 and the perpendicularity of each of the four corners). Become.
 しかも、本実施形態のワークガラス板の外形形状測定方法によれば、校正用標準ガラス板36の四隅それぞれの予め測定された直角度を補正するステップS10を備えているため、予め測定された校正用標準ガラス板36の四辺それぞれの長さ寸法及び四隅それぞれの直角度に計測誤差が含まれていたとしても、その計測誤差が相殺されることとなる。このため、4つの撮像手段18C0~18C3それぞれの相対座標をより精度良く演算することが可能となる。 Moreover, according to the method for measuring the external shape of the work glass plate of the present embodiment, since the calibration includes the step S10 for correcting the squareness measured in advance at each of the four corners of the calibration standard glass plate 36, the calibration measured in advance. Even if a measurement error is included in the length dimension of each of the four sides of the standard glass plate 36 and the squareness of each of the four corners, the measurement error is offset. Therefore, it is possible to calculate the relative coordinates of each of the four imaging units 18C0 to 18C3 with higher accuracy.
 次に、変形例について説明する。 Next, a modified example will be described.
 上記実施形態では、測定対象が、図5に示すような四隅がカットされた校正用標準ガラス板36やワークガラス板34である例について説明したが、本発明はこれに限定されない。例えば、図3等に示すような四隅がカットされていない校正用標準ガラス板36やワークガラス板34を用いても同様に、CP座標C1PX~C4PX,C1PY~C4PY、4つの撮像手段18C0~18C3それぞれの相対座標S0~S3を演算し、さらに、ワークガラス板34の四辺それぞれの長さ寸法E1,E2,ER,EL、ワークガラス板34の四隅それぞれの直角度∠1~∠4を演算することが可能である。 In the above embodiment, the example in which the measurement object is the standard glass plate 36 for calibration and the work glass plate 34 with the four corners cut as shown in FIG. 5 has been described, but the present invention is not limited to this. For example, even if a calibration standard glass plate 36 or a work glass plate 34 whose four corners are not cut as shown in FIG. The relative coordinates S0 to S3 are calculated, and the lengths E1, E2, ER and EL of the four sides of the workpiece glass plate 34, and the squares ∠1 to ∠4 at the four corners of the workpiece glass plate 34 are calculated. It is possible.
 また、上記実施形態では、測定対象が、切断工程、面取り工程、洗浄・乾燥工程を経たガラス板である例について説明したが、本発明はこれに限定されない。例えば、切断工程前のガラス板、切断工程後面取り工程前のガラス板、面取り工程後洗浄・乾燥工程前のガラス板を測定対象とすることも可能である。 In the above embodiment, the example in which the measurement target is a glass plate that has undergone a cutting process, a chamfering process, and a cleaning / drying process has been described, but the present invention is not limited to this. For example, a glass plate before the cutting step, a glass plate before the chamfering step after the cutting step, and a glass plate before the cleaning / drying step after the chamfering step can be measured.
 また、上記実施形態では、4つの撮像手段18C0~18C3それぞれの相対座標S0~S3を、ステップS10~S18の処理により演算する例について説明したが、本発明はこれに限定されない。例えば、4つの撮像手段18C0~18C3それぞれの相対座標S0~S3が予め測定されているのであれば、当該予め測定されている相対座標S0~S3を用いて、ワークガラス板34の外形形状を測定すること(ステップS20~S32)が可能である。 In the above embodiment, an example has been described in which the relative coordinates S0 to S3 of the four imaging units 18C0 to 18C3 are calculated by the processing of steps S10 to S18, but the present invention is not limited to this. For example, if the relative coordinates S0 to S3 of each of the four imaging units 18C0 to 18C3 are measured in advance, the external shape of the workpiece glass plate 34 is measured using the relative coordinates S0 to S3 measured in advance. (Steps S20 to S32) can be performed.
 また、上記実施形態では、測定対象の矩形板状物がガラス板である例について説明したが、本発明はこれに限定されない。木板、金属板、樹脂板等の他の矩形板状物についても同様に適用することが可能である。 In the above embodiment, an example in which the rectangular plate-like object to be measured is a glass plate has been described, but the present invention is not limited to this. The present invention can be similarly applied to other rectangular plates such as a wooden plate, a metal plate, and a resin plate.
 上記実施形態はあらゆる点で単なる例示にすぎない。これらの記載によって本発明は限定的に解釈されるものではない。本発明はその精神または主要な特徴から逸脱することなく他の様々な形で実施することができる。 The above embodiments are merely examples in all respects. The present invention is not construed as being limited to these descriptions. The present invention can be implemented in various other forms without departing from the spirit or main features thereof.
 本出願を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2009年2月18日出願の日本特許出願(特願2009-035732)に基づくものであり、その内容はここに参照として取り込まれる。
Although this application has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on Feb. 18, 2009 (Japanese Patent Application No. 2009-035732), the contents of which are incorporated herein by reference.
10…形状測定装置
12…画像処理装置
12a…演算・制御手段
12b…記憶手段
14…LED電源
16…照明手段
20…センサ
30…測定ライン
32…測定セクション
34a…端縁
36…校正用標準ガラス板
C1-C4…コーナー部
DESCRIPTION OF SYMBOLS 10 ... Shape measuring apparatus 12 ... Image processing apparatus 12a ... Calculation / control means 12b ... Memory | storage means 14 ... LED power supply 16 ... Illuminating means 20 ... Sensor 30 ... Measurement line 32 ... Measurement section 34a ... Edge 36 ... Standard glass plate for calibration C1-C4 ... Corner

Claims (4)

  1.  予め矩形板状物の四隅に対応して配置された4つの撮像手段と、前記4つの撮像手段それぞれの相対座標を格納する記憶手段と、を備える形状測定装置を用いて、形状測定セクションを通過するように搬送される矩形板状物の外形形状を測定する測定方法において、  
     前記矩形板状物が前記測定セクションに到達したか否かを判定するステップと、
     前記矩形板状物が前記測定セクションに到達したと判定された場合に、前記4つの撮像手段によって当該測定セクションに到達した矩形板状物の四隅それぞれのコーナー部を含む画像を撮像するステップと、
     前記撮像された画像に基づいて、前記矩形板状物の四隅それぞれの画像原点からの座標値であるコーナーポスト座標を演算するステップと、
     前記演算された矩形板状物のコーナーポスト座標、及び、前記記憶手段に格納された相対座標に基づいて、前記矩形板状物の四辺それぞれの長さ寸法を演算するステップと、
     前記演算されたコーナーポスト座標、前記記憶手段に格納された相対座標、及び、前記演算された長さ寸法に基づいて、前記矩形板状物の四隅それぞれの直角度を演算するステップと、
    を備えることを特徴とする矩形板状物の外形形状測定方法。
    Passing through the shape measurement section using a shape measuring device comprising four image pickup means arranged in advance corresponding to the four corners of the rectangular plate-like object, and storage means for storing relative coordinates of each of the four image pickup means In the measuring method of measuring the outer shape of the rectangular plate that is conveyed as
    Determining whether the rectangular plate has reached the measurement section;
    When it is determined that the rectangular plate-like object has reached the measurement section, the four imaging means captures images including the corners of the four corners of the rectangular plate-like object that has reached the measurement section;
    Based on the captured image, calculating corner post coordinates that are coordinate values from the image origin of each of the four corners of the rectangular plate,
    Calculating the length dimension of each of the four sides of the rectangular plate based on the calculated corner post coordinates of the rectangular plate and the relative coordinates stored in the storage means;
    Calculating the squareness of each of the four corners of the rectangular plate based on the calculated corner post coordinates, the relative coordinates stored in the storage means, and the calculated length dimension;
    A method for measuring the outer shape of a rectangular plate-shaped object.
  2.  前記演算された長さ寸法及び直角度と所定の規格値とを比較するステップと、
     前記比較結果に基づいて、前記矩形板状物の外形形状の良否判定を行うステップと、
    をさらに備えることを特徴とする請求項1に記載の矩形板状物の外形形状測定方法。
    Comparing the calculated length dimension and squareness with a predetermined standard value;
    Based on the comparison result, performing a pass / fail judgment of the outer shape of the rectangular plate-like object;
    The external shape measuring method of the rectangular plate-shaped object according to claim 1, further comprising:
  3.  校正用標準矩形板状物の四辺それぞれの予め測定された長さ寸法、及び、当該校正用標準矩形板状物の四隅それぞれの予め測定された直角度に基づいて、前記矩形板状物の四隅それぞれの予め測定された直角度を補正するステップと、
     前記4つの撮像手段によって前記校正用標準矩形板状物の四隅それぞれのコーナー部を含む画像を撮像するステップと、
     前記撮像された画像に基づいて、前記校正用標準矩形板状物の四隅それぞれのコーナーポスト座標を演算するステップと、
     前記演算された校正用標準矩形板状物のコーナーポスト座標、前記補正された直角度、及び、前記校正用標準矩形板状物の四辺それぞれの予め測定された長さ寸法に基づいて、前記4つの撮像手段それぞれの相対座標を演算し、前記記憶手段に格納するステップと、をさらに備えることを特徴とする請求項1又は2に記載の矩形板状物の外形形状測定方法。
    Based on the pre-measured length dimension of each of the four sides of the standard rectangular plate for calibration and the squareness measured in advance of each of the four corners of the standard rectangular plate for calibration, the four corners of the rectangular plate Correcting each pre-measured squareness;
    Capturing images including corner portions of the four corners of the standard rectangular plate for calibration by the four imaging means;
    Calculating the corner post coordinates of each of the four corners of the standard rectangular plate for calibration based on the captured image;
    Based on the calculated corner post coordinates of the calibration standard rectangular plate, the corrected squareness, and the length dimension measured in advance on each of the four sides of the calibration standard rectangular plate, the 4 The method for measuring the external shape of a rectangular plate-like object according to claim 1, further comprising: calculating a relative coordinate of each of the two imaging units and storing the calculated coordinate in the storage unit.
  4.  予め矩形板状物の四隅に対応して配置された4つの撮像手段を備える形状測定装置における前記4つの撮像手段の相対座標を校正する方法において、
     校正用標準矩形板状物の四辺それぞれの予め測定された長さ寸法、及び、当該校正用標準矩形板状物の四隅それぞれの予め測定された直角度に基づいて、前記矩形板状物の四隅それぞれの予め測定された直角度を補正するステップと、
     前記4つの撮像手段によって前記校正用標準矩形板状物の四隅それぞれのコーナー部を含む画像を撮像するステップと、
     前記撮像された画像に基づいて、前記校正用標準矩形板状物の四隅それぞれのコーナーポスト座標を演算するステップと、
     前記演算された校正用標準矩形板状物のコーナーポスト座標、前記補正された直角度、及び、前記校正用標準矩形板状物の四辺それぞれの予め測定された長さ寸法に基づいて、前記4つの撮像手段それぞれの相対座標を演算するステップと、
    を備えることを特徴とする撮像手段の相対位置の校正方法。
    In the method of calibrating the relative coordinates of the four image pickup means in the shape measuring apparatus including the four image pickup means previously arranged corresponding to the four corners of the rectangular plate-shaped object,
    Based on the pre-measured length dimension of each of the four sides of the standard rectangular plate for calibration and the squareness measured in advance of each of the four corners of the standard rectangular plate for calibration, the four corners of the rectangular plate Correcting each pre-measured squareness;
    Capturing images including corner portions of the four corners of the standard rectangular plate for calibration by the four imaging means;
    Calculating the corner post coordinates of each of the four corners of the standard rectangular plate for calibration based on the captured image;
    Based on the calculated corner post coordinates of the calibration standard rectangular plate, the corrected squareness, and the length dimension measured in advance on each of the four sides of the calibration standard rectangular plate, the 4 Calculating the relative coordinates of each of the two imaging means;
    A method for calibrating the relative position of the image pickup means.
PCT/JP2010/051975 2009-02-18 2010-02-10 Method for measuring external shape of rectangular plate-like object, and method for calibrating relative position of image-capturing means WO2010095551A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020117017865A KR101442895B1 (en) 2009-02-18 2010-02-10 Method for measuring external shape of rectangular plate-like object, and method for calibrating relative position of image-capturing means
CN2010800061700A CN102301201B (en) 2009-02-18 2010-02-10 Method for measuring external shape of rectangular plate-like object, and method for calibrating relative position of image-capturing means
JP2011500568A JPWO2010095551A1 (en) 2009-02-18 2010-02-10 Method for measuring outer shape of rectangular plate-shaped object, and method for calibrating relative position of imaging means

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-035732 2009-02-18
JP2009035732 2009-02-18

Publications (1)

Publication Number Publication Date
WO2010095551A1 true WO2010095551A1 (en) 2010-08-26

Family

ID=42633834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051975 WO2010095551A1 (en) 2009-02-18 2010-02-10 Method for measuring external shape of rectangular plate-like object, and method for calibrating relative position of image-capturing means

Country Status (5)

Country Link
JP (1) JPWO2010095551A1 (en)
KR (1) KR101442895B1 (en)
CN (1) CN102301201B (en)
TW (1) TW201100744A (en)
WO (1) WO2010095551A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102929105A (en) * 2012-11-13 2013-02-13 美迪亚印刷设备(杭州)有限公司 Exposure quality detection method
JP2013163626A (en) * 2012-02-13 2013-08-22 Asahi Glass Co Ltd Cut line processing apparatus for plate-shaped substance and cut line processing method for plate-shaped substance, and manufacturing apparatus for glass sheet and manufacturing method for glass sheet
JP2013184838A (en) * 2012-03-06 2013-09-19 Asahi Glass Co Ltd Apparatus and method for processing cutting line of plate-like object, and apparatus and method for producing glass plate
EP3208020A1 (en) 2016-02-19 2017-08-23 Siempelkamp Logistics & Service GmbH Method and device for cutting and measuring a plate

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3396310B1 (en) * 2015-12-25 2020-11-25 Panasonic Intellectual Property Management Co., Ltd. Dimension measurement device, parcel locker system and dimension measurement method
CN110345876B (en) * 2019-06-10 2022-01-25 重庆惠科金渝光电科技有限公司 Polarizing plate detection device, polarizing plate detection method and readable storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0552526A (en) * 1991-08-29 1993-03-02 Nkk Corp Sheet dimensions measuring equipment
JPH06147836A (en) * 1992-11-13 1994-05-27 Nkk Corp Sheet dimension measuring apparatus
JP2003139510A (en) * 2001-11-05 2003-05-14 Nippon Reliance Kk Length measuring method and device for sheet like cut object
JP2005227260A (en) * 2004-01-16 2005-08-25 Fuji Photo Film Co Ltd Sheet shape measuring method and device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH688755A5 (en) * 1993-07-22 1998-02-27 Gianfranco Passoni optical measuring machine moving video camera, for high speed electronic analysis of the outlines of objects.
DE69624980T2 (en) * 1995-05-18 2003-07-17 Omron Tateisi Electronics Co Object monitoring method and device with two or more cameras
JP2000258121A (en) * 1999-03-12 2000-09-22 Tdk Corp Master substrate for calibrating a plurality of cameras and calibration method for image recognition camera
CN1230660C (en) * 2000-09-22 2005-12-07 沃思测量技术股份有限公司 Method for measuring the geometry of an object by means of a co-ordination measuring device
WO2003008904A1 (en) * 2001-07-17 2003-01-30 Sanyo Electric Co., Ltd. Shape measuring device
FR2895535B1 (en) * 2005-12-22 2008-02-15 Renault Sas ELECTRONIC MICROCONTROLLER CONTROLLED ELECTRIC CHARGE SWITCHING DEVICE
CN100523720C (en) * 2006-06-08 2009-08-05 邱大明 Optical non-contact three-dimensional measuring instrument

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0552526A (en) * 1991-08-29 1993-03-02 Nkk Corp Sheet dimensions measuring equipment
JPH06147836A (en) * 1992-11-13 1994-05-27 Nkk Corp Sheet dimension measuring apparatus
JP2003139510A (en) * 2001-11-05 2003-05-14 Nippon Reliance Kk Length measuring method and device for sheet like cut object
JP2005227260A (en) * 2004-01-16 2005-08-25 Fuji Photo Film Co Ltd Sheet shape measuring method and device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013163626A (en) * 2012-02-13 2013-08-22 Asahi Glass Co Ltd Cut line processing apparatus for plate-shaped substance and cut line processing method for plate-shaped substance, and manufacturing apparatus for glass sheet and manufacturing method for glass sheet
JP2013184838A (en) * 2012-03-06 2013-09-19 Asahi Glass Co Ltd Apparatus and method for processing cutting line of plate-like object, and apparatus and method for producing glass plate
CN102929105A (en) * 2012-11-13 2013-02-13 美迪亚印刷设备(杭州)有限公司 Exposure quality detection method
EP3208020A1 (en) 2016-02-19 2017-08-23 Siempelkamp Logistics & Service GmbH Method and device for cutting and measuring a plate

Also Published As

Publication number Publication date
CN102301201A (en) 2011-12-28
JPWO2010095551A1 (en) 2012-08-23
TW201100744A (en) 2011-01-01
KR101442895B1 (en) 2014-09-19
CN102301201B (en) 2013-02-27
KR20110126601A (en) 2011-11-23

Similar Documents

Publication Publication Date Title
US20230028351A1 (en) Laser patterning skew correction
WO2010095551A1 (en) Method for measuring external shape of rectangular plate-like object, and method for calibrating relative position of image-capturing means
TWI542867B (en) Apparatus for inspecting edge portion of substrate
US10088339B2 (en) Automated system and method for detecting defective edges of printed circuit boards and other objects using multiple sensors
JP2011237210A (en) Position measurement system
JP6412730B2 (en) Edge position detection device, width measurement device, and calibration method thereof
JP5095164B2 (en) Optical axis deviation detection method, component position correction method, and component position correction device for imaging apparatus
JP4870054B2 (en) Substrate processing apparatus, surface mounting machine, printing machine, inspection machine, and coating machine
JP4008168B2 (en) Printed circuit board inspection equipment
JP5457665B2 (en) Electronic component mounting device
JP2015166722A (en) Defect image imaging device and defect image imaging method
JP2008294065A (en) Mounting method and mounting device for electronic component
JP2010098122A (en) Device for mounting electronic component
JP5572247B2 (en) Image distortion correction method
JP2013233639A (en) Workpiece position detection method and workpiece conveyance method using same
JP2011038909A (en) Device for measuring external dimension of sheets
JP2021063780A (en) Object detection system and program for objection detection system
KR101422334B1 (en) Method of calculating position data of a working plate and method of transferring a package using the method
JP2007205868A (en) Device and method for optical shape inspection
JP4884540B2 (en) Substrate inspection apparatus and substrate inspection method
US9554094B1 (en) System and method for determining a displaced substrate with a vision system
JP2020148738A (en) Plate position detection method, plate data correction method, and plate position detection device
JP2009115622A (en) Measuring device and measuring method
JP2008004657A (en) Surface mounting apparatus
JP2009085666A (en) Sheet inclination angle measuring method, sheet inspection method, and sheet inspection apparatus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080006170.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10743678

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011500568

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20117017865

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10743678

Country of ref document: EP

Kind code of ref document: A1