WO2010087334A1 - Base station apparatus, terminal apparatus, wireless communication system including those apparatuses, and programs to be executed by base station apparatus and terminal apparatus - Google Patents

Base station apparatus, terminal apparatus, wireless communication system including those apparatuses, and programs to be executed by base station apparatus and terminal apparatus Download PDF

Info

Publication number
WO2010087334A1
WO2010087334A1 PCT/JP2010/050969 JP2010050969W WO2010087334A1 WO 2010087334 A1 WO2010087334 A1 WO 2010087334A1 JP 2010050969 W JP2010050969 W JP 2010050969W WO 2010087334 A1 WO2010087334 A1 WO 2010087334A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency bands
combination
terminal device
classification
frequency band
Prior art date
Application number
PCT/JP2010/050969
Other languages
French (fr)
Japanese (ja)
Inventor
平川功
梁永明
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2010087334A1 publication Critical patent/WO2010087334A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/563Allocation or scheduling criteria for wireless resources based on priority criteria of the wireless resources

Definitions

  • the present invention relates to a communication technology using a wireless communication technology, and more particularly, to a base station device and a terminal device that perform communication using a plurality of frequency bands, and a wireless communication system including them.
  • EUTRA evolved third generation radio access
  • Evolved Universal Terrestrial Radio Access evolved third generation radio access network
  • Evolved Universal Terrestrial Radio Access evolved third generation radio access network
  • Evolved Universal Radio Access evolved third generation radio access network
  • Evolved Universal Radio Access evolved third generation radio access network
  • Evolved Universal Radio Access evolved third generation radio access network
  • Evolved Universal Radio Access evolved third generation radio access network
  • Evolved Universal Radio Access hereinafter referred to as “Evolved Universal Radio Access”
  • LTE Long Term Evolution
  • OFDMA Orthogonal Frequency Division Multiplexing Access
  • Non-Patent Document 2 As a next generation EUTRA and EUTRAN, an advanced long term evolution (LTE-Advanced) has been proposed (see Non-Patent Document 2 below). In addition, as a band expansion technique for improving the transmission rate used for this, it has been proposed to combine and use a plurality of frequency bands (see Non-Patent Documents 3 and 4 below).
  • LTE-Advanced long term evolution
  • FIG. 15 is a diagram illustrating a channel configuration example in EUTRA.
  • the downlink of EUTRA (communication from the base station apparatus BS to the terminal apparatus MS) includes a downlink control area designation channel (PCFICH: Physical Control Indicator Channel) and a downlink complex retransmission request channel (PHICH: Physical Hybrid ARQ Indicator).
  • PCFICH Physical Control Indicator Channel
  • PHICH Physical Hybrid ARQ Indicator
  • PMCH Physical Multicast Channel
  • PDSCH Physical Downlink Shared Channel
  • PDCCH Physical Downlink control channel
  • oradcast Channel Physical Downlink Control Channel
  • a synchronization signal that is a reference signal for the terminal device to synchronize with the base station
  • a reference signal RS: Reference Signal
  • Sent a reference signal used as a reference when measuring signal quality or demodulating the received signal
  • the uplink of EUTRA (communication from the terminal apparatus MS to the base station apparatus BS) includes a random access channel (RACH: Random Access Channel), an uplink shared channel (PUSCH), an uplink shared channel, and an uplink control channel ( PUCCH: Physical Uplink Control Channel).
  • RACH Random Access Channel
  • PUSCH uplink shared channel
  • PUCCH Physical Uplink Control Channel
  • RS Reference Signal
  • FIG. 16 is a schematic diagram showing a configuration example of a downlink signal frame of EUTRA.
  • the horizontal axis is the frequency axis
  • the vertical axis is the time axis.
  • An EUTRA downlink signal frame is based on a resource block including a plurality of subcarriers in the frequency direction and a plurality of OFDM symbols in the time direction, and includes a plurality of resource blocks.
  • the first 1 to 4 OFDM symbols of each resource block are used as a downlink control region.
  • PCFICH, PHICH, and PDCCH are arranged in the downlink control region.
  • PCFICH is distributed in the first OFDM symbol in each subframe.
  • PCFICH contains information on the number of OFDM symbols used in the downlink control region, and the terminal can know the downlink control region by demodulating PCFICH.
  • the PHICH includes information related to a retransmission request for a signal transmitted on the uplink, and is distributed in the entire downlink control region. In the downlink control area, an area not used for PCFICH and PHICH is used for transmission of PDCCH. Similarly, the PDCCH is distributed in the downlink control region.
  • Downlink resource allocation to each terminal device is performed by PDCCH.
  • Each terminal apparatus monitors the PDCCH in the downlink control area, and demodulates the PDCCH when the PDCCH addressed to the terminal is transmitted.
  • the PDCCH includes PDSCH allocation information. Data from the base station apparatus to the terminal apparatus is transmitted using PDSCH. The terminal device receives the data addressed to the terminal by demodulating the allocated PDSCH according to the information.
  • PDSCH data common to all terminals is transmitted in addition to data unique to each terminal apparatus.
  • PDSCH resource allocation for data transmission common to terminals is also performed by PDCCH.
  • Each terminal apparatus monitors the PDCCH. When a terminal-common PDCCH is transmitted, the terminal apparatus also demodulates the PDCCH, and demodulates the assigned PDSCH according to the demodulation information.
  • the downlink signal frame includes a reference signal that serves as a reference when the terminal apparatus demodulates each signal, but is omitted in the figure.
  • FIG. 17 is a diagram showing the concept of frequency band coupling.
  • FIGS. 18 and 19 show a method of performing PDSCH allocation by closing each element frequency band and using PDCCH, and a method of performing PDCCH by combining the entire frequency bands to which PDSCH allocation is combined.
  • FIG. 20 shows an example when a plurality of terminal devices use a plurality of element frequency bands.
  • FIG. 21 is a schematic diagram showing a flow concerning coding and mapping of a downlink transmission block of EUTRA.
  • Data transmitted on the downlink of EUTRA is subjected to channel coding such as error correction coding, and coding rate adjustment processing is performed to adjust the size of the data encoded at the transmission rate specified by the retransmission request or the like.
  • data modulation is performed according to a modulation scheme used in the downlink, and mapping to subcarriers to be actually transmitted is performed.
  • frequency band combination encoding and mapping of these transmission data is performed by dividing the data for each element frequency band first, then performing each of the divided data, and performing one modulation until data modulation.
  • FIG. 22 and FIG. 25 show a method of performing mapping up to a plurality of frequency bands in which mapping is performed by performing processing up to one transmission data until data modulation.
  • LTE terminal that does not support frequency band coupling.
  • LTE terminals and LTE-Advanced terminals coexist.
  • the PDCCH and mapping target of the LTE terminal are performed on one CC, whereas the PDCCH and mapping target of the LTE-Advanced terminal are performed on a plurality of PDCCHs.
  • the PDCCH position and the data mapping position are determined as a function of the frequency bandwidth based on the frequency bandwidth to be used, but when these positions are calculated for different frequency bandwidths,
  • the position is not necessarily exclusive, and there is a possibility that the positions collide.
  • various parameters are calculated based on the frequency bandwidth, and they may collide in the same manner.
  • the base station apparatus must perform scheduling and resource allocation so that such a collision does not occur.
  • the number of element frequency bands that can be simultaneously used by one LTE-Advanced terminal can be changed, and the maximum number is 31 combinations that select an arbitrary number of element frequency bands from among the five.
  • the LTE terminal and the LTE-Advanced terminal coexist or when only the LTE-Advanced terminal exists, if the element frequency bands used by the terminals existing therein are different, the base station There is a problem in that the complexity of processing such as scheduling and resource allocation for avoiding parameter collision in the apparatus increases.
  • the present invention is based on a difference in element frequency bands used by each terminal device in a base station device that performs communication using a plurality of frequency bands, a terminal device, and a wireless communication system including them. It is intended to provide a base station device, a terminal device, a wireless communication system including them, and a program to be executed by the base station, which can reduce restrictions due to complexity of scheduling, resource allocation, arrangement, etc. .
  • the present invention relates to a base station apparatus that performs communication using a plurality of frequency bands, a terminal apparatus, and a wireless communication system that includes the base station apparatus, and performs communication using a plurality of frequency bands.
  • the combination of the frequency bands to be used corresponds to the classification of the terminal device, and in the case of using a wider frequency band, in addition to the combination of the frequency bands having a higher priority, the combination of the frequency bands having a lower priority.
  • the frequency band used by the terminal device is a combination of one or more of the plurality of frequency bands
  • the terminal device is classified into a plurality of groups, and a radio communication system is provided in which a combination of the frequency bands to be used is determined for the classification of the terminal device.
  • the wireless communication system prepares a plurality of combinations of a plurality of frequency bands to be used, and terminal devices used in the wireless communication system are classified into a plurality of classifications (groups).
  • the system is characterized in that the system determines (dynamic or static, quasi-static) which frequency band combination to use and assigns it.
  • one of the classifications of the terminal devices has one frequency band that can be used by the terminal device.
  • the terminal device classified into a certain group can use one frequency band.
  • an LTE terminal is assumed.
  • a terminal device classified as an LTE terminal is intended to use only one specific frequency band.
  • FIG. 1 below LTE terminals are assigned only the combined bands 1 to 5.
  • a priority is given to the combination of the frequency bands corresponding to the classification of the terminal device, and the frequency band having a high priority in the combination of the frequency bands according to the classification of the terminal device.
  • the combination of the low-priority frequency bands is also used, and the combination of the high-priority frequency bands
  • the first communication process in the second and the second communication process in the lower priority combination are performed independently.
  • the frequency band can be used particularly preferentially for the classification of a certain terminal device. For example, it can be allocated to the LTE terminal to reduce the influence on the LTE terminal.
  • the present invention is a radio communication system having a resource management unit that manages radio resources used in a base station device, wherein the resource management unit corresponds to a classification of the terminal device used by the terminal device.
  • the resource management unit corresponds to a classification of the terminal device used by the terminal device.
  • a first resource management process in a combination of frequency bands with a high priority in a combination of frequency bands according to the classification, and a priority may be characterized in that the second resource management process in the combination of low frequency bands is performed independently.
  • the present invention is a radio communication system having a data division unit that performs transmission data division processing on a base station device, and an element frequency band assignment unit that performs element frequency band assignment processing used by the divided data,
  • the data dividing unit when using a combination of frequency bands with a low priority in a combination of frequency bands corresponding to the classification of the terminal apparatus used by the terminal apparatus, sets the frequency of transmission data according to the classification.
  • An initial division processing unit that divides transmission data used in a combination of frequency bands with a high priority in a combination of bands and transmission data used in a combination of frequency bands with a low priority; For the transmission data divided by the processing unit, the first division processing and transmission data used in the combination of frequency bands with high priority are performed.
  • Radio communication characterized by independently performing a first element frequency band allocation process, a second division process and a second element frequency band allocation process within a combination of frequency bands having a low priority. It may be a system.
  • the frequency of signal quality measurement for selecting a combination of frequency bands corresponding to the classification of the terminal apparatus used by the terminal apparatus is performed based on the priority of the combination of frequency bands corresponding to the classification of the terminal apparatus. Is preferred. Thereby, since quality measurement is performed according to priority, the load concerning quality measurement can be reduced.
  • the signal quality measurement may be performed only in a combination with a high priority in a combination of frequency bands corresponding to the classification of the terminal device. Thereby, the quality measurement for determining whether to move to the area of another base station device or the like is performed according to the priority order, thereby reducing the load on the quality measurement.
  • the frequency at which the terminal device receives information regarding each frequency band used by the terminal device is based on the priority of the combination of frequency bands according to the classification of the terminal device.
  • the system information is received according to the priority in the present invention, where the need to measure the middle and low combined frequency bands of the priority is low, so that the load on the system information reception process is reduced. Can do.
  • the terminal device receives a combination of frequency bands corresponding to the classification of the terminal device, and notifies the combination of the used frequency band to be used from the base station device to the terminal device by using a downlink control channel. It is preferable to change the combination of frequency bands to be used.
  • the PDCCH to notify the priority order, it is possible to quickly change the used combined frequency band and update the parameters associated therewith. Note that it is also possible to reduce the load related to the change by transmitting the priority order by communication in the higher layer without using the PDCCH.
  • the present invention is a base station apparatus used in a wireless communication system that performs communication using a plurality of frequency bands, and a plurality of terminals used by the terminal apparatus in consideration of the characteristics of the terminal apparatus transmitted from the terminal apparatus.
  • the base station apparatus is characterized by transmitting a classification of combinations of frequency bands to a terminal apparatus for communication.
  • a control method in a base station apparatus used in a radio communication system that performs communication using a plurality of frequency bands, wherein information on a combined frequency band used by the radio communication system is transmitted. And receiving the characteristic information obtained from the terminal device according to this, obtaining a classification of a combination of a plurality of frequency bands used by the terminal device, and transmitting the obtained classification to the terminal device.
  • the control method characterized by this is provided.
  • a control method in a terminal apparatus used in a wireless communication system that performs communication using a plurality of frequency bands, the system apparatus receiving base system information, and the terminal apparatus Transmitting to the base station apparatus, and receiving a classification of combinations of a plurality of frequency bands transmitted from the base station apparatus based on the capability information of the terminal apparatus.
  • a control method is provided.
  • the present invention may be a program for causing a computer to execute the method described above, or a recording medium on which the program is recorded.
  • the program may be acquired from a transmission medium such as the Internet.
  • a base station apparatus that performs communication using a plurality of frequency bands
  • a terminal apparatus and a radio communication system including the same
  • scheduling and resources caused by differences in element frequency bands used by each terminal apparatus It is possible to reduce restrictions due to complications such as allocation, arrangement, and the like.
  • classification of each terminal device when combining and using each frequency band classification of combinations of frequency bands
  • Base station apparatus 201 Terminal apparatus 1 Base station apparatus 3 Data signal processing unit 4 Turbo coding unit 5 Data modulation unit 6 Precoding unit 7 Weighting unit 8 Control signal processing unit 9 Convolution coding unit 10 QPSK modulation unit 11 Precoding Unit 12 Weighting unit 13 Reference signal generation unit 14 Resource management unit 15 Control unit 16 Multiplexing / mapping unit 17 IFFT unit 18 CP insertion unit 20 D / A unit 21 Transmission RF unit 22 Antenna 23 Reception unit 24-27 OFDM transmission unit 31 Terminal Device 32 Antenna 33 Reception RF unit 34 A / D unit 35 CP removal unit 36 FFT unit 37 Demultiplexing unit 38 Channel estimation unit 39 Channel compensation unit 40 Multimode restoration unit 41 Data demodulation unit 42 Turbo decoding unit 43 Channel compensation Unit 44 multiplex mode restoration unit 45 QPSK demodulation unit 46 convolution decoding unit 47 control unit 48 frequency Band determining unit 49 signal quality measuring unit 50 transmits multiplexing unit 51 transmission unit
  • First Embodiment> 1 (a) and 1 (b) show frequency bands when the frequency bands are combined and used in a wireless communication system that performs communication using a plurality of frequency bands according to the first embodiment of the present invention. It is a figure showing a combination. Here, an example of combining up to five frequency bands is shown. The classification from the coupling band 1 to the coupling band 31 is determined by the combination of coupling of each frequency band.
  • FIG. 2 is a diagram illustrating an example of combinations of frequency bands used by terminals of each classification with respect to the classification of terminal apparatuses.
  • the terminal devices are classified into five types: UE A, UE B, UE C, UE D, UE E, and UE L.
  • the combination of the combined frequency bands used by UE A uses the combined band 26 shown in FIG. 1, that is, CC1, CC2, CC3, and CC4.
  • the combination of the combination frequency bands used by UE B is the combination band 6 shown in FIG. 1, that is, CC1 and CC2, and the combination of the combination frequency bands used by UE L is also shown in FIG. This means that the coupling band 5, that is, CC5 is used.
  • the terminal device uses the combined frequency bands CC1 and CC2.
  • the combination of the combination bands is 31 which is the maximum number of combinations other than 0 in the five combinations, but it is not always necessary to do so.
  • the classification of terminal devices used in the system is limited to six types as described above, combinations of frequency bands when combining and using each frequency band are shown in FIG. As shown, six types may be used. In this way, the combination of frequency bands is determined for each system or each cell, and the terminal device uses this combination as system-wide information such as broadcast information before performing actual data communication.
  • the index notification may be an index notification for each combination of the combined bands, or the classification of the terminal device and the combination of the used frequency bands corresponding to the classification of the terminal device may be fixed for each system or cell, If the terminal device performs fixed data and before the terminal device performs actual data communication, for example, the correspondence information is notified to all the terminal devices as information of the entire system, such as broadcast information, each terminal device The combination of frequency bands used by the terminal device can be notified only by notification of the index of the classification of the terminal device.
  • a combination frequency band that uses only one frequency band is assigned to a certain terminal device classification, or one of the combinations of frequency bands as shown in FIG.
  • a combined frequency band that uses only one frequency band in this case, CC5
  • the LTE terminal must Only one frequency band can be used, and the system can be simplified.
  • LTE-Advanced it is operated only in the LTE system, and since there is usually one type of frequency band used by LTE, the classification as an LTE terminal is set to one type, and the classification is assigned.
  • FIG. 4 is a diagram illustrating the relationship of the combination of the classification of each terminal device and the combined frequency band to be used.
  • LTE-Advanced terminals that can use multiple frequency bands are classified from UE A to UE E
  • conventional LTE terminals are classified from LTE L
  • combined frequency bands used by UE A to UE E classification terminals Is used by LTE-Advanced terminals by limiting the combination of multiple frequency bands configured between CC1 to CC4 and limiting the frequency band used by terminals of the LTE L classification to CC5.
  • the frequency band used by the LTE terminal can be separated.
  • FIG. 5 is a diagram illustrating classification of terminal devices when frequency bands are combined and used in a wireless communication system that performs communication using a plurality of frequency bands according to the second embodiment of the present invention. It is a figure showing an example at the time of providing a priority to the combined frequency band to be used in the case of correspondence with a combination.
  • the relationship between the combination of the combined frequency bands and the frequency band is shown in FIG.
  • one type of combination frequency band combination is assigned to one terminal device classification, but in this embodiment, a plurality of combinations are assigned to one terminal device classification.
  • a combination of frequency bands is assigned, and a priority is assigned to the classification.
  • each terminal device uses only a combination of high-priority combined frequency bands or uses a combination of low-priority combined frequency bands according to an increase or decrease in the number of frequency bands to be used.
  • a terminal device classified as a terminal device (UE) A is assigned a combined band 26, that is, CC1 to CC4, as a combined frequency band having a high priority, and normally uses this combined band.
  • the combination band 5 that is, CC 5 is assigned as a combination band having a low priority
  • a terminal device classified as the terminal device A needs to use a wider frequency band, this is also combined.
  • the low priority frequency band is also used. That is, CC1 to CC5 are used.
  • the communication processing at this time is not performed as a new combined frequency band, but as two independent communication processes in the two combined frequency bands. In this way, even if each terminal device or base station device expands the frequency band to be used, it is not necessary to disclose scheduling information or the like again, and if it is performed as an additional form in the previous communication processing The process is simple because it is good
  • a high-priority combined frequency band assigned to a certain terminal device class is exclusive of a high-priority combined frequency band assigned to another terminal device class.
  • the frequency band can be used particularly preferentially for the classification of a certain terminal device. For example, it can be allocated to the LTE terminal to reduce the influence on the LTE terminal.
  • FIG. 6 is a diagram showing the relationship between the classification of each terminal apparatus when the priority is provided and the combined frequency band to be used.
  • the frequency band CC5 used by the LTE terminal which is classified as the terminal device L
  • the terminals belonging to the classifications of other terminal devices are not set as high priority frequencies. Therefore, there are few opportunities for terminals belonging to other terminal device classifications to use frequencies used by LTE terminals, and the influence on LTE terminals that originally require only one frequency band can be minimized.
  • the correspondence between the classification of the terminal device and the classification of the combined frequency band to be used is represented using two tables, but this is collectively shown in one table as shown in FIG. Also good.
  • the priority is set to three levels of high, medium, and low, more priorities may be provided.
  • FIG. 7 is a diagram showing PDSCH resource allocation by PDCCH of terminal devices belonging to the classification UE A of the terminal device of FIG.
  • FIG. 7A shows a case where only the combined frequency band having a high priority is used, and PDSCH resource allocation in CC 1 to CC 4 is performed by one PDCCH. Resource allocation (resource management) at this time is performed by the resource management unit based on the combined bandwidth from CC1 to CC4.
  • FIG. 7 (b) is a diagram showing a case where a combined frequency band with a lower priority is used together, and CC1 to CC5 are used. Resource allocation at this time is in CC1 to CC4.
  • PDSCH resource allocation is performed on PDCCH1, and CCSCH PDSCH resource allocation is performed only on PDCCH2. In this way, even when a combined frequency band with a low priority is used together, resource allocation by PDCCH is not performed again based on a new bandwidth, so that resource allocation can be simplified. Even if the combination frequency band is changed in particular, if resource allocation is performed in advance for each priority bandwidth, resource allocation for the corresponding combined frequency band is performed. There is an advantage that a new combined frequency band can be quickly dealt with just by adapting.
  • FIG. 8 is a diagram illustrating an encoding process of a terminal device belonging to the classification UE A of the terminal device.
  • FIG. 8 (a) shows a case where only a high-priority combined frequency band is used.
  • One transmission data is divided into data for each combined frequency band, and channel coding processing is performed for each combined frequency band. , Encoding rate adjustment processing and data modulation are performed, and mapping is performed in each coupling band.
  • FIG. 8B shows a case where a combined frequency band having a lower priority is also used, and CC1 to CC5 are used. At this time, one transmission data is first assigned a higher priority.
  • the data to be transmitted in the combined frequency band having a low priority and the data to be transmitted in the combined frequency band having a high priority are divided into data to be transmitted in the combined frequency band having a low priority. And mapping from CC1 to CC4. Similarly, another channel coding process, a coding rate adjustment process, and data modulation are performed on data transmitted in a low-priority combined frequency band and mapped to CC5.
  • the terminal device receives a reference signal and measures its quality as an index for determining which base station device to communicate with.
  • the frequency of this quality measurement is based on the priority of the combination of frequency bands according to the classification of the terminal device.
  • FIG. 10 is a diagram illustrating a state in which the terminal device according to the present embodiment performs quality measurement.
  • the solid line, the alternate long and short dash line, and the broken line of the arrow indicate that the frequency is high, medium, and low in order.
  • the terminal device 201 belongs to the UE C classification in FIG. That is, CC1 and CC3 are high-priority combined frequency bands, CC2 and CC4 are medium-priority combined frequency bands, and CC5 is a low-priority combined frequency band.
  • CC1 and CC3 are high-priority combined frequency bands
  • CC2 and CC4 are medium-priority combined frequency bands
  • CC5 is a low-priority combined frequency band.
  • the terminal apparatus 201 performs data transmission with the base station apparatus 101 only in the high-priority combined frequency band. In order to use a wider frequency band, it is necessary to measure quality in advance in the frequency band where data transmission is not performed. There is little need to measure the combined frequency band. In the low-priority combined frequency band, the necessity is further reduced. The same applies when measurement is performed for another base station apparatus 102 for handover. In the present embodiment, quality measurement is performed in accordance with the priority order, so that the load on quality measurement can be reduced.
  • the terminal device receives system information such as frequency bandwidth of each element frequency band, transmission power, and the number of antennas.
  • System information is transmitted from the base station apparatus using PBCH, SCH, or the like.
  • the frequency of reception of this system information is based on the priority of the combination of frequency bands corresponding to the classification of the terminal device.
  • FIG. 11 is a diagram illustrating a state in which the terminal device according to the present embodiment receives system information.
  • the solid line, the alternate long and short dash line, and the broken line of the arrow indicate that the frequency is high, medium, and low in order.
  • the terminal device 201 belongs to the UE C classification in FIG.
  • CC1 and CC3 are high-priority combined frequency bands
  • CC2 and CC4 are medium-priority combined frequency bands
  • CC5 is a high-priority combined frequency band.
  • the system information is periodically transmitted from the base station apparatus 101 through a broadcast channel, a synchronization channel, or the like, but the medium frequency or lower combined frequency band of priority compared to the system information of the frequency band currently performing data transmission. There is little need to make measurements.
  • the system information is received according to the priority order, so the load on the system information receiving process can be reduced.
  • FIG. 12 is a sequence diagram illustrating an example of a notification method from the base station apparatus in the combined frequency band used by the terminal apparatus according to the embodiment of the present invention.
  • the base station apparatus 101 matches the classification of the terminal apparatus used by the base station apparatus with the combined frequency band corresponding to the classification of each terminal apparatus, and if there is a priority order, also matches the priority order. Is transmitted and notified as system information (L1).
  • the terminal apparatus 201 that communicates with the base station 101 first transmits to the base station apparatus 101 a terminal capability that represents capabilities such as which element frequency band the terminal device can transmit and receive, and whether or not it is an LTE-Advanced terminal. (L2).
  • the base station apparatus 101 transmits the classification used by the terminal apparatus in consideration of the capability of the terminal apparatus, the distribution of each terminal apparatus, traffic, etc. (S1).
  • the priority order is provided in the used combined frequency band
  • the priority order corresponding to the combined frequency band to be transmitted next is also transmitted (L3).
  • the terminal device receives the terminal allocation information of the terminal itself, derives information on the frequency band to be used from the assigned classification and the correspondence between the combined frequency band previously broadcast in (L1), and the band A parameter required for communication is calculated using the width (S2). Thereafter, data transmission is performed (L4).
  • the base station apparatus when changing the frequency band to be used between the base station apparatus and the terminal apparatus, the base station apparatus notifies the terminal apparatus of the priority on the PDCCH (L5).
  • the base station apparatus 101 When transmission / reception of data is necessary, the base station apparatus 101 notifies the priority order together on the PDCCH (L5).
  • the terminal device when a change in priority order is detected on the PDCCH, information on the frequency band to be used is updated, and parameters according to the updated frequency band are recalculated (S5). Thereafter, data transmission (L6) is performed from the base station apparatus, and the terminal apparatus receives data (S6).
  • the notification of the priority order using the PDCCH as described above makes it possible to quickly change the used combined frequency band and update the parameters associated therewith. Note that it is also possible to reduce the load related to the change by transmitting the priority order by communication in the higher layer without using the PDCCH.
  • FIG. 13 is a functional block diagram showing an example of the configuration of the transmission device and the reception device of the base station device used in the embodiment of the present invention.
  • the base station apparatus 101 receives downlink transmission data to be transmitted. Scheduling information, base station dependent information, terminal device specific information, and the like are also input. These pieces of information are input to the control signal processing unit 8 as control information, processed and transmitted to the terminal device, while some information (broadcast information and notification information) is transmitted to the data signal processing unit 3 in the downlink data transmission format. Input, processed and sent. These signals input to the data signal processing unit 3 are input to the internal turbo coding unit 4.
  • the turbo coding unit 4 performs error correction coding using a turbo code to increase error tolerance of input data in accordance with a coding rate instruction from the control unit (CPU) 15.
  • the next-stage data modulation unit 5 includes QPSK (Quadrature Phase Shift Keying; four-phase phase shift keying), 16QAM (16 Quadrature Amplitude Modulation), 64QAM (64 Quadrature Amplitude Modulation value, etc.).
  • QPSK Quadratture Phase Shift Keying; four-phase phase shift keying
  • 16QAM (16 Quadrature Amplitude Modulation
  • 64QAM 64 Quadrature Amplitude Modulation value, etc.
  • the precoding unit 6 performs phase rotation, weighting, redundancy, and the like on the signal modulated by the data modulation unit 5 based on an instruction from the control unit 15, thereby transmitting each signal to each terminal device. Generate a signal.
  • the weighting unit 7 weights the signal output from the precoding unit 6 based on an instruction from the control unit 15 and outputs the weighted signal to the multiplexing / mapping unit 16.
  • the weighting unit 7 may be included as a part of the weighting function of the precoding unit 6, but in FIG.
  • a plurality of data signal processing units 3 are provided. Each processing content is the same.
  • the control information is input to the convolutional code unit 9 of the control signal processing unit 8.
  • the convolutional code unit 9 performs error correction coding using a convolutional code to increase the error tolerance of the input information in accordance with the coding rate instruction from the control unit 15.
  • the QPSK modulation unit 10 modulates the control information that has been subjected to error correction coding by the convolutional coding unit 9 using the QPSK modulation method.
  • the precoding unit 11 performs phase rotation, weighting, redundancy, and the like on the signal modulated by the QPSK modulation unit 10 based on an instruction from the control unit 15, thereby controlling each antenna to be transmitted to each terminal device. Generate a signal.
  • the weighting unit 12 weights the signal from the precoding unit based on the power determined by the control unit 15 and outputs the signal to the multiplexing / mapping unit 16.
  • the weighting unit 7 may be included as part of the weighting function of the precoding unit 6 as in the case of the data signal processing unit 3.
  • the reference signal generation unit 13 generates a reference signal transmitted from each transmission / reception antenna 22 of the base station apparatus 1 by performing QPSK modulation based on the identification code specified by the control unit 15.
  • each control unit 15 is instructed to transmit each downlink data, control information, and reference signal output from each data signal processing unit 3, control signal processing unit 8, and reference signal generation unit 13.
  • the mapping method the arrangement to the resource element is determined, and a signal for each antenna is generated and sent to the OFDM transmitters 24-27 of each antenna.
  • Each of the OFDM transmitters 24 to 27 includes an IFFT (Inverse Fourier Transform) unit 17, a CP insertion unit 18, a D / A unit 20, a transmission RF unit 21, and a transmission / reception antenna 22 in order from the input side.
  • IFFT Inverse Fourier Transform
  • the IFFT unit 17 performs fast inverse Fourier transform on the signal input from the multiplexing / mapping unit 16 to perform OFDM modulation.
  • the CP insertion unit 18 generates a symbol in the OFDM scheme by adding a cyclic prefix (CP) to the OFDM-modulated signal.
  • the cyclic prefix can be obtained by a known method for duplicating a part of the beginning or end of a symbol to be transmitted.
  • the D / A unit 20 D / A converts the baseband digital signal input from the CP insertion unit 18 into an analog signal.
  • the transmission RF unit 21 generates an in-phase component and a quadrature component of the intermediate frequency from the analog signal input from the D / A unit 20, removes an extra frequency component with respect to the intermediate frequency band, and converts the intermediate frequency signal to a high frequency.
  • the signal is converted (up-converted) into the above signal, excess frequency components are removed, power amplification is performed, and the signal is output to the transmission / reception antenna 22. Note that the actual number and configuration of OFDM transmitters differ depending on the base station apparatus.
  • the uplink signals from the terminal apparatus received by the plurality of antennas are input to the receiving unit 23, synthesized, and demodulated.
  • Signal quality information and terminal capability information transmitted from the terminal device using the uplink signal are input to the control unit 15.
  • the control unit 15 notifies the resource management unit 14 of the terminal device capability, signal quality information, traffic information, and the like.
  • the resource management unit 14 determines the classification of the terminal device and the frequency band information to be used based on the notified information or based on information determined by the system or the like, and generates related control information.
  • the generated control information is transmitted to the terminal device as broadcast information or notification information.
  • FIG. 14 is a functional block diagram illustrating an example of a configuration of a terminal device used in the embodiment of the present invention.
  • the terminal device 31 includes an antenna 32, a reception RF unit 33, an A / D unit 34, a CP removal unit 35, an FFT unit 36, and a demultiplexing unit 37.
  • Unit 45 convolution decoding unit 46, control unit 47, frequency band determination unit 48, signal quality measurement unit 49, transmission multiplexing unit 50, and transmission unit 51.
  • the reception RF unit 33 amplifies the signal received via the reception antenna 32, converts it to an intermediate frequency (down-conversion), removes unnecessary frequency components, and sets the amplification level so that the signal level is properly maintained. Control and perform quadrature demodulation based on the in-phase and quadrature components of the received signal.
  • the A / D unit 34 converts the analog signal orthogonally demodulated by the reception RF unit 33 into a digital signal.
  • the CP removing unit 35 removes a portion corresponding to a cyclic prefix from the digital signal output from the A / D unit 34.
  • the FFT unit 36 performs fast Fourier transform on the signal input from the CP removal unit 35 and performs demodulation of the OFDM method.
  • the propagation path compensation unit 39 to the turbo decoding unit 42 are used for data signal demodulation processing, and the propagation path compensation unit 43 to the convolutional decoding unit 46 are used for control information signal demodulation processing.
  • the demultiplexing unit 37 Based on an instruction from the control unit 47, the demultiplexing unit 37 extracts a reference signal from the signal that is FFT-transformed by the FFT unit 36, that is, a received signal demodulated by the OFDM method, from the arranged resource elements and outputs the extracted reference signal. Specifically, the demultiplexing unit 37 extracts a reference signal having a fixed arrangement and outputs the reference signal to the propagation path estimation unit 38 and the signal quality measurement unit 49. The demultiplexing unit 37 also separates the downlink data signal and the control information signal. The signal quality measurement unit 49 measures the quality of the received signal at each frequency from the reference signal and notifies the control unit 47 of the quality. Also, signal quality information to be transmitted on the uplink is generated.
  • the propagation path estimation unit 38 estimates propagation path fluctuations for each of the transmission / reception antenna port 0 to the transmission / reception antenna port 3 of the base station apparatus 1 based on the reception result of the known reference signal separated and extracted by the demultiplexing unit 37, A propagation path fluctuation compensation value is output.
  • the propagation path compensators 39 and 43 compensate the propagation path fluctuation of the input signal based on the propagation path fluctuation compensation value from the propagation path estimation section 38.
  • Multiplex mode restoration units 40 and 44 determine the signal power determination unit (not shown) based on the multiplexing mode used by the transmission apparatus for the signals compensated for propagation path fluctuations by propagation path compensation units 39 and 43, respectively. In consideration of data power, the frequency set of each antenna of the transmission signal generated by the transmission apparatus is reproduced and combined to generate a signal before redundancy.
  • the data demodulation unit 41 demodulates the data signal generated by the multiple mode restoration unit 40. This demodulation is performed corresponding to the modulation method used in the data modulation unit 5 of the base station apparatus 1, and information on the modulation method is instructed from the control unit 47.
  • the turbo decoder 42 decodes the data signal demodulated by the data demodulator 41. Notification information and broadcast information are extracted from the decoded data and input to the control unit 47. Information regarding the used frequency band is input to the frequency band determining unit 48.
  • the QPSK demodulator 45 performs QPSK demodulation of the control information signal generated by the multimode restoration unit 44.
  • the convolutional decoding unit 46 decodes the control information signal demodulated by the multimode restoration unit 44.
  • the identification code of the reference signal to be used, information on the arrangement position, weighting information, scheduling information, base station-dependent information, terminal device specific information, received signal quality, frequency band determination unit The used coupling frequency band and the like are also analyzed, and parameters used for communication are set and control of each part of the receiving apparatus is performed according to the analysis information.
  • the transmission multiplexing unit 50 multiplexes transmission data, uplink control information, signal quality information, and the like transmitted on the uplink.
  • the signal multiplexed by the transmission multiplexing unit 50 is modulated and transmitted from the antenna 32.
  • the reference signal identification code generation method, the reference signal arrangement position will be described as a generation method in the main transmission cell, and the arrangement position will be described as a generation method and arrangement position similar to the case where the main transmission cell does not perform cooperative reception. However, this may be different from the generation method and arrangement position when the main transmission cell does not perform cooperative reception.
  • this invention shows the example applied when the cyclic prefix length is a normal length as defined in Non-Patent Document 1, other situations, for example, when the cyclic prefix length is an extended length are shown. It may be applied.
  • a program for realizing the functions described in the present embodiment is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read into a computer system and executed to execute processing of each unit. May be performed.
  • the “computer system” here includes an OS and hardware such as peripheral devices.
  • the “computer system” includes a homepage providing environment (or display environment) if a WWW system is used.
  • the “computer-readable recording medium” means a storage device such as a flexible disk, a magneto-optical disk, a portable medium such as a ROM and a CD-ROM, and a hard disk incorporated in a computer system. Furthermore, the “computer-readable recording medium” dynamically holds a program for a short time like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. In this case, a volatile memory in a computer system serving as a server or a client in that case is also used to hold a program for a certain period of time.
  • the program may be a program for realizing a part of the above-described functions, or may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A wireless communication system wherein a plurality of frequency bands are used for performing communications. A plurality of terminal apparatuses used in the wireless communication system are classified into a plurality of groups, while a plurality of combinations of frequency bands are established from the plurality of frequency bands used in the wireless communication system. In the wireless communication system, a base station apparatus allocates the plurality of combinations of frequency bands to the plurality of groups of terminal apparatuses. When a wider frequency band is used for performing communications, not only a combination of frequency bands having a higher priority but also a combination of frequency bands having a lower priority are used and the communication processes in the respective combinations of frequency bands are performed independently of each other. In this way, when a plurality of frequency bands are used for performing wireless communications, the constraints can be reduced which occur due to the complications of scheduling, resource allocations, configurations and the like caused by the differences in the elemental frequency bands used by the respective terminal apparatuses.

Description

基地局装置、端末装置、それらを備えた無線通信システムおよび基地局装置および端末装置に実行させるプログラムBASE STATION DEVICE, TERMINAL DEVICE, RADIO COMMUNICATION SYSTEM INCLUDING THE SAME, BASE STATION DEVICE, AND TERMINAL DEVICE RUNNING PROGRAM
 本発明は、無線通信技術を利用した通信技術に関し、特に、複数の周波数帯域を用いて通信を行う基地局装置、端末装置、それらを備えた無線通信システムに関する。 The present invention relates to a communication technology using a wireless communication technology, and more particularly, to a base station device and a terminal device that perform communication using a plurality of frequency bands, and a wireless communication system including them.
 現在、進化した第三世代無線アクセス(Evolved Universal Terrestrial Radio Access、以下、「EUTRA」と称する。)及び進化した第三世代無線アクセスネットワーク(Evolvde Universal Terrestrial Radio Access Network、以下、「EUTRAN」と称する。)が検討されている。これらの仕様はロングタームエボリューション(Long Term Evolution以下、「LTE」と称する。)と呼ばれている。EUTRAの下りリンクとしては、OFDMA(Orthogonal Frequency Division Multiplexing Access)方式が提案されている(下記非特許文献1参照)。 Currently evolved third generation radio access (Evolved Universal Terrestrial Radio Access, hereinafter referred to as “EUTRA”) and evolved third generation radio access network (hereinafter referred to as Evolved Universal Terrestrial Radio Access, hereinafter referred to as “Evolved Universal Radio Access,” hereinafter referred to as “Evolved Universal Radio Access,” hereinafter referred to as “Evolved Universal Terrestrial Radio Access”). ) Is being considered. These specifications are called Long Term Evolution (hereinafter referred to as “LTE”). As the downlink of EUTRA, an OFDMA (Orthogonal Frequency Division Multiplexing Access) method has been proposed (see Non-Patent Document 1 below).
 また、次世代のEUTRAおよびEUTRANとして、進化したロングタームエボリューション(LTE-Advanced)が提案されている(下記非特許文献2参照)。またこれに用いる送信レートを向上させるための帯域拡張の技術として、複数の周波数帯域を結合して使用することが提案されている(下記非特許文献3、4参照)。 Further, as a next generation EUTRA and EUTRAN, an advanced long term evolution (LTE-Advanced) has been proposed (see Non-Patent Document 2 below). In addition, as a band expansion technique for improving the transmission rate used for this, it has been proposed to combine and use a plurality of frequency bands (see Non-Patent Documents 3 and 4 below).
 以下に上記の技術の内容について簡単に説明する。 The following is a brief explanation of the contents of the above technology.
 1)EUTRAのチャネル構成に関する説明
 図15は、EUTRAにおけるチャネル構成例を示す図である。EUTRAの下りリンク(基地局装置BSから端末装置MSへの通信)は、下りリンク制御領域指定チャネル(PCFICH:Physical Control Format Indicator Channel)と、下りリンク複合再送要求チャネル(PHICH:Physical Hybrid ARQ Indicator Channel)、下りリンクマルチキャストチャネル(PMCH:Physical Multicast Channel)、下りリンク共用チャネル(PDSCH:Physical Downlink Shared Channel)と、下りリンク制御チャネル(PDCCH:Physical Downlink Control Channel)、下りリンク報知チャネル(PBCH:Physical Boradcast Channel)、により構成されている。さらに端末装置が基地局と同期を取るための基準信号である同期信号(SCH:Synchronization Channel)や、信号品質の測定や受信信号の復調の際の基準として用いる参照信号(RS:Reference Sygnal)も送信される。
1) Description of EUTRA Channel Configuration FIG. 15 is a diagram illustrating a channel configuration example in EUTRA. The downlink of EUTRA (communication from the base station apparatus BS to the terminal apparatus MS) includes a downlink control area designation channel (PCFICH: Physical Control Indicator Channel) and a downlink complex retransmission request channel (PHICH: Physical Hybrid ARQ Indicator). ), A downlink multicast channel (PMCH: Physical Multicast Channel), a downlink shared channel (PDSCH: Physical Downlink Shared Channel), and a downlink control channel (PDCCH: Physical Downlink Control Channel, Downlink Channel Channel). oradcast Channel), and is made of. In addition, a synchronization signal (SCH) that is a reference signal for the terminal device to synchronize with the base station, and a reference signal (RS: Reference Signal) used as a reference when measuring signal quality or demodulating the received signal are also provided. Sent.
 また、EUTRAの上りリンク(端末装置MSから基地局装置BSへの通信)は、ランダムアクセスチャネル(RACH:Random Access Channel)、上りリンク共用チャネル(PUSCH:Physical Uplink Shared Channel)、上りリンク制御チャネル(PUCCH:Physical Uplink Control Channel)、により構成されている。また、信号品質の測定や受信信号の復調の際の基準として用いる参照信号(RS:Reference Sygnal)も送信される。(例えば、下記非特許文献1参照)。 In addition, the uplink of EUTRA (communication from the terminal apparatus MS to the base station apparatus BS) includes a random access channel (RACH: Random Access Channel), an uplink shared channel (PUSCH), an uplink shared channel, and an uplink control channel ( PUCCH: Physical Uplink Control Channel). In addition, a reference signal (RS: Reference Signal) used as a standard for signal quality measurement and reception signal demodulation is also transmitted. (For example, see Non-Patent Document 1 below).
 図16はEUTRAの下り信号フレームの構成例を示す模式図である。横軸は周波数軸、タテ軸が時間軸である。EUTRAの下り信号フレームは、周波数方向の複数のサブキャリアおよび時間方向の複数のOFDMシンボルより構成されるリソースブロックを基本とし、複数のリソースブロックより構成される。各リソースブロックの先頭の1ないし4OFDMシンボルは下りリンク制御領域として使用される。下りリンク制御領域にはPCFICH、PHICH、PDCCHが配置される。PCFICHは各サブフレームにおいて先頭のOFDMシンボル中に分散配置される。PCFICHは下りリンク制御領域に使用するOFDMシンボル数に関する情報が入っており、端末はPCFICHを復調することで下りリンク制御領域を知ることができる。PHICHは上りリンクで送信した信号の再送要求に関する情報が含まれており、下りリンク制御領域全体に分散配置される。下りリンク制御領域において、PCFICH、PHICHに使用されていない領域はPDCCHの送信に使用される。PDCCHは同じく下りリンク制御領域中に分散配置されている。 FIG. 16 is a schematic diagram showing a configuration example of a downlink signal frame of EUTRA. The horizontal axis is the frequency axis, and the vertical axis is the time axis. An EUTRA downlink signal frame is based on a resource block including a plurality of subcarriers in the frequency direction and a plurality of OFDM symbols in the time direction, and includes a plurality of resource blocks. The first 1 to 4 OFDM symbols of each resource block are used as a downlink control region. PCFICH, PHICH, and PDCCH are arranged in the downlink control region. PCFICH is distributed in the first OFDM symbol in each subframe. PCFICH contains information on the number of OFDM symbols used in the downlink control region, and the terminal can know the downlink control region by demodulating PCFICH. The PHICH includes information related to a retransmission request for a signal transmitted on the uplink, and is distributed in the entire downlink control region. In the downlink control area, an area not used for PCFICH and PHICH is used for transmission of PDCCH. Similarly, the PDCCH is distributed in the downlink control region.
 各端末装置への下りリソース割当てはPDCCHにより行われる。各端末装置は下りリンク制御領域中のPDCCHのモニターを行い、自端末宛のPDCCHが送信された場合はそのPDCCHを復調する。PDCCHにはPDSCHの割当て情報が含まれている。基地局装置から端末装置へのデータはPDSCHを用いて送信される。端末装置はその情報に従って、割当てられたPDSCHを復調することで、端末宛のデータを受信する。PDSCHでは各端末装置固有のデータ以外に、全端末共通のデータも送信される。この端末共通のデータ送信のためのPDSCHのリソース割り当ても同様にPDCCHにより行われる。各端末装置はPDCCHのモニターを行い、端末共通のPDCCHが送信された場合はそのPDCCHも復調し、その復調情報に従って、割当てられたPDSCHを復調する。 Downlink resource allocation to each terminal device is performed by PDCCH. Each terminal apparatus monitors the PDCCH in the downlink control area, and demodulates the PDCCH when the PDCCH addressed to the terminal is transmitted. The PDCCH includes PDSCH allocation information. Data from the base station apparatus to the terminal apparatus is transmitted using PDSCH. The terminal device receives the data addressed to the terminal by demodulating the allocated PDSCH according to the information. In PDSCH, data common to all terminals is transmitted in addition to data unique to each terminal apparatus. Similarly, PDSCH resource allocation for data transmission common to terminals is also performed by PDCCH. Each terminal apparatus monitors the PDCCH. When a terminal-common PDCCH is transmitted, the terminal apparatus also demodulates the PDCCH, and demodulates the assigned PDSCH according to the demodulation information.
 尚、下りリンク信号フレーム中には、上記信号の他に、端末装置が各信号を復調とする際の基準となる参照信号も含まれているが、図中では省略している。 Note that, in addition to the above signals, the downlink signal frame includes a reference signal that serves as a reference when the terminal apparatus demodulates each signal, but is omitted in the figure.
 2)帯域拡張のための、複数の周波数帯域の結合に関する説明
 EUTRAの信号フレームで使用される、複数のリソースブロックの集合を要素周波数帯域(CC:Component Carrier)と称する。LTE-Advancedにおいては複数の要素周波数帯域を同時に使用する、周波数帯域結合という技術が用いられる。図17は周波数帯域結合の概念を示す図である。複数の周波数帯域を同時に使用することにより、高速の通信を行うことが可能である。
2) Description of Combining Multiple Frequency Bands for Band Extension A set of multiple resource blocks used in an EUTRA signal frame is referred to as an element frequency band (CC). In LTE-Advanced, a technique called frequency band combining that uses a plurality of element frequency bands simultaneously is used. FIG. 17 is a diagram showing the concept of frequency band coupling. By using a plurality of frequency bands simultaneously, high-speed communication can be performed.
 周波数帯域結合時のリソース割り当てに使用するためのPDCCHおよび割当てられたPDSCHの関係については、要素周波数帯域毎に閉じて割当を行う方法、結合した複数の周波数帯域全体をひとつとして割り当てを行う方法など提案されている。図18、図19にPDSCHの割当を各要素周波数帯域毎に閉じてPDCCHで行う方法、およびPDSCHの割当を結合された周波数帯域全体をひとつとしてPDCCHで行う方法をそれぞれ示している。 Regarding the relationship between the PDCCH to be used for resource allocation at the time of frequency band combination and the allocated PDSCH, a method of performing allocation by closing each element frequency band, a method of performing allocation by combining a plurality of combined frequency bands, etc. Proposed. FIGS. 18 and 19 show a method of performing PDSCH allocation by closing each element frequency band and using PDCCH, and a method of performing PDCCH by combining the entire frequency bands to which PDSCH allocation is combined.
 さらに、複数の端末装置が複数の要素周波数帯域を使用する際の一例を図20に示す。 Furthermore, FIG. 20 shows an example when a plurality of terminal devices use a plurality of element frequency bands.
 3)下りリンク送信ブロックの符号化とマッピングに関する説明
 図21は、EUTRAの下りリンクの送信ブロックの符号化、マッピングに関する流れを示した模式図である。EUTRAの下りリンクで送信されるデータは誤り訂正符号化等のチャネル符号化が施され、再送要求等で指定された送信速度に符号化されたデータのサイズの調整を行う符号化率調整処理が行われ、さらに下りリンクで使用する変調方式に従いデータ変調が行われ、実際に送信されるサブキャリアへのマッピングが行われる。周波数帯域結合を行う場合、これら送信データの符号化、マッピングは、まず各要素周波数帯域毎にデータが分割された後、分割化されたデータに対してそれぞれ行う方法や、データ変調までは1つの送信データに対して行い、マッピングは結合した複数の周波数帯域全体にわたり行う方法等がある。図22、図23に、分割化されたデータに対して各要素周波数帯域毎に送信ブロックの符号化からマッピングまで行う方法、および、データ変調までは1つの送信データに対して行い、マッピングを結合した複数の周波数帯域全体にわたりマッピングを行う方法をそれぞれ示す。さらに、複数の端末装置(UE1、UE2)が複数の要素周波数帯域を使用する際の一例を、分割化されたデータに対して各要素周波数帯域毎に送信ブロックの符号化からマッピングまで行う方法、および、データ変調までは1つの送信データに対して行い、マッピングを結合した複数の周波数帯域全体にわたりマッピングを行う方法のそれぞれについて、図24、図25に示す。
3) Explanation on coding and mapping of downlink transmission block FIG. 21 is a schematic diagram showing a flow concerning coding and mapping of a downlink transmission block of EUTRA. Data transmitted on the downlink of EUTRA is subjected to channel coding such as error correction coding, and coding rate adjustment processing is performed to adjust the size of the data encoded at the transmission rate specified by the retransmission request or the like. In addition, data modulation is performed according to a modulation scheme used in the downlink, and mapping to subcarriers to be actually transmitted is performed. When performing frequency band combination, encoding and mapping of these transmission data is performed by dividing the data for each element frequency band first, then performing each of the divided data, and performing one modulation until data modulation. There is a method in which transmission data is performed and mapping is performed over a plurality of combined frequency bands. 22 and 23, a method of performing transmission block coding to mapping for each element frequency band on the divided data, and data transmission modulation up to one transmission data and combining the mapping Each of the methods for performing mapping over a plurality of frequency bands is shown. Further, an example of a case where a plurality of terminal devices (UE1, UE2) use a plurality of element frequency bands, a method of performing transmission block encoding to mapping for each element frequency band on the divided data, FIG. 24 and FIG. 25 show a method of performing mapping up to a plurality of frequency bands in which mapping is performed by performing processing up to one transmission data until data modulation.
 ところで、周波数帯域結合が行われる場合であっても、各要素周波数帯域の一つを考えると、これは周波数帯域結合に対応していない、LTE端末が使用することができる。LTE(Long Term Evolution)からLTE-Advancedへの過渡期を考えると、LTE端末とLTE-Advanced端末が共存することとなる。しかしながら、この場合、LTE端末のPDCCHやマッピングの対象が一つのCCに対して行われるのに対し、LTE-Advanced端末のPDCCHやマッピングの対象は複数のPDCCHを対象に行われる。具体的には、使用する周波数帯域幅を基準として、周波数帯域幅の関数としてPDCCHの位置やデータのマッピング位置が決められるのであるが、これらの位置が異なる周波数帯域幅についてそれぞれ計算された場合、その位置が必ず排他的になるとは限らず、位置が衝突する可能性がある。これ以外にもLTEおよびLTE-Advancedでは様々なパラメータが周波数帯域幅に基づいて計算されており、それらも同様に衝突する可能性がある。基地局装置はこのような衝突が起こらないようにスケジューリングやリソース割当等を行わなければならない。 By the way, even if frequency band coupling is performed, considering one of the element frequency bands, this can be used by an LTE terminal that does not support frequency band coupling. Considering a transition period from LTE (Long Term Evolution) to LTE-Advanced, LTE terminals and LTE-Advanced terminals coexist. However, in this case, the PDCCH and mapping target of the LTE terminal are performed on one CC, whereas the PDCCH and mapping target of the LTE-Advanced terminal are performed on a plurality of PDCCHs. Specifically, the PDCCH position and the data mapping position are determined as a function of the frequency bandwidth based on the frequency bandwidth to be used, but when these positions are calculated for different frequency bandwidths, The position is not necessarily exclusive, and there is a possibility that the positions collide. In addition to this, in LTE and LTE-Advanced, various parameters are calculated based on the frequency bandwidth, and they may collide in the same manner. The base station apparatus must perform scheduling and resource allocation so that such a collision does not occur.
 また、たとえば5つの要素周波数帯域が結合しているシステムを考えた場合、1つのLTE端末が所属し得る要素周波数帯域は5通りある。一方で、1つのLTE-Advanced端末が同時に使用できる要素周波数帯域数は変更可能であり、この最大数は、5つの中から任意の数の要素周波数帯域を選択する組合せである31通りである。LTE端末とLTE-Advanst端末とが共存する場合や、単にLTE-Advanst端末のみが存在する場合であっても、その中に存在する端末の使用する要素周波数帯域がばらばらである場合は、基地局装置においてパラメータの衝突回避のためのスケジューリングやリソース割当等の処理に関する複雑さが増すという問題がある。 Also, for example, when considering a system in which five element frequency bands are combined, there are five element frequency bands to which one LTE terminal can belong. On the other hand, the number of element frequency bands that can be simultaneously used by one LTE-Advanced terminal can be changed, and the maximum number is 31 combinations that select an arbitrary number of element frequency bands from among the five. When the LTE terminal and the LTE-Advanced terminal coexist or when only the LTE-Advanced terminal exists, if the element frequency bands used by the terminals existing therein are different, the base station There is a problem in that the complexity of processing such as scheduling and resource allocation for avoiding parameter collision in the apparatus increases.
 本発明は、斯かる実情に鑑み、複数の周波数帯域を用いて通信を行う基地局装置と、端末装置、それらを備えた無線通信システムにおいて、各端末装置の使用する要素周波数帯域の違いに起因するスケジューリング、リソースの割り当て、配置等の複雑化による制約を低減することができる基地局装置、端末装置、それらを備えた無線通信システムおよびその基地局に実行させるプログラムを提供しようとするものである。 In view of such circumstances, the present invention is based on a difference in element frequency bands used by each terminal device in a base station device that performs communication using a plurality of frequency bands, a terminal device, and a wireless communication system including them. It is intended to provide a base station device, a terminal device, a wireless communication system including them, and a program to be executed by the base station, which can reduce restrictions due to complexity of scheduling, resource allocation, arrangement, etc. .
 上記課題を解決するために、本発明は、複数の周波数帯域を用いて通信を行う基地局装置と、端末装置、それらを備えた無線通信システムにおいて、複数の周波数帯域を用いて通信を行う際には、使用する周波数帯域の組合せを、端末装置の分類と対応させ、より広い周波数帯域を使用して使用する場合、優先順位の高い周波数帯域の組合せに加え、優先順位の低い周波数帯域の組合せも合わせて使用し、それらおのおのの周波数帯域の組合せにおける通信処理は独立して行うことを特徴とする。 In order to solve the above problems, the present invention relates to a base station apparatus that performs communication using a plurality of frequency bands, a terminal apparatus, and a wireless communication system that includes the base station apparatus, and performs communication using a plurality of frequency bands. The combination of the frequency bands to be used corresponds to the classification of the terminal device, and in the case of using a wider frequency band, in addition to the combination of the frequency bands having a higher priority, the combination of the frequency bands having a lower priority. Are also used, and the communication processing in each combination of frequency bands is performed independently.
 本発明の一観点によれば、複数の周波数帯域を用いて通信を行う無線通信システムにおいて、端末装置が使用する周波数帯域は前記複数の周波数帯域のうちの1つもしくは複数からなる組合せであり、前記端末装置は複数のグループに分類され、前記端末装置の分類に対して、前記使用する周波数帯域の組合せを定めることを特徴とする無線通信システムが提供される。当該無線通信システムは、その使用する複数の周波数帯域の組合せを複数用意しており、またその無線通信システムで使用する端末装置は複数の分類(グループ)に分類されており、どの端末装置の分類(グループ)が、どの周波数帯域の組合せを使用するかをシステムが(動的もしくは静的、準静的に)決定し、割当てることを特徴とする。 According to one aspect of the present invention, in a wireless communication system that performs communication using a plurality of frequency bands, the frequency band used by the terminal device is a combination of one or more of the plurality of frequency bands, The terminal device is classified into a plurality of groups, and a radio communication system is provided in which a combination of the frequency bands to be used is determined for the classification of the terminal device. The wireless communication system prepares a plurality of combinations of a plurality of frequency bands to be used, and terminal devices used in the wireless communication system are classified into a plurality of classifications (groups). The system is characterized in that the system determines (dynamic or static, quasi-static) which frequency band combination to use and assigns it.
  前記端末装置の分類中の一つの分類は、その端末装置が使用できる周波数帯域の数が一つであることが好ましい。これにより、あるグループに分類される端末装置については、使用出来る周波数帯域が1つであることを意味する。例えば、具体的には、LTE端末を想定している。LTE端末として分類される端末装置は特定の1つの周波数帯域のみしか使用しないことを意図している。LTE端末は、例えば下記図1では、結合帯域1から5しか割当てられない。 It is preferable that one of the classifications of the terminal devices has one frequency band that can be used by the terminal device. This means that the terminal device classified into a certain group can use one frequency band. For example, specifically, an LTE terminal is assumed. A terminal device classified as an LTE terminal is intended to use only one specific frequency band. For example, in FIG. 1 below, LTE terminals are assigned only the combined bands 1 to 5.
 また、前記端末装置の分類に対応する前記周波数帯域の組合せに対して優先順位が付与されており、前記端末装置がその端末装置の分類に応じた周波数帯域の組合せにおいて、優先順位の高い周波数帯域の組合せよりも多くの周波数帯域を使用する場合には、前記優先順位の高い周波数帯域の組合せに加えて、前記優先順位の低い周波数帯域の組合せとも使用し、前記優先順位の高い周波数帯域の組合せ内における第1の通信処理と、前記優先順位の低い組合せ内における第2の通信処理と、を独立して行うことを特徴とする。このようにすることで、各端末装置は、使用周波数帯域を拡張する場合であっても、改めてスケジューリング情報等を公開する必要は無く、これまでの通信処理に単に追加すれば良いため、追加に関連する処理が簡単になる。 In addition, a priority is given to the combination of the frequency bands corresponding to the classification of the terminal device, and the frequency band having a high priority in the combination of the frequency bands according to the classification of the terminal device. In the case of using more frequency bands than the combination of the above, in addition to the combination of the high-priority frequency bands, the combination of the low-priority frequency bands is also used, and the combination of the high-priority frequency bands The first communication process in the second and the second communication process in the lower priority combination are performed independently. By doing so, each terminal device does not need to disclose scheduling information or the like again even when extending the frequency band to be used, and can simply be added to the communication processing so far. Related processing is simplified.
 また、前記端末装置がその端末装置の分類に応じた周波数帯域の組合せにおいて、優先順位の高い周波数帯域の組合せよりも多くの周波数帯域を使用する場合において使用されるある第1の端末装置の分類に対応する前記優先順位の高い周波数帯域の組合せと、前記第1の端末装置の分類とは異なる第2の端末装置の分類に対応する優先順位の高い周波数帯域の組合せと、を排他的な周波数帯域となるように割り当てることが好ましい。これにより、さらに、このとき、ある端末装置の分類に対して割り当てられた、優先順位の高い結合周波数帯域が他の端末装置の分類に対して割り当てられた優先順位の高い結合周波数帯域とは排他的になるよう割り当てることにより、ある端末装置の分類に対しては特に優先的にその周波数帯域を利用でき、例えばこれをLTE端末用に割り当ててLTE端末に対する影響を少なくすることができる。 A classification of a first terminal device used when the terminal device uses more frequency bands in a combination of frequency bands corresponding to the classification of the terminal device than a combination of frequency bands having a higher priority. And the combination of the high-priority frequency bands corresponding to the high-priority frequency band combination corresponding to the second terminal device classification different from the first terminal-device classification. It is preferable to allocate the bandwidth. As a result, at this time, a high-priority combined frequency band assigned to a certain terminal device class is excluded from a high-priority combined frequency band assigned to another terminal device class. By allocating so as to be suitable, the frequency band can be used particularly preferentially for the classification of a certain terminal device. For example, it can be allocated to the LTE terminal to reduce the influence on the LTE terminal.
 また、本発明は、基地局装置に使用する無線資源の管理を行う資源管理部を有する無線通信システムであって、前記資源管理部は、前記端末装置が使用する当該端末装置の分類に対応する周波数帯域の組合せにおいて、優先順位の低い周波数帯域の組合せを使用する場合に、分類に応じた周波数帯域の組合せ内における優先順位の高い周波数帯域の組合せ内における第1の資源管理処理と、優先順位の低い周波数帯域の組合せ内における第2の資源管理処理と、を独立して行うことを特徴とする無線通信システムであっても良い。 In addition, the present invention is a radio communication system having a resource management unit that manages radio resources used in a base station device, wherein the resource management unit corresponds to a classification of the terminal device used by the terminal device. In the combination of frequency bands, when using a combination of frequency bands with a low priority, a first resource management process in a combination of frequency bands with a high priority in a combination of frequency bands according to the classification, and a priority The wireless communication system may be characterized in that the second resource management process in the combination of low frequency bands is performed independently.
 また、本発明は、基地局装置に送信データの分割処理を行うデータ分割部と、前記分割したデータが使用する要素周波数帯域割当処理を行う要素周波数帯域割当部を有する無線通信システムであって、前記データ分割部は、前記端末装置が使用する当該その端末装置の分類に対応する周波数帯域の組合せにおいて、優先順位の低い周波数帯域の組合せを使用する場合には、送信データを分類に応じた周波数帯域の組合せ内における優先順位の高い周波数帯域の組合せ内で使用する送信データと、優先順位の低い周波数帯域の組合せ内で使用する送信データとに分割する初期分割処理部を有し、前記初期分割処理部にて分割された送信データについて、優先順位の高い周波数帯域の組合せ内で使用する送信データにおける第1の分割処理および第1の要素周波数帯域割当処理と、同優先順位の低い周波数帯域の組合せ内における第2の分割処理とおよび第2の要素周波数帯域割当処理と、を独立して行うことを特徴とする無線通信システムであっても良い。 Further, the present invention is a radio communication system having a data division unit that performs transmission data division processing on a base station device, and an element frequency band assignment unit that performs element frequency band assignment processing used by the divided data, The data dividing unit, when using a combination of frequency bands with a low priority in a combination of frequency bands corresponding to the classification of the terminal apparatus used by the terminal apparatus, sets the frequency of transmission data according to the classification. An initial division processing unit that divides transmission data used in a combination of frequency bands with a high priority in a combination of bands and transmission data used in a combination of frequency bands with a low priority; For the transmission data divided by the processing unit, the first division processing and transmission data used in the combination of frequency bands with high priority are performed. Radio communication characterized by independently performing a first element frequency band allocation process, a second division process and a second element frequency band allocation process within a combination of frequency bands having a low priority. It may be a system.
 前記端末装置が使用する当該端末装置の分類に対応する周波数帯域の組合せを選択するための信号品質測定の頻度を、前記端末装置の分類に対応する周波数帯域の組合せの優先順位に基づいて行うことが好ましい。これにより、優先順位に応じて品質測定を行うので、品質測定にかかる負荷を低減することができる。 The frequency of signal quality measurement for selecting a combination of frequency bands corresponding to the classification of the terminal apparatus used by the terminal apparatus is performed based on the priority of the combination of frequency bands corresponding to the classification of the terminal apparatus. Is preferred. Thereby, since quality measurement is performed according to priority, the load concerning quality measurement can be reduced.
 前記信号品質測定を、前記端末装置の分類に対応する周波数帯域の組合せにおいて、優先順位の高い組合せにおいてのみ行うようにしても良い。これにより、他の基地局装置の圏内へ移動するかどうかなどの判断をするための品質測定を、優先順位に応じて行うことで、品質測定にかかる負荷を低減することができる。 The signal quality measurement may be performed only in a combination with a high priority in a combination of frequency bands corresponding to the classification of the terminal device. Thereby, the quality measurement for determining whether to move to the area of another base station device or the like is performed according to the priority order, thereby reducing the load on the quality measurement.
 前記端末装置が使用するそれぞれの周波数帯域に関する情報を端末装置が受信する頻度は、前記端末装置の分類に応じた周波数帯域の組合せの優先順位に基づくことが好ましい。これにより、優先順位の中位や低位の結合周波数帯域の測定を行う必要性は低い本発明においては優先順位に応じてシステム情報の受信を行うのでシステム情報の受信処理にかかる負荷を低減することができる。 It is preferable that the frequency at which the terminal device receives information regarding each frequency band used by the terminal device is based on the priority of the combination of frequency bands according to the classification of the terminal device. As a result, in the present invention, the system information is received according to the priority in the present invention, where the need to measure the middle and low combined frequency bands of the priority is low, so that the load on the system information reception process is reduced. Can do.
 前記端末装置は、当該端末装置の分類に応じた周波数帯域の組合せを受信し、使用する結合周波数帯域との組合せの通知を基地局装置から端末装置へ下りリンク制御チャネルで通知することにより、使用する周波数帯域の組合せを変更することが好ましい。これにより、PDCCHを用いて優先順位の通知を行うことで、使用結合周波数帯域の変更およびそれに伴うパラメータの更新を迅速に行うことが可能である。尚、PDCCHを使用せず、上位層での通信により優先順位を送信することで、変更にかかわる負荷を低減することも可能である。 The terminal device receives a combination of frequency bands corresponding to the classification of the terminal device, and notifies the combination of the used frequency band to be used from the base station device to the terminal device by using a downlink control channel. It is preferable to change the combination of frequency bands to be used. Thus, by using the PDCCH to notify the priority order, it is possible to quickly change the used combined frequency band and update the parameters associated therewith. Note that it is also possible to reduce the load related to the change by transmitting the priority order by communication in the higher layer without using the PDCCH.
 また、本発明は、複数の周波数帯域を用いて通信を行う無線通信システムにおいて用いられる基地局装置であって、端末装置から送られてきた端末装置の特性を考慮して端末装置が使用する複数の周波数帯域の組合せの分類を端末装置に送信して通信を行うことを特徴とする基地局装置である。 In addition, the present invention is a base station apparatus used in a wireless communication system that performs communication using a plurality of frequency bands, and a plurality of terminals used by the terminal apparatus in consideration of the characteristics of the terminal apparatus transmitted from the terminal apparatus. The base station apparatus is characterized by transmitting a classification of combinations of frequency bands to a terminal apparatus for communication.
 本発明の他の観点によれば、複数の周波数帯域を用いて通信を行う無線通信システムにおいて用いられる基地局装置における制御方法であって、前記無線通信システムが使用する結合周波数帯域の情報を送信し、これに応じて端末装置から得られた特性情報を受信し、端末装置が使用する複数の周波数帯域の組合せの分類を求めるステップと、求めた分類を端末装置に送信するステップと、を有することを特徴とする制御方法が提供される。 According to another aspect of the present invention, there is provided a control method in a base station apparatus used in a radio communication system that performs communication using a plurality of frequency bands, wherein information on a combined frequency band used by the radio communication system is transmitted. And receiving the characteristic information obtained from the terminal device according to this, obtaining a classification of a combination of a plurality of frequency bands used by the terminal device, and transmitting the obtained classification to the terminal device. The control method characterized by this is provided.
 本発明の別の観点によれば、複数の周波数帯域を用いて通信を行う無線通信システムにおいて用いられる端末装置における制御方法であって、基地局装置からのシステム情報を受信して、当該端末装置の能力情報を基地局装置に送信するステップと、前記端末装置の能力情報に基づいて前記基地局装置から送られてきた複数の周波数帯域の組合せの分類を受信するステップと、を有することを特徴とする制御方法が提供される。 According to another aspect of the present invention, there is provided a control method in a terminal apparatus used in a wireless communication system that performs communication using a plurality of frequency bands, the system apparatus receiving base system information, and the terminal apparatus Transmitting to the base station apparatus, and receiving a classification of combinations of a plurality of frequency bands transmitted from the base station apparatus based on the capability information of the terminal apparatus. A control method is provided.
 本発明は、上記に記載の方法をコンピュータに実行させるためのプログラムであっても良く、該プログラムを記録した記録媒体であっても良い。プログラムは、インターネットなどの伝送媒体から取得するものであっても良い。 The present invention may be a program for causing a computer to execute the method described above, or a recording medium on which the program is recorded. The program may be acquired from a transmission medium such as the Internet.
 本明細書は本願の優先権の基礎である日本国特許出願2009-017011号の明細書および/または図面に記載される内容を包含する。 This specification includes the contents described in the specification and / or drawings of Japanese Patent Application No. 2009-017011, which is the basis for the priority of the present application.
 本発明によれば、複数の周波数帯域を用いて通信を行う基地局装置と、端末装置、それらを備えた無線通信システムにおいて、各端末装置の使用する要素周波数帯域の違いに起因するスケジューリング、リソースの割り当て、配置等の複雑化による制約を低減することができる。 According to the present invention, in a base station apparatus that performs communication using a plurality of frequency bands, a terminal apparatus, and a radio communication system including the same, scheduling and resources caused by differences in element frequency bands used by each terminal apparatus It is possible to reduce restrictions due to complications such as allocation, arrangement, and the like.
本発明の第1の実施の形態による複数の周波数帯域を用いて通信を行う無線通信システムにおける、各周波数帯域を結合して使用する際の周波数帯域の組合せを表す図である。It is a figure showing the combination of the frequency band at the time of combining and using each frequency band in the radio | wireless communications system which communicates using the several frequency band by the 1st Embodiment of this invention. 端末装置の分類に対して、それぞれの分類の端末が使用する周波数帯域の組合せの一例を示す図である。It is a figure which shows an example of the combination of the frequency band which the terminal of each classification | category uses with respect to the classification | category of a terminal device. 端末装置が使用する周波数帯域の組合せを6種とした場合の、結合帯域がどのCCを使用するかの一例を示す図である。It is a figure which shows an example of which CC uses a combined band when the combination of the frequency band which a terminal device uses is 6 types. 各端末装置の分類と使用する結合周波数帯域との関係を表す図である。It is a figure showing the relationship between the classification | category of each terminal device, and the coupling frequency band to be used. 本発明の第2の実施の形態による複数の周波数帯域を用いて通信を行う無線通信システムにおける、各周波数帯域を結合して使用する際の各端末装置の分類と、周波数帯域の組合せの分類との対応の際に、使用する結合周波数帯域に優先順位を設ける場合の一例を表す図である。In the wireless communication system that performs communication using a plurality of frequency bands according to the second embodiment of the present invention, classification of each terminal device when combining and using each frequency band, classification of combinations of frequency bands, It is a figure showing an example in the case of providing a priority order to the combined frequency band to be used in the case of correspondence. 優先順位を設けた場合の各端末装置の分類と、使用する結合周波数帯域との関係を表す図である。It is a figure showing the relationship between the classification | category of each terminal device at the time of providing a priority, and the coupling frequency band to be used. 端末装置の分類UE Aに属する端末装置のPDCCHによるPDSCHのリソース割り当てを表した図である。It is a figure showing the resource allocation of PDSCH by PDCCH of the terminal device belonging to the classification UE A of the terminal device. 端末装置の分類UE Aに属する端末装置の符号化処理を表した図である。It is a figure showing the encoding process of the terminal device which belongs to the classification UE A of a terminal device. 端末装置の分類と、使用する結合周波数帯域の組合せとの対応を1つの表にまとめて表した図である。It is the figure which represented the response | compatibility with the classification | category of a terminal device, and the combination of the combined frequency band to be used in one table | surface. 本実施の形態における端末装置が品質測定を行う様子を示した図である。It is the figure which showed a mode that the terminal device in this Embodiment performs quality measurement. 本実施の形態における端末装置がシステム情報を受信する様子を示した図である。It is the figure which showed a mode that the terminal device in this Embodiment receives system information. 本発明の実施形態における端末装置が使用する結合周波数帯域の基地局装置からの通知方法の一例について示したシーケンス図である。It is the sequence diagram shown about the example of the notification method from the base station apparatus of the combined frequency band which the terminal device in embodiment of this invention uses. 本発明の実施の形態において使用される基地局装置の構成の一例を表す機能ブロック図である。It is a functional block diagram showing an example of a structure of the base station apparatus used in embodiment of this invention. 本発明の実施の形態において使用される端末装置の構成の一例を表す機能ブロック図である。It is a functional block diagram showing an example of a structure of the terminal device used in embodiment of this invention. EUTRAにおけるチャネル構成例を示す図である。It is a figure which shows the example of a channel structure in EUTRA. EUTRAの下り信号フレームの構成例を示す模式図である。It is a schematic diagram which shows the structural example of the downstream signal frame of EUTRA. 周波数帯域結合の概念を示す図である。It is a figure which shows the concept of frequency band coupling | bonding. PDSCHの割当を各要素周波数帯域毎に閉じてPDCCHで行う方法を示す図である。It is a figure which shows the method of allocating PDSCH for every element frequency band, and performing by PDCCH. PDSCHの割当を結合された周波数帯域全体をひとつとしてPDCCHで行う方法を示す図である。It is a figure which shows the method of performing by PDCCH by making the whole frequency band with which allocation of PDSCH was combined into one. 複数の端末装置が複数の要素周波数帯域を使用する際の一例を示す図である。It is a figure which shows an example at the time of a some terminal device using a some element frequency band. EUTRAの下りリンクの送信ブロックの符号化、マッピングに関する流れを示した模式図である。It is the schematic diagram which showed the flow regarding encoding and mapping of the transmission block of the downlink of EUTRA. 各要素周波数帯域毎に送信ブロックの符号化からマッピングまで行う方法を示す図である。It is a figure which shows the method to perform from encoding of a transmission block to mapping for every element frequency band. マッピングを結合した複数の周波数帯域全体にわたりマッピングを行う方法を示す図である。It is a figure which shows the method of mapping over the some frequency band which combined mapping. 複数の端末装置(UE1、UE2)が複数の要素周波数帯域を使用し、各要素周波数帯域毎に送信ブロックの符号化からマッピングまで行う際の一例を示す図である。It is a figure which shows an example when a some terminal device (UE1, UE2) uses a some element frequency band and performs from encoding of a transmission block to mapping for every element frequency band. 複数の端末装置(UE1、UE2)が複数の要素周波数帯域を使用し、複数の周波数帯域全体にわたりマッピングを行う際の一例を示す図である。It is a figure which shows an example when a some terminal device (UE1, UE2) uses a some element frequency band, and performs mapping over the whole some frequency band.
100、101 基地局装置
201 端末装置
1 基地局装置
3 データ信号処理部
4 ターボ符号部
5 データ変調部
6 プリコーディング部
7 重み付け部
8 制御信号処理部
9 畳込み符号部
10 QPSK変調部
11 プリコーディング部
12 重み付け部
13 参照信号発生部
14 資源管理部
15 制御部
16 多重・マッピング部
17 IFFT部
18 CP挿入部
20 D/A部
21 送信RF部
22 アンテナ
23 受信部
24~27 OFDM送信部
31 端末装置
32 アンテナ
33 受信RF部
34 A/D部
35 CP除去部
36 FFT部
37 多重分離部
38 伝搬路推定部
39 伝搬路補償部
40 多重モード復元部
41 データ復調部
42 ターボ復号部
43 伝搬路補償部
44 多重モード復元部
45 QPSK復調部
46 畳込み復号部
47 制御部
48 周波数帯域決定部
49 信号品質測定部
50 送信多重部
51 送信部
100, 101 Base station apparatus 201 Terminal apparatus 1 Base station apparatus 3 Data signal processing unit 4 Turbo coding unit 5 Data modulation unit 6 Precoding unit 7 Weighting unit 8 Control signal processing unit 9 Convolution coding unit 10 QPSK modulation unit 11 Precoding Unit 12 Weighting unit 13 Reference signal generation unit 14 Resource management unit 15 Control unit 16 Multiplexing / mapping unit 17 IFFT unit 18 CP insertion unit 20 D / A unit 21 Transmission RF unit 22 Antenna 23 Reception unit 24-27 OFDM transmission unit 31 Terminal Device 32 Antenna 33 Reception RF unit 34 A / D unit 35 CP removal unit 36 FFT unit 37 Demultiplexing unit 38 Channel estimation unit 39 Channel compensation unit 40 Multimode restoration unit 41 Data demodulation unit 42 Turbo decoding unit 43 Channel compensation Unit 44 multiplex mode restoration unit 45 QPSK demodulation unit 46 convolution decoding unit 47 control unit 48 frequency Band determining unit 49 signal quality measuring unit 50 transmits multiplexing unit 51 transmission unit
 以下に、本発明の実施の形態による無線通信システムの説明を図面を参照しながら説明を行う。 Hereinafter, a wireless communication system according to an embodiment of the present invention will be described with reference to the drawings.
 <第1の実施の形態>
 図1(a)、(b)は、本発明の第1の実施の形態による複数の周波数帯域を用いて通信を行う無線通信システムにおける、各周波数帯域を結合して使用する際の周波数帯域の組合せを表す図である。ここでは、最大5つの周波数帯域を結合する例を示す。各周波数帯域の結合の組合せにより、結合帯域1から結合帯域31までの分類を定める。
<First Embodiment>
1 (a) and 1 (b) show frequency bands when the frequency bands are combined and used in a wireless communication system that performs communication using a plurality of frequency bands according to the first embodiment of the present invention. It is a figure showing a combination. Here, an example of combining up to five frequency bands is shown. The classification from the coupling band 1 to the coupling band 31 is determined by the combination of coupling of each frequency band.
 図2は、端末装置の分類に対して、それぞれの分類の端末が使用する周波数帯域の組合せの一例を示す図である。ここでは端末装置は、UE A、UE B、UE C、UE D、UE E、UE Lの5つに分類されものとする。UE Aが使用する結合周波数帯域の組合せは図1で表している結合帯域26、すなわちCC1、CC2、CC3、CC4を使用する。同様に UE Bが使用する結合周波数帯域の組合せは、図1で表している結合帯域6、すなわちCC1、CC2を、以下同様にUE Lが使用する結合周波数帯域の組合せは図3で表している結合帯域5、すなわちCC5を使用することを意味する。例えば端末装置がUE Bの分類とされた場合、その端末装置は結合周波数帯域CC1とCC2とを使用することになる。なお、図1においては、5つの周波数帯域に対し、結合帯域の組合せを、5つの組合せにおける0を除く組合せの最大数である31としているが、必ずしもそのようにする必要は無い。例えば、そのシステム内において使用される端末装置の分類が前述のように6種類に限定されているのであれば、各周波数帯域を結合して使用する際の周波数帯域の組合せは、あらかじめ図3に示すように6種としておいても良い。このようにすることにで、周波数帯域の組合せをシステム毎やセル毎等に定めておいて、端末装置は実際のデータ通信を行う以前に、例えば報知情報など、システム全体の情報としてこの組合せを全端末装置に通知したり、あらかじめ定めておく等しておれば、実際にデータ通信を行う際には端末装置の分類と、それぞれの端末装置が使用する結合周波数帯域の組合せとのみを通知すればよいので通知にかかわる情報量を削減することができる。図3の場合、使用する周波数帯域の組合せが6種類であるので、各結合帯域の組合せについてインデックスを与えておくと、その6種のうちの1つを表すインデックスを通知するのみで端末装置が使用する周波数帯域の組合せを通知することができる。 FIG. 2 is a diagram illustrating an example of combinations of frequency bands used by terminals of each classification with respect to the classification of terminal apparatuses. Here, the terminal devices are classified into five types: UE A, UE B, UE C, UE D, UE E, and UE L. The combination of the combined frequency bands used by UE A uses the combined band 26 shown in FIG. 1, that is, CC1, CC2, CC3, and CC4. Similarly, the combination of the combination frequency bands used by UE B is the combination band 6 shown in FIG. 1, that is, CC1 and CC2, and the combination of the combination frequency bands used by UE L is also shown in FIG. This means that the coupling band 5, that is, CC5 is used. For example, when the terminal device is classified as UE B, the terminal device uses the combined frequency bands CC1 and CC2. In FIG. 1, for the five frequency bands, the combination of the combination bands is 31 which is the maximum number of combinations other than 0 in the five combinations, but it is not always necessary to do so. For example, if the classification of terminal devices used in the system is limited to six types as described above, combinations of frequency bands when combining and using each frequency band are shown in FIG. As shown, six types may be used. In this way, the combination of frequency bands is determined for each system or each cell, and the terminal device uses this combination as system-wide information such as broadcast information before performing actual data communication. If all terminal devices are notified or predetermined, etc., when actually performing data communication, only the terminal device classification and the combination of the combined frequency bands used by each terminal device are notified. As a result, the amount of information related to notification can be reduced. In the case of FIG. 3, since there are six combinations of frequency bands to be used, if an index is given to each combination of the combined bands, the terminal device only needs to notify an index representing one of the six types. A combination of frequency bands to be used can be notified.
 インデックスの通知は、各結合帯域の組合せについてのインデックスの通知でも良いし、もしくは端末装置の分類とその端末装置の分類に対応する使用周波数帯域の組合せとがシステム毎やセル毎に固定もしくは、半固定で定められておいて、端末装置が実際のデータ通信を行う以前に、例えば報知情報など、システム全体の情報としてこの対応情報が全端末装置に通知されるようにしておけば、各端末装置へその端末装置の分類のインデックスの通知のみで、端末装置が使用する周波数帯域の組合せを通知することができる。 The index notification may be an index notification for each combination of the combined bands, or the classification of the terminal device and the combination of the used frequency bands corresponding to the classification of the terminal device may be fixed for each system or cell, If the terminal device performs fixed data and before the terminal device performs actual data communication, for example, the correspondence information is notified to all the terminal devices as information of the entire system, such as broadcast information, each terminal device The combination of frequency bands used by the terminal device can be notified only by notification of the index of the classification of the terminal device.
 尚、図2に示すように、ある端末装置の分類に対しては1つの周波数帯域のみしか使用しないような結合周波数帯域を割り当てるか、図3のように周波数帯域の組合せのうちの1つは1つの周波数帯域のみしか使用しないような結合周波数帯域となるような割り当てを行うことで(ここではCC5)、この周波数帯域を使用する端末を例えばLTE端末に限定する場合には、LTE端末は必ず1つの周波数帯域のみを使用することができ、システムが簡単化できる。実際、LTE-Advancedが導入されるまではLTEのシステムのみで運用され、通常LTEの使用する周波数帯域は1種類であるので、LTE端末としての分類を1種類にし、かつ、その分類が割り当てられる周波数帯域を1つの周波数帯域とすることで、従来のLTE端末に関しては新たな周波数帯域の選択作業を行うことなく、同じ周波数帯域を継続して使用できる利点がある。図4は、各端末装置の分類と使用する結合周波数帯域との組合せの関係を表す図である。複数の周波数帯域を使用することのできるLTE-Advanced端末はUE AからUE Eへ分類し、従来のLTE端末はLTE Lへ分類し、UE AからUE Eの分類の端末が使用する結合周波数帯域の組合わせを、CC1からCC4のあいだで構成される複数の周波数帯域の組合せに限定し、かつLTE Lの分類の端末が使用する周波数帯域をCC5に限定することにより、LTE-Advanced端末が使用する周波数帯域と、LTE端末が使用する周波数帯域を分離することができる。 As shown in FIG. 2, a combination frequency band that uses only one frequency band is assigned to a certain terminal device classification, or one of the combinations of frequency bands as shown in FIG. By assigning a combined frequency band that uses only one frequency band (in this case, CC5), when a terminal that uses this frequency band is limited to, for example, an LTE terminal, the LTE terminal must Only one frequency band can be used, and the system can be simplified. In fact, until LTE-Advanced is introduced, it is operated only in the LTE system, and since there is usually one type of frequency band used by LTE, the classification as an LTE terminal is set to one type, and the classification is assigned. By setting the frequency band to one frequency band, the conventional LTE terminal has an advantage that the same frequency band can be continuously used without selecting a new frequency band. FIG. 4 is a diagram illustrating the relationship of the combination of the classification of each terminal device and the combined frequency band to be used. LTE-Advanced terminals that can use multiple frequency bands are classified from UE A to UE E, conventional LTE terminals are classified from LTE L, and combined frequency bands used by UE A to UE E classification terminals Is used by LTE-Advanced terminals by limiting the combination of multiple frequency bands configured between CC1 to CC4 and limiting the frequency band used by terminals of the LTE L classification to CC5. And the frequency band used by the LTE terminal can be separated.
 <第2の実施の形態>
 図5は、本発明の第2の実施の形態による複数の周波数帯域を用いて通信を行う無線通信システムにおける、各周波数帯域を結合して使用する際の各端末装置の分類と、周波数帯域の組合せとの対応の際に、使用する結合周波数帯域に優先順位を設ける場合の一例を表す図である。尚、ここでの結合周波数帯域の組合せと、周波数帯域との関係は図1に示すものとする。第一の実施の形態においては、1つの端末装置の分類に対し、1種類の結合周波数帯域の組合せを割り当てているが、本実施の形態においては1つの端末装置の分類に対し、複数の結合周波数帯域の組合せを割り当て、かつその分類に優先順位を設けている。
<Second Embodiment>
FIG. 5 is a diagram illustrating classification of terminal devices when frequency bands are combined and used in a wireless communication system that performs communication using a plurality of frequency bands according to the second embodiment of the present invention. It is a figure showing an example at the time of providing a priority to the combined frequency band to be used in the case of correspondence with a combination. Here, the relationship between the combination of the combined frequency bands and the frequency band is shown in FIG. In the first embodiment, one type of combination frequency band combination is assigned to one terminal device classification, but in this embodiment, a plurality of combinations are assigned to one terminal device classification. A combination of frequency bands is assigned, and a priority is assigned to the classification.
 また、各端末装置は、使用する周波数帯域の数の増減に応じて、優先順の高い結合周波数帯域の組合せのみを使用したり、より優先順位の低い結合周波数帯域の組合せを使用したりする。例えば、端末装置(UE)Aに分類される端末装置は優先順位の高い結合周波数帯域として、結合帯域26、すなわちCC1~CC4が割り当てられており、通常はこの結合帯域を使用する。また、合わせて優先順位の低い結合帯域として結合帯域5、すなわちCC5が割り当てられており、端末装置Aに分類される端末装置がより広い周波数帯域を使用する必要がある場合には、合わせてこの優先順位の低い周波数帯域も使用する。つまり、CC1~CC5を使用する。 In addition, each terminal device uses only a combination of high-priority combined frequency bands or uses a combination of low-priority combined frequency bands according to an increase or decrease in the number of frequency bands to be used. For example, a terminal device classified as a terminal device (UE) A is assigned a combined band 26, that is, CC1 to CC4, as a combined frequency band having a high priority, and normally uses this combined band. In addition, when the combination band 5, that is, CC 5 is assigned as a combination band having a low priority, and a terminal device classified as the terminal device A needs to use a wider frequency band, this is also combined. The low priority frequency band is also used. That is, CC1 to CC5 are used.
 また、このときの通信処理は、双方を合わせた結合帯域を新たな結合周波数帯域として処理するのではなく、それぞれ2つの結合周波数帯域内において独立した2つの通信処理として行う。このようにすることで、各端末装置や基地局装置は使用周波数帯域を拡張する場合であっても、改めてスケジューリング情報等を公開する必要は無く、これまでの通信処理に追加の形として行えばよいので処理が簡単になる。 Further, the communication processing at this time is not performed as a new combined frequency band, but as two independent communication processes in the two combined frequency bands. In this way, even if each terminal device or base station device expands the frequency band to be used, it is not necessary to disclose scheduling information or the like again, and if it is performed as an additional form in the previous communication processing The process is simple because it is good
 さらに、このとき、ある端末装置の分類に対して割り当てられた、優先順位の高い結合周波数帯域が他の端末装置の分類に対して割り当てられた優先順位の高い結合周波数帯域とは排他的になるよう割り当てることにより、ある端末装置の分類に対しては特に優先的にその周波数帯域を利用でき、例えばこれをLTE端末用に割り当ててLTE端末に対する影響を少なくすることができる。 Furthermore, at this time, a high-priority combined frequency band assigned to a certain terminal device class is exclusive of a high-priority combined frequency band assigned to another terminal device class. By allocating in such a manner, the frequency band can be used particularly preferentially for the classification of a certain terminal device. For example, it can be allocated to the LTE terminal to reduce the influence on the LTE terminal.
 図6は、優先順位を設けた場合の各端末装置の分類と、使用する結合周波数帯域との関係を表す図である。端末装置Lに分類される、LTE端末が使用する周波数帯域CC5は、他の端末装置の分類に属する端末は優先順位の高い周波数として設定されていない。よって、LTE端末が使用する周波数を他の端末装置の分類に属する端末が使用する機会は少なく、本来ひとつの周波数帯域しか要しないLTE端末への影響を最小限にすることができる。 FIG. 6 is a diagram showing the relationship between the classification of each terminal apparatus when the priority is provided and the combined frequency band to be used. In the frequency band CC5 used by the LTE terminal, which is classified as the terminal device L, the terminals belonging to the classifications of other terminal devices are not set as high priority frequencies. Therefore, there are few opportunities for terminals belonging to other terminal device classifications to use frequencies used by LTE terminals, and the influence on LTE terminals that originally require only one frequency band can be minimized.
 尚、これらの例では、2つの表を用いて端末装置の分類と、使用する結合周波数帯域の分類との対応を表したが、これを図9に示すように1つの表にまとめて表しても良い。また、優先順位は高、中、低の3段階としているが、さらに多くの優先順位を設けても良い。 In these examples, the correspondence between the classification of the terminal device and the classification of the combined frequency band to be used is represented using two tables, but this is collectively shown in one table as shown in FIG. Also good. Moreover, although the priority is set to three levels of high, medium, and low, more priorities may be provided.
(PDCCHによるリソース割り当て)
 図7は、図6の端末装置の分類UE Aに属する端末装置のPDCCHによるPDSCHのリソース割り当てを表した図である。図7(a)は、優先順位の高い結合周波数帯域のみを使用している場合であり、1つのPDCCHによりCC1からCC4までにおけるPDSCHのリソース割り当てを合わせて行っている。このときのリソース割り当て(資源管理)は、CC1からCC4までを合わせた帯域幅に基づき資源管理部で行われる。図7(b)は、さらに優先順位の低い結合周波数帯域を合わせて使用している場合を示す図であり、CC1からCC5までを使用しているが、このときのリソース割り当てはCC1からCC4におけるPDSCHのリソース割り当てをPDCCH1で行うとともに、CC5のPDSCHのリソース割り当てはPDCCH2のみで行う。このように、優先順位の低い結合周波数帯域を合わせて使用する場合であっても、PDCCHによるリソース割り当てを新たな帯域幅を元にやり直さないことで、リソース割り当ての簡素化が可能となる。これは、特に結合使用周波数帯域の組合せを変更した場合であっても、予め、各々の優先順位の帯域幅についてリソース割り当てを事前に行っておけば、該当する結合周波数帯域に関してのリソース割り当てをそれぞれ適応するだけで迅速に新たな結合周波数帯域に対応できるという利点がある。
(Resource allocation by PDCCH)
FIG. 7 is a diagram showing PDSCH resource allocation by PDCCH of terminal devices belonging to the classification UE A of the terminal device of FIG. FIG. 7A shows a case where only the combined frequency band having a high priority is used, and PDSCH resource allocation in CC 1 to CC 4 is performed by one PDCCH. Resource allocation (resource management) at this time is performed by the resource management unit based on the combined bandwidth from CC1 to CC4. FIG. 7 (b) is a diagram showing a case where a combined frequency band with a lower priority is used together, and CC1 to CC5 are used. Resource allocation at this time is in CC1 to CC4. PDSCH resource allocation is performed on PDCCH1, and CCSCH PDSCH resource allocation is performed only on PDCCH2. In this way, even when a combined frequency band with a low priority is used together, resource allocation by PDCCH is not performed again based on a new bandwidth, so that resource allocation can be simplified. Even if the combination frequency band is changed in particular, if resource allocation is performed in advance for each priority bandwidth, resource allocation for the corresponding combined frequency band is performed. There is an advantage that a new combined frequency band can be quickly dealt with just by adapting.
(符号化処理)
 図8は、端末装置の分類UE Aに属する端末装置の符号化処理を表した図である。図8(a)は、優先順位の高い結合周波数帯域のみを使用している場合であり、1つ送信データを各結合周波数帯域用のデータに分割し、各結合周波数帯域毎にチャネル符号化処理、符号化率調整処理、データ変調を施し、各結合帯域内へマッピングしている。図8(b)は、さらに優先順位の低い結合周波数帯域を合わせて使用している場合であり、CC1からCC5までを使用しているが、このとき、1つの送信データをまず優先順位の高い結合周波数帯域で送信するデータと、優先順位の低い結合周波数帯域で送信するデータとに分割し、優先順位の高い結合周波数帯域で送信するデータは、図8(b)と同様の一連の処理を行い、CC1からCC4へのマッピングを行う。優先順位の低い結合周波数帯域で送信するデータに対しても、同様に別のチャネル符号化処理、符号化率調整処理、データ変調を施し、CC5へマッピングしている。
(Encoding process)
FIG. 8 is a diagram illustrating an encoding process of a terminal device belonging to the classification UE A of the terminal device. FIG. 8 (a) shows a case where only a high-priority combined frequency band is used. One transmission data is divided into data for each combined frequency band, and channel coding processing is performed for each combined frequency band. , Encoding rate adjustment processing and data modulation are performed, and mapping is performed in each coupling band. FIG. 8B shows a case where a combined frequency band having a lower priority is also used, and CC1 to CC5 are used. At this time, one transmission data is first assigned a higher priority. The data to be transmitted in the combined frequency band having a low priority and the data to be transmitted in the combined frequency band having a high priority are divided into data to be transmitted in the combined frequency band having a low priority. And mapping from CC1 to CC4. Similarly, another channel coding process, a coding rate adjustment process, and data modulation are performed on data transmitted in a low-priority combined frequency band and mapped to CC5.
 このように優先順位の低い結合周波数帯域を合わせて使用する場合であっても優先順位の高い結合周波数帯域で行う処理への影響を与えないため、使用する周波数帯域の変更に伴う処理の増大を防ぐことができる。これは、特に結合使用周波数帯域の分類を変更した場合であっても、予め、各々の優先順位の帯域幅について符号化処理を事前に行っておけば、該当する結合周波数帯域に関して新たに伝送速度等の符号化パラメータの計算処理等を行わなくても良く、符号化処理をそれぞれの帯域幅に合わせて適応するだけで迅速に新たな結合周波数帯域に対応できる利点がある。 In this way, even when using a low-priority combined frequency band, the processing performed in the high-priority combined frequency band is not affected. Can be prevented. Even if the classification of the combined use frequency band is changed, if the encoding process is performed in advance for each priority bandwidth in advance, a new transmission rate for the corresponding combined frequency band is obtained. Thus, there is an advantage that a new combined frequency band can be quickly accommodated only by adapting the encoding process according to each bandwidth.
(信号品質測定)
 端末装置は、どの基地局装置と通信を行うかを決めるための指標とするため参照信号を受信し、その品質を測定する。本発明の別の実施形態においては、この品質測定の頻度を端末装置の分類に応じた周波数帯域の組合せの優先順位に基づくものとしている。図10は、本実施形態における端末装置が品質測定を行う様子を示した図である。矢印の実線、一点鎖線、破線は、順に頻度高、中、低であることを表している。
(Signal quality measurement)
The terminal device receives a reference signal and measures its quality as an index for determining which base station device to communicate with. In another embodiment of the present invention, the frequency of this quality measurement is based on the priority of the combination of frequency bands according to the classification of the terminal device. FIG. 10 is a diagram illustrating a state in which the terminal device according to the present embodiment performs quality measurement. The solid line, the alternate long and short dash line, and the broken line of the arrow indicate that the frequency is high, medium, and low in order.
 端末装置201は、図9において、UE Cの分類に属するものとする。すなわちCC1、CC3が優先順位の高い結合周波数帯域、CC2、CC4が優先順位の中位の結合周波数帯域、CC5が優先順位の低位の結合周波数帯域である。ここで、端末装置201が優先順位の高い結合周波数帯域のみで基地局装置101とデータ伝送を行っているものとする。より広い周波数帯域を使用するには、予め、データ伝送を行っていない周波数帯域においても品質測定を行う必要があるが、現在データ伝送を行っている周波数帯域の品質測定に比べ、優先順位の中位の結合周波数帯域の測定を行う必要性は低い。優先順位の低位の結合周波数帯域においてはさらにその必要性は低くなる。ハンドオーバのために他の基地局装置102について測定を行う場合も同様である。本実施の形態においては、優先順位に応じて品質測定を行うので、品質測定にかかる負荷を低減することができる。 The terminal device 201 belongs to the UE C classification in FIG. That is, CC1 and CC3 are high-priority combined frequency bands, CC2 and CC4 are medium-priority combined frequency bands, and CC5 is a low-priority combined frequency band. Here, it is assumed that the terminal apparatus 201 performs data transmission with the base station apparatus 101 only in the high-priority combined frequency band. In order to use a wider frequency band, it is necessary to measure quality in advance in the frequency band where data transmission is not performed. There is little need to measure the combined frequency band. In the low-priority combined frequency band, the necessity is further reduced. The same applies when measurement is performed for another base station apparatus 102 for handover. In the present embodiment, quality measurement is performed in accordance with the priority order, so that the load on quality measurement can be reduced.
(周波数帯域のシステム情報)
 端末装置は品質測定のために参照信号を受信し測定する以外にも、各要素周波数帯域の周波数帯域幅や送信電力、アンテナ数等のシステム情報の受信を行う。システム情報はPBCHやSCH等を用いて基地局装置より送信される。本発明における別の実施形態においては、このシステム情報の受信の頻度を前記端末装置の分類に応じた周波数帯域の組合せの優先順位に基づくこととする。図11は、本実施形態における端末装置がシステム情報を受信する様子を示した図である。矢印の実線、一点鎖線、破線は、順に頻度高、中、低であることを表している。端末装置201は図9においてUE Cの分類に属するものとする。すなわちCC1、CC3が優先順位の高い結合周波数帯域、CC2、CC4が優先順位の中位の結合周波数帯域、CC5が優先順位の帝位の結合周波数帯域である。ここで、端末装置201が優先順位の高い結合周波数帯域のみで基地局装置101とデータ伝送を行っているものとする。基地局装置101よりシステム情報は報知チャネルや同期チャネル等で定期的に送信されているが、現在データ伝送を行っている周波数帯域のシステム情報に比べ、優先順位の中位や低位の結合周波数帯域の測定を行う必要性は低い。本発明においては優先順位に応じてシステム情報の受信を行うのでシステム情報の受信処理にかかる負荷を低減することができる。
(Frequency band system information)
In addition to receiving and measuring a reference signal for quality measurement, the terminal device receives system information such as frequency bandwidth of each element frequency band, transmission power, and the number of antennas. System information is transmitted from the base station apparatus using PBCH, SCH, or the like. In another embodiment of the present invention, the frequency of reception of this system information is based on the priority of the combination of frequency bands corresponding to the classification of the terminal device. FIG. 11 is a diagram illustrating a state in which the terminal device according to the present embodiment receives system information. The solid line, the alternate long and short dash line, and the broken line of the arrow indicate that the frequency is high, medium, and low in order. The terminal device 201 belongs to the UE C classification in FIG. That is, CC1 and CC3 are high-priority combined frequency bands, CC2 and CC4 are medium-priority combined frequency bands, and CC5 is a high-priority combined frequency band. Here, it is assumed that the terminal apparatus 201 performs data transmission with the base station apparatus 101 only in the high-priority combined frequency band. The system information is periodically transmitted from the base station apparatus 101 through a broadcast channel, a synchronization channel, or the like, but the medium frequency or lower combined frequency band of priority compared to the system information of the frequency band currently performing data transmission. There is little need to make measurements. In the present invention, the system information is received according to the priority order, so the load on the system information receiving process can be reduced.
(通知方法)
 図12は、本発明の実施形態における端末装置が使用する結合周波数帯域の基地局装置からの通知方法の一例について示したシーケンス図である。基地局装置101はその基地局装置が使用している端末装置の分類と、それぞれの端末装置の分類に対応する結合周波数帯域との対応、およびさらにそれらに優先順位があればその優先順位も合わせてシステム情報として送信し報知している(L1)。基地局101と通信を行う端末装置201は、まず自端末装置がどの要素周波数帯域が送受信可能であるか、LTE-Advanced端末であるかどうか等の能力を表す端末能力を基地局装置101へ送信する(L2)。基地局装置101は送られてきた端末装置の能力や、各端末装置の分布、トラフィック等を考慮し(S1)、端末装置が使用する分類を送信する。使用結合周波数帯域に優先順位が設けられている場合は、次に送信を行う結合周波数帯域に合わせた優先順位も合わせて送信する(L3)。端末装置は、自端末の端末割り当て情報を受信し、割当てられた分類と、先に(L1)で報知された結合周波数帯域との対応とから、使用する周波数帯域に関する情報を導出し、その帯域幅に用いて通信に必要なパラメータを計算する(S2)。その後にデータの伝送が行われる(L4)。
(Notification method)
FIG. 12 is a sequence diagram illustrating an example of a notification method from the base station apparatus in the combined frequency band used by the terminal apparatus according to the embodiment of the present invention. The base station apparatus 101 matches the classification of the terminal apparatus used by the base station apparatus with the combined frequency band corresponding to the classification of each terminal apparatus, and if there is a priority order, also matches the priority order. Is transmitted and notified as system information (L1). The terminal apparatus 201 that communicates with the base station 101 first transmits to the base station apparatus 101 a terminal capability that represents capabilities such as which element frequency band the terminal device can transmit and receive, and whether or not it is an LTE-Advanced terminal. (L2). The base station apparatus 101 transmits the classification used by the terminal apparatus in consideration of the capability of the terminal apparatus, the distribution of each terminal apparatus, traffic, etc. (S1). When the priority order is provided in the used combined frequency band, the priority order corresponding to the combined frequency band to be transmitted next is also transmitted (L3). The terminal device receives the terminal allocation information of the terminal itself, derives information on the frequency band to be used from the assigned classification and the correspondence between the combined frequency band previously broadcast in (L1), and the band A parameter required for communication is calculated using the width (S2). Thereafter, data transmission is performed (L4).
 次に、基地局装置と端末装置との間で使用する周波数帯域を変更する場合には、基地局装置はPDCCHにおいて、優先順位を端末装置に通知する(L5)。データの送受信が必要な際には基地局装置101はPDCCHにて、合わせて優先順位を通知する(L5)。端末装置では、PDCCHにて優先順位の変更を検出すると使用する周波数帯域に関する情報を更新し、更新された周波数帯域に合わせたパラメータを再計算する(S5)。その後、基地局装置よりデータの送信(L6)が行われ、端末装置はデータ受信を行う(S6)。 Next, when changing the frequency band to be used between the base station apparatus and the terminal apparatus, the base station apparatus notifies the terminal apparatus of the priority on the PDCCH (L5). When transmission / reception of data is necessary, the base station apparatus 101 notifies the priority order together on the PDCCH (L5). In the terminal device, when a change in priority order is detected on the PDCCH, information on the frequency band to be used is updated, and parameters according to the updated frequency band are recalculated (S5). Thereafter, data transmission (L6) is performed from the base station apparatus, and the terminal apparatus receives data (S6).
 尚、このようにPDCCHを用いて優先順位の通知を行うことで、使用結合周波数帯域の変更およびそれに伴うパラメータの更新を迅速に行うことが可能である。尚、PDCCHを使用せず、上位層での通信により優先順位を送信することで、変更にかかわる負荷を低減することも可能である。 It should be noted that the notification of the priority order using the PDCCH as described above makes it possible to quickly change the used combined frequency band and update the parameters associated therewith. Note that it is also possible to reduce the load related to the change by transmitting the priority order by communication in the higher layer without using the PDCCH.
 <基地局装置>
 図13は、本発明の実施の形態において使用される基地局装置の送信装置および受信装置の構成の一例を表す機能ブロック図である。
<Base station equipment>
FIG. 13 is a functional block diagram showing an example of the configuration of the transmission device and the reception device of the base station device used in the embodiment of the present invention.
 基地局装置101には、送信されるダウンリンク送信データが入力される。スケジューリング情報、基地局依存の情報、端末装置固有の情報等も入力される。これら情報は制御情報として制御信号処理部8へ入力され、処理され端末装置に送信される一方、一部の情報(報知情報、通知情報)はダウンリンクデータの送信形式でデータ信号処理部3へ入力され、処理されて送信される。データ信号処理部3へ入力されたこれらの信号は、内部のターボ符号部4へ入力される。 The base station apparatus 101 receives downlink transmission data to be transmitted. Scheduling information, base station dependent information, terminal device specific information, and the like are also input. These pieces of information are input to the control signal processing unit 8 as control information, processed and transmitted to the terminal device, while some information (broadcast information and notification information) is transmitted to the data signal processing unit 3 in the downlink data transmission format. Input, processed and sent. These signals input to the data signal processing unit 3 are input to the internal turbo coding unit 4.
 ターボ符号部4は、制御部(CPU)15からの符号化率の指示に従い、入力されたデータの誤り耐性を高めるためのターボ符号による誤り訂正符号化を行う。次段のデータ変調部5は、QPSK(Quadrature Phase Shift Keying;4相位相偏移変調)、16QAM(16Quadrature Amplitude Modulation;16値直交振幅変調)、64QAM(64Quadrature Amplitude Modulation;64値直交振幅変調)等のようないくつかの変調方式のうち、制御部15から指示された変調方式で、ターボ符号部4により誤り訂正符号化されたデータを変調する。プリコーディング部6は、データ変調部5により変調された信号を、制御部15からの指示に基づき、位相回転、重み付け、冗長化等を行うことにより、各端末装置宛に送信する送信アンテナ毎の信号を生成する。 The turbo coding unit 4 performs error correction coding using a turbo code to increase error tolerance of input data in accordance with a coding rate instruction from the control unit (CPU) 15. The next-stage data modulation unit 5 includes QPSK (Quadrature Phase Shift Keying; four-phase phase shift keying), 16QAM (16 Quadrature Amplitude Modulation), 64QAM (64 Quadrature Amplitude Modulation value, etc.). Among these modulation schemes, the data that has been subjected to error correction coding by the turbo coding unit 4 is modulated by a modulation scheme instructed by the control unit 15. The precoding unit 6 performs phase rotation, weighting, redundancy, and the like on the signal modulated by the data modulation unit 5 based on an instruction from the control unit 15, thereby transmitting each signal to each terminal device. Generate a signal.
 重み付け部7は、プリコーディング部6から出力された信号に対し、制御部15からの指示に基づき重み付けを行い、多重・マッピング部16へ出力する。重み付け部7は、プリコーディング部6の重み付け機能の一部として含めても良いが、図13では、分けた構成を例にして説明する。 The weighting unit 7 weights the signal output from the precoding unit 6 based on an instruction from the control unit 15 and outputs the weighted signal to the multiplexing / mapping unit 16. The weighting unit 7 may be included as a part of the weighting function of the precoding unit 6, but in FIG.
 複数のデータ系列を処理するために、データ信号処理部3は複数設けられている。それぞれの処理内容は同じである。制御情報は、制御信号処理部8の畳込み符号部9に入力される。畳込み符号部9は、制御部15からの符号化率の指示に従い、入力された情報の誤り耐性を高めるための畳込み符号による誤り訂正符号化を行う。 In order to process a plurality of data series, a plurality of data signal processing units 3 are provided. Each processing content is the same. The control information is input to the convolutional code unit 9 of the control signal processing unit 8. The convolutional code unit 9 performs error correction coding using a convolutional code to increase the error tolerance of the input information in accordance with the coding rate instruction from the control unit 15.
 QPSK変調部10は、QPSK変調方式で、畳込み符号部9により誤り訂正符号化された制御情報を変調する。プリコーディング部11は、QPSK変調部10により変調された信号を、制御部15からの指示に基づき、位相回転、重み付け、冗長化等を行うことにより、各端末装置宛に送信するアンテナ毎の制御信号を生成する。重み付け部12はプリコーディング部からの信号に対し、制御部15で定められた電力に基づき重み付けを行い、多重・マッピング部16へ出力する。この重み付け部7を、プリコーディング部6の重み付け機能の一部として含めても良い点は、データ信号処理部3の場合と同様である。 The QPSK modulation unit 10 modulates the control information that has been subjected to error correction coding by the convolutional coding unit 9 using the QPSK modulation method. The precoding unit 11 performs phase rotation, weighting, redundancy, and the like on the signal modulated by the QPSK modulation unit 10 based on an instruction from the control unit 15, thereby controlling each antenna to be transmitted to each terminal device. Generate a signal. The weighting unit 12 weights the signal from the precoding unit based on the power determined by the control unit 15 and outputs the signal to the multiplexing / mapping unit 16. The weighting unit 7 may be included as part of the weighting function of the precoding unit 6 as in the case of the data signal processing unit 3.
 参照信号発生部13は、基地局装置1の各送受信アンテナ22が送信する参照信号を、制御部15が指定した識別符号に基づきQPSK変調を行ない生成する。 The reference signal generation unit 13 generates a reference signal transmitted from each transmission / reception antenna 22 of the base station apparatus 1 by performing QPSK modulation based on the identification code specified by the control unit 15.
 多重・マッピング部16では、それぞれのデータ信号処理部3、制御信号処理部8および参照信号発生部13から出力された各送信ダウンリンクデータ、制御情報および参照信号を、制御部15から指示されたマッピング方式に従い、リソースエレメントへの配置を決定し、アンテナ毎の信号を生成して、各アンテナのOFDM送信部24~27へ送る。 In the multiplexing / mapping unit 16, each control unit 15 is instructed to transmit each downlink data, control information, and reference signal output from each data signal processing unit 3, control signal processing unit 8, and reference signal generation unit 13. According to the mapping method, the arrangement to the resource element is determined, and a signal for each antenna is generated and sent to the OFDM transmitters 24-27 of each antenna.
 各OFDM送信部24~27は、入力側から順番に、それぞれ、IFFT(逆フーリエ変換)部17、CP挿入部18、D/A部20、送信RF部21、送受信アンテナ22、を具備する。 Each of the OFDM transmitters 24 to 27 includes an IFFT (Inverse Fourier Transform) unit 17, a CP insertion unit 18, a D / A unit 20, a transmission RF unit 21, and a transmission / reception antenna 22 in order from the input side.
 IFFT部17は、多重・マッピング部16から入力された信号を高速逆フーリエ変換し、OFDM方式の変調を行う。CP挿入部18は、OFDM変調済みの信号にサイクリックプレフィクス(CP)を付加することにより、OFDM方式におけるシンボルを生成する。サイクリックプレフィクスは、伝送するシンボルの先頭又は末尾の一部を複製する公知の方法によって得ることができる。D/A部20は、CP挿入部18から入力されたベースバンドのディジタル信号をアナログ信号にD/A変換する。送信RF部21は、D/A部20から入力されたアナログ信号から、中間周波数の同相成分及び直交成分を生成し、中間周波数帯域に対する余分な周波数成分を除去し、中間周波数の信号を高周波数の信号に変換(アップコンバート)し、余分な周波数成分を除去し、電力増幅し、送受信アンテナ22に出力する。尚、実際のOFDM送信部の数及び構成は基地局装置により異なる。 The IFFT unit 17 performs fast inverse Fourier transform on the signal input from the multiplexing / mapping unit 16 to perform OFDM modulation. The CP insertion unit 18 generates a symbol in the OFDM scheme by adding a cyclic prefix (CP) to the OFDM-modulated signal. The cyclic prefix can be obtained by a known method for duplicating a part of the beginning or end of a symbol to be transmitted. The D / A unit 20 D / A converts the baseband digital signal input from the CP insertion unit 18 into an analog signal. The transmission RF unit 21 generates an in-phase component and a quadrature component of the intermediate frequency from the analog signal input from the D / A unit 20, removes an extra frequency component with respect to the intermediate frequency band, and converts the intermediate frequency signal to a high frequency. The signal is converted (up-converted) into the above signal, excess frequency components are removed, power amplification is performed, and the signal is output to the transmission / reception antenna 22. Note that the actual number and configuration of OFDM transmitters differ depending on the base station apparatus.
 一方、複数のアンテナにより受信された端末装置からの上り信号は、受信部23へ入力され、合成され、復調される。上り信号を用いて伝送された、端末装置からの信号品質情報や端末能力情報は制御部15へ入力される。制御部15は端末装置の能力や、信号品質の情報、およびトラフィック情報等を資源管理部14へ通知する。資源管理部14は通知された情報を元に、もしくはシステム等で定められた情報に基づいて端末装置の分類の決定や使用する周波数帯域情報を決定し、関連する制御情報を生成する。生成された制御情報は、報知情報もしくは通知情報として端末装置へ送信される。 On the other hand, the uplink signals from the terminal apparatus received by the plurality of antennas are input to the receiving unit 23, synthesized, and demodulated. Signal quality information and terminal capability information transmitted from the terminal device using the uplink signal are input to the control unit 15. The control unit 15 notifies the resource management unit 14 of the terminal device capability, signal quality information, traffic information, and the like. The resource management unit 14 determines the classification of the terminal device and the frequency band information to be used based on the notified information or based on information determined by the system or the like, and generates related control information. The generated control information is transmitted to the terminal device as broadcast information or notification information.
 <端末装置>
 図14は、本発明の実施形態において使用される端末装置の構成の一例を表す機能ブロック図である。図14に示すように、本実施の形態による端末装置31は、アンテナ32と、受信RF部33と、A/D部34と、CP除去部35と、FFT部36と、多重分離部37と、伝搬路推定部38と、伝搬路補償部39と、多重モード復元部40と、データ復調部41と、ターボ復号部42と、伝搬路補償部43と、多重モード復元部44と、QPSK復調部45と、畳込み復号部46と、制御部47と、周波数帯域決定部48と、信号品質測定部49と、送信多重部50と、送信部51と、を具備する。
<Terminal device>
FIG. 14 is a functional block diagram illustrating an example of a configuration of a terminal device used in the embodiment of the present invention. As shown in FIG. 14, the terminal device 31 according to the present embodiment includes an antenna 32, a reception RF unit 33, an A / D unit 34, a CP removal unit 35, an FFT unit 36, and a demultiplexing unit 37. A channel estimation unit 38, a channel compensation unit 39, a multimode restoration unit 40, a data demodulation unit 41, a turbo decoding unit 42, a channel compensation unit 43, a multimode restoration unit 44, and a QPSK demodulation. Unit 45, convolution decoding unit 46, control unit 47, frequency band determination unit 48, signal quality measurement unit 49, transmission multiplexing unit 50, and transmission unit 51.
 受信RF部33は、受信アンテナ32を介して受信した信号を増幅し、中間周波数に変換し(ダウンコンバート)、不要な周波数成分を除去し、信号レベルが適切に維持されるように増幅レベルを制御し、受信した信号の同相成分及び直交成分に基づいて、直交復調する。A/D部34は、受信RF部33により直交復調されたアナログ信号をディジタル信号に変換する。CP除去部35は、A/D部34の出力したディジタル信号からサイクリックプレフィクスに相当する部分を除去する。FFT部36は、CP除去部35から入力された信号を高速フーリエ変換し、OFDM方式の復調を行う。伝搬路補償部39からターボ復号部42まではデータ信号の復調処理に、伝搬路補償部43から畳込み復号部46までは制御情報信号の復調処理に用いられる。 The reception RF unit 33 amplifies the signal received via the reception antenna 32, converts it to an intermediate frequency (down-conversion), removes unnecessary frequency components, and sets the amplification level so that the signal level is properly maintained. Control and perform quadrature demodulation based on the in-phase and quadrature components of the received signal. The A / D unit 34 converts the analog signal orthogonally demodulated by the reception RF unit 33 into a digital signal. The CP removing unit 35 removes a portion corresponding to a cyclic prefix from the digital signal output from the A / D unit 34. The FFT unit 36 performs fast Fourier transform on the signal input from the CP removal unit 35 and performs demodulation of the OFDM method. The propagation path compensation unit 39 to the turbo decoding unit 42 are used for data signal demodulation processing, and the propagation path compensation unit 43 to the convolutional decoding unit 46 are used for control information signal demodulation processing.
 多重分離部37は、制御部47からの指示に基づき、FFT部36がフーリエ変換した信号、すなわちOFDM方式により復調された受信信号から参照信号を、配置されたリソースエレメントから抽出して出力する。具体的には、多重分離部37は固定の配置である参照信号を抽出して、伝搬路推定部38、信号品質測定部49に出力する。また、多重分離部37はダウンリンクデータ信号と制御情報信号との分離も行なう。信号品質測定部49は参照信号から各周波数における受信信号の品質を測定し、制御部47へ通知する。また、上りリンクで送信する信号品質情報の生成を行う。 Based on an instruction from the control unit 47, the demultiplexing unit 37 extracts a reference signal from the signal that is FFT-transformed by the FFT unit 36, that is, a received signal demodulated by the OFDM method, from the arranged resource elements and outputs the extracted reference signal. Specifically, the demultiplexing unit 37 extracts a reference signal having a fixed arrangement and outputs the reference signal to the propagation path estimation unit 38 and the signal quality measurement unit 49. The demultiplexing unit 37 also separates the downlink data signal and the control information signal. The signal quality measurement unit 49 measures the quality of the received signal at each frequency from the reference signal and notifies the control unit 47 of the quality. Also, signal quality information to be transmitted on the uplink is generated.
 伝搬路推定部38は、多重分離部37が分離、抽出した既知の参照信号の受信結果に基づいて基地局装置1の送受信アンテナポート0~送受信アンテナポート3の各々に対する伝搬路変動を推定し、伝搬路変動補償値を出力する。伝搬路補償部39、43は、伝搬路推定部38からの伝搬路変動補償値に基づいて、入力された信号の伝搬路変動の補償を行う。多重モード復元部40、44は、伝搬路補償部39、43がそれぞれ伝搬路変動の補償を行った信号について、送信装置が使用する多重モードに基づき、図示していない信号電力決定部が決定したデータ電力を考慮して、送信装置が生成した送信信号の各アンテナの周波数セットを再生し、合成して冗長化前の信号を生成する。 The propagation path estimation unit 38 estimates propagation path fluctuations for each of the transmission / reception antenna port 0 to the transmission / reception antenna port 3 of the base station apparatus 1 based on the reception result of the known reference signal separated and extracted by the demultiplexing unit 37, A propagation path fluctuation compensation value is output. The propagation path compensators 39 and 43 compensate the propagation path fluctuation of the input signal based on the propagation path fluctuation compensation value from the propagation path estimation section 38. Multiplex mode restoration units 40 and 44 determine the signal power determination unit (not shown) based on the multiplexing mode used by the transmission apparatus for the signals compensated for propagation path fluctuations by propagation path compensation units 39 and 43, respectively. In consideration of data power, the frequency set of each antenna of the transmission signal generated by the transmission apparatus is reproduced and combined to generate a signal before redundancy.
 データ復調部41は、多重モード復元部40により生成されたデータ信号の復調を行う。この復調は、基地局装置1のデータ変調部5で用いた変調方式に対応したものが行われ、変調方式に関する情報は制御部47から指示される。ターボ復号部42は、データ復調部41が復調したデータ信号を復号する。復号されたデータのうち、通知情報や報知情報が抽出され、制御部47へ入力される。また、使用周波数帯域に関する情報は、周波数帯域決定部48に入力される。QPSK復調部45は、多重モード復元部44により生成された制御情報信号のQPSK復調を行う。畳込み復号部46は、多重モード復元部44が復調した制御情報信号を復号する。制御部47では、使用される参照信号の識別符号や配置位置の情報や、重み付け情報、スケジューリング情報、基地局依存の情報、端末装置固有の情報、受信信号の品質、周波数帯域決定部で決定した使用結合周波数帯域等の解析も行い、その解析情報に従って通信に使用するパラメータの設定や受信装置の各部の制御を行なう。送信多重部50は上りリンクで送信する送信データ、上り制御情報、信号品質情報等の多重を行う。送信部51では送信多重部50で多重された信号の変調等を行い、アンテナ32より送信する。 The data demodulation unit 41 demodulates the data signal generated by the multiple mode restoration unit 40. This demodulation is performed corresponding to the modulation method used in the data modulation unit 5 of the base station apparatus 1, and information on the modulation method is instructed from the control unit 47. The turbo decoder 42 decodes the data signal demodulated by the data demodulator 41. Notification information and broadcast information are extracted from the decoded data and input to the control unit 47. Information regarding the used frequency band is input to the frequency band determining unit 48. The QPSK demodulator 45 performs QPSK demodulation of the control information signal generated by the multimode restoration unit 44. The convolutional decoding unit 46 decodes the control information signal demodulated by the multimode restoration unit 44. In the control unit 47, the identification code of the reference signal to be used, information on the arrangement position, weighting information, scheduling information, base station-dependent information, terminal device specific information, received signal quality, frequency band determination unit The used coupling frequency band and the like are also analyzed, and parameters used for communication are set and control of each part of the receiving apparatus is performed according to the analysis information. The transmission multiplexing unit 50 multiplexes transmission data, uplink control information, signal quality information, and the like transmitted on the uplink. In the transmission unit 51, the signal multiplexed by the transmission multiplexing unit 50 is modulated and transmitted from the antenna 32.
 以上のように、本実施の形態によれば、複数の周波数帯域を用いて通信を行う基地局装置と、端末装置、それらを備えた無線通信システムにおいて、各端末装置の使用する要素周波数帯域の違いに起因するスケジューリング、リソースの割り当て、配置等の複雑化による制約を低減することができるという利点がある。 As described above, according to the present embodiment, in a base station apparatus that performs communication using a plurality of frequency bands, a terminal apparatus, and a wireless communication system including them, element frequency bands used by each terminal apparatus There is an advantage that constraints due to complications such as scheduling, resource allocation, and arrangement due to differences can be reduced.
 上記の実施の形態において、添付図面に図示されている構成等については、これらに限定されるものではなく、本発明の効果を発揮する範囲内で適宜変更することが可能である。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施することが可能である。例えば参照信号の識別符号の生成方法や、参照信号の配置位置については主送信セルにおける生成方法や、配置位置は主送信セルが協調受信を行なわない場合と同様の生成方法、配置位置として説明しているが、これを主送信セルが協調受信を行なわない場合の生成方法、配置位置と異なるものとしても構わない。また、本発明は非特許文献1に定義される、サイクリックプレフィクス長が通常長の場合に適用する例を示しているが、他の状況、例えばサイクリックプレフィクス長が延長長の場合に適用しても良い。 In the above-described embodiment, the configuration and the like illustrated in the accompanying drawings are not limited to these, and can be changed as appropriate within the scope of the effects of the present invention. In addition, various modifications can be made without departing from the scope of the object of the present invention. For example, the reference signal identification code generation method, the reference signal arrangement position will be described as a generation method in the main transmission cell, and the arrangement position will be described as a generation method and arrangement position similar to the case where the main transmission cell does not perform cooperative reception. However, this may be different from the generation method and arrangement position when the main transmission cell does not perform cooperative reception. Moreover, although this invention shows the example applied when the cyclic prefix length is a normal length as defined in Non-Patent Document 1, other situations, for example, when the cyclic prefix length is an extended length are shown. It may be applied.
 また、本実施の形態で説明した機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより各部の処理を行ってもよい。尚、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。 In addition, a program for realizing the functions described in the present embodiment is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read into a computer system and executed to execute processing of each unit. May be performed. The “computer system” here includes an OS and hardware such as peripheral devices.
 また、「コンピュータシステム」は、WWWシステムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。 In addition, the “computer system” includes a homepage providing environment (or display environment) if a WWW system is used.
 また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含むものとする。また前記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組合せで実現できるものであっても良い。 Further, the “computer-readable recording medium” means a storage device such as a flexible disk, a magneto-optical disk, a portable medium such as a ROM and a CD-ROM, and a hard disk incorporated in a computer system. Furthermore, the “computer-readable recording medium” dynamically holds a program for a short time like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. In this case, a volatile memory in a computer system serving as a server or a client in that case is also used to hold a program for a certain period of time. The program may be a program for realizing a part of the above-described functions, or may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.

Claims (15)

  1.  複数の周波数帯域を用いて通信を行う無線通信システムにおいて、端末装置が使用する周波数帯域は前記複数の周波数帯域のうちの1つもしくは複数からなる組合せであり、前記端末装置は複数のグループに分類され、前記端末装置の分類に対して、前記使用する周波数帯域の組合せを定めることを特徴とする無線通信システム。 In a wireless communication system that performs communication using a plurality of frequency bands, a frequency band used by a terminal device is a combination of one or more of the plurality of frequency bands, and the terminal device is classified into a plurality of groups. A wireless communication system, wherein a combination of the frequency bands to be used is determined for the classification of the terminal device.
  2.  前記端末装置の分類中の一つの分類は、その端末装置が使用できる周波数帯域の数が一つであることを特徴とする請求項1に記載の無線通信システム。 The wireless communication system according to claim 1, wherein one of the classifications of the terminal devices has one frequency band that can be used by the terminal device.
  3.  前記端末装置の分類に対応する前記周波数帯域の組合せに対して優先順位が付与されており、前記端末装置がその端末装置の分類に応じた周波数帯域の組合せにおいて、優先順位の高い周波数帯域の組合せよりも多くの周波数帯域を使用する場合には、前記優先順位の高い周波数帯域の組合せに加えて、前記優先順位の低い周波数帯域の組合せとも使用し、
     前記優先順位の高い周波数帯域の組合せ内における第1の通信処理と、前記優先順位の低い組合せ内における第2の通信処理と、を独立して行うことを特徴とする請求項1又は2に記載の無線通信システム。
    A priority is given to the combination of the frequency bands corresponding to the classification of the terminal device, and the combination of frequency bands having a high priority in the combination of frequency bands according to the classification of the terminal device by the terminal device. When using more frequency bands, in addition to the combination of the high-priority frequency bands, also use the combination of the low-priority frequency bands,
    3. The first communication process in the combination of the frequency bands with the higher priority order and the second communication process in the combination with the lower priority order are performed independently. 3. Wireless communication system.
  4.  前記端末装置がその端末装置の分類に応じた周波数帯域の組合せにおいて、優先順位の高い周波数帯域の組合せよりも多くの周波数帯域を使用する場合において使用されるある第1の端末装置の分類に対応する前記優先順位の高い周波数帯域の組合せと、
     前記第1の端末装置の分類とは異なる第2の端末装置の分類に対応する優先順位の高い周波数帯域の組合せと、を排他的な周波数帯域となるように割り当てることを特徴とする請求項3に記載の無線通信システム。
    Corresponds to the classification of a first terminal device used when the terminal device uses more frequency bands than the combination of frequency bands with higher priority in the combination of frequency bands according to the classification of the terminal device. A combination of high priority frequency bands to
    4. The frequency band combination having a higher priority corresponding to a second terminal device classification different from the first terminal device classification is assigned to be an exclusive frequency band. The wireless communication system according to 1.
  5.  基地局装置に使用する無線資源の管理を行う資源管理部を有する無線通信システムであって、
     前記資源管理部は、前記端末装置が使用する当該端末装置の分類に対応する周波数帯域の組合せにおいて、優先順位の低い周波数帯域の組合せを使用する場合に、分類に応じた周波数帯域の組合せ内における優先順位の高い周波数帯域の組合せ内における第1の資源管理処理と、優先順位の低い周波数帯域の組合せ内における第2の資源管理処理と、を独立して行うことを特徴とする請求項3又は4に記載の無線通信システム。
    A radio communication system having a resource management unit for managing radio resources used in a base station device,
    The resource management unit, when using a combination of frequency bands with a low priority in a combination of frequency bands corresponding to the classification of the terminal device used by the terminal device, within a combination of frequency bands corresponding to the classification The first resource management process in a combination of frequency bands with a high priority and the second resource management process in a combination of frequency bands with a low priority are performed independently. 4. The wireless communication system according to 4.
  6.  基地局装置に送信データの分割処理を行うデータ分割部と、前記分割したデータが使用する要素周波数帯域割当処理を行う要素周波数帯域割当部を有する無線通信システムであって、
     前記データ分割部は、前記端末装置が使用する当該その端末装置の分類に対応する周波数帯域の組合せにおいて、優先順位の低い周波数帯域の組合せを使用する場合には、送信データを分類に応じた周波数帯域の組合せ内における優先順位の高い周波数帯域の組合せ内で使用する送信データと、優先順位の低い周波数帯域の組合せ内で使用する送信データとに分割する初期分割処理部を有し、前記初期分割処理部にて分割された送信データについて、優先順位の高い周波数帯域の組合せ内で使用する送信データにおける第1の分割処理および第1の要素周波数帯域割当処理と、同優先順位の低い周波数帯域の組合せ内における第2の分割処理とおよび第2の要素周波数帯域割当処理と、を独立して行うことを特徴とする請求項3に記載の無線通信システム。
    A wireless communication system having a data division unit that performs transmission data division processing on a base station device, and an element frequency band assignment unit that performs element frequency band assignment processing used by the divided data,
    The data dividing unit, when using a combination of frequency bands with a low priority in a combination of frequency bands corresponding to the classification of the terminal apparatus used by the terminal apparatus, sets the frequency of transmission data according to the classification. An initial division processing unit that divides transmission data used in a combination of frequency bands with a high priority in a combination of bands and transmission data used in a combination of frequency bands with a low priority; For the transmission data divided by the processing unit, the first division processing and the first element frequency band allocation processing in the transmission data used in the combination of the frequency bands with high priority, and the frequency band with low priority 4. The radio according to claim 3, wherein the second division processing in the combination and the second element frequency band allocation processing are performed independently. 5. Shin system.
  7.  前記端末装置が使用する当該端末装置の分類に対応する周波数帯域の組合せを選択するための信号品質測定の頻度を、前記端末装置の分類に対応する周波数帯域の組合せの優先順位に基づいて行うことを特徴とする請求項3又は4に記載の無線通信システム。 The frequency of signal quality measurement for selecting a combination of frequency bands corresponding to the classification of the terminal apparatus used by the terminal apparatus is performed based on the priority of the combination of frequency bands corresponding to the classification of the terminal apparatus. The wireless communication system according to claim 3 or 4, characterized by the above.
  8.  前記信号品質測定を、前記端末装置の分類に対応する周波数帯域の組合せにおいて、優先順位の高い組合せにおいてのみ行うことを特徴とする請求項7に記載の無線通信システム。 The radio communication system according to claim 7, wherein the signal quality measurement is performed only in a combination having a high priority in a combination of frequency bands corresponding to the classification of the terminal device.
  9.  前記端末装置が使用するそれぞれの周波数帯域に関する情報を端末装置が受信する頻度は、前記端末装置の分類に応じた周波数帯域の組合せの優先順位に基づくことを特徴とする請求項3又は4に記載の無線通信システム。 The frequency with which the terminal device receives information on each frequency band used by the terminal device is based on a priority of a combination of frequency bands according to the classification of the terminal device. Wireless communication system.
  10.  前記端末装置は、当該端末装置の分類に応じた周波数帯域の組合せを受信し、使用する結合周波数帯域との組合せの通知を基地局装置から端末装置へ下りリンク制御チャネルで通知することにより、使用する周波数帯域の組合せを変更することを特徴とする請求項1から4までのいずれか1項に記載の無線通信システム。 The terminal device receives a combination of frequency bands corresponding to the classification of the terminal device, and notifies the combination of the used frequency band to be used from the base station device to the terminal device by using a downlink control channel. The wireless communication system according to any one of claims 1 to 4, wherein a combination of frequency bands to be changed is changed.
  11.  複数の周波数帯域を用いて通信を行う無線通信システムにおいて用いられる基地局装置であって、端末装置から送られてきた端末装置の特性を考慮して端末装置が使用する複数の周波数帯域の組合せの分類を端末装置に送信して通信を行うことを特徴とする基地局装置。 A base station apparatus used in a wireless communication system that performs communication using a plurality of frequency bands, and a combination of a plurality of frequency bands used by the terminal apparatus in consideration of the characteristics of the terminal apparatus transmitted from the terminal apparatus A base station apparatus that performs communication by transmitting a classification to a terminal apparatus.
  12.  複数の周波数帯域を用いて通信を行う無線通信システムにおいて用いられる基地局装置における制御方法であって、
     前記無線通信システムが使用する結合周波数帯域の情報を送信し、これに応じて端末装置から得られた特性情報を受信し、端末装置が使用する複数の周波数帯域の組合せを求めるステップと、
     求めた組合せを端末装置に送信するステップと、を有することを特徴とする制御方法。
    A control method in a base station apparatus used in a wireless communication system that performs communication using a plurality of frequency bands,
    Transmitting information of a combined frequency band used by the wireless communication system, receiving characteristic information obtained from the terminal device according to the information, and obtaining a combination of a plurality of frequency bands used by the terminal device;
    And a step of transmitting the obtained combination to the terminal device.
  13.  請求項12に記載の方法をコンピュータに実行させるためのプログラム。 A program for causing a computer to execute the method according to claim 12.
  14.  複数の周波数帯域を用いて通信を行う無線通信システムにおいて用いられる端末装置における制御方法であって、
     基地局装置からのシステム情報を受信して、当該端末装置の能力情報を基地局装置に送信するステップと、
     前記端末装置の能力情報に基づいて前記基地局装置から送られてきた複数の周波数帯域の組合せを受信するステップと、
    を有することを特徴とする制御方法。
    A control method in a terminal device used in a wireless communication system that performs communication using a plurality of frequency bands,
    Receiving system information from the base station device and transmitting capability information of the terminal device to the base station device;
    Receiving a combination of a plurality of frequency bands sent from the base station device based on the capability information of the terminal device;
    A control method characterized by comprising:
  15.  請求項14に記載の方法をコンピュータに実行させるためのプログラム。 A program for causing a computer to execute the method according to claim 14.
PCT/JP2010/050969 2009-01-28 2010-01-26 Base station apparatus, terminal apparatus, wireless communication system including those apparatuses, and programs to be executed by base station apparatus and terminal apparatus WO2010087334A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-017011 2009-01-28
JP2009017011 2009-01-28

Publications (1)

Publication Number Publication Date
WO2010087334A1 true WO2010087334A1 (en) 2010-08-05

Family

ID=42395595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050969 WO2010087334A1 (en) 2009-01-28 2010-01-26 Base station apparatus, terminal apparatus, wireless communication system including those apparatuses, and programs to be executed by base station apparatus and terminal apparatus

Country Status (1)

Country Link
WO (1) WO2010087334A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012037987A1 (en) * 2010-09-24 2012-03-29 Eads Defence And Security Systems Allocation of radio resources in a base station of a broadband network
WO2012128205A1 (en) * 2011-03-24 2012-09-27 シャープ株式会社 Communication system, base station apparatus, mobile station apparatus, method for managing mobile station apparatus capability, and integrated circuit
WO2013024796A1 (en) * 2011-08-12 2013-02-21 株式会社エヌ・ティ・ティ・ドコモ Mobile communication method and wireless base station
US11711862B1 (en) 2021-07-15 2023-07-25 T-Mobile Usa, Inc. Dual connectivity and carrier aggregation band selection
WO2023201155A1 (en) * 2022-04-12 2023-10-19 Qualcomm Incorporated Priority based stand-alone and carrier aggregated frequency band usage

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003521183A (en) * 2000-01-26 2003-07-08 キングス カレッジ ロンドン Preemptive bandwidth allocation with dynamic allocation
WO2007007380A1 (en) * 2005-07-08 2007-01-18 Fujitsu Limited Radio resource assigning method and communication apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003521183A (en) * 2000-01-26 2003-07-08 キングス カレッジ ロンドン Preemptive bandwidth allocation with dynamic allocation
WO2007007380A1 (en) * 2005-07-08 2007-01-18 Fujitsu Limited Radio resource assigning method and communication apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012037987A1 (en) * 2010-09-24 2012-03-29 Eads Defence And Security Systems Allocation of radio resources in a base station of a broadband network
US8989134B2 (en) 2010-09-24 2015-03-24 Airbus Ds Sas Allotment of radio resources in a base station of a broadband network
WO2012128205A1 (en) * 2011-03-24 2012-09-27 シャープ株式会社 Communication system, base station apparatus, mobile station apparatus, method for managing mobile station apparatus capability, and integrated circuit
WO2013024796A1 (en) * 2011-08-12 2013-02-21 株式会社エヌ・ティ・ティ・ドコモ Mobile communication method and wireless base station
JP2013042305A (en) * 2011-08-12 2013-02-28 Ntt Docomo Inc Mobile communication method and radio base station
CN103748920A (en) * 2011-08-12 2014-04-23 株式会社Ntt都科摩 Mobile communication method and wireless base station
US11711862B1 (en) 2021-07-15 2023-07-25 T-Mobile Usa, Inc. Dual connectivity and carrier aggregation band selection
WO2023201155A1 (en) * 2022-04-12 2023-10-19 Qualcomm Incorporated Priority based stand-alone and carrier aggregated frequency band usage

Similar Documents

Publication Publication Date Title
US9276717B2 (en) Terminal device, base station device, transmission method and reception method
EP3291475B1 (en) Search space for non-interleaved r-pdcch
CA2779148C (en) Wireless communication system, base station apparatus, mobile station apparatus, wireless communication method and integrated circuit
KR101790040B1 (en) Method and apparatus for transmission of dedicated control channel with dedicated reference signal in wireless communication system
CA2795321C (en) Base station apparatus and user terminal
JP4728301B2 (en) User apparatus, transmission method, and communication system
WO2018143405A1 (en) Base station device, terminal device, communication method, and integrated circuit
US9112663B2 (en) Wireless communication system, mobile station apparatus, base station apparatus, communication control method and integrated circuit
US9591628B2 (en) Base station apparatus and communication control method
RU2507720C2 (en) Mobile terminal, radio base station and method of transmitting common channel signal
US10292147B2 (en) Downlink control channel for single carrier transmission
JP6555827B2 (en) Communication device and communication method
JP2015167404A (en) Method and device for allocating control channel resource of backhaul sub-frame for relay
JP5898874B2 (en) User terminal, radio base station apparatus, radio communication system, and radio communication method
CN104335652B (en) User terminal, wireless communications method and wireless communication system
WO2010122876A1 (en) Base station apparatus, terminal apparatus, wireless communication system, transmission method, reception method, and program
US11432272B2 (en) Assignment of short physical downlink control channel (sPDCCH) candidates for short transmission time interval (sTTI)
JP2014512115A (en) Uplink grant search space in aggregate carrier mobile communication systems
US20200205182A1 (en) Terminal and communication method
US20130058286A1 (en) Base station apparatus and user terminal
US10985884B2 (en) Search space configuration for short transmission time interval
WO2010087334A1 (en) Base station apparatus, terminal apparatus, wireless communication system including those apparatuses, and programs to be executed by base station apparatus and terminal apparatus
JPWO2016043018A1 (en) Terminal apparatus, base station apparatus, and communication method
JP2009164816A (en) Wireless communication system, first wireless communication apparatus, second wireless communication apparatus, wireless receiving method, and wireless transmitting method
JP5226099B2 (en) User device, transmission method, communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10735802

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10735802

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP