WO2010074045A1 - Robot hand system with gripping section - Google Patents

Robot hand system with gripping section Download PDF

Info

Publication number
WO2010074045A1
WO2010074045A1 PCT/JP2009/071267 JP2009071267W WO2010074045A1 WO 2010074045 A1 WO2010074045 A1 WO 2010074045A1 JP 2009071267 W JP2009071267 W JP 2009071267W WO 2010074045 A1 WO2010074045 A1 WO 2010074045A1
Authority
WO
WIPO (PCT)
Prior art keywords
gripping
contact
frequency
state
output
Prior art date
Application number
PCT/JP2009/071267
Other languages
French (fr)
Japanese (ja)
Inventor
定夫 尾股
嘉延 村山
Original Assignee
学校法人 日本大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人 日本大学 filed Critical 学校法人 日本大学
Publication of WO2010074045A1 publication Critical patent/WO2010074045A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/081Touching devices, e.g. pressure-sensitive
    • B25J13/082Grasping-force detectors
    • B25J13/083Grasping-force detectors fitted with slippage detectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1612Programme controls characterised by the hand, wrist, grip control

Definitions

  • the present invention relates to a robot hand system having a gripper, and more particularly to a robot hand system having a gripper that moves relative to an object and grips the object.
  • An articulated robot is used to move an arm on which a work tool or the like is mounted on an object to an arbitrary position. Also, a robot hand having articulated fingers is used to perform an operation such as holding an object and carrying it to an arbitrary place. A robot hand having a gripping unit needs to detect slippage between the gripping unit that is a fingertip and the target in order to grip the target firmly.
  • Patent Document 1 discloses a method of disposing a tactile sensor including a plurality of pressure sensors on a finger surface having a flexible structure as a slip detection device for a finger surface of a robot hand and acting on a fingertip at the start of grasping a grasped object. Measuring line contact force and initial pressure barycentric position is disclosed. When the gripping object is lifted, the flexible structure is deformed according to gravity, which is an external force acting on the gripping object, so that the pressure centroid position changes. In anticipation, it is stated that the gripping force is increased when slipping occurs.
  • Patent Document 2 discloses a technique for accurately measuring the hardness of an object using ultrasonic waves.
  • This technology includes a vibrator that injects ultrasonic waves into a substance, a vibration detection sensor that detects a reflected wave from the substance, an amplifier having an input terminal connected to a signal output terminal of the vibration detection sensor, and an output terminal of the amplifier and vibration.
  • the shift circuit includes a shift circuit and frequency change amount detecting means for detecting a frequency change amount for shifting the phase difference to zero.
  • the frequency change amount detection means the phase difference due to the difference in hardness is shifted to zero and converted into a frequency change amount.
  • a reference transfer function indicating the relationship between the amplitude gain and phase of the reflected wave with respect to the frequency is obtained in advance and used.
  • JP 2006-297542 A Japanese Patent Laid-Open No. 9-146991
  • the object When gripping an object with a robot hand system having a gripping part, the object may be damaged if the gripping force is excessively strong. For example, when a soft object such as tofu or the like whose shape is damaged if it is gripped excessively strongly, the gripping force needs to be minimized. If the method of Patent Document 1 is used, there is a possibility of starting from a small gripping force to obtain a necessary gripping force. However, it is necessary to arrange a plurality of pressure sensors on the finger surface. The finger that is the gripping part is enlarged.
  • An object of the present invention is to provide a robot hand system having a grip portion that can grip an object with a minimum grip force without requiring a plurality of sensors.
  • the present invention is an application of the hardness measurement technique of Patent Document 2, and when a probe having a vibrator that makes an ultrasonic wave incident on a substance and a vibration detection sensor that detects a reflected wave from the substance contacts the object, This is based on the fact that there is a phase difference between the incident wave and the reflected wave as compared to before contact. That is, the hardness measurement technique of Patent Document 2 is based on the fact that the phase difference between the incident wave and the reflected wave when the probe is brought into contact with the object has a correlation with the hardness of the object. There is a phase difference between the incident wave and the reflected wave at the moment when the probe comes into contact with the object before converting to hardness. That is, the contact between the probe and the object can be detected in a state where the contact pressure is almost zero.
  • the present invention provides a robot hand system having a gripping part by configuring the following specific means.
  • a robot hand system having a gripping part includes a gripping part that moves relative to an object and grips the object, and a vibrator that is provided in the gripping part and injects vibration into the object.
  • a probe having a vibration detection sensor for detecting a reflected wave from the object, an amplifier having an input end connected to the output end of the vibration detection sensor, and between the output end of the amplifier and the input end of the vibrator If a phase difference occurs between the input waveform to the vibrator and the output waveform from the vibration detection sensor, the phase difference is shifted to zero by changing the frequency of the input vibration to the vibrator.
  • the phase shift circuit that outputs the input frequency to the vibrator when the value becomes zero, and the frequency that the phase shift circuit outputs from the non-contact state frequency when there is no object in the gripping part, Beyond threshold frequency
  • the contact state detection unit that detects that the grip unit is in contact with the object and gripped, and the frequency output by the phase shift circuit, from the contact grip state that exceeds the contact grip threshold frequency
  • the sliding state detection unit detects that the object is slipping from the gripping unit by changing from the contact gripping state, and the gripping unit is relative to the object.
  • a control unit that controls a gripping movement that is a movement, and the control unit grips and moves the gripping unit with respect to the object in a direction in which the target object is in contact with the gripping unit from a state in which the target object is not in contact with the gripping unit.
  • a contact state stop means for stopping the gripping movement when the state detection unit detects contact gripping between the gripping part and the object, and a target for the gripping part while detecting the gripping and stopping the gripping movement. Things are phase The direction in which the gripper returns the object from the slipping state to the contact gripping state according to the amount of change in the frequency output by the phase shift circuit when the slipping state detection unit detects the slipping state by moving in the gravitational direction.
  • the apparatus further includes a slip handling means for gripping and moving the gripping part, and a grip maintaining means for stopping the gripping movement of the gripping part when the slipping state detection unit no longer detects the slipping state.
  • the slipping state detecting part has a differentiating means for differentiating the frequency output from the phase shift circuit, and the phase shift circuit outputs based on the output of the differentiating means. It is preferable to detect slippage due to a change in frequency.
  • the robot hand system having the gripping part according to the present invention it is obtained in advance based on the frequency change output by the phase shift circuit when the slipping state detecting unit stops detecting the slipping state by the processing of the gripping maintaining means. It is preferable to provide hardness output means for outputting the hardness of the object using the relationship between frequency change and hardness.
  • the robot hand system having the gripping unit has a configuration including the phase shift circuit described in Patent Document 2, and the frequency output by the phase shift circuit is not in a state where there is no object in the gripping unit.
  • the frequency changes from a contact state frequency exceeding a predetermined contact gripping threshold frequency it is detected that the gripping part has touched and gripped the object, and from the contact gripping state exceeding the contact gripping threshold frequency
  • the frequency changes in the direction of the non-contact state frequency the object is detected as a sliding state in which the object is sliding from the contact state with respect to the grip portion.
  • the control unit that controls the gripping movement of the gripping part with respect to the target object grips and moves the gripping part relative to the target object in a direction in which the target object is not in contact with the gripping part,
  • the gripping movement is stopped when contact gripping between the gripping part and the target object is detected, and the target object is gravity relative to the gripping part while detecting the contact gripping and stopping the relative movement.
  • the gripping unit further grips and moves the object in the direction to return the object from the sliding state to the contact gripping state according to the amount of change in the frequency output by the phase shift circuit.
  • gripping maintenance is performed by stopping the relative gripping movement of the gripping part with respect to the object.
  • the magnitude of the contact pressure or gripping force between the probe and the object when detecting contact gripping can be determined by setting the contact gripping threshold frequency, so a small value, for example, a gripping force of several grams Depending on the case, the gripping force can be 1 gram or less.
  • the robot hand system lifts the target object or when the target object is a container and another object such as water is added to the target object, the target slips against the probe.
  • the gripping force can be increased until it is no longer detected. Therefore, it is possible to grip an object with a minimum gripping force with one probe without requiring a plurality of sensors for one gripping portion.
  • the slipping state detection unit has a differentiating unit that differentiates the frequency output from the phase shift circuit, and changes in the frequency output from the phase shift circuit based on the output of the differentiating unit. Slip detection by This makes it possible to reliably detect slippage.
  • a frequency change and a hardness obtained in advance are determined based on the frequency change output by the phase shift circuit when the slipping state detection part stops detecting the slipping state by the processing of the gripping maintenance means. Using the relationship, the hardness of the object is output. Thereby, it is possible to know the softness and hardness of the object being gripped.
  • the probe is brought into contact with the object from the non-contact state in which the probe and the object are not in contact at all, and the probe is moved up and down from that state. It is a figure explaining the mode of the state of each element when trying to lift an object.
  • a mass of silicon rubber will be described as an object, but this is moderately soft and used as an example in which the outer shape is damaged when excessive gripping force is applied. Further, biological tissues, tofu, rubber balls, etc. may be used as objects.
  • the materials, shapes, dimensions, numerical values, and the like described below are examples, and these contents can be appropriately changed according to the purpose of use.
  • the gripping unit may be configured by one movable arm that moves relative to the fixed wall and grips the object.
  • the number of movable parts that sandwich the object may be one or more.
  • the number of joints of the movable arm that sandwiches the object is preferably two or more, and may be a multi-joint, but may be one joint depending on the case.
  • FIG. 1 is a diagram illustrating the configuration of a robot hand system 10 having a gripping unit.
  • the robot hand system 10 having a gripping unit executes a hardware part of a robot hand that can simulate the movements of the three fingers of the thumb, the index finger, and the middle finger and the wrist, and software that controls the operation of the robot hand. It consists of a control part.
  • the control part is illustrated as a control unit 70.
  • the robot hand system 10 having the gripping portion is simply referred to as the robot hand system 10 unless otherwise specified.
  • the hardware part of the robot hand system 10 includes one lifting actuator 12 that simulates the wrist movement, and a plurality of gripping actuators 14 that simulate the movement of the multi-joint portion 17 of the thumb, index finger, and middle finger. And a probe 20 provided at the grip end of each tip of the multi-joint portion 17 of the thumb, index finger, and middle finger. All of these correspond to a gripping unit in a broad sense as a unit that moves relative to the object and grips the object.
  • the elevating actuator 12 rotates two sets of arms 13 that are rotatable around a rotation center axis provided on the base 11, and the flat plate portion 15 corresponding to the palm is perpendicular to the horizontal plane on which the base 11 is disposed.
  • This is a drive mechanism having a function of moving up and down.
  • the lifting actuator 12 moves the multi-joint portions 17 of the thumb, the index finger, and the middle finger at the same time at the same time by moving up and down the flat plate portion 15 corresponding to the palm, like a wrist. The operation can be reproduced.
  • an appropriate small motor can be used.
  • a small stepping motor is used.
  • the stepping motor can be rotated around the rotation center axis by a unit angle for each pulse signal as a drive signal. Accordingly, the number of pulses of the drive signal of the lift actuator 12 becomes the number of steps of lifting of the flat plate portion 15 corresponding to the palm, and the amount of lift can be controlled by the number of pulses of the drive signal.
  • the gripping actuator 14 has a function of independently driving the three multi-joint portions 17 that are rotatably attached to the flat plate portion 15 corresponding to the palm.
  • the three multi-joint portions 17 have one joint that has one joint at the end of the flat plate portion 15 and can reproduce the movement of the thumb, and two index joints that have two joints. There are two that can reproduce the movement of the middle finger.
  • One multi-joint portion 17 that reproduces the movement of the thumb and two multi-joint portions 17 that reproduce the movements of the index finger and the middle finger are arranged to face each other, like a human hand. Since these three multi-joint parts 17 will actually hold
  • the gripping actuator 14 internally drives the multi-joint portion 17 corresponding to the thumb, the multi-joint portion 17 corresponding to the index finger, and the multi-joint portion 17 corresponding to the middle finger.
  • 3 actuators are included.
  • the actuator of the multi-joint portion 17 system corresponding to the thumb has two sub-rotations that respectively perform two independent rotational drives that perform a rotational drive with respect to the flat plate portion 15 and a rotational drive of one joint portion ahead of the actuator. Including actuator.
  • the multi-joint portion 17 actuator corresponding to the index finger and the multi-joint portion 17 actuator corresponding to the index finger have one more joint than the multi-joint portion 17 corresponding to the thumb, It includes three subactuators that perform independent rotational drive.
  • an appropriate small motor can be used as in the lifting actuator 12.
  • a small stepping motor is used in the same manner as the lift actuator 12.
  • the stepping motor can be rotated around the rotation center axis by a unit angle for each pulse signal as a drive signal.
  • Each multi-joint portion 17 has a plurality of joint portions, but at the final stage of gripping, a part of each multi-joint portion 17, for example, the most advanced joint portion of the multi-joint portion 17 corresponding to the thumb is rotationally driven. Often only. Therefore, at the final stage of gripping, the number of pulses of the driving signal of the gripping actuator 14 that drives the most advanced joint is the number of rotation steps of the most advanced joint of the multi-joint 17 corresponding to the thumb, for example. The amount or the magnitude of the gripping force can be controlled by the number of pulses of this drive signal.
  • the probe 20 is a component arranged one by one at the tip of the most advanced joint part of each of the three multi-joint parts 17 arranged facing each other.
  • Each probe 20 constitutes a contact portion that actually touches and grips the object when the object is sandwiched by the three multi-joint portions 17, and detects contact and slippage with the object.
  • the sensor part for detecting the hardness of a target object is constituted.
  • FIG. 2 is a detailed view around the probe 20.
  • the probe 20 has a contact / slip degree detection in which a vibrator 24 and a vibration detection sensor 26 are stacked on a first base 22 and a substantially hemispherical plastic contact ball 28 is further stacked thereon.
  • the sensor part, the pressure detection sensor part on which the pressure sensor 34 is mounted on the second base 32, and the first base 22 of the contact / slip degree detection sensor part are provided.
  • a pressing ball 30 in contact with the surface.
  • Each of these elements is integrated as a whole by the integrated resin portion 36.
  • the probe 20 is fixed to the distal end portion of the most advanced joint portion of each multi-joint portion 17 by bonding or the like, with the second base 32 side of the pressure detection sensor portion being the bottom surface side.
  • the vibrator 24 has a function of making an incident wave incident on an object
  • the vibration detection sensor 26 is an element having a function of detecting a reflected wave from the object.
  • a piezoelectric element can be used for each of the vibrator 24 and the vibration detection sensor 26. That is, the former uses an electro-mechanical conversion function that generates an electric signal by inputting an electric signal, and the latter uses an electro-mechanical conversion function that generates an electric signal by inputting an electric vibration signal. it can.
  • FIG. 2 shows an input terminal 38 for supplying an electric signal to the vibrator 24 and an output terminal 40 for extracting an electric signal from the vibration detection sensor 26.
  • the input terminal 38 and the output terminal 40 are connected to the contact / slip degree detection unit 50 by an appropriate signal line.
  • the stacking order of the vibrator 24 and the vibration detection sensor 26 is preferably such that the object side is the vibration detection sensor 26 as shown in FIG. 2, but this is reversed and the vibrator 24 is disposed on the object side. It is good also as what to do.
  • the vibrator 24 and the vibration detection sensor 26 may not be stacked as shown in FIG. 2, but the vibrator 24 and the vibration detection sensor 26 may be arranged concentrically in some cases.
  • the contact ball 28 provided on the vibration detection sensor 26 is a member that is formed of a plastic resin such as nylon resin and has a function of smoothly pressing the object on its hemispherical surface.
  • a plastic resin such as nylon resin
  • the pressing ball 30 can also have the same configuration.
  • the pressure sensor 34 is an element having a function of detecting a pressing pressure when the probe 20 is pressed against an object.
  • the pressing pressure has a function of supplementarily detecting that the probe 20 has contacted the object. Accordingly, in some cases, the pressure sensor 34 may be omitted.
  • a strain gauge can be used as the pressure sensor 34.
  • a strain gauge When a strain gauge is used, it can be fixed to the second base 32 using a predetermined gauge adhesive or the like.
  • the pressure sensor 34 When the pressure sensor 34 is a strain gauge, the resistance value changes according to the pressing pressure. Therefore, an appropriate signal line is connected to the terminals at both ends of the resistor, and the signal line is connected to the control unit 70, so that the control unit In 70, the pressing pressure can be calculated from the change in the resistance value.
  • the first base 22 is a fixed plate having a function of holding a laminated body of the vibrator 24, the vibration detection sensor 26, and the contact ball 28.
  • the first base 22 can be formed of an appropriate substrate.
  • the first base 22 is provided with an input terminal 38 to the vibrator 24 and an output terminal 40 from the vibration detection sensor 26. can do.
  • the second base 32 is a fixed plate having a function of holding the pressure sensor 34.
  • the second base 32 can also be formed of an appropriate substrate.
  • the terminal of the pressure sensor 34 can be provided on the second base 32.
  • the integrated resin portion 36 is for wrapping the entire probe 20 in order to integrate the probe 20 as a whole. In this case, consideration is given so that vibrations of the vibrator 24 and the vibration detection sensor 26 are not excessively restricted.
  • this integrated resin part 36 it can be set as the structure which integrates the whole by a mold, for example using a silicon resin.
  • the lifting actuator I / F 44 is an interface circuit provided between the lifting actuator 12 and the control unit 70.
  • the lifting / lowering actuator I / F 44 can be configured by a buffer circuit, a waveform shaping circuit, a level shift circuit, and the like for matching signal levels.
  • the lift actuator I / F 44 can include the drive circuit.
  • the gripping actuator I / F 46 is an interface circuit provided between the plurality of gripping actuators 14 and the control unit 70.
  • the gripping actuator I / F 46 is configured by a buffer circuit, a waveform shaping circuit, a level shift circuit, and the like for matching the signal level for each gripping actuator 14. it can.
  • the gripping actuator I / F 46 can include the drive circuit.
  • the contact / slip degree detection unit 50 is a circuit that is connected to each probe 20 and detects a gripping state between each probe 20 and an object.
  • the contact / slip degree detection unit 50 is configured by a circuit provided for each probe 20, but since the contents of each circuit are the same, one contact / slip for one probe 20 will be described below. The contents of the slip detection unit 50 will be described.
  • the relationship between the probe 20 and the object includes a non-contact state where the object is not in contact with the probe 20 and a contact state where the object is in contact with the probe 20.
  • the contact state includes a contact grip state in which the probe 20 and the target object are not relatively moved, and a so-called slip state in which the probe 20 and the target object are relatively moved.
  • the contact / slip degree detection unit 50 has a function of distinguishing and detecting each of these states. Furthermore, the contact / slip degree detection unit 50 also has a function of detecting the hardness of the object in the contact gripping state.
  • FIG. 3 is a block diagram illustrating the configuration of the contact / slip degree detection unit 50.
  • the contact / slip degree detection unit 50 includes a terminal 39 connected to the input terminal 38 of the transducer 24 in the probe 20 and a terminal 41 connected to the output terminal 40 of the vibration detection sensor 26.
  • the contact / slip degree detection unit 50 is provided between an amplifier 52 whose input terminal is connected to the terminal 41, and an output terminal of the amplifier 52 and the terminal 39, and an input waveform to the vibrator 24 and a vibration detection sensor.
  • a phase shift circuit 54 is provided for changing the frequency to shift the phase difference to zero.
  • the phase shift circuit 54 changes the frequency of the input vibration to the vibrator 24 to make the phase difference zero. And the input frequency to the vibrator 24 when the phase difference becomes zero is output. In this manner, the phase shift circuit 54 outputs the input frequency f1 to the vibrator 24 that makes the phase difference related to the material property of the object zero, and this frequency f1 is first input to the vibrator 24. This is different from the input frequency f0 to the vibrator 24 when there is no phase difference between the waveform and the output waveform from the vibration detection sensor 26.
  • the frequency change df can be measured with high accuracy, the material property of the object can be evaluated with high accuracy by this frequency change df.
  • phase shift circuit 54 having such a function are described in detail in Japanese Patent Laid-Open No. 9-146991 which is the above-mentioned Patent Document 2.
  • vibration is incident on the object from the vibrator 24 and reflected from the object.
  • the vibration detection sensor 26 detects the detected vibration.
  • df is detected by the df detection circuit 56.
  • the detected df data is differentiated by the differentiating circuit 58 and transmitted from the terminal 59 to the control unit 70 as data indicating a contact / slip degree that is more sensitive than the df data.
  • Detected df data is converted into hardness data of the object by the hardness calculation unit 60 and transmitted to the control unit 70 via the terminal 61.
  • a calibration table or the like can be used.
  • the calibration table can be created by pressing a reference material that can be used as a hardness reference against the tip of the contact ball 28 of the probe 20 and obtaining a frequency change df at that time.
  • a reference material for example, a standard material such as silicon rubber having various hardnesses for which correspondence relationships with the Young's modulus representing the hardness and the shear elastic modulus are obtained in advance can be used. This function is already described in Patent Document 2.
  • the vibration frequency in the closed-loop resonance state including the vibrator 24, the vibration detection sensor 26, and the object can be changed by the phase shift circuit 54 so that the natural frequency having a high Q in the vibrator 24 can be changed. It is preferable to select a frequency other than. For example, when the primary natural frequency of the vibrator 24 is 1 MHz, it is preferable to avoid this frequency and set it to 400 kHz or the like.
  • FIGS. 4 and 5 are diagrams showing time changes in these four states, with time on the horizontal axis and four states on the vertical axis.
  • the number of steps of raising / lowering that is the number of steps of the driving pulse of the raising / lowering actuator 12
  • the number of steps of the gripping that is the number of steps of the driving pulse of the grasping actuator 14, and df detection
  • the frequency change df which is the output of the circuit 56
  • df / dt which is the output of the differentiating circuit 58.
  • the step number of the drive pulse of the gripping actuator 14 is shown for the actuator used for the rotation of the most advanced joint part of one multi-joint part 17 as the final stage of gripping.
  • FIG. 4 shows a contact state where the probe 20 contacts the target object from a non-contact state where the probe 20 and the target object are not in contact at all, and the probe 20 is moved up and down from that state to move the target object. It is a figure explaining a mode when it is going to lift. For example, it is a diagram showing changes in each state when an object placed on a workbench is sandwiched between a plurality of probes 20 and then the object is lifted from the workbench.
  • the gripping actuator 14 is driven to move toward the object, and the probes 20 provided at the most advanced joint parts of all the multi-joint parts 17 come into contact with the object and further advance. It's time. In this way, in order to bring the probe 20 into contact with the object, the multi-joint portion 17 that is a gripping part is driven to move with respect to the object, and this can be called control for gripping movement. .
  • the multi-joint portion 17 corresponding to the index finger and the multi-joint portion 17 corresponding to the middle finger are moved and driven, and the respective probes 20 and the object are brought into contact with each other.
  • the frequency change df in FIG. 4 indicates the state of the probe 20 provided in the multi-joint portion 17 corresponding to the thumb.
  • the phase difference occurs between the input waveform to the transducer 24 and the output waveform from the vibration detection sensor 26 at the moment of contact, and a frequency change occurs in the phase shift circuit 54.
  • Df detection circuit 56 outputs the frequency change df. Since the frequency change df is also a deviation from the frequency in the non-contact state, it indicates the frequency change from the frequency in the non-contact state.
  • the frequency change df is not the moment when the frequency changes even slightly from the frequency in the non-contact state, but a threshold is set in advance for the frequency change df, It is preferable to determine that the contact has been made when the detected df exceeds the threshold. That is, it is preferable to determine that the contact is made when the frequency exceeds a certain threshold from the non-contact state frequency in the non-contact state.
  • the threshold value when the threshold value is set, strictly speaking, not the moment of contact, but when the probe 20 comes into contact with the object with some contact pressure corresponding to the threshold value and is in a light grip state, it is detected as a contact state. Will do. Therefore, this state is referred to as a contact gripping state, and the threshold value can be referred to as a contact gripping threshold frequency. That is, when the frequency changes from the non-contact state frequency exceeding the contact grip threshold frequency, the contact grip state is determined. When the threshold value is set for df, the frequency difference between the non-contact state frequency and the contact gripping threshold frequency becomes the df threshold value.
  • the contact pressure is determined by the contact gripping threshold frequency
  • the contact pressure can be increased or decreased by appropriately setting the contact gripping threshold frequency.
  • a gripping force of, for example, several grams, and in some cases a gripping force of 1 gram or less can be obtained.
  • df becomes the df threshold value at time t ⁇ b> 1, and the gripping state is reached, so the gripping actuator 14 stops gripping movement here.
  • the object on the workbench is brought into contact and gripped by the plurality of multi-joint portions 17 that are gripping portions, and this state is maintained.
  • the number of gripping steps is maintained at a constant value from time t1 to time t2, and during that time, the gripping state between the gripping part and the object is continued as described above.
  • time t2 the number of ascending / descending steps is changed.
  • a lift command is issued to the lift actuator 12 to lift the object.
  • the object tends to be pulled upward from the workbench, but since the pressure when gripping is the contact pressure determined by the contact gripping threshold frequency, the gripping force obtained by multiplying the contact area by this contact pressure. Is smaller than the force in the gravitational direction based on the mass of the object, the object moves in the gravitational direction relative to the probe 20, and slip occurs between the probe 20 and the object.
  • FIG. 4 shows how the frequency change df changes toward zero again at time t2.
  • Such slip detection can be detected more reliably by the change in df / dt obtained by differentiating df with respect to time by the differentiating circuit 58 than with the frequency change df. Since the moment when the slip occurs is the moment when the frequency changes from the frequency when the contacted and gripped state is maintained, as shown in FIG. 4, df / dt suddenly changes from zero. Therefore, an appropriate threshold is set for df ⁇ dt, and when the threshold is exceeded, the occurrence of slipping can be detected.
  • FIG. 4 shows a case where the size of the number of gripping steps is maintained in a state in which contact gripping is detected. Therefore, depending on the setting of the contact gripping threshold frequency, as described above, the probe 20 and the target object Slip occurs between them.
  • FIG. 5 is a diagram illustrating how the occurrence of slip is suppressed by changing the number of gripping steps when the occurrence of slip is detected.
  • the contents of the horizontal axis in FIG. 5 and the contents of each state on the vertical axis are the same as those in FIG.
  • the contents at times t0, t1, and t2 are the same as those in FIG. That is, the contents from time t0 to t2 are the same as in FIG.
  • the number of gripping steps is changed according to the magnitude of this slip. Specifically, when a slipping state is detected, the gripping actuator 14 changes the number of gripping steps in a direction in which the gripping actuator 14 returns the object from the slipping state to the contact gripping state according to the amount of change in the frequency output from the phase shift circuit 54. To do. That is, the gripping movement for moving the probe 20 toward the object side is controlled so as to increase the gripping force. This corresponds to slipping.
  • the change in the number of gripping steps is continued until the frequency output from the phase shift circuit 54 returns to the frequency in the contact gripping state.
  • the change is continued so that the number of gripping steps is sequentially increased until time t4. And if it returns to the frequency in a contact gripping state, it will return to a contact gripping state, and since a slip state will no longer be detected, the change of the number of gripping steps is stopped and the state is maintained.
  • the object is contact-gripped above the work table by the probe 20 with a contact pressure determined by the contact-gripping threshold frequency. That is, the object is gripped with the minimum gripping force.
  • control unit 70 has a function of controlling the operation of each element constituting the hardware part of the robot hand system 10 as a whole.
  • control unit 70 is connected to the lift actuator I / F 44, the gripping actuator I / F 46, and the contact / slip degree detection unit 50 through appropriate signal lines or the like.
  • the control unit 70 is connected to an input unit 42 such as a keyboard and an output unit 43 such as a display and a printer.
  • the control unit 70 can be configured by an appropriate computer or the like.
  • the control unit 70 includes a contact state stop module 72, a slip handling module 74, a grip maintaining module 76, and a hardness display module 78.
  • the contact state stop module 72 has a function of executing processing at time t1 in FIGS. That is, the probe 20 is gripped and moved with respect to the object in a direction in which the object is not in contact with the probe 20 constituting the grasping unit, and the contact / slip degree detection unit 50 detects the probe. It has a function of stopping the gripping movement when contact gripping between the touch element 20 and the object is detected.
  • the slip handling module 74 has a function of executing processing in a period from time t2 to t4 in FIG. That is, the object moves relative to the probe 20 in the gravitational direction while the contact movement is detected and the grip movement is stopped, and the contact / slip degree detection unit 50 detects the slip state. Sometimes, according to the amount of change in the frequency output by the phase shift circuit 54, the probe 20 constituting the gripper is further gripped and moved in a direction in which the probe 20 returns the object from the sliding state to the contact gripping state. It has a function.
  • the grip maintaining module 76 has a function of executing processing at time t4 in FIG. That is, when the contact / slip degree detection unit 50 no longer detects a slipping state, it has a function of stopping the gripping movement of the probe 20 constituting the gripping unit.
  • the hardness display module 78 has a function of displaying the hardness of the object at time t2 in FIG. 4 or time t4 in FIG.
  • the processing is executed by the function of the grip maintaining module 76, and the frequency change output by the phase shift circuit 54 when the contact / slip degree detection unit 50 no longer detects the slip state is detected. Based on this, it has a function of outputting the hardness of the object using the relationship between the frequency change and the hardness obtained in advance.
  • control unit 70 can be realized by software, specifically, by executing a robot hand control program.
  • control unit 70 may be realized by hardware.
  • FIGS. FIG. 6 and FIG. 7 are flowcharts showing a processing procedure for gripping an object with the minimum gripping force in the robot hand system 10. Each of these procedures corresponds to each processing procedure of the robot hand control program.
  • the robot hand system 10 In order to execute processing for gripping an object with the minimum gripping force in the robot hand system 10, first, the robot hand system 10 is activated and a robot hand control program is started. Then, an object is set on the work table, and a grip command is acquired (S10). The grip command can be acquired via the input unit 42.
  • the gripping actuator 14 is gripped and moved according to this gripping command.
  • the multi-joint portion 17 corresponding to the index finger and the multi-joint portion 17 corresponding to the middle finger are moved and driven to bring the respective probes 20 and the object into contact with each other.
  • the most advanced joint part of the multi-joint part 17 corresponding to the thumb is moved and driven to contact an object, and further moved and driven.
  • the gripping actuator 14 for moving and driving the most advanced joint part of the multi-joint part 17 corresponding to the thumb is driven in units (S12).
  • the unit driving corresponds to outputting one driving pulse of the stepping motor by advancing the number of gripping steps described in FIGS. 4 and 5 by one.
  • the contact / slip degree detection unit 50 compares the frequency output from the phase shift circuit 54 with a predetermined contact gripping threshold frequency, and when the frequency exceeds the contact gripping threshold frequency, the contact gripping Is detected. In other words, the probe 20 touches and grips the object when the frequency changes beyond the predetermined contact gripping threshold frequency from the non-contact state frequency when the probe 20 has no object. It is judged.
  • the process returns to S12, and the gripping actuator 14 is further driven in units. That is, one stepping motor drive pulse is output. Then, the determination in S14 is performed again. This is repeated until the determination in S14 is affirmed. If the determination in S14 is affirmative, unit driving of the gripping actuator 14 is no longer performed. That is, the stop is performed in the contact gripping state (S16). The steps so far are executed by the function of the contact state stop module 72 of the control unit 70. The state of S16 is the state of t1 in FIGS.
  • an elevation command is acquired (S20).
  • an elevation command that is, an instruction to grip and lift the object is included.
  • the up / down command is a process that is handled as an internal process in the control unit 70 of the robot hand system 10 and that the process related to the up / down is executed when the state of S16 is entered.
  • the elevating actuator 12 When the elevating command is acquired, the elevating actuator 12 is driven in units according to this (S22).
  • the meaning of the unit drive is the same as that described in S12.
  • one drive pulse is supplied to the stepping motor of the lift actuator 12.
  • the flat plate part 15 is lifted upward by a unit amount.
  • the slip degree is detected (S24). Specifically, with respect to the frequency output from the phase shift circuit 54, the probe constituting the gripping portion when the frequency changes from the contact gripping state exceeding the contact gripping threshold frequency toward the non-contact state frequency.
  • the object 20 is detected as a slipping state in which the object is slipping from the contact gripping state. More specifically, the change in frequency is acquired by the differentiating circuit 58 as df / dt.
  • a predetermined threshold value S26.
  • the slip of the object with respect to the probe 20 occurs at the moment when the frequency output from the phase shift circuit 54 changes, but in reality, there is a limit to the detection accuracy of the frequency change. It is preferable to provide a threshold value. Specifically, a frequency that is a suitable frequency difference from the frequency in the contact gripping state is set as the threshold frequency, and when the frequency output from the phase shift circuit 54 changes from the frequency in the touch gripping state beyond the threshold frequency, the process of S26 is performed. Judgment can be affirmed.
  • the process returns to S22, and the lift actuator 12 is further driven in units. That is, one more drive pulse is supplied to the stepping motor of the lift actuator 12, and the number of lift steps is increased by one. Then, the determination of S26 is performed again through S24. This is repeated until the determination in S26 is affirmed.
  • the gripping actuator 14 is next driven unit-wise ( S28).
  • the meaning of the unit drive of the gripping actuator 14 is the same as that described in S12. That is, the probe 20 is gripped and moved toward the target by further increasing the number of gripping steps by one.
  • S30 a threshold value
  • the determination of S32 is performed again. The above steps are repeated until the determination at S32 is negative. If the determination in S32 is negative, the lift amount is equal to or greater than the command value, and slipping is eliminated. That is, the object is lifted with a minimum gripping force and gripped without slipping.
  • the change in the number of lifting steps and the change in the number of gripping steps are stopped, and gripping is continuously maintained in this state (S34).
  • the hardness of the object is calculated by the hardness calculation unit 60 and displayed on the output unit 43 such as an appropriate display (S36).
  • phase shift circuit 54 contact detection and slip detection between the probe 20 and the object are performed, and the object does not cause relative movement in the direction of gravity. It can be gripped with the minimum gripping force. Further, the hardness of the object being held can be displayed.
  • the robot hand system having a gripping part according to the present invention can be used for a robot hand having a multi-joint finger that grips an object and carries it, for example, to an arbitrary place.
  • Robot hand system (having a gripping part), 11 base, 12 lift actuator, 13 arm, 14 gripping actuator, 15 flat plate part, 17 articulated part, 20 probe, 22 first base, 24 vibrator, 26 Vibration detection sensor, 28 contact ball, 30 pressing ball, 32 second base, 34 pressure sensor, 36 integrated resin part, 38 input terminal, 39, 41, 59, 61 terminal, 40 output terminal, 42 input part, 43 Output unit, 44 lifting actuator I / F, 46 gripping actuator I / F, 50 contact / slip degree detection unit, 52 amplifier, 54 phase shift circuit, 56 df detection circuit, 58 differentiation circuit, 60 hardness calculation unit, 70 control Part, 72 contact state stop module, 74 slip-compatible module, 76 gripping Lifting module, 78 hardness display module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Manipulator (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

The hardware portion of a robot hand system (10) is configured by including a lifting actuator (12), gripping actuators (14), and probes (20) each provided to the gripping end at the tip of each multi-joint section (17).  A section (50) for detecting contact and the degree of slip and connected to the probes (20) has a function of discriminatorily detecting the following states: a non-contact state in which an object is not in contact with the probes (20) at all, a contact and gripping state in which the probes (20) and the object are not moving relatively, and a slip state in which the probes (20) and the object are moving relative to each other and are in what is called a slipping condition.  With the use of this function, a control section (70) drives the gripping actuator (14) so that the object can be held with a minimum gripping force.

Description

把持部を有するロボットハンドシステムRobot hand system having a gripper
 本発明は、把持部を有するロボットハンドシステムに係り、特に、対象物に対し相対的に移動して対象物を把持する把持部を有するロボットハンドシステムに関する。 The present invention relates to a robot hand system having a gripper, and more particularly to a robot hand system having a gripper that moves relative to an object and grips the object.
 対象物に対し作業工具等を搭載するアームを任意の位置に移動して作業を行なうために、多関節ロボットが用いられる。また、対象物を把持して、例えば任意の場所に運ぶ等の作業を行なうために多関節指を有するロボットハンドが用いられる。そして、把持部を有するロボットハンドとしては、対象物をしっかり把持するために、指先である把持部と対象物との間の滑りを検出する必要が出てくる。 An articulated robot is used to move an arm on which a work tool or the like is mounted on an object to an arbitrary position. Also, a robot hand having articulated fingers is used to perform an operation such as holding an object and carrying it to an arbitrary place. A robot hand having a gripping unit needs to detect slippage between the gripping unit that is a fingertip and the target in order to grip the target firmly.
 例えば、特許文献1には、ロボットハンドの指表面の滑り検知装置として、柔軟構造を有する指表面に複数の圧力センサからなる触覚センサを配置し、把持対象物の把持開始時の指先に働く法線接触力と初期圧力重心位置を測定することが開示されている。そして、把持対象物を持ち上げる際に柔軟構造は把持対象物に働く外力である重力に応じて変形するために圧力重心位置が変化するので、この圧力重心位置の移動量に基いて滑りの発生を予想し、滑り発生時には把持力を増やすことが述べられている。 For example, Patent Document 1 discloses a method of disposing a tactile sensor including a plurality of pressure sensors on a finger surface having a flexible structure as a slip detection device for a finger surface of a robot hand and acting on a fingertip at the start of grasping a grasped object. Measuring line contact force and initial pressure barycentric position is disclosed. When the gripping object is lifted, the flexible structure is deformed according to gravity, which is an external force acting on the gripping object, so that the pressure centroid position changes. In anticipation, it is stated that the gripping force is increased when slipping occurs.
 また、本発明に関連する技術として、特許文献2には、超音波を用いて対象物の硬さを精度よく測定する技術が開示されている。この技術は、物質に超音波を入射する振動子と物質からの反射波を検出する振動検出センサと、振動検出センサの信号出力端に入力端が接続された増幅器と、増幅器の出力端と振動子の信号入力端との間に設けられ、振動子への入力波形と振動検出センサからの出力波形との間に位相差が生じるときは、周波数を変化させて位相差をゼロにシフトする位相シフト回路と、位相差をゼロにシフトさせるための周波数変化量を検出する周波数変化量検出手段とを含む構成である。ここでは、周波数変化量検出手段において、硬さの相違による位相差をゼロにシフトさせてこれを周波数変化量に変換している。この変換は、周波数に対する反射波の振幅ゲインと位相の関係を示す基準伝達関数を予め求めておいてこれを用いている。 Also, as a technique related to the present invention, Patent Document 2 discloses a technique for accurately measuring the hardness of an object using ultrasonic waves. This technology includes a vibrator that injects ultrasonic waves into a substance, a vibration detection sensor that detects a reflected wave from the substance, an amplifier having an input terminal connected to a signal output terminal of the vibration detection sensor, and an output terminal of the amplifier and vibration. When there is a phase difference between the input waveform to the transducer and the output waveform from the vibration detection sensor, this is a phase that changes the frequency and shifts the phase difference to zero. The shift circuit includes a shift circuit and frequency change amount detecting means for detecting a frequency change amount for shifting the phase difference to zero. Here, in the frequency change amount detection means, the phase difference due to the difference in hardness is shifted to zero and converted into a frequency change amount. In this conversion, a reference transfer function indicating the relationship between the amplitude gain and phase of the reflected wave with respect to the frequency is obtained in advance and used.
特開2006-297542号公報JP 2006-297542 A 特開平9-145691号公報Japanese Patent Laid-Open No. 9-146991
 把持部を有するロボットハンドシステムで対象物を把持する際に、過度に強い把持力であると対象物を損傷することがある。例えば、豆腐等のように柔らかく、過度に強く把持すると形状が損傷してしまうものを対象とする場合には、把持力を最小限度にする必要がある。特許文献1の方法を用いると、最初に小さい把持力からスタートして必要な把持力にする可能性が期待されるが、複数の圧力センサを指表面に配置する必要があり、複雑な構造と把持部である指が大型化する。 When gripping an object with a robot hand system having a gripping part, the object may be damaged if the gripping force is excessively strong. For example, when a soft object such as tofu or the like whose shape is damaged if it is gripped excessively strongly, the gripping force needs to be minimized. If the method of Patent Document 1 is used, there is a possibility of starting from a small gripping force to obtain a necessary gripping force. However, it is necessary to arrange a plurality of pressure sensors on the finger surface. The finger that is the gripping part is enlarged.
 本発明の目的は、センサを複数必要とせずに、最小限の把持力で対象物を把持することを可能とする把持部を有するロボットハンドシステムを提供することである。 An object of the present invention is to provide a robot hand system having a grip portion that can grip an object with a minimum grip force without requiring a plurality of sensors.
 本発明は、特許文献2の硬さ測定技術の応用で、物質に超音波を入射する振動子と物質からの反射波を検出する振動検出センサとを有する探触子が対象物に接触すると、接触前と比べて、入射波と反射波との間の位相差が生じることに気づいたことに基く。すなわち、特許文献2の硬さ測定技術は、探触子が対象物に接触させたときの入射波と反射波との間の位相差が対象物の硬さと相関関係があることに基くものであるが、硬さに換算する以前に、探触子が対象物に接触した瞬間に、入射波と反射波との間の位相差が生じる。つまり、接触圧がほとんどゼロの状態、探触子と対象物との間の接触を検出できる。 The present invention is an application of the hardness measurement technique of Patent Document 2, and when a probe having a vibrator that makes an ultrasonic wave incident on a substance and a vibration detection sensor that detects a reflected wave from the substance contacts the object, This is based on the fact that there is a phase difference between the incident wave and the reflected wave as compared to before contact. That is, the hardness measurement technique of Patent Document 2 is based on the fact that the phase difference between the incident wave and the reflected wave when the probe is brought into contact with the object has a correlation with the hardness of the object. There is a phase difference between the incident wave and the reflected wave at the moment when the probe comes into contact with the object before converting to hardness. That is, the contact between the probe and the object can be detected in a state where the contact pressure is almost zero.
 特許文献2の硬さ測定技術では、基準伝達関数を用いて位相差を周波数変化に換算している。したがって、換算された周波数変化を観察していれば、探触子と対象物とが接触していない非接触時の周波数から、周波数が変化したときに接触が生じたことを検出できる。接触が検出されたときの周波数を接触時周波数とすると、一旦接触しても、探触子と対象物とが離れれば、接触時周波数から非接触時周波数に戻ることになる。 In the hardness measurement technique of Patent Document 2, a phase difference is converted into a frequency change using a reference transfer function. Therefore, if the converted frequency change is observed, it can be detected that contact has occurred when the frequency changes from the non-contact frequency at which the probe and the object are not in contact. Assuming that the frequency when contact is detected is the contact frequency, even if contact is made once, if the probe and the object are separated from each other, the frequency returns from the contact frequency to the non-contact frequency.
 このことから、探触子から対象物が滑ったときに周波数変化が生じるのではないか、と考え、実験したところ、接触状態のときに接触時周波数であったものが、探触子から対象物が滑ったときに、その周波数は非接触時周波数の方に変化することが確認された。したがって、特許文献2の硬さ測定技術を応用することで、探触子と対象物との間の接触検出と、滑り検出ができる。本発明は、この原理を実現するため、以下に述べる具体的手段を構成して、把持部を有するロボットハンドシステムとしたものである。 From this, it was thought that a frequency change might occur when the object slips from the probe, and when an experiment was conducted, what was the frequency at the time of contact in the contact state was detected from the probe. It was confirmed that when an object slips, its frequency changes toward the non-contact frequency. Therefore, by applying the hardness measurement technique disclosed in Patent Document 2, contact detection between the probe and the object and slip detection can be performed. In order to realize this principle, the present invention provides a robot hand system having a gripping part by configuring the following specific means.
 すなわち、本発明に係る把持部を有するロボットハンドシステムは、対象物に対し相対的に移動して対象物を把持する把持部と、把持部に設けられ、対象物に振動を入射する振動子と、対象物からの反射波を検出する振動検出センサとを有する探触子と、振動検出センサの出力端に入力端が接続された増幅器と、増幅器の出力端と振動子の入力端との間に設けられ、振動子への入力波形と振動検出センサからの出力波形の間に位相差が生じるときは、振動子への入力振動の周波数を変化させて位相差をゼロにシフトし、位相差がゼロとなったときの振動子への入力周波数を出力する位相シフト回路と、位相シフト回路が出力する周波数について、把持部に対象物がない状態の非接触状態周波数から、予め定めた接触把持閾値周波数を超えて周波数が変化したときに、把持部が対象物に接触し把持したことを検出する接触状態検出部と、位相シフト回路が出力する周波数について、接触把持閾値周波数を超えている接触把持状態から、非接触状態周波数の方向に周波数が変化するときに、把持部に対し対象物が接触把持状態から変化して滑っている滑り状態として検出する滑り状態検出部と、把持部の対象物に対する相対的な移動である把持移動を制御する制御部と、を備え、制御部は、把持部に対象物が接触していない状態から対象物に接触する方向に把持部を対象物に対し把持移動させ、接触状態検出部が把持部と対象物との接触把持を検出したときに把持移動を停止させる接触状態停止手段と、接触把持を検出して把持移動を停止した状態のままで、把持部に対し対象物が相対的に重力方向に移動して滑り状態検出部が滑り状態を検出するときに、位相シフト回路が出力する周波数の変化量に応じて、把持部が対象物を滑り状態から接触把持状態に戻す方向にさらに把持部を把持移動させる滑り対応手段と、滑り状態検出部が滑り状態を検出しなくなったときに、把持部の把持移動を停止させる把持維持手段と、を含むことを特徴とする。 That is, a robot hand system having a gripping part according to the present invention includes a gripping part that moves relative to an object and grips the object, and a vibrator that is provided in the gripping part and injects vibration into the object. A probe having a vibration detection sensor for detecting a reflected wave from the object, an amplifier having an input end connected to the output end of the vibration detection sensor, and between the output end of the amplifier and the input end of the vibrator If a phase difference occurs between the input waveform to the vibrator and the output waveform from the vibration detection sensor, the phase difference is shifted to zero by changing the frequency of the input vibration to the vibrator. The phase shift circuit that outputs the input frequency to the vibrator when the value becomes zero, and the frequency that the phase shift circuit outputs from the non-contact state frequency when there is no object in the gripping part, Beyond threshold frequency When the wave number changes, the contact state detection unit that detects that the grip unit is in contact with the object and gripped, and the frequency output by the phase shift circuit, from the contact grip state that exceeds the contact grip threshold frequency, When the frequency changes in the direction of the contact state frequency, the sliding state detection unit detects that the object is slipping from the gripping unit by changing from the contact gripping state, and the gripping unit is relative to the object. A control unit that controls a gripping movement that is a movement, and the control unit grips and moves the gripping unit with respect to the object in a direction in which the target object is in contact with the gripping unit from a state in which the target object is not in contact with the gripping unit. A contact state stop means for stopping the gripping movement when the state detection unit detects contact gripping between the gripping part and the object, and a target for the gripping part while detecting the gripping and stopping the gripping movement. Things are phase The direction in which the gripper returns the object from the slipping state to the contact gripping state according to the amount of change in the frequency output by the phase shift circuit when the slipping state detection unit detects the slipping state by moving in the gravitational direction. Furthermore, the apparatus further includes a slip handling means for gripping and moving the gripping part, and a grip maintaining means for stopping the gripping movement of the gripping part when the slipping state detection unit no longer detects the slipping state.
 また、本発明に係る把持部を有するロボットハンドシステムにおいて、滑り状態検出部は、位相シフト回路が出力する周波数を微分する微分手段を有し、微分手段の出力に基いて、位相シフト回路が出力する周波数の変化による滑り検出を行うことが好ましい。 Further, in the robot hand system having the gripping part according to the present invention, the slipping state detecting part has a differentiating means for differentiating the frequency output from the phase shift circuit, and the phase shift circuit outputs based on the output of the differentiating means. It is preferable to detect slippage due to a change in frequency.
 また、本発明に係る把持部を有するロボットハンドシステムにおいて、把持維持手段の処理で滑り状態検出部が滑り状態を検出しなくなったときの位相シフト回路が出力する周波数変化に基き、予め求められた周波数変化と硬さの関係を用いて、対象物の硬さを出力する硬さ出力手段を備えることが好ましい。 Further, in the robot hand system having the gripping part according to the present invention, it is obtained in advance based on the frequency change output by the phase shift circuit when the slipping state detecting unit stops detecting the slipping state by the processing of the gripping maintaining means. It is preferable to provide hardness output means for outputting the hardness of the object using the relationship between frequency change and hardness.
 上記構成により、把持部を有するロボットハンドシステムは、特許文献2に述べられている位相シフト回路を含む構成に加えて、位相シフト回路が出力する周波数について、把持部に対象物がない状態の非接触状態周波数から、予め定めた接触把持閾値周波数を超えて周波数が変化したときに、把持部が対象物に接触把持したことを検出し、また、接触把持閾値周波数を超えている接触把持状態から、非接触状態周波数の方向に周波数が変化するときに、把持部に対し対象物が接触状態から変化して滑っている滑り状態として検出する。 With the configuration described above, the robot hand system having the gripping unit has a configuration including the phase shift circuit described in Patent Document 2, and the frequency output by the phase shift circuit is not in a state where there is no object in the gripping unit. When the frequency changes from a contact state frequency exceeding a predetermined contact gripping threshold frequency, it is detected that the gripping part has touched and gripped the object, and from the contact gripping state exceeding the contact gripping threshold frequency When the frequency changes in the direction of the non-contact state frequency, the object is detected as a sliding state in which the object is sliding from the contact state with respect to the grip portion.
 そして、把持部の対象物に対する把持移動を制御する制御部は、把持部に対象物が接触していない状態から対象物に接触する方向に把持部を対象物に対し相対的に把持移動させ、把持部と対象物との接触把持を検出したときに把持移動を停止させ、また、接触把持を検出して相対的移動を停止した状態のままで、把持部に対し対象物が相対的に重力方向に移動して滑り状態が検出されるときに、位相シフト回路が出力する周波数の変化量に応じて、把持部が対象物を滑り状態から接触把持状態に戻す方向にさらに把持部を把持移動させて滑りに対応し、滑り状態検出部が滑り状態を検出しなくなったときに、把持部の対象物に対する相対的な把持移動を停止させて把持維持を行う。 Then, the control unit that controls the gripping movement of the gripping part with respect to the target object grips and moves the gripping part relative to the target object in a direction in which the target object is not in contact with the gripping part, The gripping movement is stopped when contact gripping between the gripping part and the target object is detected, and the target object is gravity relative to the gripping part while detecting the contact gripping and stopping the relative movement. When the sliding state is detected by moving in the direction, the gripping unit further grips and moves the object in the direction to return the object from the sliding state to the contact gripping state according to the amount of change in the frequency output by the phase shift circuit. In response to slipping, when the slipping state detection unit no longer detects the slipping state, gripping maintenance is performed by stopping the relative gripping movement of the gripping part with respect to the object.
 接触把持を検出するときの探触子と対象物との間の接触圧あるいは把持力の大きさは接触把持閾値周波数の設定で定めることができるので、小さい値、例えば数グラムの把持力、場合によっては1グラム以下の把持力とすることができる。そして、ロボットハンドシステムが対象物を持ち上げ、あるいは対象物が容器の場合にその中に水等の別の物体を付加して、対象物が探触子に対し滑りを生じたときは、滑りが検出されなくなるまで、把持力を増加させることができる。したがって、把持部1つに対しセンサを複数必要とせずに探触子1つで、最小限の把持力で対象物を把持することが可能となる。 The magnitude of the contact pressure or gripping force between the probe and the object when detecting contact gripping can be determined by setting the contact gripping threshold frequency, so a small value, for example, a gripping force of several grams Depending on the case, the gripping force can be 1 gram or less. When the robot hand system lifts the target object or when the target object is a container and another object such as water is added to the target object, the target slips against the probe. The gripping force can be increased until it is no longer detected. Therefore, it is possible to grip an object with a minimum gripping force with one probe without requiring a plurality of sensors for one gripping portion.
 また、把持部を有するロボットハンドシステムにおいて、滑り状態検出部は、位相シフト回路が出力する周波数を微分する微分手段を有し、微分手段の出力に基いて、位相シフト回路が出力する周波数の変化による滑り検出を行う。これによって滑り検出を確実に行うことができる。 Further, in the robot hand system having the gripping unit, the slipping state detection unit has a differentiating unit that differentiates the frequency output from the phase shift circuit, and changes in the frequency output from the phase shift circuit based on the output of the differentiating unit. Slip detection by This makes it possible to reliably detect slippage.
 また、把持部を有するロボットハンドシステムにおいて、把持維持手段の処理で滑り状態検出部が滑り状態を検出しなくなったときの位相シフト回路が出力する周波数変化に基き、予め求められた周波数変化と硬さの関係を用いて、対象物の硬さを出力する。これによって、把持されている対象物の軟らかさ硬さを知ることができる。 Also, in a robot hand system having a gripping part, a frequency change and a hardness obtained in advance are determined based on the frequency change output by the phase shift circuit when the slipping state detection part stops detecting the slipping state by the processing of the gripping maintenance means. Using the relationship, the hardness of the object is output. Thereby, it is possible to know the softness and hardness of the object being gripped.
本発明に係る実施の形態において、把持部を有するロボットハンドシステムの構成を説明する図である。In embodiment which concerns on this invention, it is a figure explaining the structure of the robot hand system which has a holding part. 本発明に係る実施の形態において、探触子周りの詳細図である。In embodiment which concerns on this invention, it is detail drawing around a probe. 本発明に係る実施の形態において、接触・滑り度検出部の構成を説明するブロック図である。In embodiment which concerns on this invention, it is a block diagram explaining the structure of a contact and slip detection part. 本発明に係る実施の形態において、探触子と対象物が全く接触していない非接触状態から、探触子が対象物に接触する接触状態となり、その状態から探触子を昇降させて対象物を持ち上げようとするときの各要素の状態の様子を説明する図である。In the embodiment according to the present invention, the probe is brought into contact with the object from the non-contact state in which the probe and the object are not in contact at all, and the probe is moved up and down from that state. It is a figure explaining the mode of the state of each element when trying to lift an object. 本発明に係る実施の形態において、滑り発生が検出されたときに、把持ステップ数を変更して、滑り発生を抑制する様子を示す図である。In embodiment which concerns on this invention, when slip generation | occurrence | production is detected, it is a figure which shows a mode that the number of grasping steps is changed and slip generation | occurrence | production is suppressed. 本発明に係る実施の形態のロボットハンドシステムにおいて、対象物を最小限度の把持力で把持する処理の前半部分の手順を示すフローチャートである。4 is a flowchart showing a procedure of the first half of processing for gripping an object with a minimum gripping force in the robot hand system according to the embodiment of the present invention. 図6に引き続く処理の後半部分の手順を示すフローチャートである。It is a flowchart which shows the procedure of the latter half part of the process following FIG.
 以下に図面を用いて本発明に係る実施の形態につき詳細に説明する。以下では、対象物として、シリコンゴムの塊を説明するが、これは適度に軟らかく、過度に把持力を加えると外形が損傷する一例として用いたものであって、勿論、これ以外のもの、例えば、生体組織、豆腐、ゴムボール等を対象物としてもよい。また、剛体の容器のように、一旦把持している状態で容器中に他の収容物が付加されることで把持部と対象物との間に滑りが生じる場合のときの容器等であってもよい。以下で説明する材料、形状、寸法、数値等は例示であって、使用目的に応じ、これらの内容を適宜変更できる。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following, a mass of silicon rubber will be described as an object, but this is moderately soft and used as an example in which the outer shape is damaged when excessive gripping force is applied. Further, biological tissues, tofu, rubber balls, etc. may be used as objects. In addition, a container or the like when a slip occurs between a gripping part and an object by adding another container to the container while it is once gripped, such as a rigid container. Also good. The materials, shapes, dimensions, numerical values, and the like described below are examples, and these contents can be appropriately changed according to the purpose of use.
 以下では、対象物を把持する把持部として、昇降アクチュエータと把持アクチュエータによって駆動されるアーム、3つの多関節部を説明するが、これは手首と親指、人指し指、中指の動作を模擬したハードウェアの例であって、これ以外の構成であっても、対象物に対し相対的に移動して対象物を把持するものであればよい。最も簡単な構成では、固定壁に対し相対的に移動して対象物を把持する1つの可動アームで把持部を構成するものとしてもよい。このように、対象物を挟む可動部の数は1以上であればよい。また、対象物を挟む可動アームの関節の数も、2以上として多関節とすることが好ましいが、場合によっては、1関節であってもよい。 In the following, as a gripping part for gripping an object, an arm driven by a lift actuator and a gripping actuator and three multi-joint parts will be described. This is a hardware model that simulates the actions of the wrist and thumb, the index finger, and the middle finger. It is an example, Comprising: Even if it is the structure of those other than this, what is necessary is just to move relatively with respect to a target object and hold | grip a target object. In the simplest configuration, the gripping unit may be configured by one movable arm that moves relative to the fixed wall and grips the object. Thus, the number of movable parts that sandwich the object may be one or more. Further, the number of joints of the movable arm that sandwiches the object is preferably two or more, and may be a multi-joint, but may be one joint depending on the case.
 以下では、全ての図面において同様の要素には同一の符号を付し、重複する説明を省略する。また、本文中の説明においては、必要に応じそれ以前に述べた符号を用いるものとする。 In the following, similar elements are denoted by the same reference symbols in all drawings, and redundant description is omitted. In the description in the text, the symbols described before are used as necessary.
 図1は、把持部を有するロボットハンドシステム10の構成を説明する図である。把持部を有するロボットハンドシステム10は、親指、人指し指、中指の3本の指と手首の動作を模擬的に再現できるロボットハンドのハードウェアの部分と、ロボットハンドの動作を制御するソフトウェアを実行する制御部分とで構成される。制御部分は制御部70として図示されている。以下では、把持部を有するロボットハンドシステム10を、特に断らない限り、単にロボットハンドシステム10と呼ぶことにする。 FIG. 1 is a diagram illustrating the configuration of a robot hand system 10 having a gripping unit. The robot hand system 10 having a gripping unit executes a hardware part of a robot hand that can simulate the movements of the three fingers of the thumb, the index finger, and the middle finger and the wrist, and software that controls the operation of the robot hand. It consists of a control part. The control part is illustrated as a control unit 70. Hereinafter, the robot hand system 10 having the gripping portion is simply referred to as the robot hand system 10 unless otherwise specified.
 ロボットハンドシステム10のハードウェアの部分は、手首の動作を模擬的に再現する1つの昇降アクチュエータ12と、親指、人指し指、中指の多関節部17の動作を模擬的に再現する複数の把持アクチュエータ14と、親指、人指し指、中指の多関節部17の各先端の把持端部にそれぞれ設けられる探触子20を含んで構成される。これら全体が、対象物に対し相対的に移動して対象物を把持するものとしての広義の把持部に相当する。 The hardware part of the robot hand system 10 includes one lifting actuator 12 that simulates the wrist movement, and a plurality of gripping actuators 14 that simulate the movement of the multi-joint portion 17 of the thumb, index finger, and middle finger. And a probe 20 provided at the grip end of each tip of the multi-joint portion 17 of the thumb, index finger, and middle finger. All of these correspond to a gripping unit in a broad sense as a unit that moves relative to the object and grips the object.
 昇降アクチュエータ12は、ベース11に設けられた回転中心軸の周りに回転可能な2組のアーム13を回転して、手のひらに相当する平板部15をベース11が配置される水平面に対し垂直な方向に昇降する機能を有する駆動機構である。このように、昇降アクチュエータ12は、手のひらに相当する平板部15を昇降することで、親指、人指し指、中指の各多関節部17を一度に同じように移動させて、あたかも手首のように、その動作を再現することができる。 The elevating actuator 12 rotates two sets of arms 13 that are rotatable around a rotation center axis provided on the base 11, and the flat plate portion 15 corresponding to the palm is perpendicular to the horizontal plane on which the base 11 is disposed. This is a drive mechanism having a function of moving up and down. In this way, the lifting actuator 12 moves the multi-joint portions 17 of the thumb, the index finger, and the middle finger at the same time at the same time by moving up and down the flat plate portion 15 corresponding to the palm, like a wrist. The operation can be reproduced.
 かかる昇降アクチュエータ12としては、適当な小型モータを用いることができる。ここでは、小型ステッピングモータを用いるものとする。ステッピングモータは、駆動信号としてのパルス信号の1つごとに、単位角度だけ回転中心軸の周りに回転させることができる。したがって、昇降アクチュエータ12の駆動信号のパルス数が手のひらに相当する平板部15の昇降ステップ数となり、昇降量の大小は、駆動信号のパルス数で制御することができる。 As the elevating actuator 12, an appropriate small motor can be used. Here, a small stepping motor is used. The stepping motor can be rotated around the rotation center axis by a unit angle for each pulse signal as a drive signal. Accordingly, the number of pulses of the drive signal of the lift actuator 12 becomes the number of steps of lifting of the flat plate portion 15 corresponding to the palm, and the amount of lift can be controlled by the number of pulses of the drive signal.
 把持アクチュエータ14は、手のひらに相当する平板部15にそれぞれ回転可能に取り付けられた3つの多関節部17を、それぞれ独立に駆動する機能を有する。ここで、3つの多関節部17は、図1に示されるように、平板部15の先において1つの関節を有して親指の動作を再現できる1つと、2つの関節を有して人指し指、中指の動作をそれぞれ再現できる2つである。親指の動作を再現する1つの多関節部17と、人指し指、中指の動作を再現する2つの多関節部17とは、人の手と同様に、相互に向かい合って配置される。これら3つの多関節部17が実際に対象物を挟んで把持することになるので、これらが狭義の把持部と考えることができる。 The gripping actuator 14 has a function of independently driving the three multi-joint portions 17 that are rotatably attached to the flat plate portion 15 corresponding to the palm. Here, as shown in FIG. 1, the three multi-joint portions 17 have one joint that has one joint at the end of the flat plate portion 15 and can reproduce the movement of the thumb, and two index joints that have two joints. There are two that can reproduce the movement of the middle finger. One multi-joint portion 17 that reproduces the movement of the thumb and two multi-joint portions 17 that reproduce the movements of the index finger and the middle finger are arranged to face each other, like a human hand. Since these three multi-joint parts 17 will actually hold | grip with a target object, these can be considered as a holding part in a narrow sense.
 したがって、把持アクチュエータ14は、内部的には、親指に相当する多関節部17の
駆動を行うものと、人指し指に相当する多関節部17の駆動を行うものと、中指に相当する多関節部17の駆動を行うものの3系統のアクチュエータを含む。さらに、例えば親指に相当する多関節部17の系統のアクチュエータは、平板部15に対する回転駆動と、その先の1つの関節部の回転駆動とを行う2つの独立の回転駆動をそれぞれ行う2つのサブアクチュエータと含む。人指し指に相当する多関節部17の系統のアクチュエータと、人指し指に相当する多関節部17の系統のアクチュエータは、親指に相当する多関節部17よりもさらに関節部が1つ多いので、それぞれ3つの独立した回転駆動を行う3つのサブアクチュエータを含む。
Accordingly, the gripping actuator 14 internally drives the multi-joint portion 17 corresponding to the thumb, the multi-joint portion 17 corresponding to the index finger, and the multi-joint portion 17 corresponding to the middle finger. 3 actuators are included. Further, for example, the actuator of the multi-joint portion 17 system corresponding to the thumb has two sub-rotations that respectively perform two independent rotational drives that perform a rotational drive with respect to the flat plate portion 15 and a rotational drive of one joint portion ahead of the actuator. Including actuator. Since the multi-joint portion 17 actuator corresponding to the index finger and the multi-joint portion 17 actuator corresponding to the index finger have one more joint than the multi-joint portion 17 corresponding to the thumb, It includes three subactuators that perform independent rotational drive.
 かかる把持アクチュエータ14としては、昇降アクチュエータ12と同様に、適当な小型モータを用いることができる。ここでは、昇降アクチュエータ12と同様に、小型ステッピングモータを用いるものとする。上記のように、ステッピングモータは、駆動信号としてのパルス信号の1つごとに、単位角度だけ回転中心軸の周りに回転させることができる。 As the gripping actuator 14, an appropriate small motor can be used as in the lifting actuator 12. Here, a small stepping motor is used in the same manner as the lift actuator 12. As described above, the stepping motor can be rotated around the rotation center axis by a unit angle for each pulse signal as a drive signal.
 各多関節部17は複数の関節部を有するが、把持の最終段階では各多関節部17のうちの一部、例えば、親指に対応する多関節部17の最先端の関節部を回転駆動するだけとなることが多い。したがって、把持の最終段階では、その最先端の関節部を駆動する把持アクチュエータ14の駆動信号のパルス数が、例えば親指に相当する多関節部17の最先端の関節部の回転ステップ数となり、把持量、または把持力の大小は、この駆動信号のパルス数で制御することができる。 Each multi-joint portion 17 has a plurality of joint portions, but at the final stage of gripping, a part of each multi-joint portion 17, for example, the most advanced joint portion of the multi-joint portion 17 corresponding to the thumb is rotationally driven. Often only. Therefore, at the final stage of gripping, the number of pulses of the driving signal of the gripping actuator 14 that drives the most advanced joint is the number of rotation steps of the most advanced joint of the multi-joint 17 corresponding to the thumb, for example. The amount or the magnitude of the gripping force can be controlled by the number of pulses of this drive signal.
 探触子20は、向かい合って配置される3つの多関節部17のそれぞれの最先端の関節部の先端部に1つずつ配置される部品である。それぞれの探触子20は、3つの多関節部17によって対象物を挟み込むときに、対象物に実際に接触して把持する接触部を構成すると共に、対象物との間の接触、滑りを検出し、また、対象物の硬さを検出するためのセンサ部を構成する。 The probe 20 is a component arranged one by one at the tip of the most advanced joint part of each of the three multi-joint parts 17 arranged facing each other. Each probe 20 constitutes a contact portion that actually touches and grips the object when the object is sandwiched by the three multi-joint portions 17, and detects contact and slippage with the object. And the sensor part for detecting the hardness of a target object is constituted.
 図2は、探触子20周りの詳細図である。探触子20は、第1基台22の上に振動子24と振動検出センサ26が、さらにその上に略半球状のプラスチック製の接触ボール28が積層されて構成される接触・滑り度検出センサ部の部分と、第2基台32の上に圧力センサ34が搭載される圧力検出センサ部の部分と、接触・滑り度検出センサ部の第1基台22に設けられ、圧力センサ34の表面に接触する押付ボール30とを含んで構成される。これらの各要素は、一体化樹脂部36によって全体として一体化される。探触子20は、圧力検出センサ部の第2基台32の側を底面側として、各多関節部17の最先端の関節部の先端部に接着等で固定される。 FIG. 2 is a detailed view around the probe 20. The probe 20 has a contact / slip degree detection in which a vibrator 24 and a vibration detection sensor 26 are stacked on a first base 22 and a substantially hemispherical plastic contact ball 28 is further stacked thereon. The sensor part, the pressure detection sensor part on which the pressure sensor 34 is mounted on the second base 32, and the first base 22 of the contact / slip degree detection sensor part are provided. And a pressing ball 30 in contact with the surface. Each of these elements is integrated as a whole by the integrated resin portion 36. The probe 20 is fixed to the distal end portion of the most advanced joint portion of each multi-joint portion 17 by bonding or the like, with the second base 32 side of the pressure detection sensor portion being the bottom surface side.
 振動子24は、対象物に入射波を入射する機能を有し、振動検出センサ26は、対象物からの反射波を検出する機能を有する素子である。振動子24と、振動検出センサ26は、それぞれ圧電素子を用いることができる。すなわち、前者の場合は電気信号を入力して振動を生じさせる電気-機械変換機能を用い、後者は、振動信号を入力して電気信号を生じさせる機械-電気変換機能を用いるものとすることができる。 The vibrator 24 has a function of making an incident wave incident on an object, and the vibration detection sensor 26 is an element having a function of detecting a reflected wave from the object. A piezoelectric element can be used for each of the vibrator 24 and the vibration detection sensor 26. That is, the former uses an electro-mechanical conversion function that generates an electric signal by inputting an electric signal, and the latter uses an electro-mechanical conversion function that generates an electric signal by inputting an electric vibration signal. it can.
 図2では、振動子24に電気信号を供給する入力端子38と、振動検出センサ26からの電気信号を取り出す出力端子40が示されている。この入力端子38と出力端子40は適当な信号線によって、接触・滑り度検出部50に接続される。 FIG. 2 shows an input terminal 38 for supplying an electric signal to the vibrator 24 and an output terminal 40 for extracting an electric signal from the vibration detection sensor 26. The input terminal 38 and the output terminal 40 are connected to the contact / slip degree detection unit 50 by an appropriate signal line.
 なお、振動子24と振動検出センサ26の積層順は、図2のように対象物側を振動検出センサ26とすることが好ましいが、これを逆にして、振動子24を対象物側に配置するものとしてもよい。また、振動子24と振動検出センサ26を図2のように積層する構成とせずに、場合によっては、振動子24と振動検出センサ26を同心円状に配置する構成としてもよい。 It should be noted that the stacking order of the vibrator 24 and the vibration detection sensor 26 is preferably such that the object side is the vibration detection sensor 26 as shown in FIG. 2, but this is reversed and the vibrator 24 is disposed on the object side. It is good also as what to do. In addition, the vibrator 24 and the vibration detection sensor 26 may not be stacked as shown in FIG. 2, but the vibrator 24 and the vibration detection sensor 26 may be arranged concentrically in some cases.
 振動検出センサ26の上に設けられる接触ボール28は、例えばナイロン樹脂等のプラスチック樹脂で成形され、その半球状の表面で対象物にスムーズに圧接する機能を有する部材である。半球の半径は、例えば5mm程度を用いることができる。押付ボール30も同様な構成とすることができる。 The contact ball 28 provided on the vibration detection sensor 26 is a member that is formed of a plastic resin such as nylon resin and has a function of smoothly pressing the object on its hemispherical surface. As the radius of the hemisphere, for example, about 5 mm can be used. The pressing ball 30 can also have the same configuration.
 圧力センサ34は、探触子20が対象物に圧接されるときの押付圧を検出する機能を有する素子である。押付圧は、探触子20が対象物に接触したことを補助的に検出する機能を有する。したがって、場合によって、圧力センサ34を省略した構成としてもよい。 The pressure sensor 34 is an element having a function of detecting a pressing pressure when the probe 20 is pressed against an object. The pressing pressure has a function of supplementarily detecting that the probe 20 has contacted the object. Accordingly, in some cases, the pressure sensor 34 may be omitted.
 圧力センサ34としては、例えばひずみゲージを用いることができる。ひずみゲージを用いる場合は、所定のゲージ接着剤等を用いて第2基台32に固定できる。圧力センサ34がひずみゲージの場合は、押付圧に応じて抵抗値が変化するので、抵抗の両端の端子に適当な信号線を接続し、その信号線を制御部70に接続して、制御部70において抵抗値の変化から押付圧を算出するものとできる。 As the pressure sensor 34, for example, a strain gauge can be used. When a strain gauge is used, it can be fixed to the second base 32 using a predetermined gauge adhesive or the like. When the pressure sensor 34 is a strain gauge, the resistance value changes according to the pressing pressure. Therefore, an appropriate signal line is connected to the terminals at both ends of the resistor, and the signal line is connected to the control unit 70, so that the control unit In 70, the pressing pressure can be calculated from the change in the resistance value.
 第1基台22は、振動子24、振動検出センサ26、接触ボール28の積層体を保持する機能を有する固定板である。かかる第1基台22は、適当な基板で構成することができ、場合によって、振動子24への入力端子38、振動検出センサ26からの出力端子40をこの第1基台22に設けるものとすることができる。 The first base 22 is a fixed plate having a function of holding a laminated body of the vibrator 24, the vibration detection sensor 26, and the contact ball 28. The first base 22 can be formed of an appropriate substrate. In some cases, the first base 22 is provided with an input terminal 38 to the vibrator 24 and an output terminal 40 from the vibration detection sensor 26. can do.
 同様に、第2基台32は、圧力センサ34を保持する機能を有する固定板である。かかる第2基台32も、適当な基板で構成することができ、場合によって、圧力センサ34の端子をこの第2基台32に設けるものとすることができる。 Similarly, the second base 32 is a fixed plate having a function of holding the pressure sensor 34. The second base 32 can also be formed of an appropriate substrate. In some cases, the terminal of the pressure sensor 34 can be provided on the second base 32.
 一体化樹脂部36は、探触子20を全体として一体化するために、樹脂で全体を包むものである。この場合に、振動子24、振動検出センサ26の振動を過度に規制しないように考慮が払われる。かかる一体化樹脂部36としては、例えばシリコン樹脂を用いてモールドによって全体を一体化する構成とすることができる。 The integrated resin portion 36 is for wrapping the entire probe 20 in order to integrate the probe 20 as a whole. In this case, consideration is given so that vibrations of the vibrator 24 and the vibration detection sensor 26 are not excessively restricted. As this integrated resin part 36, it can be set as the structure which integrates the whole by a mold, for example using a silicon resin.
 再び図1に戻り、昇降アクチュエータI/F44は、昇降アクチュエータ12と制御部70との間に設けられるインタフェース回路である。昇降アクチュエータ12にその駆動回路が含まれる場合には、昇降アクチュエータI/F44は、信号レベルの整合を図るバッファ回路、波形整形回路、レベルシフト回路等で構成するものとできる。昇降アクチュエータ12にその駆動回路を含まないものとするときは、昇降アクチュエータI/F44にその駆動回路を含めるものとできる。 Returning to FIG. 1 again, the lifting actuator I / F 44 is an interface circuit provided between the lifting actuator 12 and the control unit 70. When the drive circuit is included in the lifting / lowering actuator 12, the lifting / lowering actuator I / F 44 can be configured by a buffer circuit, a waveform shaping circuit, a level shift circuit, and the like for matching signal levels. When the lift actuator 12 does not include the drive circuit, the lift actuator I / F 44 can include the drive circuit.
 同様に、把持アクチュエータI/F46は、複数の把持アクチュエータ14と制御部70との間に設けられるインタフェース回路である。各把持アクチュエータ14にその駆動回路が含まれる場合には、把持アクチュエータI/F46は、各把持アクチュエータ14ごとに信号レベルの整合を図るバッファ回路、波形整形回路、レベルシフト回路等で構成するものとできる。また、各把持アクチュエータ14にその駆動回路を含まないものとするときは、把持アクチュエータI/F46に、それらの駆動回路をそれぞれ含めるものとできる。 Similarly, the gripping actuator I / F 46 is an interface circuit provided between the plurality of gripping actuators 14 and the control unit 70. When each gripping actuator 14 includes its drive circuit, the gripping actuator I / F 46 is configured by a buffer circuit, a waveform shaping circuit, a level shift circuit, and the like for matching the signal level for each gripping actuator 14. it can. When each gripping actuator 14 does not include the drive circuit, the gripping actuator I / F 46 can include the drive circuit.
 接触・滑り度検出部50は、各探触子20と接続されて、各探触子20と対象物との間の把持状態を検出する回路である。接触・滑り度検出部50は、各探触子20ごとに設けられる回路によって構成されるが、各回路の内容は同じであるので、以下では、1つの探触子20についての1つの接触・滑り度検出部50の内容について説明する。 The contact / slip degree detection unit 50 is a circuit that is connected to each probe 20 and detects a gripping state between each probe 20 and an object. The contact / slip degree detection unit 50 is configured by a circuit provided for each probe 20, but since the contents of each circuit are the same, one contact / slip for one probe 20 will be described below. The contents of the slip detection unit 50 will be described.
 探触子20と対象物との間の関係としては、探触子20に対象物が全く接触していない非接触状態と、探触子20に対象物が接触している接触状態があり、接触状態には、探触子20と対象物が相対的に移動していない接触把持状態と、探触子20と対象物が相対的に移動していわゆる滑っている滑り状態とがある。接触・滑り度検出部50はこれらの各状態を区別して検出する機能を有する。さらに、接触・滑り度検出部50は、接触把持状態における対象物の硬さを検出する機能も有する。 The relationship between the probe 20 and the object includes a non-contact state where the object is not in contact with the probe 20 and a contact state where the object is in contact with the probe 20. The contact state includes a contact grip state in which the probe 20 and the target object are not relatively moved, and a so-called slip state in which the probe 20 and the target object are relatively moved. The contact / slip degree detection unit 50 has a function of distinguishing and detecting each of these states. Furthermore, the contact / slip degree detection unit 50 also has a function of detecting the hardness of the object in the contact gripping state.
 図3は、接触・滑り度検出部50の構成を説明するブロック図である。接触・滑り度検出部50は、探触子20における振動子24の入力端子38と接続される端子39と、振動検出センサ26の出力端子40に接続される端子41を備える。また、接触・滑り度検出部50は、端子41に入力端が接続される増幅器52と、増幅器52の出力端と端子39との間に設けられ、振動子24への入力波形と振動検出センサ26からの出力波形の間に位相差が生じるときは、周波数を変化させてその位相差をゼロにシフトする位相シフト回路54とを備える。 FIG. 3 is a block diagram illustrating the configuration of the contact / slip degree detection unit 50. The contact / slip degree detection unit 50 includes a terminal 39 connected to the input terminal 38 of the transducer 24 in the probe 20 and a terminal 41 connected to the output terminal 40 of the vibration detection sensor 26. The contact / slip degree detection unit 50 is provided between an amplifier 52 whose input terminal is connected to the terminal 41, and an output terminal of the amplifier 52 and the terminal 39, and an input waveform to the vibrator 24 and a vibration detection sensor. When a phase difference occurs between the output waveforms from 26, a phase shift circuit 54 is provided for changing the frequency to shift the phase difference to zero.
 位相シフト回路54は、振動子24への入力波形と振動検出センサ26からの出力波形との間に位相差が生じるときは、振動子24への入力振動の周波数を変化させて位相差をゼロにシフトし、位相差がゼロとなったときの振動子24への入力周波数を出力する。このように、位相シフト回路54は、対象物の物質特性に関連する位相差をゼロにする振動子24への入力周波数f1を出力するが、この周波数f1は、最初に振動子24への入力波形と振動検出センサ26からの出力波形との間に位相差が生じないときの振動子24への入力周波数f0とは異なっている。位相差の精度よい測定は困難であるが、周波数変化dfは高精度で測定が可能であるので、対象物の物質特性はこの周波数変化dfで高精度に評価することができる。 When a phase difference occurs between the input waveform to the vibrator 24 and the output waveform from the vibration detection sensor 26, the phase shift circuit 54 changes the frequency of the input vibration to the vibrator 24 to make the phase difference zero. And the input frequency to the vibrator 24 when the phase difference becomes zero is output. In this manner, the phase shift circuit 54 outputs the input frequency f1 to the vibrator 24 that makes the phase difference related to the material property of the object zero, and this frequency f1 is first input to the vibrator 24. This is different from the input frequency f0 to the vibrator 24 when there is no phase difference between the waveform and the output waveform from the vibration detection sensor 26. Although accurate measurement of the phase difference is difficult, since the frequency change df can be measured with high accuracy, the material property of the object can be evaluated with high accuracy by this frequency change df.
 かかる機能を持つ位相シフト回路54の内容については、上記特許文献2である特開平9-145691号公報に詳しく述べられている。このように、振動子24への入力波形と振動検出センサ26からの出力波形との間に位相差が生じるときとは、対象物に振動子24から振動が入射され、対象物から反射されてきた振動を振動検出センサ26で検出するとき等である。 The contents of the phase shift circuit 54 having such a function are described in detail in Japanese Patent Laid-Open No. 9-146991 which is the above-mentioned Patent Document 2. As described above, when a phase difference occurs between the input waveform to the vibrator 24 and the output waveform from the vibration detection sensor 26, vibration is incident on the object from the vibrator 24 and reflected from the object. For example, when the vibration detection sensor 26 detects the detected vibration.
 上記特許文献2では、探触子20を対象物に押し付けて、周波数変化dfから対象物の物質特性である硬さを測定することが述べられているが、周波数変化dfは、探触子20が対象物に接触したときにも接触の前後において生じ、また、探触子20と対象物との間に滑りが発生しても滑り発生の前後において生じる。したがって、周波数変化dfによって、探触子20と対象物との間の接触・滑りを検出することができる。 In the above-mentioned patent document 2, it is described that the probe 20 is pressed against the object and the hardness, which is the material property of the object, is measured from the frequency change df. Occurs before and after contact with the object, and even if slip occurs between the probe 20 and the object, it occurs before and after the occurrence of the slip. Therefore, contact / slip between the probe 20 and the object can be detected by the frequency change df.
 このような構成で、振動子24、振動検出センサ26と対象物を含む閉ループの共振状態を維持しつつ、探触子20と対象物との間の接触関係等が変化することで生ずる周波数変化dfを、df検出回路56で検出する。検出されたdfデータは、微分回路58によって微分され、dfデータよりもさらに感度のよい接触・滑り度を示すデータとして、端子59から制御部70に伝送される。 With such a configuration, a frequency change caused by a change in the contact relationship between the probe 20 and the object while maintaining a closed loop resonance state including the vibrator 24, the vibration detection sensor 26, and the object. df is detected by the df detection circuit 56. The detected df data is differentiated by the differentiating circuit 58 and transmitted from the terminal 59 to the control unit 70 as data indicating a contact / slip degree that is more sensitive than the df data.
 また、検出されたdfデータは硬さ算出部60によって対象物の硬さデータに変換されて端子61を介して制御部70に伝送される。周波数変化dfを対象物の硬さに変換するには、例えば較正テーブル等を用いることができる。較正テーブルは、硬さの基準とできる基準物質を探触子20の接触ボール28の先端に押し当て、そのときの周波数変化dfを得ることで作成できる。基準物質として、例えば、硬さを表すヤング率、せん断弾性係数と予め対応関係を求めてある各種の硬さを有するシリコンゴム等の標準物質を用いることができる。この機能は、特許文献2で既に述べられているものである。 Detected df data is converted into hardness data of the object by the hardness calculation unit 60 and transmitted to the control unit 70 via the terminal 61. In order to convert the frequency change df into the hardness of the object, for example, a calibration table or the like can be used. The calibration table can be created by pressing a reference material that can be used as a hardness reference against the tip of the contact ball 28 of the probe 20 and obtaining a frequency change df at that time. As the reference material, for example, a standard material such as silicon rubber having various hardnesses for which correspondence relationships with the Young's modulus representing the hardness and the shear elastic modulus are obtained in advance can be used. This function is already described in Patent Document 2.
 なお、振動子24、振動検出センサ26と対象物を含む閉ループの共振状態における振動の周波数は、位相シフト回路54により周波数を変化させることができるように、振動子24においてQの高い固有振動数以外の周波数に選ばれるのが好ましい。例えば、振動子24において、1次固有振動数が1MHzとすると、この周波数を避けて、400kHz等に設定することが好ましい。 The vibration frequency in the closed-loop resonance state including the vibrator 24, the vibration detection sensor 26, and the object can be changed by the phase shift circuit 54 so that the natural frequency having a high Q in the vibrator 24 can be changed. It is preferable to select a frequency other than. For example, when the primary natural frequency of the vibrator 24 is 1 MHz, it is preferable to avoid this frequency and set it to 400 kHz or the like.
 接触・滑り度検出部50が探触子20と対象物との間の接触関係等をどのように区別して検出するかを図4と図5を用いて説明する。図4と図5は、横軸に時間をとり、縦軸に4つの状態をとって、これら4つの状態の時間変化の様子を示す図である。4つの状態としては、各図において、上方から下方に向かって順に、昇降アクチュエータ12の駆動パルスのステップ数である昇降ステップ数、把持アクチュエータ14の駆動パルスのステップ数である把持ステップ数、df検出回路56の出力である周波数変化df、微分回路58の出力であるdf/dtである。ここで、把持アクチュエータ14の駆動パルスのステップ数は、把持の最終段階として、1つの多関節部17の最先端の関節部の回転のために用いられるアクチュエータについて示されている。 How the contact / slip degree detection unit 50 detects and detects the contact relationship between the probe 20 and the object will be described with reference to FIGS. 4 and 5. FIG. FIGS. 4 and 5 are diagrams showing time changes in these four states, with time on the horizontal axis and four states on the vertical axis. As the four states, in each figure, in order from the top to the bottom, the number of steps of raising / lowering that is the number of steps of the driving pulse of the raising / lowering actuator 12, the number of steps of the gripping that is the number of steps of the driving pulse of the grasping actuator 14, and df detection The frequency change df, which is the output of the circuit 56, and df / dt, which is the output of the differentiating circuit 58. Here, the step number of the drive pulse of the gripping actuator 14 is shown for the actuator used for the rotation of the most advanced joint part of one multi-joint part 17 as the final stage of gripping.
 図4は、探触子20と対象物が全く接触していない非接触状態から、探触子20が対象物に接触する接触状態となり、その状態から探触子20を昇降させて対象物を持ち上げようとするときの様子を説明する図である。例えば作業台の上に置かれている対象物を複数の探触子20で挟み込み、その後対象物を作業台から持ち上げようとするときの各状態の変化を示す図である。 FIG. 4 shows a contact state where the probe 20 contacts the target object from a non-contact state where the probe 20 and the target object are not in contact at all, and the probe 20 is moved up and down from that state to move the target object. It is a figure explaining a mode when it is going to lift. For example, it is a diagram showing changes in each state when an object placed on a workbench is sandwiched between a plurality of probes 20 and then the object is lifted from the workbench.
 時刻t0は初期状態であり、このときは探触子20に対象物がなく、全く接触が行われていない非接触状態である。したがって、振動子24への入力波形と振動検出センサ26からの出力波形との間に位相差が生じることがなく、位相シフト回路54において周波数変化が生じない。つまり周波数変化df=0である。 The time t0 is an initial state, and at this time, the probe 20 has no object and is not in contact at all. Therefore, there is no phase difference between the input waveform to the vibrator 24 and the output waveform from the vibration detection sensor 26, and no frequency change occurs in the phase shift circuit 54. That is, the frequency change df = 0.
 時刻t1は、把持アクチュエータ14を対象物に向かって移動駆動し、全ての多関節部17のそれぞれの最先端の関節部にそれぞれ設けられている探触子20が対象物に接触してさらに進んだときである。このように、探触子20を対象物に対し接触させるためには、把持部である多関節部17を対象物に対し移動駆動させるので、これを把持移動のための制御と呼ぶことができる。 At time t1, the gripping actuator 14 is driven to move toward the object, and the probes 20 provided at the most advanced joint parts of all the multi-joint parts 17 come into contact with the object and further advance. It's time. In this way, in order to bring the probe 20 into contact with the object, the multi-joint portion 17 that is a gripping part is driven to move with respect to the object, and this can be called control for gripping movement. .
 分かりやすい説明の例としては、時刻t1は、人指し指に相当する多関節部17と中指に相当する多関節部17をそれぞれ移動駆動してそれぞれの探触子20と対象物とを接触させ、その状態からさらに親指に相当する多関節部17の最先端の関節部を移動駆動して対象物に接触させ、さらに移動駆動させたときである。なお、この場合において、図4の周波数変化dfは、この親指に相当する多関節部17に設けられた探触子20についての様子が示される。 As an example of an easy-to-understand explanation, at time t1, the multi-joint portion 17 corresponding to the index finger and the multi-joint portion 17 corresponding to the middle finger are moved and driven, and the respective probes 20 and the object are brought into contact with each other. This is when the most advanced joint part of the multi-joint part 17 corresponding to the thumb is moved from the state to be brought into contact with the object and further moved. In this case, the frequency change df in FIG. 4 indicates the state of the probe 20 provided in the multi-joint portion 17 corresponding to the thumb.
 探触子20が対象物に接触すると、接触した瞬間に、振動子24への入力波形と振動検出センサ26からの出力波形との間に位相差が生じ、位相シフト回路54において周波数変化が生じ、df検出回路56においてその周波数変化dfが出力される。周波数変化dfは、非接触状態のときの周波数からの偏差でもあるので、非接触状態における周波数からの周波数変化を示すものとなる。 When the probe 20 comes into contact with an object, the phase difference occurs between the input waveform to the transducer 24 and the output waveform from the vibration detection sensor 26 at the moment of contact, and a frequency change occurs in the phase shift circuit 54. , Df detection circuit 56 outputs the frequency change df. Since the frequency change df is also a deviation from the frequency in the non-contact state, it indicates the frequency change from the frequency in the non-contact state.
 接触した瞬間は不安定であるので、接触を確実に検出するには、周波数変化dfとして、非接触状態の周波数から少しでも周波数が変化した瞬間ではなく、周波数変化dfについて予め閾値を定めて、検出されたdfがその閾値を超えたときに接触したものと判断することが好ましい。つまり、非接触状態における非接触状態周波数から、ある閾値を超えた周波数となったときに接触したものと判断することが好ましい。 Since the moment of contact is unstable, in order to detect contact reliably, the frequency change df is not the moment when the frequency changes even slightly from the frequency in the non-contact state, but a threshold is set in advance for the frequency change df, It is preferable to determine that the contact has been made when the detected df exceeds the threshold. That is, it is preferable to determine that the contact is made when the frequency exceeds a certain threshold from the non-contact state frequency in the non-contact state.
 このように、閾値を設定すると、厳密には接触した瞬間ではなく、閾値に対応するいくらかの接触圧で探触子20が対象物に接触し、いわば軽い把持状態となるときを接触状態として検出することになる。そこで、この状態を接触把持状態と呼ぶことにして、閾値を接触把持閾値周波数と呼ぶことができる。すなわち、非接触状態周波数からこの接触把持閾値周波数を超えて周波数が変化したときに、接触把持状態として判断するものとする。dfについて閾値を定めるときは、非接触状態周波数とこの接触把持閾値周波数との差の周波数差がdf閾値となる。 In this way, when the threshold value is set, strictly speaking, not the moment of contact, but when the probe 20 comes into contact with the object with some contact pressure corresponding to the threshold value and is in a light grip state, it is detected as a contact state. Will do. Therefore, this state is referred to as a contact gripping state, and the threshold value can be referred to as a contact gripping threshold frequency. That is, when the frequency changes from the non-contact state frequency exceeding the contact grip threshold frequency, the contact grip state is determined. When the threshold value is set for df, the frequency difference between the non-contact state frequency and the contact gripping threshold frequency becomes the df threshold value.
 接触圧はこの接触把持閾値周波数で定まるので、接触把持閾値周波数を適当に設定することで、接触圧を大きくも小さくもできる。例えば、例えば数グラムの把持力、場合によっては1グラム以下の把持力とすることができる。 Since the contact pressure is determined by the contact gripping threshold frequency, the contact pressure can be increased or decreased by appropriately setting the contact gripping threshold frequency. For example, a gripping force of, for example, several grams, and in some cases a gripping force of 1 gram or less can be obtained.
 図4では、時刻t1においてdfがdf閾値となって、接触把持状態とされるので、ここで把持アクチュエータ14は、把持移動を停止させる。これによって、作業台の上の対象物が把持部である複数の多関節部17によって接触把持された状態となってその状態が維持される。 In FIG. 4, df becomes the df threshold value at time t <b> 1, and the gripping state is reached, so the gripping actuator 14 stops gripping movement here. As a result, the object on the workbench is brought into contact and gripped by the plurality of multi-joint portions 17 that are gripping portions, and this state is maintained.
 図4では、時刻t1から時刻t2まで把持ステップ数は一定値に維持され、その間は、上記のように、把持部と対象物の間は接触把持状態が継続される。時刻t2において、昇降ステップ数が変更される。ここでは、昇降アクチュエータ12に、対象物を持ち上げるように昇降指令が出されたものとする。すると、対象物は作業台の上から上方に引き上げられようとするが、把持しているときの圧力は接触把持閾値周波数で定まる接触圧であるので、接触面積にこの接触圧を乗じた把持力が対象物の質量に基く重力方向の力よりも小さいと、探触子20に対し対象物が相対的に重力方向に移動し、探触子20と対象物との間に滑りが発生する。 In FIG. 4, the number of gripping steps is maintained at a constant value from time t1 to time t2, and during that time, the gripping state between the gripping part and the object is continued as described above. At time t2, the number of ascending / descending steps is changed. Here, it is assumed that a lift command is issued to the lift actuator 12 to lift the object. Then, the object tends to be pulled upward from the workbench, but since the pressure when gripping is the contact pressure determined by the contact gripping threshold frequency, the gripping force obtained by multiplying the contact area by this contact pressure. Is smaller than the force in the gravitational direction based on the mass of the object, the object moves in the gravitational direction relative to the probe 20, and slip occurs between the probe 20 and the object.
 滑りが発生すると、滑りがない接触把持状態のときの周波数から、非接触状態周波数の方へ周波数が変化する。図4では、時刻t2において、周波数変化dfが、再びゼロに向かって変化する様子が示される。そして、昇降ステップ数が対象物を持ち上げる方に増大するに従い、周波数変化dfが次第にゼロに近づき、時刻t3において、周波数変化df=0つまり、周波数が非接触状態周波数となり、探触子20と対象物との間の関係が非接触状態となったことが示される。 When the slip occurs, the frequency changes from the frequency in the contact grip state without slip to the non-contact state frequency. FIG. 4 shows how the frequency change df changes toward zero again at time t2. The frequency change df gradually approaches zero as the number of steps to lift the target increases, and at time t3, the frequency change df = 0, that is, the frequency becomes a non-contact state frequency, and the probe 20 and the target It is shown that the relationship between the objects is in a non-contact state.
 このような滑りの検出は、周波数変化dfよりも、微分回路58によってdfを時間で微分したdf/dtの変化によってさらに確実に検出できる。滑りが発生した瞬間は、接触把持された状態が維持されているときの周波数から周波数が変化した瞬間であるので、図4に示されるように、df/dtがゼロから急変するときである。したがって、df・dtに対し適当な閾値を設定し、その閾値を超えたときに、滑り発生を検出したものとできる。 Such slip detection can be detected more reliably by the change in df / dt obtained by differentiating df with respect to time by the differentiating circuit 58 than with the frequency change df. Since the moment when the slip occurs is the moment when the frequency changes from the frequency when the contacted and gripped state is maintained, as shown in FIG. 4, df / dt suddenly changes from zero. Therefore, an appropriate threshold is set for df · dt, and when the threshold is exceeded, the occurrence of slipping can be detected.
 図4は、把持ステップ数の大きさについて接触把持を検出した状態のままで維持する場合であるので、接触把持閾値周波数の設定によっては、上記のように、探触子20と対象物との間に滑りが発生する。図5は、滑り発生が検出されたときに、把持ステップ数を変更して、滑り発生を抑制する様子を示す図である。図5の横軸の内容、縦軸の各状態の内容は図4と同様である。また、時刻t0,t1,t2の内容も図4と同じである。すなわち、時刻t0からt2までの内容は、図4と同じである。 FIG. 4 shows a case where the size of the number of gripping steps is maintained in a state in which contact gripping is detected. Therefore, depending on the setting of the contact gripping threshold frequency, as described above, the probe 20 and the target object Slip occurs between them. FIG. 5 is a diagram illustrating how the occurrence of slip is suppressed by changing the number of gripping steps when the occurrence of slip is detected. The contents of the horizontal axis in FIG. 5 and the contents of each state on the vertical axis are the same as those in FIG. The contents at times t0, t1, and t2 are the same as those in FIG. That is, the contents from time t0 to t2 are the same as in FIG.
 時刻t2において、昇降ステップ数が変更され、昇降アクチュエータ12に、対象物を持ち上げるように昇降指令が出されたものとするところも図4と同じである。そして、df/dtに示されるように、時刻t2において探触子20と対象物との間に滑りが発生している。 It is the same as FIG. 4 that the number of lifting steps is changed at time t2 and a lifting command is issued to the lifting actuator 12 to lift the object. As indicated by df / dt, slip occurs between the probe 20 and the object at time t2.
 図4の場合と相違して、ここで、この滑りの大きさに応じて、把持ステップ数が変更される。具体的には、滑り状態が検出されると、位相シフト回路54が出力する周波数の変化量に応じて、把持アクチュエータ14が対象物を滑り状態から接触把持状態に戻す方向に把持ステップ数を変更する。すなわち、把持力を増大させるように、探触子20を対象物側に移動させる把持移動の制御を行う。これによって滑りに対応する。 Unlike the case of FIG. 4, here, the number of gripping steps is changed according to the magnitude of this slip. Specifically, when a slipping state is detected, the gripping actuator 14 changes the number of gripping steps in a direction in which the gripping actuator 14 returns the object from the slipping state to the contact gripping state according to the amount of change in the frequency output from the phase shift circuit 54. To do. That is, the gripping movement for moving the probe 20 toward the object side is controlled so as to increase the gripping force. This corresponds to slipping.
 この把持ステップ数の変更は、位相シフト回路54が出力する周波数が接触把持状態における周波数に戻るまで続けられる。図5では、時刻t4まで、把持ステップ数が順次大きくなるように変更が続けられる。そして、接触把持状態における周波数に戻れば、接触把持状態に戻り、滑り状態が検出しなくなったことになるので、把持ステップ数の変更を停止し、その状態を維持する。このときは、接触把持閾値周波数で定まる接触圧で、探触子20によって対象物が作業台の上方において接触把持されている。つまり、最小限度の把持力で対象物が把持されていることになる。 The change in the number of gripping steps is continued until the frequency output from the phase shift circuit 54 returns to the frequency in the contact gripping state. In FIG. 5, the change is continued so that the number of gripping steps is sequentially increased until time t4. And if it returns to the frequency in a contact gripping state, it will return to a contact gripping state, and since a slip state will no longer be detected, the change of the number of gripping steps is stopped and the state is maintained. At this time, the object is contact-gripped above the work table by the probe 20 with a contact pressure determined by the contact-gripping threshold frequency. That is, the object is gripped with the minimum gripping force.
 再び図1に戻ると、制御部70は、ロボットハンドシステム10のハードウェア部分を構成する各要素の動作を全体として制御する機能を有する。制御部70は、上記のように、昇降アクチュエータI/F44、把持アクチュエータI/F46、接触・滑り度検出部50と適当な信号線等で接続される。また、制御部70は、キーボード等の入力部42、ディスプレイ、プリンタ等の出力部43と接続される。かかる制御部70は、適当なコンピュータ等で構成することができる。 Returning to FIG. 1 again, the control unit 70 has a function of controlling the operation of each element constituting the hardware part of the robot hand system 10 as a whole. As described above, the control unit 70 is connected to the lift actuator I / F 44, the gripping actuator I / F 46, and the contact / slip degree detection unit 50 through appropriate signal lines or the like. The control unit 70 is connected to an input unit 42 such as a keyboard and an output unit 43 such as a display and a printer. The control unit 70 can be configured by an appropriate computer or the like.
 制御部70は、接触状態停止モジュール72と、滑り対応モジュール74と、把持維持モジュール76と、硬さ表示モジュール78とを含んで構成される。 The control unit 70 includes a contact state stop module 72, a slip handling module 74, a grip maintaining module 76, and a hardness display module 78.
 ここで接触状態停止モジュール72は、図4、図5における時刻t1における処理を実行する機能を有する。すなわち、把持部を構成する探触子20に対象物が接触していない状態から対象物に接触する方向に探触子20を対象物に対し把持移動させ、接触・滑り度検出部50が探触子20と対象物との接触把持を検出したときに把持移動を停止させる機能を有する。 Here, the contact state stop module 72 has a function of executing processing at time t1 in FIGS. That is, the probe 20 is gripped and moved with respect to the object in a direction in which the object is not in contact with the probe 20 constituting the grasping unit, and the contact / slip degree detection unit 50 detects the probe. It has a function of stopping the gripping movement when contact gripping between the touch element 20 and the object is detected.
 また、滑り対応モジュール74は、図5における時刻t2からt4までの期間における処理を実行する機能を有する。すなわち、接触把持を検出して把持移動を停止した状態のままで、探触子20に対し対象物が相対的に重力方向に移動して、接触・滑り度検出部50が滑り状態を検出するときに、位相シフト回路54が出力する周波数の変化量に応じて、探触子20が対象物を滑り状態から接触把持状態に戻す方向にさらに把持部を構成する探触子20を把持移動させる機能を有する。 Further, the slip handling module 74 has a function of executing processing in a period from time t2 to t4 in FIG. That is, the object moves relative to the probe 20 in the gravitational direction while the contact movement is detected and the grip movement is stopped, and the contact / slip degree detection unit 50 detects the slip state. Sometimes, according to the amount of change in the frequency output by the phase shift circuit 54, the probe 20 constituting the gripper is further gripped and moved in a direction in which the probe 20 returns the object from the sliding state to the contact gripping state. It has a function.
 また、把持維持モジュール76は、図5における時刻t4における処理を実行する機能を有する。すなわち、接触・滑り度検出部50が滑り状態を検出しなくなったときに、把持部を構成する探触子20の把持移動を停止させる機能を有する。 Further, the grip maintaining module 76 has a function of executing processing at time t4 in FIG. That is, when the contact / slip degree detection unit 50 no longer detects a slipping state, it has a function of stopping the gripping movement of the probe 20 constituting the gripping unit.
 また、硬さ表示モジュール78は、図4の時刻t2または図5の時刻t4において、対象物の硬さを表示する機能を有する。例えば、図5の時刻t4の場合では、把持維持モジュール76の機能によって処理が実行され、接触・滑り度検出部50が滑り状態を検出しなくなったときの位相シフト回路54が出力する周波数変化に基き、予め求められた周波数変化と硬さの関係を用いて、対象物の硬さを出力する機能を有する。 Also, the hardness display module 78 has a function of displaying the hardness of the object at time t2 in FIG. 4 or time t4 in FIG. For example, in the case of time t4 in FIG. 5, the processing is executed by the function of the grip maintaining module 76, and the frequency change output by the phase shift circuit 54 when the contact / slip degree detection unit 50 no longer detects the slip state is detected. Based on this, it has a function of outputting the hardness of the object using the relationship between the frequency change and the hardness obtained in advance.
 制御部70の上記の各機能は、ソフトウェアで実現でき、具体的には、ロボットハンド制御プログラムを実行することで実現できる。勿論、ソフトウェアで実現される機能の一部をハードウェアで実現するものとしてもよい。 The above functions of the control unit 70 can be realized by software, specifically, by executing a robot hand control program. Of course, some of the functions realized by software may be realized by hardware.
 上記構成の作用、特に制御部70の各機能の内容を図6、図7を用いて詳細に説明する。図6、図7は、ロボットハンドシステム10において、対象物を最小限度の把持力で把持する処理の手順を示すフローチャートである。これらの各手順は、ロボットハンド制御プログラムの各処理手順にそれぞれ対応する。 The operation of the above configuration, in particular, the contents of each function of the control unit 70 will be described in detail with reference to FIGS. FIG. 6 and FIG. 7 are flowcharts showing a processing procedure for gripping an object with the minimum gripping force in the robot hand system 10. Each of these procedures corresponds to each processing procedure of the robot hand control program.
 ロボットハンドシステム10において対象物を最小限度の把持力で把持する処理を実行するには、まず、ロボットハンドシステム10を起動し、ロボットハンド制御プログラムを立ち上げる。そして、作業台の上に対象物をセットして、把持指令を取得する(S10)。把持指令は、入力部42を介して取得することができる。 In order to execute processing for gripping an object with the minimum gripping force in the robot hand system 10, first, the robot hand system 10 is activated and a robot hand control program is started. Then, an object is set on the work table, and a grip command is acquired (S10). The grip command can be acquired via the input unit 42.
 次にこの把持指令に従って、把持アクチュエータ14が把持移動される。ここでは、上記のように、まず、人指し指に相当する多関節部17と中指に相当する多関節部17をそれぞれ移動駆動してそれぞれの探触子20と対象物とを接触させ、その状態からさらに親指に相当する多関節部17の最先端の関節部を移動駆動して対象物に接触させ、さらに移動駆動させるものとする。この場合で、親指に相当する多関節部17の最先端の関節部を移動駆動させる把持アクチュエータ14を単位駆動させる(S12)。単位駆動とは、図4、図5で説明した把持ステップ数を1つ進めることで、ステッピングモータの駆動パルスを1つ出力することに相当する。 Next, the gripping actuator 14 is gripped and moved according to this gripping command. Here, as described above, first, the multi-joint portion 17 corresponding to the index finger and the multi-joint portion 17 corresponding to the middle finger are moved and driven to bring the respective probes 20 and the object into contact with each other. Further, the most advanced joint part of the multi-joint part 17 corresponding to the thumb is moved and driven to contact an object, and further moved and driven. In this case, the gripping actuator 14 for moving and driving the most advanced joint part of the multi-joint part 17 corresponding to the thumb is driven in units (S12). The unit driving corresponds to outputting one driving pulse of the stepping motor by advancing the number of gripping steps described in FIGS. 4 and 5 by one.
 次に、接触把持を検出したか否かが判断される(S14)。具体的には、接触・滑り度検出部50において、位相シフト回路54が出力する周波数と、予め定めた接触把持閾値周波数とが比較され、接触把持閾値周波数を超える周波数であるときに、接触把持が検出されたと判断される。換言すれば、探触子20に対象物がない状態の非接触状態周波数から、予め定めた接触把持閾値周波数を超えて周波数が変化したときに、探触子20が対象物に接触し把持したと判断される。 Next, it is determined whether or not contact gripping is detected (S14). Specifically, the contact / slip degree detection unit 50 compares the frequency output from the phase shift circuit 54 with a predetermined contact gripping threshold frequency, and when the frequency exceeds the contact gripping threshold frequency, the contact gripping Is detected. In other words, the probe 20 touches and grips the object when the frequency changes beyond the predetermined contact gripping threshold frequency from the non-contact state frequency when the probe 20 has no object. It is judged.
 S14で判断が否定されるとS12に戻り、さらに把持アクチュエータ14が単位駆動される。すなわち、さらにステッピングモータの駆動パルスが1つ出力される。そして再びS14の判断が行われる。これをS14の判断が肯定されるまで繰り返す。S14の判断が肯定されると、もはや把持アクチュエータ14の単位駆動が行われない。すなわち、接触把持の状態で停止が行われる(S16)。ここまでの工程は、制御部70の接触状態停止モジュール72の機能によって実行される。S16の状態が、図4、図5のt1の状態である。 If the determination is negative in S14, the process returns to S12, and the gripping actuator 14 is further driven in units. That is, one stepping motor drive pulse is output. Then, the determination in S14 is performed again. This is repeated until the determination in S14 is affirmed. If the determination in S14 is affirmative, unit driving of the gripping actuator 14 is no longer performed. That is, the stop is performed in the contact gripping state (S16). The steps so far are executed by the function of the contact state stop module 72 of the control unit 70. The state of S16 is the state of t1 in FIGS.
 S16の次は、図7のS20に進む。すなわち、昇降指令が取得される(S20)。実際には、S10において、入力部42から把持指令を取得したときに、昇降指令、つまり、対象物を把持して持ち上げる指示が含まれているが、その指令を受け取っても、S16の状態になるまで、対象物を持ち上げる処理は行われない。したがって、昇降指令とは、ロボットハンドシステム10の制御部70における内部処理として、昇降に関する処理はS16の状態になったときに実行されるものとして取り扱われる処理である。 After S16, the process proceeds to S20 in FIG. That is, an elevation command is acquired (S20). Actually, when a gripping command is acquired from the input unit 42 in S10, an elevation command, that is, an instruction to grip and lift the object is included. Until it is, the process of lifting the object is not performed. Therefore, the up / down command is a process that is handled as an internal process in the control unit 70 of the robot hand system 10 and that the process related to the up / down is executed when the state of S16 is entered.
 昇降指令が取得されると、これに従って、昇降アクチュエータ12が単位駆動される(S22)。単位駆動の意味はS12で述べたものと同様で、ここでは、昇降アクチュエータ12のステッピングモータに、駆動パルスが1つ供給される。これにより、平板部15が単位量だけ上方に持ち上げられる。 When the elevating command is acquired, the elevating actuator 12 is driven in units according to this (S22). The meaning of the unit drive is the same as that described in S12. Here, one drive pulse is supplied to the stepping motor of the lift actuator 12. Thereby, the flat plate part 15 is lifted upward by a unit amount.
 そして、滑り度検出が行われる(S24)。具体的には、位相シフト回路54が出力する周波数について、接触把持閾値周波数を超えている接触把持状態から、非接触状態周波数の方向に周波数が変化するときに、把持部を構成する探触子20に対し対象物が接触把持状態から変化して滑っている滑り状態として検出される。さらに具体的には、周波数の変化を微分回路58によってdf/dtとして取得する。 Then, the slip degree is detected (S24). Specifically, with respect to the frequency output from the phase shift circuit 54, the probe constituting the gripping portion when the frequency changes from the contact gripping state exceeding the contact gripping threshold frequency toward the non-contact state frequency. The object 20 is detected as a slipping state in which the object is slipping from the contact gripping state. More specifically, the change in frequency is acquired by the differentiating circuit 58 as df / dt.
 そして、滑り度が予め定めた閾値を超えるか否かが判断される(S26)。探触子20に対する対象物の滑りは、位相シフト回路54が出力する周波数が変化した瞬間に生じるが、実際には、周波数変化の検出精度にも限界があるので、測定誤差等を考慮して閾値を設けることが好ましい。具体的には、接触把持状態の周波数から適当な周波数差だけ離れた周波数を閾値周波数とし、位相シフト回路54が出力する周波数が接触把持状態の周波数から閾値周波数を超えて変化したときにS26の判断が肯定されるものとできる。 Then, it is determined whether or not the slipping degree exceeds a predetermined threshold value (S26). The slip of the object with respect to the probe 20 occurs at the moment when the frequency output from the phase shift circuit 54 changes, but in reality, there is a limit to the detection accuracy of the frequency change. It is preferable to provide a threshold value. Specifically, a frequency that is a suitable frequency difference from the frequency in the contact gripping state is set as the threshold frequency, and when the frequency output from the phase shift circuit 54 changes from the frequency in the touch gripping state beyond the threshold frequency, the process of S26 is performed. Judgment can be affirmed.
 また、図4、図5で説明したように、微分回路58の出力を用いるときは、df/dtに対し適当な閾値を設定し、その閾値を超えたときにS26の判断が肯定されるものとしてもよい。 4 and 5, when the output of the differentiation circuit 58 is used, an appropriate threshold is set for df / dt, and the determination in S26 is affirmed when the threshold is exceeded. It is good.
 S26で判断が否定されるとS22に戻り、昇降アクチュエータ12がさらに単位駆動される。すなわち、昇降アクチュエータ12のステッピングモータにさらに1つの駆動パルスが供給され、昇降ステップ数が1つ大きくされる。そして再びS24を経てS26の判断が行われる。S26の判断が肯定されるまでこれが繰り返される。 If the determination is negative in S26, the process returns to S22, and the lift actuator 12 is further driven in units. That is, one more drive pulse is supplied to the stepping motor of the lift actuator 12, and the number of lift steps is increased by one. Then, the determination of S26 is performed again through S24. This is repeated until the determination in S26 is affirmed.
 S26で判断が肯定されると、探触子20に対し、対象物が相対的に重力方向に移動して滑りが発生していることになるので、次に把持アクチュエータ14が単位駆動される(S28)。把持アクチュエータ14の単位駆動の意味はS12で説明した内容と同じである。すなわち、探触子20が対象物に向かって、さらに把持ステップ数を1つ増やして把持移動駆動される。 If the determination in S26 is affirmative, the object moves relative to the probe 20 in the direction of gravity and slipping occurs, so the gripping actuator 14 is next driven unit-wise ( S28). The meaning of the unit drive of the gripping actuator 14 is the same as that described in S12. That is, the probe 20 is gripped and moved toward the target by further increasing the number of gripping steps by one.
 そして、滑り度が閾値を超えるか否かが判断される(S30)。この内容はS26と同じである。S30で判断が肯定されると、滑りがまだ継続していることになるので、S28に戻り、さらに把持ステップ数を1つ増やす。そして再びS30の判断が行われる。S30の判断が否定されるまで、これが繰り返される。 Then, it is determined whether or not the slipping degree exceeds a threshold value (S30). This content is the same as S26. If the determination in S30 is affirmative, slipping is still continuing, so the process returns to S28 and the number of gripping steps is further increased by one. And determination of S30 is performed again. This is repeated until the determination in S30 is denied.
 S30の判断が否定されると、滑りがなくなったことになるので、次に、昇降量が指令値未満であるか否かが判断される(S32)。S32の判断が肯定されると、最初に指示された昇降量まで対象物が持ち上げられていないことになるので、S22に戻り、昇降アクチュエータ12がさらに単位駆動される。つまり、昇降ステップ数がさらに1つ増加され、対象物が単位量さらに持ち上げられる。 If the determination in S30 is negative, slipping is eliminated, and it is next determined whether or not the amount of elevation is less than the command value (S32). If the determination in S32 is affirmative, the object has not been lifted up to the first ascending / descending amount, so the process returns to S22 and the ascending / descending actuator 12 is further driven in units. That is, the number of lifting steps is further increased by 1, and the object is further lifted by a unit amount.
 そして、S24以下の肯定が繰り返され、再び滑りがなくなった状態とされたら、再度S32の判断が行われる。S32の判断が否定されるまで、上記の工程が繰り返される。S32で判断が否定されると、昇降量が指令値以上となって、しかも滑りがなくなっていることになる。すなわち、最小限の把持力で対象物が持ち上げられ、滑らずに把持されている。 Then, when the affirmative from S24 is repeated and the slip is no longer caused, the determination of S32 is performed again. The above steps are repeated until the determination at S32 is negative. If the determination in S32 is negative, the lift amount is equal to or greater than the command value, and slipping is eliminated. That is, the object is lifted with a minimum gripping force and gripped without slipping.
 そこで、昇降ステップ数の変更も把持ステップ数の変更も停止され、その状態で把持が継続して維持される(S34)。そして、その状態における位相シフト回路54から出力される周波数に基いて、硬さ算出部60によって対象物の硬さが算出され、適当なディスプレイ等の出力部43に表示される(S36)。 Therefore, the change in the number of lifting steps and the change in the number of gripping steps are stopped, and gripping is continuously maintained in this state (S34). Based on the frequency output from the phase shift circuit 54 in that state, the hardness of the object is calculated by the hardness calculation unit 60 and displayed on the output unit 43 such as an appropriate display (S36).
 このようにして、位相シフト回路54の機能を利用して、探触子20と対象物との間の接触検出、滑り検出を行い、対象物を重力方向の相対的移動を生じないように、最小限度の把持力で把持することができる。また把持している対象物の硬さを表示することができる。 In this way, by using the function of the phase shift circuit 54, contact detection and slip detection between the probe 20 and the object are performed, and the object does not cause relative movement in the direction of gravity. It can be gripped with the minimum gripping force. Further, the hardness of the object being held can be displayed.
 本発明に係る把持部を有するロボットハンドシステムは、対象物を把持して、例えば任意の場所に運ぶ等の作業を行なう多関節指を有するロボットハンド等に利用できる。 The robot hand system having a gripping part according to the present invention can be used for a robot hand having a multi-joint finger that grips an object and carries it, for example, to an arbitrary place.
 10 (把持部を有する)ロボットハンドシステム、11 ベース、12 昇降アクチュエータ、13 アーム、14 把持アクチュエータ、15 平板部、17 多関節部、20 探触子、22 第1基台、24 振動子、26 振動検出センサ、28 接触ボール、30 押付ボール、32 第2基台、34 圧力センサ、36 一体化樹脂部、38 入力端子、39,41,59,61 端子、40 出力端子、42 入力部、43 出力部、44 昇降アクチュエータI/F、46 把持アクチュエータI/F、50 接触・滑り度検出部、52 増幅器、54 位相シフト回路、56 df検出回路、58 微分回路、60 硬さ算出部、70 制御部、72 接触状態停止モジュール、74 滑り対応モジュール、76 把持維持モジュール、78 硬さ表示モジュール。 10. Robot hand system (having a gripping part), 11 base, 12 lift actuator, 13 arm, 14 gripping actuator, 15 flat plate part, 17 articulated part, 20 probe, 22 first base, 24 vibrator, 26 Vibration detection sensor, 28 contact ball, 30 pressing ball, 32 second base, 34 pressure sensor, 36 integrated resin part, 38 input terminal, 39, 41, 59, 61 terminal, 40 output terminal, 42 input part, 43 Output unit, 44 lifting actuator I / F, 46 gripping actuator I / F, 50 contact / slip degree detection unit, 52 amplifier, 54 phase shift circuit, 56 df detection circuit, 58 differentiation circuit, 60 hardness calculation unit, 70 control Part, 72 contact state stop module, 74 slip-compatible module, 76 gripping Lifting module, 78 hardness display module.

Claims (3)

  1.  対象物に対し相対的に移動して対象物を把持する把持部と、
     把持部に設けられ、対象物に振動を入射する振動子と、対象物からの反射波を検出する振動検出センサとを有する探触子と、
     振動検出センサの出力端に入力端が接続された増幅器と、
     増幅器の出力端と振動子の入力端との間に設けられ、振動子への入力波形と振動検出センサからの出力波形との間に位相差が生じるときは、振動子への入力振動の周波数を変化させて位相差をゼロにシフトし、位相差がゼロとなったときの振動子への入力周波数を出力する位相シフト回路と、
     位相シフト回路が出力する周波数について、把持部に対象物がない状態の非接触状態周波数から、予め定めた接触把持閾値周波数を超えて周波数が変化したときに、把持部が対象物に接触し把持したことを検出する接触状態検出部と、
     位相シフト回路が出力する周波数について、接触把持閾値周波数を超えている接触把持状態から、非接触状態周波数の方向に周波数が変化するときに、把持部に対し対象物が接触把持状態から変化して滑っている滑り状態として検出する滑り状態検出部と、
     把持部の対象物に対する相対的な移動である把持移動を制御する制御部と、
     を備え、
     制御部は、
     把持部に対象物が接触していない状態から対象物に接触する方向に把持部を対象物に対し把持移動させ、接触状態検出部が把持部と対象物との接触把持を検出したときに把持移動を停止させる接触状態停止手段と、
     接触把持を検出して把持移動を停止した状態のままで、把持部に対し対象物が相対的に重力方向に移動して滑り状態検出部が滑り状態を検出するときに、位相シフト回路が出力する周波数の変化量に応じて、把持部が対象物を滑り状態から接触把持状態に戻す方向にさらに把持部を把持移動させる滑り対応手段と、
     滑り状態検出部が滑り状態を検出しなくなったときに、把持部の把持移動を停止させる把持維持手段と、
     を含むことを特徴とする把持部を有するロボットハンドシステム。
    A gripper that moves relative to the object and grips the object;
    A probe that is provided in the gripping unit and that has a vibrator that injects vibration into the object and a vibration detection sensor that detects a reflected wave from the object;
    An amplifier having an input terminal connected to the output terminal of the vibration detection sensor;
    When there is a phase difference between the input waveform to the transducer and the output waveform from the vibration sensor, it is provided between the output end of the amplifier and the input end of the transducer. A phase shift circuit that shifts the phase difference to zero and outputs the input frequency to the vibrator when the phase difference becomes zero,
    Regarding the frequency output from the phase shift circuit, when the frequency changes beyond the predetermined contact grip threshold frequency from the non-contact state frequency when there is no target in the gripper, the gripper touches the target and grips it. A contact state detection unit for detecting
    Regarding the frequency output by the phase shift circuit, when the frequency changes from the contact gripping state exceeding the contact gripping threshold frequency to the non-contact state frequency, the object changes from the contact gripping state to the gripping part. A slipping state detection unit for detecting a slipping state of sliding;
    A control unit for controlling a gripping movement that is a relative movement of the gripping part with respect to the object;
    With
    The control unit
    Grip when the gripping part is gripped and moved relative to the object in the direction of contact with the object from the state where the object is not in contact with the gripping part, and gripped when the contact state detection unit detects contact gripping between the gripping part and the object Contact state stopping means for stopping movement;
    The phase shift circuit outputs when the object moves in the direction of gravity relative to the gripping part and the slipping state detection part detects the slipping state while detecting the gripping contact and stopping the gripping movement. A slip handling means for further gripping and moving the gripping part in a direction in which the gripping part returns the object from the slipping state to the contact gripping state in accordance with the amount of change in frequency to be performed;
    Gripping maintaining means for stopping the gripping movement of the gripping part when the slipping state detecting unit stops detecting the slipping state;
    A robot hand system having a gripping portion.
  2.  請求項1に記載の把持部を有するロボットハンドシステムにおいて、
     滑り状態検出部は、位相シフト回路が出力する周波数を微分する微分手段を有し、微分手段の出力に基いて、位相シフト回路が出力する周波数の変化による滑り検出を行うことを特徴とする把持部を有するロボットハンドシステム。
    In the robot hand system having the grip portion according to claim 1,
    The slip state detection unit includes a differentiation unit that differentiates the frequency output from the phase shift circuit, and performs slip detection based on a change in the frequency output from the phase shift circuit based on the output of the differentiation unit. Robot hand system having a part.
  3.  請求項1に記載の把持部を有するロボットハンドシステムにおいて、
     把持維持手段の処理で滑り状態検出部が滑り状態を検出しなくなったときの位相シフト回路が出力する周波数変化に基き、予め求められた周波数変化と硬さの関係を用いて、対象物の硬さを出力する硬さ出力手段を備えることを特徴とする把持部を有するロボットハンドシステム。
    In the robot hand system having the grip portion according to claim 1,
    Based on the frequency change output by the phase shift circuit when the slip state detection unit no longer detects the slip state in the processing of the grip maintaining means, the relationship between the frequency change and the hardness obtained in advance is used. A robot hand system having a gripping part, comprising a hardness output means for outputting the height.
PCT/JP2009/071267 2008-12-26 2009-12-22 Robot hand system with gripping section WO2010074045A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008332712A JP2010149262A (en) 2008-12-26 2008-12-26 Robot hand system with gripping part
JP2008-332712 2008-12-26

Publications (1)

Publication Number Publication Date
WO2010074045A1 true WO2010074045A1 (en) 2010-07-01

Family

ID=42287654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/071267 WO2010074045A1 (en) 2008-12-26 2009-12-22 Robot hand system with gripping section

Country Status (2)

Country Link
JP (1) JP2010149262A (en)
WO (1) WO2010074045A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102773865A (en) * 2011-05-10 2012-11-14 精工爱普生株式会社 Robot hand and robot
DE102019210090A1 (en) * 2019-07-09 2021-01-14 Hochschule Karlsruhe, Technik und Wirtschaft Method for detecting slipping when gripping an object with a gripper
CN113967925A (en) * 2021-11-29 2022-01-25 浙江谱麦科技有限公司 Measuring device and measuring method for measuring joint jitter of industrial robot
US11550278B1 (en) * 2016-11-21 2023-01-10 X Development Llc Acoustic contact sensors

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5652261B2 (en) * 2011-03-01 2015-01-14 トヨタ自動車株式会社 Robot hand control device
WO2013018213A1 (en) * 2011-08-03 2013-02-07 株式会社安川電機 Positional displacement detector, robot hand, and robot system
WO2020075589A1 (en) * 2018-10-09 2020-04-16 ソニー株式会社 Information processing device, information processing method, and program
JP7472053B2 (en) 2021-02-12 2024-04-22 Pacraft株式会社 Bag conveying device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0579929A (en) * 1990-08-20 1993-03-30 Sadao Omata Detecting method for slip sense and detecting device thereof
JPH09145691A (en) * 1995-09-20 1997-06-06 Sadao Omata Frequency difference detection circuit and measuring unit employing it

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0579929A (en) * 1990-08-20 1993-03-30 Sadao Omata Detecting method for slip sense and detecting device thereof
JPH09145691A (en) * 1995-09-20 1997-06-06 Sadao Omata Frequency difference detection circuit and measuring unit employing it

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102773865A (en) * 2011-05-10 2012-11-14 精工爱普生株式会社 Robot hand and robot
US11550278B1 (en) * 2016-11-21 2023-01-10 X Development Llc Acoustic contact sensors
DE102019210090A1 (en) * 2019-07-09 2021-01-14 Hochschule Karlsruhe, Technik und Wirtschaft Method for detecting slipping when gripping an object with a gripper
DE102019210090B4 (en) 2019-07-09 2021-12-02 Hochschule Karlsruhe, Technik und Wirtschaft Method for detecting slippage when gripping an object with a gripper
CN113967925A (en) * 2021-11-29 2022-01-25 浙江谱麦科技有限公司 Measuring device and measuring method for measuring joint jitter of industrial robot
CN113967925B (en) * 2021-11-29 2022-12-20 浙江谱麦科技有限公司 Measuring device and measuring method for measuring joint jitter of industrial robot

Also Published As

Publication number Publication date
JP2010149262A (en) 2010-07-08

Similar Documents

Publication Publication Date Title
WO2010074045A1 (en) Robot hand system with gripping section
US10993774B2 (en) Robotic hand controller
US8499651B2 (en) Detecting device
US8662552B2 (en) Dexterous and compliant robotic finger
Shimoga Finger force and touch feedback issues in dexterous telemanipulation
JP3871293B2 (en) Object gripping control method by hand or manipulator
Maruyama et al. Delicate grasping by robotic gripper with incompressible fluid-based deformable fingertips
Li et al. Intuitive control of a robotic arm and hand system with pneumatic haptic feedback
Yin et al. Measuring dynamic shear force and vibration with a bioinspired tactile sensor skin
US20160136822A1 (en) Robotic finger structure
TW201424956A (en) Gripper apparatus and method for controlling the same
JP2019018340A (en) Work robot, control method therefor
Lin et al. IMU-based active safe control of a variable stiffness soft actuator
CN208100400U (en) A kind of three joint finger mechanisms
US20200290196A1 (en) Robot system, device, and method for applying a process force to an object
JP2006035329A (en) Object grip device
Sugaiwa et al. A methodology for setting grasping force for picking up an object with unknown weight, friction, and stiffness
JP2009036557A (en) Device and method for detection, and program
Zhang et al. Design and feasibility tests of a lightweight soft gripper for compliant and flexible envelope grasping
JP5253293B2 (en) Friction coefficient identification method, grip control method, robot hand and program for performing this grip control method
JP6322948B2 (en) Robot control apparatus, robot system, robot, robot control method, and program
Ju et al. A laminated continuum robot with gripping force-sensing forceps for robot-assisted minimally invasive surgeries
Suwanratchatamanee et al. Balance control of robot and human-robot interaction with haptic sensing foots
Agarwal et al. Measurement of shear forces during gripping tasks with a low-cost tactile sensing system
Pettersson-Gull et al. Intelligent robotic gripper with an adaptive grasp technique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834846

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09834846

Country of ref document: EP

Kind code of ref document: A1