WO2010073370A1 - Carrier processing device, object transmission system, and method - Google Patents

Carrier processing device, object transmission system, and method Download PDF

Info

Publication number
WO2010073370A1
WO2010073370A1 PCT/JP2008/073741 JP2008073741W WO2010073370A1 WO 2010073370 A1 WO2010073370 A1 WO 2010073370A1 JP 2008073741 W JP2008073741 W JP 2008073741W WO 2010073370 A1 WO2010073370 A1 WO 2010073370A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
signal
spread
noise
spread spectrum
Prior art date
Application number
PCT/JP2008/073741
Other languages
French (fr)
Japanese (ja)
Inventor
清明 横山
Original Assignee
横山 佳子
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横山 佳子 filed Critical 横山 佳子
Priority to JP2010543704A priority Critical patent/JP5378414B2/en
Priority to PCT/JP2008/073741 priority patent/WO2010073370A1/en
Publication of WO2010073370A1 publication Critical patent/WO2010073370A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/30Acquisition or tracking or demodulation of signals transmitted by the system code related
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • H04B1/7075Synchronisation aspects with code phase acquisition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/0022PN, e.g. Kronecker
    • H04J13/0025M-sequences

Definitions

  • the present invention relates to a carrier processing device that outputs a carrier necessary for transmitting an object to be transmitted by applying spread spectrum communication technology, and an object that incorporates the carrier processing device to execute object transmission
  • the present invention relates to a transmission system and method.
  • the direct spread spectrum spread communication technology is one form of the spread spectrum communication technology, and is one of signal transmission methods using two irregular signals of spread spectrum code and spread spectrum spread code having high cross-correlation. It has excellent properties such as characteristics, multiplicity, confidentiality, secrecy, and low power density and low interference with other systems, and is used in a wide range of fields such as mobile communication and wireless LAN.
  • direct spread spectrum communication is simply referred to as spread spectrum communication.
  • a code sequence multiplied by an information input signal at a transmitter is a spread code
  • a code sequence multiplied by a signal received at a receiver is reversed. This is referred to as a spreading code.
  • the spread spectrum communication is a signal transmission system using two irregular signals having a high cross-correlation, ie, a spread code and a despread code.
  • the set of spreading and despreading codes they use generally has zero cross-correlation unless they are actively operated to improve cross-correlation with each other.
  • a positive operation is performed on the set of spreading codes and despreading codes to establish a cross-correlation state that exceeds a predetermined cross-correlation state from a zero state and transmits information.
  • a state in which the cross-correlation state more than the specified level is established is referred to as a cross-correlation establishment state.
  • synchronization operations Aggressive operations to increase cross-correlation for spreading codes and despreading codes according to some rules are called synchronization operations, and they are referred to as a specific method for spread spectrum communication using the synchronization operations.
  • a signal built-in method or stored reference signal method or SR method: Stored Reference
  • SR method Stored Reference
  • TR method Transmitted Reference
  • FIG. 40 shows a configuration of a typical spread spectrum communication system with a built-in reference signal (Non-Patent Document 1 and Non-Patent Document 2).
  • Non-Patent Document 1 and Non-Patent Document 2 Today, the spread spectrum communication system having this configuration is widely used in mobile phone systems and GPS systems (GPS: Global Positioning System) and has become a standard form of spread spectrum communication system. Then, the configuration and characteristics of the spread spectrum communication system are used as a reference for comparison.
  • GPS Global Positioning System
  • the transmitter and the receiver have independent binary pseudo noise generators (hereinafter referred to as PNG: Pseudo Noise Generator).
  • the PNGs are not synchronized at the time when the communication system starts to operate, and the pair of spreading codes c S and despreading codes c D used in the pair generated by the PNGs are in a state in which no cross-correlation is established. It is. Therefore, prior to the transmission of information, the communication system first synchronize the PNG together, it is necessary to increase the cross-correlation of the spreading code c S despreading code c D.
  • the synchronization device provided in the receiver is an element for this purpose, and the reference signal built-in spread spectrum communication system having the configuration shown in FIG. 40 has two operations called synchronization acquisition operation and synchronization holding operation using this synchronization device. Synchronize by movement.
  • the synchronization acquisition operation is an operation of creating a cross-correlation establishment state by aligning the code pattern in the time domain with respect to the spread code c S of the transmitter despread code c D of the receiver, and the synchronization holding operation is This is an operation of maintaining the established cross-correlation establishment state.
  • a synchronization acquisition operation is performed.
  • the operation shifts to a synchronization holding operation, and an information input signal is transmitted under the synchronization holding operation.
  • the transmitter continuously transmits a signal including a spread code during the operation period.
  • the transmitter continuously transmits the spread code component, and the receiver and the synchronizer synchronize the receiver's PNG with the transmitter's PNG.
  • the communication is performed in a state where the cross-correlation between the spread code c S and the despread code c D is established.
  • FIG. 41 Patent Document 1, Patent Document 2, and Patent Document 3, Non-patent document 1, Non-patent document 2).
  • a spread spectrum output signal (hereinafter, referred to as a spread output signal) obtained by spreading the spectrum of the information input signal with a spread code and a despread code toward the receiver.
  • one of the transmitters is delayed by a predetermined time, and the receiver transmits it.
  • the component that is not delayed in the machine is delayed by the same time as the transmitter delay.
  • the operation performed by the receiver is the same as the signal processing operation in the time domain for one signal performed by the transmitter. This is an operation of making the cross-correlation positive by matching in the time domain, and this is nothing but a synchronization operation of two signals.
  • the spread spectrum communication system of the conventional reference signal transmission method configured as shown in FIG.
  • the 41 has a synchronization operation in which one of the spread output signal and the despread code is delayed by the transmitter, and the other component is delayed by the receiver.
  • the communication is performed with the cross-correlation between the component of the spread code c S and the component of the despread code c D of the spread output signal established.
  • FIG. 42 a second known example is shown in FIG. 42 as a spread spectrum communication system of a reference signal transmission method different from the configuration shown in FIG. 41 (Non-Patent Document 3).
  • the spread spectrum communication system of the reference signal transmission method in the form shown in FIG. 42 is similar to the form shown in FIG. 41.
  • One code string generated by one PNG provided only in the transmitter is spread and despread. Used for both code purposes, the transmitter sends the spread output signal and the despread code towards the receiver. At this time, the spread output signal and the despread code are transmitted as broadband signals in different frequency bands.
  • the transmission mechanism that transmits the despread code generated in the transmitter to the despread code different from the spread output signal in the dedicated frequency band is for the purpose of the receiver actively using the signal from the transmitter with high cross-correlation. Since it is provided, it is the synchronizer itself.
  • the spread spectrum communication system of the reference signal transmission method shown in FIG. 42 performs a synchronization operation for transmitting the despread code using a dedicated transmission medium different from the transmission of the spread output signal, and spread code c of the spread output signal. communicating in the state establishing the correlation component and the despreading code c D of S. Mitsuo Yokoyama "Spread-Spectrum Communication System” Science and Technology Publishers, 1988 Marubayashi et al.
  • Non-Patent Document 1 and Non-Patent Document 2 if the synchronization acquisition operation is not completed, the despread code synchronized with the receiver is Since it cannot be obtained, information transmission cannot be started.
  • This synchronization acquisition operation which is a signal analysis process of precise pattern matching for very long irregular signals, is simply a product sum of enormous number of times that is proportional to the square of the number of bits that make up a very long period of the spreading code. It requires statistical numerical processing with computation, and when the code length is several thousand bits, it performs tens of millions of product-sum operations just by calculating a single cross-correlation for all code patterns. That will take a lot of time.
  • the synchronization acquisition operation is a trial and error process that involves the ambiguity of selecting the most likely synchronization point from among a large number of calculation results, and depending on the result, it must be repeated again from the beginning.
  • the spread spectrum communication system with a built-in reference signal shown in FIG. 40 has a problem that lacks responsiveness to communication requests.
  • the synchronization acquisition operation performed in the spread spectrum communication system with a built-in reference signal shown in FIG. 40 samples data from the transmission medium in real time with high accuracy, holds it, and limits a large number of repetitive arithmetic operations. It is necessary to complete within a given time and adjust the pattern and phase in real time with high accuracy. Therefore, the synchronization device of the receiver that performs the synchronization acquisition operation includes a large memory space having the same length as the code string, a high-speed product-sum calculator, an analog-digital converter (ADC), a digital-analog converter (DAC), Generally, the apparatus is composed of a large-scale circuit resource or software resource having a wide bus or pipeline processing device for transmitting multi-bit data at a time.
  • ADC analog-digital converter
  • DAC digital-analog converter
  • the receiver of this system has a remarkably large apparatus size and complexity compared to receivers of communication systems other than this system.
  • the reference signal built-in spread spectrum communication system configured as shown in FIG. 40 has a problem that the apparatus becomes large and complicated.
  • the operation starts again from the synchronization acquisition for the next communication request that does not know when it occurs. It is necessary to be able to respond immediately without taking such a wasteful time.
  • the communication system needs to keep the transmitter and receiver in a synchronized state, so there is no information to be transmitted. Nevertheless, the transmitter continues to transmit a spreading code that is not modulated with the information input signal, and the receiver continues a synchronization maintaining operation of inputting a signal including the spreading code and maintaining a cross-correlation established state.
  • Transmission of a transmission signal during a period in which this information is not transmitted not only wastes the transmission capacity of a finite transmission medium, but it is always useless for other communications that share the same transmission medium and perform multiplex transmission. It acts as noise, causes unnecessary interference to other communications using the transmission medium, and causes a decrease in the SN ratio of each communication. Further, the interference is not limited to communication, but also extends to devices and human bodies around the transmitter that sends out the transmission signal, and causes a failure in the devices and living bodies around them. As described above, the spread spectrum communication system with a built-in reference signal shown in FIG. 40 wastes the transmission capacity of the transmission medium, and causes unnecessary interference with other communications, peripheral devices, living bodies, and the like that share the transmission medium. There are challenges.
  • the communication system has no information to be transmitted. Nevertheless, the transmitter performs a transmission operation, the transmission medium transmits a spread code, and the receiver performs a synchronization maintaining operation. As a result, both the transmitter and the receiver consume power during the synchronization holding operation.
  • the communication system performs communication only during a period in which information can be reliably transmitted when a communication request is generated, and then the transmitter does not operate until the next communication request comes, and the receiver It is desirable to intermittently and temporarily perform a reception operation and wait for information transmission from the transmitter. Compared to this, the power consumed by the transmitter and the receiver in the spread spectrum communication system of the reference signal built-in system shown in FIG. As described above, the spread spectrum communication system of the reference signal built-in method shown in FIG.
  • noise is generally superimposed on a signal transmitted through a transmission medium.
  • This noise is superimposed on the spread output signal and the spread code transmitted for spectrum despreading.
  • the influence can be suppressed by a series of despreading operations performed on the receiving side. is required.
  • the influence of the noise cannot be suppressed. Therefore, the SN ratio of the information input signal component obtained as the despread output is It will be low.
  • noise is generally superimposed on the signal transmitted on the transmission medium.
  • This noise is superimposed on the spread output signal and the spread code transmitted for spectrum despreading.
  • the influence can be suppressed by a series of despreading operations performed on the receiving side. is required.
  • the influence of the noise cannot be suppressed. Therefore, the SN ratio of the information input signal component obtained as the despread output is It will be low.
  • the spread spectrum communication can be performed without using the information transmission system having the configuration shown in FIG. Is possible.
  • a signal band is required separately from the spread output signal for the transmission of the spread code, and it must be a wideband transmission channel for transmitting a wideband signal called a spread code.
  • a spread output signal can be transmitted while sharing a single transmission channel, but a wideband channel for transmitting a spread code is required for each multiplex communication channel.
  • the need for a wider band for transmitting the same amount of information means that the amount of information that can be transmitted in the unit bandwidth of the transmission medium is reduced and the utilization rate of the band is low.
  • the spread spectrum communication system of the reference signal transmission method shown in FIG. 42 requires a remarkably wide band transmission medium for multiplexing, and there is a problem that the band utilization rate of the transmission medium is low.
  • An object of the present invention is to process a common noise signal including noise into a spread spectrum carrier and a spread spectrum despread carrier, thereby eliminating the need for an active synchronization device and a spectrum incorporating the carrier processing device. It is to provide a diffusion object transmission system and method.
  • a carrier processing apparatus is a carrier processing apparatus that outputs a spread spectrum carrier required at a transmission source and a spread spectrum despread carrier required at a transmission destination when transmitting an object.
  • a noise signal supply unit that outputs an irregular noise signal including noise as a signal component, spread spectrum carrier processing means for processing the noise signal into the spread spectrum carrier, and the noise signal as the spread spectrum spread carrier.
  • Spectrum despread carrier processing means for processing the noise signal, and the noise signal supply unit supplies the noise signal to both carrier processing means in common, the spread spectrum carrier processing means and the spectrum despread carrier With the processing means, the noise signal is shared.
  • the noise signal is processed into the spread spectrum carrier and the spread spectrum despread carrier having cross-correlation irregularity, and the spread spectrum carrier value and the spread spectrum spread carrier regardless of the spread spectrum carrier value. It is characterized in that a pair of the spread spectrum carrier and the spread spectrum spread carrier whose product is a constant is obtained.
  • An object transmission system is an object transmission system that transmits an object by applying spread spectrum communication technology, and includes a noise signal supply unit that outputs an irregular noise signal including noise as a signal component; Spread spectrum carrier processing means for processing a noise signal into the spread spectrum carrier; and spread spectrum carrier processing means for processing the noise signal into the spread spectrum spread carrier; and spreading the object with the spread spectrum carrier.
  • the noise signal supply unit supplies the noise signal to both the carrier processing means in common, and the diffusion carrier processing means and the despread carrier processing means share the noise signal to share the noise signal.
  • the noise signal is processed into the spread spectrum carrier and the spread spectrum spread carrier having cross-correlation irregularity, and the spread spectrum carrier value and the spread spectrum spread carrier value are independent of the spread spectrum carrier value.
  • An object transmission method is an object transmission method for transmitting an object by applying spread spectrum communication technology, the step of outputting an irregular noise signal including noise as a signal component;
  • the noise signal is processed into the spread spectrum carrier and the spread spectrum spread carrier having cross-correlation irregularity by sharing, and the spread spectrum carrier value and the spread spectrum carrier value regardless of the spread spectrum carrier value.
  • the components of the object from a signal including the spread spectrum output object in the diffusion carrier and executes a step of spectral despreading.
  • the spread spectrum carrier processing means and the spread spectrum despread carrier processing means share the noise signal having irregularity so that the noise signal is correlated with the irregular spread spectrum carrier.
  • the spread spectrum carrier and the spread spectrum spread that are processed into the spread spectrum spread carrier and the product of the spread spectrum carrier value and the spread spectrum carrier value is constant regardless of the spread spectrum carrier value. Since it is to obtain a carrier pair, it generates a spread spectrum carrier and a spectrum despread carrier using noise having irregularity existing in free space without performing an active synchronization operation. Can do. Furthermore, it is possible to provide an object transmission system that achieves both high noise resistance and quick response.
  • the information transmission system according to Embodiment 1 of the present invention has a configuration in which the carrier processing apparatus shown in FIG. 1 is incorporated, and generates a spread spectrum code incorporated in the information transmission system using the reference signal built-in method and the reference signal transmission method. Unlike PNG, it provides a new form that can be called a reference signal sharing system based on the unique idea that the configuration itself constitutes a synchronization device. Since the spread spectrum communication technique is generally applied to information communication, the information transmission system according to Embodiment 1 of the present invention is also applied to a spread spectrum information transmission system that transmits information that is a kind of object. This will be described based on an example. The object is an object to be transmitted.
  • transmission refers to moving something between physically different things such as position and time.
  • the object may include energy, A signal is included.
  • the application of the carrier processing apparatus according to the embodiment of the present invention is not limited to the spread spectrum information transmission system. An application example to transmission of objects other than information of the spread spectrum object transmission system according to the embodiment of the present invention will be described later.
  • a spread spectrum information transmission system which is a kind of object transmission system according to an embodiment of the present invention will be described as the present transmission system.
  • the carrier processing apparatus incorporated in this transmission system can correlate the noise signal by sharing a signal having a broad object-to-object property with common and irregularity, called a noise signal including noise as a signal component.
  • a noise signal including noise as a signal component.
  • the spread spectrum carrier hereinafter, referred to as a spread carrier
  • an inverse spread spectrum carrier hereinafter, referred to as a despread carrier
  • the object means an object to be transmitted.
  • the object includes not only information targeted by the conventional spread spectrum communication but also energy or a simple signal. Any one may be used as long as it should be transmitted between two points having different physical relationships. The transmission of these objects will be described later.
  • the state variable described here indicates a function representing the form of an object that is an entity transmitted in the object transmission system according to the embodiment of the present invention. This will be described using a specific example.
  • the object transmission system according to the embodiment of the present invention it is possible to transmit, for example, audio or a print image as an object as a transmission entity.
  • the sound at the previous stage of transmission is generally regarded as information by an electric signal as a time function and is transmitted. Therefore, for example, in the case of speech, the form of the object is captured by a time function state variable.
  • the print image at the previous stage of transmission is captured as distribution information in the light density plane obtained from the image.
  • the form of the object is captured by a state variable of a position function.
  • the light density exists in two orthogonal XY directions, so that it can be captured by a two-dimensional position function state variable.
  • the light shading exists in one axis direction, it is captured by a state variable of a one-dimensional position function.
  • the form of the object in the previous stage of transmission is not a scale that can be captured by a time function state variable, but can be captured by a position function state variable.
  • an object that is captured by a time function state variable or an object that is captured by a position function state variable is also targeted. .
  • a state variable of a time function that captures the form of an object is expressed as a signal for convenience.
  • the expression “signal used in the following” indicates a series of certain states, and is, for example, a signal waveform in terms of a time-series electric signal. It is not limited to electrical signals as a function of time.
  • the horizontal axis of the waveform diagram is not limited to time, and the content and dimensions such as position are arbitrary. For example, it is not limited to the state quantity, but may be any optical density state, brightness, acoustic pressure, or the like.
  • the operation principle of the spread spectrum communication system as telecommunications will be described using the electrical state of a certain object in the time space and the state of the frequency spectrum in the frequency space. Similarly, the operation principle of this transmission system will be described using a signal and its frequency spectrum.
  • the state variable in this transmission system is not limited to the time function, the frequency space used in the following description is not the frequency space for the time function, but can be obtained by Fourier transforming the state variable representing a certain signal.
  • a frequency space in which a frequency spectral density function exists is assumed.
  • a frequency spectral density function obtained by Fourier transform is a complex number.
  • a so-called power spectral density function using the absolute value is simply referred to as a spectral distribution.
  • the integration of the power spectral density function for a certain frequency region corresponds to the energy of the electrical signal.
  • the power spectrum density function integrated in a certain frequency region is referred to as energy, power or power of the spectrum component. .
  • the transmission system includes a carrier processing unit 1 corresponding to the carrier processing apparatus according to the first embodiment, a spread spectrum module (hereinafter referred to as a spread module) 3, and a spectrum despread module (hereinafter referred to as a despread module). 4 and the transmission medium 7.
  • a carrier processing unit 1 corresponding to the carrier processing apparatus according to the first embodiment
  • a spread spectrum module hereinafter referred to as a spread module
  • a despread module hereinafter referred to as a despread module
  • the diffusion module 3 includes a spread spectrum carrier processing means (hereinafter referred to as diffusion carrier processing means) 13 of the carrier processing section 1 and is configured by adding a spread spectrum means (hereinafter referred to as diffusion means) 14 to this.
  • diffusion carrier processing means a spread spectrum carrier processing means 13 of the carrier processing section 1
  • diffusion means a spread spectrum means
  • the despreading module 4 includes a spectrum despreading carrier processing unit (hereinafter referred to as despreading carrier processing unit) 15 of the carrier processing unit 1, and a spectrum despreading unit (hereinafter referred to as despreading unit) 16 is added thereto.
  • despreading carrier processing unit a spectrum despreading carrier processing unit
  • despreading unit 16 a spectrum despreading unit
  • Carrier processing unit 1 is composed of a diffusion carrier processing means 13 in addition to the despreading carrier processing means 15, a noise signal supply unit 2 for supplying the noise signal x W commonly to the carrier processing means 13, 15 .
  • the noise signal supply unit 2 includes an elementary noise signal source 10, a noise source 12, and a transmission medium 11.
  • the main components of this transmission system are a noise signal supply unit 2, a diffusion module 3, and a despreading module 4.
  • Transmission media 7 and 11 are any suitable transmission media.
  • the diffusion carrier processing means 13 of the carrier processing device 1 is incorporated in the diffusion module 3 of the transmission system, functions to output a spread carrier c T necessary for transmission of the object, despreading carrier processing means 15 of the carrier processing apparatus 1 is incorporated into the despreading module 4 of the transmission system, necessary for transmission of the object functions to output a despread carrier c R.
  • the diffusion carrier processing means 13 and the despreading carrier processing means 15 are shown as a part of the diffusion module 3 and the despreading module 4, respectively. However, the diffusion carrier processing means 13 and the despread carrier processing means 15 are shown. May be configured as being independent of the diffusion module 3 and the despreading module 4. In this case, for example, the diffusion carrier processing means 13 and the despread carrier processing means 15 together with the noise signal supply unit 2 constitute a carrier processing device (carrier processing unit). Specifically, each of the spread carrier processing means 13 and the despread carrier processing means 15 performs a processing process in advance separately from the spread spectrum or the reverse spread operation to obtain a spread carrier and a despread carrier.
  • the carrier processing apparatus exists independently of the diffusion module 3 and the despreading module 4.
  • the independent carrier processing apparatus corresponds to the carrier processing unit 1 of FIG. 1, and includes the noise signal supply unit 2, the diffusion carrier processing unit 13, and the despread carrier processing unit 15 as main parts. The configuration and operation of the noise signal supply unit 2, the diffusion carrier processing means 13, and the despread carrier processing means 15 will be described in the description of the present transmission system.
  • Containing noise signal source 10 of the noise signal supply unit 2 supplies to the transmission medium 11 containing the noise signal x E (step S101 in FIG. 2). It will be described later containing the noise source 10 and containing the noise signal x E.
  • the noise source 12 for example, supplies to the transmission medium 11 to collect noise x N antenna (step S102 of FIG. 2). Will be described later also the characteristics of the noise source 12 and the noise signal x N.
  • Transmission medium 11 a common noise signal the sum of the supplied noise x N, in the diffusion module 3 and the despreading module 4 from the original noise signal x E and the noise source 12 supplied from the original noise signal source 10 as x W, it is transmitted to the diffusion module 3 and the despreading module 4 (step S103 in FIG. 2).
  • Diffusion module 3 receives an input of the common noise signal x W as a noise signal x T, enter the object as diffuse input object a T, spread spectrum output object (hereinafter, referred to as diffuse output object) s transmission medium 7 is output.
  • the object is a general term for objects to be transmitted from the diffusion module to the despreading module.
  • an object may be information, may be a simple repetitive signal that does not represent special information, or may be energy such as electric power.
  • the object will be in various different forms during the transmission process and will be called with different names. Even if they are called with different names, they are the same object whose logical meaning does not change.
  • the diffusion carrier processing means 13 receives the noise signal x T, and supplies the spreading means 14 it is processed into a spread carrier c T (step S104 in FIG. 2).
  • the diffusion carrier c T is a signal for spread spectrum spreading an input object a T input to the spreading unit 14.
  • the transmission medium 7 transmits the diffusion output object s to the despreading module 4.
  • Despreading module 4 similar to the diffusion module 3 receives an input of a common noise signal x W as a noise signal x R, spectrum despreading input object the diffusion output object s from diffusion module 3 (hereinafter, despreading input as input objects referred to) h, the spectrum despreading output object (hereinafter, referred to as despread output object) to the a R.
  • despread carrier processing means 15 like the diffusion carrier processing means 13 of the diffusion module 3 receives the noise signal x R, processed it to despread carrier c R To the despreading means 16 (step S107 in FIG. 2).
  • Despreading carrier c R is a signal for spectral despreading component of spread input object a T in the despread input object h.
  • Despreading means 16 inputs the said despread carrier c R and the despread input object h, they are output as the despreading output object a R multiplied by (step S106, S108 in FIG. 2).
  • the despread output object a R is similar to the diffusion input object a T input to the diffusion means 14, thereby completing the transmission of the object.
  • the noise signal supply unit 2 supplies a common noise signal x W on both carrier processing means 13 and 15, and the diffusion carrier processing means 13, the despreading carrier processing means 15, the noise signal x W while working to spread carrier c T despreading carrier c R (including pairs Obujeto broadband property) the balanced irregularity of the cross-correlation of the noise signal x W by sharing, the spread spectrum carrier c T in which it said diffusing carrier product of the value of the diffusion carrier c T regardless of the value whether the value of the despread carrier c R represents a constant to obtain a pair of said despread carrier.
  • the noise signal x W is both carrier processing means 13, 15 described with respect to share.
  • the noise signal x W is a signal shared by one noise signal supply unit 2 that is arranged in common for the diffusion carrier processing means 13 and the despread carrier processing means 15.
  • the noise signal x W is those output by containing noise signal sources included in the noise signal supply unit 2, when transmitting the noise signal x W until both carrier processing means 13 and 15, the the noise signal x W, in which like noise superimposed in transmitting from the noise and containing noise signal source for generating the internal electric circuit of the noise signal supply unit 2 until both carrier processing means 13 and 15 are superposed .
  • Noise signal supply unit 2 is supplied in common to the noise signal x W on both carrier processing means 13 and 15 after the various noise exists.
  • the noise signal supply unit 2 is a noise signal x W the step of outputting to both carrier processing means 13 and 15, when viewed from both the carrier processing means 13 and 15, at the stage of inputting the noise signal x W, the noise signal x W diffusion carrier processing means 13 the despread carrier processing means 15 To share with. Since the signal going to the spreading module and the signal going to the despreading module are the same signal, the cross-correlation between the signal going to the spreading module and the signal going to the despreading module is a maximum value.
  • a noise signal having a high cross-correlation can be input between the diffusion module and the despreading module.
  • the cross-correlation shares a noise signal
  • an autocorrelation between a signal going to the spreading module and a signal going to the despreading module is taken.
  • the diffusion module and the despreading module share a noise signal to make a common signal, thereby cross-correlating signals input as processing materials for the spread carrier and the despread carrier. Keep it high.
  • the transmitting side and the receiving side As a practical method of using the same irregular signal at the receiving side, the receiving side transmits the irregular signal used for the despread code from the transmitting side, or the receiving side prepares the same irregular signal and uses it in synchronization. ing.
  • the configuration of a conventional spread spectrum communication system in which a single pseudo-noise signal is shared between a transmitter and a receiver is such that noise that is superimposed on an irregular signal used for a despread code on the receiving side during transmission from the transmitting side. Does not have the ability to suppress the impact.
  • the noise is taken into the noise signal as one component of the signal, and the noise signal that is the basis for processing both carriers is processed.
  • the cross-correlation is not destroyed, and the spread carrier and the despread carrier generated by the spread spectrum carrier processing means and the spread spectrum spread carrier processing means respectively maintain the cross correlation, and the spread spectrum carrier.
  • the spectrum despread carrier need not be forcibly synchronized, and a synchronizer becomes unnecessary.
  • the noise superimposed on the noise signal is also processed into both carriers as a signal component, and the influence of noise superposition can be avoided.
  • the electric signal propagates at a finite speed.
  • the temporal difference position and also the noise signal x T and the noise signal x R using the noise signal x W of the same noise signal supply unit 2 supplies The time difference due to the difference in That is, when there is a difference in distance to reach caused by a difference in position, both signals are accompanied by a time difference.
  • the cross-correlation value between the two signals becomes lower as the time difference between the two signals becomes larger than the cross-correlation value of the same signal.
  • the despread carrier processing means 15 also supplied with the same noise signal x W supplies the noise signal supply unit 2, the noise signal x T the strictly the noise signal x R not a practical problem as long as it is within the allowable range of tolerance even a decrease in the cross-correlation.
  • noise signals x T and the noise signal x R for example, in the case of the telecommunications, certain prescribed distance difference between the noise signal supply unit 2 and the diffusion carrier processing means 13 and despreading the carrier processing means 15
  • certain prescribed distance difference between the noise signal supply unit 2 and the diffusion carrier processing means 13 and despreading the carrier processing means 15 By limiting to the range, it can be handled in the same way as there is no time difference in practical use, and their cross-correlation is ideally lower than when there is no time difference, but the maximum of some height The value comes to show.
  • despreading carrier processing means are to share the noise signal x W, on the assumption that processing the noise signal into a spread carrier and despread carrier the is intended to mean, and the noise signal x T and the noise signal x R and defined difference until no longer be regarded as practically the same and within the limits that the between that occur in practical applications environment, the As a result, the cross-correlation is to maintain a high state above a certain level.
  • the transmission of the cross-correlation value between the despread carrier c R diffusion carrier processing means 13 spread carrier c T despreading carrier processing means 15 that processing is processing spread input object a T It is determined individually based on an allowable value that does not impede the process, and is not uniquely determined.
  • the setting of the state equal to or higher than the predetermined value is the same as when the transmission power is set according to the distance between the transmission source and the reception destination in the conventional case where information transmission is performed, for example, and cannot be determined uniquely.
  • the principle of object transmission is a mechanism in which the diffusion input object a T input to the diffusion module 3 is output in a similar manner to the despread output object a R of the despread module 4 that is an object transmission output. Further, the supply operation of the diffusion carrier c T despreading carrier c R, noise by supplying the noise signal x W in common to the diffusion carrier processing means 13 the despread carrier processing means 15, for sharing the noise signal x W signal while processing the diffusion carrier c T despreading carrier c R of balanced irregularity of the cross-correlation value between the despread carrier c R of the diffusion carrier c T regardless of the value whether the spread spectrum carrier and the product of the values and the spread carrier c T showing a constant to obtain a pair of said despread carrier c R, and their diffusion carrier c T despreading carrier c R, a diffuser means 14 despreading means 16 It is a mechanism to supply to each.
  • This transmission system can be applied in a wide range of fields, but in actual applications, operating conditions that require some kind of characteristic compensation, etc., occur in each component according to the characteristics specific to the actual application environment. .
  • compensation of data processing time may not be necessary.
  • an operation under ideal environmental conditions will be described as an operation common to all applications of the transmission system, and various conditions that need to be considered in each application field will be described later.
  • a diffusion input object aT is input to the diffusion module 3.
  • the spread input object a T is a specific object of transmission that is the purpose of this transmission system.
  • the spread input object a T is a signal whose spectrum is distributed in a limited frequency band equal to or lower than a prescribed frequency. This is the same as the case of an information input signal to be spread in a conventional spread spectrum communication system.
  • the spread input object a T is a signal whose spectrum is distributed in a limited frequency band.
  • a signal obtained by performing primary modulation of a primary carrier with information is used as the spread input object a T.
  • a fixed single frequency sine wave is used for the primary carrier, and for example, BPSK (Biphase Shift Keying) is used for the primary modulation.
  • BPSK Binary Shift Keying
  • Such a diffuse input object a T is generally an analog signal that takes a continuous value in a certain continuous range.
  • the specific configuration of the primary modulation does not have the characteristics of the embodiment of the present invention, and thus the description thereof is omitted.
  • the occupied frequency bandwidth of the spread input object a T used in the system configuration in that case is used as an evaluation criterion.
  • the wideband signal, and an indication that a signal of a wide occupied frequency bandwidth for the occupied bandwidth of the spread input object a T is used as an evaluation criterion.
  • the input diffusion input object a T is supplied to the diffusion means 14.
  • the diffusion means 14 multiplies the diffusion input object a T by the diffusion carrier c T to obtain a diffusion output object s.
  • This operation is shown by the following equation.
  • s (u) a T (u) * c T (u) (Formula 1)
  • the spread input object a T is a signal in which the upper limit frequency of the band in which the spectrum is distributed is limited.
  • the spread carrier c T is a signal having an arbitrary value in which the spectrum is distributed in a frequency band up to a frequency much higher than the upper limit frequency of the band of the spread input object a T (hereinafter, this spread input object).
  • a state in which the spectrum is distributed in a frequency band up to a much higher frequency than the upper limit frequency of the band of the object a T is referred to as “object broadband”). This is similar to the case where the conventional spread spectrum communication system uses a signal having an occupied frequency bandwidth that is much wider than the occupied frequency bandwidth of the information input signal as a spreading code. Further, in a conventional spread spectrum communication system, binary signals having positive and negative binary values that are equal to each other instead of zero are used for the spread code and the despread code. However, in this transmission system, the spreading carrier and the despreading carrier may take arbitrary values, and thus an analog signal may be used. A specific processing method of the diffusion carrier will be described later.
  • a diffusion carrier c T pairs object wideband of the signal, for example, a signal of the spread carrier c T, with respect to a change in state of the spread input object a T, irregular high conversion and high frequency It is to change things with gender.
  • the high change rate and the change with high frequency irregularity are, for example, several tenths to several thousandths of the repetition period of the primary carrier of the spread input object a T subjected to the primary modulation. In this period, the previous state is a change that becomes another state that is irrelevant or seemingly irrelevant. Irregularity means that there is no law or regularity in the change pattern of the signal, or it is not apparent, and the next state after a certain state is unrelated and unpredictable or apparently irrelevant.
  • this property is referred to as irregularity or irregularity.
  • the following equation shows an example of the autocorrelation function R CT-CT of the spread carrier c T.
  • R CT-CT ( ⁇ ) lim L [(2 * L) ⁇ 1 * ⁇ L ⁇ c T (w) * c T (w ⁇ ) ⁇ dw] (Formula 2)
  • L L dw indicates a definite integral of the interval from ⁇ L to + L (where L> 0) with respect to the variable w
  • lim L [] makes L infinite for the function in parentheses. The limit value shall be indicated.
  • Equation 2 the integration interval is assumed to be infinitely wide. However, in the case of a signal whose integrand changes frequently at the high change rate, in practice, the primary carrier repetition of the diffusion input object a T subjected to the primary modulation is performed. A section having a length of about a cycle or longer can be regarded as equivalent to an infinite region.
  • the irregularity is not only a completely irregular signal having no periodicity nor a law, but also a signal having a periodicity generated by a certain law, such as a pseudo noise, for example. This includes what can be considered completely irregular under the conditions.
  • the value of the autocorrelation function for ⁇ other than 0 and the vicinity thereof exhibits a characteristic that the absolute value is remarkably smaller than the value of the autocorrelation function for ⁇ in the vicinity of zero and becomes almost zero.
  • the state indicated by the autocorrelation number of this completely irregular function is described as having no autocorrelation or having no autocorrelation.
  • the multiplication operation shown in Formula 1 performed by the spreading means 14 is an operation of multiplying the spread carrier c T and the spread input object a T arithmetically, and in terms of telecommunications, the spread carrier c T is multiplied by the spread input object. a This is a so-called modulation operation in which balanced modulation is performed at T.
  • Diffusion input object a T whose frequency bands are limited to spectrum distribution in this operation, when multiplied by a diffusion carrier c T having irregularities against the object broadband performance, innumerable linear constituting the diffusion carrier c T
  • Each spectrum has a spectrum spread of the spread input object a T around the spectrum, and as a result, a spread output object s that can be regarded as a signal having the spectrum spread of the spread carrier c T is output. Is done.
  • the spread input object a T has its spectrum spread to the extent of the spectrum of the spread carrier c T and is output as the spread output object s.
  • Such spreading means 14 is a multiplication functional element, and both the spread carrier and the object may be analog signals.
  • the spreading means 14 includes, for example, an analog multiplier or a double balanced modulator (DBM: Double). Use Balanced Mixer).
  • the diffusion module 3 outputs the diffusion output object s toward the despreading module 4 to the transmission medium 7.
  • the transmission medium 7 is a medium for transmitting the diffusion output object s output from the diffusion module 3 to the despreading module 4.
  • Conventional spread spectrum communication techniques have been used primarily in wireless communications. It is also known that the conventional spread spectrum communication technique is used for underwater communication using sound waves. In these cases, the transmission medium 7 is a radio wave or sound wave propagation space. Since this transmission system can also be applied to wireless communication and underwater acoustic wave communication as a kind of spread spectrum communication technology, the transmission medium 7 may be a radio wave or acoustic wave propagation space. However, the present transmission system can be applied not only to them but also to object transmission on various transmission media.
  • This transmission system can also be used for object transmission using, for example, objects, states, substances, and energy supply paths provided for other existing purposes.
  • This is a transmission medium for purposes different from the original, for example, information between devices or within devices, existing electrical wiring provided for the purpose of energy transmission or security, light of lighting, pressure state of liquid or gas, etc. That is.
  • the transmission system can also be used for information transmission using an object that is an electric conductor but is not a so-called electric circuit element.
  • a steel frame forming a structural body of a building, a vehicle skeleton or outer shell, a pressure vessel or a pipe, a track, a steel cable, or a device housing structure is a transmission medium.
  • the present transmission system can be applied to the field of transmission of objects that generally do not prefer to be accompanied by radiation of electrical energy or concentration in a certain frequency band.
  • the human body is the transmission medium.
  • this transmission system can be applied not only to telecommunications, but also to the field of printing, for example.
  • the transmission medium 7 is not limited to an electric signal transmission medium, and any appropriate medium may be used.
  • the diffusion output object s output from the diffusion module 3 is transmitted to the despreading module 4 via the transmission medium 7. From the ideal environmental conditions, it is assumed that neither phase change such as delay nor attenuation occurs in the transmission.
  • the despreading module 4 inputs a signal on the transmission medium 7 that transmits the diffusion output object s from the spreading module 3 to the despreading module 4 as a despreading input object h.
  • the despread input object h is the diffuse output object s, and their relationship is as follows.
  • h (u) s (u) (Formula 3)
  • Despreading module 4 in the despreading means 16, as shown in the following equation, the despread input object h by multiplying the despread carrier c R, and despread output object a R.
  • a R (u) h (u) * c R (u) (Formula 4)
  • the diffusion carrier c T despreading carrier c R corresponding to an arbitrary u is a combination of a pair of signals is a constant k C of a not zero defined Multiplying.
  • the constant k C may be any value other than zero and may be positive or negative, but will be described below as being a positive value.
  • Despreading carrier c R is a signal having the same paired object Wideband and diffusion carrier c T. This is also similar to the case where the conventional spread spectrum communication system uses a signal having an occupied frequency bandwidth that is much wider than the occupied frequency bandwidth of the information input signal for the despread code. Further, in a conventional spread spectrum communication system, binary signals having positive and negative binary values that are equal to each other instead of zero are used for the spread code and the despread code. However, as described above, in this transmission system, the spread carrier and the despread carrier may take arbitrary values, and thus an analog signal may be used. Such a despread carrier c R is a signal with a broad object-to-object characteristic.
  • the de-spread carrier c R is not frequently changed with a high rate of change and a high frequency with respect to a change in the state of the spread input object a T. It is to change with regularity. Specific processing method of the despread carrier c R will be described later.
  • the multiplication operation shown in Expression 4 performed by the despreading means 16 is an arithmetic multiplication operation and a demodulation operation in terms of telecommunications, like the spreading means 14 of the spreading module 3.
  • the despread carrier c R may be an analog signal. Specifically, for example, an analog multiplier or a double balanced modulator (DBM) is used.
  • the operations performed by the spreading means 14 of the spreading module 3 and the despreading means 16 of the despreading module 4 have been described as so-called balanced modulation using a multiplication function element and demodulation thereof, functions used for the spreading means 14 and the despreading means 16 Elements are not limited to arithmetic multiplication functions.
  • the functional elements used in the spreading means 14 and the despreading means 16 are, for example, an inverting amplifier and an analog switch, and a positive and negative binary spread carrier that is not equal to zero but equal to a spread input object or a despread input object or a reverse spread object.
  • a simple configuration known from the prior art equivalent to multiplying a diffusion carrier may be used.
  • the functional elements used for the spreading means 14 and the despreading means 16 will be described as arithmetic multipliers, and the spreading operation and the despreading operation will be described as balanced modulation.
  • Formula 4 can be expanded as follows when Formula 3 and Formula 1 are applied.
  • the despread output object a R is expressed as follows.
  • a R (u) a T (u) * k C (Formula 7)
  • the right side of Equation 7 indicates that the diffusion module 3 is in a proportional relationship with the diffusion input object a T to be transmitted, and a signal in which the components of this relationship are connected has a waveform pattern of the diffusion input object a T. The shape is similar to the pattern. With that this despreading module spreading module 3 despread output object a R despreading operation performed by got a pattern of the input spread input object a T and similar shape to that fulfilled the transmission object.
  • the spreading input object a T that is in an irregular state in the transmission process is obtained by giving the characteristic of Formula 5 to the spreading carrier c T and the despreading carrier c R. and outputs it as despread output object a R to restore the state of the similarity to the original waveform, those capable of transmitting object.
  • the transmission principle of the object by this transmission system is that the spread input object in which the spectrum of the spread input object is spread by multiplying the spread input object in the limited occupied frequency band by the spread carrier having irregularity with wide bandwidth to the object.
  • the component of the spreading input object is originally limited.
  • the object is transmitted by returning to the state where the spectrum is distributed in the occupied frequency band.
  • This operation is a spread spectrum communication operation similarly to the conventional spread spectrum communication operation.
  • the diffusion carrier c T and the despread carrier c R is may be those take any value, the pattern is also intended may be arbitrary. That is, the diffusion carrier c T and the despread carrier c R are those may be analog signals such as white noise which is said to completely irregular.
  • the conventional spread spectrum information communication system uses a positive and negative binary PN code having a non-zero absolute value that is not zero but equal to a wide band to the object for spreading codes and despreading codes.
  • the carrier processing unit 1 is not only such a binary signal but also any other binary signal, an object having a wide band and irregularity, or an arbitrary ternary or more multivalued discrete value. signal having irregularities in the object broadband performance is also intended to be used in spreading the carrier c T despreading carrier c R.
  • a pair of diffusion carrier c T despreading carrier c R to be used is not only to different patterns, different objects It is assumed that there is no cross-correlation between spread carriers used for transmission and between despread carriers.
  • the spreading carrier and despreading carrier supply operation a spreading carrier and a despreading carrier that satisfy all these requirements are created and supplied to the corresponding spreading means and despreading means.
  • the spreading carrier and despreading carrier supply operations form a pair that has a large number of patterns with no cross-correlation and has irregularity with wide bandwidth to the object, and becomes a constant that is not zero when multiplied by each other.
  • a spreading carrier and a despreading carrier are created and supplied to the corresponding spreading means and despreading means.
  • Supply operation of the diffusion carrier c T despreading carrier c R is the noise signal supply unit 2, starts with elementary noise signal source 10 supplies the hydrogen noise signal x E to the transmission medium 11.
  • Containing the noise signal x E is irregular signal having irregularities against the object wideband be present in free space, an analog signal, a binary or multi-level code sequence or signal combination thereof, noise present in the free space , Noise mixed in the transmission medium, noise-like signal, or a combination of these.
  • the noise-like signal is a signal similar to noise.
  • the transmission medium 11 transmits the supplied containing noise signal x E, as a common noise signal x W diffusion carrier processing means 13 the despread carrier processing means 15.
  • Diffusing carrier processing means 13 the despread carrier processing means 15, to share the noise signal x W, respectively the noise signal x T from the transmission medium 11 of the carrier processing unit 1, input as x R.
  • the noise signal x W is as noise signals x T, and x R.
  • the term “as it is” means, for example, that they are exactly the same without any occurrence of phase difference or attenuation.
  • the relationship between x W , x T and x R at that time is as follows.
  • x T (u) x W (u) (Formula 8)
  • x R (u) x W (u) (Equation 9) That is, the noise signals x T and x R input from the noise signal supply unit 2 to the diffusion carrier processing means 13 and the despread carrier processing means 15 are transmitted to the diffusion carrier processing means 13 and the despread carrier processing means 15 by the transmission medium 11.
  • the prime noise signal source 10 containing the noise signal x E which is fed to the transmission medium 11 has irregularities against objects broadband performance, the noise signal x W, x T, x R also versus object broadband property It will be irregular.
  • transmission in which the signal at the transmission destination has irregularity with broadband property to object is referred to as transmission that inherits irregularity property with broadband property to object.
  • the transmission medium 11 of the carrier processing unit 1 transmits the noise signals x T and x R having irregularity with a wide bandwidth to the object to the diffusion carrier processing means 13 by transmission inheriting the irregularity with the broadband property to the object. And supplied to the despread carrier processing means 15.
  • the diffusion carrier processing unit 13 and the despreading carrier processing unit 15 of the carrier processing unit 1 input the noise signals x T and x R as processing materials to the diffusion carrier c T and the despreading carrier c R.
  • the diffusion carrier processing means 13 and the despread carrier processing means 15 have means for performing a so-called mapping conversion operation that outputs a unique value for any input.
  • the means for performing the mapping transformation can be expressed mathematically as a function.
  • f and g for example, an arbitrary monotonically changing function is used, and an example thereof is shown below.
  • the output is uniquely determined for any input value.
  • the input / output signals of such conversion are in some kind of causal relationship even though the degree of change is different. That is, when a change occurs in the output, there is some change in the input that causes the change corresponding to the change in the output. At that time, the state appearing in the output corresponds to the value of the input that uniquely determined the output, and therefore has an unpredictable irregularity that is completely unrelated to what the input takes next. Although the output takes a value different from the input, the next value has an unpredictable irregularity that is completely unrelated to the previous value. That is, by the mapping conversion, the input signal having irregularity is output as a signal having another variation pattern irregularity.
  • the input signal having irregularity is processed into an irregularity signal having another change pattern corresponding to the change of the input signal. It can be done.
  • processing an irregular input signal into an irregular signal having another change pattern corresponding to a change in the input signal is described as inheriting the irregularity.
  • the diffusion carrier processing means 13 and the despreading carrier processing means 15 of the carrier processing unit 1 perform the diffusion carrier c T having irregularity by processing inheriting the irregularity of the noise signals x T and x R input as processing materials. and creating a despread carrier c R.
  • the mapping conversion is processing that inherits the irregularity of the noise signals x T and x R input as processing materials, if the processing is used, the noise signal having no autocorrelation is changed to the input noise signal. A signal without autocorrelation of different patterns can be obtained.
  • the diffusion carrier processing means 13 and the despreading carrier processing means 15 for performing the map conversion from the noise signals x T and x R having no autocorrelation, the diffusion carrier c T and the despreading carrier c R having no autocorrelation. Will be obtained.
  • the power spectral density distribution function of an irregular process is given by the Fourier transform of the autocorrelation function of the irregular process.
  • the noise signals x T , x R , the spread carrier c T, and the despread carrier c R are irregular processes having no autocorrelation, and thus the autocorrelation functions are all in an impulse shape.
  • the power spectral density of the noise signals x T , x R , spread carrier c T , and despread carrier c R is given by Fourier transform of a function of its impulse shape.
  • the power spectral density distribution function of the noise signals x T , x R , the diffusion carrier c T , and the despread carrier c R can be said to be infinitely wide and uniform.
  • the noise signals x T and x R are signals having a broadband property against an object by transmission that inherits the properties of the elementary noise signals, and in addition, they are processed spread carriers in which irregularities are inherited. It is shown that c T and despread carrier c R are also signals having object broadband characteristics.
  • processing that inherits irregularity in the noise signals x T and x R that have irregularity with a wide band property with respect to an object by a conversion in which an output value is uniquely determined for an arbitrary input value, it is intended that can be assumed that its having a processing which is the output diffusion carrier c T and despreading carrier c R pairs object broadband property.
  • processing a signal with a broad object bandwidth by processing that inherits irregularity, and setting the output of the signal to have a broadband property with respect to the object will be referred to as processing that inherits the broadband property against the object.
  • narrowband used in the description of this transmission system not only means that the spectrum distribution region is much wider than the occupied frequency band of the spread input object in which the spectrum distribution is limited to a certain narrow region. As shown in Fig. 5, it also means that the signal is irregularly low in autocorrelation so low that it can be regarded as having no autocorrelation or practically no autocorrelation.
  • the carrier processing unit 1 performs processing for inheriting the irregularity and the broadband property against the object to the noise signals x T and x R having irregularity with the broadband property against the object, thereby providing the broadband property and irregularity against the object. and it supplies the spread carrier c T despreading carrier c R with.
  • component of the spread carrier c T of the despread input in object h is identical to the diffusion carrier c T diffusion carrier processing means 13, the despreading carrier c multiplying said despread input object h R and the spread carrier c T are signals generated by processing common noise signals x T and x R that can be regarded as the same supplied from a common noise signal x W.
  • the functions f and g shown in Expression 10 and Expression 11 satisfy Expression 14 for w having an arbitrary value, common noise signals x T and x R that can be regarded as the same are used instead of w. Equation 15 also holds.
  • the supplying operation of the spread carrier and despread carrier, the prime noise signal x E with irregularities containing noise signal source 10 against the object broadband performance supplies despread carrier processing and the diffusion carrier processing means 13 relative means 15, supplies a common noise signal x W respectively in transmission to inherit irregularities against objects broadband performance, diffusion carrier processing means 13 the despread carrier processing means 15, the noise signal x W is input as a noise signal x T , x R , and the condition of Equation 5 is satisfied by the conversion in which the output value of the input signal is uniquely determined for any same input and inherits the object broadband property and irregularity. it is intended to be processed to diffuse carrier c T despreading carrier c R of the pair. A method for creating a plurality of patterns of spread carriers and despread carriers without cross-correlation will be described later.
  • the noise signal supply unit 2 will be described. First described the noise signal x W and containing the noise signal x E.
  • the carrier processing unit 1 supplies the spread carrier c T despreading carrier c R having irregularities against the object broadband performance. Characteristics with irregularities against objects broadband performance of the diffusing carrier c T despreading carrier c R is the processing properties of spreading carrier processing unit and the despread carrier processing unit, the noise signal x T to the processing material, x It is obtained by inheriting the property of R with respect to object wideband and irregularity. For this reason, the noise signals x T and x R need to have irregularity with a broadband property against an object.
  • the carrier processing unit 1 supplies noise signals x T and x R having irregularity with a wide band property to the object to the diffusion carrier processing means and the despread carrier processing means. Furthermore, the characteristic of the noise signals x T and x R having irregularity in the wide band property with respect to the object has irregularity in the transmission characteristic of the transmission medium 11 and the irregularity in the noise signal x W to be transmitted with respect to the broadband object. Obtain by inheriting properties. Therefore, the noise signal x W, it is necessary to have irregularities against objects broadband performance. Thus, the noise signal x W carrier processing unit 1 is handled has irregularities against objects broadband performance.
  • the noise signals x W , x T , and x R may be arbitrary signals as long as they satisfy the condition of irregularity with respect to the object broadband.
  • the noise signals x W , x T , and x R may be analog signals having arbitrary values having a wide band-to-object property and irregularities.
  • Noise signal x W is the elementary noise signal x E is the source for supplying the containing noise signal source 10. Characteristics with irregularities against objects broadband performance of the noise signal x W is obtained from the characteristics having irregularities against the object broadband performance of the unit noise signal x E. Therefore, containing the noise signal x E should have irregularities against objects broadband performance. Therefore, containing the noise signal x E carrier processing unit 1 handles shall have irregularities against objects broadband performance. Further, containing the noise signal x E is meet the condition irregularities against objects broadband performance, the value to be taken is quite may be any signal. That is, containing the noise signal x E has irregularities against objects broadband performance are those may be analog signals take any value.
  • the noise signals x W , x T , and x R may be arbitrary irregular signals having arbitrary values
  • a plurality of elementary noise signal sources 10 for supplying a signal that becomes the noise signal x W are provided and supplied.
  • the noise signal supply unit 2 is composed of a plurality of elementary noise signal sources 10 that supply irregular electric signals and a transmission medium 11 using electric wires,
  • the operation of supplying to the means 13 and the despread carrier processing means 15 corresponds to that.
  • x W (u) ⁇ NE ⁇ x Ei (u) ⁇ (Formula 16)
  • sigma NE ⁇ indicates that the total adds N E th element 1 in ⁇ .
  • the natural noise referred to here is, for example, thermal noise generated when a current is passed through a semiconductor element such as a resistor, a vacuum tube, or a Zener diode in the case of telecommunications applications.
  • This thermal noise is caused by the irregular movement of the innumerable electrons and nuclei that make up the device, so there is no periodicity or law, and it is impossible to predict what value the waveform pattern will take at the next moment. It is said to be close to ideal white noise that exhibits irregularity and whose spectrum is uniformly distributed over a wide band.
  • Such thermal noise the principle of spread spectrum communication techniques, is said to be one of the ideal signal as a diffusion carrier c T despreading carrier c R, unlike the conventional reference signal internal system shown in FIG. 40
  • the carrier processing unit 1 since the periodicity in the prime noise signal x E also regularity also not required, to use a signal close to such an ideal white noise based on the noise signal x E It can be done.
  • a pattern woven natural sequence of paper fibers those containing noise signal source 10 may be used as containing noise signal x E supplied. This is also said to have irregularity with neither periodicity nor law, which is generally said to be that there is no fiber arrangement that is the same as two.
  • the noise source 12 supplies a signal other than the prime noise signal source 10 provided in intended purpose of supplying hydrogen noise signal x E may serve as elements of the noise signal x W.
  • external noise containing the noise signal source 10 is superimposed on the element noise signal x E supplies is also good as a component of the noise signal x W.
  • Such external noise is, for example, in the case of telecommunications applications, signals from other channels that perform multiplex communication by sharing the transmission medium, equipment and wiring in the vicinity of the transmission medium, lightning, electrostatic discharge, etc. This is so-called noise that intrudes due to a simple induction phenomenon.
  • the transmission medium 11 itself is to generate internal noise containing the noise signal source 10 is superimposed on the element noise signal x E supplies is also good as a component of the noise signal x W.
  • Such internal noise is, for example, thermal noise of a conductor used in the transmission medium in the case of telecommunications applications.
  • a signal for transmitting information from a transmitter of a conventional spread spectrum communication to a receiver is a signal having irregularity.
  • the spread output object s transmitted from the spread module to the despread module in the information transmission system to which the present transmission system is applied is also a signal having irregularity.
  • a signal in the process in which the diffusion carrier processing means and the despread carrier processing means of the carrier processing unit of this transmission system process from a noise signal to a diffusion carrier and a despread carrier is also a signal having irregularity.
  • Carrier processing unit 1 according to this embodiment, signals having these irregularities is also a good thing as an element of the noise signal x W.
  • a signal in the process of processing into a spread carrier or a despread carrier may be composed of a plurality of different ones or all of them.
  • noise signal supply unit 2 is intentionally provided for the purpose, the external noise or the internal noise is a signal supply unit that cannot be controlled by the carrier processing unit 1 according to the present embodiment for the purpose of supplying a noise signal.
  • the external noise, internal noise generated by the transmission medium itself, or signals generated by other devices are generally recognized and handled as obstructing the operation of the device, but the carrier processing unit according to the embodiment of the present invention in 1, but the so-called noise may be one containing the noise signal x E equivalent signal.
  • the transmission medium 11 may be provided with an antenna, or further provided with an amplifier or a receiver, so as to actively take in noise.
  • the noise x N in such a signal but are displayed separately for convenience in containing noise signal x E, logical sense signal as a component of the noise signal is exactly the same.
  • the diffusion module and the despreading module diffusion as a result as long as it has suitable properties to the workpiece carrier and despread the carrier, the noise x N and containing the noise signal x E in which handled the same as such.
  • the carrier processing unit 1 generally handled is recognized as one that should be eliminated to inhibit operation of the device, what is commonly referred to as a noise, spread carrier c T despreading carrier c R Used as a valuable signal for processing materials.
  • the carrier processing unit 1 a signal of value that work material to diffuse carrier c T despreading carrier c R, the same as the one that the seemingly called noise, clarity as a signal
  • the word “signal” is added to the noise and it is called a noise signal.
  • the carrier processing unit 1 according to the present embodiment does not require regularity at all for the spread carrier and the despread carrier to be supplied for the transmission of the object, and the noise signal having the broadband property against the object which may take any value.
  • the carrier processing unit 1 since the x W is a processed material, be superimposed inside and outside of the noise of the carrier processing unit 1 is the noise signal x W, the noise signal x W is inhibited the operation of the carrier processing unit 1 as long as a pair object broadband property There is nothing to do. That is, the carrier processing unit 1 according to the present embodiment operates by accepting the noise signal, even if there is interference such as unintentional noise superimposition that accidentally intrudes from inside and outside, as being worthy of a part of the noise signal. It has a property that can be called noise receptivity.
  • noise that is not intended by the carrier processing unit 1 entering from the inside and outside is indicated as x N
  • its signal source is indicated as a noise source 12.
  • characteristic having irregularities against the object broadband performance of the noise signal x W said obtained from the characteristic having irregularities against the object broadband performance of the unit noise signal x E Strictly speaking, however, it is obtained from the characteristics of irregularity in the wideband nature of the object noise signal and noise. Therefore, the carrier processing unit 1 according to this embodiment, it is necessary to signal containing the noise signal x E and the noise x N is superimposed is assumed to have irregularities against objects broadband performance.
  • Transmission medium 11 is a transmission medium for transmitting the noise signal x W and the diffusion carrier processing means 13 to the despreading carrier processing means 15.
  • an arbitrary medium may be used in the same manner as the transmission medium 7.
  • a spread output object of spread spectrum communication in which the signal transmitted by the transmission medium 11 is a signal having an arbitrary irregularity and the signal transmitted by the transmission medium 7 is an irregular signal having noise resistance. Therefore, if other circumstances permit, the transmission medium 11 and the transmission medium 7 may be the same as shown in FIGS. 33 and 34 will be described later.
  • noise signal source 10 supplies containing noise signal x E, the noise x N entering from any noise source and internal parts of the carrier processing unit 1, and overlap each other in the characteristics of the transmission medium 11 on the transmission medium 11 It becomes one of the noise signal x W.
  • the noise signal x W is transmitted to the diffusion carrier processing means 13 the despread carrier processing means 15 as a common noise signal despread carrier processing means 15 and the diffusion carrier processing means 13. From the ideal environmental conditions, it is assumed that neither phase change such as delay nor attenuation occurs in the transmission. That is, the noise signal x W as it is the noise signal x T to type diffusion carrier processing means 13 to the despreading carrier processing means 15, x R, and the diffusion carrier processing means 13 and the despreading module carrier processing means 15 the same noise signal Enter.
  • the diffusion carrier c T despreading carrier c R is a signal or despreads or spread the spectrum of the spread input object a T for transmitting, diffusing carrier processing means processed based on the noise signal x W which is supplied in common to 13 and despreading carrier processing means 15.
  • mapping transform as one of the processing method of spreading carrier c T despreading carrier c R.
  • the mapping transformation is a function whose output is uniquely determined for a certain input value itself, as shown in Expression 10 and Expression 11. And one input value itself, for electrical communication with electrical signals is a function of time, for example, corresponds to the instantaneous value of the noise signal x W.
  • the noise signal x W spread carrier c T despreading carrier c R created processed from varying every moment irregularly in response to flows time, with respect to the value of the momentary noise signal x W This is a series of conversion output values that are uniquely determined.
  • the certain input value itself corresponds to, for example, optical density state information of a certain point image on the image.
  • the noise signal x W spread carrier is created processed from c T despreading carrier c R optically gray state of an image obtained from the scanning position changes in response to the appropriate scan image varies irregularly is a series of converted output values uniquely determined with respect to the value of the noise signal x W per position one by one on the image.
  • mapping conversion is, for example, arithmetic operations, logical operations, function operations such as relational operations, and mapping. Further, in the process of map conversion, a suitable combination of a number of appropriate map conversions including those illustrated may be used as one map conversion. According to the processing operation of these mapping transform, under ideal environment, irregularities pair objects broadband performance of the noise signal x W of the work material is inherited, but also obtained property becomes a signal pairs. Moreover, in which while the same noise signal x W and the processing material, spreading the carrier c T despreading carrier c R of different patterns depending on the processing contents can be obtained. However, even signal patterns generated by different mapping transformations have a certain degree of cross-correlation between them if the same noise signal is used as an input. Therefore, for the purpose of supplying a pattern having no cross correlation in the diffusion carrier processing means 13 and the despread carrier processing means 15, other processing elements are used in combination.
  • mapping transformation was to obtain a spread carrier c T despreading carrier c R with uniquely output is determined conversion for the value itself of the input signal.
  • the value of the processing output at a certain point is determined using the value of the point shifted upstream or downstream in the sequence direction of the input signal.
  • the information that is delayed for a predetermined time is used in the case of telecommunication.
  • the transition in the sequence direction is, for example, in the sequence of the gray state information of the image obtained by scanning the image, with respect to the operation position. This corresponds to using the information of the position shifted by a specified amount before and after.
  • This signal is intended processing to transition to the series direction may be used as one of the processing methods of spreading carrier c T despreading carrier c R.
  • the diffusion carrier processing means 13 and the despread carrier processing means 15 have the same transition amount.
  • the despread carrier processing means 15 and a noise signal x T, which is remained by entering the diffusion carrier processing means 13, and input despread carrier processing means 15 transition is the noise signal x R were are the same. That is, the noise signal changed by the diffusion carrier processing means 13 and the despread carrier processing means 15 is different from the original noise signals x T and x R only in the change point, and is opposite to the diffusion carrier processing means 13. The same noise signal is transmitted to the diffusion carrier processing means 15. As a result, the shifted noise signal is a signal inheriting the property of having irregularity and wide bandwidth with respect to the object.
  • a noise signal shifted by a transition amount ⁇ 1 ( ⁇ 1 ⁇ 0) is defined as x S
  • a cross-correlation function R XS represented by the following equation between the shifted signal and the original noise signal x W before transition is represented. -Consider XW .
  • R XS ⁇ XW ( ⁇ ) lim L [(2 * L) ⁇ 1 * ⁇ L ⁇ x S (w) * x W (w ⁇ ) ⁇ dw] (Formula 17) Similar to the definition of the autocorrelation function shown in Formula 2, in the above formula, ⁇ L dw represents a definite integral in a section from ⁇ L to + L (where L> 0) with respect to the variable w, and lim L [] Indicates a limit value that makes L infinite for a function in parentheses.
  • the integration interval formula 17 is assumed infinitely large, when signals having irregularities in pairs object broadband property the integrand, practice, or about repetition period of the primary carrier of Obujeto a T that primary modulation If the interval is longer than that, it can be regarded as equivalent to an infinite region.
  • the cross-correlation function R XS-XW shown in Equation 17 evaluates the depth of the relationship between the signals x S and x W , and the cross-correlation function R XS-XW is zero for a certain ⁇ .
  • signal x W with ⁇ means that is quite independent of x S.
  • the maximum value is shown only at 1 , and the value is zero in other ⁇ regions. That is, the noise signal x W a tau 1 only the signal x S which is transitive, the noise signal x W there is only cross-correlation between x S itself is a signal obtained by transitions by tau 1, the cross-correlation with any signal other Absent. The signal x S is not cross-correlation and even the original signal x W.
  • the processing to transition the signal series direction is not serve the paired signals spread carrier c T despreading carrier c R. Therefore, for the purpose of supplying a pattern as a paired signal in the diffusion carrier processing means 13 and the despread carrier processing means 15, for example, other processing elements such as the mapping conversion described above are used together.
  • the object has a broad bandwidth with respect to the object or has no irregularity.
  • the noise signals x T and x R obtained as a result need to be irregular with a wide band-to-object property.
  • the process of combining a plurality of noise signals inherits the property of having broadband property to an object and irregularity, and the signal pattern changes, but there may be some degree of cross-correlation between the generated signal patterns.
  • the diffusion carrier processing means 13 and the despreading carrier processing means 15 the above-described mapping conversion, processing for shifting signals in the series direction, and processing for combining a plurality of signals are simple and basic processing elements.
  • the noise signal may be generated processed to diffuse carrier c T despreading carrier c R.
  • the signal may be processed by advanced signal processing including integration and differentiation.
  • the signal may be processed by adjusting the spectrum configuration of the signal using a spatial filter of an arbitrary dimension.
  • the arbitrary-dimensional spatial filter is, for example, a normal time-space frequency filter, a two-dimensional planar image spatial filter, or a three-dimensional moving image temporal and three-dimensional image four-dimensional spatial filter.
  • Adjustment of the spectral structure of a signal means, for example, attenuating or enhancing a spectral component in a specific frequency band, moving or synthesizing a spectral component in one frequency band to another frequency band, To replace a component with a spectral component in a certain frequency band.
  • Such signal processing is performed by, for example, fast Fourier transform processing and appropriate sequential data processing for adjusting spectral components.
  • the signal waveform of a noise signal is numerically analyzed to detect a feature point of a waveform such as zero cross, and a configuration that generates a predetermined irregular signal waveform from the time of the feature point,
  • various methods such as a configuration in which a voltage variable frequency oscillator (VCO) is controlled by a signal obtained by processing a noise signal to generate a signal whose frequency changes according to the value of the noise signal can be considered.
  • VCO voltage variable frequency oscillator
  • Processing using this sophisticated and complex signal processing technique inherits the properties of wideband and irregularity against objects, changes the signal pattern, and creates a large number of signal patterns that have no cross-correlation with each other.
  • a processing operation to a signal pattern that becomes a pair of signals as the diffusion carrier processing means and the despread carrier processing means is not included. Therefore, for the purpose of supplying a pattern that is a pair of signals in the diffusion carrier processing means 13 and the despread carrier processing means 15, if necessary, other processing elements such as the mapping conversion described above are used. Use together.
  • mapping transformation processing for shifting signals in the sequence direction
  • processing for combining multiple signals processing using sophisticated and complex signal processing techniques are either independent or lack thereof, for example, functions
  • the diffusion carrier processing 13 and the despreading carrier processing means 15 may be appropriately combined for the purpose of complementing the degree of processing, complexity, and the small number of signal patterns that can be created.
  • the respective processing methods are those in any combination, it may be configured to create a unique spreading carrier c T despreading carrier c R properties that need.
  • Arbitrary combination means that the combination of objects to be combined and the number of combinations is arbitrary.
  • an input of each processing method is a signal that satisfies the requirements as a noise signal, for example, an intermediate signal in the processing process.
  • the signal supply relationship may be, for example, a nested structure, a feedback structure, a feedforward structure, or a parallel or series structure.
  • the carrier processing unit 1 according to the present embodiment spread carrier processing means 13 the despread carrier processing means 15 is processed create and spread carrier c T despreading supplied to the diffusion means and despreading means from a common noise signal
  • the carrier c R needs to be present in such a manner that at least the element representing the necessary information in the signal sequence of the spread input object a T can be restored on the despreading module side with respect to the position and length of the signal sequence. Is. Then, those may be a continuous signal having a property as a diffusion carrier c T despreading carrier c R.
  • the diffusion carrier c T despreading carrier c R is, for example, as in for a period spread input object represents a content to be transmitted, spreading the carrier c T continuously only in a section of a length a signal having a property as a despread carrier c R as those may be.
  • the diffusion carrier c T despreading carrier c R within said length interval, or those be burst discontinuous signal or impulse-like signal having a property as a diffusion carrier and despread carrier It is.
  • a spread carrier and a despread carrier that are a burst-like discontinuous signal or an impulse-like signal will be described later.
  • the noise signals x W , x T , and x R having irregularity with wide bandwidth to the object may be supplied only in the waveform sections necessary for processing and creating the spread carrier c T and the despread carrier c R. are those, containing the noise signal x E are those which may be supplied as required in the noise signal x W is required waveform segment having irregularities at least to-object broadband performance.
  • diffusion carrier processing means 13 the despread carrier processing means 15 has irregularities against objects broadband property requiring noise signal x W at least the noise signal supplying section 2 except some containing noise of the transmission system out When the signal source 10 can supply as much as necessary in the necessary waveform section, it becomes the noise signal supply unit 2.
  • the carrier processing unit 1 incorporated in the present embodiment uses a method as illustrated here as a processing material common to the diffusion carrier processing means and the despread carrier processing means for generating a noise signal having a wide band-to-object property and irregularity.
  • Spread carrier and despread carrier are object wideband, irregular, or paired signals, different patterns, or many different patterns The pattern is obtained or processed so as to have no mutual correlation.
  • the configuration of the carrier processing unit 1 incorporated in the present embodiment shown in FIG. 1 has no cross-correlation in the supply operation of the spread carrier and the despread carrier described above as the best mode for carrying out the invention.
  • a plurality of patterns, pairs object with irregularities in broadband performance, diffusion carrier c T despreading carrier c R of the cross-correlation established state of the combination of the signals forming the pair is a constant defined not zero when multiplied with each other the is intended to supply to the diffuser means and despreading means, in which spread spectrum communication is performed by the information transmission principle already described with reference to its diffusion carrier c T despreading carrier c R.
  • noise resistance equivalent to that of a conventional spread spectrum communication system can be obtained.
  • noise resistance of the transmission system according to the first embodiment will be described.
  • the diffusion output object s that is the output of the diffusion module 3 is transmitted to the despreading module 4 without changing the transmission medium 7.
  • the transmission medium 7 includes signals other than the diffusion output object s.
  • electromagnetic waves are generated from various communication inside and outside the environment where this transmission system exists and from electric / electronic systems / equipment / parts.
  • a signal entering through guidance or a transmission signal other than the present transmission system that performs multiplex transmission by sharing the transmission medium 7.
  • These signals exist regardless of whether they are preferred or not, regardless of the transmission system, and are so-called noise for the diffusion output object of the transmission system.
  • the noise is superimposed on the diffusion output object s depending on the characteristics of the transmission medium 7.
  • m is the noise superimposed on the diffusion output object s in the transmission medium 7.
  • the despreading input object h input from the transmission medium 7 by the despreading module 4 is expressed by adding the spread output object s output from the spreading module 3 and the noise m as shown in the following equation.
  • the h (u) s (u) + m (u) (Equation 19)
  • the despreading module 4 performs a despreading operation of multiplying the despread input object h on which the noise is superimposed by a despread carrier, and the result is given by the following equation.
  • the despread output object a R obtained from the despreading means 16 shown in Expression 21 is obtained as a mixed signal of not only the spread input object a T but also a signal obtained by multiplying the noise m and the despread carrier c R. It is done. Since the second term is a noise term, it is not necessary for information transmission.
  • the despread output object a R is composed of a term obtained by multiplying the diffuse input object a T by a constant. The waveform is different from the waveform, and the information to be transmitted is not accurately represented.
  • the despread output object expressed by Equation 21 it is necessary to separate the component of the diffuse input object from the noise or reduce the noise component by some method.
  • the separation operation is performed using the difference in the occupied frequency bandwidth of the spectrum between the spread input object component and the noise component, as in the conventional spread spectrum communication system.
  • the component of the diffuse input object represented by the first term of Equation 21 is a signal whose spectrum is distributed only in a certain limited frequency region, whereas the noise term represented by the second term of the equation 21 It is multiplied by a despread carrier.
  • the noise shown here is a signal irrelevant to the despread carrier, and the irrelevant signals have zero cross-correlation.
  • the despread carrier is a signal having irregularity with a wide band property against an object, like the spread carrier.
  • the signal multiplied by them is a wideband irregularity of the degree of object wideband or higher. Signal. This is the same as the effect obtained by the spread spectrum operation, noise, so that the spectrally spread by a reverse spread carrier c R.
  • the spectrum is spread to the same extent as the occupied frequency bandwidth of the despread carrier or larger, and it is irregular with high bandwidth against objects. It becomes a signal with.
  • the occupied bandwidth of the despread carrier and BW CR noise m is spectrum spread is multiplied by this diffusion carrier, after spreading, it is assumed to be the signal of the occupied bandwidth BW CR. Further, it is assumed that the noise energy P M in the despread output object is uniformly distributed in the frequency band of the width BW CR .
  • separating and extracting the component of the spread input object a T from the mixed signal of the component of the spread input object a T and the component of the noise m using the difference in the occupied frequency bandwidth of the spectrum means, for example, that the mixed signal is input to the spread it is through a filter which passes only the occupied frequency band of the object a T.
  • the filter passes all the spectrum of the diffuse input object a T , but does not pass the spectrum of other bands, and uses, for example, a low-pass filter.
  • the noise spectrum m only the spectrum occupied frequency band of the spread input object a T a pass band of the filter can pass.
  • the spectrum of the diffuse input object a T and the spectrum of noise that can pass through the filter appear in the output of the filter.
  • This filter is also used in the receiving unit of the conventional spread spectrum communication system, and is generally placed immediately after the multiplication operation of the spread spectrum spread. In the configuration of the transmission system shown in FIG.
  • despreading means 16 is constituted by a multiplying function and the filter function shown in equation 20, it multiplies the despread input object h despreading carrier c R, spreading the results
  • the despread output object a R is output through a filter that selectively passes only the occupied frequency band of the input object a T. Since there is no feature of the present invention in the multiplication function, the filter function, and the structure of the despreading means combining them, they are expressed by a single symbol.
  • the ratio of the energy of the component of the diffuse input object to the energy of the noise component is obtained.
  • This is the S / N ratio of the despread output object output by the filter, and is one of the indexes for evaluating the performance of the present transmission system as the object transmission means.
  • the spectrum of each signal is uniformly distributed in the occupied frequency band of each signal.
  • the output occupied bandwidth from the multiplication function of the despreading means is BW CR of the total energy P M components of the noise, of the despread output object through the filter of the occupied bandwidth BW
  • the energy PMA that appears as a part is expressed by the following equation.
  • the present transmission system separates the components of the spread input object from the noise components using the difference in the occupied frequency bandwidth of the spread input object and the despread carrier.
  • the energy of noise superimposed on the diffusion output object in the transmission medium that transmits the diffusion output object from the diffusion module to the despreading module is larger than the energy of the diffusion output object.
  • the diffusion output object of all other channels is noise for transmission of one channel.
  • the total energy of noise is one hundred times larger than the energy of the diffuse output object of one channel.
  • the ratio of the energy of the target transmission signal to the noise transmission medium is also inherited by the target transmission signal to noise energy ratio in the output signal of the multiplication function of the despreading means, the multiplication In the output of the function, a signal in which noise of 100 times energy is superimposed on the despread diffused input object appears.
  • the ratio of the occupied frequency bandwidth of the despread carrier to the occupied frequency bandwidth of the spread input object is, for example, 1000 times.
  • the energy of the noise component of the signal appearing at the output of the diffusion input object extraction filter after despreading can be reduced to one tenth of the energy of the component of the diffusion input object to be despread.
  • the ratio of the energy of the noise component to the energy of the diffuse input object component in the despread output object can be reduced as much as the ratio of the occupied frequency bandwidth of the despread carrier to the occupied frequency bandwidth of the diffuse input object is increased. Is.
  • adjustment of the occupied frequency bandwidth of the spread input object is performed by adjusting the frequency of the primary modulation carrier when creating the spread input object, for example. Further, the adjustment of the occupied frequency bandwidth of the despread carrier is performed by adjusting the occupied frequency bandwidth of the elementary noise signal used as the processing material of the despread carrier, for example.
  • the influence of noise superimposed on the spread output object in the transmission medium 7 on the despread output object is set to a ratio of the occupied frequency bandwidth of the despread carrier to the occupied frequency bandwidth of the spread input object, and the filter performs the despreading means.
  • the characteristic of reducing the occupied frequency band of the despread output object output from the above by limiting the occupied frequency band of the spread input object to the occupied frequency bandwidth of the diffused input object is referred to as noise resistance hereinafter.
  • this transmission system realizes noise resistance.
  • the influence term of the noise of the despread output object indicated by the second term on the right side of Equation 21 can be suppressed even when the noise m and the despread carrier c R exhibit a certain degree of correlation. The details will be described later.
  • FIG. 40 shows a typical spread spectrum communication system with a built-in reference signal, which includes a transmitter 500, a receiver 501, and a transmission medium 502 (Non-Patent Document 1 and Non-Patent Document 2).
  • the transmitter 500 includes a spread code supply unit 510 and a multiplier 511, and the spread code supply unit 510 includes a clock generator 512 and a binary pseudo noise generator (PNG) 513.
  • PNG binary pseudo noise generator
  • the operation of transmitter 500 will be described from the operation of spreading code supply section 510.
  • the PNG 513 generates a spreading code c S having an absolute value that is not equal to zero but takes the same positive / negative binary value based on the clock signal supplied from the clock generator 512, and supplies it to the multiplier 511.
  • the multiplier 511 multiplies the information input signal a S inputted from the outside and the spread code c S supplied from the PNG 513 to spread the spectrum of the information input signal a S (hereinafter, spread output).
  • the information input signal a S is a signal whose spectrum is limited to a certain band
  • the spread code c S is a signal whose spectrum is distributed in a much wider band than the occupied frequency bandwidth of the information input signal a S. is there.
  • a noise m (not shown) is superimposed on the spread output signal b in the process of being transmitted through the transmission medium 502, and the receiver 501 inputs a signal r including the noise m and the spread output signal b.
  • the receiver 501 includes a despreading code supply unit 520, a multiplier 521, and a synchronization device 522.
  • the despreading code supply unit 520 includes a voltage-controlled variable frequency clock oscillator (hereinafter referred to as VCO) 523 and a PNG 524.
  • the synchronization controller 522 includes a controller 525, a correlator 526, and a phase difference detector 527. The operation of the receiver 501 will be described from the operation of the despread code supply unit 520.
  • Despreading code supplying unit 520, PNG524 supplies to the multiplier 521 to generate the despreading code c D based on the clock signal supplied by VCO523.
  • the clock signal supplied by the VCO 523 is a signal having the same repetition period as the clock signal supplied to the PNG 513 by the clock generator 512 of the transmitter 500.
  • the despread code c D generated by the PNG 524 is a signal having the same pattern as the spread code c S generated by the PNG 511 of the transmitter 500.
  • the multiplier 521 multiplies the received input signal r including the spread output signal b input from the transmission medium 502 and the despread code c D supplied from the PNG 524, and uses the component of the information input signal a S obtained by despreading the spectrum.
  • a spectrum despread output signal a D (hereinafter referred to as a despread output signal) is output.
  • a filter that selectively passes only the occupied frequency band of the spectrum of the information input signal a S is provided after the multiplier 521, and the spectrum of the information input signal a S is occupied from the output of the multiplier 521.
  • the description of the filter is omitted in FIG.
  • the transmitter and the receiver have independent PNGs 513 and 524, and when the communication system starts operation, the PNGs are not synchronized, and a set of spreading codes c generated by them.
  • S despreading code c D is a state in which the cross-correlation is not taken. Since the spread code c S and the despread code c D in a state where the cross-correlation is not taken are so-called irrelevant signals, information transmission cannot be performed using them.
  • the communication system must first synchronize PNG 513 and PNG 524 to increase the cross-correlation between the spread code c S and the despread code c D.
  • the synchronization device provided in the receiver is an element for this purpose, and the reference signal built-in type spread spectrum communication system having the configuration shown in FIG. 40 has two synchronization acquisition operations and synchronization acquisition operations using this synchronization device. Synchronize by movement.
  • the synchronization acquisition operation is an operation of creating a cross-correlation establishment state by aligning the code pattern in the time domain with respect to the spread code c S of the transmitter despread code c D of the receiver, and the synchronization holding operation is This is an operation of maintaining the established cross-correlation establishment state.
  • the communication system When the communication system starts operation, it first performs a synchronization acquisition operation. When the operation is successfully completed, the operation shifts to a synchronization holding operation, and an information input signal is transmitted under this synchronization holding operation.
  • the transmitter 500 fixes the information input signal a T to a constant of +1, and multiplies the information input signal that is meaningless as information to continuously apply the spread code c S to the transmission medium 502. Send it out.
  • the synchronization device 522 of the receiver 501 inputs the received input signal r including the spread code c S from the transmission medium 502 and guides it to the correlator 526.
  • Correlator 526 a spread code c S included in the received input signal r, is calculated over one period of the correlation value despreading code c D with the despreading code c D which PNG524 occurs.
  • Correlator 526 under control of the control unit 525, the calculation processing for obtaining the cross-correlation value, all that is shifted one bit per one period for the periodic pattern of despreading code c D where PNG524 is generating To the pattern.
  • the correlator 526 obtains cross-correlation values between all the despread code patterns and the spread code patterns, and stores the obtained cross-correlation values in the control unit 525.
  • the control unit 525 checks whether the highest value among all the cross-correlation values exceeds a prescribed threshold value, and determines the highest mutual correlation value. If the correlation value exceeds a specified threshold, the PNG 524 is adjusted so that the pattern when the cross-correlation value is indicated is generated as a pattern of the cross-correlation establishment state. finish.
  • the cross-correlation is calculated as the first pattern of PNG 524 assuming that synchronization acquisition has failed.
  • the pattern of the despread code sequence generated by the receiver by this synchronization acquisition operation is, for example, different from the pattern of the spread code sequence of the transmitter.
  • the synchronization state is shifted within ⁇ 50% of the time corresponding to the sign of 1 bit.
  • the synchronization device 522 uses the phase difference detector 527 to generate the signal r input from the transmission medium 502 of the despread code c D generated by the PNG 524.
  • the phase difference with respect to the component of the spread code c S included is measured, and the voltage (frequency) control clock oscillator 523 is adjusted so that the phase difference becomes small.
  • the despread code c D generated by the PNG 524 of the receiver is in a state where a high cross-correlation with the spread code c S of the transmitter is established, and the spread code c S and the despread code c D are changed.
  • the used information transmission becomes possible.
  • the synchronous operation using the synchronization device 522 of the receiver 501, the cross-correlation established state of the spreading code c S and the despreading code c D Spread spectrum communication is enabled by using the spread code c S and the despread code c D so as to be obtained stably.
  • the spread output signal b is superimposed with noise m in the process of being transmitted through the transmission medium 502 from the transmitter 500 to the receiver 501, so the signal r input by the receiver is as follows.
  • the spread code c S and the despread code c D in the cross-correlation established state are equal to each other, and their values are the same positive and negative binary values, not the absolute values, but the following relationship can be used. ing.
  • Equation 27 The first term on the right side of Equation 27 indicates that there is a proportional relationship with the information input signal a S transmitted by the transmitter, and the waveform pattern has a waveform pattern different from that of the information input signal a S. It has a similar shape, and thus information is transmitted from the transmitter of the communication system to the receiver.
  • the second term on the right side of Equation 27 is a noise influence term on the diffusion output signal.
  • the despread output object of the communication system represented by Expression 21 is compared with the despread output signal of the spread spectrum communication system of the reference signal built-in type using the conventional synchronization apparatus represented by Expression 27.
  • the first term on the right side of Equation 21 is compared with the first term on the right side of Equation 27.
  • the despread code is created by the receiver, so that noise entering the transmission medium is not superimposed on it, and such noise is reversed. It does not become an element that degrades the relationship of Expression 28 and Expression 29 between the spreading code and the spreading code.
  • the first term of Expression 27 does not include the influence of noise, and if the cross-correlation establishment state can be realized by the synchronization operation, the condition of Expression 29 can be established with high accuracy.
  • the input signal a S and perfectly similar shape waveform.
  • the despread carrier is created by processing a noise signal input from outside the carrier processing unit 1, so if noise entering from inside or outside this transmission system is superimposed on the noise signal, the processing material Therefore, the despread carrier has a signal pattern different from that in the case where no noise is superimposed.
  • the noise signal including the superimposed noise and the diffusion carrier processing means 13 having a wide anti-object property and irregularity suitable as a processing material for the diffusion carrier and the despread carrier are despread.
  • the spread carrier processing means 13 and the despread carrier processing means 15 of the present transmission system use a noise signal including the superimposed noise from the noise signal including the object wideband and irregularity.
  • the signal spreading carrier and the despreading carrier are formed and supplied.
  • the despread carrier processing means inputs a noise signal that can be regarded as the same, and as long as the noise signal including the noise has irregularity with object wideband property, it is irregular with object wideband property.
  • the signal is processed and supplied into a spread carrier and a despread carrier of a pair of signals in a state where the cross-correlation is established.
  • the spread carrier and the despread carrier of this transmission system can also be used when the noise enters the noise signal in the transmission medium, as in the case of the spread spectrum communication system with a built-in reference signal using the conventional synchronization device.
  • the noise is not superimposed on the despread carrier as noise, and such noise does not become a factor that deteriorates the relationship between the despread carrier and the spread signal between the paired signals shown in Formula 5.
  • the first term of Equation 21 does not include the influence of noise, and the signal diffusion carrier processing means inherits the cross-correlation established state of the noise signal and forms a pair of the cross-correlation established state between the spread carrier and the despread carrier.
  • the first term of equation 21 is the spread input object a T and completely similar shape waveform.
  • the first term on the right side of Equation 21 and the first term on the right side of Equation 27 have the same physical meaning.
  • the despreading code created by the receiver is a signal that is completely unrelated to the superposition of noise entering the spread output signal transmitted on the transmission medium.
  • the cross-correlation between the despread code and noise is zero.
  • the despread code is a signal having a wide band and irregularity like the spread code. When two of the signals that have no cross-correlation are wideband and irregular, the signal multiplied by them has a wideband irregularity that is equal to or greater than that of the wideband. Signal.
  • the second term on the right side of Equation 21 and the second term on the right side of Equation 27 also have the same physical meaning.
  • the noise m may also be part of the noise signal. In this case, it may cross-correlation between the noise m and the noise signal x W is not zero. This case will be described later.
  • Equation 21 and Equation 27 are physically the same.
  • a spread spectrum communication system with a built-in reference signal using a conventional synchronizer prevents a noise that invades in the transmission medium from being superimposed on the despread code by creating a despread code inside the receiver.
  • this transmission system allows the noise to be incorporated into an effective noise signal element even if there is noise superimposed on the noise signal in the transmission medium 11, and has the effect of including noise effectively and positively.
  • the noise entering the transmission medium is not superimposed on the despread carrier, and the signal relationship that forms a pair of the spread carrier and the despread carrier is maintained. I try to do it.
  • noise that intrudes in the transmission medium is spread by a despread code or a despread carrier in both the spread spectrum communication system with a built-in reference signal using a conventional synchronizer and this transmission system.
  • the influence of the noise on the output of the receiver or the despread output object is reduced by taking a large ratio between the occupied frequency bandwidth of the despread code or despread carrier and the occupied frequency bandwidth of the information input signal or spread input object. It can be eliminated.
  • the transmission system can prevent noise from being superimposed on the despread carrier even if noise intrudes into the noise signal, and the signal relationship that forms a pair of the spread carrier and the despread carrier does not collapse, Performs spread spectrum communication that is theoretically equivalent to a spread spectrum communication system with a built-in reference signal using a conventional synchronizer for noise resistance that is not easily affected by noise intruding into a spread output object on a transmission medium. It will be.
  • the present transmission system solves the problems of the spread spectrum communication system of the reference signal built-in type using the conventional synchronization device.
  • the configuration itself constitutes a synchronization device.
  • a common noise signal is treated as the same signal, this is input as a processing material, and a process of inheriting the nature of the signal is obtained to obtain a pair of spread carrier and despread carrier in a cross-correlation established state. .
  • this carrier supply unit 1 When this carrier supply unit 1 is applied to the present transmission system, the above-described operation does not require an enormous number of repetitive operations and does not require an ambiguous trial and error, and a spectrum of a reference signal built-in method using a conventional synchronizer. It is a process that can be performed without taking time like a spread communication system. As a result, since the operation of acquisition of synchronization that was necessary prior to communication in the conventional spread spectrum communication system with a built-in reference signal shown in FIG. 40 is not required in this embodiment, there is a problem that the request for communication cannot be immediately met. In this embodiment, this is solved.
  • the configuration itself constitutes a synchronization device. Therefore, when this carrier processing unit 1 is applied to the transmission system, a device called a synchronization device is not particularly required. . Therefore, in the despreading module of the present transmission system, the PNG combined with the synchronization device used in the receiver of the conventional spread spectrum communication system with a built-in reference signal shown in FIG. 40 is replaced with a despread carrier processing means.
  • the despread carrier processing means is a simple mapping conversion that can be expressed, for example, by Equation 13, and can be realized with a simple analog circuit.
  • the configuration itself constitutes a synchronization device. Therefore, when this carrier processing unit 1 is applied to the present transmission system, the spread carrier processing means is used when there is no communication request. Even when the despread carrier processing means stops operating, when a communication request is generated, a spread carrier and a despread carrier having a cross-correlation can be obtained immediately without requiring a synchronization operation. Therefore, when no communication is necessary, no signal is supplied to the transmission medium. During this period, neither synchronization holding operation nor synchronization holding communication is required. When there is a communication request, signals are transmitted through the transmission medium as much as necessary. May be transmitted.
  • FIG. 41 shows a spread spectrum communication system of the reference signal transmission method disclosed in Patent Document 1, which includes a transmitter 600, a receiver 601, and a transmission medium 602.
  • the transmitter 600 includes a spread code supply unit 610, a multiplier 611, a synchronization device 612, and an adder 613.
  • the spread code supply unit 610 includes a clock generator 614 and a PNG 615.
  • the synchronization device 612 includes a delay unit 616. Consists of.
  • the transmitter 600 operates as follows. First, in the spreading code supply unit 610, based on the clock signal supplied from the clock generator 614, the PNG 615 generates a spreading code c S that takes an equal positive and negative binary value instead of zero, and sends it to the multiplier 611. Supply.
  • the multiplier 611 multiplies the information input signal a S input from the outside and the spread code c S supplied from the PNG 615 to create a spread output signal b obtained by spreading the spectrum of the information input signal a S.
  • the delay unit 616 delays the spread code c S supplied from the spread code supply unit 610 by a predetermined time, and adds it as a signal c D that is used as a despread code in the receiver.
  • the unit 613 superimposes it on the spread output signal b and sends it to the transmission medium 602.
  • Patent Document 3 is different from Patent Document 1 in that a delay time is given to the spread output signal by a delay unit instead of the spread code.
  • the spread output signal b and the despreading code c D a signal obtained by superimposing the superimposed noise m (not shown) in the process of being transmitted through the transmission medium 602, and noise m the receiver 601 spread output signal b and the despreading code c D contains a signal r is input.
  • the receiver 601 includes a synchronization device 620 and a multiplier 621, and the synchronization device 620 includes a delay device 622.
  • the receiver 601 operates as follows. First, the delay unit 622 of the synchronization device 620 inputs the signal on the transmission medium 602 as the signal r, delays it for a certain time, and supplies it to the multiplier 621.
  • the certain time is assumed to be the same as the time when the spread code c S is delayed in order to create the despread code c D by the delay unit 616 of the synchronization device 612 of the transmitter 600.
  • the multiplier 621 multiplies the signal r input from the output and the transmission medium 602 of the delay device 622, and outputs the result as despread output a D.
  • a filter that selectively passes only the occupied frequency band of the spectrum of the information input signal a S is provided after the multiplier 621, and the spectrum of the information input signal a S is occupied from the output of the multiplier 621. Although only the frequency band components are extracted and used as the output of the receiver, the description of the filter is omitted in FIG.
  • the PNG is provided only in the transmitter, and the signal generated thereby is used as the spread code c S , while the delayed signal is despread. transmitting from the transmitter to the receiver in order to use the receiver as a code c D.
  • Receiver 601 for receiving the signal uses a signal component of the despread code c D contained in the received signal r as despreading code, contained in the received signal r despread at the despreading code c D since components of the spread output signal b is a signal has advanced by the time the delay time of the delay device 616 with respect to the despreading code c D, in order to match their time relationship, a component b of the spread output signal delay
  • the delay unit 622 delays the delay unit 622 by the same amount as the delay time of the unit 616.
  • the spread spectrum communication system of the reference signal transmission method configured as shown in FIG. 41 uses a synchronization device such as a receiver in the communication system of the reference signal built-in method shown in FIG. Rather, an operation including content equivalent to the operation performed by the synchronizer is performed so that the spread code component and the despread code component of the spread information input signal are in a cross-correlation established state, thereby enabling spread spectrum communication.
  • the operation of the spread spectrum communication system of the reference signal transmission method shown in FIG. In the spread spectrum communication system of the reference signal transmission system having the configuration shown in FIG. 41, a delayed signal is used.
  • the number of delays is added to the signal name. It shall be expressed in letters. That is, the information input signal to be transmitted by the transmitter is a S0 , the spread code is c 0 , the spread code transmitted after being delayed by the delay device on the transmitter side is c 1 , and the external noise applied by the transmission medium is m 0 .
  • the signal r 0 the receiver input can be expressed by the following equation.
  • the receiver uses the delayed spread code c 1 component included in the signal r 0 as a despread code.
  • the need to synchronize the despreading sign components of a diffusion sign c 0 which is multiplied to the information input signal a S0 occurs, the signal r 0 received Is delayed by the delay device by the same amount as the delay device on the transmitter side.
  • Signal r 1 obtained by delaying the received signal r 0 is expressed as follows.
  • r 1 a S1 * c 1 + c 2 + m 1 (Formula 31)
  • r 1 represents a delayed each element constituting the right-hand side of Equation 30 representing the r 0 by the delaying unit of the receiver, and those obtained by delaying the a S0 delaying a S1, c 1 This is expressed as c 2 and m 0 is expressed as m 1 .
  • those obtained by delaying the c 0 is represented by c 1 the delay time that is delayed at the transmitter is the same.
  • the despreading operation is realized by multiplying the received input signal r 0 including the signal component c 1 as the despread code by the received input signal r 1 delayed by the receiver as described above in order to synchronize with it.
  • c 0 , c 1 , and c 2 each take a value of ⁇ k PN , where k PN is a non-zero constant that does not depend on time, and has the following properties.
  • the calculation result on the right side of Expression 32 representing the despread output a D is a component of the information input signal in which the third term is despread and delayed, and all other terms are signals that are not similar to the information input signal. is there.
  • the first, second, and fourth terms are not zero even if m 0 and m 1 are set to zero, and are always included in the despread output signal a D regardless of the noise of m 0 and m 1. Therefore, it acts as noise on the despread information input signal. That is, in the spread spectrum communication system of the conventional reference signal transmission system shown in FIG. 41, noise is superimposed on the despread information input signal in the despread output signal even if there is no noise superimposed on the transmission medium. On the other hand, in the case of the spread spectrum communication system of the reference signal built-in method shown in FIG. No signal other than the input signal appears.
  • the spread spectrum communication system of the conventional reference signal transmission method shown in FIG. 41 includes more noise terms in the despread output signal as shown in Equation 32. Will be.
  • the fifth and sixth terms are noise terms spread by despreading code, and adjust the occupied frequency bandwidth ratio of information input signal and despreading code, which is peculiar to spread spectrum communication.
  • the influence on the information input signal component remaining after despreading can be reduced.
  • there are more noise terms than in the case of the reference system there is much noise that needs to be reduced, indicating that the S / N ratio of the despread output signal is deteriorated. The ratio is inferior.
  • the noise indicated by this term is a signal having a spectrum configuration that is unrelated to the spread spectrum. Therefore, the noise indicated by the term may have a high energy spectrum in the occupied frequency band of the information input signal, and the component of the occupied frequency band of the information input signal of the noise term It cannot be reduced by adjusting the occupied frequency bandwidth ratio between the information input signal and the despread code. That is, the conventional spread spectrum communication system of the reference signal transmission system shown in FIG. 41 does not have the noise resistance that the reference system has, and for example, noise components superimposed on the spread output signal in the transmission medium are included in the despread output signal. In the case where the spectrum of the information input signal occupies the same frequency as the information input signal component, the signal-to-noise ratio of the information input signal component in the spread output signal is poor and communication becomes difficult. .
  • the problem shown in the spread spectrum communication system of the conventional reference signal transmission method shown in FIG. 41 in the description of the background art is such.
  • the despread output includes noise.
  • the signal-to-noise ratio of the information input signal component in the despread output signal is inferior to that of the reference system. It cannot be reduced by adjusting the ratio of the occupied frequency bandwidth between the information input signal and the spread code unique to the spread spectrum communication, and the noise component is, for example, the occupied frequency of the information input signal in the despread output signal. Communication is difficult when the spectrum has a spectrum with energy equal to or higher than the component of the information input signal.
  • the delay unit 616 constituting the synchronization device of the transmitter 600 since the delay unit 616 constituting the synchronization device of the transmitter 600 only delays the binary code, a small binary logic element can be applied with a simple structure.
  • the delay device 622 of the synchronization device 620 of the receiver 601 delays an analog signal including an information input signal component and a noise component, it is necessary to use an analog delay device having a broadband property against objects.
  • Analog delay devices with broadband characteristics use CCD (Charge Coupled Device) or a combination of high-speed AD converter and FIFO (First In First Out Memory) DA converter. Therefore, the circuit scale is large and expensive compared to the delay unit 616 of the transmitter 600 that can be configured with binary logic elements.
  • the transmission system when there is no noise in the transmission medium, as shown in Equation 7, no noise is included in the despread output object as in the reference system.
  • the transmission system when there is noise superposition on the spread output object in the transmission medium, even if it has a spectrum in the occupied frequency band of the spread input object, the transmission system, like the reference system, has its noise component.
  • the ratio of the despread carrier's occupied frequency bandwidth to the occupied frequency bandwidth of the spread input object is increased so that the signal after despread multiplication is applied to only the occupied frequency band of the spread input object.
  • this transmission system has noise immunity equivalent to the conventional spread spectrum communication system with a built-in reference signal shown in FIG. 40, and spread spectrum communication with the conventional reference signal transmission system shown in FIG. The problem of the system is solved in the present embodiment.
  • FIG. 42 shows a spread spectrum communication system of the reference signal transmission method shown in Non-Patent Document 3, and is composed of a transmitter 700, a receiver 701, and a transmission medium 702.
  • the transmitter 700 includes a spreading code supply unit 710, a multiplier 711, a synchronization device 713, and a spreading output transmission unit 712.
  • the spreading code supply unit 710 includes a clock generator 714 and PNG 715
  • the synchronization device 713 includes a despreading device. It consists of a code transmission unit 716.
  • the transmitter 700 operates as follows. First, in the spread code supply unit 710, based on the clock signal supplied from the clock generator 714, the PNG 715 generates a spread code c S whose absolute value is not equal to zero but takes the same positive / negative binary value to the multiplier 711. Supply.
  • the multiplier 711 multiplies the information input signal a S inputted from the outside and the spread code c S supplied from the PNG 715 to create a spread output signal b obtained by spreading the spectrum of the information input signal a S.
  • the spread output signal b is converted into a broadband signal by the spread output transmission unit 712 and sent to the transmission medium 702.
  • the synchronizer 713 is transmitted to the transmission medium 702 is converted into broadband signal with the despreading code transmission section 716 of the sync device 713 as a signal c D to use the same signal as the spreading code as despreading codes at the receiver.
  • Transmitters 712 and 716 are apparatuses for transmitting a spread output signal and a despread code at the same time by sharing the transmission medium 702, and are transmitters that transmit signals by frequency multiplexing using broadband.
  • the spread output signal and the despread code are transmitted from the transmitter to the receiver without interfering with each other at the same time using the occupied frequency band that does not overlap in the shared transmission medium 702.
  • the transmission medium 702 noise (not shown) is superimposed on the spread output signal to be transmitted and the despread code, and the receiver inputs a signal on which the noise is superimposed.
  • the spread output signal of the broadband signal output from the spread output transmitter 712 is q ST and the noise superimposed on it is m S
  • the spread output signal q SR on which the noise input by the receiver is superimposed is expressed by the following equation. .
  • q SR q ST + m S (Formula 34)
  • the despread code of the broadband signal output from the despread code transmitter 716 is q DT and the noise superimposed on it is m D
  • the despread code q DR on which the noise input by the receiver is superimposed is given by expressed.
  • q DR q DT + m D
  • the receiver 701 includes a synchronization device 720, a spread signal reception unit 721, and a multiplier 722.
  • the synchronization device 720 includes a despread code reception unit 723.
  • the receiver 701, the spread signal receiving unit 721 first inputs the broadband spread output signal q SR noise is superimposed represented by formula 34 from the transmission medium 702, the spread output signal r of the baseband signal noise superposed The data is converted and output to the multiplier 722.
  • the despreading code receiving unit 723 receives the despread code q SR broadband noise indicated from the transmission medium 702 by equation 35 is superimposed, the despreading code c DD of the baseband signal noise superposed The data is converted and output to the multiplier 722.
  • the receiver does not demodulate the broadband spread output signal and the broadband despread code to the baseband, and directly multiplies them in the state of the broadband signal of a certain frequency to obtain their sidebands.
  • What is shown to perform conversion to baseband and despreading between each other at the same time is shown here as a baseband for the sake of simplicity, and then despreading afterwards. .
  • Patent Document 4 discloses signals in two different frequency bands. Instead, a spread spectrum communication system with a built-in reference signal that uses two signals in an orthogonal relationship for the same purpose is shown.
  • the spread spectrum communication system of the reference signal transmission system configured as shown in FIG. 42 transmits the despread code through a dedicated transmission medium, thereby receiving the spread spectrum communication system of the reference signal built-in system shown in FIG. Without using a synchronizer like this, a state equivalent to the state created by the synchronizer is created, the spread code component of the spread information input signal and the despread code component are in a cross-correlation established state, and spread spectrum communication Is possible.
  • the influence on the despread output signal when the spread spectrum communication system of the reference signal transmission system shown in FIG. 42 receives noise superimposed on the signal being transmitted on the transmission medium will be analyzed.
  • the spread spectrum operation performed by the transmitter multiplier information input signal a S spreading code c S, the spread output signal as b, as in the conventional spread spectrum communication system described above, in Equation 25 Indicated.
  • a broadband signal is used for signal transmission through the transmission medium 702 of the spread output signal b obtained by the spreading operation.
  • the baseband signal from the baseband signal to the broadband signal in the spread output transmission unit 712 of the transmitter 700 is used.
  • the conversion is assumed to be a linear operation in which the input signal and the output signal are in a proportional relationship, and can be expressed as follows, where the proportionality coefficient is k 1 .
  • q ST k 1 * b (Formula 36)
  • the conversion from the broadband signal to the baseband signal in the spread signal receiving unit 721 of the receiver 701 is also a linear operation, and the despread input signal r is expressed as follows, where the proportionality coefficient is k 2. It shall be possible.
  • r k 2 * q SR (Formula 37)
  • the receiver 701 uses a broadband signal to the signal transmission through the transmission medium 702 of the spreading code c S of the same despreading code c D, do to its broadband baseband signal in the spread code transmission unit 716 of the transmitter 700
  • the conversion to the signal and the conversion from the broadband signal to the baseband signal in the despreading code receiving unit 723 of the receiver 701 are also linear operations, and the proportional coefficients are represented by k 3 and k 4 as follows: It shall be possible.
  • Equation 25 Equation 34, and Equation 36.
  • k 5 is expressed by the following equation.
  • Equation 41 k 5 * k 2 (Formula 41)
  • k 6 is expressed by the following equation.
  • k 6 k 3 * k 4 (Formula 43)
  • the despread output a D can be expressed as follows.
  • c D , c S , and c DD each take a value of ⁇ k PN , where k PN is a non-zero constant that does not depend on time, and k 7 , k 8 , k 9 , and k 10 are as follows.
  • a filter that selectively passes only the occupied frequency band of the spectrum of the information input signal a S is provided after the multiplier 722, and the spectrum of the information input signal a S is occupied from the output of the multiplier 722. Although only the frequency band components are extracted and used as the output of the receiver, the description of the filter is omitted in FIG.
  • the first term indicates that the information input signal has been despread
  • the subsequent term is noise.
  • the second term and the third term are noises spread by a despread code, and adjust the occupied frequency bandwidth ratio between the information input signal and the despread code, which is specific to spread spectrum communication.
  • the fourth term among the noise terms is a noise having a spectrum configuration independent of the spread spectrum like the noise term shown in the seventh term of Equation 32, and is the occupied frequency band of the information input signal.
  • the conventional spread spectrum communication system of the reference signal transmission system shown in FIG. 42 does not have the noise resistance of the reference system, and the noise component superimposed on the despread code in the transmission medium is, for example, in the despread output signal. If the spectrum of the information input signal has a spectrum with the same or higher energy as the component of the information input signal, the signal-to-noise ratio of the component of the information input signal in the spread output signal is poor and communication becomes difficult. .
  • the problem with the spread spectrum communication system of the conventional reference signal transmission method of FIG. 42 described in the background art is specifically such as this.
  • the influence of the noise is spread spectrum. It cannot be reduced by adjusting the occupied frequency bandwidth ratio of the information input signal and spreading code specific to communication, and as a result, the SN ratio of the component of the information input signal in the despread output signal is reduced.
  • the noise component has a spectrum with energy equal to or higher than the component of the information input signal in the occupied frequency band of the information input signal in the despread output signal, for example, communication becomes difficult.
  • this transmission system has noise resistance equivalent to that of the conventional spread spectrum communication system of the reference signal built-in method having the configuration shown in FIG. 40, and the conventional reference signal transmission method shown in FIG.
  • the problem of the spread spectrum communication system is solved in the present embodiment.
  • the carrier processing unit has a broad band-to-object characteristic and irregularity signal called a common noise signal. If this is applied to this transmission system in order to process and create a pair of signal-related spread carrier and despread carrier, a conventional reference signal built-in method can be achieved by performing spread spectrum or despread on the object to be transmitted. In addition to solving the problems of the reference signal transmission methods, a transmission system using a spread spectrum communication technique having the advantages of these methods can be provided.
  • the spread carrier and the despread carrier in the transmission system according to the present embodiment to which the carrier processing unit 1 according to the present embodiment is applied both have a property that becomes a constant and a property that is a cross-correlation established state.
  • the spread carrier and the despread carrier can be either a continuous signal or a discontinuous signal such as an impulse or burst, but here the spread carrier and the despread carrier are continuous signals. It will be considered that there is a discontinuous spread carrier and despread carrier such as an impulse shape or a burst shape.
  • information to be transmitted is expressed by a signal having a certain length.
  • a signal having a certain length For example, in spread spectrum communication using a fixed frequency sine wave as a primary carrier and using an information signal primarily modulated by BPSK, 1-bit information is expressed in a half cycle of the sine wave.
  • the transmission system has a property that becomes a constant by multiplying the spread carrier and the despread carrier, and the property is at least a period corresponding to the length representing the information. At this time, the transmission system processes a common noise signal so that a constant is always obtained by multiplying the spread carrier and the despread carrier in an ideal environment.
  • the actual spread carrier and the despread carrier are shifted from the spread carrier and the despread carrier created in the ideal environment.
  • the actual spread carrier and the despread carrier are the same noise signals.
  • it includes a section that does not become a specified constant even if it is multiplied by some length. If the spread carrier and the despread carrier are multiplied but do not become a constant, the right side of Equation 6 is not proportional to the spread input object a T to be transmitted, and the pattern is not similar to the spread input object a T.
  • despreading operation performed using despreading carrier c R relationship not be multiplied by the component of the diffusion output object s and constant, the despread carrier c R with irregularities having a pair object broadband performance, it The It becomes extraneous signal just multiplied operation, which is none other than the operation of spread spectrum components of the diffusion output object s despreading carrier c R.
  • the signal component obtained by despreading with a normal despread carrier that is a constant by multiplying with the spread carrier and obtained in a similar relationship with the spread input object will be referred to as a normal despread component, and even if multiplied with the spread carrier, the prescribed A signal component that is despread by a despread carrier that does not become a constant and does not have a similar relationship with the diffusion input object is referred to as an illegal diffusion component.
  • the illegal despreading component will be described as a spectrum that is spread evenly in the occupied frequency band of the despread carrier having the broadband property against the object.
  • the ratio indicated by the ratio of the pass bandwidth of the filter to the occupied frequency bandwidth of the despread carrier appears in the output of the filter in the fraudulent despread component energy.
  • the ratio of the occupied frequency bandwidth of the despread carrier and the passband width of the filter is, for example, several hundred times or more. It should be small enough to be considered practically zero for energy.
  • the normal despreading component cannot be obtained from the despreading means during the period when the spread carrier and the despreading carrier are not multiplied, the normal despreading component cannot be obtained from the despreading means, so the output of the diffused input object component from the filter becomes zero.
  • the filter outputs the discontinuous diffuse input object component, and the output of the filter distorts the waveform of the signal representing the information compared to the normal case of outputting the discontinuous diffuse input object component, It becomes a thing with low fidelity including the part which is not similar with respect to the waveform which the spreading
  • the fidelity of the despread output object waveform to the diffuse input object waveform decreases, for example, when extracting information that is an object that is transmitted by demodulating the primary input spread input object, the amplitude and phase information are accurately determined. This is not preferable because it cannot be determined and the possibility of erroneous information is increased. In reality, it is inevitable that a section that does not become a specified constant even if multiplied in the spread carrier and the despread carrier, but as explained here, it increases the possibility of erroneous transmission objects. It is desirable that the generation interval is as small as possible.
  • the value of the despread signal in the discontinuous section without spread carriers and despread carriers is determined by the spread carrier and the despread carrier. It is obtained by covering the despread signal value obtained from the existing section or estimating it by analysis processing using them. Therefore, the accuracy of the object obtained by despreading in the part where the spread carrier and the despread carrier exist is important. In this case as well, it is desirable that the number of intervals that do not become a specified constant even when multiplied in the spread carrier and the despread carrier is desirable for the accuracy.
  • the spread carrier and the despread carrier are signals having a wide band property against an object having irregularity
  • the spread carrier and the despread carrier corresponding to a signal of a certain length representing the object to be transmitted are included. contained in a multi of multiplying not also prescribed constant interval, the cross-correlation R diffusion carrier c T despreading carrier c R shown in the following for the length of the unit sections object represents a content Express and evaluate with CT-CR .
  • R CT-CR (u) (1 / L A ) * ⁇ LA ⁇ c T (w) * c R (w) ⁇ dw (Equation 50)
  • ⁇ LA dw is intended to indicate a definite integral of a section of a length L A starting from u for the variables w, the integration interval is [u, u + L A].
  • the length L A of the integration section is set to a length that gives a section that becomes a small value sufficiently close to zero when the carriers c T and c R that are irregular signals are integrated, for example, half of the primary modulation carrier of the spread input object. Let it be a period.
  • the constant is integrated in a section that becomes a constant when the spread carrier and the despread carrier are multiplied. Therefore, the integration result is a rectangular area in which the height is the constant value and the length is the section length. It becomes the area.
  • the integration operation is to integrate the product of the spread carrier and the despread carrier as an irregular signal for which cross-correlation has not been established in a section where the spread constant and the despread carrier are not multiplied and become a specified constant. Therefore, the integration result for the entire integration interval is statistically a small value close to zero.
  • the cross-correlation shown in Formula 50 is obtained by averaging the total area of sections that are constant when multiplied by these, and multiplying the spread carrier and the despread carrier in the integral section. The amount is proportional to the total length of the interval that is a constant.
  • this cross-correlation is an interval that becomes a constant when multiplied by an integral interval. It becomes a scale for relative comparison of the number of.
  • the cross-correlation of Formula 50 is as follows in an ideal case where a constant relationship is obtained when the spread carrier and the despread carrier are multiplied in the whole integration interval.
  • Formula 50 can be normalized as follows.
  • NR CT-CR (u) R CT-CR (u) / k C (Formula 52)
  • NR CT-CR is a cross-correlation function obtained by normalizing the diffusion carrier c T despreading carrier c R.
  • the normalized cross-correlation has a maximum value of 1, and an absolute comparison measure can be provided for the cross-correlation represented by Equation 50 in which the absolute value has no meaning. Therefore, instead of Equation 50, Equation 52
  • Equation 52 By using the normalized cross-correlation, the number of regions that become constant when multiplied for a certain section may be evaluated.
  • the normalized mutual relationship between the spread carrier and the despread carrier corresponds to the allowable limit set in the object transmission performance. Allowable limits for correlation can be defined.
  • the meaning of the allowable limit value of the cross-correlation is that the normalized cross-correlation between the spread carrier and the despread carrier is equal to or greater than the allowable limit value, thereby allowing the diffusion carrier c T having a wide band-to-object property and irregularity to be obtained.
  • despread carrier c R is regarded as a paired signal that is a constant that is not zero when multiplied by the equation 5 over the entire practical interval, the possibility of error in the object to be transmitted is reduced, and object transmission performance is reduced. Is more than the allowable limit value.
  • the signal is normalized by using a non-zero portion as in the case of the continuous spread carrier and the despread carrier.
  • Cross correlation can be defined.
  • the meaning of the allowable limit value of the cross-correlation described above is that the cross-correlation value is not less than a certain allowable limit value, so that the portion with the spread carrier and the despread carrier is not wideband to the object.
  • this transmission system increases the object transmission performance to the allowable limit value by setting the normalized cross-correlation of the spread carrier and the despread carrier to the allowable limit value or more, thereby improving the object transmission performance.
  • Object transmission is performed assuming that there is no problem in practical use.
  • a state in which a cross-correlation state more than a specified amount is established is referred to as a cross-correlation establishment state. It also includes a state that is within the allowable limit of cross-correlation corresponding to the allowable limit of transmission performance.
  • a noise signal x W and the diffusion carrier processing means 13 to be commonly supplied to the despreading carrier processing means 15, a noise signal x T and the noise signal x R He stated that it should be regarded as virtually the same within a certain range, and as a result, cross-correlation should be more than a certain level.
  • the transmission system affects the cross-correlation between the spread carrier and the despread carrier.
  • these characteristics vary depending on the actual application field of the transmission system.
  • the lower limit of the cross-correlation between the spread carrier and the despread carrier is the influence of factors other than the spread carrier and the despread carrier, such as filter characteristics and transmission medium noise characteristics, for each case where this transmission system is applied. It is realistic to determine the depth of the influence on the information transmission performance of the cross-correlation between the spread carrier and the despread carrier while considering the above.
  • the embodiment of the spread carrier c T despreading carrier c R capable then be used in the present transmission system shown in FIG. Diffusing carrier c T and despread carrier c R exhibits a change in irregular value of such an analog, (30 in the figure) when continuous even if any, irregular in constantly zero It may be an impulse-like signal (32 in the figure) in which a non-zero signal instantaneously appears at a position, or a burst-like signal (31 in the figure) with an irregular length and a signal zero at an irregular position. is there.
  • the noise resistance when the noise resistance is suppressed to the same level, it is possible to widen the occupied frequency bandwidth of the spread input object corresponding to the spread occupied frequency bandwidth of the spread carrier, which is, for example, the primary modulation carrier of the spread input object.
  • the amount of information that can be expressed by the primary modulation carrier per unit time can be increased. That is, Hirogare the occupied bandwidth of the spread carrier c T and despread carrier c R, is improved transmission capabilities.
  • to make it more difficult to find the presence of the diffuse output object from the signal of the transmission medium and to estimate the waveform of the diffuse input object is to improve confidentiality and secrecy. From these viewpoints, but it is desirable to be able to use a burst-like or impulsive form the diffusion carrier c T and despread carrier c R.
  • a synchronization device In the conventional spread spectrum communication, the spectrum is spread by the impulse-like signal, and a synchronization device is configured by using, for example, a SAW filter (SAW: Surface Acoustic Wave) or a matched filter using a CCD.
  • SAW Surface Acoustic Wave
  • Methods for demodulating information are known. If it is used, signal transmission using impulse-like signals is possible, but it requires expensive elements different from semiconductor circuit elements, and it is difficult to make monolithic or long elements are required, so it is limited to miniaturization In addition, there are practical limitations such as inapplicability to power transmission. Therefore, there is a demand for a spread spectrum and despread spread transmission technique that enables signal transmission using an impulse signal or a burst signal, has wide utility, and can be monolithically realized in a semiconductor circuit element.
  • a synchronized spread carrier and a despread carrier can be obtained without performing a synchronization operation.
  • the signal form of the spread carrier and the despread carrier is continuous or discontinuous (intermittent) in a burst or impulse form.
  • the spread carrier and the despread carrier can be equivalent to the synchronization state.
  • the desired effect can be obtained, such as a component of the transmission spread input object necessary and sufficient for the component after despreading, which position has a specific state such as zero in the spread carrier and despread carrier It may be included only for a period of time.
  • the spread carrier and the despread carrier and the signal form of the spread carrier and the despread carrier becomes discontinuous (intermittent) in a burst shape or an impulse shape
  • a specific state such as zero is included in the spread carrier and the despread carrier and the signal form of the spread carrier and the despread carrier becomes discontinuous (intermittent) in a burst shape or an impulse shape
  • the spread input object component of the despread output object obtained by the spread spectrum and despread signal processing using the despread carrier becomes discontinuous.
  • the diffuse input object component of the despread output object becomes such a discontinuous signal, for example, a waveform envelope reproduction process combining a track hold and a low-pass filter with a discontinuous despread output object, or Reproduces and outputs the original continuous waveform of the components of the diffuse input object, for example, by adding processing for reproducing the approximate waveform by numerical analysis.
  • the continuous waveform reproduction of the component of the spread input object is as follows:
  • one function of the despreading means may be incorporated together with a multiplication function and a filter function.
  • the signal corresponding to the spread carrier or despread carrier of this transmission system is a sine wave of a certain frequency for a certain short time.
  • another sine wave having a specified frequency is used, and the frequency of the sine wave is changed one after another.
  • frequency hopping indicates that the frequency is discretely and irregularly changed
  • frequency chirp indicates that the frequency is continuously changed.
  • communication is performed after the frequency change pattern and timing are synchronized between the transmission side and the reception side using some kind of synchronization device.
  • a signal with such a frequency changed may be used as a noise signal or a spread carrier and a despread carrier.
  • the frequency range to be changed and the rate of change are such that the resulting signal must have object-to-object broadband properties, at least for the period required to transmit the diffuse input object.
  • the same signal is used for the spread carrier and the despread carrier.
  • the spread output object can be transmitted in a transmission medium that transmits the spread output object from the spread module to the despread module by making the frequency change range of the spread carrier and the despread carrier far wider than the primary modulation frequency of the spread input object. Noise resistance against noise superimposed on can be realized in the same manner as described above.
  • Such spread carrier and despread carrier are, for example, a signal obtained by processing a noise signal as one of diffusion carrier processing means and despread carrier processing means using advanced signal processing techniques.
  • a configuration for controlling an appropriate waveform generator is provided, and the frequency of a signal to be generated is generated by changing continuously or discretely with a signal obtained by processing a noise signal.
  • the periodicity of the frequency change pattern necessary for the synchronization operation is not required, and it is not necessary to have a certain frequency for a certain period of time. Is completely irregular so that the same thing never appears, and the speed and direction of the change in the frequency change may be completely irregular.
  • a signal having a plurality of frequencies may be combined there.
  • signals of varying frequency spread carrier c T and despread carrier c R more to estimate the waveform of discovering and spread input objects for the presence of diffusion output object from the signal transmission medium It can be made difficult, and can contribute to the improvement of confidentiality and confidentiality.
  • the carrier processing unit 1 is an apparatus composed of only simple circuit elements that can be realized monolithically without using special elements, and is an impulse signal, burst signal, or frequency hopping.
  • a signal whose frequency changes irregularly including a signal and a frequency chirp signal, and a spread carrier and a despread carrier in a form of arbitrarily combining them are supplied.
  • noise resistance is improved and transmission capability is improved in a small and inexpensive manner with respect to the conventional spread spectrum communication system.
  • an object called a clock In various devices, especially devices using electronic circuits, an object called a clock is used.
  • the signal that specifically represents the object is, for example, a rectangular wave with a fixed period.
  • radiation with a high power density per unit frequency hereinafter simply referred to as power density
  • the carrier processing apparatus according to the embodiment of the present invention is applied to the circuit, the power density of radiation can be reduced.
  • the spread input object is, for example, a rectangular wave with a constant frequency.
  • the elementary noise signal source 10 is set so that the spread carrier and the despread carrier supplied by the carrier processing unit 1 become a signal in which the spectrum is uniformly distributed up to a frequency of 1000 times or more the frequency of the rectangular wave.
  • the spectrum-spread rectangular wave transmitted by the transmission medium 7 has a spectrum distributed at a low power density in a very wide frequency band with respect to the original rectangular wave.
  • the despreading means multiplies the despread input object and the despread carrier, and the multiplied signal is, for example, a low-pass signal whose passband is a frequency band lower than the original rectangular wave frequency.
  • the filtered signal is output as a despread output object. According to such a filter, only the fundamental wave component is extracted and output from the spectrum of the original rectangular wave and the harmonic component is lost. Therefore, the waveform of the signal output as the despread output object is a sine wave. If the output signal requires a rectangular waveform of the diffuse input object, the sine wave is shaped by, for example, a comparator.
  • this waveform is out of phase with the rectangular wave of the original diffusion input object due to the influence of the filter, transmission medium, and signal processing circuit.
  • the phase correction circuit compensates for the phase change received by the filter. You can do it.
  • noise radiated from a rectangular wave propagating through a transmission line has a problem with a specific time and energy component of a specific narrow frequency band. Since the instantaneous total radiation energy can be reduced and the energy of a narrow band is also reduced, it can be said that the noise entering into other electronic circuits and electronic devices is significantly smaller than that in the case where the spectrum is not spread.
  • the clock signal is diffused by giving a minute amount of irregular fluctuation around the clock frequency to the clock signal. ing.
  • the spread width of the spectrum is limited to a very small amount. Therefore, the total power of the clock noise radiated from the transmission path is also reduced. The effect of reducing the power density in a narrow band is also limited.
  • the effect of reducing the power density of noise radiated from a transmission line (corresponding to the transmission medium 7) using this transmission system is remarkable. Further, if this transmission system is used, not only the influence of noise radiated from the transmission line but also the object to be transmitted can be prevented from being influenced by other noise.
  • the carrier processing apparatus according to the embodiment of the present invention is applied only for the purpose of reducing the power density of clock noise radiated from the transmission line, the influence of noise entering from the outside in the transmission medium 7 is reduced. Therefore, even if the occupied frequency bandwidth of the spread carrier and the despread carrier is kept relatively low, such as several times to several tens of times, for the frequency of the rectangular wave that is the spread input object, the intended effect is It can be expected.
  • the configuration of this transmission system is not limited to noise radiation or external power transmission. It can contribute to reducing the influence of intruding noise.
  • this transmission system which transmits electric power with the alternating current of the sine wave of 400 Hz can be mentioned. Since the frequency of this power is in the audible frequency band, if the transmission cable is wired close to the telephone line or the audio line, it will infiltrate the telephone or audio system by electromagnetic induction, etc. It produces noise called harsh hum.
  • Application of this transmission system to such a power transmission system is, for example, a sine wave AC power of 400 Hz in the configuration shown in FIG.
  • the occupied frequency band of the spread carrier and the despread carrier is, for example, about 1000 times the 400 Hz that is the frequency of the spread input object to be transmitted.
  • the occupied frequency bandwidth of the spread carrier and the despread carrier may be kept relatively low, for example, several times to several tens of times with respect to the frequency that is the spread input object to be transmitted.
  • the magnetic field or electric field radiated from the electric wire (transmission medium 7) for supplying electric power to the surroundings becomes irregular and wide-banded. Is significantly lower than when the carrier processing apparatus according to the embodiment of the present invention is not applied.
  • the transmission cable of the transmission medium 7 is wired close to a telephone line or an audio line, noise entering the telephone or audio system is a spectrum that spreads over a wide frequency band with a low power density. , It can not be annoying specific frequency noise.
  • the effect of spread spectrum communication can be provided even for power transmission that does not express information.
  • FIGS. 3 and 4 show a system for detecting a signal having a broadband property against an object.
  • a radio wave signal having a certain frequency band is used as a noise signal.
  • the radio wave signal used at that time is a signal having a power density that can be clearly recognized as being higher than the power density of what is called background noise that constitutes the floor of the spectrum distribution of that frequency band. is there.
  • the broadcast signal becomes a noise signal component.
  • the lightning discharge noise also exhibits a spectrum with a clearly higher power density than the background noise, so that it can also be used for the noise signal.
  • such broadcast signals and lightning discharge signals are used as noise signals. In the configuration shown in FIG. 3 and FIG.
  • the noise signal supply unit 2 is, for example, spreading the carrier processing means 13 opposite the signals present in the frequency band of medium wave AM radio broadcasting 1600KHz from 560KHz as the noise signal x W Commonly supplied to the diffusion carrier processing means 15.
  • the state shown in FIG. 3 shows a state in which the noise signal supply unit 2 supplies all the signals of various broadcast signals existing in the entire frequency band as one noise signal to the spreading module and the despreading module. Thus, this state is a steady state.
  • the state shown in FIG. 4 shows a state in which the noise signal supply unit 2 supplies a lightning discharge signal as a noise signal to the diffusion module and the despreading module.
  • a detection state of a signal having broadband characteristics is set.
  • FIGS. 3 and 4 as the diffusion input object a T , a sine wave having a constant frequency is always supplied to the diffusion means 14 of the diffusion module 3.
  • Diffusing carrier processing means 13 supplies to the spreading means 14 machined to a noise signal x T to be input to the diffusion carrier c T.
  • a noise source 17a and an adding means 17b are arranged between the spreading module 3 and the despreading module 4 as elements corresponding to the transmission medium 7 in the spread spectrum information transmission system. Yes.
  • the noise m output from the noise source 17a is added to the diffuse output object s by the adding means 17b.
  • a diffusion output object s on which noise m is superimposed is input to the despreading module 4 as a despreading input object h.
  • Despreading the carrier processing means 15 and supplies the processed noise signal x R input from the noise signal supply unit 2 to the despread carrier c R despreading means 16.
  • Despreading means 16 the despreading input object h by multiplying said despread carrier c R, and outputs the result as despread output object a R.
  • the noise signal supplying section 2 is the noise signal x W supplied in common to the despreading carrier processing means 15 and the diffusion carrier processing means 13, which consists only of points of higher number of broadcast signal electric field strength Signal. Since the far-field broadcast signal has a low electric field strength, its spectrum is indistinguishable from the background noise and does not become a component of the noise signal.
  • the spectrum of an AM broadcast signal only spreads around an audible frequency range of several KHz around the carrier frequency of the broadcast signal, which is a spectrum of spectrum like a line spectrum when viewed from the entire frequency band of AM radio broadcasting. There is no spread.
  • the noise signal in the steady state includes several such broadcast signals
  • the spectrum is a sparse comb-like spectrum in which several linear spectra having different heights exist in the frequency band of AM radio broadcasting.
  • the object has no broadband property against the object.
  • there is only one broadcast signal which is a single line spectrum at a position of 1000 KHz.
  • processing from a noise signal to a spread carrier or a despread carrier uses a signal in the entire AM radio broadcast frequency band as the only input signal, and simply makes a pair reflecting the spread of the spectrum as it is. It creates signal spread carriers and despread carriers, and does not perform processing that increases the complexity of waveforms and waveform patterns.
  • the input noise signal is processed into a signal having an absolute value not equal to zero but a positive / negative binary value with reference to zero.
  • description will be made assuming that the processing to the spread carrier and the despread carrier is binarization as in the example.
  • the noise signal x W is a sine wave of fixed frequency. Then, and performs processing of binarizing the signal relative to zero, and to the spread carrier c T despreading carrier c R a rectangular wave having a constant frequency.
  • Frequency of the square wave is the frequency of the original sine wave, it is because the frequency of the carrier of the broadcast signal, the spread carrier c T despreading carrier c R in the steady state, the same as the original broadcast signal
  • a sparse comb-like spectrum structure composed of the frequency and the line spectrum of the odd-order harmonics is a non-object wideband signal.
  • Its harmonic component is smaller than the spectrum of the same frequency as the broadcast signals, because many of the frequency higher than the frequency band of the AM radio broadcast, wherein the diffusion carrier c T despreading carrier c R broadcast original
  • diffusion carrier c T is the diffusion means, despreading carrier c R is supplied to the despreading means.
  • the diffusion input object a T to the spectrum of the various AM radio broadcast to obtain the noise signal considers the frequency band versus object broadband property distributed, in the frequency domain to obtain a noise signal frequency of the spread input object a T It is assumed that it is much smaller than the upper limit frequency, for example, one hundredth or less.
  • the diffusion input object a T is described as a 1 KHz sine wave corresponding to 1600 of the upper limit frequency 1600 KHz of the AM radio broadcast frequency band for obtaining a noise signal.
  • the spectrum of the diffuse input object a T is a single line spectrum at a frequency position of 1 KHz.
  • Diffusion means comprises a diffusion input object a T line spectrum of the 1 KHz, it multiplies the spread carrier c T line spectrum of 1000 KHz, and outputs to the transmission medium and the resulting diffusion output object s.
  • this operation is balanced modulator operation performed by the diffusion means, the diffusion output object s obtained therefrom, only the frequency component of the sine wave of the diffusion input object a T from the position of the line spectrum of the spread carrier c T
  • the spectrum is composed of two sidebands at positions separated from each other. That is, the diffusion output object s is composed of two line spectra having the same length of 999 KHz and 1001 KHz.
  • the spread output object s becomes a signal having no broadband property against the object whose spectrum is not widely spread.
  • the diffusion module outputs this diffusion output object to the transmission medium with some appropriate energy.
  • noise m is superimposed on the diffusion output object s.
  • a signal that strongly interferes with the diffusion output object s transmitted on the transmission medium in a steady state is used as the noise m. That is, using a signal having a spectrum of energy equal to or higher than that of the diffusion output object s in the frequency domain of the spectrum of the diffusion output object s.
  • the noise m is the same as that of the diffusion output object s. It is to make it a sine wave signal of energy 999 KHz and 1001 KHz.
  • the noise m is a signal having the same energy as that of the diffusion output object s, and is composed of spectra of 999 KHz and 1001 KHz.
  • the noise m may have any phase relationship with respect to the diffuse output object. For example, 999 KHz and 1001 KHz sine wave transmitters are used for the noise m supply unit.
  • despreading module inputs the spreading output object s this noise m is superimposed as despreading input object h, performs despreading operation by multiplying the despread carrier c R it in despreading means.
  • the despread carrier c R using the same signal and the spread carrier c T.
  • This despreading operation is the calculation operation shown in Equation 21, and the despreading means outputs the result obtained by applying a filter that passes the spectrum of the occupied frequency band of the spread input object to the signal obtained therefrom as a despread object.
  • the signal of the first term on the right side is the spread output object s, which is two line spectra at the frequency positions of 999 KHz and 1001 KHz, and one line spectrum at 1000 KHz. it is a signal obtained by balanced modulation by despreading the carrier c R is. According to this, a spectrum of 1 KHz and 1999 KHz is generated from a 999 KHz component of the spread output object s and a 1000 KHz component of the despread carrier c R , and a 1001 KHz component of the spread output object s and a 1000 KHz component of the despread carrier c R Produces components of 1 KHz and 2001 KHz.
  • the ratio of the energy distributed to each spectrum of 1 KHz, 1999 KHz and 2001 KHz is 2: 1: 1.
  • the spectrum of the original 1 kHz diffused input object passes through a filter that passes the frequency component of the diffused input object provided in the despreading means, and appears in the output of the despreading means, Become.
  • the signal of the second term on the right side is the despread that is the noise m of the two line spectrum configurations at the frequency positions of 999 KHz and 1001 KHz and the line spectrum of 1000 KHz.
  • This is a signal obtained by balanced modulation with a carrier.
  • despreading carrier c R noise m occurs spectrum of 1KHz and 1999KHz, and 1KHz from components of 1000KHz of 1001KHz components despreading carrier c R noise m A spectrum of 2001 KHz results.
  • the ratio of the energy distributed to each spectrum of 1 KHz, 1999 KHz, and 2001 KHz is the signal of the second term on the right side of Equation 21. It becomes the same as the energy distribution ratio of 2: 1: 1.
  • the signal in the second term on the right side of Equation 21 is a signal having no broadband property against the object.
  • the spectrum input in the same frequency domain as the occupied frequency band of the 1 KHz spread input object passes through the filter that passes the frequency component of the spread input object provided in the despreading means and appears at the output of the despreading means Becomes a component of the object.
  • the ratio of the energy of the component of the first term and the energy of the component of the second term is the energy of the diffusion output object s in the despread input object.
  • the ratio of the energy of the noise m since the noise m superimposed on the diffusion output object s in the transmission medium is the same energy as the energy of the diffusion output object s, the energy of the signal of each term on the right side of the expression 21 indicating the despreading operation is It can be said that the ratio of the energy of the component and the energy of the component of the second term is 1: 1.
  • the filter that allows the frequency component of the diffused input object to pass can be passed through, for example, when a low-pass filter of 1 KHz is used as the filter.
  • the 1 KHz component has an energy distribution ratio of 50% among the components of the first and second terms. Therefore, the signal that passes through the filter and is output as the despread output object has the energy obtained at the same distribution ratio from the components of the first term and the second term on the right-hand side of Equation 21 having the energy ratio of 1: 1. Since it is a signal, it can be seen that the despread output object is a signal composed of a diffuse input object component having the same energy and a noise m component.
  • the diffuse input object component and the noise m component are both 1 KHz signals but are not synchronized, so there is some phase difference between them, thereby synthesizing the two signals.
  • the signal will be different from the waveform of the diffuse input object.
  • the noise m is a signal intended to strongly interfere with the diffusion output object s transmitted on the transmission medium in the steady state.
  • the despread output object in the steady state is the waveform of the diffusion input object.
  • a signal obtained by modulating a signal of 1 KHz with an irregular signal at a power density higher than that of the diffusion output object is used as the noise m.
  • the despread output object always has a waveform far from the diffuse input object.
  • the object transmission mechanism of this system has noise resistance specific to the spread spectrum communication method. Since it cannot be obtained, the influence of noise intentionally superimposed for the purpose of obstructing the faithful transmission of the object on the transmission medium cannot be suppressed, and the signal waveform input to the diffusion input object is faithful to the despread output object. Cannot output.
  • a comparator (not shown) is provided after the despreading means to compare the despread output object and the diffuse input object from time to time, and a state in which the signals coincide continuously for a predetermined period or longer. It is possible to detect by obtaining a comparison result that there is not.
  • the above operation can be performed even when a signal used as a noise signal in a steady state has a plurality of broadcast signal spectra. Are the same. However, in that case, for example, the noise m also has a plurality of spectra so that the noise m strongly interferes with each spectrum corresponding to each broadcast signal appearing in the spread output object.
  • the noise signal supplying section 2 is the noise signal x W supplied in common to the diffusion carrier processing means 13 and despreading the carrier processing means 15 is intended to broadcast signals and lightning signal is mixed.
  • Lightning discharges appear to be an instantaneous phenomenon to the human eye, but in reality, a discharge that flows continuously for a period of time with a huge current that changes in size irregularly is irregular for a very short period of time. It is known that this phenomenon occurs many times in a concentrated manner. In addition, it is well known that the lightning discharge phenomenon continuously radiates impulse-like electromagnetic waves having a very wide spectrum with a huge power density.
  • the signal from such lightning discharge is a powerful signal with a high power density that exceeds the broadcast signal in the frequency band occupied by any broadcast signal over a wide frequency band of 560 KHz to 1600 KHz over the entire frequency band of AM radio broadcasting. Therefore, a noise signal in which a broadcast signal and a lightning discharge signal are mixed is actually composed of only a lightning discharge signal.
  • the noise signal is composed only of a lightning discharge signal, and the noise signal has an occupied frequency band of 2000 KHz or more, and is a signal having a spectrum distribution of the high power density over the entire frequency band. Will be described. That is, the noise signal in the detection state of the signal having the broadband property to the object is a signal having the broadband property to the object.
  • Diffusing carrier processing means 13 and despreading the carrier processing means 15 receives the noise signal x W based on lightning discharge signal provided from the noise signal supply unit 2 in common, the spread carrier c T despreading carrier c R Process. Processing into diffusion carrier c T despreading carrier c R is the same as that used in the description of FIG. 3, the binary positive and negative absolute value is compared with zero on the basis of the noise signal to be inputted is equal not zero It is the processing of binarization to make the signal to take. Diffusing carrier c T despreading carrier c R spectrum over a wide frequency band is created by binarizing a noise signal distributed is a binary signal spectrum is distributed over the noise signal as well as a wide frequency band.
  • a diffusion carrier c T also despread carrier c R also has a noise signal as well as paired object broadband property having an occupied frequency band of more than 2000KHz signal.
  • diffusion carrier c T is the diffusion means
  • despreading carrier c R is supplied to the despreading means.
  • Diffusing means multiplies the spread carrier c T and the diffusion input object a T, and outputs to the transmission medium and the resulting diffusion output object s.
  • the spreading means performed at this time is a balanced modulation operation.
  • the signal obtained by the a line spectrum of the signal and the 1KHz of one line spread spectrum input object a T by balanced modulation Is a spectrum signal composed of two sidebands at a frequency position of 1 KHz before and after the frequency of the line spectrum of the spread carrier, similar to the result of the spreading operation in the steady state.
  • the spectrum over 1KHz wide frequency band than the frequency band occupied diffusion carrier c T It can be seen that the signal is distributed.
  • the diffusion output object s is spread by spectrum spreading carrier c T, the signal spectrum over a similarly wide frequency band and diffusion carrier c T had a counterion object broadband property distribution.
  • the diffusion output object s is also described as comprising a signal having an occupied frequency band of 2000KHz like the diffusion carrier c T.
  • the energy given to the diffusion output object s output from the diffusion means to the transmission medium is the same as the total energy given to the diffusion output object output from the diffusion means to the transmission medium in the steady state.
  • the spread output object s transmitted with the energy concentrated in the narrow occupied frequency band called the line spectrum is transmitted with the energy spread in a wide frequency band of 2000 KHz in the detection state of the signal having the broadband property against the object. Is done.
  • the power density of the diffused output object s at this time is as small as 1 / 2,000,000 of the power density of the diffused output object s in the steady state, for example, when the width of the line spectrum of the diffused output object s in the steady state is 1 Hz. Value.
  • noise m is superimposed on the diffusion output object s.
  • the noise m is a signal having the same energy as that of the steady-state diffuse output object s, and is composed of spectra of 999 KHz and 1001 KHz.
  • despreading module inputs the spreading output object s this noise m is superimposed as despreading input object h, performs despreading operation by multiplying the despread carrier c R it in despreading means.
  • This despreading operation is the calculation operation shown in Equation 21, and the despreading means outputs the result obtained by applying a filter that passes the spectrum of the occupied frequency band of the spread input object to the signal obtained therefrom as a despread object.
  • the signal of the first term on the right side is spread in the frequency band of 2000 KHz as well as the component of the spread output object s having a spectrum spread in the frequency band of 2000 KHz.
  • the spread output object s is regarded as a collection of innumerable line spectra spread over the frequency band of 2000 KHz
  • c R is regarded as a collection of infinite line spectra spread over the frequency band of 2000 KHz with despread carriers.
  • the operation of the first term on the right-hand side of Equation 21 to obtain only one line spectrum of the diffuse input object a T by multiplying the spectra with each other is the operation of the diffuse output object diffused with a minute power density in the frequency band of 2000 KHz. It can be said to be an operation of collecting energy and returning the energy distribution to the original occupied frequency band of the diffuse input object.
  • the signal of the second term on the right side is a spectrum in which noise m of two line spectrum configurations at frequency positions of 999 KHz and 1001 KHz is spread over a frequency band of 2000 KHz.
  • the obtained signal is a spectrum signal composed of four sidebands at frequency positions of 999 KHz before and after and 1001 KHz before and after the frequency of the line spectrum of the despread carrier, similarly to the result at the time of the spreading operation in the steady state. It becomes.
  • the whole myriad line spectrum of the balanced modulation despread carrier c R effect a spread frequency band of 2000KHz of the resulting signal, 1001KHz over a wide frequency band than the frequency band occupied despread carrier c R
  • the signal is distributed in spectrum. That is, the diffusion is diffused in the spectrum of the carrier c T, diffusion output object s becomes a signal having a pair object broadband property spectrum are distributed over a wide frequency band similar to the diffusion carrier c T.
  • the second term on the right side of Equation 21 will be described as a signal having an occupied frequency band of 2000 KHz or more.
  • the ratio of the energy of the component of the first term and the energy of the component of the second term is the energy of the diffusion output object s in the despread input object.
  • the ratio of the energy of the noise m since the noise m superimposed on the diffusion output object s in the transmission medium is the same energy as the energy of the diffusion output object s, the energy of the signal of each term on the right side of the expression 21 indicating the despreading operation is It can be said that the ratio of the energy of the component and the energy of the component of the second term is 1: 1.
  • the filter when the low-pass filter of 1 KHz is used for the filter, for example, the filter can pass the frequency component of the diffusion input object.
  • the component of the first term is the component of the diffuse input object having the energy of 100%
  • the second component of the second component is that the energy is 2000 KHz or more. This component is suppressed to a ratio of the pass bandwidth of the low-pass filter of 1 KHz to the occupied frequency bandwidth of the term component.
  • the energy ratio of those components included in the signal that passes through the filter and is output as the despread output object is more than 2000 times as the energy ratio of the component of the diffusion input object to the noise influence component.
  • the noise influence energy is only 1/20 or less of the energy of the component of the diffuse input object.
  • the despread output object obtained as a result contains almost no influence of noise, so that the waveform of the diffuse input object appears faithfully.
  • the signal spectrum obtained in the second term on the right side of Equation 21 has a component with a negative frequency exactly as in the case of the first term, and that component goes to the positive frequency region with frequency zero as a boundary. Since it is a folded spectrum distribution, the spectrum distribution is not strictly uniform. However, as described above, since the influence on the diffusion input object is small, the influence is ignored.
  • the object transmission mechanism of the present system has the noise resistance characteristic of the spread spectrum communication method.
  • the influence of noise intentionally superimposed for the purpose of obstructing the faithful transmission of the object on the transmission medium can be suppressed, and the signal waveform of the spread input object can be faithfully output to the despread output object.
  • a comparator (not shown) is provided at the output of the despreading means, and the despread output object and the diffuse input object are compared every moment, and the state in which these signals are continuously matched for a predetermined period or longer is determined. It is possible to detect by the comparison result.
  • the object transmission mechanism to the noise signal x W does not have a pair object broadband property in the steady state is not the noise resistance can be obtained, the noise thereby intentionally superimposed effect diffusion input object a T as despreading output object a R can not be SN good output can not be eliminated.
  • the object transmission mechanism by having a pairs object wideband noise signal x W signal detection state of having an object broadband performance resulting noise resistance eliminating the influence of noise is intentionally superimposed by it despreading module to can diffuse input object a T SN may output a despread output object a R. That is, in this transmission system, a signal having a broadband property against an object such as lightning discharge can be detected.
  • the configuration of this transmission system is not limited to the detection of lightning discharge, but can be used for detection of a signal having a broadband property with respect to any object and evaluation of a broadband property with respect to any signal. is there. Furthermore, using the fact that the configuration of this transmission system requires a noise signal with a cross-correlation established between the spreading module and the despreading module, the phase difference of an arbitrary irregular signal is evaluated, the direction is identified, etc. Can also be applied.
  • the wideband property of an arbitrary signal with respect to an object which is neither information transmission nor distance measurement, which is a conventional spread spectrum application. It can be said that it can be applied to the evaluation. That is, it is possible to pioneer a new application of spread spectrum that is neither communication nor distance measurement.
  • the object to be transmitted can be grasped by a time function, and the case of the system that converts the object into an electric signal and transmits it has been described.
  • the application area of the carrier processing apparatus and the object transmission system according to the present invention is not limited to this. Even if an object to be transmitted is captured by, for example, a state variable of a position function, the object can be applied to the present transmission system.
  • a signal processing process of the present transmission system for processing a planar image will be described with reference to FIGS.
  • FIG. 5 shows a model in which a predetermined area 20a of the planar image 20 such as a poster or a photograph is expressed as a two-dimensional arrangement of minute pixels.
  • a predetermined area 20a of the planar image 20 such as a poster or a photograph
  • FIG. 5 shows a model in which a predetermined area 20a of the planar image 20 such as a poster or a photograph is expressed as a two-dimensional arrangement of minute pixels.
  • a fine pattern such as a background portion of a snap image shown in FIG. 5 or an aerial photograph of a densely populated residential area appears at random
  • the linear pixel array 21a the pixel in the direction of the array 21a
  • the brightness changes irregularly.
  • This transmission system are those available a sequence of luminance changes irregularly on such image noise signal x W, FIG. 7, there is shown an overall diagram of such a present transmission system.
  • noise signal supplying section 2 shown in with the noise signal x W of the one-dimensional from the two-dimensional image is defined in the region 20a to noise image in image 20, the diffusion module 3 despreading module 4 And supply to.
  • the noise signal supply unit 2 is, for example, a scanner that reads analog gray state distribution information of an image as digital data.
  • the scanner 2 is arranged in a dimensionally sequentially reads the data used as a noise signal x W from the two-dimensional image by scanning the two-dimensional noise image, spreading the carrier and the data string 21a as a noise signal x T and the noise signal x R This is supplied to the processing means 13 and the despread carrier processing means 15.
  • the noise signal x W as one of the linear regions 21 on the plane image 20a, in practice, as the scanning of the bright points of the TV screen of the raster scan, pixels adjacent to vertical a region for reading the entire image plane 20a as a noise signal x W connects the column.
  • the noise signal x W will be described as a one-dimensional data sequence to be read in the manner that.
  • Diffusing carrier processing means 13 to process the noise signal x T to spread carrier c T, and supplies the spread carrier c T to the diffusion unit 14.
  • the diffusion input object a T is supplied to the diffusion means 14 by the action of the transmission object source 5 and the diffusion input object input means 6.
  • the transmission object source 5 is a supply source of the transmission object o T to be transmitted in the present transmission system, and the transmission object o T is, for example, some information.
  • the transmission object source 5 supplies the transmission object o T to the diffusion input object input means 6.
  • the diffusion input object input means 6 creates a diffusion input object a T in the form of a one-dimensional data string corresponding to the transmission object o T and limited to an area having an occupied frequency band. Output toward.
  • the operation of the diffusion input object input means 6 is an operation called so-called primary modulation.
  • the spread input object input unit 6 supplies the spread input object a T as a signal of the same form as the noise signal x T and diffusion carrier c T. Specifically, for example, spread input object input unit 6 supplies the spread input object a T, at a one-dimensional form of the data string 22 as a noise signal x T.
  • the diffused input object input means 6 has the amplitude value of each sine wave waveform with respect to the sine wave period, for example, one thousandth of the sine wave half period waveform generated by the primary modulation. sampled at intervals of a minute width Delta] z, to form a data string 22 to be an aggregate of the diffusion input object a T side by side the sample values in one dimension.
  • such a diffused input object input means 6 is, for example, a computer equipped with a program for generating a numerical sequence of sine waves having the meaning of FIG. 6 by numerical calculation.
  • Spread input object input unit 6 sequentially reads the data from the head of the data string 22 in this order, and supplies the spreading means 14 it as spread input object a T.
  • Spreading means 14, the spread carrier c T, the multiplying from the data string 22 sequentially reads data (spread input object a T), the results arranged in one-dimensional data strings 23a as a diffusion output object s. This is performed in a manner similar to that created the data string 22, for example, spread input object a T, by software for example on a computer.
  • the formation of the data string 23a of the diffusion output object s by the diffusion means 14 described above is performed for the data string 22 corresponding to all objects to be transmitted.
  • the formation of the data string 23a, with the data string 22 corresponding to the object, as a data string of the spread carrier c T, is required data sequence consisting of the same number of data as the number of data constituting the data string 22.
  • the luminance data sequence 21a of the noise image having the same number of data as that is required.
  • the area of the noise image has a size that can supply a luminance data string having a size required for such object transmission, for example. For example, a region 20a of an image provided in the planar image 20 shown in FIG.
  • the data string 23a of the diffusion output object s output from the diffusion means 14 is logically a one-dimensional data string, but the physical form of the data string used in the actual transmission 24 may be arbitrary. Is.
  • the transmission medium conversion 7 a converts the diffusion output object s output from the diffusion means as a one-dimensional data string into a form used in the actual transmission 24.
  • the data string 23a of the diffusion output object s does not correspond to a one-dimensional data string, but corresponds to a two-dimensional plane like a planar image 20a shown in FIG. A plane image expressed by a two-dimensional data string may be used.
  • the transmission medium conversion 7a means a form conversion of a data string from one dimension to two dimensions and a form conversion from electronic data to a flat print image, for example, using a printing machine.
  • the diffusion output object s transmitted in the actual transmission 24 is in the form of a flat print image that is converted and printed on paper as described above.
  • the object moved from the spreading module to the despreading module in the transmission 24 is input to the despreading module 4 as the data string 23b of the one-dimensional despreading input object h again in accordance with the data processing mode in the despreading module.
  • the form of the diffusion output object s in the form adapted to the process of transmission 24 is converted again in the process of being input to the despreading module 4.
  • the transmission medium conversion 7b indicates the form conversion.
  • the transmission medium conversion 7b is converted from an image to electronic data, and from two dimensions to one dimension. Performs data row format conversion. Specifically, for example, a scanner is used for this.
  • the noise signal supply unit 2 inputs the noise signal x W of the one-dimensional data strings supplied as a noise signal x R.
  • Data string of the noise signal x R may be the data string itself supplied as a noise signal x T diffusion module, may be one which has been stored it, obtained by scanning again the same image in the same way It can be a data string.
  • Despreading the carrier processing means 15 creates a despread carrier c R by processing the data string of the noise signal x R input, and supplies the despread carrier c R despreading means 16.
  • Despreading means 16 the despreading carrier c R, multiplied by despreading input object h, and outputs the despread output object a R.
  • the despread output object a R is also data of the one-dimensional data string 25.
  • the waveform of the graph obtained by sequentially plotting the data of the data string 25 of the despread output object a R at regular intervals is the waveform of the diffusion input object a T in FIG. 6, and the waveform constituting the graph is from 0 to 180 degrees. If the arrangement of sinusoidal waveforms with a period of up to 20 degrees is analyzed, information represented by the arrangement, that is, an object can be extracted.
  • Reference numeral 8 in FIG. 7 denotes diffusion output object output means for extracting and outputting a transmission object o R that is an object transmitted from the data string 25 by some method.
  • the elements of the data string 21a to the processing material of the despread carrier c R to be multiplied by an element of the data string 23b at the despreading means 16 the element of a data string 23a which is the source of the data row 23b is diffused module in such diffuse carrier processing means 13 in order to create the data string of the spread carrier c T a diffuser is used when it is created the same as the element of the data string 21a used for processing materials, data from each data string Are arranged in the order in which data is read out and data is written to the data string.
  • Spread spectrum communication has noise resistance against noise superimposed on the spread output object in the transmission path for transmitting the spread output object.
  • noise unrelated to the individual pixel data in the data sequence 23a is present in the image. Even if they are superimposed, the influence of the noise on the despread output object can be reduced regardless of the characteristics of the noise. For example, noise may be superimposed on the image. For example, ink may be spilled on the image, but other than this, another image in the image of the diffusion output object may be actively superimposed.
  • a person's photographic image is superimposed on image information obtained by spectrum-spreading some character information. Even if such noise is superimposed, the influence of noise can be eliminated by the noise resistance of spread spectrum communication.
  • the image information obtained by spectrum-spreading the character information may be smaller grayscale information than the person image to be superimposed, the grayscale information of the person image is dominant in the grayscale information of the image obtained by combining the two images. Can do.
  • the image information obtained by synthesizing the two images the image information obtained by spectrally diffusing the character information only looks like a slight noise, and the existence thereof is virtually unknown.
  • This is used, for example, for imprinting information on photographic images.
  • imprinting guidance information on a specific building in an aerial photograph image of a city street.
  • two types of information that is, the coordinates on the photographic image and the name of the building at the coordinate position are combined to form a diffusion input object.
  • image information as a noise signal source used as a processing material of the diffusion / despreading carrier may use an appropriate portion of the aerial image.
  • a spread output object obtained by performing spectrum spread on a spread input object with a spread carrier is superimposed on, for example, an image region around the building of the image.
  • the image is subjected to the superimposition of the diffuse output object, but the value of the diffuse output object has a small absolute value, for example, about one-tenth of the width of the value taken by the shade information of the pixels constituting the image, and is randomly Because it changes, it looks the same as the original aerial photograph.
  • the inverse diffusion operation is performed on the gray level information sequence of the image read from the appropriate area of the image on which the diffusion output object is superimposed, the information of coordinates and name is obtained and the name is displayed at the coordinate position on the image. I can do it.
  • a plurality of such information embeddings are performed at different positions, a plurality of different diffusion output objects may be superimposed on a certain area on the image.
  • the superimposed spread output object is affected by noise as a signal component other than the target signal or superimposed aerial photograph components for each piece of information in the despreading process. It is possible to extract only the signal of interest by eliminating it.
  • the aerial photograph is much more accurate and rich in information than a simple pictorial map as geographical guidance information, but by applying this object transmission system, more information can be added to it. Become.
  • information can be imprinted on the image without changing the appearance of the image, and a new function can be provided to the image.
  • the transmission system performs information transmission using a planar image.
  • the application of the transmission system is not limited to a planar image, and data that represents a stereoscopic image or stored in a storage device.
  • Arbitrary data may be used, such as dimensionless mass data.
  • the noise signal and the like are described in a one-dimensional form, but the expression form is not limited to one dimension, and may be two or more dimensions.
  • various data are represented as one-dimensional continuous data here, the representation form is not limited to the continuous form.
  • a noise signal or the like has been described as a digitally sampled data string here, the expression form is not limited to the digitally sampled data string form, and may be expressed as an analog continuous quantity.
  • the image area for obtaining image information as a noise signal and the image area for imprinting the diffusion output object have not been described in particular. However, these areas may be arbitrarily determined, for example, image data for noise signals.
  • the region may be a region in which the diffusion output object is embedded.
  • the noise signal is noise-accepting and the transmission of the diffuse output object is noise-resistant, there is no degradation in transmission performance due to noise entering the transmission medium.
  • an object can be transmitted even in an environment of intense lightning discharge noise.
  • the transmission system can provide a minute signal property that the object can be transmitted even with a minute energy signal regardless of the presence of other signals due to the noise resistance. If this characteristic is used, an object can be transmitted through a medium that receives a large attenuation, for example.
  • the transmission system has an influence on the operation of the transmission system by transmitting the object at a power density much lower than the existing noise regardless of the operation of the transmission system due to the noise resistance. It can provide low coherence. If this characteristic is used, for example, an object can be transmitted in a state where the influence on a device or a human body that does not like external interference is the same as a natural state.
  • the transmission system reduces the power consumption of the diffusion module by making the diffusion output object a minute power density much lower than the existing noise regardless of the operation of the transmission system due to the noise resistance. The low power consumption of the diffusion module can be provided.
  • the low power consumption of the diffusion module includes the effect of reducing the power consumption of the diffusion module due to the solution of the problem of wasting electric power in the synchronization holding operation of the prior art described above. If this characteristic is used, for example, the diffusion module can be reduced in heat generation, long life, and small.
  • this transmission system does not require a complicated and large-scale synchronization device, compared to the conventional receiver with a built-in reference signal spread spectrum communication system using a large-scale synchronization device. Since the system can configure the despreading carrier processing means on a small scale, the despreading module can also provide lower power consumption than the conventional method. If this characteristic is used, for example, the despreading module can be reduced in heat generation, long life, and small.
  • the transmission system transmits the object at a power density lower than other signals called background noise that are already present regardless of the operation of the transmission system due to the noise resistance, and the transmission signal of the transmission system It is possible to provide secrecy that makes it difficult to find the presence by hiding the background noise.
  • this characteristic for example, guide information or the like can be printed on the printed image without damaging the state of the original image.
  • the transmission system treats other target transmission signals as noise, shares the same transmission medium, and transmits the target object without being affected by the other target transmission signals. It can provide multiplicity to be performed simultaneously. If this characteristic is used, for example, asynchronous simultaneous multiplex transmission called code division multiplex transmission can be performed.
  • this transmission system uses a signal that has no periodicity in the spread carrier and the despread carrier and may have any analog value, so that compared to the case of using a binary signal with a conventional periodicity, Estimating the original spread input object from the waveform of the spread output object and making it difficult to estimate and duplicate the despread code.
  • the above estimation and duplication can be further performed. Since it can be made difficult, it is possible to provide a secrecy more than the conventional spread spectrum communication.
  • this transmission system has no noise degradation due to noise entering the transmission medium because the noise signal is noise-accepting and the transmission of the diffuse output object is noise-resistant.
  • the noise signal supply unit supplies the noise signal commonly to the spread spectrum carrier processing means and the spread spectrum spread carrier processing means, and the spread spectrum carrier processing means and the spread spectrum spread carrier.
  • the processing means shares the noise signal and generates the noise signal in a spectrum spread carrier and a spectrum despread carrier. Therefore, even if noise is superimposed on the noise signal, the noise is included as a signal component.
  • the noise signal is processed and generated into a spread spectrum carrier and a spread spectrum spread carrier. Therefore, according to an embodiment of the present invention, even if noise is superimposed on the noise signal, the noise is not taken into the noise signal as a signal component and cross-correlation is not lost.
  • the spread spectrum carrier and the spread spectrum spread carrier generated by the processing means and the spread spectrum spread carrier processing means respectively maintain the cross-correlation, and it is necessary to forcibly synchronize the spread spectrum carrier and the spread spectrum spread carrier. There is no need for a synchronizer.
  • the noise superimposed on the noise signal is also processed and generated as a signal component on both carriers, and the influence of noise superposition can be avoided.
  • the spread spectrum carrier processing means and the spread spectrum spread carrier processing means share a noise signal on which noise is superimposed, and the noise signal uses noise as a signal component.
  • the cross-correlation of the noise signal that is the basis of the signal is not lost, and the spread spectrum carrier and the spread spectrum carrier generated by the spread spectrum carrier processing means and the spread spectrum spread carrier processing means, respectively, can be correlated.
  • Spread spectrum and despread spectrum can be normally performed using both carriers obtained by processing and generating the noise signal.
  • the spread spectrum and spread spectrum can be performed without using a synchronizer that forcibly synchronizes.
  • the noise signal is not used as a spread spectrum carrier and a spread spectrum spread carrier without being processed, but the noise signal is processed and generated into a spread spectrum carrier and a spread spectrum spread carrier.
  • the noise signal an analog signal, noise, a pseudo noise signal, or a combination of these can be used, and the types of signals used as the noise signal can be expanded.
  • an analog signal, noise, pseudo-noise signal, or a combination of these signals is processed into, for example, a binary or multi-valued spread spectrum carrier and a spread spectrum spread carrier, so that the optimum spread spectrum carrier for confidentiality and confidentiality. And a spectrum despread carrier.
  • a carrier with high secrecy can be obtained by processing a noise signal with noise as a source, so that it cannot be distinguished from noise when measured. Can do.
  • the carrier with high secrecy can be generated by using almost the same noise as the signal source and generating the carrier by various processing depending on the processing means. Can be obtained.
  • the noise signal supply unit can supply the noise signal to the spread spectrum carrier processing means and the spread spectrum despread carrier processing means in common using a wired or wireless transmission medium.
  • the arrangement of the noise signal supply unit, the spread spectrum carrier processing means, and the spread spectrum spread carrier processing means can be freely selected. Therefore, in addition to the conventional information to be transmitted, energy such as power or printed matter can be used as the object to be transmitted, and the application range can be expanded.
  • the carrier processing apparatus According to the spread spectrum object transmission system to which the carrier processing apparatus according to the present embodiment is applied, low interference sensitivity, minute signal property, low interference caused by noise resistance specific to the spread spectrum communication technology. , Confidentiality, and multiplicity can be provided to the same extent as a conventional spread spectrum communication system with a built-in reference signal. Furthermore, according to the present transmission system, it is possible to configure a secrecy higher than that of a conventional spread spectrum communication system with a built-in reference signal, quick response capable of promptly responding to communication requirements, low power consumption, and a despreading module without a synchronization device. Small scale can also be provided.
  • the conventional spread carrier or despread carrier is used, such as a discontinuous impulse or burst, a frequency hopping or a frequency chirp, or an appropriate combination thereof.
  • the spread spectrum communication system can be small and inexpensive, improve noise resistance, improve transmission capability, and improve confidentiality and confidentiality.
  • the above characteristics can be provided for transmission of simple objects that do not express information contents, and power transmission, which is neither information transmission nor distance measurement, which is a conventional application of spread spectrum. .
  • new applications such as detection of arbitrary irregular signals, evaluation of irregularities of arbitrary signals, printing, etc., which are neither information transmission nor distance measurement, which was a conventional spread spectrum application. Can be pioneered. (Embodiment 2)
  • Embodiment 2-1 an analog noise signal is input, and the noise signal is processed into a diffusion carrier and a despread carrier by mapping conversion of analog signal processing, and the analog signal spread carrier and despread are processed.
  • diffusion carrier processing means and despread carrier processing means for outputting carriers will be described.
  • FIG. 9 shows the configuration of the carrier processing unit according to the embodiment 2-1 and the object transmission system using the carrier processing unit.
  • the noise signal supply unit 2 the diffusion carrier processing means 13, the despreading unit Carrier processing means 15.
  • Reference numeral 14 represents a spreading means
  • reference numeral 16 represents a despreading means. These spreading means 14 and despreading means 16 are connected via a transmission medium 7.
  • Noise signal supply unit 2 as shown in FIG. 1, including the components of the prime noise signal source 10, a supply part of the noise signal x W.
  • Noise signal x W is a signal having a pair object broadband of certain provisions, containing a noise signal source 10 supplies containing noise signal x E is to satisfy the requirements.
  • the prime noise signal x E, containing a noise signal source 10 may be included containing the noise signal is an analog signal captured in free space.
  • Noise signal supply unit 2 supplies a signal output from the element noise signal source 10 as a noise signal x W on the diffusing carrier processing means 13 and the despreading carrier processing means 15.
  • the noise signal supply unit 2 defines, for example, the geographical positions that can be taken by the diffusion carrier processing unit 13, the despread carrier processing unit 15, and the noise signal supply unit 2 within a certain range.
  • noise signal x T and x difference is small within a certain range between R, a common noise which can be regarded as practically the same cross-correlation established state signal x W a carrier processing means 13 the carrier processing means 13, 15 due to the path difference is inputted, 15 is supplied.
  • the noise is one of the prime noise signal x E
  • the signal which the noise is superimposed is the noise signal x W.
  • the noise signal supply unit 2 a noise signal x W supplies the spreading carrier processing means 13 to the despreading carrier processing means 15, as well as containing noise signal x E, the diffusion carrier processing means noise signal x W 13 and noise or entering from the outside to the transmission medium 11 and supplies the despread carrier processing means 15, a part of the transmission medium noise signal x W also itself emits noise. Therefore, in FIG. 9, captures the noise signal x W as an element of the diffusion carrier processing means 13 in the same manner as the transmission medium 11 containing a noise signal source 10 is also itself supplies the despread carrier processing means 15 the noise signal supply unit 2, It is not clearly shown like the transmission medium 7 for transmitting the diffuse output object.
  • the diffusion carrier processing means 13 includes a limiter 40, a comparator 42, an analog switch 43, an adder 44, and a constant signal supply unit 41.
  • the constant signal supply unit 41 is a signal source that outputs the signal k 1T to the limiter 40, the signal k 2T to the analog switch 43, and the signal k 3T to the adder 44.
  • Diffusing carrier processing means 13 inputs the noise signal x W as a noise signal x T is a machining material signal to spreading the carrier.
  • Limiter 40 the noise signal x T to be input, amplitude and signal k 1T value to limited signal x LT represented by, supplied to the adder 44 and the comparator 42.
  • the signal x LT is amplitude limiting the amplitude of the noise signal x T to k 1T is when the k 1T and positive constant, the absolute value of the amplitude of the input signal x T is not more than k 1T , the output signal x LT becomes a noise signal x T as a value to be input, if the amplitude of the noise signal x T to be input is greater than k 1T, the output signal x LT is next constant k 1T, the amplitude of the input noise signal x T If it is smaller than ⁇ k 1T, it means that the output signal x LT becomes a constant ⁇ k 1T .
  • the comparator 42 compares the signal x LT supplied from the limiter 40 with zero as a comparison reference, and switches the signal supplied to the adder 44 by the analog switch 43 using the result.
  • the comparator 42 outputs a signal for closing the analog switch 43, whereby the signal k 2T is supplied to the adder 44. It will be. On the other hand, if the signal x LT is smaller than the reference value zero, that is, is negative, the comparator 42 outputs a signal for opening the analog switch 43, so that the signal k2T is not supplied to the adder 44.
  • the adder 44 is a signal controlled by the polarity of such a signal x LT, an output signal x LT of the limiter 40, by adding the signals k 3T, the spreading means 14 the signal as a diffusion carrier c T Supply.
  • the spread carrier c T is a constant signal at ⁇ 2.0 if the input noise signal x T is x T ⁇ 1.5, and x T ⁇ 0.5 if ⁇ 1.5 ⁇ x T ⁇ 0. If 0 ⁇ x T ⁇ 1.5, the signal is x T +0.5, and if 1.5 ⁇ x T , the signal is constant at +2.0.
  • the spreading means 14 inputs the spread carrier c T and the spread input object a T , multiplies them, and outputs the spread output object s obtained by spreading the spread of the spread input object a T to the transmission medium 7.
  • the transmission medium 7 is a transmission medium for transmitting the diffusion output object s from the diffusion means 14 to the despreading means 16.
  • Noise m enters the transmission medium 7, and the despreading means 16 inputs a despread input object h in which the noise m is superimposed on the diffuse output object s.
  • the despread carrier processing means 16 has a configuration in which an inverse number calculator 45 is added to the configuration of the diffusion carrier processing means 13 of the diffusion module 3. A specific operation of the despread carrier processing means 15 will be described.
  • the despread carrier processing means 15 inputs the noise signal x R is a work material signal to despread the carrier to noise signal x W.
  • the despread carrier processing means 15 includes a limiter 40, a comparator 42, an analog switch 43, an adder 44, and a constant signal supply unit 41 in the same manner as the diffusion carrier processing means 13, and the noise signal x R And a signal cTR obtained as a result is supplied to the reciprocal calculator 45.
  • Inverse operator 45 reciprocal converts the signal c TR, supplies the despreading means 16 the signal as despread carrier c R.
  • FIG. 11 shows the input / output characteristics of the despread carrier processing means 15 having such a configuration when k 1T is set to +1.5, k 2T is set to +1.0, and k 3T is set to ⁇ 0.5.
  • the despread carrier c R becomes a constant signal of ⁇ 0.5 if the input noise signal x R is x R ⁇ 1.5, and 1 / (x R if ⁇ 1.5 ⁇ x R ⁇ 0. ⁇ 0.5), and if 0 ⁇ x R ⁇ 1.5, the signal is 1 / (x R +0.5), and if 1.5 ⁇ x R , the signal is constant at +0.5.
  • the despread carrier processing means 15 uses the same signals k 1T , k 2T , k 3T of the diffusion carrier processing means 13 as the signals k 1R , k 2R , k 3R , and as a result, from the same noise signal x T diffusion carrier c T obtained, the same ones as the signal c TR despreading carrier processing means 15 side. Then, the despread carrier c R, so that a transformation of its diffusion carrier c T and the same signal c TR to the reciprocal reciprocal calculator 45, a diffusion carrier c T obtained from the same noise signal x T, despreading always a signal of an inverse relationship to the carrier c R.
  • the diffusion carrier c T obtained from the same noise signal x W, the despread carrier c R, the multiplied Always nonzero constant.
  • diffusion carrier processing means 13 the despread carrier processing means 15 time required for signal processing from the noise signal x T to spread carrier c T, the signal processing from the noise signal x R to despread carrier c R as the difference between the time required is sufficiently small, the state established a correlation between the diffusion carrier c T despreading carrier c R created by different signal processing process of the same noise signal x W .
  • such signal processing performed by the diffusion carrier processing means 13 and the despread carrier processing means 15 can be regarded as not including elements that affect the temporal characteristics of the processed signal. vs.
  • the despreading means 16 inputs the despread carrier c R and the despread input object h including the spread output object s input from the transmission medium 7, multiplies them, and the spread input object a subjected to spectrum despreading A despread output object a R including the component of T is output.
  • the diffusion carrier c T created from a common noise signal x W in the diffusion carrier processing means 13 becomes a signal having a pair object broadband property, spread input
  • the spectrum of the object a T is multiplied by its spreading carrier c T and spread.
  • the discrete signal of binary and diffusion carrier c T despreading carrier c R obtained from the noise signal x W absolute value of the amplitude is 1.5 or more . If the diffusion carrier c T despreading carrier c R analog continuous amounts of signal needs to be the absolute value of the amplitude of the noise signal x W to 1.5 or less.
  • the spread carrier processing means 13 and the despread carrier processing means 15 establish the cross-correlation having the broadband property to the object supplied by the noise signal supply unit 2.
  • the spread spectrum communication using a spread carrier c T despreading carrier c R analog could not be used in conventional spread spectrum communication system is realized Become.
  • the geographical relationship between the diffusion module 3, the despreading module 4, and the signal source of the signal that is a component of the noise signal is limited to a certain range.
  • the despreading means 16 despreads module 4, and the despread carrier c R, diffusion carrier c in a component diffusion output object s in despreading input object h
  • the component of T also needs to be in a cross-correlation established state.
  • despreading carrier c R despreading means 16 despreads module 4 inputs, component and cross-correlation established state diffusion carrier c T in a component diffusion output object s in despreading input object h
  • despreading can be performed with high accuracy.
  • despreading module spreading the output objects for the despread carrier c R may be look smaller series direction of the deviation of the signal caused in the process of being transmitted to the despread module from the diffusion module 4 despreading means 16 is input Is.
  • the despreading module 3 and the despreading module 4 of the transmission system according to the fourth embodiment of the present invention shown in FIGS. 33 and 34 have the despreading carrier c R input by the despreading means 16 of the despreading module 4 in this way, operating in the components of the spread carrier c T in a component diffusion output object s in despreading input object h in the cross-correlation established state.
  • the diffusion module 3 and despreading module 4 of the transmission system according to a first embodiment of the present invention shown in FIG. 1 also despreading carrier c R to enter this manner despreading means 16 despreads module 4, reverse operating in the cross-correlation established state and a component of the spread carrier c T in a component diffusion output object s in the diffusion input object h.
  • the despread carrier c R despreading means 16 despreads the module 4 is input, a component of the spread carrier c T in a component diffusion output object s in despreading input object h Are operating in a cross-correlation established state in some appropriate manner.
  • Embodiment 2-2 Next, an example in which Embodiment 2-1 shown in FIG. 9 configured by analog signal processing is configured by digital signal processing will be described.
  • the noise signal supply unit 2 is the same as that shown in FIG. 12 includes an AD converter 50, a mapping circuit 51, a DA converter 52, a timing controller 53 for controlling the timing of the AD converter 50 and the DA converter 52, and a timing controller.
  • 12 includes an AD converter 50, a mapping circuit 55, a DA converter 52, a timing controller 53 for controlling the timing of the AD converter 50 and the DA converter 52, and the like.
  • the configuration of the despread carrier processing means 15 is different only in input / output characteristics of the diffusion carrier processing means 13 and the mapping circuit.
  • Noise signal supply unit 2 similarly to Embodiment 2-1 shown in FIG. 9, the common noise signal x W analog having a pair object broadband property to the diffusion carrier processing means 13 and the despreading carrier processing means 15 Supply.
  • the diffusion carrier processing means 13 and the despreading carrier processing means 15 input noise signals x T and x R that are regarded as practically the same in a cross-correlation established state.
  • Diffusing carrier processing means 13, the noise signal x T input sampled by the AD converter 50, and mapping transform the sampled values in the mapping circuit 51, spread carrier signals back that value into an analog value by the DA converter 52 c Output as T to the diffusion means 14.
  • despreading carrier processing means 15 like the diffusion carrier processing means 13, the noise signal x R input sampled by the AD converter 50, and mapping transform the sampled values in the mapping circuit 55, the value DA conversion and outputs toward the despreading means 16 as a signal despread carrier c R returning to an analog value by the vessel 52.
  • the mapping circuit 51 of the diffusion carrier processing means 13 and the mapping circuit 55 of the despread carrier processing means 15 have mapping characteristics so that a non-zero constant is obtained by multiplying their mapping outputs obtained from the same input. Set. That is, for example, the input / output characteristics shown in FIG. 10 are given to the mapping circuit 51 of the diffusion carrier processing means 13. In a case corresponding to this, the input / output characteristics shown in FIG. 11 are given to the mapping circuit 55 of the despread carrier processing means 15.
  • the configuration in FIG. 12 using the mapping circuit in which the input / output characteristics are set as in this example functions completely equivalent to the configuration shown in FIG.
  • the diffusion carrier processing means 13 the despread carrier processing means 15 multiplies the always constant, have a pair object broadband performance, cross-correlation processed into diffusion carrier c T despreading carrier c R of established state.
  • an inverse calculator 45 provided between the adder 44 on the despread carrier processing means 15 side and the despread means 16 is provided between the adder 44 on the spread carrier processing means 13 side and the spreading means 14. It may be moved. This means that in the configuration of FIG. 12, the mapping conversion mapping circuit 51 on the diffusion carrier processing means 13 side and the mapping conversion mapping circuit 55 on the despreading carrier processing means 15 side may be interchanged.
  • the internal components of the diffusion carrier processing unit and the despread carrier processing unit are interchanged and equivalent functions are provided. Replacement with an element is optional.
  • the inverse arithmetic unit and the despreading unit that is a multiplier may be replaced by a division unit. These may be interchanged between the diffusion module and the despreading module. Other combinations are also conceivable, but such a method may be used as long as the above conditions are satisfied.
  • the configuration in which the AD conversion and the DA conversion are performed in the diffusion carrier processing unit 13 and the despread carrier processing unit 15 does not have the characteristics of this embodiment. Specific configurations such as signal processing before AD conversion and signal processing after DA conversion such as smoothing are omitted. Further, the diffusion carrier processing means 13 and the despreading carrier processing means 15 of the diffusion module 3 and the despreading module 4, which are constituted by the AD converter 50, the mapping circuits 51 and 55, and the DA converter 52 shown in FIG.
  • the series of signal processing units is a digital signal processing device that periodically repeats discrete signal processing in time.
  • the AD converter or DA converter shown in FIG. 12 has, for example, a resolution of 8 bits or more, and the repetition period of sampling and data processing controlled by the timing controller 53 is shortened. Specifically, for example, the repetition period is set to be ten times or more the upper limit frequency of the occupied frequency band required for the spread carrier and the despread carrier. Further, the resolution may be arbitrarily determined, for example, the range of values that can be taken by the noise signal is set to 1/2.
  • the discrete mapping conversion characteristics can be regarded as continuous characteristics in practice by reducing the discrete interval between the horizontal axis and the vertical axis and configuring them with a large number of discrete values.
  • the signal to be obtained can be regarded as a continuous quantity in practice. Therefore, such a discrete quantity that can be regarded as a continuous quantity in practical use is treated as a continuous quantity unless otherwise specified below.
  • a value that takes only a jump value at a predetermined interval is called a discrete value
  • a value that can be regarded as an infinitely small or practically infinitely small value is called a continuous amount.
  • Embodiment 2-2 of the present invention machining create and spread spectrum communication noise signal x W of the analog signal to the spreading carrier c T despreading carrier c R of the analog signal using a digital circuit
  • the apparatus which performs can be comprised.
  • Other configurations and the operation and effects thereof are the same as those of the first embodiment shown in FIG.
  • FIG. 9 and FIG. 12 configured to use a continuous amount of spread carrier and despread carrier is configured to use a spread carrier and a despread carrier having discrete values.
  • the characteristics shown in FIG. 13 and FIG. 14 are examples of input / output characteristics of the mapping converter that converts to discrete spread carrier and despread carrier, and specific numerical examples of the characteristics are shown in FIG.
  • Input-output characteristics shown in FIG. 13 is a representation of a very coarse discrete values a continuous input-output characteristics shown in FIG. 10 for mapping transform noise signal x T to spread carrier c T
  • input-output characteristics shown in FIG. 14 is a representation of a very coarse discrete values a continuous input-output characteristics shown in FIG. 11 for mapping transform noise signal x R despread carrier c R.
  • the input / output characteristics shown in FIGS. 13 and 14 are different from those in FIGS. 10 and 11 in which the input signal is converted into a smooth continuous amount except for a portion having zero as a boundary. Take.
  • the resulting diffusion carrier and despread carrier both have a broadband property against objects and are in a state of mutual correlation established.
  • spread spectrum communication can be realized using the spread carrier and the despread carrier.
  • This is a configuration based on the digital signal processing described in the embodiment 2-2. For example, an AD / DA converter with an 8-bit resolution is used, and the amplitude range of the noise signals x T and x R is “256”.
  • a signal equivalent to a signal in which the spread carrier and the despread carrier generated by the analog signal processing spread carrier despreading means and the despread carrier processing means of the embodiment 2-1 are continuously changed is divided into equal steps.
  • the spread carrier and the despread carrier are multi-value digital signals having discrete values that are not so fine.
  • the number of discrete values to be used as the multi-level digital signal may be arbitrarily determined as long as the resulting spread carrier and despread carrier satisfy the above-described conditions. It is good also as a binary signal which takes the positive / negative value which is not zero which is equal in absolute value and is generally used in spread spectrum communication.
  • Embodiment 2-3 of the present invention not only an analog signal or a signal having a continuous value that can be regarded as equivalent to an analog signal, but also a multi-valued rough discrete signal is applied to the spread carrier and the despread carrier. Even a digital signal that takes a value may be used, or a binary signal that takes a non-zero positive or negative value having the same absolute value used in the conventional spread spectrum communication may be used.
  • the apparatus shown in FIG. 12 that realizes the characteristics shown in FIGS. Since the resolution of the converter 52 can be lowered and the bit widths of the AD converter 50, the DA converter 52, and the mapping circuits 51 and 55 can be reduced, the diffusion module 3 and the despreading module 4 are small and low in cost. It is very effective. Other configurations and the operation and effects thereof are the same as those of the first embodiment shown in FIG.
  • Embodiment 2-3 which uses mapping conversion of monotonically changing input / output characteristics shown in FIG. 13 and FIG. .
  • the input / output characteristics change monotonously, the output that tends to increase with respect to the increasing input does not tend to decrease, or the output that tends to decrease with respect to the increasing input. It will not increase.
  • the characteristics shown in FIGS. 15 and 16 are examples of input / output characteristics of a mapping converter in which discrete values are combined in a non-monotonic order.
  • the characteristics shown in FIG. 10 and FIG. 11 are functions in which the input / output characteristics change monotonously in the continuous sections on both sides excluding the discontinuous zero on the horizontal axis.
  • the characteristics shown in FIG. 14 tend to change monotonously like the characteristics shown in FIGS. 10 and 11 while being discrete discrete amounts.
  • the characteristics shown in FIGS. 15 and 16 are not monotonous with increasing input and appear to change irregularly.
  • the characteristics shown in FIG. 15 and FIG. 16 are shown in FIG. 18 as a numerical table, which is obtained by performing the operation shown in FIG. 19 on the numerical table in FIG. 17 corresponding to the characteristics shown in FIG. 13 and FIG. Is. Details will be described below. Mapping transform rules that are defined in FIG. 18 shows the value of the diffusion carrier c T despreading carrier c R outputted in response to the value of any of the noise signal x T and x R.
  • a is a constant, it refers to the product of the value and the value of the despreading carrier c R of the spread spectrum value whether the matter without diffusing carrier c T of the carrier exhibits a constant value.
  • FIG. 19 shows such an exchange operation.
  • the values in the column on FIG. 17 corresponding to 56a and 56b are exchanged, and at the same time, on the FIG. 17 corresponding to 57a and 57b, as shown by 57 in FIG.
  • the property that the spreading carrier and the despreading carrier are multiplied to 1 as a result is not lost.
  • the property that the result is that the spread carrier and the despread carrier are multiplied to become 1 is lost. It will never be.
  • FIG. 15 shows an input / output characteristic diagram of the mapping conversion of the diffusion module at that time
  • FIG. 16 shows an input / output characteristic diagram of the mapping conversion of the despreading module.
  • the property that the spreading carrier and the despreading carrier are multiplied to become 1 as a result is not lost.
  • a new signal pattern can be generated using the property that the result of multiplying the spread carrier and the despread carrier does not change even if the values taken by the spread carrier and the despread carrier are changed.
  • mapping conversion is generally performed in the process of digital signal processing as shown in FIG. 12, but can also be realized by analog signal processing by combining techniques such as signal clipping. Such a mapping transformation can also be incorporated in the configuration.
  • This change in the input / output characteristics of mapping conversion is a simple replacement of the elements that have been used to determine the input / output characteristics, and does not change the temporal characteristics of the input / output characteristics. Therefore, the relationship between the spread carrier and the despread carrier with respect to the broadband property of the object is also not affected.
  • the multi-value discrete values created by the mapping transformation as shown in FIGS. 17, 18 and 19 are used for the spread carrier and the despread carrier. It is possible to perform spread spectrum communication, which indicates that map conversion can provide a number of different new patterns of signals that can be used from one signal to the spread carrier and the despread carrier. As described above, according to Embodiment 2-4 of the present invention, a large number of different patterns of spread carriers and despread carriers are processed based on the noise signal common to the spread carrier processing means and the despread carrier processing means. And spread spectrum communication using the same can be provided.
  • the spread carrier and the despread carrier of the carrier processing unit 1 provided in this way are different from the binary spread / back calculation code used in the spread spectrum communication system of the reference signal built-in method of the conventional example having the configuration shown in FIG. Since the irregularity of the noise signal that does not require periodicity or regularity is used for the irregularity of the signal, the original diffused input object can be inferred from the spread spectrum diffused input object, or the false signal is forged. It is more difficult to do, and it is effective to improve the secrecy. Other configurations and the operation and effects thereof are the same as those of the first embodiment shown in FIG.
  • the signal preprocessing unit 46 is used for the diffusion carrier processing unit 13 and the signal preprocessing unit 46 is used for the despread carrier processing unit 15 shown in FIG. That is, the noise signals x T and x R are processed by the signal pre-processing unit 46, and the outputs x PT and x PR are supplied to the previous processing steps to be converted into the spread carrier c T and the despread carrier c R. Processed.
  • the processing means appearing in the following description will be described assuming that the signal preprocessing unit 46 is placed in front of the limiter 40.
  • the position of the signal preprocessing unit 46 in FIG. 20 is not limited to the above position as long as the same effect can be obtained.
  • FIG. 21 in the case of processing, in the case where a unique process is considered when using temporally discrete digital signal processing, the configuration shown in FIG. 21 is used. This is equivalent to FIG. 20 in which the signal preprocessing unit 46 is arranged at the input portion of the noise signals x T and x R in the diffusion carrier processing means 13 and the despread carrier processing means 15 shown in FIG. Unless otherwise specified, the processing means appearing in the following description will be described as being placed at the position of each signal preprocessing unit. The position of the signal preprocessing unit 46 in FIG. 21 is not limited to the above position as long as the same effect as described above can be obtained.
  • a signal that can be used as a direct spread carrier and a despread carrier may be output by the processing method.
  • the processing method may be changed to diffusion carrier processing means or despread carrier processing having the configuration shown in FIG. 9 or FIG. Other configurations and the operation and effects thereof are the same as those of the first embodiment shown in FIG.
  • Embodiment 3-2 As shown in FIG. 22A, a delay device is used for the signal preprocessing unit 46 of the spread carrier processing unit 13 and the signal preprocessing unit 46 of the despread carrier processing unit 15 shown in FIGS. As shown in FIG. 22B, signals x PT , x PR delayed by time t D are created for the input noise signals x T , x R to create spread carriers and despread carriers. It ’s good. As described above, according to the first embodiment shown in FIG. 1, the noise signal x W can be a completely irregular signal having no autocorrelation, but such a signal can be used at different times.
  • Embodiment 3-2 of the present invention even if the same noise signal is used, a large number of spread carriers having no cross-correlation using different delay times and corresponding despread carriers are provided. it can.
  • Other configurations and the effects thereof are the same as those of the embodiment shown in FIGS.
  • Embodiment 3-3 The signal preprocessing unit 46 of the spread carrier processing unit 13 shown in FIGS. 20 and 21 and the signal preprocessing unit 46 of the despread carrier processing unit 15 are different from each other without autocorrelation as shown in FIG.
  • a noise signal x 1 ... X n input and a combination unit 60 that generates an output signal by appropriately combining these signals with an adder 61 are provided to generate signals x PT and x PR to despread and spread carriers.
  • a career may be created.
  • signals without autocorrelation are combined, a signal without autocorrelation of a new waveform pattern can be created.
  • the number of waveform patterns of a signal without autocorrelation that can be generated can be increased.
  • FIG. 23 shows an example in which the adder 61 is used as the combination method.
  • an arithmetic operation combination configured by appropriately combining addition, subtraction, multiplication and division, n select combination of selecting some of the noise signal among the pieces of noise signal x 1 ... x n, the noise signal x 1 ... x n to each discrete value into a binary or multi-valued, such as logical sum or product
  • logical operation combinations configured by appropriately combining logical operations, relational operation combinations that determine values according to the magnitude relationship between noise signals x 1 ...
  • the signal obtained as a result of the combination processing by the diffusion carrier processing means 13 and the despread carrier processing means 15 must be in a cross-correlation established state and have a broadband property against an object.
  • the resulting noise signals x PT and x PR have a wide band property with respect to the object and are in a cross-correlation established state, all the noise signals input by the diffusion carrier processing means 13 and the despread carrier processing means 15 respectively.
  • x 1 ... x n does not need to be in a cross-correlation established state with object wide bandwidth.
  • Embodiment 3-3 of the present invention by combining a large number of noise signals, it is possible to provide a large number of spread carriers having different waveform patterns having no autocorrelation and a corresponding despread carrier.
  • Other configurations and the effects thereof are the same as those of the embodiment shown in FIGS.
  • Embodiment 3-4 A spectrum configuration adjustment unit having the characteristics shown in FIG. 24 is provided in the signal preprocessing unit 46 of the spread carrier processing unit 13 and the signal preprocessing unit 46 of the despread carrier processing unit 15 shown in FIGS.
  • the spread carrier and the despread carrier may be created by creating signals x PT and x PR in which the spectrum configuration of the noise signal is adjusted.
  • the characteristic shown in FIG. 24 is that the wide band occupied frequency bandwidth of the signal is not changed, but the gain of the frequency f C1 to f C2 within the band is limited to adjust the spectrum configuration, and the frequency f
  • the spectrum configuration of the noise signal is adjusted by emphasizing the gain for a specific band between C3 and fC6 .
  • the spectrum configuration may be adjusted by, for example, tilting the characteristics of the passing region indicated by the flat line in FIG.
  • Such an operation can be realized by combining filters, and can also be realized by DSP (digital signal processing).
  • the frequency band may be shifted by using frequency heterodyne, or the frequency band may be reduced or expanded by using a signal converter such as an n-th power multiplier, a frequency multiplier, or a frequency divider.
  • the signal pattern of the generated spread carrier and the despread carrier can be changed using the same noise signal. It is effective as a means for improving the secrecy by increasing the complexity of processing and increasing the difficulty of decoding, or providing a method for generating a large number of signals having low cross-correlation in combination with delay.
  • Embodiment 3-4 of the present invention even if the same noise signal is used, it is possible to provide spread carriers having different patterns and corresponding despread carriers using different spectrum configurations.
  • Other configurations and the effects thereof are the same as those of the embodiment shown in FIGS.
  • the signal preprocessing unit 46 of the diffusion carrier processing unit 13 shown in FIGS. 20 and 21 and the signal preprocessing unit 46 of the despreading carrier processing unit 15 include a feature detection unit and a signal generation unit as shown in FIG.
  • the signals x PT and x PR may be created with the configuration provided with the signal preprocessing unit configured as described above to create the spread carrier and the despread carrier. In all of the processing methods described so far, the input processing material signal is directly processed and changed into the processing output signal itself.
  • a specific position information in the input signal sequence is obtained from the input signal, and a signal having a wide band property with respect to the object that is not related to the input signal is generated at a position in the output signal sequence based on the information. It may be a machining output signal.
  • Obtaining specific position information in the input signal sequence from the input signal focuses on the characteristic elements of the input signal, analyzes the input signal to discover the existence of the characteristic element, and It is to output the location of the element. That is, a feature detection process.
  • the characteristic elements of the input signal are, for example, a specific waveform pattern, a zero cross point, and a waveform vertex.
  • the analysis for finding the presence is, for example, a method using a comparator and a reference signal source, or a method of performing pattern matching or regression analysis on information on continuous sections of a signal sequence using a signal processing device. .
  • a configuration combining a spectrum despreading module and a signal processing device of this transmission system is used, and a specific waveform pattern having a despread output object as a characteristic element of the input signal or , Zero cross points, and vertices of waveforms may be used. Since the waveform pattern of the noise signal is irregular, the position where the feature is detected in the sequence appears irregularly in the sequence. A signal generated based on the irregularly appearing position is an irregular signal. In addition, the position of the feature detected by the feature detection process of the same characteristic for the same noise signal is the same point in the series of noise signals, and the arrangement of points based on the position of the feature and the position of the feature are determined.
  • the sequence of values of appropriate points on the noise signal used as a reference is the same, which is in a cross-correlation established state.
  • the signal can be regarded as having established cross-correlation.
  • the signals to be generated are signals having a waveform pattern having irregularity with an appropriate anti-object wideband characteristic, so that the signals satisfy the requirements as noise signals.
  • the signals to be generated are multiplied by each other, a pair of signal relations that become a predetermined constant that is not zero is obtained, so that they satisfy the requirements as a spread carrier and a despread carrier.
  • this processing method processes and creates a signal that satisfies the requirements as a noise signal of another waveform pattern, or a signal that satisfies the requirements as a spread carrier and a despread carrier, from the noise signal.
  • the processing using the feature detection unit and the signal generation unit will be specifically described with reference to FIGS. Here, a description will be given by taking an example of using the polarity of an input noise signal as a feature to be detected.
  • the feature detection unit 62 shown in FIG. 25 receives the noise signal whose value changes irregularly shown in FIG. 26A, and outputs a signal corresponding to the feature of the polarity of the noise signal.
  • FIG. 26B shows a feature detection output signal z O detected from the noise signal shown in FIG.
  • the feature detection output signal z O is a certain positive value when the noise signal is zero or more or a positive polarity, and negative when the noise signal is a negative polarity smaller than zero. It is a certain value.
  • the feature detection unit of the diffusion carrier processing unit and the feature detection unit of the despread carrier processing unit perform feature detection with the same input / output characteristics.
  • the feature detection means of the diffusion carrier processing means and the feature detection means of the despread carrier processing means are separate and independent devices, the feature detection output signals output by the respective devices are different signals. Because performs feature detection in the same input-output characteristic by entering a common noise signal x W, wherein the detection output signal, each of which output is the same, they will be that of the cross-correlation established state.
  • the signal generating means 63 receives the feature detection output signal z O and generates a pulse with a specified width and height having a positive polarity at a position where the signal z O changes from negative to positive, and the signal z O In a position where the voltage changes from positive to negative, an impulse-like pulse having a negative polarity and a specified width and height is generated.
  • the signal generation means of the diffusion carrier processing means and the signal generation means of the despread carrier processing means also generate signals with the same input / output characteristics.
  • the generated output signals output from each are separate signals, but the generated output signals are Since the same feature detection output signal is input and a signal is generated with the same input / output characteristics, the generated output signals output by each are the same, and they are in a cross-correlation established state. In other words, the generated output signals output from each are signals having the same waveform starting from the same position in the series of noise signals.
  • the noise signal is an irregular signal, there is no regularity whether the value is zero or more or negative, and the zero cross position where the state changes appears irregularly. Therefore, the position where the impulse-like pulse of the signal shown in FIG.
  • the signal shown in FIG. 26C appears irregularly, and the signal shown in FIG. Also, for the waveform of an impulse signal, the width of the waveform is much narrower, for example, a thousandth of the repetition period of the primary modulation carrier of the spread input object of this transmission system using this carrier processing unit. Thus, the generated output signal can have a broad object-to-object bandwidth.
  • the signal x PT and x PR created in the configuration of the processing method of FIG. 25 from the noise signal x W having a common irregularities have versus object broadband property and irregularity, the cross-correlation Since it becomes an established state and satisfies the requirements of the noise signal, the diffusion module and the despreading module can use these signals as noise signals.
  • the heights of the positive and negative impulse signals generated by the signal generating means 63 are made equal.
  • the impulse signal is generated on the diffusion module side, the same impulse signal is also generated on the despreading module side.
  • the output signal x PT and x PR are cross-correlation established state, also to establish a signal relationships paired to be some constant non-zero when multiplied together.
  • the output signal x PT and x PR of the processing method in this case not only can be used as a noise signal, but also can be used as an impulse-like discontinuous diffusion carrier and despread carrier.
  • the present processing method can be used not only for processing a signal that can be used as a noise signal, but also for processing a spread carrier and a despread carrier.
  • the magnitude of the signal generated by the signal generating means 63 is not limited to the constant value shown in this example. It may be a signal derived from a noise signal obtained by appropriately processing the noise signal, such as an average value of the signal or a signal proportional to the length of the feature section before the generated signal.
  • the signal waveform of the generator 63 is a signal to be generated is not limited to a impulse-like waveform, as the pattern of the specified pseudo-noise signal, the output signal x PT and x PR of the machining process pair Any waveform may be used as long as it has an object broadband property and irregularity to establish a cross-correlation established state and a signal relationship that makes a pair as necessary.
  • Embodiment 3-6 A combination of a plurality of processing units as shown in FIG. 27 is combined with the signal preprocessing unit 46 of the diffusion carrier processing unit 13 and the signal preprocessing unit 46 of the despreading carrier processing unit 15 shown in FIGS. And processing the spread carrier and the despread carrier by creating signals x PT and x PR obtained by processing a noise signal by combining a plurality of processing methods.
  • the process of processing a noise signal into a spread carrier and a despread carrier includes the delay shown in FIG. 22, the combination of a plurality of noise signals shown in FIG. 23, the spectrum adjustment shown in FIG. 24, and the feature detection shown in FIG.
  • FIG. 30 and FIG. 31 described later, or all, or some types thereof May be configured in appropriate combinations, and an example is shown in FIG.
  • the processes or processes may be combined in parallel with the method in which the processes or processes are combined in parallel and the processes or processes are continuously performed in series.
  • Processing means 65a is processing means 65b, performs 65c and parallel processing, to create a signal z 1 from the noise signal x T or x R.
  • Processing means 65c performs a serially processed with respect to the processing unit 65b, and supplies to the adder 66 to create a signal z 3 from the signal z 2.
  • the adder 66 combines the output z 1 of the output z 3 and the machining unit 65a of the processing unit 65c of the series of processing, and outputs a signal x PT, x PR.
  • the example of the combination method is shown as serial and parallel, but the combination method is not limited to this, and as described above, for example, a nested structure, a feedback structure, or a complicated combination of them arbitrarily It may be a structure. Further, for example, integration, differentiation, matched filter, sequential numerical processing by a digital arithmetic device, and the like are complex combinations of such basic elements of signal processing, and may be configured using them.
  • signals xPT and xPR are obtained by combining a large number of processes or processes, so that unique signals with different signal patterns and waveforms and low cross-correlation are obtained.
  • Obtaining unique signals for example, providing many spread carriers and despread carriers that do not interfere with each other in multiplex transmission, and providing many complex spread carriers and despread carriers that are difficult to decipher and forge in secure transmission, for example It can be done.
  • Embodiment 3-7 The signal preprocessing unit 46 of the diffusion carrier processing unit 13 shown in FIGS. 20 and 21 and the signal preprocessing unit 46 of the despread carrier processing unit 15 are provided with a low-frequency limiting unit having the characteristics shown in FIG.
  • the spread carrier and the despread carrier may be processed by creating signals x PT and x PR in which the low frequency component of the noise signal is suppressed.
  • the noise signal is required to have a broadband property against an object.
  • the spectrum distribution undulates from time to time, and a signal of a certain frequency component may become larger than the other if only a certain period is observed.
  • the low frequency component is particularly large because it may affect the characteristics of the spread spectrum communication.
  • the noise signal will be described using diffusion carrier processing means for processing a positive / negative binary signal whose absolute value is not zero but equal to the positive / negative polarity.
  • a noise signal including a specific low-frequency component in a small irregular signal signal component as shown in FIG. 29A is input to such a diffusion carrier processing means 13
  • a diffusion obtained by processing the noise signal is processed.
  • pulses 67a and 67b having a long width as shown in FIG. 29B are generated near the positive and negative peaks of the low frequency component. This occurs because the low frequency component is excessive compared to the other components.
  • Embodiment 3-7 of the present invention by appropriately suppressing an excessively low frequency component of the noise signal, the irregularity of the spread carrier and the despread carrier is maintained, and the noise resistance and the secret story are maintained. It provides sex.
  • Other configurations and the effects thereof are the same as those of the embodiment shown in FIGS. Note that the characteristics of the reduction limiting unit of the present embodiment may be obtained by combining both with the spectrum configuration adjusting unit shown in FIG.
  • Embodiment 3-8 The signal preprocessing unit 46 of the diffusion carrier processing unit 13 shown in FIGS. 20 and 21 and the signal preprocessing unit 46 of the despread carrier processing unit 15 are provided with a high frequency band limiting unit having the characteristics shown in FIG.
  • the spread carrier and the despread carrier may be processed by creating signals x PT and x PR in which the high frequency component of the noise signal is suppressed.
  • the noise signal signal will be described using diffusion carrier processing means for processing a positive / negative binary signal whose absolute value is not zero but equal to the positive / negative polarity.
  • the transmitter 54 of the diffusion module 3 and the transmitter 54 of the despreading module 4 operate independently.
  • the clock signals they supply are out of phase.
  • the noise signal is going to change from positive to negative as shown in FIG. 31A.
  • the AD converter 50 of the diffusion carrier processing means 13 is the timing of the rising edge of the clock signal having the waveform as shown in FIG. Say you sample in The AD converter 50 samples the noise signal that changes from positive to negative for the first time at the rising edge time t T of the first clock signal after the change, and the output thereof is the time as shown in FIG. to change after the t T.
  • the clock signal of the despread carrier processing means 15 that operates asynchronously independently of the spreading module is not in phase with the clock signal used by the spread carrier processing means, the AD converter 50 is shown in FIG.
  • the AD converter 50 samples the noise signal that has changed from positive to negative for the first time at the rising edge time t R of the first clock signal after the change, and the output is time t as shown in FIG. Changes after R.
  • the outputs of the two AD converters 50 controlled by the clock signal having the phase difference are as follows when sampling immediately after the input changes: Strictly speaking, a time zone t E with different outputs always occurs.
  • the sampling clock signal of the spread carrier processing means and the despread carrier processing means for controlling the sample of the noise signal is a signal that repeats a certain rectangular waveform at a certain period, so when the period is the same, the phase difference between the two clock signals Does not exceed the length of one cycle of the clock signal, and therefore, the time width t E at which the sampling outputs are different is at most one sampling cycle.
  • This period is different from the diffusion carrier c T despreading carrier c R is, since they are not a signal pairs of the cross-correlation probability state, despreading operation using the diffusion carrier and despread carrier component of spread input object a T is not despread properly.
  • This portion that is not correctly despread is always generated at the position where the values of the spread carrier and the despread carrier change at maximum for one cycle of the clock. However, if the portion that is not correctly despread is generated per unit time since degrading the components SN ratio of the spread input object a T at the despread output object a R, undesirable noise resistance is lowered.
  • FIG. 32A shows a noise signal containing a lot of high frequency components.
  • FIG. 32B diffusion with a large number of changes per unit time is shown. Carriers and despread carriers are obtained. Therefore, the high frequency component of the spectrum of the noise signal is appropriately attenuated with a filter having characteristics as shown in FIG. FIG.
  • FIG. 32C is a diagram in which the high frequency range of the signal shown in FIG. 32A is appropriately attenuated.
  • this signal is binarized as a noise signal, as shown in FIG. A spread carrier or a despread carrier having a smaller number of changes per unit time than the signal shown in B) can be obtained.
  • the signal of FIG. 32B is used for the spreading carrier and the despreading carrier
  • the signal of FIG. 32D is used for the spreading carrier and the despreading carrier
  • the signal is always correctly despread at the position where the signal changes. No part has occurred.
  • the signal of FIG. 32 (D) is used for the spreading carrier and the despreading carrier as compared with the signal of FIG.
  • the S / N ratio of the despread and despread diffused input object in the despread output object becomes good, and the noise resistance is improved.
  • the phase difference problem between the spread carrier and the despread carrier has been described as a problem in asynchronous digital signal processing.
  • the high-frequency limiting unit of this embodiment is effective when applied not only to asynchronous digital signal processing.
  • a low-pass filter is used for such high-frequency restriction.
  • the cutoff frequency is set to about one-tenth of the sampling frequency, practical multiplex communication, noise resistance and secrecy are provided, and practical SN The ratio is confirmed.
  • Embodiment 3-8 of the present invention by appropriately suppressing high frequency components of the noise signal, the state of cross-correlation between the spread carrier and the despread carrier is improved, and noise resistance and confidentiality are improved. Is to provide. Other configurations and the operation and effects thereof are the same as those of the embodiment of FIGS.
  • the characteristics of the high frequency band limiting unit of this embodiment are the spectrum configuration adjusting unit shown in FIG. 24, or the characteristics of the low frequency band limiting unit shown in FIGS. 28 and 29 and the high frequency band limiting unit shown in FIG. By combining these characteristics, the advantages of both may be obtained.
  • the portion below the frequency of the primary modulation carrier in the spectrum constituting the spread input object has a portion that hardly contributes to the representation of the information content to be transmitted. Passing the despread output object through a low-pass cutoff filter that appropriately cuts off the portion is useful for improving the signal-to-noise ratio of the components of the diffuse input object.
  • This filter is, for example, a low-frequency cutoff filter that cuts off the frequency of the carrier when BPSK is used for the primary modulation and a fixed frequency sine wave is used for the primary carrier.
  • the spectrum of the spread input object actually includes not only the spectrum of the primary carrier but also its harmonic.
  • the filter that performs the extraction operation of the component of the spread input object in the signal processing process of the despreading means of the despreading module generally has only a pass bandwidth that allows the spectrum of the primary carrier to pass.
  • the wave component is attenuated by the filter.
  • the waveform of the despread output object is not strictly similar to the diffuse input object.
  • a pre-emphasis operation is performed on the diffusion input object after the primary modulation to increase the band component attenuated by the filter in the signal processing process in the despreading unit relatively to the pass band component by the filter. It is also beneficial to perform a de-emphasis operation through the filter that restores the pre-emphasis effect to the output of the filter in the signal processing process in the despreading means, which increases the fidelity of the despread output object to the diffuse input object. It is.
  • the actual application environment of the present invention is made an ideal operating environment by adjusting the high-frequency and low-frequency spectra of the noise signal and adjusting the high-frequency and low-frequency spectra of the diffuse input object. It is possible to provide better transmission performance.
  • Other configurations and the operation and effects thereof are the same as those of the embodiment of FIGS. Note that the spectrum adjustment described here is performed by the spectrum configuration adjusting unit shown in FIG. 24, the characteristics of the low-frequency limiting unit shown in FIGS. 28 and 29, or the high-frequency limiting unit shown in FIG. Both advantages may be obtained by combining the characteristics.
  • FIG. 33 shows an example in which the carrier processing unit 1 corresponding to the carrier processing apparatus according to the first embodiment of the present invention shown in FIG. 1 is applied to a transmission system for transmitting objects, and this embodiment shown in FIG. It is the example which merged the transmission medium 11 in the carrier processing apparatus which concerns on a form, and the transmission medium 7 of this transmission system which applied the carrier processing apparatus.
  • FIG. 34 shows the transmission system shown in FIG. 33 separated into the diffusion module 3 and the despreading module 4.
  • the transmission system of this form includes a diffusion module 3, a despreading module 4, a noise signal supply unit 2, and a transmission medium 11.
  • the configuration of the transmission system shown in FIGS. 33 and 34 is different from that shown in FIG. 1 in the configuration of the transmission medium.
  • the transmission medium 11 and the diffusion output object s for transmitting the noise signal x W as an element of the noise signal supplying section 2 while transmission medium 7 to transmit is present individually, in the configuration of FIGS. 33 and 34, a single of transmission medium 11 that the transmission medium is shared by the transmission of the transmission and diffusion output object s of the noise signal x W
  • the configuration is summarized in a medium.
  • the other components are the same as those of the transmission system shown in FIG.
  • This single transmission medium 11 is installed in an environment (inside the system) where the diffusion module 3 and the despreading module 4 exist as shown in FIGS.
  • this single transmission medium 11 for example, a general electric wire, communication cable, electric light line, railway line, pressure vessel, piping, building structure, glass, water, and the like can be used. That is, the single transmission medium 11 is not limited to these as long as it has a bidirectional transmission capability of signals, and may have the same properties as these.
  • the single transmission medium 11 will be described as an electric wire, and the signal form will be described as an electric signal.
  • noise signal supply unit 2 in the environment with a diffusion module 3 and despreading module 4, together with the prime noise signal source 10 generates the prime noise signal x E, the noise x N existing in the environment inside and outside, for example, Noise m such as communication signals of other channels of multiplex communication enters the noise signal supply unit 2 (steps S201 and S202 in FIG. 35).
  • Containing the noise signal x E which is generated is supplied to a single-type transmission medium 11, penetrates the noise x N which enters this environment, for example to noise m also unitary transmission medium 11 such as a communication signal of another channel multiplex communication Then, they are superimposed on each other on the single transmission medium 11 due to the characteristics of the single transmission medium 11, and a signal obtained by adding them is reversed as the noise signal x W via the single transmission medium 11 and the diffusion carrier processing means 13. It is supplied to the diffusion carrier processing means 15 (step S203 in FIG. 35).
  • Objects transmission operation of the diffusion module 3 begins by inputting the noise signal x W from the unitary transmission medium 11.
  • Diffusion module 3 entering the noise signal x W as a noise signal x T in the diffusion carrier processing means 13 is processed into a spread carrier c T it (step S204 in FIG. 35).
  • diffusion carrier processing means 13 for example, the noise signal x T performs mapping characteristic shown in FIG. 10, -2.0 to -0.5 or the noise signal x T +0 generating a spread carrier c T that takes a unique value in the range of .5 to +2.0.
  • Spreading means 14 the spread input object a T to create a spread spectrum diffusion output object s by multiplying the spread carrier c T supplied from the spread input object a T and the diffusion carrier processing means 13 for inputting from the outside, the single The data is sent to the set transmission medium 11 (step S205 in FIG. 35).
  • the diffusion carrier processing means 13 of the diffusion module 3 In a state where the diffusion module 3 is outputting the spread output object s single type transmission medium 11, the diffusion carrier processing means 13 of the diffusion module 3, the noise signal x W noise signals x T including the diffusion output object s input to the work material to the diffusion carrier c T as.
  • information communication operation of the despreading module 4 also begins by inputting the noise signal x W from the unitary transmission medium 11.
  • Despreading module 4 the despreading carrier processing means 15 for inputting the noise signal x W including said diffusion output object s as a noise signal x R, processed it to despread carrier c R (step S209 in FIG. 37 ).
  • despreading carrier processing means 15, for example, the noise signal x R by performing a mapping characteristic shown in FIG. 11, -2.0 to -0.5 or the noise signal x R + 0.5 generates a spread carrier c R that takes a unique value in the range of ⁇ + 2.0.
  • Despreading means 16 receives the noise signal x W containing diffusion output object s from unitary transmission medium 11 as despreading input object h, despreading carrier c R supplied it from despreading carrier processing means 15 multiplied and outputs the despread output object a R including the spectrum despread signal spread input object a T (step S210 in FIG. 35).
  • the difference between the signals input by the diffusion module 4 is suppressed to a certain small range.
  • the spreading module 3 and the spreading carrier processing means 13 and the spreading carrier processing means 15 of the despreading module 4 in the transmission system according to the fourth embodiment of the present invention shown in FIGS. 33 and 34 are common in this way that can be regarded as practically the same. to work by entering the noise signal x W.
  • the spread carrier processing means 13 and the despread carrier processing means 15 and that it is possible to obtain a workpiece signal to spread the carrier c T despreading carrier c R having the object broadband performance can be disorders without spread spectrum communications such as interference between the despreading module 4 and the diffusion module 3 Confirm that both can be achieved.
  • the unitary transmission medium 11 and supplies containing noise signal source 10 is a hydrogen noise signal x E
  • the noise generated in the diffusion module 3 and despreading module 4 is installed in the environment, for example natural noise Alternatively to noise m intrusion such as noise x N and for example, a communication signal of another channel multiplex communication such as artificial noise, the unitary transmission medium 11, the characteristics of the transmission medium itself, noise based on the noise signal x E superimposing the x N and noise m.
  • Noise signal supply unit 2 supplies a signal plus noise x N and noise m to its original noise signal x E, as a noise signal x W on both carrier processing means 13, 15. Expressing noise superimposed on containing the noise signal x E them by the formula as n A, as follows.
  • n A x N + m
  • x W x E + n A
  • the noise signal x W is assumed to be signals having a pair object broadband property. It may, for example, containing the noise signal x or E is also the noise x N signal also noise m also had a pair object broadband, alternatively, the noise x E has a pair object broadband property at least containing noise signal x E Noise for example, by sufficiently large signal from the signal n a of formula 53 which is the sum of m realized.
  • Diffusing carrier processing means 13 receives the noise signal x W, to create a diffused carrier c T by diffusion carrier processing means of the input and output characteristic represented by a function f, diffuser means 14, the spread carrier c T
  • a diffusion output object s created by multiplying the diffusion input object a T is sent to the transmission medium 11.
  • the spread input object a T is, for example, a signal limited to an area having an occupied frequency band that is primarily modulated by BPSK having a fixed frequency. This process is shown as follows.
  • c T f (x W ) (Formula 55)
  • the noise signal x W is the signal transmission medium 11 is newly thereto until elementary noise signal x E and the noise x N and noise m It seems that the noise of the diffuse output object s is superimposed.
  • the noise n A that overlaps the original noise signal x E expressed by Equation 53 is as follows.
  • n A n N + m + s (Formula 57)
  • the noise signal x W at this time is made shall be determined by the equation 54 using n A of the formula 57.
  • the component is a signal having a broadband property against an object.
  • a spread output object s obtained by spectrum-spreading a spread input object with a spread carrier having object wideband property is also a signal having object wideband property.
  • This diffusion output object s also the in the real transmission systems, there is a difference between the components of the spread signal object s and the diffusion module 3 and the despreading module 4 included in the noise signal x T and x R to enter Is common. That is, the path through which the component of the diffusion output object s is propagated from the diffusion means 14 of the diffusion module 3 to the diffusion carrier processing means 13 of the diffusion module 3 and the despreading carrier processing of the despreading module 4 from the diffusion means 14 of the diffusion module 3 This is because there is a difference in the path propagated to the means 15. As this difference increases, the cross-correlation between the components of the diffusion output object s input by the diffusion module 3 and the despreading module 4 decreases.
  • the diffusion module 3 despreading module 4 by defining the range of the geographic location can take the diffusion module 3 despreading module 4, the noise signal x W in the scope of the provisions to enter the despreading module 4 and the diffusion module 3
  • the components of the diffusion output object s are in a cross-correlation established state, so that the diffusion module 3 and the despreading module 4 can be regarded as having input the components of the same diffusion output object s in practice.
  • the noise signal x T and x R to enter the diffusion module 3 and the despreading module 4 may superimpose the prime noise signal x E and the noise x N and noise m of the cross-correlation established state of having a pair object broadband property
  • the signal component and the components of the diffusion output object s in the cross-correlation establishment state having the broadband property with respect to the object are superimposed on each other, and the signal in the cross-correlation establishment state with the object broadband property is obtained.
  • the noise signal x W represented by equation 54 may not be included if they contain diffused output object, the spread carrier processing means 13 the despread carrier processing means 15 are commonly supplied to the diffusion carrier processing means 13 and the despread carrier processing means 15, and are signals having a sufficiently high cross-correlation state, and having a wide band property against objects.
  • the noise signal x W is diffused output object s transmission medium, and containing noise signal x E, the noise x N entering the unitary transmission medium 11, For example, it appears as a signal on which noise n B composed of noise m such as a communication signal of another channel of multiplex communication is superimposed.
  • noise n B x E + x N + m
  • x W s + n B (Formula 59)
  • Despreading means for despreading module inputs the signal x W transmission medium shown in Equation 59 as despreading input object h, and inputs the same signal x W as an input signal x R despreading carrier processing means .
  • despreading input object h despreading carrier c R is multiplied.
  • the result of this multiplication is denoted as A, and it is expanded as follows using the relationship described here and Formula 1, Formula 5, Formula 11, Formula 58, Formula 59, and the like.
  • the despreading operation performed by the despreading means of the actual spread spectrum communication after the multiplication of the despread input object and the despread carrier, the spread signal is input from the mixed signal of the spread spectrum noise and the despread input object components.
  • a low-pass filter is applied to the diffuse output object to pass the occupied frequency band of the object. Assuming that the object obtained as a result is a R , it can be expressed as follows using the integral operation of the symbol ⁇ dt in the processing by the low-pass filter.
  • the first term a T * k C on the right side of Formula 61 is a component of the spread input object from which the signal is output as it is because it is within the pass band of the filter, and thus, from the spread module 3 on the transmission side of the transmission system. It is shown that the object has been transmitted to the despreading module 4 which is the receiving side.
  • the second term on the right side of Formula 61 is an influence term of noise, which is unnecessary for communication, and is preferably in a format that can be easily separated from zero or an object component.
  • the signals s, x E , x N , and m that constitute the second term on the right side of Formula 61 are all irregular and object-resistant broadband signals. If the signal composed of them is also irregular and object broadband resistant, only the components of the occupied frequency band of the spread input object that is the pass band of the filter can pass through the filter. By reducing the width, the influence of noise can be made smaller than that of the diffusion input object.
  • the two multiplication factors of the integrand of Equation 61 second term on the right-hand side has a common portion that x E + x N + m.
  • the diffusion output object s included in the function g representing the despread carrier processing characteristic of the second term on the right side of the equation 61 can be expressed as follows from the equations 56, 58, and 59.
  • the diffusion output object s also has a common part of two multiplication elements of the integrand of the second term on the right side of Formula 61 and x E + x N + m. As a result, it is considered to exhibit a degree of correlation between x E + x N + m and g constituting the formula 61 second term on the right (s + x E + x N + m).
  • the diffusion input object is a signal having no DC component
  • the filter output in the despreading means is, for example, an AC coupling that does not allow the DC component to pass, thereby eliminating the influence of the DC component.
  • the function f indicating the diffusion carrier processing characteristic of Formula 10 and the function g indicating the despread carrier processing characteristic of Formula 11 do not include a mapping that does not include a characteristic that causes the signal to shift in the sequence direction, for example, giving a delay in time.
  • the signal may be shifted in the sequence direction.
  • the configuration of the fourth embodiment shown in FIGS. 33 and 34 commonly supplies a noise signal having a broadband property to an object in a cross-correlation established state to the diffusion carrier processing means 13 and the despread carrier processing means 15. It is possible to use the single transmission medium 11 to achieve both the transmission of the spectrum-spread object and the separation and extraction of the object by eliminating the influence of noise and despreading the object. Thereby, according to the configuration of the fourth embodiment shown in FIGS. 33 and 34, the spread spectrum communication system is enabled by the single transmission medium 11.
  • the noise influence term shown in the second term on the right side of Expression 60 shows a certain degree of cross-correlation between the noise and the despread carrier
  • the effect of the noise influence term on the despread output object is despreading means. It appears as a DC component superimposed on the despread output object by the filter for extracting the diffuse input object provided in.
  • This event is the transmission medium 7 for transmitting the noise signal x W shown in FIG. 1, in the configuration of the transmission system and the transmission medium 11 is another for transmitting a spread output object s, the operating principle of the object transmission Are the same. That is, even in the transmission system of the configuration shown in FIG.
  • noise m which overlaps the diffusion output object s a transmission medium 11 that transmits a spread output object s is, indicating a cross-correlation of certain degree of despread carrier c R
  • the effect appears as a direct current component superimposed on the despread output object.
  • a signal used as a noise signal as a processing material for the diffusion / de-spreading carrier also enters the transmission medium 11 that transmits the diffusion output object s.
  • This is a case where such a strong electromagnetic wave is generated in the vicinity of the transmission system and enters both the transmission medium 7 and the transmission medium 11.
  • the influence of the noise term can be eliminated by eliminating the DC component by, for example, making the output of the despreading means AC coupling.
  • the object transmission performance of the spread spectrum communication system having the configuration of the fourth embodiment of the present invention shown in FIGS. 33 and 34 is compared with the object transmission performance of the spread spectrum communication system having the configuration of the first embodiment shown in FIG. And evaluate it.
  • Formula 21 and Formula 60 are compared. Both of these expressions are signals in the despreading means of the despreading module, and indicate signals obtained by multiplying the despreading input object and the despreading carrier.
  • the first term on the right side of both formulas indicates the components of the diffused input object that has been despread, and is the same in both formulas.
  • the second term on the right side represents a component in which the noise superimposed on the spread output object in the transmission medium is spectrally spread by the despread carrier.
  • the noise is only m
  • x E and x N are included.
  • the noise m in the configuration of the first embodiment shown in FIG. 1 is a multiplex communication signal that shares and uses the same transmission medium, and is a total of noise that enters from the transmission medium itself or from the outside.
  • the noise x N in the configuration of the fourth embodiment shown in FIGS. 33 and 34 are noise entering from the transmission medium itself and its external noise m the signal multiplex communications shared use the same transmission medium in this configuration Only.
  • the noise m in FIG. 1 is the same as x N + m in FIGS. 33 and 34.
  • containing the noise signal x E in the configuration of the fourth embodiment shown in FIGS. 33 and 34 are those good energy signal of about 1 signal multiplex communication sharing use of transmission media, the number of multiplex communication When a signal is transmitted, the energy on the transmission medium is dominated by the energy of noise m, which is the total energy of the multiplex communication. It is, for example, if the multiplicity of ten channels, the energy of the elementary noise signal x E is to be merely the entire ten fraction of. Further, it can be considered as noise x N also containing noise signal x E greater energy entering the transmission medium for example lightning or surrounding equipment emits. For this reason, in the actual application environment, the noise portions of Equation 21 and Equation 60 may be considered to be almost the same, and it can be said that both equations have the same meaning.
  • the object transmission performance of the spread spectrum communication system having the configuration of the fourth embodiment of the present invention shown in FIGS. 33 and 34 is the same as that of the spread spectrum communication system having the configuration of the first embodiment shown in FIG. It can be said that it can be considered the same.
  • the spread spectrum communication system having the configuration of the fourth embodiment of the present invention shown in FIGS. 33 and 34 can provide the same features as the spread spectrum communication system having the configuration of the first embodiment shown in FIG. . That is, according to the spread spectrum object transmission system to which the carrier processing apparatus according to the fourth embodiment of the present invention shown in FIG. 33 and FIG. 34 is applied, the low interference derived from the noise resistance specific to the spread spectrum communication technology.
  • Sensitivity, minute signal characteristics, low coherence, secrecy, and multiplicity can be provided to the same extent as a conventional spread spectrum communication system with a built-in reference signal. Furthermore, according to the present transmission system, it is possible to configure a secrecy higher than that of a conventional spread spectrum communication system with a built-in reference signal, quick response capable of promptly responding to communication requirements, low power consumption, and a despreading module without a synchronization device. Small scale can also be provided. Furthermore, according to the present transmission system, noise resistance can be improved in a small and inexpensive manner with respect to a conventional spread spectrum communication system using a discontinuous spread carrier or despread carrier in the form of impulse or burst. It is possible to improve transmission capability and improve confidentiality.
  • the above characteristics can be provided for transmission of simple objects that do not express information contents, and power transmission, which is neither information transmission nor distance measurement, which is a conventional application of spread spectrum. . Further, according to the present transmission system, it is possible to pioneer a new application which is neither information transmission nor distance measurement, which is a conventional spread spectrum application. Other configurations and the operation and effects thereof are the same as those of the first embodiment shown in FIG. In fact, it has been confirmed that the above characteristics can be obtained in the object transmission system of the present embodiment using a spread carrier and a despread carrier that take the same positive and negative binary values, not absolute values of zero.
  • FIG. 36 shows an elementary noise signal source 10 using a pseudo noise signal source.
  • the noise signal x E in this embodiment Containing the noise signal x E in this embodiment, a signal having a pair object broadband property.
  • the signal when there is a purpose of multiplicity or secrecy, the signal further has no autocorrelation.
  • the elementary noise signal source 10 supplies the elementary noise signal as a signal in a cross-correlation established state to the diffusion carrier processing means and the despreading carrier processing means that use the elementary noise signal supplied by the elementary noise signal source 10. As long as this requirement is met, any signal including noise may be used in the embodiments of the present invention.
  • the elementary noise signal source 10 of the noise signal supply unit 2 according to the fifth embodiment shown in FIG. 36 includes a single-chip microcontroller 68 and a resistor network 69.
  • the microcontroller 68 includes a large number of independently operated 16-bit length M-sequence pseudo-noise signal generators (hereinafter referred to as M-sequence generators) having linear feedback shift registers 68a and 68b.
  • M-sequence generators 16-bit length M-sequence pseudo-noise signal generators
  • a plurality of M-sequence generators 68a and 68b are equivalently configured by software.
  • each of the M series generators 68a and 68b is configured such that the feedback tap position, the initial value of the shift register, the start timing, and the drive clock speed are different.
  • each M-sequence generator 68a, 68b is configured to receive an elementary noise signal generated so that the drive clock speed is several hundred times or more, for example, several hundred times the carrier frequency of the primary modulation of the spread input object. It is designed to have a broadband property.
  • the outputs of the M series generators 68a and 68b are binary signals that take the CMOS standard logic signal levels of 0 [V] and 5 [V] drawn outside the chip of the microcontroller.
  • the output signals of all the M series generators 68a and 68b are synthesized by a resistor network 69 combined with a pull-down to ⁇ 5 [V] so that the average value becomes almost zero.
  • the pseudo-noise signal synthesized by the resistor network 69 has some DC component and digital noise accompanying the operation of the microcontroller superimposed on it, but it has a wide band-to-object property and has almost no autocorrelation. It is.
  • the elementary noise signal source 10 is beneficially used as a part of the elementary noise signal that also outputs the digital noise.
  • the signal synthesized by the resistor network 69 is output to the wired transmission medium 11 through amplifier and capacitor coupling (not shown).
  • the cross-correlation value is obtained by using the fact that the pseudo-noise signal used for the spread code is repeated in a long period in the synchronization acquisition operation on the receiver side. Since the synchronization point is found by calculation, the characteristics of the signal over a long period of time, even for an irregular signal, must have a periodicity in which waveforms with irregularities of the same pattern are repeated at a constant period. It was.
  • the present invention is possible to supply a correlation was established state, a signal having a pair object broadband performance as a noise signal x W in the diffusion module 1 and despreading module 2 by sharing a than demanded, the noise signal x W, periodicity is not required, it is possible to utilize any of the pseudo-noise signal to the noise signal x W if satisfying the conditions required, elementary noise signal to the base There is an advantage that it is easy to generate.
  • an elementary noise signal can be easily generated and supplied.
  • Other configurations and the operation and effects thereof are the same as those of the first embodiment shown in FIG.
  • the transmission medium 11 represented in FIG. 1 has been described using an electrical conductor typified by an electric wire.
  • the configuration of the transmission system in FIG. 33 represents a wired transmission system using one electric wire as the transmission medium 11.
  • the transmission system according to the present embodiment is not limited to a transmission medium using an electrical conductor.
  • a space in which electromagnetic waves including light and radiation are propagated may be used as a transmission medium, and a solid, liquid, or gas that propagates a wave of pressure such as a sound wave, deformation, position change, or the like may be used as the transmission medium.
  • the transmission medium 11 shown in FIG. 1 is used instead of the electrical conductor. Since the transmission medium does not use an electrical conductor, transmission using the transmission medium is so-called wireless transmission.
  • FIG. 37 is a configuration example of a spread spectrum transmission system in which the first embodiment represented by FIG. 1 is a wireless system.
  • the transmission system includes a diffusion module 3, a despreading module 4, and a noise signal supply unit 2.
  • the diffusion module 3 and the despreading module 4 are connected via a transmission medium (hereinafter referred to as a wireless transmission medium) 11.
  • the noise signal supply unit 2 includes an elementary noise signal source 10 and a transmission interface unit 70.
  • the diffusion module 3 includes a reception interface unit 71, a diffusion carrier processing unit 13, a diffusion unit 14, and a transmission interface unit 72.
  • the despreading module 4 includes a first reception interface unit 73, a despread carrier processing unit 15, a despreading unit 16, and a second reception interface unit 74.
  • FIG. 37 The configuration of FIG. 37 is the same as the configuration of the fourth embodiment shown in FIGS. 33 and 34, in which the transmission medium is a wireless transmission medium, and the spreading module 3, the despreading module 4, and the noise signal supply unit 2 are In this configuration, a transmission / reception interface unit is provided in the input / output part.
  • the transmission interface unit 70 transmits the elementary noise signal x E generated by the elementary noise signal source 10 to the wireless transmission medium 11 as a wireless elementary noise signal w E.
  • the reception interface unit 71 by entering a wireless noise signal w W wireless transmission medium 11 as a noise signal x T, which was supplied to the diffusion carrier processing means 13, transmission interface 72 spread output object s Is transmitted to the wireless transmission medium 11 as a wireless diffusion output object w S.
  • Despreading module 4 supplied to the first wireless noise signal w W noise signal x inputted as R despreading carrier processing means 13 of the receiving interface unit 73 is a wireless transmission medium 11, a second receiving interface 74 Supplies the wireless noise signal w W of the wireless transmission medium 11 to the despreading means 16 as the despread input object h including the spread output object s.
  • w N and the signal m, such as communication other than the transmission system performing communications is overlapped with a transmission medium 11, diffusion modules 3 and despreading module 4, the wireless noise signal w W which is the sum of them Enter.
  • the first reception interface unit 73 and the second reception interface unit 74 provided in the despreading module 4 may share one of them if there is no problem in function.
  • transmission media and signal forms transmitted via the transmission media will be specifically described as an example of a wireless system. This is not all of those that can be used as a transmission medium or a signal form to be transmitted through the transmission medium, but can be applied in the same manner as long as various requirements shown in the sixth embodiment are satisfied. .
  • the transmission medium is a space through which radio waves are propagated.
  • the transmission interfaces 70 and 72 are, for example, a combination of a wireless antenna for transmission and a wireless transmitter.
  • the reception interfaces 71, 73, and 74 are, for example, a combination of a reception wireless antenna and a wireless receiver.
  • Noise signal supply unit 2 generates a prime noise signal x E having a pair object broadband property under the noise signal source 10, and sends it to the space into a wireless-containing noise signal w E at the transmission interface 70.
  • noise m a signal such as communication other than the present transmission system performing communication using the transmission medium 11
  • noise w N various radio noise, such as those emitted from the periphery of the electrical equipment, a comprehensive them was the noise and w N.
  • noises m, w N is the outgoing signal w E, superimposed on w S, is commonly supplied to the diffusion carrier processing means 13, the despreading carrier processing means 15 thereof summed signal as a wireless noise signal w W .
  • noise signals x T and x R are respectively input and supplied to the diffusion carrier processing means 13 and the despread carrier processing means 15, and these noise signals x T and x R are converted into the diffusion carrier c T and the despread carrier c R , respectively.
  • the noise signals x T and x R must be in a cross-correlation established state.
  • a factor that lowers the cross-correlation is a signal propagation path difference from the signal transmission point to the signal reception point, and since it is easy to obtain a cross-correlation establishment state in the vicinity of the noise signal supply unit 2 that is small, for example, a spread carrier
  • the processing means 13 and the despread carrier processing means 15 are operated in the vicinity of the noise signal supply unit 2.
  • the despread carrier c R despreading means 16 despreads module 4 enters is the component and the cross-correlation established state diffusion carrier c T in a component diffusion output object s in despreading input object h There is a need.
  • the factor that lowers the cross-correlation is mainly the signal propagation path from the transmission point to the reception point of the wireless spread output object w S.
  • the cross-correlation established state is established. Since it is easy to obtain, for example, the diffusion module 3 and the despreading module 4 are operated in the vicinity of each other.
  • This despreading the despread carrier processing means 15 of the module 4 is appropriately delayed despread carrier c R in the series direction of the signal in the course of processing the noise signal to despread carrier c R, reverse despreading module 4 those diffusion output object may be look smaller series direction of the deviation of the signal caused in the process of being transmitted to the despread module from the diffusion module relative to despread carrier c R a diffuser 16 is input .
  • the embodiment 6-1 of the present invention it is possible to perform spread spectrum communication of a radio wave system with simple components and a small configuration.
  • spread spectrum communication has not been used in a small-sized wireless communication device such as an RFID or a small wireless remote controller. It is possible to give features such as noise resistance, ability to communicate with a minute power density, high multiplicity, and high security.
  • the acoustic signal includes, for example, an audible frequency band signal, an ultrasonic band, and an ultra-low frequency band signal, and any signal may be used.
  • the transmission medium is, for example, air.
  • various transmission media such as gas, powder, liquid such as water, machine oil, and petroleum, solid such as concrete, steel frame, piping, steel cord, rail, and human body.
  • the transmission interfaces 70 and 72 are, for example, a combination of a speaker and an acoustic amplifier. In the configuration of FIG.
  • the reception interfaces 71, 73, and 74 are, for example, a combination of a microphone and a microphone amplifier.
  • Noise signal supply unit 2 generates a prime noise signal x E having a pair object broadband property under the noise signal source 10, and sends it to the space into a wireless-containing noise signal w E at the transmission interface 70.
  • the diffusion output object s output from the diffusion module is also converted into a transmission signal w S by the transmission interface 72 and transmitted to the space.
  • noise m the sound of communication other than the present transmission system that performs communication using the transmission medium 11
  • the space there are other sounds, to what was overall it with noise w N.
  • noises m, w N is superimposed the outgoing signal w E, a w S, their sum signal is a wireless noise signal w W.
  • Despreading module 4 and the diffusion module 3 the noise m of the wireless-containing noise signal w E and wireless transmission space, w N and wireless noise signal w W of the wireless transmission space diffusion output object w S is superimposed wireless transmission space
  • the noise signals x T and x R are noises for processing the diffusion carrier and the despread carrier. In order to use them as signals, the noise signals x T and x R must be in a cross-correlation established state.
  • a factor that lowers the cross-correlation is a signal propagation path difference from the signal transmission point to the signal reception point, and since it is easy to obtain a cross-correlation establishment state in the vicinity of the noise signal supply unit 2 that is small, for example, a spread carrier
  • the processing means 13 and the despread carrier processing means 15 are operated in the vicinity of the noise signal supply unit 2.
  • the despread carrier c R despreading means 16 despreads module 4 enters is the component and the cross-correlation established state diffusion carrier c T in a component diffusion output object s in despreading input object h There is a need.
  • the factor that lowers the cross-correlation is mainly the signal propagation path from the transmission point to the reception point of the wireless spread output object w S.
  • the cross-correlation established state is established. Since it is easy to obtain, for example, the diffusion module 3 and the despreading module 4 are operated in the vicinity of each other.
  • This despreading the despread carrier processing means 15 of the module 4 is appropriately delayed despread carrier c R in the series direction of the signal in the course of processing the noise signal to despread carrier c R, reverse despreading module 4 those diffusion output object may be look smaller series direction of the deviation of the signal caused in the process of being transmitted to the despread module from the diffusion module relative to despread carrier c R a diffuser 16 is input .
  • the present embodiment 6-2 it is possible to perform the spread spectrum communication of the acoustic signal system with a simple configuration and a small configuration.
  • spread spectrum communication has not been used in small-scale acoustic signal devices such as an ultrasonic remote controller and sensing.
  • the present embodiment 6-2 is applied, the spread spectrum communication is unique to the spread spectrum communication.
  • Features such as noise, ability to communicate with minute power density, high multiplicity, and high security can be given.
  • the optical signal includes a visible light signal, an infrared region signal, and an ultraviolet region signal. Other similar signals include radiation, and any signal may be used.
  • the transmission medium is, for example, in the atmosphere.
  • various transmission media may be used such as outer space, gas, liquid such as water and oil, and solid such as glass and optical fiber.
  • the transmission interfaces 70 and 72 are, for example, a combination of a light emitting diode (LED) and an LED drive amplifier.
  • LED light emitting diode
  • the reception interfaces 71, 73, and 74 are, for example, a combination of a phototransistor and a phototransistor amplifier.
  • Noise signal supply unit 2 generates a prime noise signal x E having a pair object broadband property under the noise signal source 10, and sends it to the space into a wireless-containing noise signal w E at the transmission interface 70.
  • the diffusion output object s output from the diffusion module is also converted into a transmission signal w S by the transmission interface 72 and transmitted to the space.
  • noise m the light of communication other than the present transmission system that performs communication using the transmission medium 11
  • the space there are other light, to what was overall it with noise w N.
  • noises m, w N is superimposed the outgoing signal w E, a w S, their sum signal is a wireless noise signal w W.
  • Diffusion module and despreading module noise m of the wireless-containing noise signal w E and wireless transmission space, w N and noise wireless noise signal w W of the wireless transmission space diffusion output object w S wireless transmission space is superimposed
  • the signals x T and x R are respectively input and supplied to the diffusion carrier processing means and the despread carrier processing means, and these noise signals x T and x R are used as noise signals for processing the diffusion carrier and the despread carrier. In order to use them, the noise signals x T and x R must be in a cross-correlation established state.
  • a factor that lowers the cross-correlation is a signal propagation path difference from the signal transmission point to the signal reception point, and since it is easy to obtain a cross-correlation establishment state in the vicinity of the noise signal supply unit 2 that is small, for example, a spread carrier
  • the processing means 13 and the despread carrier processing means 15 are operated in the vicinity of the noise signal supply unit 2.
  • the despread carrier c R despreading means 16 despreads module 4 enters is the component and the cross-correlation established state diffusion carrier c T in a component diffusion output object s in despreading input object h There is a need.
  • the factor that lowers the cross-correlation is mainly the signal propagation path from the transmission point to the reception point of the wireless spread output object w S.
  • the cross-correlation established state is established. Since it is easy to obtain, for example, the diffusion module 3 and the despreading module 4 are operated in the vicinity of each other.
  • This despreading the despread carrier processing means 15 of the module 4 is appropriately delayed despread carrier c R in the series direction of the signal in the course of processing the noise signal to despread carrier c R, reverse despreading module 4 those diffusion output object may be look smaller series direction of the deviation of the signal caused in the process of being transmitted to the despread module from the diffusion module relative to despread carrier c R a diffuser 16 is input .
  • optical signal spread spectrum communication can be performed with simple components and a small configuration.
  • spread spectrum communication has not been used in small-scale optical signal devices such as optical remote controllers and sensing.
  • Embodiment 6-3 of the present invention are specific to spread spectrum communication.
  • Features such as noise resistance, ability to communicate with minute power density, high multiplicity, and high security can be given.
  • the transmission medium is, for example, a solid such as a space or a steel frame, gas or water, or a human body.
  • the transmission interfaces 70 and 72 are, for example, a combination of a transmission coil and a coil drive amplifier.
  • the reception interfaces 71, 73, and 74 are, for example, a combination of a reception coil and a reception amplifier.
  • Noise signal supply unit 2 generates a prime noise signal x E having a pair object broadband property under the noise signal source 10, and sends it to the space into a wireless-containing noise signal w E at the transmission interface 70.
  • the diffusion output object s output from the diffusion module is also converted into a transmission signal w S by the transmission interface 72 and transmitted to the space.
  • noise m There are various magnetic fields in the space, and a magnetic field of communication other than the present transmission system that performs communication using the transmission medium 11 is defined as noise m.
  • the space has a magnetic field other than that, the thing that was comprehensive it with noise w N. These noises m, w N is superimposed the outgoing signal w E, a w S, their sum signal is a wireless noise signal w W.
  • noise m of the wireless-containing noise signal w E and wireless transmission space, w N and noise wireless noise signal w W of the wireless transmission space diffusion output object w S wireless transmission space is superimposed
  • the signals x T and x R are respectively input and supplied to the diffusion carrier processing means and the despread carrier processing means, and these noise signals x T and x R are used as noise signals for processing the diffusion carrier and the despread carrier. In order to use them, the noise signals x T and x R must be in a cross-correlation established state.
  • a factor that lowers the cross-correlation is a signal propagation path difference from the signal transmission point to the signal reception point, and since it is easy to obtain a cross-correlation establishment state in the vicinity of the noise signal supply unit 2 that is small, for example, a spread carrier
  • the processing means 13 and the despread carrier processing means 15 are operated in the vicinity of the noise signal supply unit 2.
  • the despread carrier c R despreading means 16 despreads module 4 enters is the component and the cross-correlation established state diffusion carrier c T in a component diffusion output object s in despreading input object h There is a need.
  • the factor that lowers the cross-correlation is mainly the signal propagation path from the transmission point to the reception point of the wireless spread output object w S.
  • the cross-correlation established state is established. Since it is easy to obtain, for example, the diffusion module 3 and the despreading module 4 are operated in the vicinity of each other.
  • This despreading the despread carrier processing means 15 of the module 4 is appropriately delayed despread carrier c R in the series direction of the signal in the course of processing the noise signal to despread carrier c R, reverse despreading module 4 those diffusion output object may be look smaller series direction of the deviation of the signal caused in the process of being transmitted to the despread module from the diffusion module relative to despread carrier c R a diffuser 16 is input .
  • Embodiment 6-4 of the present invention optical signal spread spectrum communication can be performed with simple components and a small-scale configuration.
  • spread spectrum communication has not been used in a small-scale timing signal device such as a magnetic card or magnetic sensing.
  • Embodiment 6-4 of the present invention is applied, the spread spectrum communication is unique to them. It is possible to provide features such as noise resistance, ability to communicate with minute power density, high multiplicity, and high security. The same applies when an electric field is used instead of a magnetic field.
  • Other configurations and the operation and effects thereof are the same as those of the first embodiment shown in FIG.
  • Embodiment 7 of the present invention is applied to a railway model, and a plurality of trains are operated independently on one track, and the collision is performed as in an actual railway. It is intended to provide a sense of realism that is dangerous.
  • a train 83 travels on the rail 11.
  • the despreading module 4 is mounted on the train, and the diffusion module 3 is mounted on the controller 82 that controls the train.
  • the rail 11 corresponds to the single wired transmission medium 11 shown in FIGS.
  • the configurations and operations of the diffusion carrier processing unit 13, the diffusion unit 14, the despreading carrier processing unit 15 and the despreading unit 16 are the same as those shown in FIGS.
  • the difference from the configuration shown in FIGS. 33 and 34 is that the diffusion input object a T is a control command for controlling the movement of the train 83, and that control command is output from the operation switch unit 85.
  • the speed control of the motor 86 of the train 83 is performed based on the spread input object a T output from the despreading means 16.
  • the rail (single transmission medium) 11 acts as an antenna to capture noise existing in the environment where the diffusion module 3 and the despreading module 4 are installed.
  • the noise existing in the environment is, for example, noise generated by a fluorescent lamp discharge tube or an inverter.
  • This transmission system employs a discharge tube and the inverter of the fluorescent lamp as containing a noise signal source 10, and the noise of the captured fluorescence lamp rail as containing noise signal x E.
  • the rails 11 With the rails 11 penetrate the noise x N of artificial noise for example the motor 86 is emitted, noise m, such as a signal from other communication signal source 17a to the rail to the transmission medium is present, the rail The (single transmission medium) 11 superimposes noises x N and m on the elementary noise signal x E due to the characteristics of the transmission medium itself. It said rail noise signal captured by x E or noise x N in the noise signal x E, the noise and supplies the signal m is superimposed noise signal supplying unit 2 of FIGS. 33 and 34 to the diffusion module 3 and despreading module 4 the signal x W.
  • the noise signal supply unit 2 supplies a signal obtained by adding the noises x N and m to the elementary noise signal x E to both the carrier processing units 13 and 15 as a noise signal x W.
  • both carriers processing means 13 and 15 will share the noise signal x W.
  • Diffusing carrier processing means 13 inputs the noise signal x W creates a diffused carrier c T
  • diffuser means 14 the spread output object s created by multiplying its diffusion carrier c T spread input object a T It is sent to the rail 11.
  • Spread input object a T is a signal outputted from the operation switch unit when the operation switch provided in the operation switch section is operated, a signal obtained by primary modulation operation information of the operation switch for example BPSK or the like.
  • the despread carrier processing means 15 of the despreading module 4 of the diffusion module 3 to input a signal of the rail 11 as a noise signal x W
  • the noise signal x W is hydrogen noise signal x E appears to be a signal in which noises x N and m entering the rail 11 and noise of the diffuse output object s are superimposed on each other.
  • despreading the carrier processing means 15 inputs the signal of the rail 11 as a noise signal x R through the wheel 84 is processed it to despread carrier c R.
  • the despreading means 16 inputs the signal of the rail 11 as a despread input object h, and outputs the spread input object transmitted by multiplying the signal by the despread carrier to the motor 86 as a despread output object.
  • the motor 86 to which the despread output object is input demodulates the switch operation information of the operation switch unit 85 from the primary modulated signal to create a motor control signal, and drives the wheel 84 based on the motor operation according to the motor control signal. The force is adjusted and, for example, the speed and the traveling direction are controlled.
  • the eighth embodiment of the present invention shown in FIG. 39 is intended to provide a function of wirelessly transmitting signal information to the blind person by applying the embodiment of the present invention to a cane and a traffic light for the blind person.
  • the traffic light 97 includes the diffusion module 3, and a receiver 91 incorporating the despreading module 4 is installed in a walking stick carried by a blind person.
  • the area where passers-by passes according to the indications by the lamps of the traffic lights, for example, noise from streetlight mercury lamps and fluorescent lights, neon sign discharge tubes, automobile gasoline engine ignition systems, etc. to a noise source, this embodiment these and containing noise signal source 10, using a noise supplied from them as containing a noise signal x E.
  • the region, noise source 17a which emits another communication signal as noise m, or such as a lightning discharge noise, there noise source 12 that emits noise x N other than the noise.
  • the elementary noise signal source 10, the noise source 17 a, or the noise source 12 in FIG. 39 functions as the noise signal supply unit 2. Accordingly, the noise signal supplying section 2 in FIG. 39 passerby In the vicinity of the traffic signal 97 and signal unit 97 is supplying the noise signal x W in a region passing.
  • the distance between the despreading module 4 and the diffusion module 3 of the traffic light 97 incorporated in the cane 90 carried by a blind person located in the traffic area in the vicinity of the traffic light 97 and the noise signal supply unit 2 are set to be substantially equal distances. Set it.
  • the noise signal supply unit 2 When the blind comes to passing region in the vicinity of the signal device 97 using the wand 90, the noise signal supply unit 2, the common supply noise signal x W in despreading module 4 of the diffusion module 3 and wand 90 of the traffic signal 97 To do.
  • the diffusion carrier processing means 13 the despread carrier processing means 15 of the despreading module 4 of the diffusion module 3, and share the noise signal x W from the noise signal supply unit 2.
  • Signal device 97 generates input to processing the spread carrier c T such noise as a noise signal x T, transmits the signal information a T at the diffusion carrier c T as spread spectrum to spread output object s.
  • Wand blind 90 uses a cane itself as an antenna, the despread carrier c R Enter generate processed in common the noise and traffic at the antenna as a noise signal x R, the received signal in the despread carrier c R A spectrum despreading operation is performed on h, signal information is obtained as a despread output object a R , and signal information 96 is transmitted to a blind person using some notification means 98.
  • the spreading module 3 is incorporated in a control box (not shown) near the traffic signal 97, and the reception antenna 93 and the transmission antenna 94 are similarly installed near the traffic signal 97.
  • Cane 90 for blind is made of metal and from its purpose, use for example this as an antenna for receiving the noise signal x W.
  • the despreading module 4 and the audio circuit 8 are incorporated in the interior 91 of the cane 90.
  • the position where the blind person carries the cane 90 to check the state of the signal or waits for the signal to change is in the vicinity of the signal, the distance between the elementary noise signal source 10 and the cane 90, and the elementary noise signal source 10 It is assumed that the distance between the receiving antennas 93 of the diffusion module of the traffic signal is close, and the noise received by the walking stick and the noise received by the traffic signal can be regarded as practically the same. Similarly, the distance between the receiving antenna 93 and the wand 90 of the diffusion module of the traffic light is also sufficiently close.
  • the noise x E from containing noise signal source, the signal m the other communication, the noise signal x W diffusion and output object s is superimposed each other diffusion module sends the spreading module of the signal-side 3 and the despread carrier processing means 15 of the wand side despreading module 4 are input as the same signal.
  • the display by the lamp of the traffic light 90 changes from, for example, red to blue
  • information indicating the change is input to the diffusion means 14 as a diffusion input object a T that is first-order modulated with BPSK in the traffic light 90, for example.
  • 14 creates a spread output object s by multiplying the spread input object a T by the spread carrier c T processed and created by the spread carrier processing means 13, and outputs it to the space from the transmission antenna 94.
  • the cane 90 of the blind person captures the environmental signal by using the cane itself as an antenna.
  • the captured signal is the environmental noise including the diffuse output object s from the traffic light 97.
  • Blind wand 90 receives the noise and supplies the signal as a noise signal x R is despread carrier processing means 15, and the despreading means 16 as despreading input object h.
  • Despreading the carrier processing means 15 creates a despread carrier c R by processing the noise signal x R, supplied to the despreading means 16.
  • despreading means 16 a component of the spread input object a T despread-extracted by multiplying the despread carrier c R from despreading carrier processing means 15 to despread the input object h, audio as despreading output object c R Output to circuit 98.
  • the output despread output object a R is input to the audio circuit 98 to inform the blind person that the display of the traffic light 97 has changed from red to blue, for example, as audio 96.
  • the noise in the shared space can be shared as a noise signal, and a spread spectrum communication application system can be configured using the common noise signal.
  • Other configurations and the operation and effects thereof are the same as those of the fourth embodiment shown in FIGS.
  • the spread spectrum carrier processing means and the spread spectrum despread carrier processing means share the noise signal having irregularity so that the noise signal is correlated with each other.
  • the regular spread spectrum carrier and the spread spectrum despread carrier are processed, and the product of the spread spectrum carrier value and the spread spectrum carrier value indicates a constant regardless of the spread spectrum carrier value. Since it is to obtain a pair of a spread spectrum carrier and the spread spectrum spread carrier, the spread spectrum carrier and the noise having irregularity existing in free space can be obtained without performing an active synchronization operation. Spectral despread carriers can be generated. Furthermore, it is possible to provide an object transmission system that achieves both high noise resistance and quick response.
  • the spread spectrum communication system technology is used not only for information communication and ranging, but also for new features such as quick response, higher secrecy, small size, and low power consumption. It can be applied to transmission.
  • FIG. 1 It is a figure which shows the form example of the spreading
  • FIG. 1 It is a block diagram which shows the specific example of the spreading
  • FIG.15 and FIG.6 It is a specific numerical example of the characteristic shown in FIG.15 and FIG.6. It is a specific numerical example of the characteristic shown in FIG.15 and FIG.6. It is a figure which shows the method of adding a change to the numerical example shown in FIG.
  • FIG. 37 It is a block diagram which shows the example which made the transmission medium in the spread spectrum information communication system which concerns on embodiment of this invention shown in FIG. It is a flowchart which shows the whole operation

Abstract

[PROBLEMS] This object is aimed to process and create a spreading carrier and a despreading carrier without performing an active synchronization operation. [MEANS FOR SOLVING PROBLEMS] A carrier processing device comprises a noise signal supply unit for outputting an irregular noise signal including noise, a spreading carrier processing means for processing the noise signal into a spreading carrier, and a despreading carrier processing means for processing the noise signal into a despreading carrier. The noise signal supply unit supplies the noise signal commonly to the two carrier processing means. The spreading carrier processing means and the despreading carrier processing means process, by sharing the noise signal, the noise signal into the spreading carrier and the dispreading carrier having a cross-correlation and an irregularity and obtains a pair of the spreading carrier and the dispreading carrier in which the product of a value of the spreading carrier and a value of the dispreading carrier shows a constant value regardless of the values of the carriers.

Description

キャリア加工装置、オブジェクト伝送システム及び方法Carrier processing apparatus, object transmission system and method
 本発明は、スペクトル拡散通信技術を応用して伝送する対象物であるオブジェクトを伝送する際に必要となるキャリアを出力するキャリア加工装置、及びこのキャリア加工装置を組み込んでオブジェクトの伝送を実行するオブジェクト伝送システム及び方法に関する。 The present invention relates to a carrier processing device that outputs a carrier necessary for transmitting an object to be transmitted by applying spread spectrum communication technology, and an object that incorporates the carrier processing device to execute object transmission The present invention relates to a transmission system and method.
 前記情報を伝送する場合の従来より用いられている手法のひとつに、スペクトル拡散通信技術がある。直接拡散スペクトル拡散通信技術は前記スペクトル拡散通信技術のひとつの形態であり、相互相関が高いスペクトル拡散符号とスペクトル逆拡散符号という二つの不規則信号を用いた信号伝送方式のひとつであり、耐ノイズ特性、多重性、秘話性、秘匿性、更には小電力密度で他のシステムへの干渉が少ない等の優れた性質を備え、移動体通信、無線LANなど、広い分野で使われている。この明細書では、直接スペクトル拡散通信のことを単にスペクトル拡散通信と記し、以下の説明では、送信機で情報入力信号に乗ずる符号列を拡散符号、受信機で受信した信号に乗ずる符号列を逆拡散符号と記す。 One of the techniques conventionally used for transmitting the information is spread spectrum communication technology. The direct spread spectrum spread communication technology is one form of the spread spectrum communication technology, and is one of signal transmission methods using two irregular signals of spread spectrum code and spread spectrum spread code having high cross-correlation. It has excellent properties such as characteristics, multiplicity, confidentiality, secrecy, and low power density and low interference with other systems, and is used in a wide range of fields such as mobile communication and wireless LAN. In this specification, direct spread spectrum communication is simply referred to as spread spectrum communication. In the following description, a code sequence multiplied by an information input signal at a transmitter is a spread code, and a code sequence multiplied by a signal received at a receiver is reversed. This is referred to as a spreading code.
 前記スペクトル拡散通信は、拡散符号と逆拡散符号という二つの相互相関が高い不規則信号を用いた信号伝送方式である。独立に動作する送信機及び受信機において、それらが用いる一組の拡散符号と逆拡散符号は、互いに積極的に相互相関を向上させる操作を行わない限り、一般にそれらの相互相関はゼロである。前記スペクトル拡散通信は、その一組の拡散符号と逆拡散符号に積極的な操作を行って、それらの相互相関をゼロの状態からある規定した以上の相互相関状態を確立して情報伝送する。以下では、そのある規定した以上の相互相関状態が確立した状態を相互相関確立状態と記す。 The spread spectrum communication is a signal transmission system using two irregular signals having a high cross-correlation, ie, a spread code and a despread code. In independently operating transmitters and receivers, the set of spreading and despreading codes they use generally has zero cross-correlation unless they are actively operated to improve cross-correlation with each other. In the spread spectrum communication, a positive operation is performed on the set of spreading codes and despreading codes to establish a cross-correlation state that exceeds a predetermined cross-correlation state from a zero state and transmits information. Hereinafter, a state in which the cross-correlation state more than the specified level is established is referred to as a cross-correlation establishment state.
 何らかの規則に従った拡散符号や逆拡散符号に対して、相互相関を高めるために行う積極的な操作を同期操作と呼び、その同期操作を用いてスペクトル拡散通信を行う具体的な方法として、参照信号内蔵方式(または蓄積参照信号法、またはSR法:Stored Reference)と、参照信号送信方式(またはTR法:Transmitted Reference)とが知られている。 Aggressive operations to increase cross-correlation for spreading codes and despreading codes according to some rules are called synchronization operations, and they are referred to as a specific method for spread spectrum communication using the synchronization operations. A signal built-in method (or stored reference signal method or SR method: Stored Reference) and a reference signal transmission method (or TR method: Transmitted Reference) are known.
 図40は代表的な参照信号内蔵方式のスペクトル拡散通信システムの構成である(非特許文献1、及び非特許文献2)。今日この構成のスペクトル拡散通信システムが携帯電話のシステムやGPSシステム(GPS:Global Positioning System 全地球測位システム)で広く普及してスペクトル拡散通信システムの標準的な形態となっているので、本明細書ではこのスペクトル拡散通信システムの構成や特性などを比較の基準として用いることとする。前記参照信号内蔵方式では、送信機と受信機とが独立した二値疑似ノイズ発生部(以下、PNG:Pseudo Noise Generator と記す)を有している。それらのPNGは、通信システムが動作を開始する時点では同期しておらず、それらが生成する対で用いる一組の拡散符号cと逆拡散符号cは、相互相関が確立されていない状態である。
 そのため、情報の伝送に先立ち、通信システムは、まず、PNG同士の同期を取って、拡散符号cと逆拡散符号cの相互相関を高めておく必要がある。受信機に設けた同期装置はこのための要素であり、図40に示した構成の参照信号内蔵方式のスペクトル拡散通信システムは、この同期装置を用いた同期捕捉動作と同期保持動作と呼ばれる二つの動作によって同期をとる。
 同期捕捉動作は、受信機の逆拡散符号cの送信機の拡散符号cに対する時間領域での符号パターンの位置合わせを行って相互相関確立状態を作り出す動作であり、同期保持動作は、その確立した相互相関確立状態を維持し続ける動作である。
 通信システムは、動作を開始すると、まず、同期捕捉動作を行い、それが成功裏に終了すると、動作は同期保持動作に移行し、この同期保持動作のもとで情報入力信号の伝送を行う。受信機が行うこの一連の同期操作に対し、その操作の期間、送信機は拡散符号を含む信号を連続して送出する。
 このように、図40に示す構成の参照信号内蔵方式のスペクトル拡散通信システムは、送信機は拡散符号成分を連続して送出し、受信機はそれと同期装置で受信機のPNGを送信機のPNGに同期させて、拡散符号cと逆拡散符号cの相互相関を確立した状態にして通信を行う。
FIG. 40 shows a configuration of a typical spread spectrum communication system with a built-in reference signal (Non-Patent Document 1 and Non-Patent Document 2). Today, the spread spectrum communication system having this configuration is widely used in mobile phone systems and GPS systems (GPS: Global Positioning System) and has become a standard form of spread spectrum communication system. Then, the configuration and characteristics of the spread spectrum communication system are used as a reference for comparison. In the reference signal built-in method, the transmitter and the receiver have independent binary pseudo noise generators (hereinafter referred to as PNG: Pseudo Noise Generator). The PNGs are not synchronized at the time when the communication system starts to operate, and the pair of spreading codes c S and despreading codes c D used in the pair generated by the PNGs are in a state in which no cross-correlation is established. It is.
Therefore, prior to the transmission of information, the communication system first synchronize the PNG together, it is necessary to increase the cross-correlation of the spreading code c S despreading code c D. The synchronization device provided in the receiver is an element for this purpose, and the reference signal built-in spread spectrum communication system having the configuration shown in FIG. 40 has two operations called synchronization acquisition operation and synchronization holding operation using this synchronization device. Synchronize by movement.
The synchronization acquisition operation is an operation of creating a cross-correlation establishment state by aligning the code pattern in the time domain with respect to the spread code c S of the transmitter despread code c D of the receiver, and the synchronization holding operation is This is an operation of maintaining the established cross-correlation establishment state.
When the communication system starts to operate, first, a synchronization acquisition operation is performed. When the operation is successfully completed, the operation shifts to a synchronization holding operation, and an information input signal is transmitted under the synchronization holding operation. For this series of synchronization operations performed by the receiver, the transmitter continuously transmits a signal including a spread code during the operation period.
As described above, in the spread spectrum communication system with a built-in reference signal shown in FIG. 40, the transmitter continuously transmits the spread code component, and the receiver and the synchronizer synchronize the receiver's PNG with the transmitter's PNG. The communication is performed in a state where the cross-correlation between the spread code c S and the despread code c D is established.
 一方、参照信号送信方式のスペクトル拡散通信システムには幾つかの異なる構成が知られており、そのうちの第一の公知例を図41に示す(特許文献1、特許文献2、及び特許文献3、非特許文献1、非特許文献2)。
 図41に示す形態の参照信号送信方式のスペクトル拡散通信システムは、送信機にのみ設けられたひとつのPNGで発生させるひとつの符号列を拡散符号と逆拡散符号の両方の目的に用いる。
 送信機は情報入力信号を拡散符号でスペクトル拡散したスペクトル拡散出力信号(以下、拡散出力信号と記す)と逆拡散符号とを受信機に向けて送出する。この時、拡散出力信号と逆拡散符号とをひとつの伝送媒体で同時に伝送するため、それらが互いに干渉しないようにする目的で、送信機では一方をある規定の時間だけ遅延させ、受信機では送信機では遅延させなかった方の成分を送信機の遅延と同じ時間だけ遅延させる。
 送信機と受信機とで行う一連の遅延操作のうちで受信機が行う操作は、送信機で行った一方の信号に対する時間領域での信号処理操作に対して、受信機でもう一方の信号を時間領域で整合させて積極的に相互相関を高める操作であり、これは二つの信号の同期操作に他ならない。
 このように、図41の構成の従来の参照信号送信方式のスペクトル拡散通信システムは、拡散出力信号と逆拡散符号の一方を送信機で遅延させ、受信機ではもう一方の成分を遅延させる同期操作を行い、拡散出力信号の拡散符号cの成分と逆拡散符号cの成分の相互相関を確立した状態にして通信を行う。
On the other hand, several different configurations are known for the spread spectrum communication system of the reference signal transmission method, and a first known example is shown in FIG. 41 (Patent Document 1, Patent Document 2, and Patent Document 3, Non-patent document 1, Non-patent document 2).
In the spread spectrum communication system of the reference signal transmission method of the form shown in FIG. 41, one code string generated by one PNG provided only in the transmitter is used for the purpose of both spreading code and despreading code.
The transmitter transmits a spread spectrum output signal (hereinafter, referred to as a spread output signal) obtained by spreading the spectrum of the information input signal with a spread code and a despread code toward the receiver. At this time, since the spread output signal and the despread code are simultaneously transmitted through one transmission medium, in order to prevent them from interfering with each other, one of the transmitters is delayed by a predetermined time, and the receiver transmits it. The component that is not delayed in the machine is delayed by the same time as the transmitter delay.
Of the series of delay operations performed by the transmitter and the receiver, the operation performed by the receiver is the same as the signal processing operation in the time domain for one signal performed by the transmitter. This is an operation of making the cross-correlation positive by matching in the time domain, and this is nothing but a synchronization operation of two signals.
As described above, the spread spectrum communication system of the conventional reference signal transmission method configured as shown in FIG. 41 has a synchronization operation in which one of the spread output signal and the despread code is delayed by the transmitter, and the other component is delayed by the receiver. The communication is performed with the cross-correlation between the component of the spread code c S and the component of the despread code c D of the spread output signal established.
 次に、図41に示す構成とは異なる参照信号送信方式のスペクトル拡散通信システムとして、第二の公知例を図42に示す(非特許文献3)。
 図42に示す形態の参照信号送信方式のスペクトル拡散通信システムは、図41に示した形態と同様に、送信機にのみ設けられたひとつのPNGで発生させるひとつの符号列を拡散符号と逆拡散符号の両方の目的に用い、送信機は拡散出力信号と逆拡散符号とを受信機に向けて送出する。この時、拡散出力信号と逆拡散符号とを異なる周波数帯域のブロードバンド信号にして伝送する。
 送信機で発生させた逆拡散符号を拡散出力信号と異なる逆拡散符号に専用の周波数帯域で伝送する伝送メカニズムは、受信機が相互相関の高い送信機からの信号を積極的に利用する目的で設けるものであるため、それは同期装置そのものである。
 このように、図42に示す参照信号送信方式のスペクトル拡散通信システムは、逆拡散符号を拡散出力信号の伝送とは異なる専用の伝送媒体で伝送する同期操作を行い、拡散出力信号の拡散符号cの成分と逆拡散符号cの相互相関を確立した状態にして通信を行う。
横山光雄 「スペクトル拡散通信システム」科学技術出版社、1988年 丸林他「スペクトル拡散通信とその応用」 電子情報通信学会、1999年、P.95~131 Andre Kesteloot 他 「The ARRL Spread Spectrum Sourcebook」 The American Radio Relay League, Inc.、1997 P8-58~8-63 米国特許第5,761,238号明細書 特開2000-022593号公報 米国特許第5,774,492号明細書 特開2000-252878号公報
Next, a second known example is shown in FIG. 42 as a spread spectrum communication system of a reference signal transmission method different from the configuration shown in FIG. 41 (Non-Patent Document 3).
42, the spread spectrum communication system of the reference signal transmission method in the form shown in FIG. 42 is similar to the form shown in FIG. 41. One code string generated by one PNG provided only in the transmitter is spread and despread. Used for both code purposes, the transmitter sends the spread output signal and the despread code towards the receiver. At this time, the spread output signal and the despread code are transmitted as broadband signals in different frequency bands.
The transmission mechanism that transmits the despread code generated in the transmitter to the despread code different from the spread output signal in the dedicated frequency band is for the purpose of the receiver actively using the signal from the transmitter with high cross-correlation. Since it is provided, it is the synchronizer itself.
As described above, the spread spectrum communication system of the reference signal transmission method shown in FIG. 42 performs a synchronization operation for transmitting the despread code using a dedicated transmission medium different from the transmission of the spread output signal, and spread code c of the spread output signal. communicating in the state establishing the correlation component and the despreading code c D of S.
Mitsuo Yokoyama "Spread-Spectrum Communication System" Science and Technology Publishers, 1988 Marubayashi et al. "Spread Spectrum Communication and its Applications" The Institute of Electronics, Information and Communication Engineers, 1999, p. 95-131 Andre Kesteloot et al. "The ARRL Spread Spectrum Sourcebook" The American Radio Relay League, Inc., 1997 P8-58-8-63 US Pat. No. 5,761,238 JP 2000-022593 A US Pat. No. 5,774,492 JP 2000-252878 A
 しかし、図40(非特許文献1、及び非特許文献2)に示す構成の参照信号内蔵方式のスペクトル拡散通信システムは、同期捕捉動作が完了しないと、受信機で同期の取れた逆拡散符号は得られないので、情報伝送を開始できない。
 非常に長い不規則信号に対する精密なパターンマッチングという信号解析処理となるこの同期捕捉動作は、単純には拡散符号の非常に長い一周期を構成するビット数の二乗に比例する莫大な回数の積和演算をともなう統計的数値演算処理を必要とするものであり、符号長が数千ビットの場合、全ての符号パターンについてひととおりの相互相関を計算するだけでも数千万回の積和演算を行うこととなり、それには多大の時間が必要となる。また、同期捕捉動作は多数の計算結果の中から同期点として最も高い可能性のある点を選び出す曖昧性を含んだ試行錯誤のプロセスであり、結果によってはそれを最初からふたたびやり直さなければならないこともある、時間のかかるプロセスである。
 すなわち、この方式のスペクトル拡散通信システムでは、通信を開始しようとしてから実際に通信を開始できるようになるまでに時間がかかり、通信要求に直ぐに応答することが出来ない。
 このように、図40に示す参照信号内蔵方式のスペクトル拡散通信システムには、通信要求に対する即応性に欠ける課題がある。
However, in the spread spectrum communication system with a built-in reference signal shown in FIG. 40 (Non-Patent Document 1 and Non-Patent Document 2), if the synchronization acquisition operation is not completed, the despread code synchronized with the receiver is Since it cannot be obtained, information transmission cannot be started.
This synchronization acquisition operation, which is a signal analysis process of precise pattern matching for very long irregular signals, is simply a product sum of enormous number of times that is proportional to the square of the number of bits that make up a very long period of the spreading code. It requires statistical numerical processing with computation, and when the code length is several thousand bits, it performs tens of millions of product-sum operations just by calculating a single cross-correlation for all code patterns. That will take a lot of time. In addition, the synchronization acquisition operation is a trial and error process that involves the ambiguity of selecting the most likely synchronization point from among a large number of calculation results, and depending on the result, it must be repeated again from the beginning. There is also a time consuming process.
In other words, in the spread spectrum communication system of this system, it takes time until communication can be actually started after trying to start communication, and it is not possible to respond immediately to a communication request.
As described above, the spread spectrum communication system with a built-in reference signal shown in FIG. 40 has a problem that lacks responsiveness to communication requests.
 また、図40に示す構成の参照信号内蔵方式のスペクトル拡散通信システムで行われる同期捕捉動作は、伝送媒体からデータを高精度でリアルタイムにサンプルし、それを保持し、多数の繰返し演算操作を限られた時間内に完結させ、パターンや位相などを高精度にリアルタイムで調整する必要性がある。
 そのため、前記同期捕捉動作を行う受信機の同期装置は、符号列と同じ長さという大きなメモリ空間と、高速な積和演算器やアナログディジタル変換器(ADC)やディジタルアナログ変換器(DAC)、多ビットのデータを一度に伝送する幅の広いバスやパイプライン処理装置などを有した、大規模な回路資源やソフトウェア資源で構成する装置であるのが一般的である。その結果、この方式の受信機は、この方式以外の通信方式の受信機に比べて装置規模が著しく大きく複雑である。
 このように、図40に示すような構成の参照信号内蔵方式のスペクトル拡散通信システムには、装置が大規模化し複雑化する課題がある。
In addition, the synchronization acquisition operation performed in the spread spectrum communication system with a built-in reference signal shown in FIG. 40 samples data from the transmission medium in real time with high accuracy, holds it, and limits a large number of repetitive arithmetic operations. It is necessary to complete within a given time and adjust the pattern and phase in real time with high accuracy.
Therefore, the synchronization device of the receiver that performs the synchronization acquisition operation includes a large memory space having the same length as the code string, a high-speed product-sum calculator, an analog-digital converter (ADC), a digital-analog converter (DAC), Generally, the apparatus is composed of a large-scale circuit resource or software resource having a wide bus or pipeline processing device for transmitting multi-bit data at a time. As a result, the receiver of this system has a remarkably large apparatus size and complexity compared to receivers of communication systems other than this system.
Thus, the reference signal built-in spread spectrum communication system configured as shown in FIG. 40 has a problem that the apparatus becomes large and complicated.
 また、間欠的に発生する通信要求に遅滞なく対応しなければならない用途では、ひとつの通信要求の伝送を終了した後も、いつ発生するかわからない次の通信要求に再び同期捕捉から動作を開始するような無駄な時間をかけることなく即座に対応できるようにする必要がある。
 図40に示す構成の参照信号内蔵方式のスペクトル拡散通信システムでそのような要求に応えるためには、通信システムは送受信機を常に同期状態に保つ必要があるため、伝送すべき情報がないのにもかかわらず、送信機は情報入力信号で変調していない拡散符号を送出し続けるとともに、受信機はその拡散符号を含む信号を入力して相互相関確立状態を保持する同期保持動作を続ける。
 この情報を伝送していない期間の伝送信号の送出は、有限な伝送媒体の伝送容量を無駄遣いするばかりでなく、それは同じ伝送媒体を共有して多重伝送を行う他の通信に対して常時無駄なノイズとして働き、その伝送媒体を用いた他の通信に無用な干渉を与えて、各通信のSN比を低下させる要因にもなる。また、その干渉は通信に限らず、その伝送信号を送出する送信機の周囲の機器や人体などにも及ぶものであり、それら周囲の機器や生体に障害を発生させる要因ともなる。
 このように、図40に示す参照信号内蔵方式のスペクトル拡散通信システムには、伝送媒体の伝送容量の浪費と、伝送媒体を共用する他の通信や周囲の機器や生体などに無用な干渉を与える課題がある。
Also, in applications where it is necessary to respond to communication requests that occur intermittently without delay, even after the transmission of one communication request is completed, the operation starts again from the synchronization acquisition for the next communication request that does not know when it occurs. It is necessary to be able to respond immediately without taking such a wasteful time.
In order to respond to such a request in the spread spectrum communication system of the reference signal built-in method having the configuration shown in FIG. 40, the communication system needs to keep the transmitter and receiver in a synchronized state, so there is no information to be transmitted. Nevertheless, the transmitter continues to transmit a spreading code that is not modulated with the information input signal, and the receiver continues a synchronization maintaining operation of inputting a signal including the spreading code and maintaining a cross-correlation established state.
Transmission of a transmission signal during a period in which this information is not transmitted not only wastes the transmission capacity of a finite transmission medium, but it is always useless for other communications that share the same transmission medium and perform multiplex transmission. It acts as noise, causes unnecessary interference to other communications using the transmission medium, and causes a decrease in the SN ratio of each communication. Further, the interference is not limited to communication, but also extends to devices and human bodies around the transmitter that sends out the transmission signal, and causes a failure in the devices and living bodies around them.
As described above, the spread spectrum communication system with a built-in reference signal shown in FIG. 40 wastes the transmission capacity of the transmission medium, and causes unnecessary interference with other communications, peripheral devices, living bodies, and the like that share the transmission medium. There are challenges.
 また、前述した間欠的に発生する通信要求に遅滞なく対応しなければならない用途に図40に示す構成の参照信号内蔵方式のスペクトル拡散通信システムで対応する場合、通信システムは伝送すべき情報がないのにもかかわらず送信機は送信動作を行い、伝送媒体は拡散符号を伝送し、受信機は同期保持動作を行う。その結果、同期保持動作中は送信機も受信機も電力を消費する。
 一般に、前記間欠的通信用途では、通信システムは通信要求の発生時に情報を確実に伝えることができる期間だけ通信を行い、その後は次の通信要求が来るまで送信機は動作せず、受信機は間欠的に一時的にだけ受信動作をさせて送信機の情報発信に待機することが望ましい。
 これに比べると、図40に示す参照信号内蔵方式のスペクトル拡散通信システムの送信機と受信機とが同期保持動作に消費する電力は無駄な電力と言わざるを得ない。
 このように、図40に示す参照信号内蔵方式のスペクトル拡散通信システムには、間欠的通信用途において同期保持動作に無駄な電力を浪費する課題がある。
In addition, when the above-described intermittently generated communication request must be handled without delay in the reference signal built-in spread spectrum communication system configured as shown in FIG. 40, the communication system has no information to be transmitted. Nevertheless, the transmitter performs a transmission operation, the transmission medium transmits a spread code, and the receiver performs a synchronization maintaining operation. As a result, both the transmitter and the receiver consume power during the synchronization holding operation.
In general, in the intermittent communication application, the communication system performs communication only during a period in which information can be reliably transmitted when a communication request is generated, and then the transmitter does not operate until the next communication request comes, and the receiver It is desirable to intermittently and temporarily perform a reception operation and wait for information transmission from the transmitter.
Compared to this, the power consumed by the transmitter and the receiver in the spread spectrum communication system of the reference signal built-in system shown in FIG.
As described above, the spread spectrum communication system of the reference signal built-in method shown in FIG.
 一方、伝送媒体で伝送する信号には一般にノイズが重畳する。図41(特許文献1、特許文献2及び特許文献3、非特許文献1、非特許文献2)及び図42(非特許文献3)に示す構成の参照信号送信方式のスペクトル拡散通信システムの場合、このノイズは拡散出力信号とスペクトル逆拡散用に伝送する拡散符号とに重畳する。スペクトル拡散通信手法では、スペクトル拡散した伝送信号にノイズが重畳しても受信側で行う逆拡散の一連の操作でその影響を抑制することができるが、そのためにはノイズの重畳のない逆拡散符号が必要である。その逆拡散符号に用いる信号にノイズが重畳するこれらの形態のスペクトル拡散通信システムでは、そのノイズの影響を抑制することは出来ないため、逆拡散出力として得られる情報入力信号の成分のSN比は低いものとなる。 On the other hand, noise is generally superimposed on a signal transmitted through a transmission medium. In the case of the spread spectrum communication system of the reference signal transmission method configured as shown in FIG. 41 (Patent Document 1, Patent Document 2 and Patent Document 3, Non-Patent Document 1, Non-Patent Document 2) and FIG. 42 (Non-Patent Document 3), This noise is superimposed on the spread output signal and the spread code transmitted for spectrum despreading. In the spread spectrum communication method, even if noise is superimposed on a spread spectrum transmission signal, the influence can be suppressed by a series of despreading operations performed on the receiving side. is required. In the spread spectrum communication system of these forms in which noise is superimposed on the signal used for the despread code, the influence of the noise cannot be suppressed. Therefore, the SN ratio of the information input signal component obtained as the despread output is It will be low.
 また、伝送媒体で伝送する信号には一般にノイズが重畳する。図41(特許文献1、特許文献2及び特許文献3、非特許文献1、非特許文献2)及び図42(非特許文献3)に示す構成の参照信号送信方式のスペクトル拡散通信システムの場合、このノイズは拡散出力信号とスペクトル逆拡散用に伝送する拡散符号とに重畳する。スペクトル拡散通信手法では、スペクトル拡散した伝送信号にノイズが重畳しても受信側で行う逆拡散の一連の操作でその影響を抑制することができるが、そのためにはノイズの重畳のない逆拡散符号が必要である。その逆拡散符号に用いる信号にノイズが重畳するこれらの形態のスペクトル拡散通信システムでは、そのノイズの影響を抑制することは出来ないため、逆拡散出力として得られる情報入力信号の成分のSN比は低いものとなる。 Also, noise is generally superimposed on the signal transmitted on the transmission medium. In the case of the spread spectrum communication system of the reference signal transmission method configured as shown in FIG. 41 (Patent Document 1, Patent Document 2 and Patent Document 3, Non-Patent Document 1, Non-Patent Document 2) and FIG. 42 (Non-Patent Document 3), This noise is superimposed on the spread output signal and the spread code transmitted for spectrum despreading. In the spread spectrum communication method, even if noise is superimposed on a spread spectrum transmission signal, the influence can be suppressed by a series of despreading operations performed on the receiving side. is required. In the spread spectrum communication system of these forms in which noise is superimposed on the signal used for the despread code, the influence of the noise cannot be suppressed. Therefore, the SN ratio of the information input signal component obtained as the despread output is It will be low.
 このように、図41、図42に示す構成の通信システムには共通して、伝送媒体で伝送される信号にノイズが重畳すると受信機で出力される情報入力信号の成分のSN比が低下するという課題があり、また、それは、それらが図40に示した構成の参照信号内蔵方式のスペクトル拡散通信システムが有する耐ノイズ性がない、あるいはその耐ノイズ性が劣るという課題があることでもある。 As described above, in the communication systems having the configurations shown in FIGS. 41 and 42, when noise is superimposed on a signal transmitted through the transmission medium, the SN ratio of the component of the information input signal output from the receiver is lowered. In addition, there is a problem that they have no noise resistance, or that the noise resistance of the spread spectrum communication system with a built-in reference signal shown in FIG. 40 is inferior.
 また、図42に示す参照信号送信方式のスペクトル拡散通信システムによれば、確かに、即応出来ず大規模な同期装置が必要である図40に示す構成の情報伝送システムを用いずにスペクトル拡散通信は可能となる。 Further, according to the spread spectrum communication system of the reference signal transmission method shown in FIG. 42, the spread spectrum communication can be performed without using the information transmission system having the configuration shown in FIG. Is possible.
 しかし、拡散符号の伝送のために拡散出力信号とは別に信号帯域を必要とし、それが拡散符号という広帯域な信号を伝送する広帯域な伝送チャンネルでなければならない。さらに、この方法で多重通信するためには、拡散出力信号はひとつの伝送チャンネルを共有して伝送できるものの、拡散符号を伝送する広帯域なチャンネルは多重通信のチャンネルごとに必要となり、多重通信システム全体としては著しく広帯域な伝送媒体を必要とする。同じ量の情報を伝送するのにより広い帯域を必要とすることは、伝送媒体の単位帯域幅で伝送できる情報量が少なくなって帯域の活用率が低い。
 このように、図42に示す参照信号送信方式のスペクトル拡散通信システムには、多重化しようとすると著しく広帯域な伝送媒体が必要となり、伝送媒体の帯域活用率が低い課題がある。
However, a signal band is required separately from the spread output signal for the transmission of the spread code, and it must be a wideband transmission channel for transmitting a wideband signal called a spread code. Furthermore, in order to perform multiplex communication using this method, a spread output signal can be transmitted while sharing a single transmission channel, but a wideband channel for transmitting a spread code is required for each multiplex communication channel. Requires a remarkably wide band transmission medium. The need for a wider band for transmitting the same amount of information means that the amount of information that can be transmitted in the unit bandwidth of the transmission medium is reduced and the utilization rate of the band is low.
As described above, the spread spectrum communication system of the reference signal transmission method shown in FIG. 42 requires a remarkably wide band transmission medium for multiplexing, and there is a problem that the band utilization rate of the transmission medium is low.
 本発明の目的は、ノイズを含む共通のノイズ信号をスペクトル拡散キャリア及びスペクトル逆拡散キャリアに加工する構成により、積極的な同期装置を必要としないキャリア加工装置及び、そのキャリア加工装置を組み込んだスペクトル拡散オブジェクト伝送システム及び方法を提供することにある。 An object of the present invention is to process a common noise signal including noise into a spread spectrum carrier and a spread spectrum despread carrier, thereby eliminating the need for an active synchronization device and a spectrum incorporating the carrier processing device. It is to provide a diffusion object transmission system and method.
 前記目的を達成するため、本発明に係るキャリア加工装置は、オブジェクトを伝送する際に伝送元で必要なスペクトル拡散キャリアと伝送先で必要なスペクトル逆拡散キャリアとをそれぞれ出力するキャリア加工装置であって、ノイズを信号成分として含む不規則性のノイズ信号を出力するノイズ信号供給部と、前記ノイズ信号を前記スペクトル拡散キャリアに加工するスペクトル拡散キャリア加工手段と、前記ノイズ信号を前記スペクトル逆拡散キャリアに加工するスペクトル逆拡散キャリア加工手段とを含み、前記ノイズ信号供給部は、前記ノイズ信号を前記両キャリア加工手段に共通に供給するものであり、前記スペクトル拡散キャリア加工手段と前記スペクトル逆拡散キャリア加工手段とは、前記ノイズ信号を共有することによって前記ノイズ信号を相互相関のとれた不規則性の前記スペクトル拡散キャリアと前記スペクトル逆拡散キャリアに加工するとともに、前記スペクトル拡散キャリアの値如何に関わらず前記スペクトル拡散キャリアの値と前記スペクトル逆拡散キャリアの値との積が定数を示す前記スペクトル拡散キャリアと前記スペクトル逆拡散キャリアの対を得るものであることを特徴とする。 In order to achieve the above object, a carrier processing apparatus according to the present invention is a carrier processing apparatus that outputs a spread spectrum carrier required at a transmission source and a spread spectrum despread carrier required at a transmission destination when transmitting an object. A noise signal supply unit that outputs an irregular noise signal including noise as a signal component, spread spectrum carrier processing means for processing the noise signal into the spread spectrum carrier, and the noise signal as the spread spectrum spread carrier. Spectrum despread carrier processing means for processing the noise signal, and the noise signal supply unit supplies the noise signal to both carrier processing means in common, the spread spectrum carrier processing means and the spectrum despread carrier With the processing means, the noise signal is shared. The noise signal is processed into the spread spectrum carrier and the spread spectrum despread carrier having cross-correlation irregularity, and the spread spectrum carrier value and the spread spectrum spread carrier regardless of the spread spectrum carrier value. It is characterized in that a pair of the spread spectrum carrier and the spread spectrum spread carrier whose product is a constant is obtained.
 本発明に係るオブジェクト伝送システムは、スペクトル拡散通信技術を応用してオブジェクトを伝送するオブジェクト伝送システムであって、ノイズを信号成分として含む不規則性のノイズ信号を出力するノイズ信号供給部と、前記ノイズ信号を前記スペクトル拡散キャリアに加工するスペクトル拡散キャリア加工手段と、前記ノイズ信号を前記スペクトル逆拡散キャリアに加工するスペクトル逆拡散キャリア加工手段とを含み、前記スペクトル拡散キャリアで前記オブジェクトをスペクトル拡散してスペクトル拡散出力オブジェクトを伝送するスペクトル拡散手段と、前記スペクトル逆拡散キャリアで前記スペクトル拡散出力オブジェクトを含む信号から前記オブジェクトの成分をスペクトル逆拡散するスペクトル逆拡散手段とを含み、前記ノイズ信号供給部は、前記ノイズ信号を前記両キャリア加工手段に共通に供給するものであり、前記拡散キャリア加工手段と、前記逆拡散キャリア加工手段とは、前記ノイズ信号を共有することによって前記ノイズ信号を相互相関のとれた不規則性の前記スペクトル拡散キャリアと前記スペクトル逆拡散キャリアに加工するとともに、前記スペクトル拡散キャリアの値如何に関わらず前記スペクトル拡散キャリアの値と前記スペクトル逆拡散キャリアの値との積が定数を示す前記スペクトル拡散キャリアと前記スペクトル逆拡散キャリアの対を得るものであり、さらに、前記スペクトル拡散手段と前記スペクトル逆拡散手段とを連繋する伝送媒体を有することを特徴とする。 An object transmission system according to the present invention is an object transmission system that transmits an object by applying spread spectrum communication technology, and includes a noise signal supply unit that outputs an irregular noise signal including noise as a signal component; Spread spectrum carrier processing means for processing a noise signal into the spread spectrum carrier; and spread spectrum carrier processing means for processing the noise signal into the spread spectrum spread carrier; and spreading the object with the spread spectrum carrier. A spread spectrum means for transmitting the spread spectrum output object, and a spread spectrum spread means for despreading the component of the object from the signal containing the spread spectrum output object on the spread spectrum spread carrier, The noise signal supply unit supplies the noise signal to both the carrier processing means in common, and the diffusion carrier processing means and the despread carrier processing means share the noise signal to share the noise signal. The noise signal is processed into the spread spectrum carrier and the spread spectrum spread carrier having cross-correlation irregularity, and the spread spectrum carrier value and the spread spectrum spread carrier value are independent of the spread spectrum carrier value. Obtaining a pair of the spread spectrum carrier and the spread spectrum despread carrier, the product of which is a constant, and further comprising a transmission medium that links the spread spectrum means and the spread spectrum spread means. To do.
 本発明に係るオブジェクト伝送方法は、スペクトル拡散通信技術を応用してオブジェクトを伝送するオブジェクト伝送方法であって、ノイズを信号成分として含む不規則性のノイズ信号を出力する工程と、前記ノイズ信号を共有することによって前記ノイズ信号を相互相関のとれた不規則性の前記スペクトル拡散キャリアと前記スペクトル逆拡散キャリアに加工するとともに、前記スペクトル拡散キャリアの値如何に関わらず前記スペクトル拡散キャリアの値と前記スペクトル逆拡散キャリアの値との積が定数を示す前記スペクトル拡散キャリアと前記スペクトル逆拡散キャリアの対を得る工程と、前記スペクトル拡散キャリアで前記オブジェクトをスペクトル拡散してスペクトル拡散出力オブジェクトを伝送する工程と、前記スペクトル逆拡散キャリアで前記スペクトル拡散出力オブジェクトを含む信号から前記オブジェクトの成分をスペクトル逆拡散する工程とを実行することを特徴とする。 An object transmission method according to the present invention is an object transmission method for transmitting an object by applying spread spectrum communication technology, the step of outputting an irregular noise signal including noise as a signal component; The noise signal is processed into the spread spectrum carrier and the spread spectrum spread carrier having cross-correlation irregularity by sharing, and the spread spectrum carrier value and the spread spectrum carrier value regardless of the spread spectrum carrier value. Obtaining a pair of the spread spectrum carrier and the spread spectrum spread carrier in which a product of the value of the spread spectrum spread carrier indicates a constant, and transmitting the spread spectrum output object by spreading the object with the spread spectrum carrier And the spectrum The components of the object from a signal including the spread spectrum output object in the diffusion carrier and executes a step of spectral despreading.
 本発明によれば、スペクトル拡散キャリア加工手段とスペクトル逆拡散キャリア加工手段とが不規則性を有するノイズ信号を共有することによって前記ノイズ信号を相互相関のとれた不規則性の前記スペクトル拡散キャリアと前記スペクトル逆拡散キャリアに加工するとともに、前記スペクトル拡散キャリアの値如何に関わらず前記スペクトル拡散キャリアの値と前記スペクトル逆拡散キャリアの値との積が定数を示す前記スペクトル拡散キャリアと前記スペクトル逆拡散キャリアの対を得るものであるものであるため、、積極的な同期操作を行うことなく、自由空間に存在する不規則性を有するノイズを用いてスペクトル拡散キャリア及びスペクトル逆拡散キャリアを生成することができる。さらに、耐ノイズ性の高さと即応性とを両立させたオブジェクト伝送システムを提供できる。 According to the present invention, the spread spectrum carrier processing means and the spread spectrum despread carrier processing means share the noise signal having irregularity so that the noise signal is correlated with the irregular spread spectrum carrier. The spread spectrum carrier and the spread spectrum spread that are processed into the spread spectrum spread carrier and the product of the spread spectrum carrier value and the spread spectrum carrier value is constant regardless of the spread spectrum carrier value. Since it is to obtain a carrier pair, it generates a spread spectrum carrier and a spectrum despread carrier using noise having irregularity existing in free space without performing an active synchronization operation. Can do. Furthermore, it is possible to provide an object transmission system that achieves both high noise resistance and quick response.
 以下、本発明の実施形態を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
(実施形態1)
 本発明の実施形態1に係る情報伝送システムは図1に示すキャリア加工装置を組み込んだ構成であり、参照信号内蔵方式及び参照信号送信方式による情報伝送システムに組み込まれているスペクトル拡散符号を生成するPNGと異なり、構成自体が同期装置を構成するという独自の発想に基づいた参照信号共有方式とも呼べる新たな形態を提供するものである。
 スペクトル拡散通信技術は一般的に情報の通信に適用される技術であるため、本発明の実施形態1に係る情報伝送システムも、オブジェクトの一種である情報を伝送するスペクトル拡散情報伝送システムに応用した例に基づいて説明する。前記オブジェクトは伝送する対象物である。ここで言う伝送とは、例えば位置や時間などの物理的に異なる関係にある何らかのものの間で何かを移動させることであり、前記オブジェクトには、例えば、前記情報の他に、エネルギー、或いは単なる信号が含まれる。しかし、本発明の実施形態に係るキャリア加工装置は、その応用がスペクトル拡散情報伝送システムに限られるものではない。本発明の実施形態に係るスペクトル拡散オブジェクト伝送システムの情報以外のオブジェクトの伝送への応用事例については後述する。以下、本発明の実施形態に係るオブジェクト伝送システムの一種であるスペクトル拡散情報伝送システムを本伝送システムと記して説明する。
(Embodiment 1)
The information transmission system according to Embodiment 1 of the present invention has a configuration in which the carrier processing apparatus shown in FIG. 1 is incorporated, and generates a spread spectrum code incorporated in the information transmission system using the reference signal built-in method and the reference signal transmission method. Unlike PNG, it provides a new form that can be called a reference signal sharing system based on the unique idea that the configuration itself constitutes a synchronization device.
Since the spread spectrum communication technique is generally applied to information communication, the information transmission system according to Embodiment 1 of the present invention is also applied to a spread spectrum information transmission system that transmits information that is a kind of object. This will be described based on an example. The object is an object to be transmitted. The term “transmission” as used herein refers to moving something between physically different things such as position and time. For example, in addition to the information, the object may include energy, A signal is included. However, the application of the carrier processing apparatus according to the embodiment of the present invention is not limited to the spread spectrum information transmission system. An application example to transmission of objects other than information of the spread spectrum object transmission system according to the embodiment of the present invention will be described later. Hereinafter, a spread spectrum information transmission system which is a kind of object transmission system according to an embodiment of the present invention will be described as the present transmission system.
 本伝送システムに組み込まれるキャリア加工装置は、ノイズを信号成分として含むノイズ信号と呼ぶ、共通かつ不規則性を有する対オブジェクト広帯域性を有した信号を共有することによって前記ノイズ信号を相互相関のとれた不規則性のスペクトル拡散キャリア(以下、拡散キャリアと記す)とスペクトル逆拡散キャリア(以下、逆拡散キャリアと記す)に加工するとともに、前記スペクトル拡散キャリアの値如何に関わらず前記拡散キャリアの値と前記逆拡散キャリアの値との積が定数を示す前記拡散キャリアと前記逆拡散キャリアの対を得るものであって、本発明の実施形態におけるキャリア加工装置を応用した本伝送システムは、前記拡散キャリア及び逆拡散キャリアで、例えば情報信号などのオブジェクトをスペクトル拡散及び逆拡散して伝送することにより、前記参照信号内蔵方式と前記参照信号送信方式が抱える課題を解決するとともに、これらの方式の利点を併せ持ち、且つさらにそれらでは得られない新たな利点を得るように発展させたものである。前記オブジェクトは伝送する対象物を意味するものであって、例えば、従来のスペクトル拡散通信で対象となっていた情報ばかりでなく、エネルギー、或いは単なる信号をも含むものであり、位置や時間などの物理的関係が異なる2点間で伝送すべきものであれば、何れのものであってもよい。これらのオブジェクトの伝送に関しては後述する。 The carrier processing apparatus incorporated in this transmission system can correlate the noise signal by sharing a signal having a broad object-to-object property with common and irregularity, called a noise signal including noise as a signal component. In addition, the spread spectrum carrier (hereinafter, referred to as a spread carrier) and an inverse spread spectrum carrier (hereinafter, referred to as a despread carrier) having irregularities are processed, and the value of the spread carrier regardless of the value of the spread spectrum carrier. And the despread carrier value to obtain a pair of the spread carrier and the despread carrier, the transmission system using the carrier processing device in the embodiment of the present invention, Carrier and despread carrier, for example, spread spectrum and object such as information signal By spreading and transmitting, the problems of the reference signal built-in method and the reference signal transmission method are solved, and the advantages of these methods are combined, and further, new advantages that cannot be obtained by them are developed. It has been made. The object means an object to be transmitted. For example, the object includes not only information targeted by the conventional spread spectrum communication but also energy or a simple signal. Any one may be used as long as it should be transmitted between two points having different physical relationships. The transmission of these objects will be described later.
 まず、本伝送システムに組み込まれるキャリア加工装置の具体的構成・動作の説明に先立ち、その内容の説明で用いる状態変数について説明する。ここで説明する状態変数は、本発明の実施形態に係るオブジェクト伝送システムで伝送される実体であるオブジェクトの形態を表す関数を指し示している。具体例を用いて説明する。本発明の実施形態に係るオブジェクト伝送システムでは、伝送する実体としてのオブジェクトとして、例えば音声や印刷画像を伝送することが可能である。伝送される前段階での音声は一般的に時間関数としての電気信号による情報として捉え、これを伝送することとなる。したがって、例えば音声の場合、前記オブジェクトの形態は時間関数の状態変数で捉えられる。
 また、例えば印刷画像を伝送する場合、伝送される前段階での印刷画像は画像から得られる光の濃淡の平面における分布情報として捉えられるため、前記音声のような時間関数ではなく、光の濃淡が存在する位置の情報であり、例えば印刷画像の場合、前記オブジェクトの形態は位置関数の状態変数で捉えられる。
 また、位置関数の状態変数で捉えられるオブジェクトであっても、平面画像の場合には光の濃淡が直交する2軸のXY方向に存在するため、二次元位置関数の状態変数で捉えられる。前記光の濃淡が1軸方向に存在する場合には一次元位置関数の状態変数で捉えられる。前記光の濃淡が直交する3軸XYZ方向に存在する場合には三次元位置関数の状態変数で捉えられる。
 このように、伝送される前段階での前記オブジェクトの形態は、時間関数の状態変数で捉えられるものはかりでなく、位置関数の状態変数で捉えられるものもある。後述するように、本発明の実施形態に係るオブジェクト伝送システムでは、伝送される前段階での形態が時間関数の状態変数で捉えられるオブジェクトや、位置関数の状態変数で捉えられるオブジェクトも対象となる。
First, prior to the description of the specific configuration / operation of the carrier processing apparatus incorporated in the transmission system, the state variables used in the description of the contents will be described. The state variable described here indicates a function representing the form of an object that is an entity transmitted in the object transmission system according to the embodiment of the present invention. This will be described using a specific example. In the object transmission system according to the embodiment of the present invention, it is possible to transmit, for example, audio or a print image as an object as a transmission entity. The sound at the previous stage of transmission is generally regarded as information by an electric signal as a time function and is transmitted. Therefore, for example, in the case of speech, the form of the object is captured by a time function state variable.
Also, for example, when transmitting a print image, the print image at the previous stage of transmission is captured as distribution information in the light density plane obtained from the image. For example, in the case of a print image, the form of the object is captured by a state variable of a position function.
Further, even in the case of an object captured by a position function state variable, in the case of a planar image, the light density exists in two orthogonal XY directions, so that it can be captured by a two-dimensional position function state variable. When the light shading exists in one axis direction, it is captured by a state variable of a one-dimensional position function. When the light density exists in the three-axis XYZ directions perpendicular to each other, it is captured by a state variable of a three-dimensional position function.
Thus, the form of the object in the previous stage of transmission is not a scale that can be captured by a time function state variable, but can be captured by a position function state variable. As will be described later, in the object transmission system according to the embodiment of the present invention, an object that is captured by a time function state variable or an object that is captured by a position function state variable is also targeted. .
 以下では、理解を容易にするために時間関数の状態変数で捉えられるオブジェクトに絞って説明する。以下の説明では、オブジェクトの形態を捉える時間関数の状態変数を、便宜的に信号と表現することとする。この、以下で用いる信号という表現は、ある状態の連なりを示すもので、例えば、時系列電気信号で言えば、信号波形である。それが時間関数としての電気信号に限定されないとは、前記波形図の横軸が、時間に限らず、位置など内容も次元も任意のものであり、縦軸も、電圧や電流などの電気的状態量に限らず、例えば、光学的な濃淡状態や輝度、音響的圧力など、任意のものでよいことをいう。以下では、特に断らない限り、全ての信号は、時間や電気的状態表現に限定されない、任意の次元の、任意の独立変数uに基づいて変化する関数であるものとする。
 これにより、本伝送システムが、時間空間の電気通信への応用ばかりでなく、他の任意の空間や分野で応用できることとなる。
In the following, in order to facilitate understanding, the description will focus on objects that can be captured by state variables of time functions. In the following description, a state variable of a time function that captures the form of an object is expressed as a signal for convenience. The expression “signal used in the following” indicates a series of certain states, and is, for example, a signal waveform in terms of a time-series electric signal. It is not limited to electrical signals as a function of time. The horizontal axis of the waveform diagram is not limited to time, and the content and dimensions such as position are arbitrary. For example, it is not limited to the state quantity, but may be any optical density state, brightness, acoustic pressure, or the like. In the following, all signals are assumed to be functions that change based on an arbitrary independent variable u of an arbitrary dimension, not limited to time and electrical state expression, unless otherwise specified.
As a result, the present transmission system can be applied not only to time-space telecommunications but also to other arbitrary spaces and fields.
 また、電気通信としてのスペクトル拡散通信システムの動作原理は、ある物体の時間空間における電気的状態と、周波数空間における周波数スペクトルの状態とを用いて説明する。それと同様に、本伝送システムの動作原理も、信号とその周波数スペクトルを用いて説明する。
 しかし、本伝送システムにおける状態変数は時間関数に限定しないので、以下の説明で用いる周波数空間は、時間関数に対しての周波数空間ではなく、ある信号を表現する状態変数をフーリエ変換して得られる周波数スペクトル密度関数が存在する周波数空間とする。
 一般に、フーリエ変換して得られる周波数スペクトル密度関数は複素数となるが、以下では、特に断らない限り、その絶対値を用いた、いわゆるパワースペクトル密度関数を単にスペクトル分布と呼ぶこととする。また、電気通信の応用では、ある周波数領域についてパワースペクトル密度関数を積分したものは、その電気信号のエネルギーに相当する。以下では、例えば、印刷のような電気通信の応用以外の分野も含め、説明上、ある周波数領域についてパワースペクトル密度関数を積分したものを、そのスペクトル成分のエネルギー或いは電力或いはパワーと呼ぶこととする。
The operation principle of the spread spectrum communication system as telecommunications will be described using the electrical state of a certain object in the time space and the state of the frequency spectrum in the frequency space. Similarly, the operation principle of this transmission system will be described using a signal and its frequency spectrum.
However, since the state variable in this transmission system is not limited to the time function, the frequency space used in the following description is not the frequency space for the time function, but can be obtained by Fourier transforming the state variable representing a certain signal. A frequency space in which a frequency spectral density function exists is assumed.
In general, a frequency spectral density function obtained by Fourier transform is a complex number. Hereinafter, unless otherwise specified, a so-called power spectral density function using the absolute value is simply referred to as a spectral distribution. Further, in the application of telecommunications, the integration of the power spectral density function for a certain frequency region corresponds to the energy of the electrical signal. Hereinafter, for example, including a field other than the application of telecommunications such as printing, the power spectrum density function integrated in a certain frequency region is referred to as energy, power or power of the spectrum component. .
 次に、図1を用いて本実施形態1に係る本伝送システムの基本構成を説明する。なお、上述したように、この本伝送システムの基本構成は、理解を容易にするために時間関数の状態変数で捉えられるオブジェクトに絞って説明し、位置関数の状態変数で捉えられるオブジェクトの伝送については、その伝送形態が異なるのみであるため、その差異のみを後述する。 Next, the basic configuration of the transmission system according to the first embodiment will be described with reference to FIG. As described above, the basic configuration of this transmission system will be described only for the object captured by the time function state variable for easy understanding, and the transmission of the object captured by the position function state variable will be described. Since only the transmission form is different, only the difference will be described later.
 本伝送システムは、本実施形態1に係るキャリア加工装置に相当するキャリア加工部1と、スペクトル拡散モジュール(以下、拡散モジュールと記す)3と、スペクトル逆拡散モジュール(以下、逆拡散モジュールと記す)4と、伝送媒体7とで構成する。なお、本明細書の図では、二重丸のシンボルは単なる端子である。 The transmission system includes a carrier processing unit 1 corresponding to the carrier processing apparatus according to the first embodiment, a spread spectrum module (hereinafter referred to as a spread module) 3, and a spectrum despread module (hereinafter referred to as a despread module). 4 and the transmission medium 7. In the drawings in this specification, the double circle symbol is simply a terminal.
 拡散モジュール3は、キャリア加工部1のスペクトル拡散キャリア加工手段(以下、拡散キャリア加工手段と記す)13を含み、これにスペクトル拡散手段(以下、拡散手段と記す)14を加えて構成する。 The diffusion module 3 includes a spread spectrum carrier processing means (hereinafter referred to as diffusion carrier processing means) 13 of the carrier processing section 1 and is configured by adding a spread spectrum means (hereinafter referred to as diffusion means) 14 to this.
 逆拡散モジュール4は、キャリア加工部1のスペクトル逆拡散キャリア加工手段(以下、逆拡散キャリア加工手段と記す)15を含み、これにスペクトル逆拡散手段(以下、逆拡散手段と記す)16を加えて構成する。 The despreading module 4 includes a spectrum despreading carrier processing unit (hereinafter referred to as despreading carrier processing unit) 15 of the carrier processing unit 1, and a spectrum despreading unit (hereinafter referred to as despreading unit) 16 is added thereto. Configure.
 キャリア加工部1は、拡散キャリア加工手段13と逆拡散キャリア加工手段15とに加えて、これらのキャリア加工手段13、15にノイズ信号xを共通に供給するノイズ信号供給部2とで構成する。ノイズ信号供給部2は、素ノイズ信号源10と、ノイズ源12と、伝送媒体11とで構成する。 Carrier processing unit 1 is composed of a diffusion carrier processing means 13 in addition to the despreading carrier processing means 15, a noise signal supply unit 2 for supplying the noise signal x W commonly to the carrier processing means 13, 15 . The noise signal supply unit 2 includes an elementary noise signal source 10, a noise source 12, and a transmission medium 11.
 本伝送システムの主な構成要素は、ノイズ信号供給部2、拡散モジュール3、逆拡散モジュール4である。伝送媒体7、11は適当な任意の伝送媒体である。さらに、本実施形態に係るキャリア加工装置(キャリア加工部)1を本伝送システムに応用した場合、キャリア加工装置1の拡散キャリア加工手段13は、本伝送システムの拡散モジュール3内に組み込まれて、オブジェクトの伝送に必要な拡散キャリアcを出力するように機能し、キャリア加工装置1の逆拡散キャリア加工手段15は、本伝送システムの逆拡散モジュール4内に組み込まれて、オブジェクトの伝送に必要な逆拡散キャリアcを出力するように機能する。 The main components of this transmission system are a noise signal supply unit 2, a diffusion module 3, and a despreading module 4. Transmission media 7 and 11 are any suitable transmission media. Furthermore, when the carrier processing device (carrier processing unit) 1 according to the present embodiment is applied to the transmission system, the diffusion carrier processing means 13 of the carrier processing device 1 is incorporated in the diffusion module 3 of the transmission system, functions to output a spread carrier c T necessary for transmission of the object, despreading carrier processing means 15 of the carrier processing apparatus 1 is incorporated into the despreading module 4 of the transmission system, necessary for transmission of the object functions to output a despread carrier c R.
 以上の説明では、拡散キャリア加工手段13と逆拡散キャリア加工手段15とをそれぞれ拡散モジュール3と逆拡散モジュール4の一部分とした構成を示したが、拡散キャリア加工手段13と逆拡散キャリア加工手段15とを拡散モジュール3や逆拡散モジュール4とは独立した存在として構成しても良いものである。この場合、例えば拡散キャリア加工手段13と逆拡散キャリア加工手段15はノイズ信号供給部2とともにキャリア加工装置(キャリア加工部)を構成する。具体的には、拡散キャリア加工手段13及び逆拡散キャリア加工手段15それぞれがスペクトル拡散やスペクトル逆拡散操作とは別にあらかじめ加工処理を行って拡散キャリア及び逆拡散キャリアを得ておき、そのあらかじめ得ておいた拡散キャリア及び逆拡散キャリアを用いてこれから述べるスペクトル拡散操作やスペクトル逆拡散操作を行う。これは、例えば印刷画像で情報を伝送する場合のように、キャリアの加工作成とオブジェクトの伝送とを異なる時間に独立して行う場合などに用いる。この場合、本実施形態1に係るキャリア加工装置は拡散モジュール3や逆拡散モジュール4とは独立して存在することとなる。その独立したキャリア加工装置は、図1のキャリア加工部1に相当するものであり、ノイズ信号供給部2と、拡散キャリア加工手段13と、逆拡散キャリア加工手段15とを主要部として含むものである。ノイズ信号供給部2と、拡散キャリア加工手段13と、逆拡散キャリア加工手段15との構成及び動作についての説明は、本伝送システムの説明中で行う。 In the above description, the diffusion carrier processing means 13 and the despreading carrier processing means 15 are shown as a part of the diffusion module 3 and the despreading module 4, respectively. However, the diffusion carrier processing means 13 and the despread carrier processing means 15 are shown. May be configured as being independent of the diffusion module 3 and the despreading module 4. In this case, for example, the diffusion carrier processing means 13 and the despread carrier processing means 15 together with the noise signal supply unit 2 constitute a carrier processing device (carrier processing unit). Specifically, each of the spread carrier processing means 13 and the despread carrier processing means 15 performs a processing process in advance separately from the spread spectrum or the reverse spread operation to obtain a spread carrier and a despread carrier. Using the spread carrier and the despread carrier, the spread spectrum operation and the spread spectrum operation described below are performed. This is used, for example, when carrier processing and object transmission are performed independently at different times, such as when information is transmitted as a printed image. In this case, the carrier processing apparatus according to the first embodiment exists independently of the diffusion module 3 and the despreading module 4. The independent carrier processing apparatus corresponds to the carrier processing unit 1 of FIG. 1, and includes the noise signal supply unit 2, the diffusion carrier processing unit 13, and the despread carrier processing unit 15 as main parts. The configuration and operation of the noise signal supply unit 2, the diffusion carrier processing means 13, and the despread carrier processing means 15 will be described in the description of the present transmission system.
 次に、図2に基づいて本伝送システムの概略的な構成及び動作を説明する。
 ノイズ信号供給部2の素ノイズ信号源10は、素ノイズ信号xを伝送媒体11に供給する(図2のステップS101)。なお、素ノイズ源10と素ノイズ信号xについては後述する。また、ノイズ源12は、例えばアンテナでノイズxを捕集して伝送媒体11に供給する(図2のステップS102)。なお、ノイズ源12とノイズ信号xの特性についても後述する。
 伝送媒体11は、素ノイズ信号源10から供給された素ノイズ信号xとノイズ源12から供給されたノイズxの合計したものを、拡散モジュール3と逆拡散モジュール4とに共通のノイズ信号xとして、拡散モジュール3と逆拡散モジュール4とに伝送する(図2のステップS103)。
Next, a schematic configuration and operation of the transmission system will be described with reference to FIG.
Containing noise signal source 10 of the noise signal supply unit 2 supplies to the transmission medium 11 containing the noise signal x E (step S101 in FIG. 2). It will be described later containing the noise source 10 and containing the noise signal x E. The noise source 12, for example, supplies to the transmission medium 11 to collect noise x N antenna (step S102 of FIG. 2). Will be described later also the characteristics of the noise source 12 and the noise signal x N.
Transmission medium 11, a common noise signal the sum of the supplied noise x N, in the diffusion module 3 and the despreading module 4 from the original noise signal x E and the noise source 12 supplied from the original noise signal source 10 as x W, it is transmitted to the diffusion module 3 and the despreading module 4 (step S103 in FIG. 2).
 拡散モジュール3は、前記共通のノイズ信号xをノイズ信号xとして入力するとともに、オブジェクトを拡散入力オブジェクトaとして入力し、スペクトル拡散出力オブジェクト(以下、拡散出力オブジェクトと記す)sを伝送媒体7に出力する。
 ここで、オブジェクトとは拡散モジュールから逆拡散モジュールに伝送する対象の総称である。後述するように、オブジェクトは情報である場合もあるし、特別な情報を表現したものでない単なる繰返し信号の場合もあるし、電力などのエネルギーの場合もある。そのオブジェクトは伝送の過程で様々な異なった形態となり、それぞれ異なった名称で呼ばれる。異なる名称で呼ばれても、その論理的な意味はあくまで変化しない同一のオブジェクトである。本明細書では、単にオブジェクトと呼ぶものは伝送する論理的な対象を指すこととし、特定の部位の状態量を示すものではないものとする。それに対して特定の段階におけるオブジェクトの状態は、例えば拡散入力オブジェクトのように、オブジェクトに接頭辞を付した表現で表すこととする。
 前記拡散モジュール3の動作の中で、拡散キャリア加工手段13は、前記ノイズ信号xを入力し、それを拡散キャリアcに加工して拡散手段14に供給する(図2のステップS104)。前記拡散キャリアcは、拡散手段14に入力された拡散入力オブジェクトaをスペクトル拡散するための信号である。
 拡散手段14は、前記拡散キャリアcと前記拡散入力オブジェクトaとを入力し、それらを相互に乗じて拡散出力オブジェクトsとする(図2のステップS105)。
Diffusion module 3 receives an input of the common noise signal x W as a noise signal x T, enter the object as diffuse input object a T, spread spectrum output object (hereinafter, referred to as diffuse output object) s transmission medium 7 is output.
Here, the object is a general term for objects to be transmitted from the diffusion module to the despreading module. As will be described later, an object may be information, may be a simple repetitive signal that does not represent special information, or may be energy such as electric power. The object will be in various different forms during the transmission process and will be called with different names. Even if they are called with different names, they are the same object whose logical meaning does not change. In this specification, what is simply called an object indicates a logical target to be transmitted and does not indicate a state quantity of a specific part. On the other hand, the state of an object at a specific stage is expressed by an expression with a prefix added to the object, such as a diffuse input object.
Wherein in the operation of the diffusion module 3, the diffusion carrier processing means 13 receives the noise signal x T, and supplies the spreading means 14 it is processed into a spread carrier c T (step S104 in FIG. 2). The diffusion carrier c T is a signal for spread spectrum spreading an input object a T input to the spreading unit 14.
Spreading means 14, the type and the diffusion carrier c T and the spread input object a T, they mutually multiplied to the diffusion output object s and a (step S105 in FIG. 2).
 伝送媒体7は、前記拡散出力オブジェクトsを逆拡散モジュール4に伝送する。
 逆拡散モジュール4は、前記拡散モジュール3と同様に、共通のノイズ信号xをノイズ信号xとして入力するとともに、拡散モジュール3からの拡散出力オブジェクトsをスペクトル逆拡散入力オブジェクト(以下、逆拡散入力オブジェクトと記す)hとして入力し、スペクトル逆拡散出力オブジェクト(以下、逆拡散出力オブジェクトと記す)aを出力する。
 前記逆拡散モジュール4の動作の中で、逆拡散キャリア加工手段15は、拡散モジュール3の拡散キャリア加工手段13と同様に、ノイズ信号xを入力し、それを逆拡散キャリアcに加工して逆拡散手段16に供給する(図2のステップS107)。逆拡散キャリアcは、逆拡散入力オブジェクトh中の拡散入力オブジェクトaの成分をスペクトル逆拡散するための信号である。
 逆拡散手段16は、前記逆拡散キャリアcと前記逆拡散入力オブジェクトhとを入力し、それらを乗じて逆拡散出力オブジェクトaとして出力する(図2のステップS106、S108)。この逆拡散出力オブジェクトaは、拡散手段14に入力された拡散入力オブジェクトaと相似するものであり、これによりオブジェクトの伝送が完了することになる。
The transmission medium 7 transmits the diffusion output object s to the despreading module 4.
Despreading module 4, similar to the diffusion module 3 receives an input of a common noise signal x W as a noise signal x R, spectrum despreading input object the diffusion output object s from diffusion module 3 (hereinafter, despreading input as input objects referred to) h, the spectrum despreading output object (hereinafter, referred to as despread output object) to the a R.
Among the operations of the despreading module 4, despread carrier processing means 15, like the diffusion carrier processing means 13 of the diffusion module 3 receives the noise signal x R, processed it to despread carrier c R To the despreading means 16 (step S107 in FIG. 2). Despreading carrier c R is a signal for spectral despreading component of spread input object a T in the despread input object h.
Despreading means 16 inputs the said despread carrier c R and the despread input object h, they are output as the despreading output object a R multiplied by (step S106, S108 in FIG. 2). The despread output object a R is similar to the diffusion input object a T input to the diffusion means 14, thereby completing the transmission of the object.
 以上のように、ノイズ信号供給部2は、ノイズ信号xを両キャリア加工手段13、15に共通に供給し、拡散キャリア加工手段13と、逆拡散キャリア加工手段15とは、ノイズ信号xを共有することによって前記ノイズ信号xを相互相関のとれた不規則性(対オブジェト広帯域性を含む)の拡散キャリアcと逆拡散キャリアcに加工するとともに、前記スペクトル拡散キャリアcの値如何に関わらず前記拡散キャリアcの値と前記逆拡散キャリアcの値との積が定数を示す前記拡散キャリアと前記逆拡散キャリアの対を得るものである。前記拡散キャリアcの値と前記逆拡散キャリアcの値との積が前記値の如何に拘わらず定数を示す前記拡散キャリアと前記逆拡散キャリアの対を得ることについては後述する。前記相互相関の取れたとは、従来のように同期装置による積極的な操作で得るものではなく、ノイズ信号xを共有することによって得るものである。 As described above, the noise signal supply unit 2 supplies a common noise signal x W on both carrier processing means 13 and 15, and the diffusion carrier processing means 13, the despreading carrier processing means 15, the noise signal x W while working to spread carrier c T despreading carrier c R (including pairs Obujeto broadband property) the balanced irregularity of the cross-correlation of the noise signal x W by sharing, the spread spectrum carrier c T in which it said diffusing carrier product of the value of the diffusion carrier c T regardless of the value whether the value of the despread carrier c R represents a constant to obtain a pair of said despread carrier. For the product of the value and the value of the despread carrier c R of the diffusion carrier c T to obtain pairs of said diffusion carrier and said despread carrier showing a constant regardless of the value will be described later. The rounded and the cross-correlation, and not get aggressive manipulation by conventional manner synchronizer, those obtained by sharing the noise signal x W.
ここで、ノイズ信号xを両キャリア加工手段13、15が共有することに関して説明する。ノイズ信号xWは、拡散キャリア加工手段13と逆拡散キャリア加工手段15とに共通に配置された1台のノイズ信号供給部2から共有される信号である。そのノイズ信号xは、ノイズ信号供給部2に含まれる素ノイズ信号源によって出力されるものであるが、そのノイズ信号xを両キャリア加工手段13,15までに伝送する際には、そのノイズ信号xには、ノイズ信号供給部2の内部の電気回路から発生するノイズや素ノイズ信号源から両キャリア加工手段13,15までに伝送する際に重畳するノイズなどが重畳するものである。ノイズ信号供給部2は、前記各種のノイズが重畳した後で前記ノイズ信号xを両キャリア加工手段13,15に共通に供給している。言わば、本発明の実施形態では、前記各種のノイズを信号成分として取り込むために、前記各種のノイズが前記ノイズ信号xに重畳した後の時点、すなわちノイズ信号供給部2がノイズ信号xを両キャリア加工手段13,15に出力する段階、両キャリア加工手段13,15から見れば、ノイズ信号xを入力する段階で、ノイズ信号xを拡散キャリア加工手段13と逆拡散キャリア加工手段15とに共有させている。
 拡散モジュールに向かう信号と逆拡散モジュールに向かう信号は同一の信号なので、拡散モジュールに向かう信号と逆拡散モジュールに向かう信号間の相互相関は最大値をとる状態である。すなわち拡散モジュールと逆拡散モジュールとは相互相関が高いノイズ信号を入力することができる。なお、本発明の実施形態では、前記相互相関は、ノイズ信号を共有しているため、拡散モジュールに向かう信号と逆拡散モジュールに向かう信号との自己相関を取ることとなる。
 このように、本発明の実施形態においては、拡散モジュールと逆拡散モジュールとはノイズ信号を共有して共通の信号にすることにより、拡散キャリアと逆拡散キャリアの加工材料として入力する信号を相互相関の高い状態に維持する。
Here, the noise signal x W is both carrier processing means 13, 15 described with respect to share. The noise signal x W is a signal shared by one noise signal supply unit 2 that is arranged in common for the diffusion carrier processing means 13 and the despread carrier processing means 15. The noise signal x W is those output by containing noise signal sources included in the noise signal supply unit 2, when transmitting the noise signal x W until both carrier processing means 13 and 15, the the noise signal x W, in which like noise superimposed in transmitting from the noise and containing noise signal source for generating the internal electric circuit of the noise signal supply unit 2 until both carrier processing means 13 and 15 are superposed . Noise signal supply unit 2 is supplied in common to the noise signal x W on both carrier processing means 13 and 15 after the various noise exists. So to speak, in the embodiment of the present invention, in order to capture the various noise as a signal component, the time after the various noise is superimposed on the noise signal x W, i.e. the noise signal supply unit 2 is a noise signal x W the step of outputting to both carrier processing means 13 and 15, when viewed from both the carrier processing means 13 and 15, at the stage of inputting the noise signal x W, the noise signal x W diffusion carrier processing means 13 the despread carrier processing means 15 To share with.
Since the signal going to the spreading module and the signal going to the despreading module are the same signal, the cross-correlation between the signal going to the spreading module and the signal going to the despreading module is a maximum value. That is, a noise signal having a high cross-correlation can be input between the diffusion module and the despreading module. In the embodiment of the present invention, since the cross-correlation shares a noise signal, an autocorrelation between a signal going to the spreading module and a signal going to the despreading module is taken.
As described above, in the embodiment of the present invention, the diffusion module and the despreading module share a noise signal to make a common signal, thereby cross-correlating signals input as processing materials for the spread carrier and the despread carrier. Keep it high.
 従来のスペクトル拡散通信では、二値の拡散符号と二値の逆拡散符号とを用いているから、二値の拡散符号の値を“1”に設定し、二値の逆拡散符号の値をその逆数に設定し、それらの値の積を“1”という定数に設定していた。
 前記不規則信号列同士が乗算すると定数となる性質を利用するためには、前記拡散符号と前記逆拡散符号とを同期させて使う必要があり、従来のスパクトル拡散通信では、送信側と受信側で同じ不規則信号を用いる実質的な方法として、受信側で逆拡散符号に用いる不規則信号を送信側から送信するか、受信側で同じ不規則信号を用意して同期を取って使うようにしている。
 そのうち受信側で逆拡散符号に用いる不規則信号を送信側から送信する方法では送信機側が発生させる不規則信号を送受信機で共有する構成をとるが、受信側で逆拡散符号に用いる不規則信号に送信側から伝送する途中でノイズが重畳すると、受信機は送信機が拡散時に使った不規則信号とは違う不規則信号を逆拡散符号に使うことになり、拡散符号と逆拡散符号との同一性(相互相関)が損なわれ、結果として通信のSNは悪くなる。
 したがって、ひとつの擬似雑音信号を送信機と受信機とで共有する従来のスペクトル拡散通信システムの構成は、受信側で逆拡散符号に用いる不規則信号に送信側から伝送する途中で重畳するノイズの影響を抑制する能力を有していない。
In the conventional spread spectrum communication, since a binary spreading code and a binary despreading code are used, the value of the binary spreading code is set to “1”, and the value of the binary despreading code is set to “1”. The reciprocal was set, and the product of these values was set to a constant “1”.
In order to utilize the property that becomes constant when the irregular signal sequences are multiplied, it is necessary to use the spreading code and the despreading code in synchronization. In conventional spread spectrum communication, the transmitting side and the receiving side As a practical method of using the same irregular signal at the receiving side, the receiving side transmits the irregular signal used for the despread code from the transmitting side, or the receiving side prepares the same irregular signal and uses it in synchronization. ing.
Among them, in the method of transmitting the irregular signal used for the despreading code on the receiving side from the transmitting side, a configuration is adopted in which the irregular signal generated by the transmitter side is shared by the transceiver, but the irregular signal used for the despreading code on the receiving side If noise is superimposed during transmission from the transmitter side, the receiver uses an irregular signal different from the irregular signal used by the transmitter for spreading. The identity (cross-correlation) is lost, and as a result, the SN of communication is deteriorated.
Therefore, the configuration of a conventional spread spectrum communication system in which a single pseudo-noise signal is shared between a transmitter and a receiver is such that noise that is superimposed on an irregular signal used for a despread code on the receiving side during transmission from the transmitting side. Does not have the ability to suppress the impact.
 それに対して本発明の実施形態では、擬似雑音信号をも含めたノイズ信号を拡散キャリアと逆拡散キャリアとに加工することを前提として、ノイズ信号xを両キャリア加工手段13、15に共有させている。この本発明の実施形態によれば、前記ノイズ信号にノイズが重畳しても、そのノイズは信号のひとつの成分として前記ノイズ信号に取り込まれて、両キャリアの加工時の基となるノイズ信号の相互相関性を崩すことにはならず、前記スペクトル拡散キャリア加工手段と前記スペクトル逆拡散キャリア加工手段とがそれぞれ生成した拡散キャリアと逆拡散キャリアとは相互相関性を維持することとなり、スペクトル拡散キャリアとスペクトル逆拡散キャリアとを強制的に同期させる必要がなく、同期装置が不要となる。しかも、ノイズ信号に重畳したノイズも信号成分として両キャリアに加工され、ノイズの重畳による影響を回避できる。 In an embodiment of the present invention contrast, the assumption that processing the noise signal including pseudo-noise signal into a spread carrier and despread carrier, covalently noise signal x W on both carrier processing means 13, 15 ing. According to this embodiment of the present invention, even if noise is superimposed on the noise signal, the noise is taken into the noise signal as one component of the signal, and the noise signal that is the basis for processing both carriers is processed. The cross-correlation is not destroyed, and the spread carrier and the despread carrier generated by the spread spectrum carrier processing means and the spread spectrum spread carrier processing means respectively maintain the cross correlation, and the spread spectrum carrier. And the spectrum despread carrier need not be forcibly synchronized, and a synchronizer becomes unnecessary. In addition, the noise superimposed on the noise signal is also processed into both carriers as a signal component, and the influence of noise superposition can be avoided.
 前記ノイズ信号を共有するにあたって、例えば、電気通信での実際の応用では電気信号は有限の速度で伝搬するのであり、ノイズ信号供給部2から拡散キャリア加工手段13まで及び逆拡散キャリア加工手段15までの距離が異なる実応用環境の一般的な条件下では、ノイズ信号供給部2が供給する同一のノイズ信号xを用いてもノイズ信号xとノイズ信号xとは時間的な差(位置の相違による時間的なずれ)を有したものとなる。すなわち、位置の相違によって生じる到達に至る距離に相違がある場合に、両信号は時間差を伴うことになる。この時、その両信号間の相互相関の値は、全く同一の信号の相互相関の値に対して、前記両信号間の時間差が大きくなるほど低いものとなる。
 このように、実際の応用環境においては、拡散キャリア加工手段13と逆拡散キャリア加工手段15は、ノイズ信号供給部2が供給する同一のノイズ信号xの供給を受けても、ノイズ信号xとノイズ信号xとは厳密には相互相関の低下はあっても公差の許容範囲内であれば実用上問題とはならない。しかしそのようなノイズ信号xとノイズ信号xも、例えば前記電気通信の場合には、ノイズ信号供給部2と拡散キャリア加工手段13及び逆拡散キャリア加工手段15との距離差をある規定の範囲に制限することにより、実用上は時間差がないものと同一に取り扱えるようになり、それらの相互相関は、理想的に時間差がない場合に比べれば低い値ではあるが、ある程度の高さの最大値を示すようになる。
In sharing the noise signal, for example, in an actual application in telecommunications, the electric signal propagates at a finite speed. From the noise signal supply unit 2 to the diffusion carrier processing means 13 and to the despread carrier processing means 15 in general conditions of different distances practical applications environment, the temporal difference (position and also the noise signal x T and the noise signal x R using the noise signal x W of the same noise signal supply unit 2 supplies The time difference due to the difference in That is, when there is a difference in distance to reach caused by a difference in position, both signals are accompanied by a time difference. At this time, the cross-correlation value between the two signals becomes lower as the time difference between the two signals becomes larger than the cross-correlation value of the same signal.
Thus, in practical applications environment, diffusing carrier processing means 13 the despread carrier processing means 15, also supplied with the same noise signal x W supplies the noise signal supply unit 2, the noise signal x T the strictly the noise signal x R not a practical problem as long as it is within the allowable range of tolerance even a decrease in the cross-correlation. But such noise signals x T and the noise signal x R, for example, in the case of the telecommunications, certain prescribed distance difference between the noise signal supply unit 2 and the diffusion carrier processing means 13 and despreading the carrier processing means 15 By limiting to the range, it can be handled in the same way as there is no time difference in practical use, and their cross-correlation is ideally lower than when there is no time difference, but the maximum of some height The value comes to show.
 このように、本明細書で言う拡散キャリア加工手段13と逆拡散キャリア加工手段とがノイズ信号xを共有するとは、ノイズ信号を拡散キャリアと逆拡散キャリアとに加工することを前提とした場合を意味するものであり、実際の応用環境において発生するノイズ信号xとノイズ信号xとの間の差をある規定の範囲以内にして実用上同一とみなせなくなるまでを差の限界とし、その結果として相互相関がある規定以上の高い状態を維持するようにすることである。
 また、前記既定以上の状態については、拡散キャリア加工手段13が加工した拡散キャリアcと逆拡散キャリア加工手段15が加工した逆拡散キャリアcとの相互相関値が拡散入力オブジェクトaの伝送に支障を与えない許容値に基づいて個々に決定されるものであり、一義的に決定されるものではない。前記既定以上の状態の設定は、例えば従来において情報伝送を行う場合に送信元と受信先との距離などに応じて送信パワーを設定する場合と同様に一義的に決定できないのと同様である。
Thus, if the diffusion carrier processing means 13 referred to herein despreading carrier processing means are to share the noise signal x W, on the assumption that processing the noise signal into a spread carrier and despread carrier the is intended to mean, and the noise signal x T and the noise signal x R and defined difference until no longer be regarded as practically the same and within the limits that the between that occur in practical applications environment, the As a result, the cross-correlation is to maintain a high state above a certain level.
In addition, the for the default or more states, the transmission of the cross-correlation value between the despread carrier c R diffusion carrier processing means 13 spread carrier c T despreading carrier processing means 15 that processing is processing spread input object a T It is determined individually based on an allowable value that does not impede the process, and is not uniquely determined. The setting of the state equal to or higher than the predetermined value is the same as when the transmission power is set according to the distance between the transmission source and the reception destination in the conventional case where information transmission is performed, for example, and cannot be determined uniquely.
 次に、本伝送システム各部の詳細な動作について、まずオブジェクト伝送の原理を説明し、続いて拡散キャリアと逆拡散キャリアの供給動作を説明する。 Next, regarding the detailed operation of each part of the transmission system, the principle of object transmission will be described first, followed by the operation of supplying spread carriers and despread carriers.
 オブジェクト伝送の原理とは、拡散モジュール3に入力される拡散入力オブジェクトaを、オブジェクト伝送出力である逆拡散モジュール4の逆拡散出力オブジェクトaに相似形で出力させるメカニズムである。
 また、拡散キャリアcと逆拡散キャリアcの供給動作は、ノイズ信号xを拡散キャリア加工手段13と逆拡散キャリア加工手段15に共通に供給し、ノイズ信号xを共有することによってノイズ信号を相互相関のとれた不規則性の拡散キャリアcと逆拡散キャリアcに加工するとともに、前記スペクトル拡散キャリアの値如何に関わらず前記拡散キャリアcの値と前記逆拡散キャリアcの値との積が定数を示す前記拡散キャリアcと前記逆拡散キャリアcの対を得て、それらの拡散キャリアcと逆拡散キャリアcとを、拡散手段14と逆拡散手段16にそれぞれ供給するメカニズムである。
The principle of object transmission is a mechanism in which the diffusion input object a T input to the diffusion module 3 is output in a similar manner to the despread output object a R of the despread module 4 that is an object transmission output.
Further, the supply operation of the diffusion carrier c T despreading carrier c R, noise by supplying the noise signal x W in common to the diffusion carrier processing means 13 the despread carrier processing means 15, for sharing the noise signal x W signal while processing the diffusion carrier c T despreading carrier c R of balanced irregularity of the cross-correlation value between the despread carrier c R of the diffusion carrier c T regardless of the value whether the spread spectrum carrier and the product of the values and the spread carrier c T showing a constant to obtain a pair of said despread carrier c R, and their diffusion carrier c T despreading carrier c R, a diffuser means 14 despreading means 16 It is a mechanism to supply to each.
 本伝送システムは広い分野で応用が可能なものであるが、実際の応用では、現実の応用環境それぞれに特有の特性に合わせて、構成各部に何らかの特性補償などを必要とする動作条件が発生する。
 例えば、リアルタイム信号処理を用いる電気通信の応用では、拡散キャリア加工手段13と逆拡散キャリア加工手段15で信号処理回路や伝送媒体の伝搬遅延を補償する必要が生じる場合があるが、バッチ処理による印刷画像を用いたオブジェクト伝送の応用では、そのようなデータ処理時間の補償は必要ないこともある。
 ここでは、本伝送システムの応用全般に共通する動作として、理想的な環境条件での動作を説明することとし、個々の応用分野において考慮する必要のある諸条件は後述する。
This transmission system can be applied in a wide range of fields, but in actual applications, operating conditions that require some kind of characteristic compensation, etc., occur in each component according to the characteristics specific to the actual application environment. .
For example, in telecommunications applications using real-time signal processing, it may be necessary to compensate for propagation delays in signal processing circuits and transmission media by means of spreading carrier processing means 13 and despreading carrier processing means 15, but printing by batch processing may occur. In application of object transmission using images, such compensation of data processing time may not be necessary.
Here, an operation under ideal environmental conditions will be described as an operation common to all applications of the transmission system, and various conditions that need to be considered in each application field will be described later.
 まず、オブジェクトの伝送原理について、拡散モジュール3の動作から説明する。拡散モジュール3には、拡散入力オブジェクトaが入力される。拡散入力オブジェクトaは本伝送システムの目的である伝送の具体的対象である。その拡散入力オブジェクトaは、規定する周波数以下の制限された周波数帯域にスペクトルが分布する信号とする。これは、従来のスペクトル拡散通信システムにおいて、スペクトル拡散される情報入力信号の場合と同様である。
 拡散入力オブジェクトaを制限された周波数帯域にスペクトルが分布する信号とするとは、例えば、一次キャリアを情報で一次変調した信号を拡散入力オブジェクトaとすることである。前記一次キャリアには、例えば、固定の単一周波数の正弦波を用い、一次変調には、例えば、BPSK(Biphase Shift Keying :二相位相シフトキーイング)を用いる。
 このような拡散入力オブジェクトaは、一般に、ある連続した範囲の連続した値をとるアナログ信号である。なお、一次変調の具体的構成には本発明の実施形態の特徴がないため、記述は省略してある。
First, the principle of object transmission will be described from the operation of the diffusion module 3. A diffusion input object aT is input to the diffusion module 3. The spread input object a T is a specific object of transmission that is the purpose of this transmission system. The spread input object a T is a signal whose spectrum is distributed in a limited frequency band equal to or lower than a prescribed frequency. This is the same as the case of an information input signal to be spread in a conventional spread spectrum communication system.
For example, the spread input object a T is a signal whose spectrum is distributed in a limited frequency band. For example, a signal obtained by performing primary modulation of a primary carrier with information is used as the spread input object a T. For example, a fixed single frequency sine wave is used for the primary carrier, and for example, BPSK (Biphase Shift Keying) is used for the primary modulation.
Such a diffuse input object a T is generally an analog signal that takes a continuous value in a certain continuous range. The specific configuration of the primary modulation does not have the characteristics of the embodiment of the present invention, and thus the description thereof is omitted.
 以下の本伝送システムの説明では、各種信号の占有周波数帯域幅が示される場合、特に断らない限り、その場合のシステム構成に用いる拡散入力オブジェクトaの占有周波数帯域幅を評価の基準とし、例えば、広帯域信号とは、拡散入力オブジェクトaの占有周波数帯域幅に対して広い占有周波数帯域幅の信号であることを示すものとする。 In the following description of the transmission system, when occupied frequency bandwidths of various signals are indicated, unless otherwise specified, the occupied frequency bandwidth of the spread input object a T used in the system configuration in that case is used as an evaluation criterion. , the wideband signal, and an indication that a signal of a wide occupied frequency bandwidth for the occupied bandwidth of the spread input object a T.
 入力された拡散入力オブジェクトaは、拡散手段14に供給される。拡散手段14は、拡散入力オブジェクトaを、拡散キャリアcと乗じて、拡散出力オブジェクトsとする。
 この操作は次式で示される。
  s(u)=a(u)*c(u)  (数式1)
 拡散入力オブジェクトaは、スペクトルが分布する帯域の上限周波数が制限された信号である。一方、拡散キャリアcは、拡散入力オブジェクトaの帯域の上限周波数に比べて、はるかに高い周波数までの周波数帯域にスペクトルが分布する、任意の値をとる信号とする(以下、この拡散入力オブジェクトaの帯域の上限周波数に比べて、はるかに高い周波数までの周波数帯域にスペクトルが分布する状態を、対オブジェクト広帯域性と記す)。
 これは、従来のスペクトル拡散通信システムが情報入力信号の占有周波数帯域幅に対してはるかに広い占有周波数帯域幅の信号を拡散符号に用いることと同様である。また、従来のスペクトル拡散通信システムでは、拡散符号と逆拡散符号に絶対値がゼロでなく等しい正負の二値をとる二値信号が用いられている。
 しかし、本伝送システムでは、拡散キャリアと逆拡散キャリアは任意の値をとるものでよいので、アナログ信号を用いてよいものである。拡散キャリアの具体的な加工方法は後述する。
The input diffusion input object a T is supplied to the diffusion means 14. The diffusion means 14 multiplies the diffusion input object a T by the diffusion carrier c T to obtain a diffusion output object s.
This operation is shown by the following equation.
s (u) = a T (u) * c T (u) (Formula 1)
The spread input object a T is a signal in which the upper limit frequency of the band in which the spectrum is distributed is limited. On the other hand, the spread carrier c T is a signal having an arbitrary value in which the spectrum is distributed in a frequency band up to a frequency much higher than the upper limit frequency of the band of the spread input object a T (hereinafter, this spread input object). A state in which the spectrum is distributed in a frequency band up to a much higher frequency than the upper limit frequency of the band of the object a T is referred to as “object broadband”).
This is similar to the case where the conventional spread spectrum communication system uses a signal having an occupied frequency bandwidth that is much wider than the occupied frequency bandwidth of the information input signal as a spreading code. Further, in a conventional spread spectrum communication system, binary signals having positive and negative binary values that are equal to each other instead of zero are used for the spread code and the despread code.
However, in this transmission system, the spreading carrier and the despreading carrier may take arbitrary values, and thus an analog signal may be used. A specific processing method of the diffusion carrier will be described later.
 そのような拡散キャリアcを対オブジェクト広帯域性の信号にするとは、例えば、拡散キャリアcの信号を、拡散入力オブジェクトaの状態の変化に対して、高変化率及び高頻度に不規則性をもって変化するものにすることである。
 前記高変化率及び高頻度に不規則性をもった変化とは、一次変調した前記拡散入力オブジェクトaの一次キャリアの繰返し周期に対して、例えば、数十分の一から数千分の一の期間で、それまでの状態が、それとは無関係な、または見かけ上無関係といえる別な状態となる変化である。
 また、不規則性とは、信号の変化パターンに法則性や規則性がない、または見かけ上無いことで、ある状態の次の状態が、それまでとは無関係で予測できない、または見かけ上無関係で予測できないと言える別の状態となる性質である。具体的には、例えば、一次変調した前記拡散入力オブジェクトaの一次キャリアの繰返し周期程度かそれ以上の区間について自己相関がまったく無い、または実用上無いとみなせる低い値を示す性質である。以下ではこの性質を、不規則性、または不規則様と記す。
And to such a diffusion carrier c T pairs object wideband of the signal, for example, a signal of the spread carrier c T, with respect to a change in state of the spread input object a T, irregular high conversion and high frequency It is to change things with gender.
The high change rate and the change with high frequency irregularity are, for example, several tenths to several thousandths of the repetition period of the primary carrier of the spread input object a T subjected to the primary modulation. In this period, the previous state is a change that becomes another state that is irrelevant or seemingly irrelevant.
Irregularity means that there is no law or regularity in the change pattern of the signal, or it is not apparent, and the next state after a certain state is unrelated and unpredictable or apparently irrelevant. This is another property that can be said to be unpredictable. Specifically, for example, there is a property indicating a low value that can be regarded as having no autocorrelation at all or about a section of the primary carrier repetition period of the first-order modulated spread input object a T or longer, or no practical correlation. Hereinafter, this property is referred to as irregularity or irregularity.
 次式は、拡散キャリアcの自己相関関数RCT-CTの例を示したものである。
 自己相関がまったく無い性質とは、その信号の自己相関関数が、τ=0で最大値となり、τ≠0ではゼロである、グラフの形状がインパルスのものとなることを言うものとする。
  RCT-CT(τ)=lim〔(2*L)-1*∫{c(w)*c(w-τ)}dw〕  (数式2)
 ただし、∫dwは、変数wについての-Lから+L(ただし、L>0)の区間の定積分を示すものとし、lim〔 〕は、カッコ内の関数について、Lを無限大にする極限値を示すものとする。
 数式2では積分区間が無限に広いものとしているが、被積分関数が前記高変化率に高頻度に変化する信号の場合、実用上は、一次変調した前記拡散入力オブジェクトaの一次キャリアの繰返し周期程度かそれ以上の長さの区間であれば、無限大の領域と等価とみなすことが出来るものである。
 また、前記不規則性には、全く周期性も法則性もない完全に不規則な信号だけでなく、例えば、疑似ノイズのような、ある法則で発生させて周期性を有した信号でも、ある条件下では完全に不規則と見なせるものも含むものである。
 完全に不規則と見なせる関数の自己相関関数は、τ=0で最大値となり、ゼロ近傍のτについては、絶対値が増加するにつれて自己相関関数の絶対値はゼロに向かって急激に減少し、0とその近傍以外のτについての自己相関関数の値は、ゼロ近傍のτに対する自己相関関数の値に比べて絶対値が著しく小さくほぼゼロとなる特性を示すものとなる。
 理想的な動作の説明においては、不規則性という性質は、完全に不規則なもの、すなわち、その自己相関関数は、τ=0で最大値を示し、それ以外のτに対してはゼロであるとして説明する。また、本明細書では、この完全に不規則な関数の自己相関数が示す状態を、自己相関がない、あるいは自己相関がゼロと記す。
The following equation shows an example of the autocorrelation function R CT-CT of the spread carrier c T.
The property having no autocorrelation means that the autocorrelation function of the signal has a maximum value when τ = 0 and zero when τ ≠ 0, and the shape of the graph is an impulse.
R CT-CT (τ) = lim L [(2 * L) −1 * ∫ L {c T (w) * c T (w−τ)} dw] (Formula 2)
Here, L L dw indicates a definite integral of the interval from −L to + L (where L> 0) with respect to the variable w, and lim L [] makes L infinite for the function in parentheses. The limit value shall be indicated.
In Equation 2, the integration interval is assumed to be infinitely wide. However, in the case of a signal whose integrand changes frequently at the high change rate, in practice, the primary carrier repetition of the diffusion input object a T subjected to the primary modulation is performed. A section having a length of about a cycle or longer can be regarded as equivalent to an infinite region.
In addition, the irregularity is not only a completely irregular signal having no periodicity nor a law, but also a signal having a periodicity generated by a certain law, such as a pseudo noise, for example. This includes what can be considered completely irregular under the conditions.
The autocorrelation function of a function that can be considered completely irregular has a maximum value at τ = 0, and for τ near zero, as the absolute value increases, the absolute value of the autocorrelation function rapidly decreases toward zero, The value of the autocorrelation function for τ other than 0 and the vicinity thereof exhibits a characteristic that the absolute value is remarkably smaller than the value of the autocorrelation function for τ in the vicinity of zero and becomes almost zero.
In the description of ideal behavior, the property of irregularity is completely irregular, ie its autocorrelation function shows a maximum value at τ = 0 and zero for all other τs. It will be explained as being. In the present specification, the state indicated by the autocorrelation number of this completely irregular function is described as having no autocorrelation or having no autocorrelation.
 ところで、拡散手段14が行う数式1に示す乗算操作は、算術的には拡散キャリアcと拡散入力オブジェクトaとを乗算する操作であり、電気通信上は、拡散キャリアcを拡散入力オブジェクトaで平衡変調する、いわゆる変調操作である。
 この操作でスペクトルが分布する周波数帯域が制限された拡散入力オブジェクトaと、対オブジェクト広帯域性で不規則性をもつ拡散キャリアcとを乗ずると、拡散キャリアcを構成する無数の線状スペクトルの一つ一つが、そのスペクトルの周りに拡散入力オブジェクトaのスペクトルの広がりを持つようになり、結果として、拡散キャリアcのスペクトルの広がりを持った信号と見なせる拡散出力オブジェクトsが出力される。
 言い換えると、拡散入力オブジェクトaは、拡散キャリアcのスペクトル程度の広がりにスペクトルが拡散され、それが拡散出力オブジェクトsとして出力される。
 このような拡散手段14は乗算機能要素であり、拡散キャリアもオブジェクトもアナログ信号でよいので、拡散手段14には、具体的には、例えば、アナログ乗算器や二重平衡変調器(DBM:Double Balanced Mixer)を用いる。
 拡散モジュール3は、拡散出力オブジェクトsを逆拡散モジュール4に向けて伝送媒体7に出力する。
By the way, the multiplication operation shown in Formula 1 performed by the spreading means 14 is an operation of multiplying the spread carrier c T and the spread input object a T arithmetically, and in terms of telecommunications, the spread carrier c T is multiplied by the spread input object. a This is a so-called modulation operation in which balanced modulation is performed at T.
Diffusion input object a T whose frequency bands are limited to spectrum distribution in this operation, when multiplied by a diffusion carrier c T having irregularities against the object broadband performance, innumerable linear constituting the diffusion carrier c T Each spectrum has a spectrum spread of the spread input object a T around the spectrum, and as a result, a spread output object s that can be regarded as a signal having the spectrum spread of the spread carrier c T is output. Is done.
In other words, the spread input object a T has its spectrum spread to the extent of the spectrum of the spread carrier c T and is output as the spread output object s.
Such spreading means 14 is a multiplication functional element, and both the spread carrier and the object may be analog signals. Specifically, the spreading means 14 includes, for example, an analog multiplier or a double balanced modulator (DBM: Double). Use Balanced Mixer).
The diffusion module 3 outputs the diffusion output object s toward the despreading module 4 to the transmission medium 7.
 続いて、伝送媒体7について説明する。伝送媒体7は、拡散モジュール3から出力される拡散出力オブジェクトsを逆拡散モジュール4に伝送する媒体である。
 従来のスペクトル拡散通信技術は、主として無線通信で用いられてきた。また、従来のスペクトル拡散通信技術は、音波を用いた水中の通信に用いられることも知られている。これらの場合、伝送媒体7は無線電波や音波の伝搬空間である。
 本伝送システムも、スペクトル拡散通信技術の一種として、無線通信や水中の音波通信に応用することが出来るので、伝送媒体7は無線電波や音波の伝搬空間でも良いものである。
 しかし、本伝送システムはそれらへの応用のみならず、多様な伝送媒体でのオブジェクト伝送に適用可能なものである。本伝送システムは、例えば、既存の他の目的に設けたオブジェクトや状態や物質やエネルギーの供給路を用いたオブジェクト伝送にも用いることができるものである。これは、例えば、装置間や装置内の情報、エネルギーの伝送や保安の目的で設けた既存の電気配線、灯火の光、液体やガスの圧力状態などが本来とは異なる目的の伝送媒体となることである。また、本伝送システムは、例えば、電気的導体ではありながらも、いわゆる電気回路要素ではない物体を用いた情報伝送にも用いることができるものである。この場合、例えば、建築物の構造体をなす鉄骨や、車両の骨格や外殻、圧力容器や配管、線路や鋼索、機器筐体構造が伝送媒体となる。
 また、本伝送システムは、例えば、一般的には電気的エネルギーの輻射やある周波数帯域への集中を伴うことを好まないオブジェクトの伝送分野への応用も可能なものである。この場合、例えば、人体が伝送媒体となる。さらに、本伝送システムは、電気通信への応用ばかりでなく、例えば、印刷の分野への応用も可能なものである。このように、伝送媒体7には電気信号の伝送媒体に限らず、任意の適当なものを用いてよいものである。これらの応用例については幾つかの例を挙げて後述する。
Next, the transmission medium 7 will be described. The transmission medium 7 is a medium for transmitting the diffusion output object s output from the diffusion module 3 to the despreading module 4.
Conventional spread spectrum communication techniques have been used primarily in wireless communications. It is also known that the conventional spread spectrum communication technique is used for underwater communication using sound waves. In these cases, the transmission medium 7 is a radio wave or sound wave propagation space.
Since this transmission system can also be applied to wireless communication and underwater acoustic wave communication as a kind of spread spectrum communication technology, the transmission medium 7 may be a radio wave or acoustic wave propagation space.
However, the present transmission system can be applied not only to them but also to object transmission on various transmission media. This transmission system can also be used for object transmission using, for example, objects, states, substances, and energy supply paths provided for other existing purposes. This is a transmission medium for purposes different from the original, for example, information between devices or within devices, existing electrical wiring provided for the purpose of energy transmission or security, light of lighting, pressure state of liquid or gas, etc. That is. The transmission system can also be used for information transmission using an object that is an electric conductor but is not a so-called electric circuit element. In this case, for example, a steel frame forming a structural body of a building, a vehicle skeleton or outer shell, a pressure vessel or a pipe, a track, a steel cable, or a device housing structure is a transmission medium.
In addition, the present transmission system can be applied to the field of transmission of objects that generally do not prefer to be accompanied by radiation of electrical energy or concentration in a certain frequency band. In this case, for example, the human body is the transmission medium. Furthermore, this transmission system can be applied not only to telecommunications, but also to the field of printing, for example. Thus, the transmission medium 7 is not limited to an electric signal transmission medium, and any appropriate medium may be used. These application examples will be described later with some examples.
 拡散モジュール3から出力される拡散出力オブジェクトsは、伝送媒体7を介して逆拡散モジュール4に伝送される。理想的な環境条件から、前記伝送では遅延などの位相変化も減衰も生じないものとする。 The diffusion output object s output from the diffusion module 3 is transmitted to the despreading module 4 via the transmission medium 7. From the ideal environmental conditions, it is assumed that neither phase change such as delay nor attenuation occurs in the transmission.
 続いて、逆拡散モジュール4の動作を説明する。逆拡散モジュール4は、拡散モジュール3から逆拡散モジュール4へ拡散出力オブジェクトsを伝送する伝送媒体7上の信号を逆拡散入力オブジェクトhとして入力する。 Subsequently, the operation of the despreading module 4 will be described. The despreading module 4 inputs a signal on the transmission medium 7 that transmits the diffusion output object s from the spreading module 3 to the despreading module 4 as a despreading input object h.
 理想的な動作環境では、前記逆拡散入力オブジェクトhは前記拡散出力オブジェクトsなので、それらの関係は次の通りである。
  h(u)=s(u)               (数式3)
 逆拡散モジュール4は、逆拡散手段16で、次式で示すように、前記逆拡散入力オブジェクトhを逆拡散キャリアcとを乗じて、逆拡散出力オブジェクトaとする。
  a(u)=h(u)*c(u)         (数式4)
 ここで、任意のuに対応する拡散キャリアcと逆拡散キャリアcは、乗ずるとゼロで無いある規定の定数kとなる組合せの一対の信号とする。
 以下では、前記スペクトル拡散キャリアの値如何に関わらず前記拡散キャリアcの値と前記逆拡散キャリアcの値との積が定数を示す関係を対をなす関係と記す。そして対をなす関係の組合せの一対の信号を、対の信号と記す。この関係を下式に示す。
  c(u)*c(u)=k  (≠0、定数)  (数式5)
 定数kはゼロ以外の任意の値でよく、正負は問わないが、以下では正の値であるものとして説明する。
In an ideal operating environment, the despread input object h is the diffuse output object s, and their relationship is as follows.
h (u) = s (u) (Formula 3)
Despreading module 4, in the despreading means 16, as shown in the following equation, the despread input object h by multiplying the despread carrier c R, and despread output object a R.
a R (u) = h (u) * c R (u) (Formula 4)
Here, the diffusion carrier c T despreading carrier c R corresponding to an arbitrary u is a combination of a pair of signals is a constant k C of a not zero defined Multiplying.
Hereinafter, referred to as relationship forming the spread spectrum value whether the diffusion carrier c T value and the despread carrier c value pair the product is a relationship showing constants of R, regardless of the carrier. A pair of signals in a combination of relationships forming a pair is referred to as a pair of signals. This relationship is shown in the following equation.
c T (u) * c R (u) = k C (≠ 0, constant) (Formula 5)
The constant k C may be any value other than zero and may be positive or negative, but will be described below as being a positive value.
 逆拡散キャリアcは拡散キャリアcと同様に対オブジェクト広帯域性を有した信号とする。これもまた、従来のスペクトル拡散通信システムが情報入力信号の占有周波数帯域幅に対してはるかに広い占有周波数帯域幅の信号を逆拡散符号に用いることと同様である。また、従来のスペクトル拡散通信システムでは、拡散符号と逆拡散符号に絶対値がゼロでなく等しい正負の二値をとる二値信号が用いられている。しかし、既述したように、本伝送システムでは、拡散キャリアと逆拡散キャリアは任意の値をとるものでよいので、アナログ信号を用いてよいものである。
 そのような逆拡散キャリアcを対オブジェクト広帯域性の信号にするとは、例えば、拡散キャリアcと同様に、拡散入力オブジェクトaの状態の変化に対して、高変化率及び高頻度に不規則性をもって変化するものにすることである。逆拡散キャリアcの具体的な加工方法は後述する。
Despreading carrier c R is a signal having the same paired object Wideband and diffusion carrier c T. This is also similar to the case where the conventional spread spectrum communication system uses a signal having an occupied frequency bandwidth that is much wider than the occupied frequency bandwidth of the information input signal for the despread code. Further, in a conventional spread spectrum communication system, binary signals having positive and negative binary values that are equal to each other instead of zero are used for the spread code and the despread code. However, as described above, in this transmission system, the spread carrier and the despread carrier may take arbitrary values, and thus an analog signal may be used.
Such a despread carrier c R is a signal with a broad object-to-object characteristic. For example, as with the spread carrier c T , the de-spread carrier c R is not frequently changed with a high rate of change and a high frequency with respect to a change in the state of the spread input object a T. It is to change with regularity. Specific processing method of the despread carrier c R will be described later.
 一方、逆拡散手段16が行う数式4に示す乗算操作は、拡散モジュール3の拡散手段14と同様に、算術的には乗算操作であり、電気通信上は復調操作である。このような逆拡散手段16の乗算操作には、逆拡散キャリアcもアナログ信号でよいので、具体的には、例えば、アナログ乗算器や二重平衡変調器(DBM)を用いる。 On the other hand, the multiplication operation shown in Expression 4 performed by the despreading means 16 is an arithmetic multiplication operation and a demodulation operation in terms of telecommunications, like the spreading means 14 of the spreading module 3. In the multiplication operation of the despreading means 16, the despread carrier c R may be an analog signal. Specifically, for example, an analog multiplier or a double balanced modulator (DBM) is used.
 拡散モジュール3の拡散手段14と逆拡散モジュール4の逆拡散手段16で行う操作を、乗算機能要素を用いたいわゆる平衡変調とその復調として説明したが、拡散手段14と逆拡散手段16に用いる機能要素は算術的な乗算機能に限るものではないものである。
 拡散手段14と逆拡散手段16に用いる機能要素は、例えば、反転増幅器とアナログスイッチを用いて、拡散入力オブジェクトや逆拡散入力オブジェクトに絶対値がゼロで無く等しい正負の二値の拡散キャリアや逆拡散キャリアを乗ずるのと等価な従来より知られている簡易な構成としても良いものである。ただし、ここでは、拡散手段14と逆拡散手段16に用いる機能要素を算術的な乗算器とし、拡散操作と逆拡散操作を平衡変調として説明する。
Although the operations performed by the spreading means 14 of the spreading module 3 and the despreading means 16 of the despreading module 4 have been described as so-called balanced modulation using a multiplication function element and demodulation thereof, functions used for the spreading means 14 and the despreading means 16 Elements are not limited to arithmetic multiplication functions.
The functional elements used in the spreading means 14 and the despreading means 16 are, for example, an inverting amplifier and an analog switch, and a positive and negative binary spread carrier that is not equal to zero but equal to a spread input object or a despread input object or a reverse spread object. A simple configuration known from the prior art equivalent to multiplying a diffusion carrier may be used. However, here, the functional elements used for the spreading means 14 and the despreading means 16 will be described as arithmetic multipliers, and the spreading operation and the despreading operation will be described as balanced modulation.
 数式4は、数式3及び数式1を適用すると、次のように展開できる。
  a(u)=s(u)*c(u)
      =a(u)*c(u)*c(u)  (数式6)
 さらに、この数式6に数式5を適用すると、逆拡散出力オブジェクトaは次のように示される。
  a(u)=a(u)*k          (数式7)
 数式7の右辺は、拡散モジュール3が伝送しようとした拡散入力オブジェクトaに比例の関係にあることを示しており、この関係の成分が連なった信号は、波形パターンが拡散入力オブジェクトaのパターンと相似の形状となる。
 この逆拡散モジュールで行う逆拡散操作で逆拡散出力オブジェクトaに拡散モジュール3が入力した拡散入力オブジェクトaと相似の形状のパターンを得たことをもって、オブジェクトの伝送を成就したとする。
Formula 4 can be expanded as follows when Formula 3 and Formula 1 are applied.
a R (u) = s (u) * c R (u)
= A T (u) * c T (u) * c R (u) (Formula 6)
Further, when Formula 5 is applied to Formula 6, the despread output object a R is expressed as follows.
a R (u) = a T (u) * k C (Formula 7)
The right side of Equation 7 indicates that the diffusion module 3 is in a proportional relationship with the diffusion input object a T to be transmitted, and a signal in which the components of this relationship are connected has a waveform pattern of the diffusion input object a T. The shape is similar to the pattern.
With that this despreading module spreading module 3 despread output object a R despreading operation performed by got a pattern of the input spread input object a T and similar shape to that fulfilled the transmission object.
 このように、本伝送システムの構成によれば、拡散キャリアcと逆拡散キャリアcに数式5の特性を与えることにより、伝送過程で不規則様な状態にした拡散入力オブジェクトaを、もとの波形に相似の状態に復元して逆拡散出力オブジェクトaとして出力し、オブジェクトを伝送できるものである。 As described above, according to the configuration of the transmission system, the spreading input object a T that is in an irregular state in the transmission process is obtained by giving the characteristic of Formula 5 to the spreading carrier c T and the despreading carrier c R. and outputs it as despread output object a R to restore the state of the similarity to the original waveform, those capable of transmitting object.
 このように、本伝送システムによるオブジェクトの伝送原理は、制限された占有周波数帯域の拡散入力オブジェクトに対オブジェクト広帯域性で不規則性をもつ拡散キャリアを乗じて拡散入力オブジェクトのスペクトルを拡散した拡散出力オブジェクトを伝送媒体で伝送し、前記伝送媒体から受信した信号に拡散キャリアと対の信号である対オブジェクト広帯域性で不規則性をもつ逆拡散キャリアを乗ずる操作で拡散入力オブジェクトの成分を元の制限された占有周波数帯域にスペクトルが分布する状態に戻し、オブジェクトの伝送を行うものである。この動作は、従来のスペクトル拡散通信の動作と同様に、スペクトル拡散通信動作である。 As described above, the transmission principle of the object by this transmission system is that the spread input object in which the spectrum of the spread input object is spread by multiplying the spread input object in the limited occupied frequency band by the spread carrier having irregularity with wide bandwidth to the object. By transmitting the object on the transmission medium and multiplying the signal received from the transmission medium by the despreading carrier having a wide band property and irregularity to the object that is a paired signal with the spreading carrier, the component of the spreading input object is originally limited. The object is transmitted by returning to the state where the spectrum is distributed in the occupied frequency band. This operation is a spread spectrum communication operation similarly to the conventional spread spectrum communication operation.
 続いて、キャリア加工部1による拡散キャリアと逆拡散キャリアの供給動作を説明する。
 本伝送システムが伝送するオブジェクトをスペクトル拡散及びスペクトル逆拡散するために用いる拡散キャリアcと逆拡散キャリアcは、既述したように、対オブジェクト広帯域性で不規則性をもつ、乗ずるとゼロで無い規定の定数となる組合せの対をなす信号とする。
 このとき、前記拡散キャリアcと前記逆拡散キャリアcは任意の値をとるものでよく、そのパターンも任意でよいものである。すなわち、前記拡散キャリアcと前記逆拡散キャリアcは、完全に不規則と言われているホワイトノイズのようなアナログ信号でよいものである。
Then, the supply operation | movement of the spreading | diffusion carrier by the carrier process part 1 and a de-spreading carrier is demonstrated.
Diffusing carrier c T despreading carrier c R used for the transmission system to spread spectrum and spectrum despreading the object to be transmitted, as described above, versus the object with irregularities in broadband performance, it multiplies the zero It is a signal that forms a pair of combinations that are not specified constants.
At this time, the diffusion carrier c T and the despread carrier c R is may be those take any value, the pattern is also intended may be arbitrary. That is, the diffusion carrier c T and the despread carrier c R are those may be analog signals such as white noise which is said to completely irregular.
 従来のスペクトル拡散情報通信システムは、拡散符号と逆拡散符号に、対オブジェクト広帯域性で不規則性をもつ絶対値がゼロでなく等しい正負の二値のPN符号を用いる。
 キャリア加工部1は、そのような二値信号はもちろん、その他の任意の二値を取る対オブジェクト広帯域性で不規則性をもつ信号、あるいは任意の三値以上の多値の離散値を取る対オブジェクト広帯域性で不規則性をもつ信号も拡散キャリアcと逆拡散キャリアcR に用いて良いものである。また、同じ伝送媒体7で同時に行う複数の異なるオブジェクトの伝送では、互いに干渉しないために、使用する拡散キャリアcと逆拡散キャリアcR の対は単に異なるパターンにするだけでなく、異なるオブジェクトの伝送が用いる拡散キャリア相互間、および逆拡散キャリア相互間では相互相関がないものとする。
The conventional spread spectrum information communication system uses a positive and negative binary PN code having a non-zero absolute value that is not zero but equal to a wide band to the object for spreading codes and despreading codes.
The carrier processing unit 1 is not only such a binary signal but also any other binary signal, an object having a wide band and irregularity, or an arbitrary ternary or more multivalued discrete value. signal having irregularities in the object broadband performance is also intended to be used in spreading the carrier c T despreading carrier c R. Further, in the transmission of several different objects simultaneously performed in the same transmission medium 7, in order not to interfere with each other, a pair of diffusion carrier c T despreading carrier c R to be used is not only to different patterns, different objects It is assumed that there is no cross-correlation between spread carriers used for transmission and between despread carriers.
 拡散キャリアと逆拡散キャリアの供給動作では、これらの要求を全て満足する拡散キャリアと逆拡散キャリアを作成して対応する拡散手段と逆拡散手段に供給する。すなわち、拡散キャリアと逆拡散キャリアの供給動作は、相互相関がない多数のパターンを有した、対オブジェクト広帯域性で不規則性をもつ、相互に乗ずるとゼロで無い規定の定数となる対をなす拡散キャリアと逆拡散キャリアを作成して対応する拡散手段と逆拡散手段に供給するものである。 In the spreading carrier and despreading carrier supply operation, a spreading carrier and a despreading carrier that satisfy all these requirements are created and supplied to the corresponding spreading means and despreading means. In other words, the spreading carrier and despreading carrier supply operations form a pair that has a large number of patterns with no cross-correlation and has irregularity with wide bandwidth to the object, and becomes a constant that is not zero when multiplied by each other. A spreading carrier and a despreading carrier are created and supplied to the corresponding spreading means and despreading means.
 拡散キャリアcと逆拡散キャリアcの供給動作は、ノイズ信号供給部2で、素ノイズ信号源10が伝送媒体11に素ノイズ信号xを供給することから始まる。素ノイズ信号xは、自由空間に存在する対オブジェクト広帯域性で不規則性をもつ不規則信号、アナログ信号、二値或いは多値符号列又はこれらを組み合わせた信号、自由空間内に存在するノイズ、伝送媒体に混入するノイズ、ノイズ様の信号又はこれらを組み合わせた信号などである。ここに、ノイズ様の信号とはノイズに類する信号である。
 前記伝送媒体11は、供給された素ノイズ信号xを、拡散キャリア加工手段13と逆拡散キャリア加工手段15に共通のノイズ信号xとして伝送する。
Supply operation of the diffusion carrier c T despreading carrier c R is the noise signal supply unit 2, starts with elementary noise signal source 10 supplies the hydrogen noise signal x E to the transmission medium 11. Containing the noise signal x E is irregular signal having irregularities against the object wideband be present in free space, an analog signal, a binary or multi-level code sequence or signal combination thereof, noise present in the free space , Noise mixed in the transmission medium, noise-like signal, or a combination of these. Here, the noise-like signal is a signal similar to noise.
The transmission medium 11 transmits the supplied containing noise signal x E, as a common noise signal x W diffusion carrier processing means 13 the despread carrier processing means 15.
 拡散キャリア加工手段13と逆拡散キャリア加工手段15は、前記ノイズ信号xを共有し、キャリア加工部1の伝送媒体11よりそれぞれノイズ信号x、xとして入力する。 Diffusing carrier processing means 13 the despread carrier processing means 15, to share the noise signal x W, respectively the noise signal x T from the transmission medium 11 of the carrier processing unit 1, input as x R.
 前記伝送媒体11による伝送は、理想的な環境なので、ノイズ信号xはそのままノイズ信号x、xとなる。そのままとは、例えば、位相差の発生や減衰を受けることのない、全く同一のものであることを言うものとする。その時のx、x、xの関係は次の通りである。
  x(u)=x(u)  (数式8)
  x(u)=x(u)  (数式9)
 すなわち、ノイズ信号供給部2から拡散キャリア加工手段13と逆拡散キャリア加工手段15に入力するノイズ信号x、xは、前記伝送媒体11が拡散キャリア加工手段13と逆拡散キャリア加工手段15に対して共通に供給したノイズ信号xと同一であり、それは、素ノイズ信号源10が前記伝送媒体11に供給した素ノイズ信号xとも同一である。
 その結果、素ノイズ信号源10が前記伝送媒体11に供給した素ノイズ信号xは対オブジェクト広帯域性で不規則性をもつので、ノイズ信号x、x、xもまた対オブジェクト広帯域性で不規則性をもつものとなる。
Transmission by said transmission medium 11, since an ideal environment, the noise signal x W is as noise signals x T, and x R. The term “as it is” means, for example, that they are exactly the same without any occurrence of phase difference or attenuation. The relationship between x W , x T and x R at that time is as follows.
x T (u) = x W (u) (Formula 8)
x R (u) = x W (u) (Equation 9)
That is, the noise signals x T and x R input from the noise signal supply unit 2 to the diffusion carrier processing means 13 and the despread carrier processing means 15 are transmitted to the diffusion carrier processing means 13 and the despread carrier processing means 15 by the transmission medium 11. is identical to the noise signal x W supplied to the common in contrast, it is the same with prime noise signal x E which containing noise signal source 10 is supplied to the transmission medium 11.
As a result, the prime noise signal source 10 containing the noise signal x E which is fed to the transmission medium 11 has irregularities against objects broadband performance, the noise signal x W, x T, x R also versus object broadband property It will be irregular.
 上記のように、伝送先の信号が対オブジェクト広帯域性で不規則性をもつ性質になる伝送のことを、対オブジェクト広帯域性で不規則性をもつ性質を継承する伝送と記す。 As described above, transmission in which the signal at the transmission destination has irregularity with broadband property to object is referred to as transmission that inherits irregularity property with broadband property to object.
 キャリア加工部1の伝送媒体11は、対オブジェクト広帯域性で不規則性をもつ性質を継承する伝送により、対オブジェクト広帯域性で不規則性をもつノイズ信号x、xを拡散キャリア加工手段13と逆拡散キャリア加工手段15に供給する。
 キャリア加工部1の拡散キャリア加工手段13と逆拡散キャリア加工手段15は、このノイズ信号x、xを、拡散キャリアcと逆拡散キャリアcへの加工材料として入力する。
The transmission medium 11 of the carrier processing unit 1 transmits the noise signals x T and x R having irregularity with a wide bandwidth to the object to the diffusion carrier processing means 13 by transmission inheriting the irregularity with the broadband property to the object. And supplied to the despread carrier processing means 15.
The diffusion carrier processing unit 13 and the despreading carrier processing unit 15 of the carrier processing unit 1 input the noise signals x T and x R as processing materials to the diffusion carrier c T and the despreading carrier c R.
 拡散キャリア加工手段13と逆拡散キャリア加工手段15は、任意の入力に対して一意な値を出力する、いわゆる写像変換操作を行う手段を有する。その写像変換を行う手段は数学的には関数で表現することが出来、写像変換を表す関数をf、gと置くと、拡散キャリア加工手段13と逆拡散キャリア加工手段15の動作は次式で示される。
  c(u)=f(x(u))            (数式10)
  c(u)=g(x(u))            (数式11)
 その写像変換f、gには、例えば任意の単調変化する関数を用い、その例を以下に示す。
  f(x)=x+1      (ただし、x≧0)
      =x-1      (ただし、x<0)  (数式12)
  g(x)=1/(x+1)  (ただし、x≧0)
      =1/(x-1)  (ただし、x<0)  (数式13)
The diffusion carrier processing means 13 and the despread carrier processing means 15 have means for performing a so-called mapping conversion operation that outputs a unique value for any input. The means for performing the mapping transformation can be expressed mathematically as a function. When the functions representing the mapping transformation are set as f and g, the operations of the diffusion carrier processing means 13 and the despreading carrier processing means 15 are as follows. Indicated.
c T (u) = f (x T (u)) (Formula 10)
c R (u) = g (x R (u)) (Formula 11)
For the mapping transformations f and g, for example, an arbitrary monotonically changing function is used, and an example thereof is shown below.
f (x) = x + 1 (where x ≧ 0)
= X-1 (where x <0) (Formula 12)
g (x) = 1 / (x + 1) (where x ≧ 0)
= 1 / (x-1) (where x <0) (Formula 13)
 数式12および数式13の変換によれば、任意の入力の値に対して、出力は一意に決まる。
 このような変換の入出力信号は、変化の程度は異なっても、何らかの因果関係にある。すなわち、出力にある変化が発生する時、出力のその変化に対応して、その変化の原因である何らかの変化が入力に存在する。
 その時、出力に現れる状態は、その出力を一意に決定した入力の値に対応するので、入力が次にどんな値をとるか、それまでとは全く無関係で予測できない不規則性を有するものであると、出力は、入力とは異なる値を取るものの、入力と同じように、次の値がそれまでとは全く無関係で予測できない不規則性をもつものとなる。
 すなわち、前記写像変換によって、入力した不規則性をもつ信号は、別の変化パターンの不規則性をもつ信号となって出力される。
 このように、任意の入力値に対して出力値が一意に決まる変換によれば、不規則性を有する入力信号を、入力信号の変化に対応した別の変化パターンの不規則性の信号に加工できるものである。以下では、不規則性の入力信号を入力信号の変化に対応した別の変化パターンの不規則性の信号に加工することを、不規則性を継承して加工すると記す。
According to the conversion of Equations 12 and 13, the output is uniquely determined for any input value.
The input / output signals of such conversion are in some kind of causal relationship even though the degree of change is different. That is, when a change occurs in the output, there is some change in the input that causes the change corresponding to the change in the output.
At that time, the state appearing in the output corresponds to the value of the input that uniquely determined the output, and therefore has an unpredictable irregularity that is completely unrelated to what the input takes next. Although the output takes a value different from the input, the next value has an unpredictable irregularity that is completely unrelated to the previous value.
That is, by the mapping conversion, the input signal having irregularity is output as a signal having another variation pattern irregularity.
As described above, according to the conversion in which the output value is uniquely determined for an arbitrary input value, the input signal having irregularity is processed into an irregularity signal having another change pattern corresponding to the change of the input signal. It can be done. In the following, processing an irregular input signal into an irregular signal having another change pattern corresponding to a change in the input signal is described as inheriting the irregularity.
 キャリア加工部1の拡散キャリア加工手段13と逆拡散キャリア加工手段15は、加工材料として入力するノイズ信号x、xの不規則性を継承する加工により、不規則性をもつ拡散キャリアcと逆拡散キャリアcを作成する。
 このように、前記写像変換は加工材料として入力するノイズ信号x、xの不規則性を継承する加工なので、その加工を用いれば、自己相関が無いノイズ信号から、入力したノイズ信号とは異なったパターンの自己相関が無い信号を得ることが出来るものである。すなわち、前記写像変換を行う拡散キャリア加工手段13と逆拡散キャリア加工手段15によれば、自己相関が無いノイズ信号x、xから、自己相関が無い拡散キャリアcと逆拡散キャリアcが得られることとなる。
The diffusion carrier processing means 13 and the despreading carrier processing means 15 of the carrier processing unit 1 perform the diffusion carrier c T having irregularity by processing inheriting the irregularity of the noise signals x T and x R input as processing materials. and creating a despread carrier c R.
As described above, since the mapping conversion is processing that inherits the irregularity of the noise signals x T and x R input as processing materials, if the processing is used, the noise signal having no autocorrelation is changed to the input noise signal. A signal without autocorrelation of different patterns can be obtained. That is, according to the diffusion carrier processing means 13 and the despreading carrier processing means 15 for performing the map conversion, from the noise signals x T and x R having no autocorrelation, the diffusion carrier c T and the despreading carrier c R having no autocorrelation. Will be obtained.
 数式2で示される自己相関関数の形は、自己相関が無い関数においては、τ=0でのみ最大値となり、τ≠0では常にゼロの、インパルス形状のものとなる。
 ウィナーの定理(Wiener Theorem)によれば、不規則過程の電力スペクトル密度分布関数は、その不規則過程の自己相関関数のフーリエ変換で与えられる。このフーリエ変換については、文献:高速フーリエ変換pp7(E. Oran Bringham著、宮川・今井共訳、科学技術出版社刊)、及び不規則信号論pp86(Y. W. Lee著、宮川・今井共訳、東京大学出版会刊)に記載されている。
 前述したように、ノイズ信号x、xと拡散キャリアc及び逆拡散キャリアcは、それぞれ自己相関が無い不規則過程なので、その自己相関関数はいずれもインパルス形状である。上記の定理により前記ノイズ信号x、x、拡散キャリアc、及び逆拡散キャリアcの電力スペクトル密度はそのインパルス形状の関数のフーリエ変換で与えられる。ここで、インパルス形状の関数のフーリエ変換は、一定のレベルが無限に広がる関数であるから、前記ノイズ信号x、x、拡散キャリアc、及び逆拡散キャリアcの電力スペクトル密度分布関数は無限に広く一様なものといえる。これは、ノイズ信号x、xが素ノイズ信号の性質を継承する伝送によって対オブジェクト広帯域性を有した信号であったのに加え、それを不規則性が継承される加工をした拡散キャリアc、及び逆拡散キャリアcもまた対オブジェクト広帯域性を有した信号となることを示している。
The form of the autocorrelation function expressed by Equation 2 is an impulse shape that has a maximum value only when τ = 0 and is always zero when τ ≠ 0 in a function without autocorrelation.
According to Wiener Theorem, the power spectral density distribution function of an irregular process is given by the Fourier transform of the autocorrelation function of the irregular process. For this Fourier transform, literature: Fast Fourier transform pp7 (E. Oran Bringham, translated by Miyagawa / Imai, published by Science and Technology Publishers), and irregular signal theory pp86 (written by YW Lee, translated by Miyagawa / Imai, Tokyo) (Published by the University Press).
As described above, the noise signals x T , x R , the spread carrier c T, and the despread carrier c R are irregular processes having no autocorrelation, and thus the autocorrelation functions are all in an impulse shape. According to the above theorem, the power spectral density of the noise signals x T , x R , spread carrier c T , and despread carrier c R is given by Fourier transform of a function of its impulse shape. Here, since the Fourier transform of the impulse shape function is a function in which a certain level spreads infinitely, the power spectral density distribution function of the noise signals x T , x R , the diffusion carrier c T , and the despread carrier c R Can be said to be infinitely wide and uniform. This is because the noise signals x T and x R are signals having a broadband property against an object by transmission that inherits the properties of the elementary noise signals, and in addition, they are processed spread carriers in which irregularities are inherited. It is shown that c T and despread carrier c R are also signals having object broadband characteristics.
 このように、任意の入力値に対して出力値が一意に決まる変換で、対オブジェクト広帯域性で不規則性をもつノイズ信号x、xに不規則性を継承する加工を行うことにより、その加工出力である拡散キャリアc及び逆拡散キャリアcを対オブジェクト広帯域性を有したものとすることが出来るものである。以下では、不規則性を継承する加工によって、対オブジェクト広帯域性の信号を加工して、その出力も対オブジェクト広帯域性を有した信号とすることを、対オブジェクト広帯域性を継承する加工と記す。なお、本伝送システムの説明で用いる広帯域性という表現は、単にある狭い領域にスペクトル分布が制限された拡散入力オブジェクトの占有周波数帯域に対してスペクトル分布領域がはるかに広いと言うばかりでなく、ここで示したように、自己相関がない、あるいは実用上自己相関がないと見なせるだけ著しく低い自己相関の不規則様な信号であることも意味するものである。 In this way, by performing a process that inherits irregularity in the noise signals x T and x R that have irregularity with a wide band property with respect to an object by a conversion in which an output value is uniquely determined for an arbitrary input value, it is intended that can be assumed that its having a processing which is the output diffusion carrier c T and despreading carrier c R pairs object broadband property. In the following description, processing a signal with a broad object bandwidth by processing that inherits irregularity, and setting the output of the signal to have a broadband property with respect to the object will be referred to as processing that inherits the broadband property against the object. The expression “broadband” used in the description of this transmission system not only means that the spectrum distribution region is much wider than the occupied frequency band of the spread input object in which the spectrum distribution is limited to a certain narrow region. As shown in Fig. 5, it also means that the signal is irregularly low in autocorrelation so low that it can be regarded as having no autocorrelation or practically no autocorrelation.
 キャリア加工部1は、対オブジェクト広帯域性で不規則性をもつノイズ信号x、xに、不規則性と対オブジェクト広帯域性を継承する加工を行うことにより、対オブジェクト広帯域性及び不規則性をもつ拡散キャリアcと逆拡散キャリアcを供給するものである。 The carrier processing unit 1 performs processing for inheriting the irregularity and the broadband property against the object to the noise signals x T and x R having irregularity with the broadband property against the object, thereby providing the broadband property and irregularity against the object. and it supplies the spread carrier c T despreading carrier c R with.
 次に、拡散キャリア加工手段13と逆拡散キャリア加工手段15で行う、任意の入力値に対して出力値が一意に決まる変換は、任意の同一の入力に対して、数式5の条件が成立するように行うという点について説明する。
 これは、拡散キャリアcと逆拡散キャリアcについて、逆拡散手段16で逆拡散入力オブジェクトhと逆拡散キャリアcとが乗じられる時、逆拡散入力オブジェクトh中の拡散キャリアcの成分と、逆拡散キャリアcは、それぞれの信号の流れ方向のどの点においても、数式5に示した対をなす信号となる条件を満足するようにするためのものである。
 理想的な動作環境では、前記逆拡散入力オブジェクトh中の拡散キャリアcの成分は、拡散キャリア加工手段13の拡散キャリアcと同一であり、前記逆拡散入力オブジェクトhと乗ずる逆拡散キャリアcと前記拡散キャリアcとは、共通のノイズ信号xから供給された同一とみなせる共通のノイズ信号x、xを加工して作成した信号である。
 このとき、数式10および数式11で示した関数fとgが、任意の値を取るwについて数式14を満足するので、wの代わりに同一とみなせる共通のノイズ信号x、xを用いた数式15も成り立つ。
  f(w)*g(w)=k         (数式14)
  f(x(u))*g(x(u))=k  (数式15)
 同一のノイズ信号x、xからこの条件を満足し不規則性と対オブジェクト広帯域性を継承する加工関数fとgを用いて作成された拡散キャリアcと逆拡散キャリアcは、不規則性と対オブジェクト広帯域性に加え、数式5に示した対をなす信号となる条件を満足するものとなる。既述した数式12および数式13は、この変換関数の例である。
Next, in the conversion performed by the diffusion carrier processing unit 13 and the despreading carrier processing unit 15 so that the output value is uniquely determined for an arbitrary input value, the condition of Expression 5 is satisfied for the arbitrary same input. This will be described.
This component of diffusion for carrier c T despreading carrier c R, when despreading input object h and despreading carrier c R are multiplied by despreading means 16, spread carrier c T in despreading input object h If, despreading carrier c R, at any point in the flow direction of each of the signals, is used to to satisfy the condition that the signal pairs shown in equation 5.
In an ideal operating environment, component of the spread carrier c T of the despread input in object h is identical to the diffusion carrier c T diffusion carrier processing means 13, the despreading carrier c multiplying said despread input object h R and the spread carrier c T are signals generated by processing common noise signals x T and x R that can be regarded as the same supplied from a common noise signal x W.
At this time, since the functions f and g shown in Expression 10 and Expression 11 satisfy Expression 14 for w having an arbitrary value, common noise signals x T and x R that can be regarded as the same are used instead of w. Equation 15 also holds.
f (w) * g (w) = k C (Formula 14)
f (x T (u)) * g (x R (u)) = k C (Formula 15)
Same noise signal x T, x R from satisfying this condition was created using the processing function f and g that inherit irregularities pair object wideband diffuser carrier c T despreading carrier c R is not In addition to the regularity and the broadband property to the object, the conditions for the paired signals shown in Formula 5 are satisfied. Expressions 12 and 13 described above are examples of this conversion function.
 このように、拡散キャリアと逆拡散キャリアの供給動作は、素ノイズ信号源10が供給する対オブジェクト広帯域性で不規則性をもつ素ノイズ信号xを、拡散キャリア加工手段13と逆拡散キャリア加工手段15に対して、対オブジェクト広帯域性で不規則性を継承する伝送でそれぞれに共通のノイズ信号xとして供給するとともに、拡散キャリア加工手段13と逆拡散キャリア加工手段15が、前記ノイズ信号xをノイズ信号x、xとして入力し、その入力した信号を任意の同一の入力について出力値が一意に決まり対オブジェクト広帯域性と不規則性を継承する変換で数式5の条件が成立する対をなすの拡散キャリアcと逆拡散キャリアcに加工するものである。なお、相互相関がない複数のパターンの拡散キャリアと逆拡散キャリアの作成方法は後述する。 Thus, the supplying operation of the spread carrier and despread carrier, the prime noise signal x E with irregularities containing noise signal source 10 against the object broadband performance supplies despread carrier processing and the diffusion carrier processing means 13 relative means 15, supplies a common noise signal x W respectively in transmission to inherit irregularities against objects broadband performance, diffusion carrier processing means 13 the despread carrier processing means 15, the noise signal x W is input as a noise signal x T , x R , and the condition of Equation 5 is satisfied by the conversion in which the output value of the input signal is uniquely determined for any same input and inherits the object broadband property and irregularity. it is intended to be processed to diffuse carrier c T despreading carrier c R of the pair. A method for creating a plurality of patterns of spread carriers and despread carriers without cross-correlation will be described later.
 続いて、ノイズ信号供給部2について説明する。まず、ノイズ信号xと素ノイズ信号xについて説明する。
 既述したように、キャリア加工部1は、対オブジェクト広帯域性で不規則性をもつ拡散キャリアcと逆拡散キャリアcを供給する。その拡散キャリアcと逆拡散キャリアcの対オブジェクト広帯域性で不規則性を持つ特性は、拡散キャリア加工部と逆拡散キャリア加工部の加工特性を、加工材料とするノイズ信号x、xの対オブジェクト広帯域性で不規則性をもつ特性を継承することによって得る。そのため、ノイズ信号x、xは、対オブジェクト広帯域性で不規則性をもつ必要がある。よって、キャリア加工部1は、拡散キャリア加工手段と逆拡散キャリア加工手段に対オブジェクト広帯域性で不規則性をもつノイズ信号x、xを供給する。
 さらに、ノイズ信号x、xの対オブジェクト広帯域性で不規則性を持つ特性は、伝送媒体11の伝送特性を、伝送対象であるノイズ信号xの対オブジェクト広帯域性で不規則性をもつ特性を継承するものにすることによって得る。そのため、ノイズ信号xは、対オブジェクト広帯域性で不規則性をもつ必要がある。よって、キャリア加工部1が取り扱うノイズ信号xは、対オブジェクト広帯域性で不規則性をもつ。
 ノイズ信号x、x、xは、対オブジェクト広帯域性で不規則性という条件を満たせば、取るべき値はまったく任意の信号でよいものである。すなわち、ノイズ信号x、x、xは、対オブジェクト広帯域性で不規則性をもつ、任意の値をとるアナログ信号で良いものである。
Next, the noise signal supply unit 2 will be described. First described the noise signal x W and containing the noise signal x E.
As already mentioned, the carrier processing unit 1 supplies the spread carrier c T despreading carrier c R having irregularities against the object broadband performance. Characteristics with irregularities against objects broadband performance of the diffusing carrier c T despreading carrier c R is the processing properties of spreading carrier processing unit and the despread carrier processing unit, the noise signal x T to the processing material, x It is obtained by inheriting the property of R with respect to object wideband and irregularity. For this reason, the noise signals x T and x R need to have irregularity with a broadband property against an object. Therefore, the carrier processing unit 1 supplies noise signals x T and x R having irregularity with a wide band property to the object to the diffusion carrier processing means and the despread carrier processing means.
Furthermore, the characteristic of the noise signals x T and x R having irregularity in the wide band property with respect to the object has irregularity in the transmission characteristic of the transmission medium 11 and the irregularity in the noise signal x W to be transmitted with respect to the broadband object. Obtain by inheriting properties. Therefore, the noise signal x W, it is necessary to have irregularities against objects broadband performance. Thus, the noise signal x W carrier processing unit 1 is handled has irregularities against objects broadband performance.
The noise signals x W , x T , and x R may be arbitrary signals as long as they satisfy the condition of irregularity with respect to the object broadband. In other words, the noise signals x W , x T , and x R may be analog signals having arbitrary values having a wide band-to-object property and irregularities.
 ノイズ信号xは素ノイズ信号源10が供給する素ノイズ信号xが源である。ノイズ信号xの対オブジェクト広帯域性で不規則性をもつ特性は、素ノイズ信号xの対オブジェクト広帯域性で不規則性をもつ特性から得る。そのため、素ノイズ信号xは、対オブジェクト広帯域性で不規則性を有する必要がある。よって、キャリア加工部1が取り扱う素ノイズ信号xは、対オブジェクト広帯域性で不規則性を有するものとする。
 また、素ノイズ信号xは、対オブジェクト広帯域性で不規則性という条件を満たせば、取るべき値はまったく任意の信号でよいものである。すなわち、素ノイズ信号xは、対オブジェクト広帯域性で不規則性をもつ、任意の値をとるアナログ信号でよいものである。
Noise signal x W is the elementary noise signal x E is the source for supplying the containing noise signal source 10. Characteristics with irregularities against objects broadband performance of the noise signal x W is obtained from the characteristics having irregularities against the object broadband performance of the unit noise signal x E. Therefore, containing the noise signal x E should have irregularities against objects broadband performance. Therefore, containing the noise signal x E carrier processing unit 1 handles shall have irregularities against objects broadband performance.
Further, containing the noise signal x E is meet the condition irregularities against objects broadband performance, the value to be taken is quite may be any signal. That is, containing the noise signal x E has irregularities against objects broadband performance are those may be analog signals take any value.
 ノイズ信号x、x、xが任意の値を取る全くの不規則性をもつ信号でよいので、ノイズ信号xとなる信号を供給する素ノイズ信号源10を複数設け、それらが供給する複数の素ノイズ信号xEi(i=1、2、…N)を適当に組合わせたものをノイズ信号xとしても良いものである。
 適当に組み合わせるとは、複数の素ノイズ信号xEi(i=1、2、…N)を何らかの方法、例えば、算術演算や論理演算、関係演算、あるいはそれらを組み合わせる方法でひとつのノイズ信号xに合成することである。
Since the noise signals x W , x T , and x R may be arbitrary irregular signals having arbitrary values, a plurality of elementary noise signal sources 10 for supplying a signal that becomes the noise signal x W are provided and supplied. a plurality of elementary noise signal x Ei (i = 1,2, ... N E) to those may be a noise signal x W what was appropriate combination.
Appropriate combination means that a plurality of elementary noise signals x Ei (i = 1, 2,... N E ) are combined into one noise signal x by some method, for example, arithmetic operation, logical operation, relational operation, or a combination thereof. To be synthesized into W.
 例えば、電気信号を用いた電気通信の場合、不規則性をもつ電気信号を供給する複数の素ノイズ信号源10と電線を用いた伝送媒体11でノイズ信号供給部2を構成し、それらからの素ノイズ信号xEi(i=1、2、…N)を伝送媒体11に同時に出力して、伝送媒体11上で前記素ノイズ信号を互いに重畳させてひとつのノイズ信号xとして拡散キャリア加工手段13と逆拡散キャリア加工手段15に供給する動作がそれに相当する。
 その場合、ノイズ信号xがN個の素ノイズ信号源10からの素ノイズ信号xEi(i=1、2、…N)を組み合わせたノイズ信号xは以下に示される。
  x(u)=ΣNE{xEi(u)}  (数式16)
 ただし、ΣNE{ }は、{ }内の1からN番目の要素を加算で合計することを示す。
For example, in the case of telecommunication using an electric signal, the noise signal supply unit 2 is composed of a plurality of elementary noise signal sources 10 that supply irregular electric signals and a transmission medium 11 using electric wires, The elementary noise signal x Ei (i = 1, 2,... N E ) is simultaneously output to the transmission medium 11, and the elementary noise signals are superimposed on each other on the transmission medium 11 to form a single noise signal x W. The operation of supplying to the means 13 and the despread carrier processing means 15 corresponds to that.
In that case, the noise signal x W noise signal x W is hydrogen noise signal x Ei (i = 1,2, ... N E) from the N E number of elementary noise signal source 10 combines are shown below.
x W (u) = Σ NE {x Ei (u)} (Formula 16)
However, sigma NE {} indicates that the total adds N E th element 1 in {}.
 複数の素ノイズ信号源10を設け、複数の素ノイズ信号xEi(i=1、2、…N)を適当に組み合わせてノイズ信号xを供給する場合、どのような組合せ方法を用いるかは任意である。また、全ての素ノイズ信号xEi(i=1、2、…N)が対オブジェクト広帯域性でなくとも、あるいは、不規則性をもつものでなくとも良いものである。ただし、結果として得られるノイズ信号xは対オブジェクト広帯域性で不規則性をもつことが必要である。また、この時、ノイズ信号xは任意の値を取る全く不規則性をもつ信号でよいので、複数の素ノイズ信号源10が供給する複数の素ノイズ信号xEi(i=1、2、…N)相互間には、同期などの関係は何も要求されない。
 ここでは、複数の素ノイズ信号xEi(i=1、2、…N)は、伝送媒体11の特性により互いに重畳して、算術的な加算で合計されるものとして説明する。
What combination method is used when a plurality of elementary noise signal sources 10 are provided and the noise signal x W is supplied by appropriately combining a plurality of elementary noise signals x Ei (i = 1, 2,... N E ). Is optional. Further, all the elementary noise signals x Ei (i = 1, 2,... N E ) do not have to be broadband with respect to the object or do not have to be irregular. However, the noise signal x W resulting is necessary to have irregularities against objects broadband performance. At this time, the noise signal x W so good a signal having exactly the irregularities take any value, a plurality of elementary noise signal supplied by a plurality of elementary noise signal source 10 x Ei (i = 1,2, ... N E ) No relationship such as synchronization is required between them.
Here, a plurality of elementary noise signals x Ei (i = 1, 2,... N E ) are described as being superimposed on each other due to the characteristics of the transmission medium 11 and summed by arithmetic addition.
 次に、具体的な素ノイズ信号源10について説明する。素ノイズ信号xは、全く不規則な信号でよいので、例えば、天然のノイズでも良いものである。ここで言う天然のノイズとは、例えば、電気通信の応用の場合、抵抗体や真空管、ツェナーダイオードなどの半導体素子に電流を流したときに発生する熱ノイズである。
 この熱ノイズは、素子を構成する無数の電子や原子核の不規則性な運動によって生じるものなので、周期性も法則性もなく、波形パターンが次の瞬間にどのような値をとるか全く予測できない不規則性を呈し、スペクトルが広帯域に一様に分布した、理想的なホワイトノイズに近いものと言われている。
 そのような素子を複数用い、異なる素子が発する複数の熱ノイズを合算することにより、その性質は、より理想的なホワイトノイズに近づけることができる。
Next, a specific elementary noise signal source 10 will be described. Containing the noise signal x E, so good in a totally random signal, for example, those may be natural noise. The natural noise referred to here is, for example, thermal noise generated when a current is passed through a semiconductor element such as a resistor, a vacuum tube, or a Zener diode in the case of telecommunications applications.
This thermal noise is caused by the irregular movement of the innumerable electrons and nuclei that make up the device, so there is no periodicity or law, and it is impossible to predict what value the waveform pattern will take at the next moment. It is said to be close to ideal white noise that exhibits irregularity and whose spectrum is uniformly distributed over a wide band.
By using a plurality of such elements and adding together a plurality of thermal noises generated by different elements, the property can be made closer to ideal white noise.
 このような熱ノイズは、スペクトル拡散通信技術の原理上、拡散キャリアcと逆拡散キャリアcとして理想的な信号のひとつと言われるが、図40に示した従来の参照信号内蔵方式のような同期装置をもつスペクトル拡散通信システムでは同期捕捉に拡散符号の周期性が求められるために用いることが出来なかった。
 しかし、本実施形態に係るキャリア加工部1は、素ノイズ信号xに周期性も規則性も求められないため、そのような理想的なホワイトノイズに近い信号を素ノイズ信号xに使用することが出来るものである。
 理想的なホワイトノイズに近い信号を素ノイズ信号xに用いて、ノイズ信号xの対オブジェクト広帯域性で不規則性をもつ性質を、より広帯域に、あるいは、より一様なスペクトル分布に、あるいは、より高い不規則性をもつものにすることが出来れば、対オブジェクト広帯域性で不規則性をもつ拡散キャリアcと逆拡散キャリアcを、より広帯域に、あるいは、より一様なスペクトル分布に、あるいは、より高い不規則性をもつものにすることが出来るものである。
 また、例えば、印刷への応用の場合、紙の繊維の配列が自然に織り成す模様を、素ノイズ信号源10が供給する素ノイズ信号xとして用いても良いものである。これも一般に繊維の配列が二つと同じものが無いと言われる、周期性も法則性もない不規則性を有すものである。
Such thermal noise, the principle of spread spectrum communication techniques, is said to be one of the ideal signal as a diffusion carrier c T despreading carrier c R, unlike the conventional reference signal internal system shown in FIG. 40 In a spread spectrum communication system having a simple synchronizer, it cannot be used because the periodicity of the spreading code is required for synchronization acquisition.
However, the carrier processing unit 1 according to this embodiment, since the periodicity in the prime noise signal x E also regularity also not required, to use a signal close to such an ideal white noise based on the noise signal x E It can be done.
A signal close to the ideal white noise by using the prime noise signal x E, the property having irregularities against the object broadband performance of the noise signal x W, the wider band or, in a more uniform spectral distribution, Alternatively, if it is possible to those with higher irregularity, the diffusion carrier c T despreading carrier c R having irregularities against the object broadband performance, more broadband or, more uniform spectrum It can be distributed or have a higher irregularity.
Further, for example, in the case of application to print, a pattern woven natural sequence of paper fibers, those containing noise signal source 10 may be used as containing noise signal x E supplied. This is also said to have irregularity with neither periodicity nor law, which is generally said to be that there is no fiber arrangement that is the same as two.
 一方、素ノイズ信号xを供給する目的で意図して設けた素ノイズ信号源10以外のノイズ源12が供給する信号がノイズ信号xの要素となってもよいものである。例えば、伝送媒体11にキャリア加工部1の外から偶然侵入して、素ノイズ信号源10が供給する素ノイズ信号xに重畳する外来ノイズもノイズ信号xの要素として良いものである。
 そのような外来ノイズは、例えば、電気通信の応用の場合、前記伝送媒体を共有して多重通信を行う他チャンネルの信号、前記伝送媒体近傍の機器や配線、雷や静電気放電などからの電気的な誘導現象で侵入するいわゆるノイズである。
 また、伝送媒体11そのものが発生させて、素ノイズ信号源10が供給する素ノイズ信号xに重畳する内部ノイズもノイズ信号xの要素として良いものである。そのような内部ノイズは、例えば、電気通信の応用の場合、前記伝送媒体に用いる導体の熱ノイズである。また、従来のスペクトル拡散通信の送信機から受信機に向かって情報を伝送する信号は不規則性を有する信号である。また、本伝送システムを応用した情報伝送システムで拡散モジュールから逆拡散モジュールに向かって伝送される拡散出力オブジェクトsもまた、不規則性をもつ信号である。また、本伝送システムのキャリア加工部の拡散キャリア加工手段や逆拡散キャリア加工手段がノイズ信号から拡散キャリアや逆拡散キャリアに加工する過程の信号もまたまた、不規則性をもつ信号である。本実施形態に係るキャリア加工部1は、これらの不規則性をもつ信号も、ノイズ信号xの要素として良いものである。
 また、上記の素ノイズ信号源10が供給する素ノイズ信号xに重畳する、内部または外部からのノイズや、従来のスペクトル拡散通信の送信機から受信機に向かって情報を伝送する信号や、本伝送システムを応用した情報伝送システムで拡散モジュールから逆拡散モジュールに向かって伝送される拡散出力オブジェクトsや、本伝送システムのキャリア加工部の拡散キャリア加工手段や逆拡散キャリア加工手段がノイズ信号から拡散キャリアや逆拡散キャリアに加工する過程の信号は、そのいずれかまたは全てが異なる複数のもので構成されても良いものである。
On the other hand, in which the noise source 12 supplies a signal other than the prime noise signal source 10 provided in intended purpose of supplying hydrogen noise signal x E may serve as elements of the noise signal x W. For example, entering accidentally from the outside of the carrier processing unit 1 to the transmission medium 11, external noise containing the noise signal source 10 is superimposed on the element noise signal x E supplies is also good as a component of the noise signal x W.
Such external noise is, for example, in the case of telecommunications applications, signals from other channels that perform multiplex communication by sharing the transmission medium, equipment and wiring in the vicinity of the transmission medium, lightning, electrostatic discharge, etc. This is so-called noise that intrudes due to a simple induction phenomenon.
The transmission medium 11 itself is to generate internal noise containing the noise signal source 10 is superimposed on the element noise signal x E supplies is also good as a component of the noise signal x W. Such internal noise is, for example, thermal noise of a conductor used in the transmission medium in the case of telecommunications applications. A signal for transmitting information from a transmitter of a conventional spread spectrum communication to a receiver is a signal having irregularity. The spread output object s transmitted from the spread module to the despread module in the information transmission system to which the present transmission system is applied is also a signal having irregularity. In addition, a signal in the process in which the diffusion carrier processing means and the despread carrier processing means of the carrier processing unit of this transmission system process from a noise signal to a diffusion carrier and a despread carrier is also a signal having irregularity. Carrier processing unit 1 according to this embodiment, signals having these irregularities is also a good thing as an element of the noise signal x W.
Further, containing the noise signal source 10 described above is superposed on the prime noise signal x E supplies, and noise from internal or external, signals and for transmitting information toward the receiver from the transmitter of the conventional spread spectrum communication, The spread output object s transmitted from the diffusion module to the despreading module in the information transmission system to which this transmission system is applied, and the diffusion carrier processing means and the despread carrier processing means of the carrier processing section of this transmission system are generated from the noise signal. A signal in the process of processing into a spread carrier or a despread carrier may be composed of a plurality of different ones or all of them.
 明示する素ノイズ信号源10と、外来ノイズ、または、内部ノイズとの違いは、素ノイズ信号源10と明示したものはノイズ信号xの一部とする素ノイズ信号xを供給することを目的に意図的に設けたノイズ信号供給部2であるのに対し、外来ノイズ、または、内部ノイズは、本実施形態に係るキャリア加工部1では素ノイズ信号供給の目的で制御できない信号供給部である点である。
 この外来ノイズや前記伝送媒体自身が発生させる内部ノイズ、あるいは他の装置が発する信号は、一般には機器の動作を阻害するものと認識されて取り扱われるが、本発明の実施形態に係るキャリア加工部1では、そのいわゆるノイズを素ノイズ信号xと同等な信号のひとつとしても良いものである。そのために、例えば伝送媒体11にアンテナ、或いはさらにそれに増幅器や受信機を設けて積極的にノイズを取り込むようにしてもよいものである。ノイズxとはその様な信号で、便宜的に素ノイズ信号xと分けて表示しているが、ノイズ信号の要素となる信号という論理的な意味は全く同じものである。以下では本伝送システムが存在する環境内外から侵入するノイズをノイズxではなく素ノイズ信号xとして扱う事例も出てくるが、本伝送システムにおいては、結果として拡散モジュールと逆拡散モジュールが拡散キャリアと逆拡散キャリアの加工材料とするに相応しい特性を有する限り、ノイズxと素ノイズ信号xとはそのように同一に扱えるものである。
 このように、本実施形態に係るキャリア加工部1では、一般には機器の動作を阻害する排除すべきものと認識されて取り扱われる、いわゆるノイズと呼ばれるものを、拡散キャリアcと逆拡散キャリアcへの加工材料という価値のある信号として使用する。
A manifest containing noise signal source 10, external noise, or the difference between the internal noise, those stated to containing noise signal source 10 for supplying a hydrogen noise signal x E be part of the noise signal x W While the noise signal supply unit 2 is intentionally provided for the purpose, the external noise or the internal noise is a signal supply unit that cannot be controlled by the carrier processing unit 1 according to the present embodiment for the purpose of supplying a noise signal. There is a point.
The external noise, internal noise generated by the transmission medium itself, or signals generated by other devices are generally recognized and handled as obstructing the operation of the device, but the carrier processing unit according to the embodiment of the present invention in 1, but the so-called noise may be one containing the noise signal x E equivalent signal. For this purpose, for example, the transmission medium 11 may be provided with an antenna, or further provided with an amplifier or a receiver, so as to actively take in noise. The noise x N in such a signal, but are displayed separately for convenience in containing noise signal x E, logical sense signal as a component of the noise signal is exactly the same. Hereinafter emerges also cases dealing with noise entering from the environment inside and outside the presence of the transmission system as a noise x N rather than containing the noise signal x E, but in this transmission system, the diffusion module and the despreading module diffusion as a result as long as it has suitable properties to the workpiece carrier and despread the carrier, the noise x N and containing the noise signal x E in which handled the same as such.
Thus, the carrier processing unit 1 according to the present embodiment, generally handled is recognized as one that should be eliminated to inhibit operation of the device, what is commonly referred to as a noise, spread carrier c T despreading carrier c R Used as a valuable signal for processing materials.
 そこで、本実施形態に係るキャリア加工部1では、拡散キャリアcと逆拡散キャリアcへの加工材料という価値のある信号を、外見的にはノイズと呼ばれるものと同じだが、信号としての明確な目的を有したものであることを示すため、ノイズに信号と言う言葉を付けて、ノイズ信号と呼ぶこととしている。
 本実施形態に係るキャリア加工部1は、オブジェクトの伝送のために供給する拡散キャリアと逆拡散キャリアを、全く規則性を必要とせず、とる値も任意でよい対オブジェクト広帯域性を有したノイズ信号xを加工材料としているので、ノイズ信号xにキャリア加工部1の内外のノイズが重畳しても、そのノイズ信号xが対オブジェクト広帯域性であるかぎりキャリア加工部1の動作を阻害されることはないものである。
 すなわち、本実施形態に係るキャリア加工部1は、ノイズ信号について、内外から偶然侵入する意図しないノイズの重畳という干渉があっても、それをノイズ信号の一部という価値のあるものとして受け入れて動作するノイズ受容性とも呼べる性質を有している。
Therefore, the carrier processing unit 1 according to the present embodiment, a signal of value that work material to diffuse carrier c T despreading carrier c R, the same as the one that the seemingly called noise, clarity as a signal In order to show that the signal has a special purpose, the word “signal” is added to the noise and it is called a noise signal.
The carrier processing unit 1 according to the present embodiment does not require regularity at all for the spread carrier and the despread carrier to be supplied for the transmission of the object, and the noise signal having the broadband property against the object which may take any value. since the x W is a processed material, be superimposed inside and outside of the noise of the carrier processing unit 1 is the noise signal x W, the noise signal x W is inhibited the operation of the carrier processing unit 1 as long as a pair object broadband property There is nothing to do.
That is, the carrier processing unit 1 according to the present embodiment operates by accepting the noise signal, even if there is interference such as unintentional noise superimposition that accidentally intrudes from inside and outside, as being worthy of a part of the noise signal. It has a property that can be called noise receptivity.
 図1では、前記内外から侵入するキャリア加工部1が意図しないノイズをx、その信号源をノイズ源12として示している。
既に述べた素ノイズ信号の説明では、ノイズ信号xの対オブジェクト広帯域性で不規則性をもつ特性は、素ノイズ信号xの対オブジェクト広帯域性で不規則性をもつ特性から得ると述べたが、厳密には素ノイズ信号とノイズの対オブジェクト広帯域性で不規則性をもつ特性から得るものである。そのため、本実施形態に係るキャリア加工部1は、素ノイズ信号xとノイズxが重畳した信号が対オブジェクト広帯域性で不規則性をもつものとする必要がある。しかし、そのとき、ノイズ信号xの要素となっている全ての素ノイズ信号あるいは全てのノイズが、対オブジェクト広帯域性でなくとも、あるいは、不規則性をもつものでなくとも良いものである。ただし、結果として得られるノイズ信号xは対オブジェクト広帯域性で不規則性をもつことが必要である。
In FIG. 1, noise that is not intended by the carrier processing unit 1 entering from the inside and outside is indicated as x N , and its signal source is indicated as a noise source 12.
In the description already containing noise signals mentioned, characteristic having irregularities against the object broadband performance of the noise signal x W, said obtained from the characteristic having irregularities against the object broadband performance of the unit noise signal x E Strictly speaking, however, it is obtained from the characteristics of irregularity in the wideband nature of the object noise signal and noise. Therefore, the carrier processing unit 1 according to this embodiment, it is necessary to signal containing the noise signal x E and the noise x N is superimposed is assumed to have irregularities against objects broadband performance. However, at that time, all containing the noise signal or any noise is a factor of the noise signal x W is, without a counter object broadband performance, or those may not those having irregularities. However, the noise signal x W resulting is necessary to have irregularities against objects broadband performance.
 続いて、伝送媒体11について説明する。伝送媒体11は、ノイズ信号xを拡散キャリア加工手段13と逆拡散キャリア加工手段15に伝送する伝送媒体である。伝送する信号の目的は異なるが、任意の媒体を用いて良い点は伝送媒体7と同様である。また、伝送媒体11が伝送する信号が任意の不規則性をもつ信号であり、伝送媒体7が伝送する信号が耐ノイズ性を有する不規則性をもつ信号であるスペクトル拡散通信の拡散出力オブジェクトであるから、その他の事情が許せば、図33及び図34に示すように伝送媒体11と伝送媒体7は同一のものとしてもよいものである。図33及び図34については後述する。
 素ノイズ信号源10が供給する素ノイズ信号xと、キャリア加工部1の外部や内部の何らかのノイズ源から侵入するノイズxは、伝送媒体11上において伝送媒体11の特性で互いに重畳してひとつのノイズ信号xとなる。
 そのノイズ信号xは拡散キャリア加工手段13と逆拡散キャリア加工手段15に共通のノイズ信号として拡散キャリア加工手段13と逆拡散キャリア加工手段15に伝送される。
 理想的な環境条件から、前記伝送では遅延などの位相変化も減衰も生じないものとする。すなわち、ノイズ信号xはそのまま拡散キャリア加工手段13と逆拡散キャリア加工手段15に入力するノイズ信号x、xとなり、拡散キャリア加工手段13と逆拡散モジュールキャリア加工手段15は同一のノイズ信号を入力する。
Next, the transmission medium 11 will be described. Transmission medium 11 is a transmission medium for transmitting the noise signal x W and the diffusion carrier processing means 13 to the despreading carrier processing means 15. Although the purpose of the signal to be transmitted is different, an arbitrary medium may be used in the same manner as the transmission medium 7. In addition, a spread output object of spread spectrum communication in which the signal transmitted by the transmission medium 11 is a signal having an arbitrary irregularity and the signal transmitted by the transmission medium 7 is an irregular signal having noise resistance. Therefore, if other circumstances permit, the transmission medium 11 and the transmission medium 7 may be the same as shown in FIGS. 33 and 34 will be described later.
And containing noise signal source 10 supplies containing noise signal x E, the noise x N entering from any noise source and internal parts of the carrier processing unit 1, and overlap each other in the characteristics of the transmission medium 11 on the transmission medium 11 It becomes one of the noise signal x W.
The noise signal x W is transmitted to the diffusion carrier processing means 13 the despread carrier processing means 15 as a common noise signal despread carrier processing means 15 and the diffusion carrier processing means 13.
From the ideal environmental conditions, it is assumed that neither phase change such as delay nor attenuation occurs in the transmission. That is, the noise signal x W as it is the noise signal x T to type diffusion carrier processing means 13 to the despreading carrier processing means 15, x R, and the diffusion carrier processing means 13 and the despreading module carrier processing means 15 the same noise signal Enter.
 続いて、拡散キャリア加工手段と逆拡散キャリア加工手段について説明する。
 本発明の実施形態に係るキャリア加工部1は、伝送する拡散入力オブジェクトaのスペクトルを拡散したり逆拡散したりする信号である拡散キャリアcと逆拡散キャリアcを、拡散キャリア加工手段13と逆拡散キャリア加工手段15に共通に供給したノイズ信号xに基づいて加工する。
 その加工の直接的な目的は、拡散キャリアcと逆拡散キャリアcを、対オブジェクト広帯域性で不規則性をもつものとすることと、二つの信号の数式5に示される乗ずるとゼロで無い規定の定数となる対をなす信号にすることと、互いに相互相関のない多数の異なるパターンを利用可能にすることである。
 この時、拡散キャリアcと逆拡散キャリアcの対オブジェクト広帯域性と不規則性という性質は、既述したように、加工過程をノイズ信号の対オブジェクト広帯域性で不規則性をもつ性質を継承するものにすることによって得るものである。
 以下で説明する具体的な各種加工方法は、ノイズ信号xの対オブジェクト広帯域性で不規則性をもつ性質を継承できるものである。それらは、ひとつで全ての目的を達成させることが出来ない場合もある上、多数の異なる加工方法やキャリアを供給する上では複雑な加工方法が必要となる場合もあるので、いくつかの加工方法を組み合わせてひとつの加工方法を構成してもよいものである。以下では、その組合せの方法についても説明する。
Subsequently, the diffusion carrier processing means and the despread carrier processing means will be described.
Carrier processing unit 1 according to the embodiment of the present invention, the diffusion carrier c T despreading carrier c R is a signal or despreads or spread the spectrum of the spread input object a T for transmitting, diffusing carrier processing means processed based on the noise signal x W which is supplied in common to 13 and despreading carrier processing means 15.
A direct purpose of the processing, the diffusion carrier c T despreading carrier c R, and we shall have irregularities against objects broadband performance, when multiplied shown in Equation 5 of the two signal zero It is to make a pair of signals that have no specified constant, and to make available many different patterns that are not cross-correlated with each other.
At this time, the nature of pair objects broadband property and irregularity of the spread carrier c T despreading carrier c R, as described above, the property of having irregularities machining process against the object broadband performance of the noise signal It is obtained by making it inherit.
Specific various processing methods described below are those that can inherit a property with irregularities against objects broadband performance of the noise signal x W. They may not be able to achieve all of the objectives by themselves, and may require complicated processing methods to supply a number of different processing methods and carriers. A single processing method may be configured by combining the above. Below, the method of the combination is also demonstrated.
 まず、写像変換について説明する。 First, map conversion will be described.
 既述したように、写像変換を拡散キャリアcと逆拡散キャリアcの加工方法のひとつとして用いてよいものである。写像変換は、数式10および数式11に示したように、ある入力値そのものに対して一意に出力が決まる関数とする。ある入力値そのものとは、時間関数である電気信号を用いた電気通信の場合、例えば、ノイズ信号xの瞬時値に相当する。
 この場合、流れていく時間に対応して時々刻々不規則に変化するノイズ信号xから加工作成される拡散キャリアcと逆拡散キャリアcは、ノイズ信号xの時々刻々の値に対して一意に決まる変換出力値の連なりとなる。
 また、位置関数である印刷画像を用いた印刷物による情報伝送の場合、前記のある入力値そのものとは、例えば、画像上のある一点の画像の光学的濃淡状態情報に相当する。この場合、画像の適当な走査に対応して変化する走査位置から得られる画像の光学的濃淡状態が不規則に変化するノイズ信号xから加工作成される拡散キャリアcと逆拡散キャリアcは、画像上の位置一点一点ごとのノイズ信号xの値に対して一意に決まる変換出力値の連なりとなる。
As already mentioned, in which may be used mapping transform as one of the processing method of spreading carrier c T despreading carrier c R. The mapping transformation is a function whose output is uniquely determined for a certain input value itself, as shown in Expression 10 and Expression 11. And one input value itself, for electrical communication with electrical signals is a function of time, for example, corresponds to the instantaneous value of the noise signal x W.
In this case, the noise signal x W spread carrier c T despreading carrier c R created processed from varying every moment irregularly in response to flows time, with respect to the value of the momentary noise signal x W This is a series of conversion output values that are uniquely determined.
Further, in the case of information transmission by printed matter using a print image that is a position function, the certain input value itself corresponds to, for example, optical density state information of a certain point image on the image. In this case, the noise signal x W spread carrier is created processed from c T despreading carrier c R optically gray state of an image obtained from the scanning position changes in response to the appropriate scan image varies irregularly is a series of converted output values uniquely determined with respect to the value of the noise signal x W per position one by one on the image.
 このような写像変換という加工は、例えば、算術演算、論理演算、関係演算などの関数演算、マッピングである。さらに、写像変換という加工は、例示したものをはじめとした適当な写像変換を多数適当に組み合わせたものを、ひとつの写像変換として使用してもよいものである。これら写像変換の加工操作によれば、理想環境下では、加工材料のノイズ信号xの不規則性と対オブジェクト広帯域性は継承され、対をなす信号となる性質も得られるものである。また、同一のノイズ信号xを加工材料としながらも、加工内容に応じて異なったパターンの拡散キャリアcと逆拡散キャリアcが得られるものである。
 しかし、異なる写像変換で発生させる信号パターンでも、入力に同一のノイズ信号を用いていればそれらの間にはある程度の相互相関があるものである。そのため、拡散キャリア加工手段13と逆拡散キャリア加工手段15における相互相関のないパターンを供給する目的のためには、他の加工要素を併用する。
Such processing called mapping conversion is, for example, arithmetic operations, logical operations, function operations such as relational operations, and mapping. Further, in the process of map conversion, a suitable combination of a number of appropriate map conversions including those illustrated may be used as one map conversion. According to the processing operation of these mapping transform, under ideal environment, irregularities pair objects broadband performance of the noise signal x W of the work material is inherited, but also obtained property becomes a signal pairs. Moreover, in which while the same noise signal x W and the processing material, spreading the carrier c T despreading carrier c R of different patterns depending on the processing contents can be obtained.
However, even signal patterns generated by different mapping transformations have a certain degree of cross-correlation between them if the same noise signal is used as an input. Therefore, for the purpose of supplying a pattern having no cross correlation in the diffusion carrier processing means 13 and the despread carrier processing means 15, other processing elements are used in combination.
 次に、信号を系列方向に推移させる加工について説明する。前記写像変換は、入力信号の値そのものに対して一意に出力が決まる変換で拡散キャリアcと逆拡散キャリアcを得るものであった。
 それに対し、この加工は、ある点の加工出力の値を、入力信号の系列方向の上流或いは下流に推移させた点の値を用いて決定するものである。系列方向に推移させるとは、電気信号を用いた電気通信の場合、例えば、ある規定時間遅延させた情報を用いることに相当する。
 また、位置関数である印刷画像を用いた印刷物による情報伝送の場合、系列方向に推移させるとは、例えば、画像を走査して得られる画像の濃淡状態情報の系列の中で、操作位置に対して前後にある規定量だけずれた位置の情報を用いることに相当する。この信号を系列方向に推移させる加工を拡散キャリアcと逆拡散キャリアcの加工方法のひとつとして用いても良いものである。
 この時、拡散キャリア加工手段13と逆拡散キャリア加工手段15は同一の推移量とする。拡散キャリア加工手段13と逆拡散キャリア加工手段15とで同一量だけ推移させることにより、拡散キャリア加工手段13が入力して推移させたノイズ信号xと、逆拡散キャリア加工手段15が入力して推移させたノイズ信号xは同一となる。すなわち、拡散キャリア加工手段13と逆拡散キャリア加工手段15で推移させたノイズ信号は、もとのノイズ信号x、xと比べて、推移した点だけが異なり、拡散キャリア加工手段13と逆拡散キャリア加工手段15との間では同一のノイズ信号である。
 その結果、この推移させたノイズ信号は、対オブジェクト広帯域性で不規則性を持つ性質を継承した信号となる。
Next, processing for shifting a signal in the sequence direction will be described. The mapping transformation was to obtain a spread carrier c T despreading carrier c R with uniquely output is determined conversion for the value itself of the input signal.
On the other hand, in this processing, the value of the processing output at a certain point is determined using the value of the point shifted upstream or downstream in the sequence direction of the input signal. In the case of telecommunication using an electric signal, for example, the information that is delayed for a predetermined time is used in the case of telecommunication.
In addition, in the case of information transmission by printed matter using a print image that is a position function, for example, the transition in the sequence direction is, for example, in the sequence of the gray state information of the image obtained by scanning the image, with respect to the operation position. This corresponds to using the information of the position shifted by a specified amount before and after. This signal is intended processing to transition to the series direction may be used as one of the processing methods of spreading carrier c T despreading carrier c R.
At this time, the diffusion carrier processing means 13 and the despread carrier processing means 15 have the same transition amount. By changes by the same amount in the diffusion carrier processing means 13 the despread carrier processing means 15, and a noise signal x T, which is remained by entering the diffusion carrier processing means 13, and input despread carrier processing means 15 transition is the noise signal x R were are the same. That is, the noise signal changed by the diffusion carrier processing means 13 and the despread carrier processing means 15 is different from the original noise signals x T and x R only in the change point, and is opposite to the diffusion carrier processing means 13. The same noise signal is transmitted to the diffusion carrier processing means 15.
As a result, the shifted noise signal is a signal inheriting the property of having irregularity and wide bandwidth with respect to the object.
 一方、推移量τ(τ≠0)だけ推移させたノイズ信号をxとして、その推移させた信号と推移させる前の元のノイズ信号xとの次式に示す相互相関関数RXS-XWを考える。
  RXS-XW(τ)=lim〔(2*L)-1*∫{x(w)*x(w-τ)}dw〕  (数式17)
 数式2で示した自己相関関数の定義と同様に、上式で、∫dwは、変数wについての-Lから+L(ただし、L>0)の区間の定積分を示すものとし、lim〔 〕は、カッコ内の関数について、Lを無限大にする極限値を示すものとする。
 数式17では積分区間が無限に広いものとしているが、被積分関数が対オブジェクト広帯域性で不規則性を持つ信号の場合、実用上は、一次変調したオブジェトaの一次キャリアの繰返し周期程度かそれ以上の長さの区間であれば、無限大の領域と等価とみなすことが出来るものである。
 数式17に示される相互相関関数RXS-XWは信号xとxとの関係の深さを評価するものであり、相互相関関数RXS-XWがあるτについてゼロであることは、そのτを用いた信号xはxとは全く無関係であることを意味する。以下、あるτの時の数式17に示した相互相関関数RXS-XWがゼロであることを、相互相関がない、あるいは相互相関がゼロと記す。
 ここで、x(u)はx(u)をτだけ推移させた信号なので、それらは次の関係である。
  x(u)=x(u-τ)  (数式18)
 数式18の独立変数uをwに置換え、そのxを数式17のxに代入すれば、数式17は数式2と同じ形となる。
On the other hand, a noise signal shifted by a transition amount τ 11 ≠ 0) is defined as x S , and a cross-correlation function R XS represented by the following equation between the shifted signal and the original noise signal x W before transition is represented. -Consider XW .
R XS−XW (τ) = lim L [(2 * L) −1 * ∫ L {x S (w) * x W (w−τ)} dw] (Formula 17)
Similar to the definition of the autocorrelation function shown in Formula 2, in the above formula, ∫ L dw represents a definite integral in a section from −L to + L (where L> 0) with respect to the variable w, and lim L [] Indicates a limit value that makes L infinite for a function in parentheses.
Although the integration interval formula 17 is assumed infinitely large, when signals having irregularities in pairs object broadband property the integrand, practice, or about repetition period of the primary carrier of Obujeto a T that primary modulation If the interval is longer than that, it can be regarded as equivalent to an infinite region.
The cross-correlation function R XS-XW shown in Equation 17 evaluates the depth of the relationship between the signals x S and x W , and the cross-correlation function R XS-XW is zero for a certain τ. signal x W with τ means that is quite independent of x S. Hereinafter, the fact that the cross - correlation function R XS-XW shown in Expression 17 at a certain τ is zero is described as no cross-correlation or zero cross-correlation.
Here, since x S (u) is a signal obtained by shifting x W (u) by τ 1 , they have the following relationship.
x S (u) = x W (u−τ 1 ) (Formula 18)
If the independent variable u in Expression 18 is replaced with w, and its x S is substituted for x S in Expression 17, Expression 17 has the same form as Expression 2.
 この時、ノイズ信号xもxも数式2で示した自己相関関数がτ=0以外でゼロである全く規則性のない不規則信号なので、数式18を代入した数式17は、τ=τの時にだけある最大値を示し、その他のτの領域では値はゼロとなる。すなわち、ノイズ信号xをτだけ推移させた信号xは、ノイズ信号xをτだけ推移させた信号であるx自身とだけ相互相関が有り、そのほかの如何なる信号とも相互相関がない。
 その信号xは、元の信号xとさえ相互相関はない。これにより、数式2で示した自己相関関数がτ=0以外でゼロである全く規則性のない不規則信号を系列方向に推移させる加工によれば、元の信号も含め、他の信号とは全く相互相関のない信号を作成することが出来ることとなる。
 これを用いると、不規則信号を系列方向に推移させる加工では、推移させる量が異なる信号間では同じように相互相関がないので、推移量をわずかずつ変える事により、多くの相互相関のない信号を作成することが出来るものである。
 このように、系列方向に推移させる加工によれば、対オブジェクト広帯域性で不規則性をもつ性質を継承し、信号パターンは変化させないが、相互相関がない多数の信号を作成できるものである。
At this time, since the noise signals x S and x W are irregular signals having no regularity in which the autocorrelation function expressed by Equation 2 is zero except τ = 0, Equation 17 obtained by substituting Equation 18 is expressed as τ = τ The maximum value is shown only at 1 , and the value is zero in other τ regions. That is, the noise signal x W a tau 1 only the signal x S which is transitive, the noise signal x W there is only cross-correlation between x S itself is a signal obtained by transitions by tau 1, the cross-correlation with any signal other Absent.
The signal x S is not cross-correlation and even the original signal x W. As a result, according to the processing of transitioning the irregular signal having no regularity in which the autocorrelation function shown in Formula 2 is zero except for τ = 0 in the sequence direction, other signals including the original signal are different from each other. A signal having no cross-correlation can be created.
When this is used, in the process of transitioning irregular signals in the sequence direction, there is no cross-correlation between signals with different transition amounts in the same way. Can be created.
As described above, according to the process of shifting in the sequence direction, it is possible to create a large number of signals having no cross-correlation, while inheriting the property of having irregularity with a broadband property to an object and without changing the signal pattern.
 しかし、この信号を系列方向に推移させる加工は、拡散キャリアcと逆拡散キャリアcを対をなす信号とする働きはない。そのため、拡散キャリア加工手段13と逆拡散キャリア加工手段15における対をなす信号となるパターンを供給する目的のためには、例えば、既述した写像変換のような、他の加工要素を併用する。 However, the processing to transition the signal series direction is not serve the paired signals spread carrier c T despreading carrier c R. Therefore, for the purpose of supplying a pattern as a paired signal in the diffusion carrier processing means 13 and the despread carrier processing means 15, for example, other processing elements such as the mapping conversion described above are used together.
 次に、複数のノイズ信号を組み合わせる加工について説明する。本実施形態に係るキャリア加工部1の拡散キャリア加工手段13と逆拡散キャリア加工手段15は、拡散キャリアcと逆拡散キャリアcへの加工材料とするノイズ信号x、xを入力する。
 その時、入力するノイズ信号x、xを複数のノイズ信号xTi(i=1、2、…N)、xRj(j=1、2、…N)で構成し、それらを適当に組み合わせる加工を行ってひとつの信号を作成し、それをノイズ信号x、xとして、拡散キャリアcと逆拡散キャリアcへの加工材料としても良いものである。
 そのノイズ信号入力xTi(i=1、2、…N)、xRj(j=1、2、…N)の要素は任意であり、例えば、ノイズ信号供給部2内の素ノイズ信号源10から供給される素ノイズ信号xや、内外から侵入するノイズ信号x、加工途中の対オブジェクト広帯域性で不規則性をもつ信号、拡散キャリアcや逆拡散キャリアc、拡散モジュールが出力する拡散出力オブジェクトsである。前記複数のノイズ信号個々の信号の形式も任意である。
 すなわち、アナログ信号でも離散値を取る離散値列の信号でも、連続でも不連続でも良いものである。適当に組み合わせるとは、複数のノイズ信号xTi(i=1、2、…N)、xRj(j=1、2、…N)それぞれを何らかの方法、例えば、算術演算や論理演算、関係演算、あるいはそれらを組み合わせる方法でひとつのノイズ信号x、xに合成することを指す。
 この時、ノイズ信号x、xは任意の値を取る全く不規則な信号でよいので、複数のノイズ信号xTi(i=1、2、…N)、xRj(j=1、2、…N)相互間には、同期などの関係は何も要求されない。
Next, processing for combining a plurality of noise signals will be described. Diffusing carrier processing means 13 the despread carrier processing means 15 of the carrier processing unit 1 according to this embodiment, the noise signal x T of the processing material to the diffusion carrier c T despreading carrier c R, inputs the x R .
Then, the noise signal x T, x R a plurality of noise signals x Ti inputting (i = 1,2, ... N T ), x Rj (j = 1,2, ... N R) constituted by, appropriate them In addition, a single signal is generated by performing processing combined with the above, and the noise signal x T , x R is used as a processing material for the diffusion carrier c T and the despread carrier c R.
The elements of the noise signal inputs x Ti (i = 1, 2,... N T ), x Rj (j = 1, 2,... N R ) are arbitrary, for example, an elementary noise signal in the noise signal supply unit 2 and containing the noise signal x E supplied from a source 10, the noise signal x N entering from inside and outside, a signal having irregularities against the object broadband of course work, spreading the carrier c T and despread carrier c R, diffusion modules Is a diffuse output object s to be output. The signal format of each of the plurality of noise signals is also arbitrary.
That is, an analog signal or a discrete value sequence signal having discrete values may be continuous or discontinuous. Appropriate combination means that a plurality of noise signals x Ti (i = 1, 2,... N T ), x Rj (j = 1, 2,... N R ) are respectively combined in some way, for example, arithmetic operation or logical operation, This refers to synthesis into one noise signal x T , x R by a relational operation or a method of combining them.
At this time, since the noise signals x T and x R may be completely irregular signals having arbitrary values, a plurality of noise signals x Ti (i = 1, 2,... N T ), x Rj (j = 1, 2,... N R ) No relationship such as synchronization is required between them.
 また、ノイズ信号x、xが複数の要素信号が組み合わされる場合、全てのノイズ信号xTi(i=1、2、…N)、xRj(j=1、2、…N)が対オブジェクト広帯域性でなくとも、あるいは、不規則性をもつものでなくとも良いものである。ただし、結果として得られるノイズ信号x、xは対オブジェクト広帯域性で不規則性をもつものとする必要がある。
 この複数のノイズ信号を組み合わせる加工は、対オブジェクト広帯域性と不規則性をもつという性質は継承し、信号パターンは変化するが、発生させる信号パターン間にはある程度の相互相関がある場合がある。
 そのため、拡散キャリア加工手段13と逆拡散キャリア加工手段15における相互相関のないパターンを供給する目的のためには、例えば、全く異なる信号の組合せを用いたり既述した信号を系列方向に推移させる加工のような、他の加工要素を併用する。
In addition, when the noise signals x T and x R are combined with a plurality of element signals, all the noise signals x Ti (i = 1, 2,... N T ), x Rj (j = 1, 2,... N R ) However, it is not always necessary that the object has a broad bandwidth with respect to the object or has no irregularity. However, the noise signals x T and x R obtained as a result need to be irregular with a wide band-to-object property.
The process of combining a plurality of noise signals inherits the property of having broadband property to an object and irregularity, and the signal pattern changes, but there may be some degree of cross-correlation between the generated signal patterns.
Therefore, for the purpose of supplying a pattern having no cross-correlation in the diffusion carrier processing means 13 and the despread carrier processing means 15, for example, processing using a completely different signal combination or shifting the above-described signals in the sequence direction. Other processing elements such as are used together.
 次に、高度で複雑な信号処理手法を用いた加工について説明する。
 拡散キャリア加工手段13と逆拡散キャリア加工手段15として前述した写像変換や信号を系列方向に推移させる加工、複数の信号を組み合わせる加工は、それぞれ単純で基本的な加工要素である。それに対し、より高度で複雑な信号処理手法を用いて、ノイズ信号を拡散キャリアcと逆拡散キャリアcに加工生成しても良いものである。
 例えば、積分や微分演算を含む高度な信号処理で信号を加工しても良いものである。また、例えば、任意の次元の空間フィルタを用いて信号のスペクトル構成を調整して信号を加工しても良いものである。
 任意の次元の空間フィルタとは、例えば、時間空間の通常の周波数フィルタや、二次元平面画像の空間フィルタ、三次元動画の時間と三次元画像の四次元空間フィルタである。信号のスペクトル構成の調整とは、例えば、特定周波数帯域のスペクトル成分を減衰させたり強調したり、ある周波数帯域のスペクトル成分を別のある周波数帯域に移動させたり合成したり、ある周波数帯域のスペクトル成分と別のある周波数帯域のスペクトル成分とを入れ替えたりすることである。
Next, processing using an advanced and complicated signal processing method will be described.
As the diffusion carrier processing means 13 and the despreading carrier processing means 15, the above-described mapping conversion, processing for shifting signals in the series direction, and processing for combining a plurality of signals are simple and basic processing elements. In contrast, it is more sophisticated and using complex signal processing techniques, as the noise signal may be generated processed to diffuse carrier c T despreading carrier c R.
For example, the signal may be processed by advanced signal processing including integration and differentiation. Further, for example, the signal may be processed by adjusting the spectrum configuration of the signal using a spatial filter of an arbitrary dimension.
The arbitrary-dimensional spatial filter is, for example, a normal time-space frequency filter, a two-dimensional planar image spatial filter, or a three-dimensional moving image temporal and three-dimensional image four-dimensional spatial filter. Adjustment of the spectral structure of a signal means, for example, attenuating or enhancing a spectral component in a specific frequency band, moving or synthesizing a spectral component in one frequency band to another frequency band, To replace a component with a spectral component in a certain frequency band.
 このような信号処理は、例えば、高速フーリエ変換処理と、スペクトルの成分を調整する適当な逐次データ処理によって行う。このほかにも、例えばノイズ信号の信号波形を数値解析してゼロクロスのような波形の特徴点を検出し、その特徴点の時刻からあらかじめ規定した不規則様な信号波形を発生させる構成としたり、例えばノイズ信号を加工した信号で電圧可変周波数発信器(VCO)を制御して、ノイズ信号の値で周波数が変化する信号を発生させる構成とするなど、様々な方法が考えられる。
 この、高度で複雑な信号処理手法を用いた加工は、対オブジェクト広帯域性と不規則性という性質は継承し、信号パターンは変化させ、互いに相互相関がない信号のパターンを多数加工作成することを可能にするものであるが、拡散キャリア加工手段と逆拡散キャリア加工手段として対をなす信号となる信号パターンへの加工操作は含まない場合がある。
 そのため、拡散キャリア加工手段13と逆拡散キャリア加工手段15における対をなす信号となるパターンを供給する目的のためには、必要ならば、例えば、既述した写像変換のような、他の加工要素を併用する。
Such signal processing is performed by, for example, fast Fourier transform processing and appropriate sequential data processing for adjusting spectral components. In addition to this, for example, the signal waveform of a noise signal is numerically analyzed to detect a feature point of a waveform such as zero cross, and a configuration that generates a predetermined irregular signal waveform from the time of the feature point, For example, various methods such as a configuration in which a voltage variable frequency oscillator (VCO) is controlled by a signal obtained by processing a noise signal to generate a signal whose frequency changes according to the value of the noise signal can be considered.
Processing using this sophisticated and complex signal processing technique inherits the properties of wideband and irregularity against objects, changes the signal pattern, and creates a large number of signal patterns that have no cross-correlation with each other. Although possible, there is a case where a processing operation to a signal pattern that becomes a pair of signals as the diffusion carrier processing means and the despread carrier processing means is not included.
Therefore, for the purpose of supplying a pattern that is a pair of signals in the diffusion carrier processing means 13 and the despread carrier processing means 15, if necessary, other processing elements such as the mapping conversion described above are used. Use together.
 次に、複数の加工方法を組み合わせてなる加工について説明する。
 既述した、写像変換や、信号を系列方向に推移させる加工や、複数の信号を組み合わせる加工や、高度で複雑な信号処理手法を用いた加工は、それぞれ単独、またはそれらの不足する、例えば機能や加工の程度、複雑さ、作成できる信号のパターン数の少なさなどを補完する目的で適当に組合せて拡散キャリア加工13と逆拡散キャリア加工手段15に用いてよいものである。
 しかし、それに限らず、前記各加工方法は、任意に組み合わせて、必要とする性質のユニークな拡散キャリアcと逆拡散キャリアcを作成するようにしてよいものである。
Next, processing that combines a plurality of processing methods will be described.
The previously described mapping transformation, processing for shifting signals in the sequence direction, processing for combining multiple signals, and processing using sophisticated and complex signal processing techniques are either independent or lack thereof, for example, functions The diffusion carrier processing 13 and the despreading carrier processing means 15 may be appropriately combined for the purpose of complementing the degree of processing, complexity, and the small number of signal patterns that can be created.
However, not limited thereto, the respective processing methods are those in any combination, it may be configured to create a unique spreading carrier c T despreading carrier c R properties that need.
 任意に組み合わせるとは、組合わせる対象や数などの組合せが任意であることであり、例えば、各加工方法の入力を、ノイズ信号としての要件を満足する信号、例えば、加工過程の中間的な信号を用いても良いものであり、またその信号の供給関係が、例えば、入れ子構造であったり、フィードバック構造であったり、フィードフォワード構造であったり、並列や直列構造であったりすることである。 Arbitrary combination means that the combination of objects to be combined and the number of combinations is arbitrary. For example, an input of each processing method is a signal that satisfies the requirements as a noise signal, for example, an intermediate signal in the processing process. The signal supply relationship may be, for example, a nested structure, a feedback structure, a feedforward structure, or a parallel or series structure.
 なお、本実施形態に係るキャリア加工部1の拡散キャリア加工手段13と逆拡散キャリア加工手段15が共通のノイズ信号から加工作成して拡散手段と逆拡散手段に供給する拡散キャリアcと逆拡散キャリアcは、信号系列の位置と長さについて、拡散入力オブジェクトaの信号系列の中で必要な情報を表現している要素を、少なくとも逆拡散モジュール側で復元可能なだけ存在すればよいものである。
 その時、拡散キャリアcと逆拡散キャリアcとしての性質を有す連続した信号であってもよいものである。
 また、拡散キャリアcと逆拡散キャリアcは、例えば、拡散入力オブジェクトが伝送すべき内容を表現している期間だけのように、ある長さの区間内だけで連続して拡散キャリアcと逆拡散キャリアcとしての性質を有する信号であってもよいものである。
 また、拡散キャリアcと逆拡散キャリアcは、前記ある長さの区間内で、拡散キャリアと逆拡散キャリアとしての性質を有すバースト状不連続信号またはインパルス状信号であってもよいものである。バースト状不連続信号またはインパルス状信号とした拡散キャリアや逆拡散キャリアについては後述する。
 また、対オブジェクト広帯域性で不規則性をもつノイズ信号x、x、xは、前記拡散キャリアcと逆拡散キャリアcを加工作成するために必要な波形区間だけ供給すれば良いものであり、素ノイズ信号xは、少なくとも対オブジェクト広帯域性で不規則性を有するノイズ信号xが必要な波形区間で必要なだけ供給すれば良いものである。
 このとき、拡散キャリア加工手段13と逆拡散キャリア加工手段15が必要とする対オブジェクト広帯域性で不規則性をもつノイズ信号xを少なくともノイズ信号供給部2以外の本伝送システム内外の何らかの素ノイズ信号源10が必要な波形区間で必要なだけ供給出来る場合、それらがノイズ信号供給部2となるのである。
Incidentally, the carrier processing unit 1 according to the present embodiment spread carrier processing means 13 the despread carrier processing means 15 is processed create and spread carrier c T despreading supplied to the diffusion means and despreading means from a common noise signal The carrier c R needs to be present in such a manner that at least the element representing the necessary information in the signal sequence of the spread input object a T can be restored on the despreading module side with respect to the position and length of the signal sequence. Is.
Then, those may be a continuous signal having a property as a diffusion carrier c T despreading carrier c R.
The diffusion carrier c T despreading carrier c R is, for example, as in for a period spread input object represents a content to be transmitted, spreading the carrier c T continuously only in a section of a length a signal having a property as a despread carrier c R as those may be.
The diffusion carrier c T despreading carrier c R, within said length interval, or those be burst discontinuous signal or impulse-like signal having a property as a diffusion carrier and despread carrier It is. A spread carrier and a despread carrier that are a burst-like discontinuous signal or an impulse-like signal will be described later.
Further, the noise signals x W , x T , and x R having irregularity with wide bandwidth to the object may be supplied only in the waveform sections necessary for processing and creating the spread carrier c T and the despread carrier c R. are those, containing the noise signal x E are those which may be supplied as required in the noise signal x W is required waveform segment having irregularities at least to-object broadband performance.
In this case, diffusion carrier processing means 13 the despread carrier processing means 15 has irregularities against objects broadband property requiring noise signal x W at least the noise signal supplying section 2 except some containing noise of the transmission system out When the signal source 10 can supply as much as necessary in the necessary waveform section, it becomes the noise signal supply unit 2.
 本実施形態に組み込むキャリア加工部1は、ここに例示したような方法を用い、対オブジェクト広帯域性で不規則性をもつノイズ信号を拡散キャリア加工手段と逆拡散キャリア加工手段に共通する加工材料として、拡散キャリアと逆拡散キャリアが、対オブジェクト広帯域性である、あるいは、不規則性をもつものである、あるいは、対をなす信号である、あるいは、異なるパターンである、あるいは、その異なるパターンが多数得られる、あるいは、互いに相互相関のないパターンであるように加工するものである。 The carrier processing unit 1 incorporated in the present embodiment uses a method as illustrated here as a processing material common to the diffusion carrier processing means and the despread carrier processing means for generating a noise signal having a wide band-to-object property and irregularity. , Spread carrier and despread carrier are object wideband, irregular, or paired signals, different patterns, or many different patterns The pattern is obtained or processed so as to have no mutual correlation.
 このように、図1に示した本実施形態に組み込むキャリア加工部1の構成は、発明を実施するための最良の形態として、既述した拡散キャリアと逆拡散キャリアの供給動作で相互相関がない複数のパターンの、対オブジェクト広帯域性で不規則性をもつ、相互に乗ずるとゼロで無い規定の定数となる対をなす信号の組合せの相互相関確立状態の拡散キャリアcと逆拡散キャリアcを拡散手段と逆拡散手段に供給するものであり、その拡散キャリアcと逆拡散キャリアcを用いて既述した情報伝送原理でスペクトル拡散通信が行われるものである。 As described above, the configuration of the carrier processing unit 1 incorporated in the present embodiment shown in FIG. 1 has no cross-correlation in the supply operation of the spread carrier and the despread carrier described above as the best mode for carrying out the invention. a plurality of patterns, pairs object with irregularities in broadband performance, diffusion carrier c T despreading carrier c R of the cross-correlation established state of the combination of the signals forming the pair is a constant defined not zero when multiplied with each other the is intended to supply to the diffuser means and despreading means, in which spread spectrum communication is performed by the information transmission principle already described with reference to its diffusion carrier c T despreading carrier c R.
 続いて、本実施形態に係るキャリア加工部1を適用した本実施形態に係る伝送システムによれば、従来のスペクトル拡散通信システムと同等の耐ノイズ性が得られることを説明する。
 まず、本実施形態1に係る伝送システムの耐ノイズ性について説明する。
Next, it will be described that according to the transmission system according to the present embodiment to which the carrier processing unit 1 according to the present embodiment is applied, noise resistance equivalent to that of a conventional spread spectrum communication system can be obtained.
First, noise resistance of the transmission system according to the first embodiment will be described.
 既述した説明は理想的環境条件下での動作であるため、拡散モジュール3の出力である拡散出力オブジェクトsは、伝送媒体7を何の変化もせず逆拡散モジュール4まで伝送されるものとした。
 しかし、現実の動作環境では、伝送媒体7には、拡散出力オブジェクトs以外にも信号が存在するものである。それは、例えば、従来一般の電気通信と同様に電線を伝送媒体として電気信号でオブジェクトを伝送する場合、本伝送システムが存在する環境の内外の様々な通信や電気・電子システム・機器・部品から電磁誘導などで侵入する信号や、伝送媒体7を共有して多重伝送を行う本伝送システム以外の伝送信号などである。
 それらの信号は本伝送システムとは無関係に好むと好まざるとにかかわらず存在するものであり、本伝送システムの拡散出力オブジェクトにとってはいわゆるノイズである。前記ノイズは、伝送媒体7の特性によって、拡散出力オブジェクトsに重畳する。
Since the above-described explanation is an operation under ideal environmental conditions, the diffusion output object s that is the output of the diffusion module 3 is transmitted to the despreading module 4 without changing the transmission medium 7. .
However, in an actual operating environment, the transmission medium 7 includes signals other than the diffusion output object s. For example, in the case of transmitting an object with an electric signal using an electric wire as a transmission medium in the same way as in conventional general telecommunication, electromagnetic waves are generated from various communication inside and outside the environment where this transmission system exists and from electric / electronic systems / equipment / parts. For example, a signal entering through guidance or a transmission signal other than the present transmission system that performs multiplex transmission by sharing the transmission medium 7.
These signals exist regardless of whether they are preferred or not, regardless of the transmission system, and are so-called noise for the diffusion output object of the transmission system. The noise is superimposed on the diffusion output object s depending on the characteristics of the transmission medium 7.
 ここで、伝送媒体7で拡散出力オブジェクトsに重畳するノイズをmとする。このとき、逆拡散モジュール4が伝送媒体7から入力する逆拡散入力オブジェクトhは、次式に示すように、拡散モジュール3が出力した拡散出力オブジェクトsと前記ノイズmとを加算したもので表される。
  h(u)=s(u)+m(u)                (数式19)
 逆拡散モジュール4では、このノイズが重畳した逆拡散入力オブジェクトhに対して逆拡散キャリアを乗ずる逆拡散操作を行うので、その結果は次式となる。
  a(u)={s(u)+m(u)}*c(u)        (数式20)
 数式6と同様に、数式20に数式1および数式5を適用すると、次のように展開できる。
  a(u) =s(u)*c(u)+m(u)*c(u)
      =a(u)*c(u)*c(u)+m(u)*c(u)
      =a(u)*k+m(u)*c(u)        (数式21)
Here, m is the noise superimposed on the diffusion output object s in the transmission medium 7. At this time, the despreading input object h input from the transmission medium 7 by the despreading module 4 is expressed by adding the spread output object s output from the spreading module 3 and the noise m as shown in the following equation. The
h (u) = s (u) + m (u) (Equation 19)
The despreading module 4 performs a despreading operation of multiplying the despread input object h on which the noise is superimposed by a despread carrier, and the result is given by the following equation.
a R (u) = {s (u) + m (u)} * c R (u) (Formula 20)
Similar to Equation 6, when Equation 1 and Equation 5 are applied to Equation 20, the following can be developed.
a R (u) = s (u) * c R (u) + m (u) * c R (u)
= A T (u) * c T (u) * c R (u) + m (u) * c R (u)
= A T (u) * k C + m (u) * c R (u) (Formula 21)
 数式21の右辺には、第一項に拡散モジュール3で入力した拡散入力オブジェクトaに相似形状のパターンの信号が現れて拡散入力オブジェクトは伝送されたこととなるが、同時に第二項が重畳することとなる。すなわち、数式21に示される逆拡散手段16から得られる逆拡散出力オブジェクトaは、拡散入力オブジェクトaだけでなく、ノイズmと逆拡散キャリアcとを乗じた信号との混合信号として得られる。
 この第二項はノイズの項なので情報伝送には不要なものであり、この項の存在によって例えば逆拡散出力オブジェクトaは拡散入力オブジェクトaを定数倍しただけの項で構成される場合の波形とは異なる波形となって、伝送する情報を正確に表現しなくなる。
 そのため、数式21で示される逆拡散出力オブジェクトでは、何らかの方法により、拡散入力オブジェクトの成分をノイズから分離あるいはノイズの成分を低減する必要がある。その分離操作は、従来のスペクトル拡散通信システムと同様に、拡散入力オブジェクトの成分とノイズの成分とのスペクトルの占有周波数帯域幅の違いを利用して行う。数式21の第一項で示される拡散入力オブジェクトの成分は、ある制限された周波数領域にしかスペクトルが分布しない信号であるのに対し、同式第二項に示されるノイズの項は、ノイズが逆拡散キャリアと乗じられたものである。
 ここで示されたノイズは逆拡散キャリアと無関係な信号であり、無関係な信号同士では相互相関がゼロである。また、逆拡散キャリアは拡散キャリアと同じように、対オブジェクト広帯域性で不規則性を有する信号である。相互相関がない二つの信号について、少なくともその一方が対オブジェクト広帯域性で不規則性を有する信号であるとき、それらを乗じた信号は、その対オブジェクト広帯域性程度かそれ以上の広帯域性の不規則性を有した信号となる。これはスペクトル拡散操作で得られる効果と同じであり、ノイズは、逆拡散キャリアcによってスペクトル拡散されることとなる。
The right side of Equation 21, but spread input object signals appeared in the pattern of similar shape to spread the input object a T entered the diffusion module 3 to paragraph and thus transmitted, the second term at the same time superimposing Will be. That is, the despread output object a R obtained from the despreading means 16 shown in Expression 21 is obtained as a mixed signal of not only the spread input object a T but also a signal obtained by multiplying the noise m and the despread carrier c R. It is done.
Since the second term is a noise term, it is not necessary for information transmission. For example, the despread output object a R is composed of a term obtained by multiplying the diffuse input object a T by a constant. The waveform is different from the waveform, and the information to be transmitted is not accurately represented.
Therefore, in the despread output object expressed by Equation 21, it is necessary to separate the component of the diffuse input object from the noise or reduce the noise component by some method. The separation operation is performed using the difference in the occupied frequency bandwidth of the spectrum between the spread input object component and the noise component, as in the conventional spread spectrum communication system. The component of the diffuse input object represented by the first term of Equation 21 is a signal whose spectrum is distributed only in a certain limited frequency region, whereas the noise term represented by the second term of the equation 21 It is multiplied by a despread carrier.
The noise shown here is a signal irrelevant to the despread carrier, and the irrelevant signals have zero cross-correlation. Further, the despread carrier is a signal having irregularity with a wide band property against an object, like the spread carrier. When at least one of two signals having no cross-correlation is an object wideband and irregular signal, the signal multiplied by them is a wideband irregularity of the degree of object wideband or higher. Signal. This is the same as the effect obtained by the spread spectrum operation, noise, so that the spectrally spread by a reverse spread carrier c R.
 その結果、ノイズがどのようなスペクトル分布の信号であるかにかかわらず、逆拡散キャリアの占有周波数帯域幅と同程度かそれ以上の広さにスペクトル拡散されて、対オブジェクト広帯域性で不規則性を持つ信号となる。ここで、逆拡散キャリアの占有周波数帯域幅をBWCRとし、この拡散キャリアと乗じられてスペクトル拡散されるノイズmは、スペクトル拡散後、占有周波数帯域幅BWCRの信号になるものとする。
 また、逆拡散出力オブジェクト中のノイズのエネルギーPは、幅BWCRの周波数帯域に一様に分布するものとする。
 ここで、拡散入力オブジェクトaの成分とノイズmの成分の混合信号から拡散入力オブジェクトaの成分をスペクトルの占有周波数帯域幅の違いを利用して分離抽出するとは、例えば混合信号を拡散入力オブジェクトaの占有周波数帯域だけを通過させるフィルタに通すことである。
As a result, regardless of the spectrum distribution of the noise, the spectrum is spread to the same extent as the occupied frequency bandwidth of the despread carrier or larger, and it is irregular with high bandwidth against objects. It becomes a signal with. Here, the occupied bandwidth of the despread carrier and BW CR, noise m is spectrum spread is multiplied by this diffusion carrier, after spreading, it is assumed to be the signal of the occupied bandwidth BW CR.
Further, it is assumed that the noise energy P M in the despread output object is uniformly distributed in the frequency band of the width BW CR .
Here, separating and extracting the component of the spread input object a T from the mixed signal of the component of the spread input object a T and the component of the noise m using the difference in the occupied frequency bandwidth of the spectrum means, for example, that the mixed signal is input to the spread it is through a filter which passes only the occupied frequency band of the object a T.
 前記フィルタは、拡散入力オブジェクトaのスペクトルは全て通過させるが、それ以外の帯域のスペクトルは通過させないもので、例えば低域通過フィルタを用いる。このフィルタによれば、ノイズmのスペクトルでは、フィルタの通過帯域である拡散入力オブジェクトaの占有周波数帯域のスペクトルだけが通過できる。その結果、フィルタの出力には拡散入力オブジェクトaのスペクトルとフィルタを通過できたノイズのスペクトルとが現れる。
 このフィルタは従来のスペクトル拡散通信システムの受信部でも用いられているもので、スペクトル逆拡散の乗算操作の直後に置かれるのが一般的である。図1に示す本伝送システムの構成においても、逆拡散手段16は数式20に示す乗算機能とそのフィルタ機能で構成し、逆拡散入力オブジェクトhと逆拡散キャリアcとを乗じ、その結果を拡散入力オブジェクトaの占有周波数帯域だけを選択的に通過させるフィルタを通して逆拡散出力オブジェクトaとして出力するものである。乗算機能にもフィルタ機能にもそれらを組合せた逆拡散手段の構成にも本発明の特徴はないので一体のシンボルで表現している。
The filter passes all the spectrum of the diffuse input object a T , but does not pass the spectrum of other bands, and uses, for example, a low-pass filter. According to this filter, the noise spectrum m, only the spectrum occupied frequency band of the spread input object a T a pass band of the filter can pass. As a result, the spectrum of the diffuse input object a T and the spectrum of noise that can pass through the filter appear in the output of the filter.
This filter is also used in the receiving unit of the conventional spread spectrum communication system, and is generally placed immediately after the multiplication operation of the spread spectrum spread. In the configuration of the transmission system shown in FIG. 1, despreading means 16 is constituted by a multiplying function and the filter function shown in equation 20, it multiplies the despread input object h despreading carrier c R, spreading the results The despread output object a R is output through a filter that selectively passes only the occupied frequency band of the input object a T. Since there is no feature of the present invention in the multiplication function, the filter function, and the structure of the despreading means combining them, they are expressed by a single symbol.
 ここで、前記フィルタの出力に現れる信号について、ノイズの成分のエネルギーに対する拡散入力オブジェクトの成分のエネルギーの比を求めてみる。これは、フィルタが出力する逆拡散出力オブジェクトのSN比であり、オブジェクト伝送手段としての本伝送システムの性能を評価する指標のひとつである。この時、各信号のスペクトルは、各信号の占有周波数帯域に一様に分布するものとして説明する。
 逆拡散手段の乗算機能から出力された占有周波数帯域幅がBWCRのノイズの成分の全エネルギーPのうち、拡散入力オブジェクトの占有周波数帯域幅BWのフィルタを通過して逆拡散出力オブジェクトの一部として現れるエネルギーPMAは次式で示される。
  PMA=P*BW/BWCR      (数式22)
 このエネルギーのノイズは前記フィルタを通過して、フィルタ出力のオブジェクトに重畳する。ここで、数式22の帯域比を、従来からスペクトル拡散通信の理論で用いられる処理利得(Process Gain)Gと呼ばれる変数で以下のように表現する。
  G=BWCR/BW         (数式23)
 逆拡散出力オブジェクトのSN比SNRは、拡散入力オブジェクトの占有周波数帯域BW内に残留するこのノイズの成分のエネルギーPMAに対する、拡散入力オブジェクトの成分のエネルギーPなので、数式22、数式23を用いて次の様に示される。
  SNR=P/PMA
     =P/(P*BW/BWCR
     =(P/P)*G      (数式24)
 数式24によれば、拡散入力オブジェクトが、ある占有周波数帯域幅BWにエネルギーPで存在しているとき、同時にあるレベルのノイズがエネルギーPで存在しても、拡散入力オブジェクトの占有周波数帯域幅BWに対する逆拡散キャリアの占有周波数帯域幅BWCRを広げて処理利得を上げることにより、拡散入力オブジェクトの成分のエネルギーPやノイズの成分のエネルギーPとは無関係に、逆拡散出力オブジェクトのSN比SNRを改善することが出来ることがわかる。
Here, for the signal appearing at the output of the filter, the ratio of the energy of the component of the diffuse input object to the energy of the noise component is obtained. This is the S / N ratio of the despread output object output by the filter, and is one of the indexes for evaluating the performance of the present transmission system as the object transmission means. At this time, it is assumed that the spectrum of each signal is uniformly distributed in the occupied frequency band of each signal.
The output occupied bandwidth from the multiplication function of the despreading means is BW CR of the total energy P M components of the noise, of the despread output object through the filter of the occupied bandwidth BW A diffusion input object The energy PMA that appears as a part is expressed by the following equation.
P MA = P M * BW A / BW CR (Formula 22)
This energy noise passes through the filter and is superimposed on the filter output object. Here, the band ratio of Expression 22 is expressed as follows using a variable called a process gain GP that is conventionally used in the theory of spread spectrum communication.
G P = BW CR / BW A ( Formula 23)
SN ratio SNR of the despread output object to the energy P MA component of the noise remaining in the occupied frequency band BW A diffusion input object, since energy P A component of the spread input object, Equation 22, Equation 23 It is shown as follows.
SNR = P A / P MA
= P A / (P M * BW A / BW CR )
= (P A / P M) * G P ( Equation 24)
According to Equation 24, when a spread input object exists with an energy P A in a certain occupied frequency bandwidth BW A , even if a certain level of noise exists at the same time with an energy P M , the occupied frequency of the spread input object By spreading the occupied frequency bandwidth BW CR of the despread carrier with respect to the bandwidth BW A and increasing the processing gain, the despread output is independent of the energy P A of the component of the spread input object and the energy P M of the noise component. It can be seen that the SN ratio SNR of the object can be improved.
 このように、本伝送システムは、拡散入力オブジェクトと逆拡散キャリアの占有周波数帯域幅の違いを利用して、拡散入力オブジェクトの成分をノイズの成分から分離するものである。拡散モジュールから逆拡散モジュールへ拡散出力オブジェクトを伝送する伝送媒体で拡散出力オブジェクトに重畳するノイズのエネルギーは、拡散出力オブジェクトのエネルギーに対して大きいのが一般的である。
 例えば、ひとつの伝送媒体を多数の多重通信チャンネルで共用して伝送を行う場合、ひとつのチャンネルの伝送にとって他の全てのチャンネルの拡散出力オブジェクトはノイズである。例えば101チャンネルが等しいエネルギーの拡散出力オブジェクトで同時に伝送する場合、ひとつのチャンネルの拡散出力オブジェクトのエネルギーに対してノイズの総エネルギーは百倍という大きなものとなる。この目的とする伝送の信号とノイズの伝送媒体におけるエネルギーの比が逆拡散手段の乗算機能の出力信号中における目的とする伝送の信号とノイズのエネルギー比にも受け継がれるものと考えると、前記乗算機能の出力には、逆拡散された拡散入力オブジェクトに百倍のエネルギーのノイズが重畳した信号が現れる。
Thus, the present transmission system separates the components of the spread input object from the noise components using the difference in the occupied frequency bandwidth of the spread input object and the despread carrier. In general, the energy of noise superimposed on the diffusion output object in the transmission medium that transmits the diffusion output object from the diffusion module to the despreading module is larger than the energy of the diffusion output object.
For example, when one transmission medium is shared by many multiplex communication channels and transmission is performed, the diffusion output object of all other channels is noise for transmission of one channel. For example, when 101 channels simultaneously transmit with a diffuse output object having the same energy, the total energy of noise is one hundred times larger than the energy of the diffuse output object of one channel. Considering that the ratio of the energy of the target transmission signal to the noise transmission medium is also inherited by the target transmission signal to noise energy ratio in the output signal of the multiplication function of the despreading means, the multiplication In the output of the function, a signal in which noise of 100 times energy is superimposed on the despread diffused input object appears.
 しかし、数式24の効果によれば、拡散出力オブジェクトの百倍のエネルギーのノイズの重畳を受けた場合でも、例えば拡散入力オブジェクトの占有周波数帯域幅に対する逆拡散キャリアの占有周波数帯域幅の比を千倍にすれば、逆拡散後の拡散入力オブジェクト抽出フィルタの出力に現れる信号について、ノイズの成分のエネルギーを、逆拡散される拡散入力オブジェクトの成分のエネルギーの十分の一に減少させることが出来る。逆拡散出力オブジェクトにおける拡散入力オブジェクト成分のエネルギーに対するノイズ成分のエネルギーの比は、拡散入力オブジェクトの占有周波数帯域幅に対する逆拡散キャリアの占有周波数帯域幅の比を大きくすれば、いくらでも小さくすることができるものである。この時、拡散入力オブジェクトの占有周波数帯域幅の調整は、例えば拡散入力オブジェクトを作成する時の一次変調キャリアの周波数を調整して行う。また、逆拡散キャリアの占有周波数帯域幅の調整は、例えばその逆拡散キャリアの加工材料としている素ノイズ信号の占有周波数帯域幅を調整して行う。 However, according to the effect of Expression 24, for example, even when the noise of 100 times the energy of the spread output object is superimposed, the ratio of the occupied frequency bandwidth of the despread carrier to the occupied frequency bandwidth of the spread input object is, for example, 1000 times By doing so, the energy of the noise component of the signal appearing at the output of the diffusion input object extraction filter after despreading can be reduced to one tenth of the energy of the component of the diffusion input object to be despread. The ratio of the energy of the noise component to the energy of the diffuse input object component in the despread output object can be reduced as much as the ratio of the occupied frequency bandwidth of the despread carrier to the occupied frequency bandwidth of the diffuse input object is increased. Is. At this time, adjustment of the occupied frequency bandwidth of the spread input object is performed by adjusting the frequency of the primary modulation carrier when creating the spread input object, for example. Further, the adjustment of the occupied frequency bandwidth of the despread carrier is performed by adjusting the occupied frequency bandwidth of the elementary noise signal used as the processing material of the despread carrier, for example.
 伝送媒体7で拡散出力オブジェクトに重畳するノイズの逆拡散出力オブジェクトに残る影響を、拡散入力オブジェクトの占有周波数帯域幅に対する逆拡散キャリアの占有周波数帯域幅の比を大きく取り、前記フィルタで逆拡散手段が出力する逆拡散出力オブジェクトの占有周波数帯域を拡散入力オブジェクトの占有周波数帯域幅に制限することにより減少させる特性を、以下では耐ノイズ性と記す。
 このように、本伝送システムは、耐ノイズ性を実現するものである。
 なお、数式21の右辺第二項で示される逆拡散出力オブジェクトのノイズの影響項について、ノイズmと逆拡散キャリアcとがある程度の相関を示す場合もその項の影響を抑制することが可能であるが、その詳細については後述する。
The influence of noise superimposed on the spread output object in the transmission medium 7 on the despread output object is set to a ratio of the occupied frequency bandwidth of the despread carrier to the occupied frequency bandwidth of the spread input object, and the filter performs the despreading means. The characteristic of reducing the occupied frequency band of the despread output object output from the above by limiting the occupied frequency band of the spread input object to the occupied frequency bandwidth of the diffused input object is referred to as noise resistance hereinafter.
Thus, this transmission system realizes noise resistance.
Note that the influence term of the noise of the despread output object indicated by the second term on the right side of Equation 21 can be suppressed even when the noise m and the despread carrier c R exhibit a certain degree of correlation. The details will be described later.
 次に、本実施形態に係る伝送システムを比較評価するために、代表的な従来の参照信号内蔵方式のスペクトル拡散通信システムの動作を解析して耐ノイズ性について説明する。
 図40に示したのは代表的な参照信号内蔵方式のスペクトル拡散通信システムで、送信機500、受信機501、伝送媒体502で構成される(非特許文献1、及び非特許文献2)。
Next, in order to compare and evaluate the transmission system according to the present embodiment, the noise resistance is described by analyzing the operation of a typical conventional spread spectrum communication system with a built-in reference signal.
FIG. 40 shows a typical spread spectrum communication system with a built-in reference signal, which includes a transmitter 500, a receiver 501, and a transmission medium 502 (Non-Patent Document 1 and Non-Patent Document 2).
 送信機500は、拡散符号供給部510、乗算器511で構成され、拡散符号供給部510は、クロック発生器512、二値疑似ノイズ発生器(PNG)513で構成される。
 送信機500の動作を、拡散符号供給部510の動作から説明する。拡散符号供給部510では、PNG513が、クロック発生器512が供給するクロック信号に基づいて、絶対値がゼロでなく等しく正負の二値をとる拡散符号cを発生させて乗算器511に供給する。
 そして、乗算器511が、外部から入力する情報入力信号aとPNG513が供給する前記拡散符号cとを乗じて情報入力信号aのスペクトルを拡散したスペクトル拡散出力信号b(以下、拡散出力信号と記す)を作成し、それを伝送媒体502に送出する。
 ここで、情報入力信号aはスペクトルがある帯域に制限された信号であり、拡散符号cは情報入力信号aの占有周波数帯域幅に対してはるかに広い帯域にスペクトルが分布した信号である。拡散出力信号bには伝送媒体502で伝送される過程で図示しないノイズmが重畳し、受信機501はそのノイズmと拡散出力信号bとを含んだ信号rを入力する。
The transmitter 500 includes a spread code supply unit 510 and a multiplier 511, and the spread code supply unit 510 includes a clock generator 512 and a binary pseudo noise generator (PNG) 513.
The operation of transmitter 500 will be described from the operation of spreading code supply section 510. In the spreading code supply unit 510, the PNG 513 generates a spreading code c S having an absolute value that is not equal to zero but takes the same positive / negative binary value based on the clock signal supplied from the clock generator 512, and supplies it to the multiplier 511. .
The multiplier 511 multiplies the information input signal a S inputted from the outside and the spread code c S supplied from the PNG 513 to spread the spectrum of the information input signal a S (hereinafter, spread output). (Denoted as a signal) and sends it to the transmission medium 502.
Here, the information input signal a S is a signal whose spectrum is limited to a certain band, and the spread code c S is a signal whose spectrum is distributed in a much wider band than the occupied frequency bandwidth of the information input signal a S. is there. A noise m (not shown) is superimposed on the spread output signal b in the process of being transmitted through the transmission medium 502, and the receiver 501 inputs a signal r including the noise m and the spread output signal b.
 受信機501は、逆拡散符号供給部520、乗算器521、同期装置522で構成され、逆拡散符号供給部520は、電圧制御による可変周波数クロック発振器(以下、VCOと記す)523、PNG524で構成され、同期制御部522は、制御部525、相関器526、位相差検出器527で構成される。
 受信機501の動作を、逆拡散符号供給部520の動作から説明する。逆拡散符号供給部520では、PNG524が、VCO523が供給するクロック信号に基づいて逆拡散符号cを発生させて乗算器521に供給する。
 前記VCO523が供給する前記クロック信号は、送信機500のクロック発生器512がPNG513に供給するクロック信号と同一繰返し周期の信号である。また、前記PNG524が発生させる逆拡散符号cは、送信機500のPNG511が発生させる拡散符号cと同じパターンの信号である。
 乗算器521は、伝送媒体502から入力する拡散出力信号bを含む受信入力信号rと、PNG524が供給する前記逆拡散符号cとを乗じ、スペクトルを逆拡散した情報入力信号aの成分を含むスペクトル逆拡散出力信号a(以下、逆拡散出力信号と記す)を出力する。実際の受信機においては、乗算器521に続けて情報入力信号aのスペクトルの占有周波数帯域だけを選択的に通過させるフィルタを設け、乗算器521の出力から情報入力信号aのスペクトルの占有周波数帯域の成分だけを抽出して受信機の出力とするが、図40ではそのフィルタの記述は省略している。
The receiver 501 includes a despreading code supply unit 520, a multiplier 521, and a synchronization device 522. The despreading code supply unit 520 includes a voltage-controlled variable frequency clock oscillator (hereinafter referred to as VCO) 523 and a PNG 524. The synchronization controller 522 includes a controller 525, a correlator 526, and a phase difference detector 527.
The operation of the receiver 501 will be described from the operation of the despread code supply unit 520. Despreading code supplying unit 520, PNG524 supplies to the multiplier 521 to generate the despreading code c D based on the clock signal supplied by VCO523.
The clock signal supplied by the VCO 523 is a signal having the same repetition period as the clock signal supplied to the PNG 513 by the clock generator 512 of the transmitter 500. Further, the despread code c D generated by the PNG 524 is a signal having the same pattern as the spread code c S generated by the PNG 511 of the transmitter 500.
The multiplier 521 multiplies the received input signal r including the spread output signal b input from the transmission medium 502 and the despread code c D supplied from the PNG 524, and uses the component of the information input signal a S obtained by despreading the spectrum. A spectrum despread output signal a D (hereinafter referred to as a despread output signal) is output. In the actual receiver, a filter that selectively passes only the occupied frequency band of the spectrum of the information input signal a S is provided after the multiplier 521, and the spectrum of the information input signal a S is occupied from the output of the multiplier 521. Although only the frequency band components are extracted and used as the output of the receiver, the description of the filter is omitted in FIG.
 続いて、図40に示す従来例における同期装置522の動作を説明する。
 参照信号内蔵方式では、送信機と受信機とが独立したPNG513、524を有し、通信システムが動作を開始する時点ではそのPNGは同期しておらず、それらが生成する1組の拡散符号cと逆拡散符号cは、相互相関が取れていない状態である。
 相互相関が取れていない状態の拡散符号cと逆拡散符号cはいわば無関係な信号同士なので、これを用いて情報伝送は行えない。
 そのため、情報の伝送に先立ち、通信システムはまずPNG513とPNG524の同期を取って、拡散符号cと逆拡散符号cの相互相関を高めておく必要がある。
 受信機に設けた同期装置はこのための要素であり、図40に示した構成の参照信号内蔵方式のスペクトル拡散通信システムは、この同期装置を用いた同期捕捉動作と同期捕捉動作と呼ばれる二つの動作によって同期をとる。
 同期捕捉動作は、受信機の逆拡散符号cの送信機の拡散符号cに対する時間領域での符号パターンの位置合わせを行って相互相関確立状態を作り出す動作であり、同期保持動作は、その確立した相互相関確立状態を維持し続ける動作である。
 通信システムは、動作を開始するとまず同期捕捉動作を行い、それが成功裏に終了すると動作は同期保持動作に移行し、この同期保持動作のもとで情報入力信号の伝送を行う。同期捕捉動作では、送信機500は、例えば、情報入力信号aを+1という定数に固定して、情報としては意味のない情報入力信号を乗じて拡散符号cを連続して伝送媒体502に送出する。
Next, the operation of the synchronization device 522 in the conventional example shown in FIG. 40 will be described.
In the reference signal built-in method, the transmitter and the receiver have independent PNGs 513 and 524, and when the communication system starts operation, the PNGs are not synchronized, and a set of spreading codes c generated by them. S despreading code c D is a state in which the cross-correlation is not taken.
Since the spread code c S and the despread code c D in a state where the cross-correlation is not taken are so-called irrelevant signals, information transmission cannot be performed using them.
Therefore, prior to the transmission of information, the communication system must first synchronize PNG 513 and PNG 524 to increase the cross-correlation between the spread code c S and the despread code c D.
The synchronization device provided in the receiver is an element for this purpose, and the reference signal built-in type spread spectrum communication system having the configuration shown in FIG. 40 has two synchronization acquisition operations and synchronization acquisition operations using this synchronization device. Synchronize by movement.
The synchronization acquisition operation is an operation of creating a cross-correlation establishment state by aligning the code pattern in the time domain with respect to the spread code c S of the transmitter despread code c D of the receiver, and the synchronization holding operation is This is an operation of maintaining the established cross-correlation establishment state.
When the communication system starts operation, it first performs a synchronization acquisition operation. When the operation is successfully completed, the operation shifts to a synchronization holding operation, and an information input signal is transmitted under this synchronization holding operation. In the synchronization acquisition operation, for example, the transmitter 500 fixes the information input signal a T to a constant of +1, and multiplies the information input signal that is meaningless as information to continuously apply the spread code c S to the transmission medium 502. Send it out.
 一方、受信機501の同期装置522は、この拡散符号cを含む受信入力信号rを伝送媒体502から入力して相関器526に導く。
 相関器526は、受信入力信号rに含まれる拡散符号cと、PNG524が発生する逆拡散符号cとの相互相関値を逆拡散符号cの一周期に渡って計算する。相関器526は、制御部525の制御の下で、この相互相関値を求める演算処理を、PNG524が発生させる逆拡散符号cの周期的パターンについて一周期ごとに1ビットずつシフトさせた全てのパターンに対して行う。相関器526は、全ての逆拡散符号パターンと拡散符号パターンとの相互相関値を得、得られた相互相関値を制御部525内に記憶する。
 制御部525は、全ての逆拡散符号パターンと拡散符号パターンとの相互相関値を得ると、全ての相互相関値のうちもっとも高い値が規定のある閾値を越えているかどうかを調べ、もっとも高い相互相関値が規定のある閾値を越えた場合は、その相互相関値を示した時のパターンを相互相関確立状態のパターンとして発生させるようにPNG524を調整し、同期捕捉に成功したとして同期捕捉動作を終了する。
 もし規定のある閾値を越える相互相関値がなければ、拡散符号と相互相関が取れた逆拡散符号パターンを発見できなかったと判定し、同期捕捉に失敗したとして相互相関の算出をPNG524の最初のパターンからやり直す。同期捕捉動作を成功裏に終了した受信機501の同期装置522では、この同期捕捉動作によって、受信機で発生させる逆拡散符号列のパターンが、送信機の拡散符号列のパターンに対して、例えば、1ビットの符合分の時間の±50%以内のズレの同期状態になっている。
 同期捕捉動作の成功裏の終了に伴って開始される同期保持動作では、同期装置522は位相差検出器527を用いてPNG524が発生させる逆拡散符号cの伝送媒体502から入力する信号rに含まれる拡散符号cの成分に対する位相差を測定し、その位相差が小さくなるように電圧(周波数)制御クロック発振器523を調整する。これらの同期操作によって、受信機のPNG524が発生させる逆拡散符号cは送信機の拡散符号cと高い相互相関が確立された状態となり、これらの拡散符号cと逆拡散符号cを用いた情報伝送が可能となる。
On the other hand, the synchronization device 522 of the receiver 501 inputs the received input signal r including the spread code c S from the transmission medium 502 and guides it to the correlator 526.
Correlator 526, a spread code c S included in the received input signal r, is calculated over one period of the correlation value despreading code c D with the despreading code c D which PNG524 occurs. Correlator 526, under control of the control unit 525, the calculation processing for obtaining the cross-correlation value, all that is shifted one bit per one period for the periodic pattern of despreading code c D where PNG524 is generating To the pattern. The correlator 526 obtains cross-correlation values between all the despread code patterns and the spread code patterns, and stores the obtained cross-correlation values in the control unit 525.
When the control unit 525 obtains the cross-correlation values between all the despread code patterns and the spread code patterns, the control unit 525 checks whether the highest value among all the cross-correlation values exceeds a prescribed threshold value, and determines the highest mutual correlation value. If the correlation value exceeds a specified threshold, the PNG 524 is adjusted so that the pattern when the cross-correlation value is indicated is generated as a pattern of the cross-correlation establishment state. finish.
If there is no cross-correlation value exceeding a predetermined threshold, it is determined that a despread code pattern cross-correlated with the spread code could not be found, and the cross-correlation is calculated as the first pattern of PNG 524 assuming that synchronization acquisition has failed. Start over. In the synchronization device 522 of the receiver 501 that has successfully completed the synchronization acquisition operation, the pattern of the despread code sequence generated by the receiver by this synchronization acquisition operation is, for example, different from the pattern of the spread code sequence of the transmitter. The synchronization state is shifted within ± 50% of the time corresponding to the sign of 1 bit.
In the synchronization holding operation that starts with the successful completion of the synchronization acquisition operation, the synchronization device 522 uses the phase difference detector 527 to generate the signal r input from the transmission medium 502 of the despread code c D generated by the PNG 524. The phase difference with respect to the component of the spread code c S included is measured, and the voltage (frequency) control clock oscillator 523 is adjusted so that the phase difference becomes small. By these synchronization operations, the despread code c D generated by the PNG 524 of the receiver is in a state where a high cross-correlation with the spread code c S of the transmitter is established, and the spread code c S and the despread code c D are changed. The used information transmission becomes possible.
 このように、図40に示した構成の参照信号内蔵方式の通信システムでは、受信機501の同期装置522を用いた同期操作によって、拡散符号cと逆拡散符号cの相互相関確立状態が安定して得られるようにして、その拡散符号cと逆拡散符号cとを用いてスペクトル拡散通信を可能にしている。 Thus, in the communication system of the reference signal internal system configuration shown in FIG. 40, the synchronous operation using the synchronization device 522 of the receiver 501, the cross-correlation established state of the spreading code c S and the despreading code c D Spread spectrum communication is enabled by using the spread code c S and the despread code c D so as to be obtained stably.
 次に、図40に示す従来の参照信号内蔵方式のスペクトル拡散通信システムの動作を解析して、数式21に示した本通信システムにおける逆拡散出力オブジェクトを比較する。
 送信機500が送出する拡散出力信号bは、情報入力信号をaとし、拡散符号をcとすると以下のように表せる。
  b=a*c         (数式25)
 拡散出力信号bは、送信機500から受信機501まで伝送媒体502を伝送される過程でノイズmが重畳するので、受信機が入力する信号rは以下のようになる。
  r=b+m
   =a*c+m       (数式26)
 この信号rに送信機の拡散符号cと相互相関確立状態の逆拡散符号cを乗じて得る逆拡散出力信号aは以下のようになる。
  a=r* c
   =(a *c+m)*c
   =a* c*c+m*c
   =a* kPN +m*c   (数式27)
ただし、これには、相互相関確立状態の拡散符号cと逆拡散符号cとは互いに等しく、その値は絶対値がゼロでなく等しい正負の二値であることから言える以下の関係を用いている。
  c=c=±kPN       (数式28)
  c*c=kPN        (数式29)
 数式27右辺第一項は送信機が送信した情報入力信号aに比例の関係にあることを示しており、この関係の成分が連なった信号は、波形パターンが情報入力信号aのパターンと相似の形状となり、これによって、通信システムの送信機から受信機に情報が伝達されたこととなる。また、数式27右辺第二項は拡散出力信号に対するノイズの影響項である。
Next, the operation of the conventional spread spectrum communication system with a built-in reference signal shown in FIG. 40 is analyzed, and the despread output objects in this communication system shown in Equation 21 are compared.
The spread output signal b transmitted from the transmitter 500 can be expressed as follows, where the information input signal is a S and the spread code is c S.
b = a S * c S (Formula 25)
The spread output signal b is superimposed with noise m in the process of being transmitted through the transmission medium 502 from the transmitter 500 to the receiver 501, so the signal r input by the receiver is as follows.
r = b + m
= A S * c S + m (Formula 26)
Despread output signal a D obtained by multiplying the despread code c D spreading code c S and the cross-correlation established state of the transmitter to the signal r is as follows.
a D = r * c D
= (A S * c S + m) * c D
= A S * c S * c D + m * c D
= A S * k PN 2 + m * c D (Formula 27)
However, for this, the spread code c S and the despread code c D in the cross-correlation established state are equal to each other, and their values are the same positive and negative binary values, not the absolute values, but the following relationship can be used. ing.
c S = c D = ± k PN (Equation 28)
c S * c D = k PN 2 (Equation 29)
The first term on the right side of Equation 27 indicates that there is a proportional relationship with the information input signal a S transmitted by the transmitter, and the waveform pattern has a waveform pattern different from that of the information input signal a S. It has a similar shape, and thus information is transmitted from the transmitter of the communication system to the receiver. The second term on the right side of Equation 27 is a noise influence term on the diffusion output signal.
 ここで、数式21で示される本通信システムの逆拡散出力オブジェクトと、数式27で示される従来の同期装置を用いた参照信号内蔵方式のスペクトル拡散通信システムの逆拡散出力信号とを比較する。
 まず、数式21の右辺第一項と数式27の右辺第一項を比較する。従来の同期装置を用いた参照信号内蔵方式のスペクトル拡散通信システムの場合、逆拡散符号は受信機で作成するので、それに伝送媒体で侵入するノイズが重畳することはなく、その様なノイズが逆拡散符号と拡散符号間の数式28、数式29の関係を劣化させる要素となることはない。
 その結果、数式27の第1項にはノイズの影響が含まれず、同期操作によって相互相関確立状態さえ実現できれば、数式29の条件を精度良く成立させることができ、数式27の第1項は情報入力信号aと完全に相似形な波形となる。
Here, the despread output object of the communication system represented by Expression 21 is compared with the despread output signal of the spread spectrum communication system of the reference signal built-in type using the conventional synchronization apparatus represented by Expression 27.
First, the first term on the right side of Equation 21 is compared with the first term on the right side of Equation 27. In the case of a spread spectrum communication system with a built-in reference signal using a conventional synchronizer, the despread code is created by the receiver, so that noise entering the transmission medium is not superimposed on it, and such noise is reversed. It does not become an element that degrades the relationship of Expression 28 and Expression 29 between the spreading code and the spreading code.
As a result, the first term of Expression 27 does not include the influence of noise, and if the cross-correlation establishment state can be realized by the synchronization operation, the condition of Expression 29 can be established with high accuracy. the input signal a S and perfectly similar shape waveform.
 一方、本伝送システムの場合、逆拡散キャリアはキャリア加工部1の外から入力するノイズ信号を加工して作成されるので、本伝送システム内外から侵入するノイズがそのノイズ信号に重畳すると、加工材料とするノイズ信号が変化するので、逆拡散キャリアはノイズの重畳がない場合とは異なる信号パターンになってしまう。
 しかしながら、ノイズの重畳を受けても、重畳したノイズを含めたノイズ信号が拡散キャリアと逆拡散キャリアへの加工材料として適切な対オブジェクト広帯域性で不規則性をもつ拡散キャリア加工手段13と逆拡散キャリア加工手段15に共通な信号である限り、本伝送システムの拡散キャリア加工手段13と逆拡散キャリア加工手段15は、その重畳したノイズを含むノイズ信号から対オブジェクト広帯域性で不規則性をもつ対をなす信号の拡散キャリアと逆拡散キャリアを作成して供給するものである。
すなわち、ノイズの重畳があるとき、拡散キャリア加工手段はノイズの重畳がないときのノイズ信号xとは異なる加工材料を入力するので、ノイズの重畳がないノイズ信号xから加工作成する拡散キャリアcとは異なる拡散キャリアcを出力するが、そのとき、逆拡散キャリア加工手段が入力するノイズ信号xもノイズ信号xと同時に同じに変化するので、本伝送システムの拡散キャリア加工手段と逆拡散キャリア加工手段は、同一とみなせるノイズ信号を入力することとなり、そのノイズを含めたノイズ信号が対オブジェクト広帯域性で不規則性を有す限りは、それを対オブジェクト広帯域性で不規則性を持つ相互相関確立状態で対をなす信号の拡散キャリアと逆拡散キャリアとに加工して供給するものである。
On the other hand, in the case of the present transmission system, the despread carrier is created by processing a noise signal input from outside the carrier processing unit 1, so if noise entering from inside or outside this transmission system is superimposed on the noise signal, the processing material Therefore, the despread carrier has a signal pattern different from that in the case where no noise is superimposed.
However, even when the noise is superimposed, the noise signal including the superimposed noise and the diffusion carrier processing means 13 having a wide anti-object property and irregularity suitable as a processing material for the diffusion carrier and the despread carrier are despread. As long as the signal is common to the carrier processing means 15, the spread carrier processing means 13 and the despread carrier processing means 15 of the present transmission system use a noise signal including the superimposed noise from the noise signal including the object wideband and irregularity. The signal spreading carrier and the despreading carrier are formed and supplied.
That is, when there is a superposition of noise, since entering a different processing materials noise signal x T when spreading the carrier processing means there is no superposition of noise spreading carrier for processing generated from the noise signal x T superposition no noise Although output different spreading carrier c T a c T, the time, since the despread carrier processing means noise signal x R is also changed in the same simultaneously with the noise signal x T to enter the diffusion carrier processing means of the present transmission system The despread carrier processing means inputs a noise signal that can be regarded as the same, and as long as the noise signal including the noise has irregularity with object wideband property, it is irregular with object wideband property. The signal is processed and supplied into a spread carrier and a despread carrier of a pair of signals in a state where the cross-correlation is established.
 その結果、本伝送システムの拡散キャリアと逆拡散キャリアも、従来の同期装置を用いた参照信号内蔵方式のスペクトル拡散通信システムの場合と同様に、ノイズが伝送媒体でノイズ信号に侵入しても、そのノイズが逆拡散キャリアにノイズとして重畳することはなく、その様なノイズが逆拡散キャリアと拡散キャリア間の数式5に示す対をなす信号の関係を劣化させる要素となることはない。
 その結果、数式21の第1項にはノイズの影響が含まれず、ノイズ信号の相互相関確立状態を継承し拡散キャリアと逆拡散キャリアとを相互相関確立状態の対をなす信号の拡散キャリア加工手段と逆拡散キャリア加工手段とによれば、数式5の条件を精度良く成立させることができ、数式21の第1項は拡散入力オブジェクトaと完全に相似形な波形となる。
 このように、数式21の右辺第一項と数式27の右辺第一項は物理的に同じ意味であるといえる。
As a result, the spread carrier and the despread carrier of this transmission system can also be used when the noise enters the noise signal in the transmission medium, as in the case of the spread spectrum communication system with a built-in reference signal using the conventional synchronization device. The noise is not superimposed on the despread carrier as noise, and such noise does not become a factor that deteriorates the relationship between the despread carrier and the spread signal between the paired signals shown in Formula 5.
As a result, the first term of Equation 21 does not include the influence of noise, and the signal diffusion carrier processing means inherits the cross-correlation established state of the noise signal and forms a pair of the cross-correlation established state between the spread carrier and the despread carrier. According to despreading carrier processing means and can be precisely established conditions equation 5, the first term of equation 21 is the spread input object a T and completely similar shape waveform.
Thus, it can be said that the first term on the right side of Equation 21 and the first term on the right side of Equation 27 have the same physical meaning.
 次に数式21の右辺第二項と数式27の右辺第二項を比較する。
 従来の同期装置を用いた参照信号内蔵方式のスペクトル拡散通信システムの場合、受信機で作成する逆拡散符号は伝送媒体で伝送される拡散出力信号に侵入するノイズが重畳とは全く無関係な信号なので、その逆拡散符号とノイズとの間の相互相関はゼロである。また、逆拡散符号は拡散符号と同じように、広帯域性で不規則性を有する信号である。相互相関がない二つの信号について、その一方が広帯域性で不規則性を有する信号であるとき、それらを乗じた信号は、その広帯域性と同程度かそれ以上の広帯域性の不規則性を有した信号となる。これはスペクトル拡散操作で得られる効果と同じであり、ノイズは、逆拡散符号によってスペクトル拡散されることとなる。
 一方、本伝送システムの場合、ノイズmとは異なるノイズ信号xを加工して拡散キャリアと逆拡散キャリアとを作成する。ノイズmとノイズ信号xとは全く無関係な信号なのでそれらの間の相互相関はゼロである。この相互相関がない二つの信号について、ノイズ信号xが対オブジェクト広帯域性で不規則性を有する信号なので、それらを乗じた信号は、その対オブジェクト広帯域性程度かそれ以上の広帯域性の不規則性を有した信号となる。すなわち、ノイズは、逆拡散キャリアcによってスペクトル拡散されることとなる。
 このように、数式21の右辺第二項と数式27の右辺第二項もまた物理的に同じ意味であるといえる。なお、本伝送システムの場合、ノイズmもまたノイズ信号の一部とする場合がある。この場合はノイズmとノイズ信号xとの間の相互相関がゼロではないことがある。この場合については後述する。
Next, the second term on the right side of Equation 21 is compared with the second term on the right side of Equation 27.
In the case of a spread spectrum communication system with a built-in reference signal using a conventional synchronizer, the despreading code created by the receiver is a signal that is completely unrelated to the superposition of noise entering the spread output signal transmitted on the transmission medium. The cross-correlation between the despread code and noise is zero. The despread code is a signal having a wide band and irregularity like the spread code. When two of the signals that have no cross-correlation are wideband and irregular, the signal multiplied by them has a wideband irregularity that is equal to or greater than that of the wideband. Signal. This is the same as the effect obtained by the spread spectrum operation, and the noise is spread by the despread code.
On the other hand, if the present transmission system, to create a diffusion carrier and despread the carrier by processing the different noise signal x W is the noise m. Noise m and the noise signal x W completely unrelated signals because the cross-correlation between them is zero. The two signals have no cross-correlation, since the signal noise signal x W has irregularities against objects broadband property, signals obtained by multiplying them, the pair object broadband property about or more broadband of irregular Signal. In other words, noise, so that the spectrally spread by a reverse spread carrier c R.
Thus, it can be said that the second term on the right side of Equation 21 and the second term on the right side of Equation 27 also have the same physical meaning. In the case of this transmission system, the noise m may also be part of the noise signal. In this case, it may cross-correlation between the noise m and the noise signal x W is not zero. This case will be described later.
 結果として数式21と数式27が示す意味は物理的に同じことといえる。すなわち、従来の同期装置を用いた参照信号内蔵方式のスペクトル拡散通信システムは、受信機がその内部で逆拡散符号を作成することにより、伝送媒体で侵入するノイズが逆拡散符号に重畳しないようにしたのに対し、本伝送システムは、伝送媒体11でノイズ信号に重畳するノイズがあっても、そのノイズを有効なノイズ信号要素に取り込むことを許容し、ノイズを有効かつ積極的に含める効果を逆拡散キャリアの加工だけでなく拡散キャリアの加工にも反映させて、伝送媒体で侵入するノイズが逆拡散キャリアに重畳せず、かつ拡散キャリアと逆拡散キャリアとの対をなす信号関係が維持されるようにしている。一方、伝送媒体で侵入するノイズは、従来の同期装置を用いた参照信号内蔵方式のスペクトル拡散通信システムでも本伝送システムでも、逆拡散符合または逆拡散キャリアでスペクトル拡散されることとなる。そのノイズの受信機の出力或いは逆拡散出力オブジェクトに対する影響は、逆拡散符合或いは逆拡散キャリアの占有周波数帯域幅と情報入力信号或いは拡散入力オブジェクトの占有周波数帯域幅の比を大きく取ることによって軽減・排除できるものである。 As a result, it can be said that the meanings represented by Equation 21 and Equation 27 are physically the same. In other words, a spread spectrum communication system with a built-in reference signal using a conventional synchronizer prevents a noise that invades in the transmission medium from being superimposed on the despread code by creating a despread code inside the receiver. On the other hand, this transmission system allows the noise to be incorporated into an effective noise signal element even if there is noise superimposed on the noise signal in the transmission medium 11, and has the effect of including noise effectively and positively. Reflecting not only the processing of the despread carrier but also the processing of the spread carrier, the noise entering the transmission medium is not superimposed on the despread carrier, and the signal relationship that forms a pair of the spread carrier and the despread carrier is maintained. I try to do it. On the other hand, noise that intrudes in the transmission medium is spread by a despread code or a despread carrier in both the spread spectrum communication system with a built-in reference signal using a conventional synchronizer and this transmission system. The influence of the noise on the output of the receiver or the despread output object is reduced by taking a large ratio between the occupied frequency bandwidth of the despread code or despread carrier and the occupied frequency bandwidth of the information input signal or spread input object. It can be eliminated.
 このように、本伝送システムは、ノイズ信号にノイズが侵入してもそれによって逆拡散キャリアにノイズが重畳することも拡散キャリアと逆拡散キャリアの対をなす信号関係が崩れることがない点と、伝送媒体で拡散出力オブジェクトにノイズが侵入してもその影響を受けにくい耐ノイズ性について、従来の同期装置を用いた参照信号内蔵方式のスペクトル拡散通信システムと理論的に等価なスペクトル拡散通信を行うこととなる。 In this way, the transmission system can prevent noise from being superimposed on the despread carrier even if noise intrudes into the noise signal, and the signal relationship that forms a pair of the spread carrier and the despread carrier does not collapse, Performs spread spectrum communication that is theoretically equivalent to a spread spectrum communication system with a built-in reference signal using a conventional synchronizer for noise resistance that is not easily affected by noise intruding into a spread output object on a transmission medium. It will be.
 続いて、本伝送システムによれば、従来のスペクトル拡散通信システムの課題が解決されることを説明する。 Subsequently, it will be described that the problem of the conventional spread spectrum communication system is solved according to the present transmission system.
 まず、本伝送システムは、従来の同期装置を用いた参照信号内蔵方式のスペクトル拡散通信システムが抱えていた課題を解決することを説明する。
 本発明の実施形態に係るキャリア加工装置(キャリア加工部1)によれば、その構成自体が同期装置を構成する。すなわち、共通のノイズ信号を同一の信号と取り扱って、これを加工材料として入力し、その信号の性質を継承する加工で、相互相関確立状態の拡散キャリアと逆拡散キャリアの対を得るものである。このキャリア供給部1を本伝送システムに適用した場合、上述した操作は、莫大な回数の繰返し演算も必要ないし、曖昧な試行錯誤も必要ない、従来の同期装置を用いた参照信号内蔵方式のスペクトル拡散通信システムの様には時間を掛けずに行えるプロセスである。
 これにより、図40に示す従来の参照信号内蔵方式のスペクトル拡散通信システムでは通信に先立って必要だった同期捕捉の操作が、本実施形態では不要となるため、通信の要求に即応できないという課題は、本実施形態では解消されている。
First, it will be described that the present transmission system solves the problems of the spread spectrum communication system of the reference signal built-in type using the conventional synchronization device.
According to the carrier processing device (carrier processing unit 1) according to the embodiment of the present invention, the configuration itself constitutes a synchronization device. In other words, a common noise signal is treated as the same signal, this is input as a processing material, and a process of inheriting the nature of the signal is obtained to obtain a pair of spread carrier and despread carrier in a cross-correlation established state. . When this carrier supply unit 1 is applied to the present transmission system, the above-described operation does not require an enormous number of repetitive operations and does not require an ambiguous trial and error, and a spectrum of a reference signal built-in method using a conventional synchronizer. It is a process that can be performed without taking time like a spread communication system.
As a result, since the operation of acquisition of synchronization that was necessary prior to communication in the conventional spread spectrum communication system with a built-in reference signal shown in FIG. 40 is not required in this embodiment, there is a problem that the request for communication cannot be immediately met. In this embodiment, this is solved.
 また、本実施形態に係るキャリア加工部1によれば、その構成自体が同期装置を構成するので、このキャリア加工部1を本伝送システムに適用した場合、特に同期装置と呼ばれる装置を必要としない。そのため、本伝送システムの逆拡散モジュールでは、図40に示す従来の参照信号内蔵方式のスペクトル拡散通信システムの受信機で用いられた同期装置を組合わせたPNGは、逆拡散キャリア加工手段で置き換える。逆拡散キャリア加工手段は、たとえば数式13で表せる簡単な写像変換であり簡単なアナログ回路で実現できる。その結果、同期装置に必要だった多量のメモリも、演算器も、信号変換器も、広いバスも、パイプライン処理装置も必要なくなり、受信機は小規模な回路資源やソフトウェア資源で構成できるものとなる。
 これにより、図40に示す従来の参照信号内蔵方式のスペクトル拡散通信システムの受信機が大規模化する課題は、本実施形態では解決されている。
In addition, according to the carrier processing unit 1 according to the present embodiment, the configuration itself constitutes a synchronization device. Therefore, when this carrier processing unit 1 is applied to the transmission system, a device called a synchronization device is not particularly required. . Therefore, in the despreading module of the present transmission system, the PNG combined with the synchronization device used in the receiver of the conventional spread spectrum communication system with a built-in reference signal shown in FIG. 40 is replaced with a despread carrier processing means. The despread carrier processing means is a simple mapping conversion that can be expressed, for example, by Equation 13, and can be realized with a simple analog circuit. As a result, there is no need for a large amount of memory, arithmetic unit, signal converter, wide bus, and pipeline processor required for the synchronization device, and the receiver can be configured with small circuit resources and software resources. It becomes.
Thereby, the problem that the receiver of the conventional spread spectrum communication system with a built-in reference signal shown in FIG. 40 becomes large is solved in this embodiment.
 また、本実施形態に係るキャリア加工部1によれば、その構成自体が同期装置を構成するので、このキャリア加工部1を本伝送システムに適用した場合、通信の要求が無い時に拡散キャリア加工手段と逆拡散キャリア加工手段は動作を止めていても、通信要求が発生した時は特に同期操作を必要とせずに直ぐに相互相関の取れた拡散キャリアと逆拡散キャリアが得られる。そのため、通信の必要がないときには伝送媒体に何の信号も供給せず、その期間には同期保持の動作も同期保持のための通信も必要なく、通信要求があるときには必要なだけ伝送媒体を通して信号を伝送すればよい。
 これにより、図40に示す従来の参照信号内蔵方式のスペクトル拡散通信システムの伝送媒体の伝送容量の浪費と、伝送媒体を共用する他の通信に無用な干渉を与えることと、間欠的通信用途において同期保持動作に無駄な電力を浪費するという課題は、本実施形態では解決されている。
Further, according to the carrier processing unit 1 according to the present embodiment, the configuration itself constitutes a synchronization device. Therefore, when this carrier processing unit 1 is applied to the present transmission system, the spread carrier processing means is used when there is no communication request. Even when the despread carrier processing means stops operating, when a communication request is generated, a spread carrier and a despread carrier having a cross-correlation can be obtained immediately without requiring a synchronization operation. Therefore, when no communication is necessary, no signal is supplied to the transmission medium. During this period, neither synchronization holding operation nor synchronization holding communication is required. When there is a communication request, signals are transmitted through the transmission medium as much as necessary. May be transmitted.
As a result, the transmission capacity of the transmission medium of the conventional spread spectrum communication system with a built-in reference signal shown in FIG. 40, unnecessary interference with other communication sharing the transmission medium, and intermittent communication use The problem of wasting unnecessary power in the synchronization holding operation is solved in this embodiment.
 次に、本伝送システムを評価するために、図41に示す従来の参照信号送信方式のスペクトル拡散通信システムの動作を解析する(特許文献1、特許文献2、及び特許文献3、非特許文献1、非特許文献2)。
 図41に示したのは特許文献1に示された参照信号送信方式のスペクトル拡散通信システムで、送信機600、受信機601、伝送媒体602で構成される。
Next, in order to evaluate this transmission system, the operation of the spread spectrum communication system of the conventional reference signal transmission method shown in FIG. 41 is analyzed (Patent Document 1, Patent Document 2, and Patent Document 3, Non-Patent Document 1). Non-Patent Document 2).
FIG. 41 shows a spread spectrum communication system of the reference signal transmission method disclosed in Patent Document 1, which includes a transmitter 600, a receiver 601, and a transmission medium 602.
 送信機600は、拡散符号供給部610、乗算器611、同期装置612、加算器613で構成され、拡散符号供給部610は、クロック発生器614、PNG615より成り、同期装置612は、遅延器616で構成される。
 送信機600は次のように動作する。まず、拡散符号供給部610で、クロック発生器614が供給するクロック信号に基づいて、PNG615が、絶対値がゼロでなく等しく正負の二値をとる拡散符号cを発生させて乗算器611に供給する。
 乗算器611は、外部から入力する情報入力信号aと、PNG615が供給する前記拡散符号cとを乗じて情報入力信号aのスペクトルを拡散した拡散出力信号bを作成する。一方、同期装置612では、遅延器616が、拡散符号供給部610が供給する前記拡散符号cをある規定の時間だけ遅延させ、それを受信機で逆拡散符号として使わせる信号cとして加算器613で拡散出力信号bに重畳させて伝送媒体602に送出する。なお、特許文献3では、拡散符号に代えて、拡散出力信号に遅延器で遅延時間を与えている点が特許文献1と異なっている。
The transmitter 600 includes a spread code supply unit 610, a multiplier 611, a synchronization device 612, and an adder 613. The spread code supply unit 610 includes a clock generator 614 and a PNG 615. The synchronization device 612 includes a delay unit 616. Consists of.
The transmitter 600 operates as follows. First, in the spreading code supply unit 610, based on the clock signal supplied from the clock generator 614, the PNG 615 generates a spreading code c S that takes an equal positive and negative binary value instead of zero, and sends it to the multiplier 611. Supply.
The multiplier 611 multiplies the information input signal a S input from the outside and the spread code c S supplied from the PNG 615 to create a spread output signal b obtained by spreading the spectrum of the information input signal a S. On the other hand, in the synchronization device 612, the delay unit 616 delays the spread code c S supplied from the spread code supply unit 610 by a predetermined time, and adds it as a signal c D that is used as a despread code in the receiver. The unit 613 superimposes it on the spread output signal b and sends it to the transmission medium 602. Note that Patent Document 3 is different from Patent Document 1 in that a delay time is given to the spread output signal by a delay unit instead of the spread code.
 拡散出力信号bと逆拡散符号cとを重畳した信号には伝送媒体602を伝送される過程で図示しないノイズmが重畳し、受信機601にはノイズmと拡散出力信号bと逆拡散符号cとを含んだ信号rが入力される。
 受信機601は、同期装置620、乗算器621で構成され、同期装置620は遅延器622で構成される。
 受信機601は次のように動作する。まず同期装置620の遅延器622が、伝送媒体602上の信号を信号rとして入力し、ある時間だけ遅延させて乗算器621に供給する。ある時間とは、送信機600の同期装置612の遅延器616で逆拡散符号cを作成するために拡散符号cを遅延させた時間と同じ時間とする。
 そして、乗算器621が、前記遅延器622の出力と伝送媒体602から入力した信号rとを乗じて、結果を逆拡散出力aとして出力する。実際の受信機においては、乗算器621に続けて情報入力信号aのスペクトルの占有周波数帯域だけを選択的に通過させるフィルタを設け、乗算器621の出力から情報入力信号aのスペクトルの占有周波数帯域の成分だけを抽出して受信機の出力とするが、図41ではそのフィルタの記述は省略している。
The spread output signal b and the despreading code c D a signal obtained by superimposing the superimposed noise m (not shown) in the process of being transmitted through the transmission medium 602, and noise m the receiver 601 spread output signal b and the despreading code c D contains a signal r is input.
The receiver 601 includes a synchronization device 620 and a multiplier 621, and the synchronization device 620 includes a delay device 622.
The receiver 601 operates as follows. First, the delay unit 622 of the synchronization device 620 inputs the signal on the transmission medium 602 as the signal r, delays it for a certain time, and supplies it to the multiplier 621. The certain time is assumed to be the same as the time when the spread code c S is delayed in order to create the despread code c D by the delay unit 616 of the synchronization device 612 of the transmitter 600.
Then, the multiplier 621 multiplies the signal r input from the output and the transmission medium 602 of the delay device 622, and outputs the result as despread output a D. In the actual receiver, a filter that selectively passes only the occupied frequency band of the spectrum of the information input signal a S is provided after the multiplier 621, and the spectrum of the information input signal a S is occupied from the output of the multiplier 621. Although only the frequency band components are extracted and used as the output of the receiver, the description of the filter is omitted in FIG.
 図41に示す構成の参照信号送信方式のスペクトル拡散通信システムでは、PNGは送信機にしか設けず、それで発生させた信号を拡散符号cとして使う一方で、それを遅延させたものを逆拡散符号cとして受信機で使わせるために送信機から受信機へ伝送する。
 その信号を受信する受信機601は、受信した信号rに含まれる逆拡散符号cの信号成分を逆拡散符号として用いるが、その逆拡散符号cで逆拡散する受信した信号rに含まれる拡散出力信号bの成分は逆拡散符号cに対して遅延器616の遅延時間分だけ時間が進んだ信号であるから、それらの時間関係を一致させるために、拡散出力信号の成分bを遅延器616の遅延時間と同じだけ遅延器622で遅らせる。
 すなわち、送受信機それぞれに設けた等しい時間だけ信号を遅らせる遅延器616、622を用いて、拡散符号の成分cと逆拡散符号の成分cとを相互相関が確立された状態にしている。
 このように、図41に示す構成の参照信号送信方式のスペクトル拡散通信システムは、遅延器を利用して、図40に示す参照信号内蔵方式の通信システムにおける受信機のような同期装置を用いることなく、その同期装置が行う操作と等価な内容を含む操作を行って拡散情報入力信号の拡散符号の成分と逆拡散符号の成分とを相互相関確立状態にして、スペクトル拡散通信を可能としている。
In the spread spectrum communication system of the reference signal transmission method having the configuration shown in FIG. 41, the PNG is provided only in the transmitter, and the signal generated thereby is used as the spread code c S , while the delayed signal is despread. transmitting from the transmitter to the receiver in order to use the receiver as a code c D.
Receiver 601 for receiving the signal, it uses a signal component of the despread code c D contained in the received signal r as despreading code, contained in the received signal r despread at the despreading code c D since components of the spread output signal b is a signal has advanced by the time the delay time of the delay device 616 with respect to the despreading code c D, in order to match their time relationship, a component b of the spread output signal delay The delay unit 622 delays the delay unit 622 by the same amount as the delay time of the unit 616.
That is, by using delay units 616 and 622 that delay the signal by an equal time provided in each of the transceivers, the cross-correlation is established between the spread code component c S and the despread code component c D.
In this way, the spread spectrum communication system of the reference signal transmission method configured as shown in FIG. 41 uses a synchronization device such as a receiver in the communication system of the reference signal built-in method shown in FIG. Rather, an operation including content equivalent to the operation performed by the synchronizer is performed so that the spread code component and the despread code component of the spread information input signal are in a cross-correlation established state, thereby enabling spread spectrum communication.
 ここで、図41に示す参照信号送信方式のスペクトル拡散通信システムの動作を解析して、数式21に示した本伝送システムにおける逆拡散出力オブジェクトを比較する。
 図41に示す構成の参照信号送信方式のスペクトル拡散通信システムでは遅延させた信号を用いるが、ここではその信号の成分が受ける遅延の効果を示すために、信号名に遅延を受けた回数を添え字で表すこととする。すなわち、送信機が伝送しようとしている情報入力信号をaS0、拡散符号をc、送信機側の遅延器で遅延させて送出する拡散符号をc、伝送媒体で加わる外来ノイズをmとすると、受信機が入力する信号rは下式のように表せる。
  r=aS0*c+c+m                (数式30)
 受信機は、この信号rに含まれる遅延させた拡散符号cの成分を逆拡散符号として使う。その逆拡散符合で情報入力信号aS0を逆拡散するために、情報入力信号aS0に乗じられている拡散符合cの成分を逆拡散符合と同期させる必要が生じるので、受信した信号rを送信機側の遅延器と同じだけ遅延器で遅延させる。
 受信した信号rを遅延させた信号rは以下のように表せる。
  r=aS1*c+c+m                (数式31)
 ただし、rは、rを表す数式30の右辺を構成する要素それぞれを受信機の遅延器で遅延させたものを表し、aS0を遅延させたものをaS1、cを遅延させたものをc、mを遅延させたものをmと表す。また、cを遅延させたものは送信機で遅延させたものと遅延時間が同じなのでcで表す。逆拡散操作は、逆拡散符号とする信号成分cを含んだ受信入力信号rと、それと同期させるために上記のように受信機で遅延させた受信入力信号rとを乗ずることで実現する。
 その結果得られる逆拡散出力信号aは下式のように表せる。
  a=r*r
   =(aS0*c+c+m0)*(aS1*c+c+m
   =aS0*aS1*c*c+aS0*c*c+kPN *aS1
    +c*c+(aS0*c+c)*m
    +(aS1*c+c)*m+m*m        (数式32)
 ただし、c、c、cは、時間によらないゼロでない定数をkPNとして、いずれも±kPNの値を取り、以下の性質を持つ。
  c*c=c*c=c*c=kPN           (数式33)
Here, the operation of the spread spectrum communication system of the reference signal transmission method shown in FIG.
In the spread spectrum communication system of the reference signal transmission system having the configuration shown in FIG. 41, a delayed signal is used. Here, in order to show the effect of the delay received by the component of the signal, the number of delays is added to the signal name. It shall be expressed in letters. That is, the information input signal to be transmitted by the transmitter is a S0 , the spread code is c 0 , the spread code transmitted after being delayed by the delay device on the transmitter side is c 1 , and the external noise applied by the transmission medium is m 0 . Then, the signal r 0 the receiver input can be expressed by the following equation.
r 0 = a S 0 * c 0 + c 1 + m 0 (Formula 30)
The receiver uses the delayed spread code c 1 component included in the signal r 0 as a despread code. To despread the information input signal a S0 at the despreading sign, the need to synchronize the despreading sign components of a diffusion sign c 0 which is multiplied to the information input signal a S0 occurs, the signal r 0 received Is delayed by the delay device by the same amount as the delay device on the transmitter side.
Signal r 1 obtained by delaying the received signal r 0 is expressed as follows.
r 1 = a S1 * c 1 + c 2 + m 1 (Formula 31)
However, r 1 represents a delayed each element constituting the right-hand side of Equation 30 representing the r 0 by the delaying unit of the receiver, and those obtained by delaying the a S0 delaying a S1, c 1 This is expressed as c 2 and m 0 is expressed as m 1 . Further, those obtained by delaying the c 0 is represented by c 1 the delay time that is delayed at the transmitter is the same. The despreading operation is realized by multiplying the received input signal r 0 including the signal component c 1 as the despread code by the received input signal r 1 delayed by the receiver as described above in order to synchronize with it. To do.
Consequently despread output signal a D obtained can be expressed by the following equation.
a D = r 0 * r 1
= (A S0 * c 0 + c 1 + m 0) * (a S1 * c 1 + c 2 + m 1 )
= A S0 * a S1 * c 0 * c 1 + a S0 * c 0 * c 2 + k PN 2 * a S1
+ C 1 * c 2 + (a S0 * c 0 + c 1 ) * m 1
+ (A S1 * c 1 + c 2 ) * m 0 + m 0 * m 1 (Formula 32)
However, c 0 , c 1 , and c 2 each take a value of ± k PN , where k PN is a non-zero constant that does not depend on time, and has the following properties.
c 0 * c 0 = c 1 * c 1 = c 2 * c 2 = k PN 2 (Formula 33)
 逆拡散出力aを表す数式32の右辺の計算結果は、第三項が逆拡散され遅延を受けた情報入力信号の成分であり、そのほかの項は全て情報入力信号と相似な関係でない信号である。
 そのうち、第一項、第二項、第四項はmやmをゼロとしてもゼロにならないものであり、mやmというノイズとは無関係に逆拡散出力信号aに常に含まれて、逆拡散された情報入力信号に対してノイズとして作用する。
 すなわち、図41に示す従来の参照信号送信方式のスペクトル拡散通信システムは、伝送媒体でノイズの重畳がなくとも、逆拡散出力信号では逆拡散された情報入力信号にノイズが重畳する。
 これに対し、基準とする図40に示す参照信号内蔵方式のスペクトル拡散通信システムの場合、数式27に示すように、伝送媒体でノイズの重畳がなければ、逆拡散出力信号に逆拡散された情報入力信号以外の信号は現れない。
The calculation result on the right side of Expression 32 representing the despread output a D is a component of the information input signal in which the third term is despread and delayed, and all other terms are signals that are not similar to the information input signal. is there.
Of these, the first, second, and fourth terms are not zero even if m 0 and m 1 are set to zero, and are always included in the despread output signal a D regardless of the noise of m 0 and m 1. Therefore, it acts as noise on the despread information input signal.
That is, in the spread spectrum communication system of the conventional reference signal transmission system shown in FIG. 41, noise is superimposed on the despread information input signal in the despread output signal even if there is no noise superimposed on the transmission medium.
On the other hand, in the case of the spread spectrum communication system of the reference signal built-in method shown in FIG. No signal other than the input signal appears.
 また、伝送媒体でノイズの重畳がある場合は、図41に示す従来の参照信号送信方式のスペクトル拡散通信システムは、数式32に示すように、逆拡散出力信号にはノイズの項がさらに多数含まれることとなる。
 その中で、第五項と第六項は逆拡散符号でスペクトル拡散されたノイズの項であり、スペクトル拡散通信に特有の、情報入力信号と逆拡散符号の占有周波数帯域幅比を調整することで逆拡散後に残る情報入力信号成分への影響を軽減可能なものである。しかし、前記基準システムの場合に比べてノイズの項数が多いので、軽減しなければならないノイズが多く、逆拡散出力信号のSN比が悪くなることを示しており、前記基準システムに比べてSN比が劣る。
In addition, when there is noise superposition in the transmission medium, the spread spectrum communication system of the conventional reference signal transmission method shown in FIG. 41 includes more noise terms in the despread output signal as shown in Equation 32. Will be.
Among them, the fifth and sixth terms are noise terms spread by despreading code, and adjust the occupied frequency bandwidth ratio of information input signal and despreading code, which is peculiar to spread spectrum communication. Thus, the influence on the information input signal component remaining after despreading can be reduced. However, since there are more noise terms than in the case of the reference system, there is much noise that needs to be reduced, indicating that the S / N ratio of the despread output signal is deteriorated. The ratio is inferior.
 一方、第七項は拡散符号も逆拡散符号も乗じられていないので、この項が示すノイズはスペクトル拡散とは無関係のスペクトル構成の信号である。だから、その項が示すノイズは情報入力信号の占有周波数帯域に高いエネルギーのスペクトルを有す可能性もあるし、そのノイズ項の情報入力信号の占有周波数帯域の成分を、スペクトル拡散通信に特有の情報入力信号と逆拡散符号の占有周波数帯域幅比を調整することで軽減することも出来ない。
 すなわち、図41に示す従来の参照信号送信方式のスペクトル拡散通信システムには基準システムが有す耐ノイズ性が無く、例えば伝送媒体で拡散出力信号に重畳するノイズの成分が、逆拡散出力信号中で情報入力信号の占有周波数帯域内に情報入力信号の成分と同程度以上のエネルギーでスペクトルを有す場合、拡散出力信号における情報入力信号の成分のSN比は劣悪となって通信は困難となる。
On the other hand, since the seventh term is not multiplied by the spread code or the despread code, the noise indicated by this term is a signal having a spectrum configuration that is unrelated to the spread spectrum. Therefore, the noise indicated by the term may have a high energy spectrum in the occupied frequency band of the information input signal, and the component of the occupied frequency band of the information input signal of the noise term It cannot be reduced by adjusting the occupied frequency bandwidth ratio between the information input signal and the despread code.
That is, the conventional spread spectrum communication system of the reference signal transmission system shown in FIG. 41 does not have the noise resistance that the reference system has, and for example, noise components superimposed on the spread output signal in the transmission medium are included in the despread output signal. In the case where the spectrum of the information input signal occupies the same frequency as the information input signal component, the signal-to-noise ratio of the information input signal component in the spread output signal is poor and communication becomes difficult. .
 背景技術の説明で図41に示す従来の参照信号送信方式のスペクトル拡散通信システムについて示した課題は具体的にはこのようなものである。伝送媒体にノイズがないときでさえ逆拡散出力にはノイズを含み、伝送媒体にノイズがあるときには逆拡散出力信号における情報入力信号の成分のSN比は前記基準システムより劣り、そのノイズの影響は、スペクトル拡散通信に特有の情報入力信号と拡散符号の占有周波数帯域幅比を調整することで軽減することは出来ず、そのノイズの成分が、例えば逆拡散出力信号中で情報入力信号の占有周波数帯域内に情報入力信号の成分と同程度以上のエネルギーでスペクトルを有す場合には通信が困難となる。 Specifically, the problem shown in the spread spectrum communication system of the conventional reference signal transmission method shown in FIG. 41 in the description of the background art is such. Even when there is no noise in the transmission medium, the despread output includes noise. When there is noise in the transmission medium, the signal-to-noise ratio of the information input signal component in the despread output signal is inferior to that of the reference system. It cannot be reduced by adjusting the ratio of the occupied frequency bandwidth between the information input signal and the spread code unique to the spread spectrum communication, and the noise component is, for example, the occupied frequency of the information input signal in the despread output signal. Communication is difficult when the spectrum has a spectrum with energy equal to or higher than the component of the information input signal.
 また、送信機600の同期装置を構成する遅延器616は二値符号を遅延させるだけなので簡単な構造で小型な二値論理素子が適用できる。
 しかし、受信機601の同期装置620の遅延器622は情報入力信号の成分やノイズの成分も含んだアナログの信号を遅延させるので、対オブジェクト広帯域性のアナログ遅延器を用いる必要がある。
 広帯域特性を有したアナログ遅延器は、CCD(Charge Coupled Device:電荷結合素子)を用いたり、高速のAD変換器とFIFO(First In First Out Memory:先入れ先出しメモリ)DA変換器などを組み合わせたりした装置で実現されるので、二値論理素子で構成できる送信機600の遅延器616に比べると、回路規模が大規模で高価なものである。
Further, since the delay unit 616 constituting the synchronization device of the transmitter 600 only delays the binary code, a small binary logic element can be applied with a simple structure.
However, since the delay device 622 of the synchronization device 620 of the receiver 601 delays an analog signal including an information input signal component and a noise component, it is necessary to use an analog delay device having a broadband property against objects.
Analog delay devices with broadband characteristics use CCD (Charge Coupled Device) or a combination of high-speed AD converter and FIFO (First In First Out Memory) DA converter. Therefore, the circuit scale is large and expensive compared to the delay unit 616 of the transmitter 600 that can be configured with binary logic elements.
 このように、図41に示す従来の参照信号送信方式のスペクトル拡散通信システムには、伝送媒体で伝送される信号にノイズが重畳すると受信機で出力される情報入力信号のSN比が低下し、図40に示す従来の参照信号内蔵方式のスペクトル拡散通信システムに比べて耐ノイズ性が劣り、高価で回路規模が大規模となる課題があった。 Thus, in the spread spectrum communication system of the conventional reference signal transmission method shown in FIG. 41, when noise is superimposed on a signal transmitted by a transmission medium, the SN ratio of the information input signal output by the receiver is reduced, Compared to the conventional spread spectrum communication system with a built-in reference signal shown in FIG. 40, there is a problem that noise resistance is inferior, expensive, and the circuit scale is large.
 これに対し、本伝送システムは、伝送媒体にノイズがない場合、前記基準システムと同様に、数式7に示すように、逆拡散出力オブジェクトにノイズは含まれない。
 また、伝送媒体で拡散出力オブジェクトにノイズの重畳がある場合、それが拡散入力オブジェクトの占有周波数帯域内にスペクトルを有す場合でも、本伝送システムは、前記基準システムと同様に、そのノイズの成分を全て逆拡散キャリアでスペクトル拡散し、拡散入力オブジェクトの占有周波数帯域幅に対する逆拡散キャリアの占有周波数帯域幅の比を大きくとって逆拡散の乗算後の信号を拡散入力オブジェクトの占有周波数帯域だけを通過させるフィルタを通して、逆拡散出力オブジェクトに残るそのノイズの影響を事実上排除することができる、基準システムと等価なスペクトル拡散通信に特有の耐ノイズ性を有するものである。
 この時、本伝送システムにあっては、拡散モジュール及び逆拡散モジュールのいずれも、アナログ遅延器を必要とはしていないので、アナログ遅延器を必要とすることによる高価で回路規模が大規模となる課題はない。
 このように、本伝送システムは、図40に示す従来の参照信号内蔵方式のスペクトル拡散通信システムと等価な耐ノイズ性を有しており、図41に示す従来の参照信号送信方式のスペクトル拡散通信システムの前記課題は、本実施形態では解決されている。
On the other hand, in the present transmission system, when there is no noise in the transmission medium, as shown in Equation 7, no noise is included in the despread output object as in the reference system.
In addition, when there is noise superposition on the spread output object in the transmission medium, even if it has a spectrum in the occupied frequency band of the spread input object, the transmission system, like the reference system, has its noise component. Are spread with despread carriers, and the ratio of the despread carrier's occupied frequency bandwidth to the occupied frequency bandwidth of the spread input object is increased so that the signal after despread multiplication is applied to only the occupied frequency band of the spread input object. It has a noise immunity specific to spread spectrum communications equivalent to a reference system, which can virtually eliminate the effect of that noise remaining on the despread output object through a filter that is passed through.
At this time, in this transmission system, neither the spreading module nor the despreading module requires an analog delay device, so that the cost of the circuit is large due to the need for the analog delay device. There is no problem.
Thus, this transmission system has noise resistance equivalent to the conventional spread spectrum communication system with a built-in reference signal shown in FIG. 40, and spread spectrum communication with the conventional reference signal transmission system shown in FIG. The problem of the system is solved in the present embodiment.
 次に、本伝送システムを評価するために、図42に示す従来の参照信号送信方式のスペクトル拡散通信システムの動作を解析する。
 図42に示したのは非特許文献3に示された参照信号送信方式のスペクトル拡散通信システムで、送信機700、受信機701、伝送媒体702で構成される。
Next, in order to evaluate this transmission system, the operation of the spread spectrum communication system of the conventional reference signal transmission method shown in FIG. 42 is analyzed.
FIG. 42 shows a spread spectrum communication system of the reference signal transmission method shown in Non-Patent Document 3, and is composed of a transmitter 700, a receiver 701, and a transmission medium 702.
 送信機700は、拡散符号供給部710、乗算器711、同期装置713、拡散出力送信部712より構成され、拡散符号供給部710はクロック発生器714、PNG715より成り、同期装置713は、逆拡散符号送信部716より成る。
 送信機700は次のように動作する。まず、拡散符号供給部710で、クロック発生器714が供給するクロック信号に基づいて、PNG715が、絶対値がゼロでなく等しく正負の二値をとる拡散符号cを発生させて乗算器711に供給する。
 乗算器711は、外部から入力する情報入力信号aと、PNG715が供給する前記拡散符号cとを乗じて情報入力信号aのスペクトルを拡散した拡散出力信号bを作成する。拡散出力信号bは拡散出力送信部712でブロードバンド信号に変換されて伝送媒体702に送出される。
 一方、同期装置713では、拡散符号と同じ信号を受信機で逆拡散符号として使わせる信号cとして同期装置713の逆拡散符号送信部716でブロードバンド信号に変換して伝送媒体702に送出する。
 送信部712、716は伝送媒体702を共用して拡散出力信号と逆拡散符号とを同時に送るための装置で、ブロードバンドを用いて周波数多重で信号を伝送する送信装置である。拡散出力信号と逆拡散符号は、共用する伝送媒体702で重複しない占有周波数帯域を用いて同時に互いに干渉することなく送信機から受信機へ伝送される。
The transmitter 700 includes a spreading code supply unit 710, a multiplier 711, a synchronization device 713, and a spreading output transmission unit 712. The spreading code supply unit 710 includes a clock generator 714 and PNG 715, and the synchronization device 713 includes a despreading device. It consists of a code transmission unit 716.
The transmitter 700 operates as follows. First, in the spread code supply unit 710, based on the clock signal supplied from the clock generator 714, the PNG 715 generates a spread code c S whose absolute value is not equal to zero but takes the same positive / negative binary value to the multiplier 711. Supply.
The multiplier 711 multiplies the information input signal a S inputted from the outside and the spread code c S supplied from the PNG 715 to create a spread output signal b obtained by spreading the spectrum of the information input signal a S. The spread output signal b is converted into a broadband signal by the spread output transmission unit 712 and sent to the transmission medium 702.
On the other hand, the synchronizer 713 is transmitted to the transmission medium 702 is converted into broadband signal with the despreading code transmission section 716 of the sync device 713 as a signal c D to use the same signal as the spreading code as despreading codes at the receiver.
Transmitters 712 and 716 are apparatuses for transmitting a spread output signal and a despread code at the same time by sharing the transmission medium 702, and are transmitters that transmit signals by frequency multiplexing using broadband. The spread output signal and the despread code are transmitted from the transmitter to the receiver without interfering with each other at the same time using the occupied frequency band that does not overlap in the shared transmission medium 702.
 伝送媒体702では、伝送される拡散出力信号にも逆拡散符号にも図示しないノイズが重畳し、受信機はノイズが重畳した信号を入力する。拡散出力送信部712が出力するブロードバンド信号の拡散出力信号をqST、それに重畳するノイズをmとすると、受信機が入力するノイズが重畳した前記拡散出力信号qSRは次式で表される。
  qSR=qST+m  (数式34)
 同様に、逆拡散符号送信部716が出力するブロードバンド信号の逆拡散符号をqDT、それに重畳するノイズをmとすると、受信機が入力するノイズが重畳した逆拡散符号qDRは次式で表される。
  qDR=qDT+m  (数式35)
In the transmission medium 702, noise (not shown) is superimposed on the spread output signal to be transmitted and the despread code, and the receiver inputs a signal on which the noise is superimposed. When the spread output signal of the broadband signal output from the spread output transmitter 712 is q ST and the noise superimposed on it is m S , the spread output signal q SR on which the noise input by the receiver is superimposed is expressed by the following equation. .
q SR = q ST + m S (Formula 34)
Similarly, if the despread code of the broadband signal output from the despread code transmitter 716 is q DT and the noise superimposed on it is m D , the despread code q DR on which the noise input by the receiver is superimposed is given by expressed.
q DR = q DT + m D (Formula 35)
 受信機701は、同期装置720、拡散信号受信部721、乗算器722で構成され、同期装置720は、逆拡散符号受信部723より成る。
 受信機701は、まず拡散信号受信部721が、伝送媒体702から数式34で示されるノイズが重畳したブロードバンドの拡散出力信号qSRを入力し、ノイズが重畳したベースバンド信号の拡散出力信号rに変換して乗算器722にむけて出力する。
 一方、逆拡散符号受信部723も同様に、伝送媒体702から数式35で示されるノイズが重畳したブロードバンドの逆拡散符号qSRを入力し、ノイズが重畳したベースバンド信号の逆拡散符号cDDに変換して乗算器722にむけて出力する。
The receiver 701 includes a synchronization device 720, a spread signal reception unit 721, and a multiplier 722. The synchronization device 720 includes a despread code reception unit 723.
The receiver 701, the spread signal receiving unit 721 first inputs the broadband spread output signal q SR noise is superimposed represented by formula 34 from the transmission medium 702, the spread output signal r of the baseband signal noise superposed The data is converted and output to the multiplier 722.
On the other hand, also the despreading code receiving unit 723 receives the despread code q SR broadband noise indicated from the transmission medium 702 by equation 35 is superimposed, the despreading code c DD of the baseband signal noise superposed The data is converted and output to the multiplier 722.
 なお、非特許文献3の原文では、受信機でブロードバンドの拡散出力信号とブロードバンドの逆拡散符号とをベースバンドに復調せず、ある周波数のブロードバンド信号の状態で直接乗算してそれらの側波帯同士でベースバンドへの変換と逆拡散を同時に行うように示されているものを、ここでは説明を簡単にするために両者を一旦ベースバンドにして、その後であらためて逆拡散処理するように示した。これらによってこの構成の装置の動作原理が変わるものではない。 In the original document of Non-Patent Document 3, the receiver does not demodulate the broadband spread output signal and the broadband despread code to the baseband, and directly multiplies them in the state of the broadband signal of a certain frequency to obtain their sidebands. What is shown to perform conversion to baseband and despreading between each other at the same time is shown here as a baseband for the sake of simplicity, and then despreading afterwards. . These do not change the operating principle of the apparatus having this configuration.
 図42の構成では、異なる周波数帯域の二つの信号の一方を拡散出力信号の伝送に、他方を逆拡散符号の伝送に用いているが、特許文献4には、この異なる二つの周波数帯域の信号に代えて、直交関係にある二つの信号を同様の目的に使用している参照信号内蔵方式のスペクトル拡散通信システムが示されている。
 これは伝送信号の形態が異なるだけで、PNGは送信機にしか設けず、それで発生させた信号を拡散符号cとして使う一方で、それを逆拡散符号cとして受信機で使わせるために送信機から受信機へ伝送し、受信機では受信した信号に含まれる逆拡散符号cの信号成分を逆拡散符号として用いることで拡散符号の成分と逆拡散符号の成分とを相互相関が確立された状態にしているという点では同一である。
In the configuration of FIG. 42, one of two signals in different frequency bands is used for transmission of a spread output signal, and the other is used for transmission of a despread code. Patent Document 4 discloses signals in two different frequency bands. Instead, a spread spectrum communication system with a built-in reference signal that uses two signals in an orthogonal relationship for the same purpose is shown.
This is only the form of the transmission signals are different, PNG is not provided only to the transmitter, so the signal generated while using a spread code c S, in order to use the receiver it as the despreading code c D transmitting from the transmitter to the receiver, the cross-correlation is established between component ingredients and despreading codes of the spreading codes by using the signal component of the despread code c D contained in the received signal as the despreading code in the receiver It is the same in that it is in a state that has been made.
 このように、図42の構成の参照信号送信方式のスペクトル拡散通信システムは、逆拡散符号を専用の伝送媒体で伝送することにより、図40に示す参照信号内蔵方式のスペクトル拡散通信システムの受信機のような同期装置を用いることなく、その同期装置が作る状態と等価な状態を作り、拡散情報入力信号の拡散符号の成分と逆拡散符号の成分とを相互相関確立状態にして、スペクトル拡散通信を可能としている。 As described above, the spread spectrum communication system of the reference signal transmission system configured as shown in FIG. 42 transmits the despread code through a dedicated transmission medium, thereby receiving the spread spectrum communication system of the reference signal built-in system shown in FIG. Without using a synchronizer like this, a state equivalent to the state created by the synchronizer is created, the spread code component of the spread information input signal and the despread code component are in a cross-correlation established state, and spread spectrum communication Is possible.
 ここで、図42に示す参照信号送信方式のスペクトル拡散通信システムが伝送媒体で伝送中の信号にノイズの重畳を受けた場合の逆拡散出力信号への影響を解析してみる。送信機の乗算器で行われるスペクトル拡散操作は、情報入力信号をa拡散符号をcS、拡散出力信号をbとして、既述した従来のスペクトル拡散通信システムの場合と同様に、数式25で示される。
 前記拡散操作で得られた拡散出力信号bの伝送媒体702を通した信号伝送にはブロードバンド信号を用いるが、そのために行う、送信機700の拡散出力送信部712におけるベースバンド信号からブロードバンド信号への変換は入力信号と出力信号とが比例関係となる線形な操作であるものとし、比例係数をkとして、次のように表すことが出来るものとする。
  qST=k*b                      (数式36)
 同様に、受信機701の拡散信号受信部721におけるブロードバンド信号からベースバンド信号への変換も線形な操作であるものとし、比例係数をkとして、逆拡散入力信号rは次のように表すことが出来るものとする。
  r=k*qSR                      (数式37)
Here, the influence on the despread output signal when the spread spectrum communication system of the reference signal transmission system shown in FIG. 42 receives noise superimposed on the signal being transmitted on the transmission medium will be analyzed. The spread spectrum operation performed by the transmitter multiplier information input signal a S spreading code c S, the spread output signal as b, as in the conventional spread spectrum communication system described above, in Equation 25 Indicated.
A broadband signal is used for signal transmission through the transmission medium 702 of the spread output signal b obtained by the spreading operation. For this purpose, the baseband signal from the baseband signal to the broadband signal in the spread output transmission unit 712 of the transmitter 700 is used. The conversion is assumed to be a linear operation in which the input signal and the output signal are in a proportional relationship, and can be expressed as follows, where the proportionality coefficient is k 1 .
q ST = k 1 * b (Formula 36)
Similarly, the conversion from the broadband signal to the baseband signal in the spread signal receiving unit 721 of the receiver 701 is also a linear operation, and the despread input signal r is expressed as follows, where the proportionality coefficient is k 2. It shall be possible.
r = k 2 * q SR (Formula 37)
 一方、拡散符号cと同一の逆拡散符号cの伝送媒体702を通した信号伝送にもブロードバンド信号を用いるが、そのために行う、送信機700の拡散符号送信部716におけるベースバンド信号からブロードバンド信号への変換と、受信機701の逆拡散符号受信部723におけるブロードバンド信号からベースバンド信号への変換も線形な操作であるものとし、比例係数をk、kとして、次のように表すことが出来るものとする。
  qDT=k*c
    =k*c                      (数式38)
  cDD=k*qDR                     (数式39)
 この時、情報入力信号aとrの関係は、数式25、数式34、数式36を用いて次のように表せる。
  r=k*(qST+m
   =k*(k*b+m
   =k*a*c+k*m               (数式40)
 ただし、kは次式とする。
  k=k*k                      (数式41)
 同様に、cとcDDの関係は、数式38、数式35、数式39を用いて次のように表せる。
  cDD=k*(qDT+m
    =k*(k*c+m
    =k*c+k*m                 (数式42)
 ただし、kは次式とする。
  k=k*k                      (数式43)
 数式40と数式42とから、逆拡散出力aは以下の様に表せる。
  a=r*cDD
   =(k*a*c+k*m)*(k*c+k*m
   =k*a*c +k*a*c*m
    +k*m*c+k10*m*m           (数式44)
 ただし、c、c、cDDは時間によらないゼロでない定数をkPNとしていずれも±kPNの値を取り、k、k、k、k10は以下の通りとする。
  c =kPN                        (数式45)
  k=k*k                      (数式46)
  k=k*k                      (数式47)
  k=k+k                      (数式48)
  k10=k*k                      (数式49)
 実際の受信機においては、乗算器722に続けて情報入力信号aのスペクトルの占有周波数帯域だけを選択的に通過させるフィルタを設け、乗算器722の出力から情報入力信号aのスペクトルの占有周波数帯域の成分だけを抽出して受信機の出力とするが、図42ではそのフィルタの記述は省略している。
On the other hand, it uses a broadband signal to the signal transmission through the transmission medium 702 of the spreading code c S of the same despreading code c D, do to its broadband baseband signal in the spread code transmission unit 716 of the transmitter 700 The conversion to the signal and the conversion from the broadband signal to the baseband signal in the despreading code receiving unit 723 of the receiver 701 are also linear operations, and the proportional coefficients are represented by k 3 and k 4 as follows: It shall be possible.
q DT = k 3 * c D
= K 3 * c S (Formula 38)
c DD = k 4 * q DR (Formula 39)
At this time, the relationship between the information input signals a S and r can be expressed as follows using Equation 25, Equation 34, and Equation 36.
r = k 2 * (q ST + m S )
= K 2 * (k 1 * b + m S )
= K 5 * a S * c S + k 2 * m S (Formula 40)
However, k 5 is expressed by the following equation.
k 5 = k 1 * k 2 (Formula 41)
Similarly, the relationship between c S and c DD can be expressed as follows using Equation 38, Equation 35, and Equation 39.
c DD = k 4 * (q DT + m D )
= K 4 * (k 3 * c S + m D )
= K 6 * c S + k 4 * m D (Formula 42)
However, k 6 is expressed by the following equation.
k 6 = k 3 * k 4 (Formula 43)
From Equation 40 and Equation 42, the despread output a D can be expressed as follows.
a D = r * c DD
= (K 5 * a S * c S + k 2 * m S ) * (k 6 * c S + k 4 * m D )
= K 7 * a S * c S 2 + k 8 * a S * c S * m D
+ K 9 * m S * c S + k 10 * m S * m D (Formula 44)
However, c D , c S , and c DD each take a value of ± k PN , where k PN is a non-zero constant that does not depend on time, and k 7 , k 8 , k 9 , and k 10 are as follows.
c S 2 = k PN 2 (Formula 45)
k 7 = k 5 * k 6 (Formula 46)
k 8 = k 4 * k 5 (Equation 47)
k 9 = k 2 + k 6 (Formula 48)
k 10 = k 2 * k 4 (Formula 49)
In an actual receiver, a filter that selectively passes only the occupied frequency band of the spectrum of the information input signal a S is provided after the multiplier 722, and the spectrum of the information input signal a S is occupied from the output of the multiplier 722. Although only the frequency band components are extracted and used as the output of the receiver, the description of the filter is omitted in FIG.
 数式44が示す図42に示す参照信号送信方式のスペクトル拡散通信システムの拡散出力信号は、第一項は情報入力信号が逆拡散されたことを示し、それ以降の項はノイズである。そのノイズの項のうち、第二項と第三項は逆拡散符号でスペクトル拡散されたノイズであり、スペクトル拡散通信に特有の、情報入力信号と逆拡散符号の占有周波数帯域幅比を調整することで逆拡散後に残る情報入力信号成分への影響を軽減可能なものである。一方、前記のノイズの項のうちの第四項は数式32の第七項に示されるノイズ項と同様に、スペクトル拡散とは無関係のスペクトル構成のノイズであり、それは情報入力信号の占有周波数帯域に高いエネルギーのスペクトルを有す可能性もあるし、そのノイズ項の情報入力信号の占有周波数帯域の成分を、スペクトル拡散通信に特有の情報入力信号と逆拡散符号の占有周波数帯域幅比を調整することで軽減することも出来ない。
すなわち、図42に示す従来の参照信号送信方式のスペクトル拡散通信システムには基準システムが有す耐ノイズ性が無く、伝送媒体で逆拡散符号に重畳するノイズの成分が、例えば逆拡散出力信号中で情報入力信号の占有周波数帯域内に情報入力信号の成分と同程度以上のエネルギーでスペクトルを有す場合、拡散出力信号における情報入力信号の成分のSN比は劣悪となって通信は困難となる。
In the spread output signal of the spread spectrum communication system of the reference signal transmission system shown in FIG. 42 represented by Equation 44, the first term indicates that the information input signal has been despread, and the subsequent term is noise. Among the noise terms, the second term and the third term are noises spread by a despread code, and adjust the occupied frequency bandwidth ratio between the information input signal and the despread code, which is specific to spread spectrum communication. Thus, the influence on the information input signal component remaining after despreading can be reduced. On the other hand, the fourth term among the noise terms is a noise having a spectrum configuration independent of the spread spectrum like the noise term shown in the seventh term of Equation 32, and is the occupied frequency band of the information input signal. May have a high energy spectrum, and adjust the ratio of the occupied frequency band of the information input signal of the noise term to the occupied frequency bandwidth of the information input signal and despread code specific to spread spectrum communication. It cannot be reduced by doing.
That is, the conventional spread spectrum communication system of the reference signal transmission system shown in FIG. 42 does not have the noise resistance of the reference system, and the noise component superimposed on the despread code in the transmission medium is, for example, in the despread output signal. If the spectrum of the information input signal has a spectrum with the same or higher energy as the component of the information input signal, the signal-to-noise ratio of the component of the information input signal in the spread output signal is poor and communication becomes difficult. .
 背景技術で説明した図42の従来の参照信号送信方式のスペクトル拡散通信システムについての課題は具体的にはこのようなもので、伝送媒体にノイズがあるときに、そのノイズの影響は、スペクトル拡散通信に特有の情報入力信号と拡散符号の占有周波数帯域幅比を調整することで軽減することは出来ず、そのノイズが含まれる結果、逆拡散出力信号における情報入力信号の成分のSN比は低下し、そのノイズの成分が、例えば逆拡散出力信号中で情報入力信号の占有周波数帯域内に情報入力信号の成分と同程度以上のエネルギーでスペクトルを有す場合には通信は困難となる。 The problem with the spread spectrum communication system of the conventional reference signal transmission method of FIG. 42 described in the background art is specifically such as this. When there is noise in the transmission medium, the influence of the noise is spread spectrum. It cannot be reduced by adjusting the occupied frequency bandwidth ratio of the information input signal and spreading code specific to communication, and as a result, the SN ratio of the component of the information input signal in the despread output signal is reduced. However, when the noise component has a spectrum with energy equal to or higher than the component of the information input signal in the occupied frequency band of the information input signal in the despread output signal, for example, communication becomes difficult.
 このように、図42に示す従来の参照信号送信方式のスペクトル拡散通信システムには、伝送媒体で伝送される信号にノイズが重畳すると受信機で出力される情報入力信号の成分のSN比が低下するという、図40に示した構成の従来の参照信号内蔵方式のスペクトル拡散通信システムが有す耐ノイズ性がない課題があった。 Thus, in the spread spectrum communication system of the conventional reference signal transmission method shown in FIG. 42, when noise is superimposed on a signal transmitted through a transmission medium, the SN ratio of the information input signal component output from the receiver is lowered. There is a problem that the conventional spread spectrum communication system with a built-in reference signal having the configuration shown in FIG.
 これに対し、本伝送システムは、図40に示した構成の従来の参照信号内蔵方式のスペクトル拡散通信システムと等価な耐ノイズ性を有しており、図42に示す従来の参照信号送信方式のスペクトル拡散通信システムの前記課題は、本実施形態では解決されている。 On the other hand, this transmission system has noise resistance equivalent to that of the conventional spread spectrum communication system of the reference signal built-in method having the configuration shown in FIG. 40, and the conventional reference signal transmission method shown in FIG. The problem of the spread spectrum communication system is solved in the present embodiment.
 このように、本実施形態に係るキャリア加工部が、共通のノイズ信号と呼ぶ対オブジェクト広帯域性を有し不規則性の信号から、対オブジェクト広帯域性を有し不規則性で相互相関確立状態で対をなす信号関係の拡散キャリアと逆拡散キャリアを加工作成するため、これを本伝送システムに適用すれば、伝送するオブジェクトをスペクトル拡散したり逆拡散したりすることにより、従来の参照信号内蔵方式と前記参照信号送信方式が抱える課題を解決するとともに、これらの方式の利点を併せ持つスペクトル拡散通技術を利用した伝送システムを提供できるものである。 As described above, the carrier processing unit according to the present embodiment has a broad band-to-object characteristic and irregularity signal called a common noise signal. If this is applied to this transmission system in order to process and create a pair of signal-related spread carrier and despread carrier, a conventional reference signal built-in method can be achieved by performing spread spectrum or despread on the object to be transmitted. In addition to solving the problems of the reference signal transmission methods, a transmission system using a spread spectrum communication technique having the advantages of these methods can be provided.
 続いて、本実施形態に係るキャリア加工部1を適用した本実施形態に係る伝送システムにおける拡散キャリアと逆拡散キャリアは相互に乗じて定数となる性質と相互相関確立状態という性質とを両立させるという点について現実の条件を考察する。なお、拡散キャリアと逆拡散キャリアには、連続した信号も、インパルス状あるいはバースト状等のような不連続な信号も利用することができるが、ここでは拡散キャリアと逆拡散キャリアは連続した信号であるものとして考察することとし、インパルス状あるいはバースト状等のような不連続な拡散キャリアと逆拡散キャリアについては後述する。 Subsequently, the spread carrier and the despread carrier in the transmission system according to the present embodiment to which the carrier processing unit 1 according to the present embodiment is applied both have a property that becomes a constant and a property that is a cross-correlation established state. Consider the real conditions for the points. The spread carrier and the despread carrier can be either a continuous signal or a discontinuous signal such as an impulse or burst, but here the spread carrier and the despread carrier are continuous signals. It will be considered that there is a discontinuous spread carrier and despread carrier such as an impulse shape or a burst shape.
 スペクトル拡散通信では伝送する情報をある長さのある信号で表現する。例えば、固定周波数の正弦波を一次キャリアとし、BPSKで一次変調した情報信号を用いるスペクトル拡散通信では、前記正弦波の半周期で1ビットの情報を表現する。
 本伝送システムは拡散キャリアと逆拡散キャリアを乗じて定数となる性質とするが、その性質は少なくとも前記情報を表現した長さに対応した期間にわたるものとする。
 その時、本伝送システムは、共通のノイズ信号を加工することにより、理想環境下では拡散キャリアと逆拡散キャリアとを乗ずると必ず定数になるようにしている。しかし、現実には、拡散キャリア加工手段13と逆拡散キャリア加工手段15について、ノイズ信号供給部2から拡散キャリア加工手段13と逆拡散キャリア加工手段15の出力までのそれぞれの過程間に、信号の系列方向にズレを生じる要素が避けられない。
 それは、例えば、電気通信への応用の場合、ノイズ信号供給部2から拡散キャリア加工手段13までと、ノイズ信号供給部2から逆拡散キャリア加工手段15までの距離の差である。
In spread spectrum communication, information to be transmitted is expressed by a signal having a certain length. For example, in spread spectrum communication using a fixed frequency sine wave as a primary carrier and using an information signal primarily modulated by BPSK, 1-bit information is expressed in a half cycle of the sine wave.
The transmission system has a property that becomes a constant by multiplying the spread carrier and the despread carrier, and the property is at least a period corresponding to the length representing the information.
At this time, the transmission system processes a common noise signal so that a constant is always obtained by multiplying the spread carrier and the despread carrier in an ideal environment. However, in reality, for the diffusion carrier processing means 13 and the despread carrier processing means 15, during each process from the noise signal supply unit 2 to the outputs of the diffusion carrier processing means 13 and the despread carrier processing means 15, Elements that cause deviation in the direction of the series are inevitable.
For example, in the case of application to telecommunication, it is the difference in distance from the noise signal supply unit 2 to the diffusion carrier processing means 13 and from the noise signal supply unit 2 to the despread carrier processing means 15.
 前記のズレにより、現実の拡散キャリアと逆拡散キャリアは理想環境下で作成される拡散キャリア及び逆拡散キャリアとズレたものとなり、その結果、現実の拡散キャリアおよび逆拡散キャリアは、共通のノイズ信号を加工したものであるにもかかわらず、ところどころにある長さで乗じても規定の定数とならない区間を含んでしまうものである。
 拡散キャリア及び逆拡散キャリアが乗じても定数にならないと、数式6の右辺が、伝送しようとした拡散入力オブジェクトaに比例せず、パターンが拡散入力オブジェクトaに相似のものとならなくなる。
 拡散出力オブジェクトsの成分に乗じても定数とならない関係の逆拡散キャリアcを用いて行う逆拡散操作は、対オブジェクト広帯域性を有し不規則性をもつ逆拡散キャリアcに、それとは無関係な信号をただ乗ずる操作となり、これは、拡散出力オブジェクトsの成分を逆拡散キャリアcでスペクトル拡散する操作にほかならない。
 以下では、拡散キャリアと乗じて定数となる正常な逆拡散キャリアで逆拡散されて拡散入力オブジェクトと相似の関係で得られた信号成分を正常逆拡散成分と記し、拡散キャリアと乗じても規定の定数とならない逆拡散キャリアで逆拡散されて拡散入力オブジェクトとは相似の関係にならなかった信号成分を不正拡散成分と記す。
 また、ここでは、不正逆拡散成分は、対オブジェクト広帯域性を有した逆拡散キャリアの占有周波数帯域に均一にスペクトルが拡散されるものとして説明する。
Due to the above deviation, the actual spread carrier and the despread carrier are shifted from the spread carrier and the despread carrier created in the ideal environment. As a result, the actual spread carrier and the despread carrier are the same noise signals. In spite of being processed, it includes a section that does not become a specified constant even if it is multiplied by some length.
If the spread carrier and the despread carrier are multiplied but do not become a constant, the right side of Equation 6 is not proportional to the spread input object a T to be transmitted, and the pattern is not similar to the spread input object a T.
Despreading operation performed using despreading carrier c R relationship not be multiplied by the component of the diffusion output object s and constant, the despread carrier c R with irregularities having a pair object broadband performance, it The It becomes extraneous signal just multiplied operation, which is none other than the operation of spread spectrum components of the diffusion output object s despreading carrier c R.
In the following, the signal component obtained by despreading with a normal despread carrier that is a constant by multiplying with the spread carrier and obtained in a similar relationship with the spread input object will be referred to as a normal despread component, and even if multiplied with the spread carrier, the prescribed A signal component that is despread by a despread carrier that does not become a constant and does not have a similar relationship with the diffusion input object is referred to as an illegal diffusion component.
Here, the illegal despreading component will be described as a spectrum that is spread evenly in the occupied frequency band of the despread carrier having the broadband property against the object.
 この不正逆拡散成分も、逆拡散出力オブジェクトから拡散入力オブジェクトの成分を抽出するフィルタの通過帯域に存在するスペクトル成分だけは前記フィルタ出力にノイズとして現れるので、不正逆拡散成分が発生することは、前記フィルタ出力のノイズを増加させる。
 しかし、前記フィルタの出力には、その不正逆拡散成分のエネルギーのうち、逆拡散キャリアの占有周波数帯域幅に対する前記フィルタの通過帯域幅の比で示される割合の分しか現れない。
 この性質を利用し、逆拡散キャリアの占有周波数帯域幅と前記フィルタの通過帯域幅の比を、例えば数百倍以上にとり、不正逆拡散成分のエネルギーは、前記フィルタを通過する正常逆拡散成分のエネルギーに対して、実用上ゼロと見なせるほど、充分に小さなものとする。
Only the spectrum component that exists in the passband of the filter that extracts the component of the diffusion input object from the despread output object also appears as noise in the filter output, so that the incorrect despread component is generated, Increase noise in the filter output.
However, only the ratio indicated by the ratio of the pass bandwidth of the filter to the occupied frequency bandwidth of the despread carrier appears in the output of the filter in the fraudulent despread component energy.
Taking advantage of this property, the ratio of the occupied frequency bandwidth of the despread carrier and the passband width of the filter is, for example, several hundred times or more. It should be small enough to be considered practically zero for energy.
 一方、拡散キャリアと逆拡散キャリアが乗じても規定の定数とならない期間は逆拡散手段から正常逆拡散成分が得られないので、前記フィルタからの拡散入力オブジェクトの成分の出力はゼロとなる。その結果、フィルタは途切れ途切れの拡散入力オブジェクトの成分を出力することとなり、切れ目のない拡散入力オブジェクトの成分を出力する正常な場合に比べ、フィルタの出力は情報を表現した信号の波形が歪み、拡散モジュールが入力した波形に対して、相似でない部分を含む忠実性の低いものとなる。
 逆拡散出力オブジェクトの波形の拡散入力オブジェクトの波形に対する忠実性が低下すると、例えば一次変調した拡散入力オブジェクトを復調して伝送されるオブジェクトである情報を抽出する際に、振幅や位相情報を正確に判別できなくなり、情報を誤る可能性を高めるので好ましくない。拡散キャリアと逆拡散キャリア中に乗じても規定の定数とならない区間が発生することは現実には避けられないが、ここで説明したように、それは伝送されるオブジェクトを誤る可能性を高めるので、発生区間は出来るだけ少ないことが望ましいものである。
On the other hand, since the normal despreading component cannot be obtained from the despreading means during the period when the spread carrier and the despreading carrier are not multiplied, the normal despreading component cannot be obtained from the despreading means, so the output of the diffused input object component from the filter becomes zero. As a result, the filter outputs the discontinuous diffuse input object component, and the output of the filter distorts the waveform of the signal representing the information compared to the normal case of outputting the discontinuous diffuse input object component, It becomes a thing with low fidelity including the part which is not similar with respect to the waveform which the spreading | diffusion module input.
When the fidelity of the despread output object waveform to the diffuse input object waveform decreases, for example, when extracting information that is an object that is transmitted by demodulating the primary input spread input object, the amplitude and phase information are accurately determined. This is not preferable because it cannot be determined and the possibility of erroneous information is increased. In reality, it is inevitable that a section that does not become a specified constant even if multiplied in the spread carrier and the despread carrier, but as explained here, it increases the possibility of erroneous transmission objects. It is desirable that the generation interval is as small as possible.
 なお、インパルス状或いはバースト状等の様な不連続な拡散キャリア及び逆拡散キャリアを用いる場合、拡散キャリアと逆拡散キャリアのない不連続区間の逆拡散信号の値は、拡散キャリアと逆拡散キャリアが存在する区間から得られる逆拡散信号値を外装したり、それらを用いた解析処理で推定するなどして得る。そのため、拡散キャリア及び逆拡散キャリアが存在する部分で逆拡散して得るオブジェクトの正確さは重要である。その正確さのために、拡散キャリアと逆拡散キャリア中に発生する乗じても規定の定数とならない区間が少ないことが望ましいのはこの場合も同様である。 When using discontinuous spread carriers and despread carriers such as impulses or bursts, the value of the despread signal in the discontinuous section without spread carriers and despread carriers is determined by the spread carrier and the despread carrier. It is obtained by covering the despread signal value obtained from the existing section or estimating it by analysis processing using them. Therefore, the accuracy of the object obtained by despreading in the part where the spread carrier and the despread carrier exist is important. In this case as well, it is desirable that the number of intervals that do not become a specified constant even when multiplied in the spread carrier and the despread carrier is desirable for the accuracy.
 ここでは、拡散キャリア及び逆拡散キャリアが不規則性をもつ対オブジェクト広帯域性を有した信号であることから、伝送するオブジェクトを表現するある長さの信号に対応した拡散キャリア及び逆拡散キャリアの中に含まれる、乗じても規定の定数とならない区間の多さは、オブジェクトが内容を表現している単位区間の長さについての以下に示す拡散キャリアcと逆拡散キャリアcの相互相関RCT-CRで表現して評価する。
CT-CR(u)=(1/L)*∫LA{c(w)*c(w)}dw  (数式50)
 ただし、∫LAdwは、変数wについてのuから始まる長さLの区間の定積分を示すものとし、積分区間は[u,u+L]である。
 積分区間の長さLは、不規則性信号であるキャリアc、cそれぞれを積分すると充分ゼロに近い小さな値となる区間を与える長さとし、例えば、拡散入力オブジェクトの一次変調キャリアの半周期とする。数式50の積分演算は、拡散キャリアと逆拡散キャリアが乗ずると定数となる区間では、その定数を積分するので、積分結果は高さがその定数値で長さがその区間長である長方形の領域の面積となる。
 一方、その積分演算は、拡散キャリアと逆拡散キャリアが乗じても規定の定数とならない区間では、相互相関が確立されていない不規則信号としての拡散キャリアと逆拡散キャリアの積を積分することになるので、積分区間全体についての積分結果は、統計的にはゼロに近い小さな値となる。
 よって、数式50で示した相互相関は、これらの乗ずると定数となる区間の面積の合計を積分区間の長さで平均化したものとなり、積分区間内の、拡散キャリアと逆拡散キャリアが乗ずると定数となる区間の長さの合計に比例した量となる。
 このように、単独では不規則性を有する関数であり、相互には乗ずると定数となる関係にある拡散キャリアと逆拡散キャリアにおいては、この相互相関は、積分区間について、乗ずると定数になる区間の多さを相対比較するための尺度となる。
Here, since the spread carrier and the despread carrier are signals having a wide band property against an object having irregularity, the spread carrier and the despread carrier corresponding to a signal of a certain length representing the object to be transmitted are included. contained in a multi of multiplying not also prescribed constant interval, the cross-correlation R diffusion carrier c T despreading carrier c R shown in the following for the length of the unit sections object represents a content Express and evaluate with CT-CR .
R CT-CR (u) = (1 / L A ) * ∫ LA {c T (w) * c R (w)} dw (Equation 50)
However, ∫ LA dw is intended to indicate a definite integral of a section of a length L A starting from u for the variables w, the integration interval is [u, u + L A].
The length L A of the integration section is set to a length that gives a section that becomes a small value sufficiently close to zero when the carriers c T and c R that are irregular signals are integrated, for example, half of the primary modulation carrier of the spread input object. Let it be a period. In the integration calculation of Formula 50, the constant is integrated in a section that becomes a constant when the spread carrier and the despread carrier are multiplied. Therefore, the integration result is a rectangular area in which the height is the constant value and the length is the section length. It becomes the area.
On the other hand, the integration operation is to integrate the product of the spread carrier and the despread carrier as an irregular signal for which cross-correlation has not been established in a section where the spread constant and the despread carrier are not multiplied and become a specified constant. Therefore, the integration result for the entire integration interval is statistically a small value close to zero.
Therefore, the cross-correlation shown in Formula 50 is obtained by averaging the total area of sections that are constant when multiplied by these, and multiplying the spread carrier and the despread carrier in the integral section. The amount is proportional to the total length of the interval that is a constant.
In this way, in a spread carrier and a despread carrier that are functions that have irregularity by themselves and have a constant relationship when multiplied by each other, this cross-correlation is an interval that becomes a constant when multiplied by an integral interval. It becomes a scale for relative comparison of the number of.
 また、数式50の相互相関は、積分区間の全区間で拡散キャリアと逆拡散キャリアが乗ずると定数の関係となっている理想的な場合は、下記のようになる。
  RCT-CR(u)=(1/L)*∫LCdw
        =k*(1/L)*∫LCdw
        =k*(1/L)*L
        =k             (数式51)
 これは積分区間の全域で拡散キャリアと逆拡散キャリアが一致した場合なので、数式50の相互相関の最大値であり、これを用いると、数式50は次のように正規化できる。
  NRCT-CR(u)=RCT-CR(u)/k   (数式52)
 ここで、NRCT-CRは、拡散キャリアcと逆拡散キャリアcの正規化した相互相関関数である。正規化した相互相関は最大値が1であり、絶対値が意味を持たなかった数式50で示される相互相関に対して、絶対的な比較尺度を提供できるので、数式50に代えて、数式52の正規化した相互相関を用いて、ある区間についての乗ずると定数になる領域の多さを評価しても良いものである。
 これを用いると、ある拡散キャリア及び逆拡散キャリアの区間に含まれる乗じても規定の定数とならない部分を少なくするとは、その拡散キャリア及び逆拡散キャリアの区間の数式52に示される正規化した相互相関値を出来るだけ1に近づけることとなる。
Further, the cross-correlation of Formula 50 is as follows in an ideal case where a constant relationship is obtained when the spread carrier and the despread carrier are multiplied in the whole integration interval.
R CT-CR (u) = (1 / L C ) * ∫ LC k C dw
= K C * (1 / L C ) * ∫ LC dw
= K C * (1 / L C ) * L C
= K C (Formula 51)
Since this is a case where the spread carrier and the despread carrier coincide with each other in the entire integration interval, this is the maximum value of the cross-correlation of Formula 50. Using this, Formula 50 can be normalized as follows.
NR CT-CR (u) = R CT-CR (u) / k C (Formula 52)
Here, NR CT-CR is a cross-correlation function obtained by normalizing the diffusion carrier c T despreading carrier c R. The normalized cross-correlation has a maximum value of 1, and an absolute comparison measure can be provided for the cross-correlation represented by Equation 50 in which the absolute value has no meaning. Therefore, instead of Equation 50, Equation 52 By using the normalized cross-correlation, the number of regions that become constant when multiplied for a certain section may be evaluated.
When this is used, the number of parts that do not become a specified constant even if they are included in a certain spread carrier and despread carrier section is reduced, the normalized mutual relationship shown in Equation 52 of the spread carrier and despread carrier section is used. The correlation value will be as close to 1 as possible.
 前述したように、ある拡散キャリア及び逆拡散キャリアの区間に含まれる、乗じても定数とならない区間の量とオブジェクトを誤る可能性のようなオブジェクト伝送性能とは因果関係が有り、正規化した相互相関値を出来るだけ1に近づけることはオブジェクトを誤る可能性がゼロに近づけることになる。実際の応用においては、例えばオブジェクト伝送の誤り率のような、オブジェクト伝送に必要なオブジェクト伝送性能を表現するある要素には許容限界値が設けられ、その性能要素が前記許容範囲内では、オブジェクト伝送性能が実用上は支障のない状態であると見なして、その範囲でオブジェクトの伝送を行う。
 そのとき、このオブジェクトを誤る可能性と拡散キャリアと逆拡散キャリアの相互相関との関係から、オブジェクト伝送性能に設けた前記許容限界値に対応して、拡散キャリアと逆拡散キャリアの正規化した相互相関に許容限界値を規定できる。
 この相互相関の許容限界値の意味は、拡散キャリアと逆拡散キャリアの正規化した相互相関を、その許容限界値以上にすることにより、対オブジェクト広帯域性で不規則性をもつ拡散キャリアcと逆拡散キャリアcが、実用上ある区間全域で数式5に示される乗ずるとゼロで無い規定の定数となる対をなす信号となるとみなせる結果、伝送するオブジェクトを誤る可能性が下がり、オブジェクト伝送性能をその許容限界値以上に出来るということである。
As described above, there is a causal relationship between the amount of a section included in a certain spread carrier and despread carrier section that does not become a constant even when multiplied, and object transmission performance such as the possibility of erroneous objects, and normalized mutual relations. Making the correlation value as close to 1 as possible brings the possibility of error of the object close to zero. In actual application, for example, an object transmission performance required for object transmission, such as an error rate of object transmission, is provided with an allowable limit value. If the performance element is within the allowable range, object transmission is performed. Considering that the performance is practically satisfactory, the object is transmitted within the range.
At that time, from the relationship between the possibility of error in this object and the cross-correlation between the spread carrier and the despread carrier, the normalized mutual relationship between the spread carrier and the despread carrier corresponds to the allowable limit set in the object transmission performance. Allowable limits for correlation can be defined.
The meaning of the allowable limit value of the cross-correlation is that the normalized cross-correlation between the spread carrier and the despread carrier is equal to or greater than the allowable limit value, thereby allowing the diffusion carrier c T having a wide band-to-object property and irregularity to be obtained. If the despread carrier c R is regarded as a paired signal that is a constant that is not zero when multiplied by the equation 5 over the entire practical interval, the possibility of error in the object to be transmitted is reduced, and object transmission performance is reduced. Is more than the allowable limit value.
 一方、拡散キャリア及び逆拡散キャリアがインパルス状或いはバースト状等の様な不連続の場合も、信号がゼロでない部分を用いることにより、連続した拡散キャリア及び逆拡散キャリアの場合と同様に正規化した相互相関が定義できる。この場合においても、前記した相互相関の許容限界値の意味は、その相互相関値をある許容限界値以上にすることにより、拡散キャリア及び逆拡散キャリアが存在する部分について、対オブジェクト広帯域性で不規則性をもつ拡散キャリアcと逆拡散キャリアcが、実用上ある区間全域で数式5に示される乗ずるとゼロで無い規定の定数となる対をなす信号となるとみなせる結果、伝送するオブジェクトを誤る可能性が下がり、オブジェクト伝送性能をその許容限界値以上に出来るということである。
 この点に基づき、本伝送システムは、拡散キャリアと逆拡散キャリアの正規化した相互相関を、その許容限界値以上にすることにより、オブジェクト伝送性能をその許容限界値以上にして、オブジェクト伝送性能が実用上は支障のない状態であると見なしてオブジェクト伝送を行うものである。
On the other hand, even when the spread carrier and the despread carrier are discontinuous such as an impulse shape or a burst shape, the signal is normalized by using a non-zero portion as in the case of the continuous spread carrier and the despread carrier. Cross correlation can be defined. Even in this case, the meaning of the allowable limit value of the cross-correlation described above is that the cross-correlation value is not less than a certain allowable limit value, so that the portion with the spread carrier and the despread carrier is not wideband to the object. diffusing carrier c T despreading carrier c R with regularity, results that can be regarded as a practical on a given section throughout the multiplying the signals forming the become paired defined constants not zero as shown in equation 5, the object to be transmitted This means that the possibility of mistakes is reduced and the object transmission performance can be increased beyond its allowable limit value.
Based on this point, this transmission system increases the object transmission performance to the allowable limit value by setting the normalized cross-correlation of the spread carrier and the despread carrier to the allowable limit value or more, thereby improving the object transmission performance. Object transmission is performed assuming that there is no problem in practical use.
 本明細書の冒頭で、ある規定した以上の相互相関状態を確立した状態を相互相関確立状態と記したが、より厳密には、拡散キャリアと逆拡散キャリアの相互相関確立状態には、何らかのオブジェクト伝送性能の許容限界に対応した相互相関の許容限界内にある状態をも含むものである。また、本伝送システムの構成と動作の説明において、ノイズ信号xを拡散キャリア加工手段13と逆拡散キャリア加工手段15に共通に供給するとは、ノイズ信号xとノイズ信号xとの差をある規定の範囲内にして事実上同一と見なせるようにし、その結果として相互相関がある規定以上になるようにすることであると述べた。これも相互相関確立状態の定義と同様に、より厳密には、ノイズ信号xとノイズ信号xとの差をある規定の範囲内にして、その結果として拡散キャリアと逆拡散キャリアが前記の相互相関確立状態となる範囲内にすることである。 At the beginning of this specification, a state in which a cross-correlation state more than a specified amount is established is referred to as a cross-correlation establishment state. It also includes a state that is within the allowable limit of cross-correlation corresponding to the allowable limit of transmission performance. In the description of the configuration and operation of the transmission system, the difference between the noise signal x W and the diffusion carrier processing means 13 to be commonly supplied to the despreading carrier processing means 15, a noise signal x T and the noise signal x R He stated that it should be regarded as virtually the same within a certain range, and as a result, cross-correlation should be more than a certain level. This is also similar to the definition of the cross-correlation established state, more precisely, to within a prescribed range with the difference between the noise signal x T and the noise signal x R, as a result diffusion carrier and despread carrier of the This is within the range where the cross-correlation is established.
 拡散キャリアと逆拡散キャリアの相互相関には、本伝送システムの様々な要素が影響を与える。例えば、伝送媒体11の特性に起因する、拡散モジュールに供給するノイズ信号の特性と逆拡散モジュールに供給するノイズ信号の特性の差や、拡散キャリア加工手段と逆拡散キャリア加工手段の特性差である。
 しかし、これらの特性は、本伝送システムの実際の応用分野によって異なる。拡散キャリアと逆拡散キャリアの相互相関の下限値は、本伝送システムを応用する個々の事例ごとに、フィルタの特性や、伝送媒体のノイズの特性など、拡散キャリア及び逆拡散キャリア以外の要素の影響も考慮しながら、拡散キャリアと逆拡散キャリアの相互相関の情報伝送性能への影響の深さを明らかにして決定するのが現実的である。
Various elements of the transmission system affect the cross-correlation between the spread carrier and the despread carrier. For example, the difference between the characteristic of the noise signal supplied to the diffusion module and the characteristic of the noise signal supplied to the despreading module due to the characteristic of the transmission medium 11, or the characteristic difference between the diffusion carrier processing means and the despread carrier processing means. .
However, these characteristics vary depending on the actual application field of the transmission system. The lower limit of the cross-correlation between the spread carrier and the despread carrier is the influence of factors other than the spread carrier and the despread carrier, such as filter characteristics and transmission medium noise characteristics, for each case where this transmission system is applied. It is realistic to determine the depth of the influence on the information transmission performance of the cross-correlation between the spread carrier and the despread carrier while considering the above.
 次に本伝送システムで用いることが可能な拡散キャリアcと逆拡散キャリアcの形態例を図8に示す。拡散キャリアcや逆拡散キャリアcは、このようなアナログの不規則な値の変化を呈し、連続的なとき(同図の30)もあれば、定常的にゼロの中の不規則な位置に瞬間的にゼロでない信号が現れるインパルス状信号(同図の32)や、不規則な位置に不規則な長さで信号がゼロとなるバースト状信号(同図の31)でもよいものである。拡散キャリアcや逆拡散キャリアcを連続的な形態に対してバースト状やインパルス状にすることによって、拡散キャリアcや逆拡散キャリアcの占有周波数帯域幅を広げたり、伝送媒体の信号から拡散出力オブジェクトの存在を発見することや拡散入力オブジェクトの波形を推定することをより困難にすることが出来る。拡散キャリアcや逆拡散キャリアcの占有周波数帯域幅が広がれば、数式23の処理利得GPを向上させることができるので数式24のSNRが向上し、耐ノイズ性が向上する。また、耐ノイズ性を同程度に抑える場合、広がった拡散キャリアの占有周波数帯域幅に対応して拡散入力オブジェクトの占有周波数帯域幅を広げることが可能となり、これは例えば拡散入力オブジェクトの一次変調キャリアの周波数を上昇させて良いことを意味し、それに伴い単位時間当たりに一次変調キャリアで表現できる情報量を増加させることが出来ることとなる。すなわち、拡散キャリアcや逆拡散キャリアcの占有周波数帯域幅が広がれば、伝送能力が向上する。また、伝送媒体の信号から拡散出力オブジェクトの存在を発見することや拡散入力オブジェクトの波形を推定することをより困難にすることは秘匿性や秘話性を向上させることである。これらの観点から、拡散キャリアcや逆拡散キャリアcにバースト状やインパルス状の形態を利用できることは望ましいものである。 The embodiment of the spread carrier c T despreading carrier c R capable then be used in the present transmission system shown in FIG. Diffusing carrier c T and despread carrier c R exhibits a change in irregular value of such an analog, (30 in the figure) when continuous even if any, irregular in constantly zero It may be an impulse-like signal (32 in the figure) in which a non-zero signal instantaneously appears at a position, or a burst-like signal (31 in the figure) with an irregular length and a signal zero at an irregular position. is there. By bursty and impulsive for successive forms a diffusion carrier c T and despread carrier c R, widen the occupied bandwidth of the spread carrier c T and despread carrier c R, the transmission medium It is possible to make it more difficult to find the presence of the diffuse output object from the signal and to estimate the waveform of the diffuse input object. If the occupied bandwidth of the spread carrier c T and despread carrier c R is Hirogare, it is possible to improve the processing gain GP equation 23 improves the SNR of Equation 24, the noise resistance is improved. In addition, when the noise resistance is suppressed to the same level, it is possible to widen the occupied frequency bandwidth of the spread input object corresponding to the spread occupied frequency bandwidth of the spread carrier, which is, for example, the primary modulation carrier of the spread input object. This means that the amount of information that can be expressed by the primary modulation carrier per unit time can be increased. That is, Hirogare the occupied bandwidth of the spread carrier c T and despread carrier c R, is improved transmission capabilities. Further, to make it more difficult to find the presence of the diffuse output object from the signal of the transmission medium and to estimate the waveform of the diffuse input object is to improve confidentiality and secrecy. From these viewpoints, but it is desirable to be able to use a burst-like or impulsive form the diffusion carrier c T and despread carrier c R.
 従来のスペクトル拡散通信では、前記インパルス状信号でスペクトルを拡散し、例えばSAWフィルタ(SAW:Surface Acoustic Wave 表面弾性波)やCCDを用いた整合フィルタを用いて、同期装置を構成したり直接的に情報を復調する方法が知られている。それを用いればインパルス状信号を用いた信号伝送が可能であるが、半導体回路素子とは異なる高価な素子を必要とし、モノリシック化が困難であったり長大な素子が必要になるなど小型化に限界があるうえ、電力の伝送には適用できないなど、実用上の制約がある。
 そのため、インパルス状信号やバースト状信号を用いた信号伝送が可能で、広い実用性があり、半導体回路素子にモノリシックに実現できるスペクトル拡散及びスペクトル逆拡散伝送技法が望まれている。
In the conventional spread spectrum communication, the spectrum is spread by the impulse-like signal, and a synchronization device is configured by using, for example, a SAW filter (SAW: Surface Acoustic Wave) or a matched filter using a CCD. Methods for demodulating information are known. If it is used, signal transmission using impulse-like signals is possible, but it requires expensive elements different from semiconductor circuit elements, and it is difficult to make monolithic or long elements are required, so it is limited to miniaturization In addition, there are practical limitations such as inapplicability to power transmission.
Therefore, there is a demand for a spread spectrum and despread spread transmission technique that enables signal transmission using an impulse signal or a burst signal, has wide utility, and can be monolithically realized in a semiconductor circuit element.
 本伝送システムに応用するキャリア加工部1によれば、同期操作することなく同期状態の拡散キャリアと逆拡散キャリアとが得られる。
 そのとき拡散キャリア及び逆拡散キャリアの信号形態が連続的であるかバースト状あるいはインパルス状に不連続(間欠的)であるかは問わない。どの信号形態であろうと、拡散キャリアと逆拡散キャリアを同期状態と等価に出来る。結果として、逆拡散後の成分に必要充分な伝送拡散入力オブジェクトの成分が得られるなど、期待する効果が得られるならば、拡散キャリアと逆拡散キャリアにゼロなどの特定の状態がどの位置にどれだけの期間含まれていてもよいものである。
According to the carrier processing unit 1 applied to this transmission system, a synchronized spread carrier and a despread carrier can be obtained without performing a synchronization operation.
At this time, it does not matter whether the signal form of the spread carrier and the despread carrier is continuous or discontinuous (intermittent) in a burst or impulse form. Regardless of the signal form, the spread carrier and the despread carrier can be equivalent to the synchronization state. As a result, if the desired effect can be obtained, such as a component of the transmission spread input object necessary and sufficient for the component after despreading, which position has a specific state such as zero in the spread carrier and despread carrier It may be included only for a period of time.
 なお、拡散キャリアと逆拡散キャリアにゼロなどの特定の状態が含まれて拡散キャリア及び逆拡散キャリアの信号形態がバースト状あるいはインパルス状に不連続(間欠的)になる場合、そのような拡散キャリア及び逆拡散キャリアを用いたスペクトル拡散及びスペクトル逆拡散信号処理で得られる逆拡散出力オブジェクトの拡散入力オブジェクト成分は不連続となったものとなる。逆拡散出力オブジェクトの拡散入力オブジェクト成分がこの様な不連続な信号になる場合は、例えば、不連続な逆拡散出力オブジェクトにトラックホールドと低域通過フィルタを組み合わせた波形包絡線の再生処理、あるいは数値解析による近似波形の再生処理を加えるなどして、拡散入力オブジェクトの成分のもとの連続した波形を再生して出力する。図1に示した本伝送システムの構成において拡散キャリア及び逆拡散キャリアに上記バースト状あるいはインパルス状に不連続(間欠的)な信号形態を用いる場合、上記拡散入力オブジェクトの成分の連続波形再生は、例えば逆拡散手段のひとつの機能として乗算機能やフィルタ機能とともに組み込めばよいものである。 In addition, when a specific state such as zero is included in the spread carrier and the despread carrier and the signal form of the spread carrier and the despread carrier becomes discontinuous (intermittent) in a burst shape or an impulse shape, such a spread carrier And the spread input object component of the despread output object obtained by the spread spectrum and despread signal processing using the despread carrier becomes discontinuous. When the diffuse input object component of the despread output object becomes such a discontinuous signal, for example, a waveform envelope reproduction process combining a track hold and a low-pass filter with a discontinuous despread output object, or Reproduces and outputs the original continuous waveform of the components of the diffuse input object, for example, by adding processing for reproducing the approximate waveform by numerical analysis. In the configuration of the transmission system shown in FIG. 1, when using the burst or impulse discontinuous signal form for the spread carrier and the despread carrier, the continuous waveform reproduction of the component of the spread input object is as follows: For example, one function of the despreading means may be incorporated together with a multiplication function and a filter function.
 また、従来のスペクトル拡散及び逆拡散を用いた信号処理技法では、本伝送システムの拡散キャリアや逆拡散キャリアに相当する信号に、周波数が変化する信号を用いる方法が知られている。
 そのひとつである周波数ホッピングや周波数チャープと呼ばれる手法では、本伝送システムの拡散キャリアや逆拡散キャリアに相当する信号を、ある規定の短時間の間、ある規定の周波数の正弦波とし、次に、同じ規定の時間の間、別のある規定の周波数の正弦波とし、正弦波の周波数を次々に変える。この次々に変える周波数を広い領域に満遍なく分散させ、ひとつの周波数としている期間を非常に短い期間とすることにより、長い時間間隔で見たときに、信号のスペクトルが広い周波数領域に一様に分布しているようにみなすものである。そのうち、周波数ホッピングは周波数を離散的に不規則に変化させるものを指し、周波数チャープは周波数を連続的に変化させるものを指す。
 いずれの場合も、従来技法では何らかの同期装置を用いて送信側と受信側とで周波数変化のパターンとタイミングとを同期させてから通信を行う。
 本伝送システムでも、そのような周波数を変化させた信号をノイズ信号または拡散キャリアと逆拡散キャリアとして用いても良いものである。いずれの場合も変化させる周波数の範囲や変化速度は、少なくとも拡散入力オブジェクトを伝送するために必要な期間は、結果として得られる信号が対オブジェクト広帯域性を有す必要がある。
 特に拡散キャリアと逆拡散キャリアに用いる場合は、拡散キャリアと逆拡散キャリアには同一の信号を用いる。これは、同一周波数で位相が合った二つの正弦波を乗ずるとゼロでない定数成分と元の周波数の二倍の周波数の余弦波となり、その定数成分が数式5の定数と同じ効果を提供するからであり、これは同期検波あるいはダイレクトコンバージョン(Direct Conversion)として広く知られた復調方法である。この時、余弦波の成分は拡散入力オブジェクトの一次変調の周波数に対してはるかに高い周波数なので、逆拡散手段内で拡散入力オブジェクトを抽出するフィルタで容易に完全に排除される。また、拡散キャリアと逆拡散キャリアの周波数変化範囲を拡散入力オブジェクトの一次変調の周波数に対してはるかに広くすることにより、拡散モジュールから逆拡散モジュールへ拡散出力オブジェクトを伝送する伝送媒体で拡散出力オブジェクトに重畳するノイズに対する耐ノイズ性もこれまでの説明と同様に実現できるものである。
In the conventional signal processing technique using spread spectrum and despreading, a method is known in which a signal whose frequency changes is used as a signal corresponding to a spread carrier or a despread carrier of this transmission system.
In one method called frequency hopping or frequency chirp, the signal corresponding to the spread carrier or despread carrier of this transmission system is a sine wave of a certain frequency for a certain short time, During the same specified time, another sine wave having a specified frequency is used, and the frequency of the sine wave is changed one after another. By spreading the frequency to be changed one after another over a wide area and making the period of one frequency very short, the signal spectrum is uniformly distributed over a wide frequency range when viewed at long time intervals. It is what you see. Among them, frequency hopping indicates that the frequency is discretely and irregularly changed, and frequency chirp indicates that the frequency is continuously changed.
In any case, in the conventional technique, communication is performed after the frequency change pattern and timing are synchronized between the transmission side and the reception side using some kind of synchronization device.
In this transmission system, a signal with such a frequency changed may be used as a noise signal or a spread carrier and a despread carrier. In any case, the frequency range to be changed and the rate of change are such that the resulting signal must have object-to-object broadband properties, at least for the period required to transmit the diffuse input object.
In particular, when used for a spread carrier and a despread carrier, the same signal is used for the spread carrier and the despread carrier. This is because multiplying two sine waves in phase at the same frequency results in a constant component that is not zero and a cosine wave that is twice the original frequency, and the constant component provides the same effect as the constant in Equation 5. This is a demodulation method widely known as synchronous detection or direct conversion. At this time, the cosine wave component is much higher than the frequency of the primary modulation of the diffuse input object, so that it is easily eliminated completely by a filter that extracts the diffuse input object in the despreading means. In addition, the spread output object can be transmitted in a transmission medium that transmits the spread output object from the spread module to the despread module by making the frequency change range of the spread carrier and the despread carrier far wider than the primary modulation frequency of the spread input object. Noise resistance against noise superimposed on can be realized in the same manner as described above.
 このような拡散キャリアと逆拡散キャリアは、例えば、高度な信号処理手法を用いた拡散キャリア加工手段と逆拡散キャリア加工手段のひとつとして、ノイズ信号を加工して得た信号で正弦波や矩形波などの適当な波形発生器を制御する構成を設け、発生させる信号の周波数をノイズ信号を加工して得た信号で連続的あるいは離散的に変化させて作成する。
 本伝送システムによれば、同期操作が必要ないので、同期操作に必要な周波数の変化パターンの周期性は必要なく、ある規定の期間ある周波数である必要もないので、例えばそれは、周波数の変化パターンは二度と同じものが現れない完全に不規則なもので、その周波数変化の中で変化の速度も方向も全く不規則なものでよいものである。また、そこに複数の周波数の信号を組み合わせても良いものである。
 このように拡散キャリアcや逆拡散キャリアcを周波数の変化する信号にすることによって、伝送媒体の信号から拡散出力オブジェクトの存在を発見することや拡散入力オブジェクトの波形を推定することをより困難にすることが出来、秘話性や秘匿性の向上に貢献できるものである。
Such spread carrier and despread carrier are, for example, a signal obtained by processing a noise signal as one of diffusion carrier processing means and despread carrier processing means using advanced signal processing techniques. A configuration for controlling an appropriate waveform generator is provided, and the frequency of a signal to be generated is generated by changing continuously or discretely with a signal obtained by processing a noise signal.
According to the present transmission system, since no synchronization operation is required, the periodicity of the frequency change pattern necessary for the synchronization operation is not required, and it is not necessary to have a certain frequency for a certain period of time. Is completely irregular so that the same thing never appears, and the speed and direction of the change in the frequency change may be completely irregular. Further, a signal having a plurality of frequencies may be combined there.
By this way, signals of varying frequency spread carrier c T and despread carrier c R, more to estimate the waveform of discovering and spread input objects for the presence of diffusion output object from the signal transmission medium It can be made difficult, and can contribute to the improvement of confidentiality and confidentiality.
 このように、本発明の実施形態に係るキャリア加工部1は、特殊な素子を用いることなく、モノリシックに実現できる平易な回路素子だけで構成した装置で、インパルス状信号やバースト状信号、周波数ホッピング信号や周波数チャープ信号を含む不規則に周波数が変化する信号、それらを任意に組合わせた形態の拡散キャリアと逆拡散キャリアとを供給するものである。本実施形態1に係るキャリア加工装置を適用したスペクトル拡散オブジェクト伝送システムによれば、従来のスペクトル拡散通信システムに対して、小型で安価に、耐ノイズ性を向上させたり、伝送能力を向上させたり、秘匿性や秘話性を向上させたりすることができる。 As described above, the carrier processing unit 1 according to the embodiment of the present invention is an apparatus composed of only simple circuit elements that can be realized monolithically without using special elements, and is an impulse signal, burst signal, or frequency hopping. A signal whose frequency changes irregularly including a signal and a frequency chirp signal, and a spread carrier and a despread carrier in a form of arbitrarily combining them are supplied. According to the spread spectrum object transmission system to which the carrier processing apparatus according to the first embodiment is applied, noise resistance is improved and transmission capability is improved in a small and inexpensive manner with respect to the conventional spread spectrum communication system. , And improve confidentiality and confidentiality.
 以上の説明では、本実施形態1に係るキャリア加工装置をスペクトル拡散情報システムに応用した例を本伝送システムの一例として説明したが、前述したように本伝送システムは、スペクトル拡散情報システムに限られるものではない。本実施形態1に係るキャリア加工装置を応用した幾つかの本伝送システムについて説明する。 In the above description, an example in which the carrier processing apparatus according to the first embodiment is applied to a spread spectrum information system has been described as an example of this transmission system. However, as described above, this transmission system is limited to a spread spectrum information system. It is not a thing. Several transmission systems to which the carrier processing apparatus according to the first embodiment is applied will be described.
 様々な装置、とりわけ電子回路を用いた装置では、クロックと呼ばれるオブジェクトが用いられる。そのオブジェクトを具体的に表現した信号は例えば一定周期の矩形波である。このような信号の伝送では、その伝送回路から単位周波数あたりの高い電力密度(以下単に電力密度と記す)の輻射が起き、周辺の電子回路や電子装置にノイズを侵入させる根源となっている。その回路に本発明の実施形態に係るキャリア加工装置を応用すると、輻射の電力密度を下げることができるものである。 In various devices, especially devices using electronic circuits, an object called a clock is used. The signal that specifically represents the object is, for example, a rectangular wave with a fixed period. In such signal transmission, radiation with a high power density per unit frequency (hereinafter simply referred to as power density) occurs from the transmission circuit, which is a source of noise intruding into peripheral electronic circuits and electronic devices. When the carrier processing apparatus according to the embodiment of the present invention is applied to the circuit, the power density of radiation can be reduced.
 具体的に説明する。図1に示す本伝送システムの構成において、拡散入力オブジェクトを、例えば一定周波数の矩形波とする。
 このとき、キャリア加工部1が供給する拡散キャリアと逆拡散キャリアを、前記矩形波の周波数の千倍以上の周波数まで一様にスペクトルが分布する信号となるように素ノイズ信号源10を設定する。すると、伝送媒体7で伝送されるスペクトル拡散された矩形波は、元の矩形波に対して非常に広い周波数帯域に低い電力密度でスペクトルが分布することになる。逆拡散モジュールにおいては逆拡散手段において逆拡散入力オブジェクトと逆拡散キャリアとを乗じた後、その乗じた信号を、例えば、もとの矩形波の周波数以下の周波数帯域を通過帯域とする低域通過フィルタを通した信号を逆拡散出力オブジェクトとして出力する。このようなフィルタによれば、もとの矩形波のスペクトルのうち基本波成分のみが抽出出力され高調波成分が失われるので、逆拡散出力オブジェクトとして出力される信号の波形は正弦波となる。出力される信号にもとの拡散入力オブジェクトの矩形波形が必要な場合は、この正弦波を例えばコンパレータで波形整形する。また、この波形は前記フィルタや伝送媒体や信号処理回路の影響で、もとの拡散入力オブジェクトの矩形波とは位相のずれたものとなる。この時、もとのもとの波形に対する位相の整合が必要な場合は、そのフィルタや伝送媒体や信号処理回路の特性は既知なので、例えば位相補正回路でフィルタなどで受けた位相変化の補償を行えばよいものである。
This will be specifically described. In the configuration of the transmission system shown in FIG. 1, the spread input object is, for example, a rectangular wave with a constant frequency.
At this time, the elementary noise signal source 10 is set so that the spread carrier and the despread carrier supplied by the carrier processing unit 1 become a signal in which the spectrum is uniformly distributed up to a frequency of 1000 times or more the frequency of the rectangular wave. . Then, the spectrum-spread rectangular wave transmitted by the transmission medium 7 has a spectrum distributed at a low power density in a very wide frequency band with respect to the original rectangular wave. In the despreading module, the despreading means multiplies the despread input object and the despread carrier, and the multiplied signal is, for example, a low-pass signal whose passband is a frequency band lower than the original rectangular wave frequency. The filtered signal is output as a despread output object. According to such a filter, only the fundamental wave component is extracted and output from the spectrum of the original rectangular wave and the harmonic component is lost. Therefore, the waveform of the signal output as the despread output object is a sine wave. If the output signal requires a rectangular waveform of the diffuse input object, the sine wave is shaped by, for example, a comparator. Also, this waveform is out of phase with the rectangular wave of the original diffusion input object due to the influence of the filter, transmission medium, and signal processing circuit. At this time, if phase matching with the original waveform is necessary, the characteristics of the filter, transmission medium, and signal processing circuit are already known. For example, the phase correction circuit compensates for the phase change received by the filter. You can do it.
 一般に、伝送線路を伝搬する矩形波から輻射されるノイズは、ある特定の時刻や、ある特定の狭い周波数帯域のエネルギー成分が問題となるが、本伝送システムを用いてスペクトル拡散で伝送すると、ある瞬間の全輻射エネルギーも小さく出来るし、ある狭帯域のエネルギーも低減されるので、他の電子回路や電子装置に侵入するノイズはスペクトル拡散しない場合に比べて著しく小さくなると言える。 In general, noise radiated from a rectangular wave propagating through a transmission line has a problem with a specific time and energy component of a specific narrow frequency band. Since the instantaneous total radiation energy can be reduced and the energy of a narrow band is also reduced, it can be said that the noise entering into other electronic circuits and electronic devices is significantly smaller than that in the case where the spectrum is not spread.
 クロック信号の伝送線路から輻射されるクロックノイズを低減させることを意図して、従来、クロック信号にクロック周波数の周りで微量の不規則な揺らぎを与えてクロック信号のスペクトルを拡散することが行われている。クロック信号について従来行われていた前記スペクトル拡散では、スペクトル逆拡散操作を伴わないため、スペクトルの拡散幅は非常に微量に限られ、そのため伝送路から輻射されるクロックノイズの全電力の低減もある狭帯域の電力密度の低減効果も限定的である。 In order to reduce the clock noise radiated from the transmission line of the clock signal, conventionally, the clock signal is diffused by giving a minute amount of irregular fluctuation around the clock frequency to the clock signal. ing. In the conventional spectrum spreading performed on the clock signal, since the spectrum despreading operation is not involved, the spread width of the spectrum is limited to a very small amount. Therefore, the total power of the clock noise radiated from the transmission path is also reduced. The effect of reducing the power density in a narrow band is also limited.
 それに対して本伝送システムを用いた伝送線路(伝送媒体7に相当する)から輻射されるノイズの電力密度の低減効果は著しいものとなる。また、本伝送システムを用いれば、伝送線路から輻射されるノイズの影響ばかりでなく、伝送するオブジェクトを他のノイズの影響を受けないようにも出来るものである。なお、伝送線路から輻射されるクロックノイズの電力密度の低減のような目的だけに本発明の実施形態に係るキャリア加工装置を適用する場合では、伝送媒体7で外部から侵入するノイズの影響を低減させる必要がないため、拡散入力オブジェクトである矩形波の周波数に対して拡散キャリアと逆拡散キャリアの占有周波数帯域幅をたとえば数倍から数十倍のように比較的低く抑えても意図する効果は期待できるものである。 In contrast, the effect of reducing the power density of noise radiated from a transmission line (corresponding to the transmission medium 7) using this transmission system is remarkable. Further, if this transmission system is used, not only the influence of noise radiated from the transmission line but also the object to be transmitted can be prevented from being influenced by other noise. When the carrier processing apparatus according to the embodiment of the present invention is applied only for the purpose of reducing the power density of clock noise radiated from the transmission line, the influence of noise entering from the outside in the transmission medium 7 is reduced. Therefore, even if the occupied frequency bandwidth of the spread carrier and the despread carrier is kept relatively low, such as several times to several tens of times, for the frequency of the rectangular wave that is the spread input object, the intended effect is It can be expected.
 前述したクロック信号の伝送においてクロックノイズの輻射やクロック信号に外部から侵入するノイズの影響を軽減するのと全く同様の観点で、本伝送システムの構成は、電力の伝送においてノイズの輻射や外部から侵入するノイズの影響を軽減するのに貢献できるものである。 From the perspective of reducing the effects of clock noise radiation and noise entering the clock signal from the outside in the transmission of the clock signal described above, the configuration of this transmission system is not limited to noise radiation or external power transmission. It can contribute to reducing the influence of intruding noise.
 その説明のための例として、400Hzの正弦波の交流で電力を伝送する本伝送システムを挙げることができる。この電力は周波数が可聴周波数帯にあるので、その伝送ケーブルを電話線やオーディオの配線などと近接させて配線すると、電磁誘導などで電話やオーディオのシステムに侵入して、400Hzの“ビー”という耳障りなハム音と呼ばれるノイズを生じさせる。
 このような電力の伝送システムへの本伝送システムの適用は、例えば、図1に示した構成で拡散入力オブジェクトを400Hzの正弦波交流電力とする。この例では、拡散キャリアと逆拡散キャリアの占有周波数帯域は、伝送対象である拡散入力オブジェクトの周波数である400Hzに対して、例えば、千倍程度とする。伝送線路(伝送媒体7)から誘導される電源ノイズの電力密度の低減のような目的だけに本伝送システムを適用する場合では、伝送媒体7で外部から侵入するノイズの影響を低減させる必要がないため、伝送対象の拡散入力オブジェクトである周波数に対して拡散キャリアと逆拡散キャリアの占有周波数帯域幅をたとえば数倍から数十倍のように比較的低く抑えても良いものである。
As an example for the description, this transmission system which transmits electric power with the alternating current of the sine wave of 400 Hz can be mentioned. Since the frequency of this power is in the audible frequency band, if the transmission cable is wired close to the telephone line or the audio line, it will infiltrate the telephone or audio system by electromagnetic induction, etc. It produces noise called harsh hum.
Application of this transmission system to such a power transmission system is, for example, a sine wave AC power of 400 Hz in the configuration shown in FIG. In this example, the occupied frequency band of the spread carrier and the despread carrier is, for example, about 1000 times the 400 Hz that is the frequency of the spread input object to be transmitted. In the case where the present transmission system is applied only for the purpose of reducing the power density of power supply noise induced from the transmission line (transmission medium 7), it is not necessary to reduce the influence of noise entering from the outside in the transmission medium 7. Therefore, the occupied frequency bandwidth of the spread carrier and the despread carrier may be kept relatively low, for example, several times to several tens of times with respect to the frequency that is the spread input object to be transmitted.
 このように本実施形態に係るキャリア加工装置を応用することにより、電力を供給する電線(伝送媒体7)から周囲に輻射される磁界や電界は不規則で広帯域なものとなるため、その電力密度は本発明の実施形態に係るキャリア加工装置を応用しない場合に比べて著しく低くなる。この結果、伝送媒体7の伝送ケーブルを電話線やオーディオの配線などと近接させて配線しても、電話やオーディオのシステムに侵入するノイズは低い電力密度で広い周波数帯にスペクトルが拡散したものなので、耳障りな特定周波数のノイズにはなり得ないものである。 As described above, by applying the carrier processing apparatus according to the present embodiment, the magnetic field or electric field radiated from the electric wire (transmission medium 7) for supplying electric power to the surroundings becomes irregular and wide-banded. Is significantly lower than when the carrier processing apparatus according to the embodiment of the present invention is not applied. As a result, even if the transmission cable of the transmission medium 7 is wired close to a telephone line or an audio line, noise entering the telephone or audio system is a spectrum that spreads over a wide frequency band with a low power density. , It can not be annoying specific frequency noise.
 このように、本伝送システムの構成によれば、特に情報を表現しない電力の伝送に対しても、スペクトル拡散通信の効果を提供できる。 Thus, according to the configuration of the present transmission system, the effect of spread spectrum communication can be provided even for power transmission that does not express information.
 スペクトル拡散とスペクトル逆拡散の一連のプロセスで達成される耐ノイズ性などのスペクトル拡散特有の特性は、従来、情報通信や測距などの目的に用いられるだけであった。しかし、本実施形態に係るキャリア加工装置についての特徴の一つである拡散キャリアと逆拡散キャリアが共通のノイズ信号から加工供給される点によれば、これまでにない新たな用途が生まれるものである。
 応用の一例として、図3及び図4に対オブジェクト広帯域性を有した信号を検知するシステムを示す。
The characteristics unique to spread spectrum such as noise resistance achieved by a series of processes of spread spectrum and spread spectrum have been used only for purposes such as information communication and ranging. However, according to the point that one of the features of the carrier processing apparatus according to the present embodiment, the spread carrier and the despread carrier are processed and supplied from a common noise signal, a new application that has never existed is created. is there.
As an example of application, FIGS. 3 and 4 show a system for detecting a signal having a broadband property against an object.
 この応用ではある幅の周波数帯の無線電波の信号をノイズ信号に用いる。その時に用いる無線電波の信号は、その周波数帯域のスペクトル分布の床(フロア)を構成するいわゆる背景ノイズと呼ばれるものの電力密度に対し、明らかに高いと認識できる高さの電力密度を有した信号である。例えば一般のラジオ放送に用いられる周波数帯では、その放送信号がノイズ信号の成分となる。また、例えば雷雨時のそのラジオ放送の周波数帯において、雷放電のノイズも背景ノイズに対して明らかに高い電力密度のスペクトルを呈すので、これもノイズ信号に用いることが出来る。この応用では、このような放送信号と雷放電の信号とをノイズ信号に用いる。
 図3および図4に示した構成において、ノイズ信号供給部2は、例えば、560KHzから1600KHzの中波のAMラジオ放送の周波数帯域に存在する信号をノイズ信号xとして拡散キャリア加工手段13と逆拡散キャリア加工手段15とに共通に供給する。
 図3に示す状態は、ノイズ信号供給部2がその周波数帯全域に存在する様々な放送信号全ての信号をひとつのノイズ信号として拡散モジュールと逆拡散モジュールに供給している状態を示すものであって、この状態を定常状態とする。
 これに対して、図4に示す状態は、ノイズ信号供給部2が雷放電の信号をノイズ信号として拡散モジュールと逆拡散モジュールに供給している状態を示すものであって、この状態を対オブジェクト広帯域性を有した信号の検出状態とする。
In this application, a radio wave signal having a certain frequency band is used as a noise signal. The radio wave signal used at that time is a signal having a power density that can be clearly recognized as being higher than the power density of what is called background noise that constitutes the floor of the spectrum distribution of that frequency band. is there. For example, in a frequency band used for general radio broadcasting, the broadcast signal becomes a noise signal component. Further, for example, in the frequency band of the radio broadcast during a thunderstorm, the lightning discharge noise also exhibits a spectrum with a clearly higher power density than the background noise, so that it can also be used for the noise signal. In this application, such broadcast signals and lightning discharge signals are used as noise signals.
In the configuration shown in FIG. 3 and FIG. 4, the noise signal supply unit 2 is, for example, spreading the carrier processing means 13 opposite the signals present in the frequency band of medium wave AM radio broadcasting 1600KHz from 560KHz as the noise signal x W Commonly supplied to the diffusion carrier processing means 15.
The state shown in FIG. 3 shows a state in which the noise signal supply unit 2 supplies all the signals of various broadcast signals existing in the entire frequency band as one noise signal to the spreading module and the despreading module. Thus, this state is a steady state.
On the other hand, the state shown in FIG. 4 shows a state in which the noise signal supply unit 2 supplies a lightning discharge signal as a noise signal to the diffusion module and the despreading module. A detection state of a signal having broadband characteristics is set.
 一方、図3及び図4において、拡散入力オブジェクトaとしては、常に一定周波数の正弦波を拡散モジュール3の拡散手段14に供給する。
 拡散キャリア加工手段13は、入力するノイズ信号xを拡散キャリアcに加工して拡散手段14に供給する。拡散手段14は、拡散入力オブジェクトaを拡散キャリアcと乗じ、その結果を拡散出力オブジェクトsとして出力する。
 図3及び図4に示すシステムでは、拡散モジュール3と逆拡散モジュール4の間には、スペクトル拡散情報伝送システムでの伝送媒体7に相当する要素としてノイズ源17aと加算手段17bとを配置している。
 前記拡散出力オブジェクトsには、ノイズ源17aが出力するノイズmが加算手段17bにより加算される。これは、従来のスペクトル拡散情報伝送システムのモデルの場合において、伝送媒体で拡散出力オブジェクトにノイズが重畳したのと全く同じ状況と言える。
 逆拡散モジュール4には、ノイズmが重畳した拡散出力オブジェクトsが逆拡散入力オブジェクトhとして入力する。逆拡散キャリア加工手段15は、ノイズ信号供給部2から入力するノイズ信号xを逆拡散キャリアcに加工して逆拡散手段16に供給する。逆拡散手段16は、前記逆拡散入力オブジェクトhを前記逆拡散キャリアcと乗じ、その結果を逆拡散出力オブジェクトaとして出力する。
On the other hand, in FIGS. 3 and 4, as the diffusion input object a T , a sine wave having a constant frequency is always supplied to the diffusion means 14 of the diffusion module 3.
Diffusing carrier processing means 13 supplies to the spreading means 14 machined to a noise signal x T to be input to the diffusion carrier c T. Spreading means 14, the spread input object a T multiplied by the spreading carrier c T, and outputs the result as a diffusion output object s.
In the system shown in FIGS. 3 and 4, a noise source 17a and an adding means 17b are arranged between the spreading module 3 and the despreading module 4 as elements corresponding to the transmission medium 7 in the spread spectrum information transmission system. Yes.
The noise m output from the noise source 17a is added to the diffuse output object s by the adding means 17b. In the case of the model of the conventional spread spectrum information transmission system, this can be said to be exactly the same situation as when noise is superimposed on the spread output object in the transmission medium.
A diffusion output object s on which noise m is superimposed is input to the despreading module 4 as a despreading input object h. Despreading the carrier processing means 15, and supplies the processed noise signal x R input from the noise signal supply unit 2 to the despread carrier c R despreading means 16. Despreading means 16, the despreading input object h by multiplying said despread carrier c R, and outputs the result as despread output object a R.
 つづいて、本実施形態の動作の詳細を、まず、図3に示す定常状態における動作から説明する。
 この状態では、ノイズ信号供給部2が拡散キャリア加工手段13と逆拡散キャリア加工手段15とに共通に供給するノイズ信号xは、近隣の電界強度の高い幾つかの放送信号だけで構成された信号となる。遠方の放送信号は電界強度が低いので、そのスペクトルは背景ノイズと区別がつかないものであり、ノイズ信号の成分とはならない。AM放送信号のスペクトルは、その放送信号のキャリア周波数の周りにたかだか数KHzという可聴周波数の幅で広がっているに過ぎず、それはAMラジオ放送の周波数帯全域から見れば線スペクトルのようにスペクトルの広がりは無いに等しいものである。定常状態におけるノイズ信号はそのような放送信号を幾つか含んだものなので、そのスペクトルはAMラジオ放送の周波数帯に高さの異なる何本かの線状スペクトルが存在しただけのまばらな櫛状の構成となる対オブジェクト広帯域性のないものである。ここでは、以降の説明の理解を容易にするために、放送信号がひとつだけで、それは1000KHzの位置に1本の線スペクトルであるとして説明する。
 この応用例において、ノイズ信号から拡散キャリアや逆拡散キャリアへの加工は、AMラジオ放送の周波数帯全域の信号を唯一の入力信号として用い、そのスペクトルの広がりをそのままに反映し単純に対をなす信号の拡散キャリアと逆拡散キャリアを作成するもので、波形や波形パターンの複雑さを高める加工は行わない。それは、例えば入力されるノイズ信号をゼロを基準に絶対値がゼロで無く等しい正負の二値を取る信号にする加工である。ここでは、拡散キャリアと逆拡散キャリアへの加工はその例のような二値化であるとして説明する。
 また、放送信号のスペクトルがただ1本の線スペクトルであるとは、ノイズ信号xが固定周波数の正弦波であることである。そして、その信号をゼロを基準に二値化の加工を行うとは、拡散キャリアcと逆拡散キャリアcを一定周波数の矩形波とすることである。その矩形波の周波数はもとの正弦波の周波数であり、それは放送信号のキャリアの周波数であるから、定常状態での拡散キャリアcと逆拡散キャリアcは、もとの放送信号と同じ周波数とその奇数次の高調波の線スペクトルとで構成されたまばらな櫛状のスペクトル構成の対オブジェクト広帯域性のない信号となる。その高調波成分はそれぞれ放送信号と同じ周波数のスペクトルより小さく、その多くはAMラジオ放送の周波数帯より高い周波数となるので、ここでは、拡散キャリアcと逆拡散キャリアcはもとの放送信号と同じ周波数のスペクトルだけであるとして説明する。その拡散キャリアcは拡散手段に、逆拡散キャリアcは逆拡散手段に供給される。
Next, details of the operation of the present embodiment will be described from the operation in the steady state shown in FIG.
In this state, the noise signal supplying section 2 is the noise signal x W supplied in common to the despreading carrier processing means 15 and the diffusion carrier processing means 13, which consists only of points of higher number of broadcast signal electric field strength Signal. Since the far-field broadcast signal has a low electric field strength, its spectrum is indistinguishable from the background noise and does not become a component of the noise signal. The spectrum of an AM broadcast signal only spreads around an audible frequency range of several KHz around the carrier frequency of the broadcast signal, which is a spectrum of spectrum like a line spectrum when viewed from the entire frequency band of AM radio broadcasting. There is no spread. Since the noise signal in the steady state includes several such broadcast signals, the spectrum is a sparse comb-like spectrum in which several linear spectra having different heights exist in the frequency band of AM radio broadcasting. The object has no broadband property against the object. Here, in order to facilitate understanding of the following description, it is assumed that there is only one broadcast signal, which is a single line spectrum at a position of 1000 KHz.
In this application example, processing from a noise signal to a spread carrier or a despread carrier uses a signal in the entire AM radio broadcast frequency band as the only input signal, and simply makes a pair reflecting the spread of the spectrum as it is. It creates signal spread carriers and despread carriers, and does not perform processing that increases the complexity of waveforms and waveform patterns. For example, the input noise signal is processed into a signal having an absolute value not equal to zero but a positive / negative binary value with reference to zero. Here, description will be made assuming that the processing to the spread carrier and the despread carrier is binarization as in the example.
Further, as the line spectrum of the spectrum only one broadcast signal is that the noise signal x W is a sine wave of fixed frequency. Then, and performs processing of binarizing the signal relative to zero, and to the spread carrier c T despreading carrier c R a rectangular wave having a constant frequency. Frequency of the square wave is the frequency of the original sine wave, it is because the frequency of the carrier of the broadcast signal, the spread carrier c T despreading carrier c R in the steady state, the same as the original broadcast signal A sparse comb-like spectrum structure composed of the frequency and the line spectrum of the odd-order harmonics is a non-object wideband signal. Its harmonic component is smaller than the spectrum of the same frequency as the broadcast signals, because many of the frequency higher than the frequency band of the AM radio broadcast, wherein the diffusion carrier c T despreading carrier c R broadcast original The description will be made assuming that only the spectrum of the same frequency as the signal is present. Its diffusion carrier c T is the diffusion means, despreading carrier c R is supplied to the despreading means.
 一方、拡散入力オブジェクトaは、ノイズ信号を得る様々なAMラジオ放送のスペクトルが分布する周波数帯域を対オブジェクト広帯域性と見なすために、拡散入力オブジェクトaの周波数をノイズ信号を得る周波数領域の上限周波数に対して、例えばその数百分の一以下のようにはるかに小さいものとする。ここでは、拡散入力オブジェクトaは、ノイズ信号を得るAMラジオ放送の周波数帯の上限周波数1600KHzの1600分の一に当たる1KHzの正弦波であるとして説明する。この拡散入力オブジェクトaのスペクトルは1KHzの周波数位置にある一本の線スペクトルである。
 拡散手段は、その1KHzの線スペクトルの拡散入力オブジェクトaと、1000KHzの線スペクトルの拡散キャリアcとを乗じ、その結果を拡散出力オブジェクトsとして伝送媒体に出力する。
 既述したように、拡散手段で行うこの操作は平衡変調操作であり、それから得た拡散出力オブジェクトsは、拡散キャリアcの線スペクトルの位置から拡散入力オブジェクトaの正弦波の周波数分だけ前後に離れた位置の二本の側波帯で構成するスペクトルとなる。すなわち、拡散出力オブジェクトsは999KHzと1001KHzの二本の同じ長さの線スペクトルで構成されたものとなる。このようにただ1本の線スペクトルであるノイズ信号によれば、拡散出力オブジェクトsはスペクトルが広く拡散されていない対オブジェクト広帯域性のない信号になる。拡散モジュールはこの拡散出力オブジェクトをある適当なエネルギーで伝送媒体に出力する。
On the other hand, the diffusion input object a T, to the spectrum of the various AM radio broadcast to obtain the noise signal considers the frequency band versus object broadband property distributed, in the frequency domain to obtain a noise signal frequency of the spread input object a T It is assumed that it is much smaller than the upper limit frequency, for example, one hundredth or less. Here, the diffusion input object a T is described as a 1 KHz sine wave corresponding to 1600 of the upper limit frequency 1600 KHz of the AM radio broadcast frequency band for obtaining a noise signal. The spectrum of the diffuse input object a T is a single line spectrum at a frequency position of 1 KHz.
Diffusion means comprises a diffusion input object a T line spectrum of the 1 KHz, it multiplies the spread carrier c T line spectrum of 1000 KHz, and outputs to the transmission medium and the resulting diffusion output object s.
As already mentioned, this operation is balanced modulator operation performed by the diffusion means, the diffusion output object s obtained therefrom, only the frequency component of the sine wave of the diffusion input object a T from the position of the line spectrum of the spread carrier c T The spectrum is composed of two sidebands at positions separated from each other. That is, the diffusion output object s is composed of two line spectra having the same length of 999 KHz and 1001 KHz. As described above, according to the noise signal having only one line spectrum, the spread output object s becomes a signal having no broadband property against the object whose spectrum is not widely spread. The diffusion module outputs this diffusion output object to the transmission medium with some appropriate energy.
 次に、伝送媒体7ではその拡散出力オブジェクトsにノイズmを重畳させるが、この時、ノイズmには、定常状態時に伝送媒体で伝送される拡散出力オブジェクトsに強く干渉する信号を用いる。それは、拡散出力オブジェクトsのスペクトルの周波数領域に拡散出力オブジェクトsと同程度以上のエネルギーのスペクトルを持つ信号を用いることであり、具体的には、例えば、ノイズmは、拡散出力オブジェクトsと同じエネルギーの999KHzと1001KHzの正弦波信号とすることである。ここでは、ノイズmは、拡散出力オブジェクトsと同じエネルギーの信号で、999KHzと1001KHzのスペクトルで構成したものとする。なお、ノイズmは拡散出力オブジェクトに対してどのような位相関係であってもよいものである。このノイズmの供給部には、例えば999KHzと1001KHzの正弦波の発信器を用いる。
 続いて、逆拡散モジュールはこのノイズmが重畳した拡散出力オブジェクトsを逆拡散入力オブジェクトhとして入力し、逆拡散手段でそれに逆拡散キャリアcを乗じる逆拡散操作を行う。この例では、逆拡散キャリアcには拡散キャリアcと同じ信号を用いる。この逆拡散操作は数式21に示された演算操作であり、逆拡散手段はそこから得られる信号に拡散入力オブジェクトの占有周波数帯域のスペクトルを通過させるフィルタを作用させた結果を逆拡散オブジェクトとして出力する。
 その数式21に示された逆拡散操作の結果のうち、右辺第一項の信号は、999KHzと1001KHzの周波数位置の二本の線スペクトルである拡散出力オブジェクトsを、1000KHzの1本の線スペクトルである逆拡散キャリアcで平衡変調して得た信号である。
 それによれば、拡散出力オブジェクトsの999KHzの成分と逆拡散キャリアcの1000KHzの成分からは1KHzと1999KHzのスペクトルが生じ、拡散出力オブジェクトsの1001KHzの成分と逆拡散キャリアcの1000KHzの成分からは1KHzと2001KHzの成分が生じる。この時生成される各スペクトルにはもとの信号のエネルギーが等分に分配されるので、1KHzと1999KHzと2001KHzそれぞれのスペクトルに分配されるエネルギーの比は2:1:1となる。そのうち、もとの1KHzの拡散入力オブジェクトのスペクトルだけが、逆拡散手段内に設けられた拡散入力オブジェクトの周波数成分を通過させるフィルタを通過して逆拡散手段の出力に現れる拡散入力オブジェクトの成分となる。
Next, in the transmission medium 7, noise m is superimposed on the diffusion output object s. At this time, a signal that strongly interferes with the diffusion output object s transmitted on the transmission medium in a steady state is used as the noise m. That is, using a signal having a spectrum of energy equal to or higher than that of the diffusion output object s in the frequency domain of the spectrum of the diffusion output object s. Specifically, for example, the noise m is the same as that of the diffusion output object s. It is to make it a sine wave signal of energy 999 KHz and 1001 KHz. Here, it is assumed that the noise m is a signal having the same energy as that of the diffusion output object s, and is composed of spectra of 999 KHz and 1001 KHz. The noise m may have any phase relationship with respect to the diffuse output object. For example, 999 KHz and 1001 KHz sine wave transmitters are used for the noise m supply unit.
Subsequently, despreading module inputs the spreading output object s this noise m is superimposed as despreading input object h, performs despreading operation by multiplying the despread carrier c R it in despreading means. In this example, the despread carrier c R using the same signal and the spread carrier c T. This despreading operation is the calculation operation shown in Equation 21, and the despreading means outputs the result obtained by applying a filter that passes the spectrum of the occupied frequency band of the spread input object to the signal obtained therefrom as a despread object. To do.
Among the results of the despreading operation shown in Equation 21, the signal of the first term on the right side is the spread output object s, which is two line spectra at the frequency positions of 999 KHz and 1001 KHz, and one line spectrum at 1000 KHz. it is a signal obtained by balanced modulation by despreading the carrier c R is.
According to this, a spectrum of 1 KHz and 1999 KHz is generated from a 999 KHz component of the spread output object s and a 1000 KHz component of the despread carrier c R , and a 1001 KHz component of the spread output object s and a 1000 KHz component of the despread carrier c R Produces components of 1 KHz and 2001 KHz. Since the original signal energy is equally distributed to each spectrum generated at this time, the ratio of the energy distributed to each spectrum of 1 KHz, 1999 KHz and 2001 KHz is 2: 1: 1. Among them, only the spectrum of the original 1 kHz diffused input object passes through a filter that passes the frequency component of the diffused input object provided in the despreading means, and appears in the output of the despreading means, Become.
 一方、数式21に示された逆拡散操作の結果のうち、右辺第二項の信号は、999KHzと1001KHzの周波数位置の二本の線スペクトル構成のノイズmを、1000KHzの線スペクトルである逆拡散キャリアで平衡変調して得た信号である。
 それによれば、ノイズmの999KHzの成分と逆拡散キャリアcの1000KHzの成分からは1KHzと1999KHzのスペクトルが生じ、ノイズmの1001KHzの成分と逆拡散キャリアcの1000KHzの成分からは1KHzと2001KHzのスペクトルが生じる。この時生成される各スペクトルにはもとの信号のエネルギーが等分に分配されるので、1KHzと1999KHzと2001KHzそれぞれのスペクトルに分配されるエネルギーの比は、数式21の右辺第二項の信号のエネルギー分配比と同じ2:1:1となる。このように、対オブジェクト広帯域性のない逆拡散キャリアによれば、数式21の右辺第二項の信号は対オブジェクト広帯域性のない信号となる。そのうち、1KHzの拡散入力オブジェクトの占有周波数帯域と同じ周波数領域のスペクトルが、逆拡散手段内に設けられた拡散入力オブジェクトの周波数成分を通過させるフィルタを通過して逆拡散手段の出力に現れる拡散入力オブジェクトの成分となる。
 ここで、逆拡散操作を示す数式21の右辺各項の信号のエネルギーについて、第一項の成分のエネルギーと第二項の成分のエネルギーの比は、逆拡散入力オブジェクトにおける拡散出力オブジェクトsのエネルギーとノイズmのエネルギーの比と同じである。
 この時、伝送媒体で拡散出力オブジェクトsに重畳したノイズmは拡散出力オブジェクトsのエネルギーと同じエネルギーとするから、逆拡散操作を示す数式21の右辺各項の信号のエネルギーについて、第一項の成分のエネルギーと第二項の成分のエネルギーの比は1:1であると言える。
On the other hand, among the results of the despreading operation shown in Equation 21, the signal of the second term on the right side is the despread that is the noise m of the two line spectrum configurations at the frequency positions of 999 KHz and 1001 KHz and the line spectrum of 1000 KHz. This is a signal obtained by balanced modulation with a carrier.
According to it, from the components of 1000KHz of 999KHz component despreading carrier c R noise m occurs spectrum of 1KHz and 1999KHz, and 1KHz from components of 1000KHz of 1001KHz components despreading carrier c R noise m A spectrum of 2001 KHz results. Since the energy of the original signal is equally distributed to each spectrum generated at this time, the ratio of the energy distributed to each spectrum of 1 KHz, 1999 KHz, and 2001 KHz is the signal of the second term on the right side of Equation 21. It becomes the same as the energy distribution ratio of 2: 1: 1. As described above, according to the despread carrier having no broadband property against the object, the signal in the second term on the right side of Equation 21 is a signal having no broadband property against the object. Among them, the spectrum input in the same frequency domain as the occupied frequency band of the 1 KHz spread input object passes through the filter that passes the frequency component of the spread input object provided in the despreading means and appears at the output of the despreading means Becomes a component of the object.
Here, with respect to the energy of the signal of each term on the right side of Equation 21 indicating the despreading operation, the ratio of the energy of the component of the first term and the energy of the component of the second term is the energy of the diffusion output object s in the despread input object. And the ratio of the energy of the noise m.
At this time, since the noise m superimposed on the diffusion output object s in the transmission medium is the same energy as the energy of the diffusion output object s, the energy of the signal of each term on the right side of the expression 21 indicating the despreading operation is It can be said that the ratio of the energy of the component and the energy of the component of the second term is 1: 1.
 その第一項と第二項それぞれの成分のうち、拡散入力オブジェクトの周波数成分を通過させるフィルタを通過できるのは、例えばそのフィルタに1KHzの低域通過フィルタを用いた場合、この定常状態においては1KHzの成分だけであり、その1KHzの成分はその第一項と第二項それぞれの成分の中で50%のエネルギー分配比を有したものである。だから、そのフィルタを通過して逆拡散出力オブジェクトとして出力される信号は1:1のエネルギー比の数式21の右辺第一項と第二項それぞれの成分の中から同じ分配比で得られるエネルギーの信号なので、逆拡散出力オブジェクトは、同じエネルギーを有した拡散入力オブジェクト成分とノイズmの成分とで構成された信号となることがわかる。
 この場合、拡散入力オブジェクト成分とノイズmの成分はいずれも1KHzの信号ではあるが同期を取ったものではないので、それらの間には何らかの位相差があり、それによってそれら二つの信号を合成した信号は拡散入力オブジェクトの波形とは異なったものとなる。
 ここで、ノイズmは定常状態時に伝送媒体で伝送される拡散出力オブジェクトsに強く干渉することを目的とした信号で、その干渉の結果、定常状態時の逆拡散出力オブジェクトが拡散入力オブジェクトの波形から常にかけ離れたものとなるようにする。そのため、実際の応用では、ノイズmに拡散出力オブジェクトより高い電力密度で1KHzの信号を不規則信号で変調するなどした信号を用いる。これにより、定常状態時には、逆拡散出力オブジェクトは常に拡散入力オブジェクトとはかけ離れた波形となってしまう。
Among the components of the first term and the second term, the filter that allows the frequency component of the diffused input object to pass can be passed through, for example, when a low-pass filter of 1 KHz is used as the filter. There is only a 1 KHz component, and the 1 KHz component has an energy distribution ratio of 50% among the components of the first and second terms. Therefore, the signal that passes through the filter and is output as the despread output object has the energy obtained at the same distribution ratio from the components of the first term and the second term on the right-hand side of Equation 21 having the energy ratio of 1: 1. Since it is a signal, it can be seen that the despread output object is a signal composed of a diffuse input object component having the same energy and a noise m component.
In this case, the diffuse input object component and the noise m component are both 1 KHz signals but are not synchronized, so there is some phase difference between them, thereby synthesizing the two signals. The signal will be different from the waveform of the diffuse input object.
Here, the noise m is a signal intended to strongly interfere with the diffusion output object s transmitted on the transmission medium in the steady state. As a result of the interference, the despread output object in the steady state is the waveform of the diffusion input object. Always stay away from Therefore, in actual application, a signal obtained by modulating a signal of 1 KHz with an irregular signal at a power density higher than that of the diffusion output object is used as the noise m. As a result, in a steady state, the despread output object always has a waveform far from the diffuse input object.
 このように、本実施形態によれば、ノイズ信号供給部が供給するノイズ信号が対オブジェクト広帯域性を有さないと、本システムのオブジェクト伝送メカニズムは、スペクトル拡散通信手法に特有の耐ノイズ性が得られないため伝送媒体でオブジェクトの忠実な伝送を妨害する目的で意図的に重畳させたノイズの影響を抑制することが出来ず、拡散入力オブジェクトに入力する信号波形を逆拡散出力オブジェクトに忠実に出力することが出来ない。
 この状態は、例えば逆拡散手段に続けて図示しない比較器を設けて逆拡散出力オブジェクトと拡散入力オブジェクトとを時々刻々比較し、それらの信号間にある規定の期間以上連続して一致した状態がないという比較結果を得るようにすることで検知することが可能である。
 ここでは、放送信号がひとつだけで、それは1000KHzの位置に1本の線スペクトルであるとして説明したが、定常状態時にノイズ信号として用いる信号に複数の放送信号のスペクトルがある場合も、上記の動作は同じである。ただし、その場合、拡散出力オブジェクトに現れる各放送信号に対応したスペクトルそれぞれにノイズmが強く干渉するように、例えばノイズmも複数のスペクトルを有すなどの対応もあわせて行うようにする。
As described above, according to the present embodiment, if the noise signal supplied from the noise signal supply unit does not have a broadband property against an object, the object transmission mechanism of this system has noise resistance specific to the spread spectrum communication method. Since it cannot be obtained, the influence of noise intentionally superimposed for the purpose of obstructing the faithful transmission of the object on the transmission medium cannot be suppressed, and the signal waveform input to the diffusion input object is faithful to the despread output object. Cannot output.
In this state, for example, a comparator (not shown) is provided after the despreading means to compare the despread output object and the diffuse input object from time to time, and a state in which the signals coincide continuously for a predetermined period or longer. It is possible to detect by obtaining a comparison result that there is not.
Here, it has been described that there is only one broadcast signal, which is a single line spectrum at a position of 1000 KHz. However, the above operation can be performed even when a signal used as a noise signal in a steady state has a plurality of broadcast signal spectra. Are the same. However, in that case, for example, the noise m also has a plurality of spectra so that the noise m strongly interferes with each spectrum corresponding to each broadcast signal appearing in the spread output object.
 次に、本実施形態の動作の詳細を、図4に示す対オブジェクト広帯域性を有した信号の検知状態における動作について説明する。
 この状態では、ノイズ信号供給部2が拡散キャリア加工手段13及び逆拡散キャリア加工手段15に共通に供給するノイズ信号xは、放送信号と雷放電の信号が混じったものとなる。
 雷放電は人間の目には瞬間的な現象のように見えるが、実際には、不規則に大きさが変化する巨大な電流がある期間連続的に流れる放電が、非常に短い期間に不規則に多数回集中発生する現象であることが知られている。また、この雷放電現象からは巨大な電力密度で非常に広帯域にスペクトルが一様に広がったインパルス状電磁波が連続的に輻射されることもよく知られている。このような雷放電からの信号は、560KHzから1600KHzというAMラジオ放送の周波数帯全域以上の広い周波数帯域にわたり、どの放送信号の占有周波数帯域のエネルギーも放送信号を上回る高い電力密度の強力な信号であるため、放送信号と雷放電の信号が混じったノイズ信号は、事実上雷放電の信号のみで構成されたものとなる。ここでは、ノイズ信号は雷放電の信号のみで構成されたものとし、そのノイズ信号は、2000KHz以上の占有周波数帯域を有し、その周波数帯全域にわたり前記の高い電力密度のスペクトル分布の信号であるとして説明する。すなわち、対オブジェクト広帯域性を有した信号の検知状態におけるノイズ信号は対オブジェクト広帯域性を有した信号である。
Next, details of the operation of the present embodiment will be described in the state of detection of a signal having a broadband property against an object shown in FIG.
In this state, the noise signal supplying section 2 is the noise signal x W supplied in common to the diffusion carrier processing means 13 and despreading the carrier processing means 15 is intended to broadcast signals and lightning signal is mixed.
Lightning discharges appear to be an instantaneous phenomenon to the human eye, but in reality, a discharge that flows continuously for a period of time with a huge current that changes in size irregularly is irregular for a very short period of time. It is known that this phenomenon occurs many times in a concentrated manner. In addition, it is well known that the lightning discharge phenomenon continuously radiates impulse-like electromagnetic waves having a very wide spectrum with a huge power density. The signal from such lightning discharge is a powerful signal with a high power density that exceeds the broadcast signal in the frequency band occupied by any broadcast signal over a wide frequency band of 560 KHz to 1600 KHz over the entire frequency band of AM radio broadcasting. Therefore, a noise signal in which a broadcast signal and a lightning discharge signal are mixed is actually composed of only a lightning discharge signal. Here, it is assumed that the noise signal is composed only of a lightning discharge signal, and the noise signal has an occupied frequency band of 2000 KHz or more, and is a signal having a spectrum distribution of the high power density over the entire frequency band. Will be described. That is, the noise signal in the detection state of the signal having the broadband property to the object is a signal having the broadband property to the object.
 拡散キャリア加工手段13及び逆拡散キャリア加工手段15は、ノイズ信号供給部2から共通に提供される雷放電の信号に基づくノイズ信号xを入力し、拡散キャリアcと逆拡散キャリアcに加工する。拡散キャリアcと逆拡散キャリアcへの加工は、図3の説明で用いたものと同じ、入力されるノイズ信号をゼロを基準に比較し絶対値がゼロで無く等しい正負の二値を取る信号にする二値化の加工である。広い周波数帯域にわたりスペクトルが分布するノイズ信号を二値化して作成される拡散キャリアcと逆拡散キャリアcは、ノイズ信号と同様に広い周波数帯域にわたりスペクトルが分布した二値信号となる。ここでは、拡散キャリアcも逆拡散キャリアcもノイズ信号と同様に2000KHz以上の占有周波数帯域を有した対オブジェクト広帯域性を有した信号となるとして説明する。その拡散キャリアcは拡散手段に、逆拡散キャリアcは逆拡散手段に供給される。
 拡散手段は、その拡散キャリアcを拡散入力オブジェクトaと乗じ、その結果を拡散出力オブジェクトsとして伝送媒体に出力する。この時行われる拡散手段は平衡変調操作である。
 拡散キャリアcを2000KHzの周波数帯域に広がった無数の線スペクトルの集合体と考えると、そのひとつの線スペクトルの信号と1KHzの線スペクトルである拡散入力オブジェクトaを平衡変調して得られる信号は、定常状態時の拡散操作時の結果と同様に、拡散キャリアの線スペクトルの周波数を挟んだ前後1KHzの周波数位置の二本の側波帯で構成するスペクトルの信号となる。この平衡変調の効果を2000KHzの周波数帯域に広がった拡散キャリアcの無数の線スペクトル全体について考えると、結果として得られる信号は、拡散キャリアcの占有周波数帯域より1KHz広い周波数帯域にわたりスペクトルが分布した信号となることがわかる。すなわち、拡散出力オブジェクトsは拡散キャリアcのスペクトルで拡散され、拡散キャリアcと同様に広い周波数帯域にわたりスペクトルが分布した対オブジェクト広帯域性を有した信号となる。ここでは、拡散出力オブジェクトsも拡散キャリアcと同様に2000KHzの占有周波数帯域を有した信号になるとして説明する。
Diffusing carrier processing means 13 and despreading the carrier processing means 15 receives the noise signal x W based on lightning discharge signal provided from the noise signal supply unit 2 in common, the spread carrier c T despreading carrier c R Process. Processing into diffusion carrier c T despreading carrier c R is the same as that used in the description of FIG. 3, the binary positive and negative absolute value is compared with zero on the basis of the noise signal to be inputted is equal not zero It is the processing of binarization to make the signal to take. Diffusing carrier c T despreading carrier c R spectrum over a wide frequency band is created by binarizing a noise signal distributed is a binary signal spectrum is distributed over the noise signal as well as a wide frequency band. Here, a description will be given as a diffusion carrier c T also despread carrier c R also has a noise signal as well as paired object broadband property having an occupied frequency band of more than 2000KHz signal. Its diffusion carrier c T is the diffusion means, despreading carrier c R is supplied to the despreading means.
Diffusing means multiplies the spread carrier c T and the diffusion input object a T, and outputs to the transmission medium and the resulting diffusion output object s. The spreading means performed at this time is a balanced modulation operation.
Given a collection of countless line spectrum spread diffusion carrier c T to the frequency band of 2000 kHz, the signal obtained by the a line spectrum of the signal and the 1KHz of one line spread spectrum input object a T by balanced modulation Is a spectrum signal composed of two sidebands at a frequency position of 1 KHz before and after the frequency of the line spectrum of the spread carrier, similar to the result of the spreading operation in the steady state. Considering the whole myriad line spectrum of the balanced modulation diffusion carrier c T which effect the spread frequency band of 2000KHz of the resulting signal, the spectrum over 1KHz wide frequency band than the frequency band occupied diffusion carrier c T It can be seen that the signal is distributed. That is, the diffusion output object s is spread by spectrum spreading carrier c T, the signal spectrum over a similarly wide frequency band and diffusion carrier c T had a counterion object broadband property distribution. Here, the diffusion output object s is also described as comprising a signal having an occupied frequency band of 2000KHz like the diffusion carrier c T.
 また、拡散手段が伝送媒体に出力する拡散出力オブジェクトsに与えるエネルギーは、その全エネルギーが定常状態時に拡散手段が伝送媒体に出力する拡散出力オブジェクトに与える全エネルギーと同じにする。定常状態時には線スペクトルという狭い占有周波数帯域に集中させたエネルギーで伝送されていた拡散出力オブジェクトsは、この対オブジェクト広帯域性を有した信号の検知状態では2000KHzという広い周波数帯域に拡散したエネルギーで伝送される。この時の拡散出力オブジェクトsの電力密度は、例えば定常状態時の拡散出力オブジェクトsの線スペクトルの幅を1Hzとした場合、定常状態時の拡散出力オブジェクトsの電力密度の200万分の一というわずかな値になる。 Also, the energy given to the diffusion output object s output from the diffusion means to the transmission medium is the same as the total energy given to the diffusion output object output from the diffusion means to the transmission medium in the steady state. In the steady state, the spread output object s transmitted with the energy concentrated in the narrow occupied frequency band called the line spectrum is transmitted with the energy spread in a wide frequency band of 2000 KHz in the detection state of the signal having the broadband property against the object. Is done. The power density of the diffused output object s at this time is as small as 1 / 2,000,000 of the power density of the diffused output object s in the steady state, for example, when the width of the line spectrum of the diffused output object s in the steady state is 1 Hz. Value.
 次に、伝送媒体7ではその拡散出力オブジェクトsにノイズmを重畳させる。このノイズmは定常状態の拡散出力オブジェクトsと同じエネルギーの信号で、999KHzと1001KHzのスペクトルで構成したものである。
 続いて、逆拡散モジュールはこのノイズmが重畳した拡散出力オブジェクトsを逆拡散入力オブジェクトhとして入力し、逆拡散手段でそれに逆拡散キャリアcを乗じる逆拡散操作を行う。この逆拡散操作は数式21に示された演算操作であり、逆拡散手段はそこから得られる信号に拡散入力オブジェクトの占有周波数帯域のスペクトルを通過させるフィルタを作用させた結果を逆拡散オブジェクトとして出力する。
 その数式21に示された逆拡散操作の結果のうち、右辺第一項の信号は、2000KHzの周波数帯域に広がったスペクトルを有した拡散出力オブジェクトsの成分と、同様に2000KHzの周波数帯域に広がったスペクトルを有した逆拡散キャリアでcとから得られた信号ではあるが、拡散出力オブジェクトsの拡散キャリアcT成分と逆拡散キャリアでcとが数式5を成立させる特別な関係なので、拡散出力オブジェクトsや逆拡散キャリアでcのスペクトル分布の如何にかかわらず、拡散入力オブジェクトaのただ1本の線スペクトルとなる。
 拡散出力オブジェクトsを2000KHzの周波数帯域に広がった無数の線スペクトルの集合体ととらえ、同様に逆拡散キャリアでcを2000KHzの周波数帯域に広がった無数の線スペクトルの集合体ととらえ、それらのスペクトル同士を総当りで乗じて拡散入力オブジェクトaのただ1本の線スペクトルを得るこの数式21の右辺第一項の操作は、2000KHzの周波数帯域に微小な電力密度で拡散した拡散出力オブジェクトのエネルギーをかき集め、そのエネルギーの分布をもとの拡散入力オブジェクトの占有周波数帯域に戻す操作であるということができる。
Next, in the transmission medium 7, noise m is superimposed on the diffusion output object s. The noise m is a signal having the same energy as that of the steady-state diffuse output object s, and is composed of spectra of 999 KHz and 1001 KHz.
Subsequently, despreading module inputs the spreading output object s this noise m is superimposed as despreading input object h, performs despreading operation by multiplying the despread carrier c R it in despreading means. This despreading operation is the calculation operation shown in Equation 21, and the despreading means outputs the result obtained by applying a filter that passes the spectrum of the occupied frequency band of the spread input object to the signal obtained therefrom as a despread object. To do.
Among the results of the despreading operation shown in Equation 21, the signal of the first term on the right side is spread in the frequency band of 2000 KHz as well as the component of the spread output object s having a spectrum spread in the frequency band of 2000 KHz. Is a signal obtained from c R with a despread carrier having a different spectrum, but the spread carrier c T component of the spread output object s and c R with the despread carrier are a special relationship that establishes Equation 5, regardless of the spectral distribution of the c R with diffused output object s and despreading the carrier, the only one line spectrum spreading an input object a T.
The spread output object s is regarded as a collection of innumerable line spectra spread over the frequency band of 2000 KHz, and similarly, c R is regarded as a collection of infinite line spectra spread over the frequency band of 2000 KHz with despread carriers. The operation of the first term on the right-hand side of Equation 21 to obtain only one line spectrum of the diffuse input object a T by multiplying the spectra with each other is the operation of the diffuse output object diffused with a minute power density in the frequency band of 2000 KHz. It can be said to be an operation of collecting energy and returning the energy distribution to the original occupied frequency band of the diffuse input object.
 一方、数式21に示された逆拡散操作の結果のうち、右辺第二項の信号は、999KHzと1001KHzの周波数位置の二本の線スペクトル構成のノイズmを、2000KHzの周波数帯域に広がったスペクトルを有した逆拡散キャリアでcで平衡変調して得た信号である。
 逆拡散キャリアcを2000KHzの周波数帯域に広がった無数の線スペクトルの集合体と考えると、そのひとつの線スペクトルの信号と999KHzと1001KHzの二本の線スペクトルであるノイズmを平衡変調して得られる信号は、定常状態時の拡散操作時の結果と同様に、逆拡散キャリアの線スペクトルの周波数を挟んだ前後999KHzと前後1001KHzの周波数位置の四本の側波帯で構成するスペクトルの信号となる。この平衡変調の効果を2000KHzの周波数帯域に広がった逆拡散キャリアcの無数の線スペクトル全体について考えると、結果として得られる信号は、逆拡散キャリアcの占有周波数帯域より1001KHz広い周波数帯域にわたりスペクトルが分布した信号となることがわかる。すなわち、拡散キャリアcのスペクトルで拡散され、拡散出力オブジェクトsは拡散キャリアcと同様に広い周波数帯域にわたりスペクトルが分布した対オブジェクト広帯域性を有した信号となる。ここでは、数式21の右辺第二項は2000KHz以上の占有周波数帯域を有した信号になるとして説明する。
On the other hand, among the results of the despreading operation shown in Equation 21, the signal of the second term on the right side is a spectrum in which noise m of two line spectrum configurations at frequency positions of 999 KHz and 1001 KHz is spread over a frequency band of 2000 KHz. Is a signal obtained by balanced modulation with c R using a despread carrier having
Considering the despread carrier c R as a collection of innumerable line spectra spread over the frequency band of 2000 KHz, the signal m of the one line spectrum and the noise m, which is two line spectra of 999 KHz and 1001 KHz, are balanced-modulated. The obtained signal is a spectrum signal composed of four sidebands at frequency positions of 999 KHz before and after and 1001 KHz before and after the frequency of the line spectrum of the despread carrier, similarly to the result at the time of the spreading operation in the steady state. It becomes. Considering the whole myriad line spectrum of the balanced modulation despread carrier c R effect a spread frequency band of 2000KHz of the resulting signal, 1001KHz over a wide frequency band than the frequency band occupied despread carrier c R It can be seen that the signal is distributed in spectrum. That is, the diffusion is diffused in the spectrum of the carrier c T, diffusion output object s becomes a signal having a pair object broadband property spectrum are distributed over a wide frequency band similar to the diffusion carrier c T. Here, the second term on the right side of Equation 21 will be described as a signal having an occupied frequency band of 2000 KHz or more.
 ここで、逆拡散操作を示す数式21の右辺各項の信号のエネルギーについて、第一項の成分のエネルギーと第二項の成分のエネルギーの比は、逆拡散入力オブジェクトにおける拡散出力オブジェクトsのエネルギーとノイズmのエネルギーの比と同じである。
 この時、伝送媒体で拡散出力オブジェクトsに重畳したノイズmは拡散出力オブジェクトsのエネルギーと同じエネルギーとするから、逆拡散操作を示す数式21の右辺各項の信号のエネルギーについて、第一項の成分のエネルギーと第二項の成分のエネルギーの比は1:1であると言える。
 その第一項と第二項それぞれの成分のうち、拡散入力オブジェクトの周波数成分を通過させるフィルタを通過できるのは、例えばそのフィルタに1KHzの低域通過フィルタを用いた場合、この対オブジェクト広帯域性を有した信号の検知状態においては、その第一項の成分ではその100%のエネルギーを有した拡散入力オブジェクトの成分であり、その第二項の成分ではそのエネルギーを2000KHz以上と言うその第二項の成分の占有周波数帯域幅に対する1KHzという低域通過フィルタの通過帯域幅の比に抑制した成分である。
Here, with respect to the energy of the signal of each term on the right side of Equation 21 indicating the despreading operation, the ratio of the energy of the component of the first term and the energy of the component of the second term is the energy of the diffusion output object s in the despread input object. And the ratio of the energy of the noise m.
At this time, since the noise m superimposed on the diffusion output object s in the transmission medium is the same energy as the energy of the diffusion output object s, the energy of the signal of each term on the right side of the expression 21 indicating the despreading operation is It can be said that the ratio of the energy of the component and the energy of the component of the second term is 1: 1.
Among the components of the first term and the second term, when the low-pass filter of 1 KHz is used for the filter, for example, the filter can pass the frequency component of the diffusion input object. In the detection state of the signal having the first component, the component of the first term is the component of the diffuse input object having the energy of 100%, and the second component of the second component is that the energy is 2000 KHz or more. This component is suppressed to a ratio of the pass bandwidth of the low-pass filter of 1 KHz to the occupied frequency bandwidth of the term component.
 だから、そのフィルタを通過して逆拡散出力オブジェクトとして出力される信号に含まれるそれらの成分のエネルギー比は、ノイズの影響成分に対する拡散入力オブジェクトの成分のエネルギー比として二千倍以上のものとなることがわかる。すなわち、拡散入力オブジェクトの成分のエネルギーに対してノイズの影響エネルギーはわずかに二千分の一以下と言うことになる。この結果得られる逆拡散出力オブジェクトにはノイズの影響がほとんど含まれないので拡散入力オブジェクトの波形が忠実に現れる。なお、数式21の右辺第二項に得られる信号のスペクトルは、第一項の場合と同様に厳密には周波数が負となる成分が生じ、それは成分を周波数ゼロを境に正の周波数領域へ折り返したスペクトル分布となるので、そのスペクトル分布は厳密には一様なものとはならないが、既述したように拡散入力オブジェクトに対する影響が小さい点では変わらないものなので、その影響は無視する。 Therefore, the energy ratio of those components included in the signal that passes through the filter and is output as the despread output object is more than 2000 times as the energy ratio of the component of the diffusion input object to the noise influence component. I understand that. That is, the noise influence energy is only 1/20 or less of the energy of the component of the diffuse input object. The despread output object obtained as a result contains almost no influence of noise, so that the waveform of the diffuse input object appears faithfully. Note that the signal spectrum obtained in the second term on the right side of Equation 21 has a component with a negative frequency exactly as in the case of the first term, and that component goes to the positive frequency region with frequency zero as a boundary. Since it is a folded spectrum distribution, the spectrum distribution is not strictly uniform. However, as described above, since the influence on the diffusion input object is small, the influence is ignored.
 このように、本実施形態によれば、ノイズ信号供給部が供給するノイズ信号が対オブジェクト広帯域性を有していると、本システムのオブジェクト伝送メカニズムは、スペクトル拡散通信手法に特有の耐ノイズ性を得て伝送媒体でオブジェクトの忠実な伝送を妨害する目的で意図的に重畳させたノイズの影響を抑制し、拡散入力オブジェクトの信号波形を逆拡散出力オブジェクトに忠実に出力することが出来る。
 この状態は、例えば逆拡散手段の出力に図示しない比較器を設け、逆拡散出力オブジェクトと拡散入力オブジェクトとを時々刻々比較し、それらの信号間にある規定の期間以上連続して一致した状態があるという比較結果で検知することが可能である。
As described above, according to the present embodiment, when the noise signal supplied from the noise signal supply unit has a broadband property with respect to the object, the object transmission mechanism of the present system has the noise resistance characteristic of the spread spectrum communication method. Thus, the influence of noise intentionally superimposed for the purpose of obstructing the faithful transmission of the object on the transmission medium can be suppressed, and the signal waveform of the spread input object can be faithfully output to the despread output object.
In this state, for example, a comparator (not shown) is provided at the output of the despreading means, and the despread output object and the diffuse input object are compared every moment, and the state in which these signals are continuously matched for a predetermined period or longer is determined. It is possible to detect by the comparison result.
 このように、本実施形態によれば、定常状態ではノイズ信号xが対オブジェクト広帯域性を有しないためにオブジェクト伝送メカニズムは耐ノイズ性が得られず、それにより意図的に重畳させたノイズの影響を排除できないために逆拡散出力オブジェクトaとして拡散入力オブジェクトaをSN良く出力することができない。一方、対オブジェクト広帯域性を有した信号検出状態ではノイズ信号xが対オブジェクト広帯域性を有すことによりオブジェクト伝送メカニズムは耐ノイズ性を得、それにより意図的に重畳させたノイズの影響を排除して逆拡散モジュールは逆拡散出力オブジェクトaとして拡散入力オブジェクトaをSN良く出力することができる。すなわち、本伝送システムでは、例えば雷放電のような、対オブジェクト広帯域性を有した信号を検出することができることとなる。
 なお、本伝送システムの構成は、雷放電の検知に限るものではなく、任意の対オブジェクト広帯域性を有した信号の検知や、任意の信号の対オブジェクト広帯域性の評価に用いることができるものである。さらに、本伝送システムの構成が拡散モジュールと逆拡散モジュールとに相互相関確立状態のノイズ信号を必要とすることを利用すると、任意の不規則信号の位相差を評価したり、方位を同定するなどの応用も可能となる。
 従来のスペクトル拡散の応用であった情報伝送でも測距でもないこのような新たな応用が可能となるのは、本伝送システムのキャリア供給部が、従来のスペクトル拡散通信システムと異なり、拡散モジュールと逆拡散モジュールとが対オブジェクト広帯域性を有し不規則様の共通のノイズ信号を加工して、対オブジェクト広帯域性を有し不規則性の対をなす信号関係を有した拡散キャリアと逆拡散キャリアを作成するという特徴的な構成を有するからである。
Thus, according to this embodiment, the object transmission mechanism to the noise signal x W does not have a pair object broadband property in the steady state is not the noise resistance can be obtained, the noise thereby intentionally superimposed effect diffusion input object a T as despreading output object a R can not be SN good output can not be eliminated. On the other hand, versus the object transmission mechanism by having a pairs object wideband noise signal x W signal detection state of having an object broadband performance resulting noise resistance, eliminating the influence of noise is intentionally superimposed by it despreading module to can diffuse input object a T SN may output a despread output object a R. That is, in this transmission system, a signal having a broadband property against an object such as lightning discharge can be detected.
The configuration of this transmission system is not limited to the detection of lightning discharge, but can be used for detection of a signal having a broadband property with respect to any object and evaluation of a broadband property with respect to any signal. is there. Furthermore, using the fact that the configuration of this transmission system requires a noise signal with a cross-correlation established between the spreading module and the despreading module, the phase difference of an arbitrary irregular signal is evaluated, the direction is identified, etc. Can also be applied.
Such a new application that is neither information transmission nor distance measurement, which was a conventional spread spectrum application, is possible because the carrier supply unit of this transmission system is different from the conventional spread spectrum communication system, A despreading carrier and despreading carrier having a signal relationship that forms a pair of irregularities with an object wideband by processing a common noise signal that has an object widebandness with the despreading module. It is because it has the characteristic structure of creating.
 このように、本実施形態1に係るキャリア加工装置を適用したスペクトル拡散オブジェクト伝送システムによれば、従来のスペクトル拡散の応用であった情報伝送でも測距でもない、任意の信号の対オブジェクト広帯域性の評価に応用が可能なものといえる。すなわち、通信でも測距でもない、スペクトル拡散の新たな用途を開拓することができる。 As described above, according to the spread spectrum object transmission system to which the carrier processing apparatus according to the first embodiment is applied, the wideband property of an arbitrary signal with respect to an object, which is neither information transmission nor distance measurement, which is a conventional spread spectrum application. It can be said that it can be applied to the evaluation. That is, it is possible to pioneer a new application of spread spectrum that is neither communication nor distance measurement.
 これまでの本伝送システムの原理や応用の説明では、伝送するオブジェクトが時間関数で捉えられるものであり、そのオブジェクトを電気信号に変換して伝送するシステムの場合について説明したが、本実施形態1に係るキャリア加工装置やオブジェクト伝送システムの適用領域はこれに限られるものではない。伝送すべきオブジェクトが、例えば位置関数の状態変数で捉えられるものであっても、本伝送システムの適用対象とすることができるものである。
 その事例として、図5~図7に基づいて、平面画像を処理対象とした本伝送システムの信号処理プロセスを説明する。
In the description of the principle and application of the present transmission system so far, the object to be transmitted can be grasped by a time function, and the case of the system that converts the object into an electric signal and transmits it has been described. The application area of the carrier processing apparatus and the object transmission system according to the present invention is not limited to this. Even if an object to be transmitted is captured by, for example, a state variable of a position function, the object can be applied to the present transmission system.
As an example, a signal processing process of the present transmission system for processing a planar image will be described with reference to FIGS.
 図5は、例えばポスターや写真のような平面画像20のある規定の領域20aを微小な画素の二次元の並びとして表現したモデルである。例えば、図5に示したスナップ画像の背景部分や住宅密集地の航空写真のような細かな柄がランダムに現れる画像では、直線状の画素の並び21aにおいて、並び21aの方向に対して画素の輝度は不規則に変化するものである。本伝送システムはその様な画像上の不規則に変化する輝度の並びをノイズ信号xに利用できるものであり、図7はその様な本伝送システム全体の構成例である。 FIG. 5 shows a model in which a predetermined area 20a of the planar image 20 such as a poster or a photograph is expressed as a two-dimensional arrangement of minute pixels. For example, in an image in which a fine pattern such as a background portion of a snap image shown in FIG. 5 or an aerial photograph of a densely populated residential area appears at random, in the linear pixel array 21a, the pixel in the direction of the array 21a The brightness changes irregularly. This transmission system are those available a sequence of luminance changes irregularly on such image noise signal x W, FIG. 7, there is shown an overall diagram of such a present transmission system.
 図7に示したノイズ信号供給部2は、画像20中でノイズ画像とするある規定の領域20aの二次元平面画像から一次元のノイズ信号xを得て、拡散モジュール3と逆拡散モジュール4とに供給する。そのノイズ信号供給部2は、具体的には、例えば、画像のアナログ濃淡状態分布情報をデジタルデータとして読み出すスキャナーである。このスキャナー2は、二次元ノイズ画像をスキャンして二次元画像からノイズ信号xとして用いるデータを逐次読み出して一次元に並べ、そのデータ列21aをノイズ信号xとノイズ信号xとして拡散キャリア加工手段13と逆拡散キャリア加工手段15に供給する。図5ではノイズ信号xとして読み出す領域を平面画像20a上のひとつの直線状領域21として示しているが、実際にはラスタースキャンのテレビ画面の輝点のスキャンの様に、上下に隣接する画素列をつないで画像平面20a全体をノイズ信号xとして読み出す領域とする。以下では、ノイズ信号xはその様にして読み出される一次元データ列であるとして説明する。 7 noise signal supplying section 2 shown in, with the noise signal x W of the one-dimensional from the two-dimensional image is defined in the region 20a to noise image in image 20, the diffusion module 3 despreading module 4 And supply to. Specifically, the noise signal supply unit 2 is, for example, a scanner that reads analog gray state distribution information of an image as digital data. The scanner 2 is arranged in a dimensionally sequentially reads the data used as a noise signal x W from the two-dimensional image by scanning the two-dimensional noise image, spreading the carrier and the data string 21a as a noise signal x T and the noise signal x R This is supplied to the processing means 13 and the despread carrier processing means 15. Although a region where read as FIG. 5, the noise signal x W as one of the linear regions 21 on the plane image 20a, in practice, as the scanning of the bright points of the TV screen of the raster scan, pixels adjacent to vertical a region for reading the entire image plane 20a as a noise signal x W connects the column. In the following, the noise signal x W will be described as a one-dimensional data sequence to be read in the manner that.
 拡散キャリア加工手段13はそのノイズ信号xを拡散キャリアcに加工し、その拡散キャリアcを拡散手段14に供給する。
 一方、拡散入力オブジェクトaは、伝送オブジェクト源5と拡散入力オブジェクト入力手段6の働きで拡散手段14に供給される。
Diffusing carrier processing means 13 to process the noise signal x T to spread carrier c T, and supplies the spread carrier c T to the diffusion unit 14.
On the other hand, the diffusion input object a T is supplied to the diffusion means 14 by the action of the transmission object source 5 and the diffusion input object input means 6.
 伝送オブジェクト源5は、本伝送システムで伝送する伝送オブジェクトoの供給源であり、伝送オブジェクトoは例えば何らかの情報である。伝送オブジェクト源5はその伝送オブジェクトoを拡散入力オブジェクト入力手段6に供給する。拡散入力オブジェクト入力手段6は、伝送オブジェクトoを入力すると、それに対応し、占有周波数帯域がある領域に制限された一次元データ列の形式の拡散入力オブジェクトaを作成し、拡散手段14に向けて出力する。この拡散入力オブジェクト入力手段6の操作はいわゆる一次変調と呼ばれる操作であり、例えば固定周波数の正弦波をBPSKで一次変調する場合、伝送する情報をディジタル化し、その1ビットに正弦波の0度から180度までの半周期分の波形を対応付け、波形が正側にあれば1、負側にあれば0のようにして、拡散入力オブジェクトが情報を表現するようにすることである。
 この時、拡散入力オブジェクト入力手段6は、拡散入力オブジェクトaをノイズ信号xや拡散キャリアcと同じ形態の信号として供給する。具体的には、例えば、拡散入力オブジェクト入力手段6は、拡散入力オブジェクトaを、ノイズ信号xの様に一次元のデータ列22の形態で供給する。
The transmission object source 5 is a supply source of the transmission object o T to be transmitted in the present transmission system, and the transmission object o T is, for example, some information. The transmission object source 5 supplies the transmission object o T to the diffusion input object input means 6. When the transmission object o T is inputted, the diffusion input object input means 6 creates a diffusion input object a T in the form of a one-dimensional data string corresponding to the transmission object o T and limited to an area having an occupied frequency band. Output toward. The operation of the diffusion input object input means 6 is an operation called so-called primary modulation. For example, when a sine wave having a fixed frequency is subjected to primary modulation by BPSK, the information to be transmitted is digitized, and 1 bit is obtained from 0 degree of the sine wave. A half-cycle waveform up to 180 degrees is associated, and if the waveform is on the positive side, it is 1 and if it is on the negative side, the diffuse input object represents information.
At this time, the spread input object input unit 6 supplies the spread input object a T as a signal of the same form as the noise signal x T and diffusion carrier c T. Specifically, for example, spread input object input unit 6 supplies the spread input object a T, at a one-dimensional form of the data string 22 as a noise signal x T.
 図6は一次元データ列の形態の拡散入力オブジェクトaを説明したものである。この例は、1と0とが交互に並んだ60ビットの情報を、前述したBPSKで一次変調して拡散入力オブジェクトaとするものである。拡散入力オブジェクト入力手段6は、一次変調で作成した60個の正弦波半周期の波形について、個々の正弦波波形の振幅値を正弦波の周期に対して、例えばその千分の一の様に微小な幅Δzの間隔でサンプリングし、そのサンプル値を一次元に並べて拡散入力オブジェクトaの集合体とするデータ列22を形成する。
 このような拡散入力オブジェクト入力手段6は、具体的には、例えば、図6の意味を持つ正弦波の離散的な数値列を数値計算で発生させるプログラムを搭載したコンピュータである。
 拡散入力オブジェクト入力手段6は、データ列22の先頭から順にデータを逐次読み出し、それを拡散入力オブジェクトaとして拡散手段14に供給する。
 拡散手段14は、拡散キャリアcを、前記データ列22から逐次読み出したデータ(拡散入力オブジェクトa)と乗じ、結果を拡散出力オブジェクトsとして一次元データ列23aに並べる。これは例えば拡散入力オブジェクトaのデータ列22を作成したのと同様に、例えばコンピュータ上でソフトウェアによって実行される。
6 is for explaining the spread input object a T in the form of one-dimensional data sequence. In this example, 1 and 0 and the 60 bits of information alternating, it is an spread input object a T by primary modulation with BPSK described above. The diffused input object input means 6 has the amplitude value of each sine wave waveform with respect to the sine wave period, for example, one thousandth of the sine wave half period waveform generated by the primary modulation. sampled at intervals of a minute width Delta] z, to form a data string 22 to be an aggregate of the diffusion input object a T side by side the sample values in one dimension.
Specifically, such a diffused input object input means 6 is, for example, a computer equipped with a program for generating a numerical sequence of sine waves having the meaning of FIG. 6 by numerical calculation.
Spread input object input unit 6 sequentially reads the data from the head of the data string 22 in this order, and supplies the spreading means 14 it as spread input object a T.
Spreading means 14, the spread carrier c T, the multiplying from the data string 22 sequentially reads data (spread input object a T), the results arranged in one-dimensional data strings 23a as a diffusion output object s. This is performed in a manner similar to that created the data string 22, for example, spread input object a T, by software for example on a computer.
 以上に説明した拡散手段14による拡散出力オブジェクトsのデータ列23aの形成は、伝送する全てのオブジェクトに対応したデータ列22について行われる。
 このデータ列23aの形成には、前記オブジェクトに対応したデータ列22とともに、拡散キャリアcのデータ列として、データ列22を構成するデータ数と同じデータ数から成るデータ列が必要である。そして、その拡散キャリアのデータ列を作成するために、例えばそれと同じデータ数のノイズ画像の輝度データ列21aが必要となる。ノイズ画像の領域は、例えばこのようなオブジェクトの伝送に必要とされる大きさの輝度データ列を供給できる大きさとする。例えば図5に示す平面画像20内に設けたある画像の領域20aは、この様にして決めた大きさの領域である。
 一方、拡散手段14から出力される拡散出力オブジェクトsのデータ列23aは、論理的には一次元のデータ列であるが、実際の伝送24で用いられるデータ列の物理的な形態は任意でよいものである。
The formation of the data string 23a of the diffusion output object s by the diffusion means 14 described above is performed for the data string 22 corresponding to all objects to be transmitted.
The formation of the data string 23a, with the data string 22 corresponding to the object, as a data string of the spread carrier c T, is required data sequence consisting of the same number of data as the number of data constituting the data string 22. In order to create the data sequence of the spread carrier, for example, the luminance data sequence 21a of the noise image having the same number of data as that is required. The area of the noise image has a size that can supply a luminance data string having a size required for such object transmission, for example. For example, a region 20a of an image provided in the planar image 20 shown in FIG. 5 is a region having a size determined in this way.
On the other hand, the data string 23a of the diffusion output object s output from the diffusion means 14 is logically a one-dimensional data string, but the physical form of the data string used in the actual transmission 24 may be arbitrary. Is.
 伝送媒体変換7aは、一次元のデータ列として拡散手段から出力される拡散出力オブジェクトsを実際の伝送24で用いる形態に変換する。例えば、実際の伝送24が移動する人の携行である場合、拡散出力オブジェクトsのデータ列23aは、一次元データ列としてではなく、図5に示す平面画像20aのように二次元平面に対応する二次元データ列で表現した平面画像としても良いものである。その場合、伝送媒体変換7aは、一次元から二次元へのデータ列の形態変換と、電子データから平面印刷画像への形態変換を意味しており、それには例えば印刷機を用いる。以下では、実際の伝送24で伝送される拡散出力オブジェクトsは、前記要領で変換して紙に印刷された平面印刷画像の形態であるとして説明する。
 伝送24で拡散モジュールから逆拡散モジュールへ移動したオブジェクトは、再び逆拡散モジュールでのデータ処理形態にあわせて一次元の逆拡散入力オブジェクトhのデータ列23bとして逆拡散モジュール4に入力される。伝送24の過程にあわせた形態の拡散出力オブジェクトsは、逆拡散モジュール4に入力される過程で、再度形態が変換される。伝送媒体変換7bはその形態変換を示しており、例えば平面画像の形態で拡散出力オブジェクトsを伝送する場合、伝送媒体変換7bは画像から電子データへという形態変換と、二次元から一次元へのデータ列の形態変換とを行う。これには、具体的には、例えばスキャナーを用いる。
The transmission medium conversion 7 a converts the diffusion output object s output from the diffusion means as a one-dimensional data string into a form used in the actual transmission 24. For example, when the actual transmission 24 is carried by a moving person, the data string 23a of the diffusion output object s does not correspond to a one-dimensional data string, but corresponds to a two-dimensional plane like a planar image 20a shown in FIG. A plane image expressed by a two-dimensional data string may be used. In this case, the transmission medium conversion 7a means a form conversion of a data string from one dimension to two dimensions and a form conversion from electronic data to a flat print image, for example, using a printing machine. In the following description, it is assumed that the diffusion output object s transmitted in the actual transmission 24 is in the form of a flat print image that is converted and printed on paper as described above.
The object moved from the spreading module to the despreading module in the transmission 24 is input to the despreading module 4 as the data string 23b of the one-dimensional despreading input object h again in accordance with the data processing mode in the despreading module. The form of the diffusion output object s in the form adapted to the process of transmission 24 is converted again in the process of being input to the despreading module 4. The transmission medium conversion 7b indicates the form conversion. For example, when the diffusion output object s is transmitted in the form of a planar image, the transmission medium conversion 7b is converted from an image to electronic data, and from two dimensions to one dimension. Performs data row format conversion. Specifically, for example, a scanner is used for this.
 逆拡散モジュール4は、拡散モジュール3と同様に、ノイズ信号供給部2が供給する一次元データ列のノイズ信号xをノイズ信号xとして入力する。ノイズ信号xのデータ列は、拡散モジュールにノイズ信号xとして供給したデータ列そのものでもよいし、それを記憶しておいたものでも良いし、同じ画像を同じ要領で再度スキャンして得たデータ列でもよいものである。逆拡散キャリア加工手段15は、入力したそのノイズ信号xのデータ列を加工して逆拡散キャリアcを作成し、その逆拡散キャリアcを逆拡散手段16に供給する。
 逆拡散手段16は、逆拡散キャリアcを、逆拡散入力オブジェクトhと乗じ、逆拡散出力オブジェクトaを出力する。この逆拡散出力オブジェクトaもまた一次元のデータ列25のデータである。
 この逆拡散出力オブジェクトaのデータ列25のデータを等間隔に順次プロットして得られるグラフの波形は図6の拡散入力オブジェクトaの波形そのものであり、そのグラフを構成する0度から180度までの周期の正弦波波形の並び方を解析すれば、その並びが表現する情報、すなわちオブジェクトを引き出すことが出来る。図7の符号8はデータ列25から何らかの方法で伝送したオブジェクトである伝送オブジェクトoを抽出して出力する拡散出力オブジェクト出力手段である。
 これらの操作で、逆拡散手段16でデータ列23bの要素と乗じられる逆拡散キャリアcの加工材料とするデータ列21aの要素は、データ列23bの元となるデータ列23aの要素が拡散モジュールで作成された時に拡散手段が用いた拡散キャリアcのデータ列を作成するために拡散キャリア加工手段13が加工材料に用いたデータ列21aの要素と同一となるように、各データ列からデータを読み出したりデータ列にデータを書き出したりする順番に揃えておく。
Despreading module 4, like the diffusion module 3, the noise signal supply unit 2 inputs the noise signal x W of the one-dimensional data strings supplied as a noise signal x R. Data string of the noise signal x R may be the data string itself supplied as a noise signal x T diffusion module, may be one which has been stored it, obtained by scanning again the same image in the same way It can be a data string. Despreading the carrier processing means 15, creates a despread carrier c R by processing the data string of the noise signal x R input, and supplies the despread carrier c R despreading means 16.
Despreading means 16, the despreading carrier c R, multiplied by despreading input object h, and outputs the despread output object a R. The despread output object a R is also data of the one-dimensional data string 25.
The waveform of the graph obtained by sequentially plotting the data of the data string 25 of the despread output object a R at regular intervals is the waveform of the diffusion input object a T in FIG. 6, and the waveform constituting the graph is from 0 to 180 degrees. If the arrangement of sinusoidal waveforms with a period of up to 20 degrees is analyzed, information represented by the arrangement, that is, an object can be extracted. Reference numeral 8 in FIG. 7 denotes diffusion output object output means for extracting and outputting a transmission object o R that is an object transmitted from the data string 25 by some method.
In these operations, the elements of the data string 21a to the processing material of the despread carrier c R to be multiplied by an element of the data string 23b at the despreading means 16, the element of a data string 23a which is the source of the data row 23b is diffused module in such diffuse carrier processing means 13 in order to create the data string of the spread carrier c T a diffuser is used when it is created the same as the element of the data string 21a used for processing materials, data from each data string Are arranged in the order in which data is read out and data is written to the data string.
 このように、本伝送システムの原理によれば、時間的な変化でないデータを用いてスペクトル拡散による情報の伝送が可能となる。 Thus, according to the principle of this transmission system, it is possible to transmit information by spread spectrum using data that does not change with time.
 スペクトル拡散通信は拡散出力オブジェクトを伝送する伝送路で拡散出力オブジェクトに重畳するノイズに対して耐ノイズ性を有す。これは、図7においては、データ列23aを含んだ画像が逆拡散のために用いる画像として送られる何らかの伝送24の過程で、その画像にデータ列23aの個々の画素データとは無関係なノイズが重畳しても、逆拡散出力オブジェクトに対するそのノイズの影響をそのノイズの特性とは無関係に軽減できるということである。
 画像にノイズが重畳するとは、例えば画像にインクをこぼすような場合が考えられるが、それ以外に、拡散出力オブジェクトの画像にある別な画像を積極的に重畳させることが考えられる。
Spread spectrum communication has noise resistance against noise superimposed on the spread output object in the transmission path for transmitting the spread output object. In FIG. 7, in the course of some transmission 24 in which an image including the data sequence 23a is sent as an image used for despreading, noise unrelated to the individual pixel data in the data sequence 23a is present in the image. Even if they are superimposed, the influence of the noise on the despread output object can be reduced regardless of the characteristics of the noise.
For example, noise may be superimposed on the image. For example, ink may be spilled on the image, but other than this, another image in the image of the diffusion output object may be actively superimposed.
 具体的には、例えば、何文字かの文字情報をスペクトル拡散した画像情報に、人物の写真画像を重畳させる。このようなノイズの重畳を受けても、スペクトル拡散通信の耐ノイズ性によりノイズの影響を排除できる。この時、文字情報をスペクトル拡散した画像情報は重畳される人物画像より小さな濃淡情報でよいので、二つの画像を合成した画像の濃淡情報で人物画像の濃淡情報が支配的になるようにすることができる。その結果、二つの画像を合成した画像では文字情報をスペクトル拡散した画像情報はわずかなノイズのように見えるだけとなり、事実上その存在がわからなくなる。 Specifically, for example, a person's photographic image is superimposed on image information obtained by spectrum-spreading some character information. Even if such noise is superimposed, the influence of noise can be eliminated by the noise resistance of spread spectrum communication. At this time, since the image information obtained by spectrum-spreading the character information may be smaller grayscale information than the person image to be superimposed, the grayscale information of the person image is dominant in the grayscale information of the image obtained by combining the two images. Can do. As a result, in the image obtained by synthesizing the two images, the image information obtained by spectrally diffusing the character information only looks like a slight noise, and the existence thereof is virtually unknown.
 これは、例えば、写真画像への情報の刷込みに用いる。例えば、都会の街並の航空写真画像に、その写真に写っている特定の建物の案内情報を刷込むという応用である。この時、例えばその写真画像上の座標と、その座標位置にある建物の名前という二種類の情報を一組にして拡散入力オブジェクトとする。一方、拡散・逆拡散キャリアの加工材料とするノイズ信号源としての画像情報も航空写真画像の適当な部分を用いてよいものである。拡散キャリアで拡散入力オブジェクトをスペクトル拡散した拡散出力オブジェクトは、例えば画像のその建物の周囲の画像領域に重畳させる。画像は拡散出力オブジェクトの重畳を受けるが、拡散出力オブジェクトの値は、画像を構成する画素の濃淡情報がとる値の幅に対して絶対値が例えば十数分の一程度と小さい上にランダムに変化するので、見た目にはもとの航空写真と変わらない。拡散出力オブジェクトを重畳した画像の適当な領域から読み出された画像の濃淡情報列に逆拡散操作を行うと、座標と名前という情報が得られ、画像上のその座標位置に名前を表示することが出来る。このような情報の埋め込みを位置を変えて複数実施したとき、画像上のある領域に、複数の異なる拡散出力オブジェクトが重畳する場合が生じる。この場合でも、重畳した拡散出力オブジェクトは、スペクトル拡散通信の耐ノイズ性により、逆拡散のプロセスで個々の情報ごとに目的とする信号以外の信号成分や重畳した航空写真の成分をノイズとして影響を排除して、目的とする信号だけを抽出することができる。航空写真は地理的案内情報として単なる絵地図に比べてはるかに正確で情報量に富んだものであるが、本オブジェクト伝送システムを応用することによりそこにさらに多くの情報を付加することができることとなる。このように、本伝送システムによれば、画像にその画像の見た目を変えることなく情報の刷込みを可能とし、画像に新たな機能を提供できるものである。 This is used, for example, for imprinting information on photographic images. For example, it is an application of imprinting guidance information on a specific building in an aerial photograph image of a city street. At this time, for example, two types of information, that is, the coordinates on the photographic image and the name of the building at the coordinate position are combined to form a diffusion input object. On the other hand, image information as a noise signal source used as a processing material of the diffusion / despreading carrier may use an appropriate portion of the aerial image. A spread output object obtained by performing spectrum spread on a spread input object with a spread carrier is superimposed on, for example, an image region around the building of the image. The image is subjected to the superimposition of the diffuse output object, but the value of the diffuse output object has a small absolute value, for example, about one-tenth of the width of the value taken by the shade information of the pixels constituting the image, and is randomly Because it changes, it looks the same as the original aerial photograph. When the inverse diffusion operation is performed on the gray level information sequence of the image read from the appropriate area of the image on which the diffusion output object is superimposed, the information of coordinates and name is obtained and the name is displayed at the coordinate position on the image. I can do it. When a plurality of such information embeddings are performed at different positions, a plurality of different diffusion output objects may be superimposed on a certain area on the image. Even in this case, due to the noise resistance of spread spectrum communication, the superimposed spread output object is affected by noise as a signal component other than the target signal or superimposed aerial photograph components for each piece of information in the despreading process. It is possible to extract only the signal of interest by eliminating it. The aerial photograph is much more accurate and rich in information than a simple pictorial map as geographical guidance information, but by applying this object transmission system, more information can be added to it. Become. Thus, according to the present transmission system, information can be imprinted on the image without changing the appearance of the image, and a new function can be provided to the image.
 なお、ここでは、本伝送システムが平面画像を用いて情報伝送を行う例を示したが、本伝送システムの適用は平面画像に限るものではなく、立体画像を表現するデータや、記憶装置に記憶された無次元の大量データなど、任意のデータを用いても良いものである。
 また、ここでは、ノイズ信号などを一次元の形態で表現して説明したが、その表現形態も一次元に限定するものではなく、二次元以上の多次元としてもよいものである。また、ここでは各種データを一次元の連続データのように表現したが、その表現形態も連続形態に限定するものではなく、周期的に飛び飛びの並びを取るデータ列や、ある規定のパターンの並びを取るデータ列としてもよいものである。
 さらに、ここでは、ノイズ信号などをディジタルサンプリングしたデータ列として説明したが、その表現形態もディジタルサンプリングしたデータ列の形態に限定するものではなく、アナログ連続量で表現してもよいものである。
 また、ここではノイズ信号とする画像情報を得る画像領域と拡散出力オブジェクトを刷り込む画像領域については特に説明しなかったが、それらの領域は任意に決めてよく、例えばノイズ信号用の画像データとする領域を、拡散出力オブジェクトを埋め込む領域としてもよいものである。
Note that, here, an example in which the transmission system performs information transmission using a planar image has been described. However, the application of the transmission system is not limited to a planar image, and data that represents a stereoscopic image or stored in a storage device. Arbitrary data may be used, such as dimensionless mass data.
In addition, here, the noise signal and the like are described in a one-dimensional form, but the expression form is not limited to one dimension, and may be two or more dimensions. In addition, although various data are represented as one-dimensional continuous data here, the representation form is not limited to the continuous form. It is also good as a data string that takes
Furthermore, although a noise signal or the like has been described as a digitally sampled data string here, the expression form is not limited to the digitally sampled data string form, and may be expressed as an analog continuous quantity.
Also, here, the image area for obtaining image information as a noise signal and the image area for imprinting the diffusion output object have not been described in particular. However, these areas may be arbitrarily determined, for example, image data for noise signals. The region may be a region in which the diffusion output object is embedded.
 続いて、本伝送システムの特性を説明する。
 まず、本伝送システムによれば、スペクトル拡散通信に特有の性質が、従来のスペクトル拡散通信方式と同等以上に得られることを説明する。
Next, the characteristics of this transmission system will be described.
First, it will be described that according to the present transmission system, the characteristics peculiar to the spread spectrum communication can be obtained equivalent to or better than the conventional spread spectrum communication system.
 本伝送システムは、ノイズ信号がノイズ受容性があることと拡散出力オブジェクトの伝送は耐ノイズ性があることによって伝送媒体に侵入するノイズによる伝送性能の低下はないので、他の信号が存在してもそれがない状態と変わらない状態でオブジェクトを伝送できるという、低干渉感受性を提供できるものである。この特性を用いれば、例えば激しい雷放電のノイズの環境下でもオブジェクトを伝送できるものである。
 また、本伝送システムは、前記耐ノイズ性により、他の信号の存在にかかわらず微小なエネルギーの信号でもオブジェクトを伝送できるという、微小信号性を提供できるものである。この特性を用いれば、例えば大きな減衰を受ける媒体を介してもオブジェクトを伝送できるものである。
 また、本伝送システムは、前記耐ノイズ性により、本伝送システムの動作とは無関係に既に存在するノイズよりもはるかに低い電力密度でオブジェクトを伝送して本伝送システムの動作の影響を周囲に与えない、低与干渉性を提供できるものである。この特性を用いれば、例えば外部からの干渉を嫌う機器や人体などへの影響も自然な状態と変わらない状態でオブジェクトを伝送できるものである。
 また、本伝送システムは、前記耐ノイズ性により、拡散出力オブジェクトを本伝送システムの動作とは無関係に既に存在するノイズよりもはるかに低い微小な電力密度にして拡散モジュールの消費電力を低減する、拡散モジュールの低消費電力性を提供できるものである。この拡散モジュールの低消費電力性は、既述した従来技術の同期保持動作に無駄な電力を浪費するという課題を解決したことによる拡散モジュールの消費電力低減の効果も含めるものである。この特性を用いれば、例えば拡散モジュールを低発熱・長寿命・小型にできるものである。
In this transmission system, since the noise signal is noise-accepting and the transmission of the diffuse output object is noise-resistant, there is no degradation in transmission performance due to noise entering the transmission medium. However, it is possible to provide a low interference susceptibility that an object can be transmitted in a state where it does not change. By using this characteristic, for example, an object can be transmitted even in an environment of intense lightning discharge noise.
In addition, the transmission system can provide a minute signal property that the object can be transmitted even with a minute energy signal regardless of the presence of other signals due to the noise resistance. If this characteristic is used, an object can be transmitted through a medium that receives a large attenuation, for example.
In addition, the transmission system has an influence on the operation of the transmission system by transmitting the object at a power density much lower than the existing noise regardless of the operation of the transmission system due to the noise resistance. It can provide low coherence. If this characteristic is used, for example, an object can be transmitted in a state where the influence on a device or a human body that does not like external interference is the same as a natural state.
In addition, the transmission system reduces the power consumption of the diffusion module by making the diffusion output object a minute power density much lower than the existing noise regardless of the operation of the transmission system due to the noise resistance. The low power consumption of the diffusion module can be provided. The low power consumption of the diffusion module includes the effect of reducing the power consumption of the diffusion module due to the solution of the problem of wasting electric power in the synchronization holding operation of the prior art described above. If this characteristic is used, for example, the diffusion module can be reduced in heat generation, long life, and small.
 また、本伝送システムは、従来の参照信号内蔵方式のスペクトル拡散通信システムの受信機が大規模な同期装置を用いていたのに比較して、複雑で大規模な同期装置を必要としない本伝送システムは逆拡散キャリア加工手段を小規模に構成できるため、逆拡散モジュールも従来方式に比べて低消費電力性を提供できるものである。この特性を用いれば、例えば逆拡散モジュールを低発熱・長寿命・小型にできるものである。
 また、本伝送システムは、前記耐ノイズ性により、本伝送システムの動作とは無関係に既に存在する背景ノイズと呼ばれるほかの信号よりも低い電力密度でオブジェクトを伝送して、本伝送システムの伝送信号を前記背景ノイズに隠して存在を見つけにくくするとういう秘匿性を提供できるものである。この特性を用いれば、例えば印刷画像にもとの画像の状態を荒らさずに案内情報などを刷込むことができるものである。
 また、本伝送システムは、前記耐ノイズ性により、他の目的の伝送信号をノイズとして扱って同一伝送媒体を共有して他の目的の伝送信号の影響を受けずに目的とするオブジェクトの伝送を同時に行う多重性を提供できるものである。この特性を用いれば、例えば符号分割多重伝送と呼ばれる非同期同時多重伝送を行うことが可能となる。
In addition, this transmission system does not require a complicated and large-scale synchronization device, compared to the conventional receiver with a built-in reference signal spread spectrum communication system using a large-scale synchronization device. Since the system can configure the despreading carrier processing means on a small scale, the despreading module can also provide lower power consumption than the conventional method. If this characteristic is used, for example, the despreading module can be reduced in heat generation, long life, and small.
In addition, the transmission system transmits the object at a power density lower than other signals called background noise that are already present regardless of the operation of the transmission system due to the noise resistance, and the transmission signal of the transmission system It is possible to provide secrecy that makes it difficult to find the presence by hiding the background noise. If this characteristic is used, for example, guide information or the like can be printed on the printed image without damaging the state of the original image.
In addition, the transmission system treats other target transmission signals as noise, shares the same transmission medium, and transmits the target object without being affected by the other target transmission signals. It can provide multiplicity to be performed simultaneously. If this characteristic is used, for example, asynchronous simultaneous multiplex transmission called code division multiplex transmission can be performed.
 一方、従来のスペクトル拡散通信では、PN符号という長い周期の不規則性信号を拡散符号と逆拡散符号に用いることにより、拡散出力信号を不規則に変化するものとしてその信号波形から元の情報入力信号を推定することを困難にするとともに、逆拡散符号の推定や複製を困難にして、拡散出力信号からもとの情報入力信号の復元を困難にする秘話性を有している。それに対して本伝送システムは、拡散キャリアと逆拡散キャリアに全く周期性がなく値も任意のアナログ量でよい信号を用いることで、従来の周期性の二値信号を用いた場合に比べて、拡散出力オブジェクトの波形から元の拡散入力オブジェクトを推定することも逆拡散符号の推定や複製もより困難にする。さらに、ノイズ信号の特徴的な要素を用いて系列方向の位置を特定し、その特定位置から発生させたノイズ信号とも無関係な不規則信号をノイズ信号に用いることにより、前記の推定や複製を一層困難にできるので、従来のスペクトル拡散通信以上の秘話性を提供できるものである。 On the other hand, in the conventional spread spectrum communication, by using an irregular signal of a long period called a PN code as a spreading code and a despreading code, it is assumed that the spread output signal changes irregularly, and the original information is input from the signal waveform. In addition to making it difficult to estimate the signal, it is difficult to estimate and duplicate the despread code, and to make it difficult to restore the original information input signal from the spread output signal. On the other hand, this transmission system uses a signal that has no periodicity in the spread carrier and the despread carrier and may have any analog value, so that compared to the case of using a binary signal with a conventional periodicity, Estimating the original spread input object from the waveform of the spread output object and making it difficult to estimate and duplicate the despread code. Furthermore, by using a characteristic element of the noise signal to specify the position in the series direction, and using an irregular signal that is unrelated to the noise signal generated from the specified position as the noise signal, the above estimation and duplication can be further performed. Since it can be made difficult, it is possible to provide a secrecy more than the conventional spread spectrum communication.
 また、従来のスペクトル拡散通信では、伝送媒体に侵入するノイズによる伝送性能の低下の抑制と、不規則に発生する通信要求に対する応答の速さとを両立させることが困難であった。それに対して本伝送システムは、ノイズ信号がノイズ受容性があることと拡散出力オブジェクトの伝送は耐ノイズ性があることによって伝送媒体に侵入するノイズによる伝送性能の低下はなく、また、不規則に発生する通信要求へも同期操作なしに対応できる即応性がある。この特性を用いれば、例えば待機電力ゼロの送信機と、待機電力がスペクトル拡散通信でない通常の通信機並みに小さい小型の受信機を提供できるようになる。 Further, in the conventional spread spectrum communication, it has been difficult to achieve both suppression of transmission performance deterioration due to noise entering the transmission medium and speed of response to irregularly generated communication requests. In contrast, this transmission system has no noise degradation due to noise entering the transmission medium because the noise signal is noise-accepting and the transmission of the diffuse output object is noise-resistant. There is an immediate response that can respond to a generated communication request without a synchronous operation. If this characteristic is used, for example, it becomes possible to provide a transmitter with zero standby power and a small receiver whose standby power is as small as a normal communication device that is not spread spectrum communication.
 以上説明した本発明の実施形態による効果を総括して説明する。従来のスペクトル拡散通信について説明する。その従来のスペクトル拡散通信は、不規則信号列自身を乗算すると(自己相関関数を計算するに等価)定数になる性質を使っているので、拡散時に使う不規則信号(拡散符号)と逆拡散時に使う不規則信号(逆拡散符号)は同じ信号列であり且つ同期させて使う必要がある。従来のスパクトル拡散通信では、送信側と受信側で同じ不規則信号を用いる実質的な方法として、不規則信号を送信するか受信側で同じ不規則信号を用意して同期を取って使うようにしている。そのうち不規則信号を送信する方法では、不規則信号を伝送する途中でノイズが重畳すると拡散時に使った不規則信号とは同一性が損なわれた不規則信号を使うことになり、結果として通信のSNは悪くなる。 The effects of the above-described embodiment of the present invention will be generally described. Conventional spread spectrum communication will be described. Since the conventional spread spectrum communication uses the property of multiplying the irregular signal sequence itself (equivalent to calculating the autocorrelation function), it becomes a constant, so the irregular signal (spread code) used during spreading and despreading The irregular signal (despread code) to be used is the same signal sequence and needs to be used in synchronization. In the conventional spread spectrum communication, as a practical method of using the same irregular signal on the transmitting side and the receiving side, the irregular signal is transmitted or the same irregular signal is prepared on the receiving side and used in synchronization. ing. Among them, in the method of transmitting an irregular signal, if noise is superimposed during the transmission of the irregular signal, an irregular signal whose identity is lost with respect to the irregular signal used at the time of spreading is used. SN gets worse.
 それに対して本発明の実施形態では、ノイズ信号供給部は、ノイズ信号をスペクトル拡散キャリア加工手段とスペクトル逆拡散キャリア加工手段とに共通に供給し、前記スペクトル拡散キャリア加工手段と前記スペクトル逆拡散キャリア加工手段とは前記ノイズ信号を共有し、かつそのノイズ信号をスペクトル拡散キャリアとスペクトル逆拡散キャリアとに生成するため、前記ノイズ信号にノイズが重畳しても、そのノイズを信号成分として含めて前記ノイズ信号をスペクトル拡散キャリアとスペクトル逆拡散キャリアとに加工生成する。
 したがって、本発明の実施形態によれば、前記ノイズ信号にノイズが重畳しても、そのノイズは信号成分として前記ノイズ信号に取り込まれて相互相関性を崩すことにはならず、前記スペクトル拡散キャリア加工手段と前記スペクトル逆拡散キャリア加工手段とがそれぞれ生成したスペクトル拡散キャリアとスペクトル逆拡散キャリアとは相互相関性を維持することとなり、スペクトル拡散キャリアとスペクトル逆拡散キャリアとを強制的に同期させる必要がなく、同期装置が不要となる。しかも、ノイズ信号に重畳したノイズも信号成分として両キャリアに加工生成され、ノイズの重畳による影響を回避できる。
On the other hand, in the embodiment of the present invention, the noise signal supply unit supplies the noise signal commonly to the spread spectrum carrier processing means and the spread spectrum spread carrier processing means, and the spread spectrum carrier processing means and the spread spectrum spread carrier. The processing means shares the noise signal and generates the noise signal in a spectrum spread carrier and a spectrum despread carrier. Therefore, even if noise is superimposed on the noise signal, the noise is included as a signal component. The noise signal is processed and generated into a spread spectrum carrier and a spread spectrum spread carrier.
Therefore, according to an embodiment of the present invention, even if noise is superimposed on the noise signal, the noise is not taken into the noise signal as a signal component and cross-correlation is not lost. The spread spectrum carrier and the spread spectrum spread carrier generated by the processing means and the spread spectrum spread carrier processing means respectively maintain the cross-correlation, and it is necessary to forcibly synchronize the spread spectrum carrier and the spread spectrum spread carrier. There is no need for a synchronizer. In addition, the noise superimposed on the noise signal is also processed and generated as a signal component on both carriers, and the influence of noise superposition can be avoided.
 さらに、本発明の実施形態では、前記スペクトル拡散キャリア加工手段と前記スペクトル逆拡散キャリア加工手段とは、ノイズが重畳したノイズ信号を共有し、そのノイズ信号はノイズを信号成分としているため、両キャリアの基礎となる前記ノイズ信号の相互相関性が崩れることはなく、前記スペクトル拡散キャリア加工手段と前記スペクトル逆拡散キャリア加工手段とがそれぞれ生成したスペクトル拡散キャリアとスペクトル逆拡散キャリアとは相互相関が取れた信号として生成でき、前記ノイズ信号を加工生成した両キャリアを用いてスペクトル拡散及びスペクトル逆拡散を正常に行うことができる。そのスペクトル拡散及びスペクトル逆拡散は、強制的に同期させる同期装置を用いることなく行うことができる。 Furthermore, in the embodiment of the present invention, the spread spectrum carrier processing means and the spread spectrum spread carrier processing means share a noise signal on which noise is superimposed, and the noise signal uses noise as a signal component. The cross-correlation of the noise signal that is the basis of the signal is not lost, and the spread spectrum carrier and the spread spectrum carrier generated by the spread spectrum carrier processing means and the spread spectrum spread carrier processing means, respectively, can be correlated. Spread spectrum and despread spectrum can be normally performed using both carriers obtained by processing and generating the noise signal. The spread spectrum and spread spectrum can be performed without using a synchronizer that forcibly synchronizes.
 さらに、本発明の実施形態によれば、前記ノイズ信号を加工せずにスペクトル拡散キャリアとスペクトル逆拡散キャリアとして用いるのではなく、そのノイズ信号をスペクトル拡散キャリアとスペクトル逆拡散キャリアに加工生成するため、そのノイズ信号としては、アナログ信号、ノイズ、擬似雑音信号又はこれらを組み合わせた信号を用いることができ、前記ノイズ信号として用いる信号の種類を拡張することができる。また、アナログ信号、ノイズ、擬似雑音信号又はこれらを組み合わせた信号を例えば二値或いは多値のスペクトル拡散キャリアとスペクトル逆拡散キャリアとに加工するため、秘匿性及び秘話性などに最適なスペクトル拡散キャリアとスペクトル逆拡散キャリアとを取得することができる。 Furthermore, according to an embodiment of the present invention, the noise signal is not used as a spread spectrum carrier and a spread spectrum spread carrier without being processed, but the noise signal is processed and generated into a spread spectrum carrier and a spread spectrum spread carrier. As the noise signal, an analog signal, noise, a pseudo noise signal, or a combination of these can be used, and the types of signals used as the noise signal can be expanded. In addition, an analog signal, noise, pseudo-noise signal, or a combination of these signals is processed into, for example, a binary or multi-valued spread spectrum carrier and a spread spectrum spread carrier, so that the optimum spread spectrum carrier for confidentiality and confidentiality. And a spectrum despread carrier.
 また、本発明の実施形態によれば、ノイズを素にしたノイズ信号を加工してキャリアとしたことで、計測した場合にノイズとの区別が付かないことから、秘匿性が高いキャリアを得ることができる。また、2つとして同じものが無いノイズを信号源とし、かつ加工手段に依る多彩な加工にてキャリアを加工生成するため殆ど無限の種類のキャリアを生成することができることで、秘話性が高いキャリアを得られる。 In addition, according to the embodiment of the present invention, a carrier with high secrecy can be obtained by processing a noise signal with noise as a source, so that it cannot be distinguished from noise when measured. Can do. In addition, the carrier with high secrecy can be generated by using almost the same noise as the signal source and generating the carrier by various processing depending on the processing means. Can be obtained.
 また、本発明の実施形態によれば、前記ノイズ信号供給部は、前記ノイズ信号をスペクトル拡散キャリア加工手段とスペクトル逆拡散キャリア加工手段とに有線或いは無線の伝送媒体で共通に供給することができ、その伝送媒体に応じて、前記ノイズ信号供給部と前記スペクトル拡散キャリア加工手段及び前記スペクトル逆拡散キャリア加工手段との配置形態を自由に選ぶことができる。したがって、伝送対象であるオブジェクトとして、従来の伝送対象である情報に加えて、エネルギー例えば電力や印刷物などを用いることができ、応用範囲を拡大できる。 According to the embodiment of the present invention, the noise signal supply unit can supply the noise signal to the spread spectrum carrier processing means and the spread spectrum despread carrier processing means in common using a wired or wireless transmission medium. Depending on the transmission medium, the arrangement of the noise signal supply unit, the spread spectrum carrier processing means, and the spread spectrum spread carrier processing means can be freely selected. Therefore, in addition to the conventional information to be transmitted, energy such as power or printed matter can be used as the object to be transmitted, and the application range can be expanded.
 このように、本実施形態に係るキャリア加工装置を適用したスペクトル拡散オブジェクト伝送システムによれば、スペクトル拡散通信技術に特有の耐ノイズ性に由来する、低干渉感受性や、微小信号性、低与干渉性、秘匿性、多重性が、従来の参照信号内蔵方式のスペクトル拡散通信システムと同程度に提供できるものである。さらに、本伝送システムによれば、従来の参照信号内蔵方式のスペクトル拡散通信システム以上の秘話性や、通信の要求に即応できる即応性、低消費電力性、逆拡散モジュールを同期装置なしに構成できる小規模性も提供できるものである。さらに、本伝送システムによれば、インパルス状やバースト状の不連続な、あるいは周波数ホッピングや周波数チャープなどのような、あるいはそれらを適当に組合わせたような拡散キャリアや逆拡散キャリアを用いて従来のスペクトル拡散通信システムに対して、小型で安価に対応でき、耐ノイズ性を向上させたり、伝送能力を向上させたり、秘話性や秘匿性を向上させたりすることができるものである。そのうえ、本伝送システムによれば、従来のスペクトル拡散の応用であった情報伝送でも測距でもない、特に情報内容を表現しない単純なオブジェクトの伝送や電力伝送に上記の特性を提供できるものである。また、本伝送システムによれば、従来のスペクトル拡散の応用であった情報伝送でも測距でもない、任意の不規則信号の検知や任意の信号の不規則性の評価、印刷などの新たな用途を開拓することが出来るものである。
(実施形態2)
As described above, according to the spread spectrum object transmission system to which the carrier processing apparatus according to the present embodiment is applied, low interference sensitivity, minute signal property, low interference caused by noise resistance specific to the spread spectrum communication technology. , Confidentiality, and multiplicity can be provided to the same extent as a conventional spread spectrum communication system with a built-in reference signal. Furthermore, according to the present transmission system, it is possible to configure a secrecy higher than that of a conventional spread spectrum communication system with a built-in reference signal, quick response capable of promptly responding to communication requirements, low power consumption, and a despreading module without a synchronization device. Small scale can also be provided. Furthermore, according to the present transmission system, the conventional spread carrier or despread carrier is used, such as a discontinuous impulse or burst, a frequency hopping or a frequency chirp, or an appropriate combination thereof. The spread spectrum communication system can be small and inexpensive, improve noise resistance, improve transmission capability, and improve confidentiality and confidentiality. In addition, according to the present transmission system, the above characteristics can be provided for transmission of simple objects that do not express information contents, and power transmission, which is neither information transmission nor distance measurement, which is a conventional application of spread spectrum. . In addition, according to the present transmission system, new applications such as detection of arbitrary irregular signals, evaluation of irregularities of arbitrary signals, printing, etc., which are neither information transmission nor distance measurement, which was a conventional spread spectrum application. Can be pioneered.
(Embodiment 2)
(実施形態2-1)
 次に、本実施形態2-1として、アナログ信号のノイズ信号を入力し、そのノイズ信号をアナログ信号処理の写像変換で拡散キャリアと逆拡散キャリアとに加工し、アナログ信号の拡散キャリアと逆拡散キャリアとを出力する拡散キャリア加工手段と逆拡散キャリア加工手段の具体例を説明する。
Embodiment 2-1
Next, as Embodiment 2-1, an analog noise signal is input, and the noise signal is processed into a diffusion carrier and a despread carrier by mapping conversion of analog signal processing, and the analog signal spread carrier and despread are processed. Specific examples of diffusion carrier processing means and despread carrier processing means for outputting carriers will be described.
 図9に示す構成が、本実施形態2-1に係るキャリア加工部とそれを用いたオブジェクト伝送システムの構成を示すものであり、ノイズ信号供給部2と、拡散キャリア加工手段13と、逆拡散キャリア加工手段15とを有している。符号14は拡散手段を示し、符号16は逆拡散手段を示すものであり、これらの拡散手段14と逆拡散手段16の間は伝送媒体7を介して連繋される。 The configuration shown in FIG. 9 shows the configuration of the carrier processing unit according to the embodiment 2-1 and the object transmission system using the carrier processing unit. The noise signal supply unit 2, the diffusion carrier processing means 13, the despreading unit Carrier processing means 15. Reference numeral 14 represents a spreading means, and reference numeral 16 represents a despreading means. These spreading means 14 and despreading means 16 are connected via a transmission medium 7.
 ノイズ信号供給部2は図1に示すように、素ノイズ信号源10を構成要素に含む、ノイズ信号xの供給部である。ノイズ信号xはある規定の対オブジェクト広帯域性を有した信号であり、素ノイズ信号源10が供給する素ノイズ信号xはその要件を満足するものである。そのような素ノイズ信号源10には例えば抵抗器を備え、素ノイズ信号xはその抵抗に電流を流したときに抵抗器の両端に得られる熱雑音信号を増幅したアナログ信号とする。なお、素ノイズ信号xには、素ノイズ信号源10が自由空間内で捕捉したアナログ信号である素ノイズ信号が含まれていてもよい。 Noise signal supply unit 2, as shown in FIG. 1, including the components of the prime noise signal source 10, a supply part of the noise signal x W. Noise signal x W is a signal having a pair object broadband of certain provisions, containing a noise signal source 10 supplies containing noise signal x E is to satisfy the requirements. Such includes for example resistor element noise signal source 10, containing the noise signal x E is an analog signal obtained by amplifying the thermal noise signals obtained across the resistor when current flows in the resistor. Note that the prime noise signal x E, containing a noise signal source 10 may be included containing the noise signal is an analog signal captured in free space.
 ノイズ信号供給部2は、この素ノイズ信号源10が出力する信号をノイズ信号xとして拡散キャリア加工手段13と逆拡散キャリア加工手段15とに供給する。この時、ノイズ信号供給部2は、例えば拡散キャリア加工手段13及び逆拡散キャリア加工手段15とノイズ信号供給部2の採りうる地理的な位置をある範囲に規定して、その規定の範囲内では経路差によるキャリア加工手段13、15が入力するノイズ信号xとx間の差をある小さい範囲とし、相互相関確立状態の実用上同一と見なせる共通のノイズ信号xをキャリア加工手段13、15に供給する。 Noise signal supply unit 2 supplies a signal output from the element noise signal source 10 as a noise signal x W on the diffusing carrier processing means 13 and the despreading carrier processing means 15. At this time, the noise signal supply unit 2 defines, for example, the geographical positions that can be taken by the diffusion carrier processing unit 13, the despread carrier processing unit 15, and the noise signal supply unit 2 within a certain range. noise signal x T and x difference is small within a certain range between R, a common noise which can be regarded as practically the same cross-correlation established state signal x W a carrier processing means 13 the carrier processing means 13, 15 due to the path difference is inputted, 15 is supplied.
 また、例えば、素ノイズ信号源10から拡散キャリア加工手段13と逆拡散キャリア加工手段15とに伝送媒体11でノイズ信号xを供給する途中の電線に周辺の電子機器からノイズが重畳することがあるが、そのノイズを重畳した信号が拡散キャリア加工手段13と逆拡散キャリア加工手段15とに事実上同一と見なせる信号であり、ノイズ信号として規定する対オブジェクト広帯域性を有した信号である限り、そのノイズは素ノイズ信号xのひとつであり、そのノイズが重畳した信号はノイズ信号xである。 Further, for example, be superimposed noise from the peripheral device in the middle of the electric wire supplying the noise signal x W a transmission medium 11 to the prime noise signal source 10 and the diffusion carrier processing means 13 and the despreading carrier processing means 15 However, as long as the signal on which the noise is superimposed is a signal that can be regarded as substantially the same in the diffusion carrier processing means 13 and the despread carrier processing means 15, and is a signal having a broadband property against an object defined as a noise signal, the noise is one of the prime noise signal x E, the signal which the noise is superimposed is the noise signal x W.
 このように、ノイズ信号供給部2は、拡散キャリア加工手段13と逆拡散キャリア加工手段15に供給するノイズ信号xを、素ノイズ信号xだけでなく、ノイズ信号xを拡散キャリア加工手段13と逆拡散キャリア加工手段15に供給する伝送媒体11に外部から侵入するノイズや、その伝送媒体それ自身が発するノイズをもノイズ信号xの一部とする。そのため、図9では、ノイズ信号xを拡散キャリア加工手段13と逆拡散キャリア加工手段15に供給する伝送媒体11そのものも素ノイズ信号源10と同様にノイズ信号供給部2の一要素として捉え、拡散出力オブジェクト伝送用の伝送媒体7のようには明示していない。 Thus, the noise signal supply unit 2, a noise signal x W supplies the spreading carrier processing means 13 to the despreading carrier processing means 15, as well as containing noise signal x E, the diffusion carrier processing means noise signal x W 13 and noise or entering from the outside to the transmission medium 11 and supplies the despread carrier processing means 15, a part of the transmission medium noise signal x W also itself emits noise. Therefore, in FIG. 9, captures the noise signal x W as an element of the diffusion carrier processing means 13 in the same manner as the transmission medium 11 containing a noise signal source 10 is also itself supplies the despread carrier processing means 15 the noise signal supply unit 2, It is not clearly shown like the transmission medium 7 for transmitting the diffuse output object.
 拡散キャリア加工手段13は図9に示すように、リミッタ40と、比較器42と、アナログスイッチ43と、加算器44と、定数信号供給部41とで構成される。定数信号供給部41は、リミッタ40に信号k1T、アナログスイッチ43に信号k2T、加算器44に信号k3Tをそれぞれ出力する信号源である。 As shown in FIG. 9, the diffusion carrier processing means 13 includes a limiter 40, a comparator 42, an analog switch 43, an adder 44, and a constant signal supply unit 41. The constant signal supply unit 41 is a signal source that outputs the signal k 1T to the limiter 40, the signal k 2T to the analog switch 43, and the signal k 3T to the adder 44.
 拡散キャリア加工手段13の具体的動作を説明する。拡散キャリア加工手段13は、ノイズ信号xを拡散キャリアへの加工材料信号であるノイズ信号xとして入力する。リミッタ40は、入力するノイズ信号xを、振幅が信号k1Tで示される値に制限された信号xLTとし、比較器42と加算器44とに供給する。ここで、信号xLTがノイズ信号xの振幅をk1Tに振幅制限されるとは、k1Tを正の定数としたとき、入力信号xの振幅の絶対値がk1T以下であれば、出力信号xLTは入力するノイズ信号xそのままの値となり、入力するノイズ信号xの振幅がk1Tより大きければ、出力信号xLTは定数k1Tとなり、入力ノイズ信号xの振幅が-k1Tより小さければ、出力信号xLTは定数-k1Tとなることを言う。比較器42は、リミッタ40から供給された信号xLTを、ゼロを比較基準に比較し、その結果を用いてアナログスイッチ43で加算器44に供給する信号を切替える。 A specific operation of the diffusion carrier processing means 13 will be described. Diffusing carrier processing means 13 inputs the noise signal x W as a noise signal x T is a machining material signal to spreading the carrier. Limiter 40, the noise signal x T to be input, amplitude and signal k 1T value to limited signal x LT represented by, supplied to the adder 44 and the comparator 42. Here, the signal x LT is amplitude limiting the amplitude of the noise signal x T to k 1T is when the k 1T and positive constant, the absolute value of the amplitude of the input signal x T is not more than k 1T , the output signal x LT becomes a noise signal x T as a value to be input, if the amplitude of the noise signal x T to be input is greater than k 1T, the output signal x LT is next constant k 1T, the amplitude of the input noise signal x T If it is smaller than −k 1T, it means that the output signal x LT becomes a constant −k 1T . The comparator 42 compares the signal x LT supplied from the limiter 40 with zero as a comparison reference, and switches the signal supplied to the adder 44 by the analog switch 43 using the result.
 具体的には、信号xLTが基準値ゼロ以上、すなわちゼロまたは正であれば、比較器42はアナログスイッチ43を閉じる信号を出力し、これによって加算器44には信号k2Tが供給されることとなる。一方、信号xLTが基準値ゼロより小さい、すなわち負であれば、比較器42はアナログスイッチ43を開く信号を出力し、これによって加算器44には信号k2Tは供給されないこととなる。加算器44は、このような信号xLTの極性によって制御された信号と、リミッタ40の出力信号xLTと、信号k3Tとを加算して、その信号を拡散キャリアcとして拡散手段14に供給する。
 このような構成の拡散キャリア加工手段13について、k1Tを+1.5に、k2Tを+1.0に、k3Tを-0.5にした場合の入出力特性を図10に示す。この時、拡散キャリアcは、入力したノイズ信号xがx<-1.5なら-2.0で一定の信号となり、-1.5≦x<0ならx-0.5の信号となり、0≦x<1.5ならx+0.5の信号となり、1.5≦xなら+2.0で一定の信号となる。
Specifically, if the signal x LT is greater than or equal to the reference value zero, that is, zero or positive, the comparator 42 outputs a signal for closing the analog switch 43, whereby the signal k 2T is supplied to the adder 44. It will be. On the other hand, if the signal x LT is smaller than the reference value zero, that is, is negative, the comparator 42 outputs a signal for opening the analog switch 43, so that the signal k2T is not supplied to the adder 44. The adder 44 is a signal controlled by the polarity of such a signal x LT, an output signal x LT of the limiter 40, by adding the signals k 3T, the spreading means 14 the signal as a diffusion carrier c T Supply.
FIG. 10 shows input / output characteristics of the diffusion carrier processing means 13 having such a configuration when k 1T is set to +1.5, k 2T is set to +1.0, and k 3T is set to −0.5. At this time, the spread carrier c T is a constant signal at −2.0 if the input noise signal x T is x T <−1.5, and x T −0.5 if −1.5 ≦ x T <0. If 0 ≦ x T <1.5, the signal is x T +0.5, and if 1.5 ≦ x T , the signal is constant at +2.0.
 拡散手段14は、この拡散キャリアcと拡散入力オブジェクトaとを入力して乗算し、拡散入力オブジェクトaのスペクトル拡散した拡散出力オブジェクトsを伝送媒体7に出力する。
 伝送媒体7は、拡散出力オブジェクトsを拡散手段14から逆拡散手段16へ伝送するための伝送媒体である。伝送媒体7にはノイズmが侵入し、逆拡散手段16は拡散出力オブジェクトsにノイズmが重畳した逆拡散入力オブジェジュトhを入力する。
 逆拡散キャリア加工手段16は、拡散モジュール3の拡散キャリア加工手段13の構成に、逆数演算器45を付加した構成である。
 逆拡散キャリア加工手段15の具体的動作を説明する。逆拡散キャリア加工手段15は、ノイズ信号xを逆拡散キャリアへの加工材料信号であるノイズ信号xとして入力する。逆拡散キャリア加工手段15は、リミッタ40と、比較器42と、アナログスイッチ43と、加算器44と、定数信号供給部41とを拡散キャリア加工手段13と同様に備えており、ノイズ信号xを加工し、その結果得られた信号cTRを逆数演算器45に供給する。逆数演算器45は、信号cTRを逆数変換し、その信号を逆拡散キャリアcとして逆拡散手段16に供給する。
The spreading means 14 inputs the spread carrier c T and the spread input object a T , multiplies them, and outputs the spread output object s obtained by spreading the spread of the spread input object a T to the transmission medium 7.
The transmission medium 7 is a transmission medium for transmitting the diffusion output object s from the diffusion means 14 to the despreading means 16. Noise m enters the transmission medium 7, and the despreading means 16 inputs a despread input object h in which the noise m is superimposed on the diffuse output object s.
The despread carrier processing means 16 has a configuration in which an inverse number calculator 45 is added to the configuration of the diffusion carrier processing means 13 of the diffusion module 3.
A specific operation of the despread carrier processing means 15 will be described. Despreading the carrier processing means 15 inputs the noise signal x R is a work material signal to despread the carrier to noise signal x W. The despread carrier processing means 15 includes a limiter 40, a comparator 42, an analog switch 43, an adder 44, and a constant signal supply unit 41 in the same manner as the diffusion carrier processing means 13, and the noise signal x R And a signal cTR obtained as a result is supplied to the reciprocal calculator 45. Inverse operator 45 reciprocal converts the signal c TR, supplies the despreading means 16 the signal as despread carrier c R.
 このような構成の逆拡散キャリア加工手段15について、k1Tを+1.5に、k2Tを+1.0に、k3Tを-0.5にした場合の入出力特性を図11に示す。この時、逆拡散キャリアcは、入力したノイズ信号xがx<-1.5なら-0.5で一定の信号となり、-1.5≦x<0なら1/(x-0.5)の信号となり、0≦x<1.5なら1/(x+0.5)の信号となり、1.5≦xなら+0.5で一定の信号となる。 FIG. 11 shows the input / output characteristics of the despread carrier processing means 15 having such a configuration when k 1T is set to +1.5, k 2T is set to +1.0, and k 3T is set to −0.5. At this time, the despread carrier c R becomes a constant signal of −0.5 if the input noise signal x R is x R <−1.5, and 1 / (x R if −1.5 ≦ x R <0. −0.5), and if 0 ≦ x R <1.5, the signal is 1 / (x R +0.5), and if 1.5 ≦ x R , the signal is constant at +0.5.
 逆拡散キャリア加工手段15は、信号k1R、k2R、k3Rに拡散キャリア加工手段13の信号k1T、k2T、k3Tと同じものを使用し、その結果、同一のノイズ信号xから得られる拡散キャリアcと、逆拡散キャリア加工手段15側の信号cTRとは同一のものとなる。そして、逆拡散キャリアcは、その拡散キャリアcと同一の信号cTRを逆数演算器45で逆数に変換したものなので、同一のノイズ信号xから得られる拡散キャリアcと、逆拡散キャリアcとは常に逆数の関係の信号となる。その結果、同一のノイズ信号xから得られる拡散キャリアcと、逆拡散キャリアcとは、乗じると常にゼロでない定数となる。
 この時、拡散キャリア加工手段13と逆拡散キャリア加工手段15は、ノイズ信号xから拡散キャリアcへの信号処理に要する時間と、ノイズ信号xから逆拡散キャリアcへの信号処理に要する時間との差が充分に小さくなるようにして、同一のノイズ信号xから異なる信号処理過程で作成される拡散キャリアcと逆拡散キャリアcとの相互相関を確立された状態とする。その場合、拡散キャリア加工手段13と逆拡散キャリア加工手段15とで行うこのような信号加工処理は、処理される信号の時間的な特性に作用する要素を含んでいないと見なすことが出来るので、拡散キャリア加工手段13と逆拡散キャリア加工手段15ではノイズ信号xの対オブジェクト広帯域性は継承される。
 逆拡散手段16は、この逆拡散キャリアcと伝送媒体7から入力する拡散出力オブジェクトsを含む逆拡散入力オブジェクトhとを入力し、それらを乗算して、スペクトル逆拡散された拡散入力オブジェクトaの成分を含む逆拡散出力オブジェクトaを出力する。
The despread carrier processing means 15 uses the same signals k 1T , k 2T , k 3T of the diffusion carrier processing means 13 as the signals k 1R , k 2R , k 3R , and as a result, from the same noise signal x T diffusion carrier c T obtained, the same ones as the signal c TR despreading carrier processing means 15 side. Then, the despread carrier c R, so that a transformation of its diffusion carrier c T and the same signal c TR to the reciprocal reciprocal calculator 45, a diffusion carrier c T obtained from the same noise signal x T, despreading always a signal of an inverse relationship to the carrier c R. As a result, the diffusion carrier c T obtained from the same noise signal x W, the despread carrier c R, the multiplied Always nonzero constant.
In this case, diffusion carrier processing means 13 the despread carrier processing means 15, time required for signal processing from the noise signal x T to spread carrier c T, the signal processing from the noise signal x R to despread carrier c R as the difference between the time required is sufficiently small, the state established a correlation between the diffusion carrier c T despreading carrier c R created by different signal processing process of the same noise signal x W . In that case, such signal processing performed by the diffusion carrier processing means 13 and the despread carrier processing means 15 can be regarded as not including elements that affect the temporal characteristics of the processed signal. vs. object broadband of spreading carrier processing means 13 the despread carrier processing means 15 in the noise signal x W are inherited.
The despreading means 16 inputs the despread carrier c R and the despread input object h including the spread output object s input from the transmission medium 7, multiplies them, and the spread input object a subjected to spectrum despreading A despread output object a R including the component of T is output.
 この一連の過程を通して、本発明の実施形態2-1において、拡散キャリア加工手段13で共通のノイズ信号xから作成される拡散キャリアcは、対オブジェクト広帯域性を有した信号となり、拡散入力オブジェクトaのスペクトルはその拡散キャリアcと乗じられて拡散される。そして、逆拡散キャリア加工手段15で共通のノイズ信号xから作成される逆拡散キャリアcは、前記拡散キャリアcと乗じて常に定数の関係となり、かつ対オブジェクト広帯域性を有し、かつ前記拡散キャリアcと相互相関が確立された信号となり、この信号を用いて逆拡散操作を行うことにより、受信される逆拡散入力オブジェクトhが拡散出力オブジェクトsの成分に伝送媒体7でノイズmの重畳を受けていても、拡散入力オブジェクトaを精度良く逆拡散するとともに、ノイズのスペクトルを逆拡散キャリアの占有周波数帯域に拡散して、ノイズの影響を事実上受けない程度にまで軽減した拡散入力オブジェクトaと相似な逆拡散出力オブジェクトaを出力する。
 なお、本実施形態で例示した構成によれば、振幅の絶対値が1.5以上となるノイズ信号xから得られる拡散キャリアcと逆拡散キャリアcとは二値の離散信号となる。拡散キャリアcと逆拡散キャリアcとをアナログ連続量の信号とする場合はノイズ信号xの振幅の絶対値を1.5以下にする必要がある。
Through this series of processes, in Embodiment 2-1 of the present invention, the diffusion carrier c T created from a common noise signal x W in the diffusion carrier processing means 13 becomes a signal having a pair object broadband property, spread input The spectrum of the object a T is multiplied by its spreading carrier c T and spread. Then, the despread carrier c R created from a common noise signal x W despreading carrier processing means 15, the result relationship always constant is multiplied by a spread carrier c T, and has a pair object wide bandwidth, and wherein becomes diffusion carrier c T and signal cross-correlation is established, the noise m by performing despreading operation using this signal, a transmission medium 7 despreading input object h to be received in the components of the diffusion output object s I have undergone the superimposition, with despreading accurately spread input object a T, and spread the spectrum of the noise in the occupied frequency band of the despread carrier was reduced to a degree that does not undergo virtually to noise A despread output object a R similar to the diffuse input object a T is output.
Incidentally, according to the configuration illustrated in this embodiment, the discrete signal of binary and diffusion carrier c T despreading carrier c R obtained from the noise signal x W absolute value of the amplitude is 1.5 or more . If the diffusion carrier c T despreading carrier c R analog continuous amounts of signal needs to be the absolute value of the amplitude of the noise signal x W to 1.5 or less.
 以上のように、本発明の実施形態2-1によれば、拡散キャリア加工手段13と逆拡散キャリア加工手段15とが、ノイズ信号供給部2が供給する対オブジェクト広帯域性を有した相互相関確立状態の共通のアナログのノイズ信号xをノイズ信号x、xとして入力し、それを加工して作成した、乗ずると常にゼロでない定数となる対をなす信号関係の、対オブジェクト広帯域性を有した、相互相関確立状態のアナログの拡散キャリアcと逆拡散キャリアcとを生成する。この時、本発明の実施形態2によれば、従来のスペクトル拡散通信システムでは用いることが出来なかったアナログの拡散キャリアcと逆拡散キャリアcを用いたスペクトル拡散通信が実現されたこととなる。その他の構成及びその作用効果は図1の実施形態1と同一になっている。
 なお、本実施形態では、現実の応用環境では拡散モジュール3と逆拡散モジュール4に供給する共通のノイズ信号xを、拡散モジュール3と逆拡散モジュール4に相互相関確立状態で入力させるために、例えば拡散モジュール3と逆拡散モジュール4とノイズ信号の要素となる信号の信号源との間の地理的な関係をある範囲に制限することを説明した。
 相互相関確立状態を実現しなければならない点では、逆拡散モジュール4の逆拡散手段16において、逆拡散キャリアcと、逆拡散入力オブジェクトh中の拡散出力オブジェクトsの成分の中の拡散キャリアcの成分も相互相関確立状態である必要がある。
 もともと拡散キャリアcと逆拡散キャリアcとは共通のノイズ信号xを加工材料とすることによって相互相関確立状態となるように作成されるが、現実の応用環境では拡散モジュール3から逆拡散モジュール4への拡散出力オブジェクトsの伝送過程には、例えば伝搬遅延があるものであり、それによって逆拡散モジュール4の逆拡散手段16が入力する逆拡散キャリアcと、逆拡散入力オブジェクトh中の拡散出力オブジェクトsの成分の中の拡散キャリアcの成分との相互相関は低下する。
As described above, according to the embodiment 2-1 of the present invention, the spread carrier processing means 13 and the despread carrier processing means 15 establish the cross-correlation having the broadband property to the object supplied by the noise signal supply unit 2. noise signal common analog states x W noise signals x T, input as x R, was prepared by processing it, always signal relationships that form a become paired constant non-zero when multiplied, the pair object broadband property has been to produce a diffusion carrier c T despreading carrier c R analog cross-correlation established state. In this case, according to the second embodiment of the present invention, and that the spread spectrum communication using a spread carrier c T despreading carrier c R analog could not be used in conventional spread spectrum communication system is realized Become. Other configurations and the operation and effects thereof are the same as those of the first embodiment shown in FIG.
In the present embodiment, a common noise signal x W supplied to the despreading module 4 and the diffusion module 3 in the real applications environment, in order to enter the cross-correlation established state despreading module 4 and the diffusion module 3, For example, it has been described that the geographical relationship between the diffusion module 3, the despreading module 4, and the signal source of the signal that is a component of the noise signal is limited to a certain range.
In terms must be realized correlation established state, the despreading means 16 despreads module 4, and the despread carrier c R, diffusion carrier c in a component diffusion output object s in despreading input object h The component of T also needs to be in a cross-correlation established state.
Although created so that the cross-correlation established state by the processing material common noise signal x W is originally spread carrier c T despreading carrier c R, despreading the spreading module 3 in the real applications environment the transmission process of diffusion output object s to the module 4, for example, are those where there is a propagation delay, thereby despreading the carrier c R despreading means 16 despreads module 4 inputs, despreads the input object h in correlation with components of the spread carrier c T in a component diffusion output object s of drops.
 本伝送システムにおいて、その拡散モジュール3から逆拡散モジュール4への拡散出力オブジェクトsの伝送過程の特性が、逆拡散モジュール4の逆拡散手段16が入力する逆拡散キャリアcと、逆拡散入力オブジェクトh中の拡散出力オブジェクトsの成分の中の拡散キャリアcの成分との相互相関を低下させるという影響は、拡散モジュールと逆拡散モジュールの間の地理的な関係をある範囲に制限することにより実用上ないと見なせるように小さなものとなる。
 それにより、逆拡散モジュール4の逆拡散手段16が入力する逆拡散キャリアcと、逆拡散入力オブジェクトh中の拡散出力オブジェクトsの成分の中の拡散キャリアcの成分とが相互相関確立状態となり、逆拡散が高精度に行えるようになる。
 また、それとは別に、逆拡散モジュール4の逆拡散キャリア加工手段15がノイズ信号を逆拡散キャリアcに加工する過程で逆拡散キャリアcを信号の系列方向に適当にずらして、逆拡散モジュール4の逆拡散手段16が入力する逆拡散キャリアcに対して拡散出力オブジェクトが拡散モジュールから逆拡散モジュールに伝送される過程で生じる信号の系列方向のずれを見かけ上小さくするようにしても良いものである。
 図33及び図34に示す本発明の実施形態4に係る伝送システムの拡散モジュール3及び逆拡散モジュール4は、このように逆拡散モジュール4の逆拡散手段16が入力する逆拡散キャリアcと、逆拡散入力オブジェクトh中の拡散出力オブジェクトsの成分の中の拡散キャリアcの成分とを相互相関確立状態にして動作する。
In this transmission system, characteristic of the process of transmitting the spread signal object s from diffusion module 3 to the despreading module 4, and the despread carrier c R despreading means 16 despreads module 4 inputs, despreads the input object effect of reducing cross-correlation between the components of the spread carrier c T in a component diffusion output object s in h, by limiting the range of the geographical relationship between the diffusion module and the despreading module It becomes small so that it can be regarded as not practical.
Thus, despreading carrier c R despreading means 16 despreads module 4 inputs, component and cross-correlation established state diffusion carrier c T in a component diffusion output object s in despreading input object h Thus, despreading can be performed with high accuracy.
Separately from that, by suitably shifting the despreading carrier c R in the series direction of the signal in the process of despreading the carrier processing means 15 of the despreading module 4 for processing the noise signal to despread carrier c R, despreading module spreading the output objects for the despread carrier c R may be look smaller series direction of the deviation of the signal caused in the process of being transmitted to the despread module from the diffusion module 4 despreading means 16 is input Is.
The despreading module 3 and the despreading module 4 of the transmission system according to the fourth embodiment of the present invention shown in FIGS. 33 and 34 have the despreading carrier c R input by the despreading means 16 of the despreading module 4 in this way, operating in the components of the spread carrier c T in a component diffusion output object s in despreading input object h in the cross-correlation established state.
 また、図1に示す本発明の実施形態1に係る伝送システムの拡散モジュール3及び逆拡散モジュール4も、このように逆拡散モジュール4の逆拡散手段16が入力する逆拡散キャリアcと、逆拡散入力オブジェクトh中の拡散出力オブジェクトsの成分の中の拡散キャリアcの成分とを相互相関確立状態にして動作する。
以下では、特に断らない限り、逆拡散モジュール4の逆拡散手段16が入力する逆拡散キャリアcと、逆拡散入力オブジェクトh中の拡散出力オブジェクトsの成分の中の拡散キャリアcの成分とは、何らかの適当な方法で相互相関確立状態にされて動作しているものとする。
The diffusion module 3 and despreading module 4 of the transmission system according to a first embodiment of the present invention shown in FIG. 1 also despreading carrier c R to enter this manner despreading means 16 despreads module 4, reverse operating in the cross-correlation established state and a component of the spread carrier c T in a component diffusion output object s in the diffusion input object h.
Hereinafter, unless otherwise stated, the despread carrier c R despreading means 16 despreads the module 4 is input, a component of the spread carrier c T in a component diffusion output object s in despreading input object h Are operating in a cross-correlation established state in some appropriate manner.
(実施形態2-2)
 次に、アナログ信号処理により構成した図9に示す実施形態2-1を、ディジタル信号処理による構成とした場合の例を説明する。図12にこれを示す。
 ノイズ信号供給部2は図9のものと同一である。図12に示す拡散キャリア加工手段13は、AD変換器50と、マッピング回路51と、DA変換器52と、AD変換器50とDA変換器52とのタイミングをコントロールするタイミングコントローラ53と、タイミングコントローラ53にタイミングパルスを供給する発振器54とで構成される。
 また、図12に示す逆拡散キャリア加工手段15は、AD変換器50と、マッピング回路55と、DA変換器52と、AD変換器50とDA変換器52とのタイミングをコントロールするタイミングコントローラ53と、タイミングコントローラ53にタイミングパルスを供給する発振器54とで構成される。この逆拡散キャリア加工手段15の構成は、前記拡散キャリア加工手段13とマッピング回路の入出力特性が異なるだけである。
Embodiment 2-2
Next, an example in which Embodiment 2-1 shown in FIG. 9 configured by analog signal processing is configured by digital signal processing will be described. This is shown in FIG.
The noise signal supply unit 2 is the same as that shown in FIG. 12 includes an AD converter 50, a mapping circuit 51, a DA converter 52, a timing controller 53 for controlling the timing of the AD converter 50 and the DA converter 52, and a timing controller. And an oscillator 54 for supplying a timing pulse to 53.
12 includes an AD converter 50, a mapping circuit 55, a DA converter 52, a timing controller 53 for controlling the timing of the AD converter 50 and the DA converter 52, and the like. And an oscillator 54 for supplying a timing pulse to the timing controller 53. The configuration of the despread carrier processing means 15 is different only in input / output characteristics of the diffusion carrier processing means 13 and the mapping circuit.
 続いて、各部の動作を説明する。ノイズ信号供給部2は、図9に示す実施形態2-1と同様に、対オブジェクト広帯域性を有したアナログのノイズ信号xを拡散キャリア加工手段13と逆拡散キャリア加工手段15とに共通に供給する。その結果、拡散キャリア加工手段13と逆拡散キャリア加工手段15とは、相互相関確立状態の、実用上同一と見なせるノイズ信号x、xを入力する。
 拡散キャリア加工手段13は、入力したノイズ信号xをAD変換器50でサンプリングし、サンプリング値をマッピング回路51で写像変換し、その値をDA変換器52でアナログ値に戻した信号を拡散キャリアcとして拡散手段14に向けて出力する。
 一方、逆拡散キャリア加工手段15は、拡散キャリア加工手段13と同様に、入力したノイズ信号xをAD変換器50でサンプリングし、サンプリング値をマッピング回路55で写像変換し、その値をDA変換器52でアナログ値に戻した信号を逆拡散キャリアcとして逆拡散手段16に向けて出力する。
Subsequently, the operation of each unit will be described. Noise signal supply unit 2, similarly to Embodiment 2-1 shown in FIG. 9, the common noise signal x W analog having a pair object broadband property to the diffusion carrier processing means 13 and the despreading carrier processing means 15 Supply. As a result, the diffusion carrier processing means 13 and the despreading carrier processing means 15 input noise signals x T and x R that are regarded as practically the same in a cross-correlation established state.
Diffusing carrier processing means 13, the noise signal x T input sampled by the AD converter 50, and mapping transform the sampled values in the mapping circuit 51, spread carrier signals back that value into an analog value by the DA converter 52 c Output as T to the diffusion means 14.
On the other hand, despreading carrier processing means 15, like the diffusion carrier processing means 13, the noise signal x R input sampled by the AD converter 50, and mapping transform the sampled values in the mapping circuit 55, the value DA conversion and outputs toward the despreading means 16 as a signal despread carrier c R returning to an analog value by the vessel 52.
 前記拡散キャリア加工手段13のマッピング回路51と、前記逆拡散キャリア加工手段15のマッピング回路55には、同一の入力から得られるそれらの写像出力を互いに乗ずるとゼロでない定数となるように写像特性を設定する。すなわち、前記拡散キャリア加工手段13のマッピング回路51に、例えば図10に示す入出力特性を与える。これに対応する場合、前記逆拡散キャリア加工手段15のマッピング回路55には、図11に示す入出力特性を与える。
 この例のような入出力特性が設定されたマッピング回路を用いた図12の構成は、図9に示した構成と全く等価に機能する。すなわち、ノイズ信号供給部2から共通のノイズ信号xが入力されると、拡散キャリア加工手段13と逆拡散キャリア加工手段15は、乗ずると常に定数となり、対オブジェクト広帯域性を有し、相互相関確立状態の拡散キャリアcと逆拡散キャリアcに加工する。
The mapping circuit 51 of the diffusion carrier processing means 13 and the mapping circuit 55 of the despread carrier processing means 15 have mapping characteristics so that a non-zero constant is obtained by multiplying their mapping outputs obtained from the same input. Set. That is, for example, the input / output characteristics shown in FIG. 10 are given to the mapping circuit 51 of the diffusion carrier processing means 13. In a case corresponding to this, the input / output characteristics shown in FIG. 11 are given to the mapping circuit 55 of the despread carrier processing means 15.
The configuration in FIG. 12 using the mapping circuit in which the input / output characteristics are set as in this example functions completely equivalent to the configuration shown in FIG. That is, when the common noise signal x W from the noise signal supply unit 2 is input, the diffusion carrier processing means 13 the despread carrier processing means 15 multiplies the always constant, have a pair object broadband performance, cross-correlation processed into diffusion carrier c T despreading carrier c R of established state.
 拡散キャリアと逆拡散キャリアに求められる、ともに対オブジェクト広帯域性を有し、互いに相互相関確立状態であり、乗ずると常に定数となる対をなす信号関係という条件を満足する上では、例えば図9に示した構成で、逆拡散キャリア加工手段15側の加算器44と逆拡散手段16との間に設けた逆数演算器45を、拡散キャリア加工手段13側の加算器44と拡散手段14の間に移動させても良いものである。これは、図12の構成においては、拡散キャリア加工手段13側の写像変換のマッピング回路51と、逆拡散キャリア加工手段15側の写像変換のマッピング回路55とを入れ替えても良いということである。
 拡散手段14と逆拡散手段16が入力する拡散キャリア及び逆拡散キャリアが、前記条件を満足する限り、このような拡散キャリア加工手段と逆拡散キャリア加工手段の内部の構成要素の入れ替えや等価な機能要素での置き換えは任意に行ってよいものである。
 図9や図12に示した構成について前記条件を満足する構成には、そのほかにも、例えば、逆数演算器と乗算器である逆拡散手段とを除算手段で置き換えても良いものであり、また、それらを拡散モジュールと逆拡散モジュール間で入れ替えても良いものである。このような組合せは他にも考えられるが、前記条件を満足する限り、そのような手法を用いても良いものである。
In order to satisfy the condition of the signal relationship that is required for the spread carrier and the despread carrier, both have a broadband property against an object, are in a state of mutual correlation and are always constant when multiplied, for example, FIG. In the configuration shown, an inverse calculator 45 provided between the adder 44 on the despread carrier processing means 15 side and the despread means 16 is provided between the adder 44 on the spread carrier processing means 13 side and the spreading means 14. It may be moved. This means that in the configuration of FIG. 12, the mapping conversion mapping circuit 51 on the diffusion carrier processing means 13 side and the mapping conversion mapping circuit 55 on the despreading carrier processing means 15 side may be interchanged.
As long as the diffusion carrier and the despread carrier input by the diffusion unit 14 and the despreading unit 16 satisfy the above conditions, the internal components of the diffusion carrier processing unit and the despread carrier processing unit are interchanged and equivalent functions are provided. Replacement with an element is optional.
In addition to the configuration shown in FIG. 9 and FIG. 12 that satisfies the above conditions, for example, the inverse arithmetic unit and the despreading unit that is a multiplier may be replaced by a division unit. These may be interchanged between the diffusion module and the despreading module. Other combinations are also conceivable, but such a method may be used as long as the above conditions are satisfied.
 なお、図12に示した構成について、前記拡散キャリア加工手段13および前記逆拡散キャリア加工手段15においてAD変換やDA変換を行う構成には本実施形態の特徴がないため、例えば、アンティエイリアシングなどのAD変換前の信号処理や、平滑化などのDA変換後の信号処理などの具体的構成については省略してある。
 また、図12に示された、AD変換器50、マッピング回路51、55、DA変換器52で構成された、拡散モジュール3と逆拡散モジュール4の拡散キャリア加工手段13と逆拡散キャリア加工手段15の一連の信号処理部は、時間的に離散的な信号処理を周期的に繰り返すディジタル信号処理装置である。
In the configuration shown in FIG. 12, the configuration in which the AD conversion and the DA conversion are performed in the diffusion carrier processing unit 13 and the despread carrier processing unit 15 does not have the characteristics of this embodiment. Specific configurations such as signal processing before AD conversion and signal processing after DA conversion such as smoothing are omitted.
Further, the diffusion carrier processing means 13 and the despreading carrier processing means 15 of the diffusion module 3 and the despreading module 4, which are constituted by the AD converter 50, the mapping circuits 51 and 55, and the DA converter 52 shown in FIG. The series of signal processing units is a digital signal processing device that periodically repeats discrete signal processing in time.
 このようなディジタル信号処理の構成によって、図9の構成のアナログ連続信号処理と等価な信号処理結果を得るためには、タイミングコントローラ53で制御するディジタル信号処理の周期を、拡散キャリアcと逆拡散キャリアcに求められる占有周波数帯域の上限周波数よりも例えば10倍以上のような充分高い周波数の逆数で与えられる時間より短い時間とする。
 また、図12に示したディジタル信号処理で構成した拡散キャリア加工手段13と逆拡散キャリア加工手段15で、図9に示したアナログ信号処理で構成した拡散キャリア加工手段13と逆拡散キャリア加工手段15が提供する図10、図11に示した入出力特性と等価な特性を実現する場合、離散値となる信号値で滑らかな特性曲線を表現するため、離散的なサンプル値と離散的なサンプル間隔の両方の離散間隔を小さくして、単位区間をより多数のより差の小さい離散値群で構成する。そのために、図12に示されるAD変換器やDA変換器には、例えば8ビット以上の分解能のものを用い、タイミングコントローラ53で制御するサンプリングとデータ処理の繰返し周期を短くする。前記繰返し周期は、具体的には、例えば、繰返し周波数が拡散キャリアと逆拡散キャリアに求める占有周波数帯域の上限周波数の十倍以上にする。また、前記分解能は、例えばノイズ信号が取りうる値の範囲を256分の一にするというように、任意に決めても良いものである。
The configuration of such a digital signal processing, in order to obtain an analog continuous signal processing equivalent to the signal processing result of the arrangement of Figure 9, the period of the digital signal processing which controls the timing controller 53, the diffusion carrier c T opposite and shorter than the time given a sufficiently high inverse of the frequency, such as also for example 10 times or more than the upper limit frequency of the frequency band occupied required for the diffusion carrier c R time.
Further, the diffusion carrier processing means 13 and the despread carrier processing means 15 constituted by the digital signal processing shown in FIG. 12, and the diffusion carrier processing means 13 and the despread carrier processing means 15 constituted by the analog signal processing shown in FIG. 10 and FIG. 11 to provide the characteristic equivalent to the input / output characteristics shown in FIG. 11, in order to express a smooth characteristic curve with signal values that are discrete values, discrete sample values and discrete sample intervals Both of the discrete intervals are made smaller, and the unit section is composed of a larger number of smaller discrete value groups. For this purpose, the AD converter or DA converter shown in FIG. 12 has, for example, a resolution of 8 bits or more, and the repetition period of sampling and data processing controlled by the timing controller 53 is shortened. Specifically, for example, the repetition period is set to be ten times or more the upper limit frequency of the occupied frequency band required for the spread carrier and the despread carrier. Further, the resolution may be arbitrarily determined, for example, the range of values that can be taken by the noise signal is set to 1/2.
 このように、離散的な写像変換特性も、横軸と縦軸の離散間隔を小さくして多数の離散値で構成することにより、実用上は連続した特性とみなせるようになり、変換して得られる信号も実用上連続量とみなせるようになる。そのため、この様な実用上連続量とみなせる離散量は、以下では特に断らない限り連続量として扱うものとする。なお、ここでは、ある規定の間隔の飛び飛びの値しか取らないものを離散値と呼び、その飛び飛びの間隔が無限に小さいか実用上無限に小さいと見なせるものを連続量と呼ぶものとする。また、例えば図10、図11の特性はx=0、およびx=0で不連続なので厳密には連続量ではないが、ここでは大部分の信号が実際に存在するそのほかの部分で連続的に変化するので、この様な信号は連続量として扱う。 In this way, the discrete mapping conversion characteristics can be regarded as continuous characteristics in practice by reducing the discrete interval between the horizontal axis and the vertical axis and configuring them with a large number of discrete values. The signal to be obtained can be regarded as a continuous quantity in practice. Therefore, such a discrete quantity that can be regarded as a continuous quantity in practical use is treated as a continuous quantity unless otherwise specified below. It should be noted that here, a value that takes only a jump value at a predetermined interval is called a discrete value, and a value that can be regarded as an infinitely small or practically infinitely small value is called a continuous amount. Further, for example, the characteristics of FIGS. 10 and 11 are not continuous because they are discontinuous at x T = 0 and x R = 0, but here, they are continuous in other parts where most of the signals actually exist. Such a signal is treated as a continuous quantity.
 このように、本発明の実施形態2-2によれば、ディジタル回路を用いてアナログ信号のノイズ信号xをアナログ信号の拡散キャリアcと逆拡散キャリアcに加工作成してスペクトル拡散通信を行う装置を構成することが出来るものである。その他の構成及びその作用効果は図1の実施形態1と同一になっている。 In this manner, according to Embodiment 2-2 of the present invention, machining create and spread spectrum communication noise signal x W of the analog signal to the spreading carrier c T despreading carrier c R of the analog signal using a digital circuit The apparatus which performs can be comprised. Other configurations and the operation and effects thereof are the same as those of the first embodiment shown in FIG.
(実施形態2-3)
 次に、連続量の拡散キャリア及び逆拡散キャリアを用いる構成の図9および図12に示す実施形態を、離散的な値をとる拡散キャリア及び逆拡散キャリアを用いる構成とした例を説明する。図13、図14に示す特性は、離散的な値をとる拡散キャリア及び逆拡散キャリアに変換する写像変換器の入出力特性例であり、その特性の具体的な数値例を図17に示す。
(Embodiment 2-3)
Next, an example will be described in which the embodiment shown in FIG. 9 and FIG. 12 configured to use a continuous amount of spread carrier and despread carrier is configured to use a spread carrier and a despread carrier having discrete values. The characteristics shown in FIG. 13 and FIG. 14 are examples of input / output characteristics of the mapping converter that converts to discrete spread carrier and despread carrier, and specific numerical examples of the characteristics are shown in FIG.
 図13で示される入出力特性は、ノイズ信号xを拡散キャリアcに写像変換する図10で示される連続的な入出力特性を非常に粗い離散値で表現したものであり、同様に、図14で示される入出力特性は、ノイズ信号xを逆拡散キャリアcに写像変換する図11で示される連続的な入出力特性を非常に粗い離散値で表現したものである。この図13、図14で示される入出力特性は、入力信号のゼロを境界とする部分以外は滑らかな連続量に変換する特性の図10、図11とは異なり、不連続な段階的な値をとる。 Input-output characteristics shown in FIG. 13 is a representation of a very coarse discrete values a continuous input-output characteristics shown in FIG. 10 for mapping transform noise signal x T to spread carrier c T, similarly, input-output characteristics shown in FIG. 14 is a representation of a very coarse discrete values a continuous input-output characteristics shown in FIG. 11 for mapping transform noise signal x R despread carrier c R. The input / output characteristics shown in FIGS. 13 and 14 are different from those in FIGS. 10 and 11 in which the input signal is converted into a smooth continuous amount except for a portion having zero as a boundary. Take.
 このような入出力特性の拡散キャリア加工手段及び逆拡散キャリア加工手段を用いても、その結果得られる拡散キャリア及び逆拡散キャリアが、ともに対オブジェクト広帯域性を有し、互いに相互相関確立状態であり、乗ずると常に定数となる関係という条件を満足する限り、その拡散キャリアと逆拡散キャリアを用いてスペクトル拡散通信を実現できるものである。
 これは、実施形態2-2で述べたディジタル信号処理による構成で、例えば8ビット分解能のAD・DA変換器を用い、ノイズ信号x、xの振幅範囲を“256”という非常に多数の段階に等間隔に分けて、実施形態2-1のアナログ信号処理の拡散キャリア加工手段及び逆拡散キャリア加工手段が作成する拡散キャリア及び逆拡散キャリアが連続的に変化する信号と等価な信号を作成する例と異なり、拡散キャリア及び逆拡散キャリアはそれほどは細かくない離散値をとる多値ディジタル信号とする。
 その多値のディジタル信号として何個のどのような値の離散値を用いるかは、結果として得られる拡散キャリアと逆拡散キャリアが前記の条件を満足する限り任意に決めてよく、例えば、従来のスペクトル拡散通信で一般的に用いられている、絶対値が等しいゼロでない正負の値を取る二値信号としても良いものである。
Even if the diffusion carrier processing means and the despread carrier processing means having such input / output characteristics are used, the resulting diffusion carrier and despread carrier both have a broadband property against objects and are in a state of mutual correlation established. As long as the condition of a constant constant when multiplied is satisfied, spread spectrum communication can be realized using the spread carrier and the despread carrier.
This is a configuration based on the digital signal processing described in the embodiment 2-2. For example, an AD / DA converter with an 8-bit resolution is used, and the amplitude range of the noise signals x T and x R is “256”. A signal equivalent to a signal in which the spread carrier and the despread carrier generated by the analog signal processing spread carrier despreading means and the despread carrier processing means of the embodiment 2-1 are continuously changed is divided into equal steps. Unlike the example described above, the spread carrier and the despread carrier are multi-value digital signals having discrete values that are not so fine.
The number of discrete values to be used as the multi-level digital signal may be arbitrarily determined as long as the resulting spread carrier and despread carrier satisfy the above-described conditions. It is good also as a binary signal which takes the positive / negative value which is not zero which is equal in absolute value and is generally used in spread spectrum communication.
 このように、本発明の実施形態2-3によれば、拡散キャリアと逆拡散キャリアに、アナログ信号や、アナログ信号と等価と見なせる連続的な値を取る信号のみならず、多値の荒い離散値を取るディジタル信号を用いても、従来のスペクトル拡散通信で用いられている絶対値が等しいゼロでない正負の値を取る二値信号を用いても良いものである。 As described above, according to Embodiment 2-3 of the present invention, not only an analog signal or a signal having a continuous value that can be regarded as equivalent to an analog signal, but also a multi-valued rough discrete signal is applied to the spread carrier and the despread carrier. Even a digital signal that takes a value may be used, or a binary signal that takes a non-zero positive or negative value having the same absolute value used in the conventional spread spectrum communication may be used.
 図10、図11に示した特性を実現する図12の構成の装置に比べ、図13、図14に示したような特性を実現する図12の構成の装置は、AD変換器50や、DA変換器52の分解能を低くでき、AD変換器50や、DA変換器52や、マッピング回路51、55のビット幅を狭くできるので、拡散モジュール3と逆拡散モジュール4が小型かつ低コストとなり、実用上大変有効である。その他の構成及びその作用効果は図1の実施形態1と同一になっている。 Compared with the apparatus shown in FIG. 12 that realizes the characteristics shown in FIG. 10 and FIG. 11, the apparatus shown in FIG. 12 that realizes the characteristics shown in FIGS. Since the resolution of the converter 52 can be lowered and the bit widths of the AD converter 50, the DA converter 52, and the mapping circuits 51 and 55 can be reduced, the diffusion module 3 and the despreading module 4 are small and low in cost. It is very effective. Other configurations and the operation and effects thereof are the same as those of the first embodiment shown in FIG.
(実施形態2-4)
 次に、図13、図14に示す単調に変化する入出力特性の写像変換を用いる構成の実施形態2-3を、単調な変化でない入出力特性の写像変換を用いる構成とした例を説明する。ここで、入出力特性が単調に変化するとは、増加する入力に対して増加傾向となる出力においては減少傾向となることがないこと、あるいは、増加する入力に対して減少傾向となる出力においては増加傾向となることがないこととする。図15、図16に示す特性は、離散的な値が単調でない順序で組み合わされた写像変換器の入出力特性例である。
Embodiment 2-4
Next, a description will be given of an example in which Embodiment 2-3, which uses mapping conversion of monotonically changing input / output characteristics shown in FIG. 13 and FIG. . Here, when the input / output characteristics change monotonously, the output that tends to increase with respect to the increasing input does not tend to decrease, or the output that tends to decrease with respect to the increasing input. It will not increase. The characteristics shown in FIGS. 15 and 16 are examples of input / output characteristics of a mapping converter in which discrete values are combined in a non-monotonic order.
 図10と図11で示される特性は、不連続となる横軸のゼロを除き、それを境界にした両側の連続区間では、それぞれ入出力特性は単調に変化する関数となっており、図13と図14で示される特性は、離散的な不連続量ながら、図10と図11で示される特性のように単調に変化する傾向である。
 それに対して、図15と図16で示される特性は増加する入力に対して単調でなく、不規則に変化して見える。この図15と図16で示される特性は数表で図18に示されるが、これは図13と図14で示される特性に対応する図17の数表に図19に示した操作を行ったものである。以下でその詳細を説明する。
 図18で定義している写像変換規則は、任意のノイズ信号xとxの値に対応して出力される拡散キャリアcと逆拡散キャリアcの値を示している。
The characteristics shown in FIG. 10 and FIG. 11 are functions in which the input / output characteristics change monotonously in the continuous sections on both sides excluding the discontinuous zero on the horizontal axis. The characteristics shown in FIG. 14 tend to change monotonously like the characteristics shown in FIGS. 10 and 11 while being discrete discrete amounts.
On the other hand, the characteristics shown in FIGS. 15 and 16 are not monotonous with increasing input and appear to change irregularly. The characteristics shown in FIG. 15 and FIG. 16 are shown in FIG. 18 as a numerical table, which is obtained by performing the operation shown in FIG. 19 on the numerical table in FIG. 17 corresponding to the characteristics shown in FIG. 13 and FIG. Is. Details will be described below.
Mapping transform rules that are defined in FIG. 18 shows the value of the diffusion carrier c T despreading carrier c R outputted in response to the value of any of the noise signal x T and x R.
 本伝送システムがスペクトル拡散方式でオブジェクトを伝送する目的のために拡散キャリアcと逆拡散キャリアcとに求められる性質は、対オブジェクト広帯域性で不規則性で互いに乗じてゼロでない定数になる対をなす信号の関係であり、この性質が得られるのであれば、加工材料であるノイズ信号の値に対して拡散キャリアcと逆拡散キャリアcの値がどのように変化するかは任意でよいものである。前記定数とは、前記スペクトル拡散キャリアの値如何に関わらず拡散キャリアcの値と逆拡散キャリアcの値との積が一定の値を示すものを言う。
 前記の拡散キャリアcと逆拡散キャリアcとに求められる性質のうち、図17の表のノイズ信号の値に対して拡散キャリアcと逆拡散キャリアcがとる値の並び方を規定するのは互いに乗じてゼロでない前記定数になる対をなす信号関係とするという条件である。
 すなわち、この対をなす信号関係が成立するならばノイズ信号の値に対して拡散キャリアcと逆拡散キャリアcの値が図17の表の中でどのように並んでいてもよいものである。
 具体的に言えば、図17の表では、あるノイズ信号に対する拡散キャリアcと逆拡散キャリアcの対はどれも互いに乗ずると1となる対をなす信号関係にあるので、例えばある対と別のある対を入れ替えても、ノイズ信号が取りうる値に対して拡散キャリアcと逆拡散キャリアcを互いに乗ずると1となる対をなす信号関係は崩れない。
 また、あるノイズ信号に対する拡散キャリアcと逆拡散キャリアcの対について、例えば拡散キャリアcと逆拡散キャリアcとを入れ替えても、ノイズ信号が取りうる値に対して拡散キャリアcと逆拡散キャリアcを互いに乗ずると1となる対をなす信号関係は崩れない。
Properties required for the diffusion carrier c T despreading carrier c R for the purposes of the present transmission system for transmitting objects in a spread spectrum scheme, the constant non-zero multiplied each other by irregularities against objects broadband property a relationship between the signal pairs, if this property is obtained, optionally whether the value of the diffusion carrier c T despreading carrier c R how changes to the value of the noise signal is processed material It is good. Wherein a is a constant, it refers to the product of the value and the value of the despreading carrier c R of the spread spectrum value whether the matter without diffusing carrier c T of the carrier exhibits a constant value.
Of the properties required in the diffusion carrier c T despreading carrier c R above, to define the arrangement of values taken by the diffusing carrier c T despreading carrier c R relative to the value in the table of the noise signal of FIG. 17 Is a condition that signals are paired by multiplying each other to form a constant that is not zero.
That, in which the value of the diffusion carrier c T despreading carrier c R for the value of if if the noise signal signal relationships forming the pair is satisfied may be arranged how in the table of FIG. 17 is there.
Specifically, in the table of FIG. 17, and since the signal relationships for forming the first and made-to the none multiplied each other pair of spreading carrier c T despreading carrier c R for a noise signal, for example, pairs be interchanged another particular pair, not collapse the signal relationships for forming the first and made-to-multiplying each other diffusion carrier c T despreading carrier c R for the values which the noise signal can take.
Further, the pair of diffusion carrier c T despreading carrier c R for a noise signal, for example be interchanged and diffusion carrier c T despreading carrier c R, diffusion carrier c T against the values noise signal can take not collapse signal relationship forming a become pair multiplying each other despreading carrier c R and.
 図19はそのような入れ替えの操作を示している。
 図19中の56で示されるように、56aと56bに対応した図17上の欄にある値を入れ替え、同時に、図19中の57で示されるように、57aと57bに対応した図17上の欄にある値も入れ替えれば、結果として拡散キャリアと逆拡散キャリアが乗じて1となるという性質が失われることはない。
 また、図19中の58で示されるように、58aと58bに対応した図17上の欄にある値を入れ替えても、結果として拡散キャリアと逆拡散キャリアが乗じて1となるという性質が失われることはない。図18の表の拡散キャリアcと逆拡散キャリアc値は、図17の表の拡散キャリアcと逆拡散キャリアcの値の並びに対して図19に示したこのような入れ替え操作を施したものであり、その時の拡散モジュールの写像変換の入出力特性図が図15であり、逆拡散モジュールの写像変換の入出力特性図が図16である。
 さらに、これらを組合せ、図19上の56aと57bに対応した図17上の欄にある値を入れ、同時に、図19中の57aと56bに対応した図17上の値も入れ替えてもよく、この場合も、結果として拡散キャリアと逆拡散キャリアが乗じて1となるという性質が失われることはないものである。
 このように、拡散キャリアや逆拡散キャリアの取る値を入れ替えても拡散キャリアと逆拡散キャリアを乗じた結果が変わらない性質を使って、さらに新たな信号のパターンを発生させることが出来る。
FIG. 19 shows such an exchange operation.
As shown by 56 in FIG. 19, the values in the column on FIG. 17 corresponding to 56a and 56b are exchanged, and at the same time, on the FIG. 17 corresponding to 57a and 57b, as shown by 57 in FIG. If the values in the column are also replaced, the property that the spreading carrier and the despreading carrier are multiplied to 1 as a result is not lost.
Further, as indicated by 58 in FIG. 19, even if the values in the column in FIG. 17 corresponding to 58a and 58b are interchanged, the property that the result is that the spread carrier and the despread carrier are multiplied to become 1 is lost. It will never be. Diffusing carrier c T despreading carrier c R values in the table of FIG. 18, such a replacement operation shown in FIG. 19 relative to the sequence of values in the table of spreading carrier c T despreading carrier c R in FIG. 17 FIG. 15 shows an input / output characteristic diagram of the mapping conversion of the diffusion module at that time, and FIG. 16 shows an input / output characteristic diagram of the mapping conversion of the despreading module.
Furthermore, these values may be combined, and the values in the column on FIG. 17 corresponding to 56a and 57b in FIG. 19 may be entered. At the same time, the values on FIG. 17 corresponding to 57a and 56b in FIG. Also in this case, the property that the spreading carrier and the despreading carrier are multiplied to become 1 as a result is not lost.
Thus, a new signal pattern can be generated using the property that the result of multiplying the spread carrier and the despread carrier does not change even if the values taken by the spread carrier and the despread carrier are changed.
 このような写像変換は一般には図12に示したようなディジタル信号処理過程の中で行われるが、信号クリップなどの手法を組み合わせるなどしてアナログ信号処理で実現することも出来るので、図9の構成においてもこのような写像変換を組込むことが可能である。
 このような写像変換の入出力特性の変更は、それまで存在していた入出力特性を決めていた要素の単純な入れ替えであり、入出力特性の時間的な特性を変えるものではないため、これによって拡散キャリアと逆拡散キャリアの対オブジェクト広帯域性も相互相関確立状態にあるという関係も影響を受けることはない。
Such mapping conversion is generally performed in the process of digital signal processing as shown in FIG. 12, but can also be realized by analog signal processing by combining techniques such as signal clipping. Such a mapping transformation can also be incorporated in the configuration.
This change in the input / output characteristics of mapping conversion is a simple replacement of the elements that have been used to determine the input / output characteristics, and does not change the temporal characteristics of the input / output characteristics. Therefore, the relationship between the spread carrier and the despread carrier with respect to the broadband property of the object is also not affected.
 ところで、図17、図18、図19で示されるような写像変換を受けて多値の離散値の不規則で不連続な並びの信号は、従来のスペクトル拡散の拡散符号と逆拡散符号には用いられず、同期操作のやりやすさなどの理由から、実用用途においては二値疑似雑音符号だけが拡散符号と逆拡散符号に用いられてきた。 By the way, the signals of irregular and discontinuous arrangement of multi-valued discrete values that have undergone mapping transformation as shown in FIG. 17, FIG. 18, and FIG. For practical use, only binary pseudo-noise codes have been used for spreading codes and despreading codes for reasons such as not being used and ease of synchronization operations.
 これらに対し、本発明の実施形態2-4によれば、図17、図18、図19で示されるような写像変換で作成した、多値の離散値を拡散キャリアと逆拡散キャリアに用いてスペクトル拡散通信ができるものであり、これは、写像変換により、ひとつの信号から拡散キャリアと逆拡散キャリアに用いることが出来る異なる多数の新たなパターンの信号を提供できることを示している。
 このように、本発明の実施形態2-4によれば、拡散キャリア加工手段と逆拡散キャリア加工手段に共通のノイズ信号を基に、多数の異なるパターンの拡散キャリアと逆拡散キャリアを加工することができ、それを用いたスペクトル拡散通信を提供できるものである。
 このようにして提供するキャリア加工部1の拡散キャリアと逆拡散キャリアは、図40に示す構成の従来例の参照信号内蔵方式のスペクトル拡散通信システムで用いられる二値の拡散・逆算符号と異なり、信号の不規則性には周期性も規則性も全く不要なノイズ信号のもつ不規則性を用いるので、スペクトル拡散した拡散入力オブジェクトからもとの拡散入力オブジェクトを推測したり、偽の信号を偽造することを一層困難にしており、秘話性を高めることに効果的である。その他の構成及びその作用効果は図1の実施形態1と同一になっている。
On the other hand, according to the embodiment 2-4 of the present invention, the multi-value discrete values created by the mapping transformation as shown in FIGS. 17, 18 and 19 are used for the spread carrier and the despread carrier. It is possible to perform spread spectrum communication, which indicates that map conversion can provide a number of different new patterns of signals that can be used from one signal to the spread carrier and the despread carrier.
As described above, according to Embodiment 2-4 of the present invention, a large number of different patterns of spread carriers and despread carriers are processed based on the noise signal common to the spread carrier processing means and the despread carrier processing means. And spread spectrum communication using the same can be provided.
The spread carrier and the despread carrier of the carrier processing unit 1 provided in this way are different from the binary spread / back calculation code used in the spread spectrum communication system of the reference signal built-in method of the conventional example having the configuration shown in FIG. Since the irregularity of the noise signal that does not require periodicity or regularity is used for the irregularity of the signal, the original diffused input object can be inferred from the spread spectrum diffused input object, or the false signal is forged. It is more difficult to do, and it is effective to improve the secrecy. Other configurations and the operation and effects thereof are the same as those of the first embodiment shown in FIG.
(実施形態3-1)
 次に、ノイズ信号を拡散キャリア及び逆拡散キャリアにそれぞれ加工する拡散キャリア加工手段と逆拡散キャリア加工手段とについて、実施形態1及び実施形態2の各例に示した写像変換以外の具体的方法を説明する。
(Embodiment 3-1)
Next, with respect to the diffusion carrier processing means and the despread carrier processing means for processing the noise signal into the diffusion carrier and the despread carrier, respectively, a specific method other than the map conversion shown in each example of the first embodiment and the second embodiment is used. explain.
 以下では各種加工方法が例示されるが、それらは例えば図20に示される拡散キャリア加工手段13に信号前処理部46を、逆拡散キャリア加工手段15に信号前処理部46を用いている。すなわち、ノイズ信号x、xは信号前処理部46で信号が加工され、その出力xPT、xPRがこれまでの加工過程に供給されて拡散キャリアcと逆拡散キャリアcとに加工される。特に断らない限り、以下の説明で現れる加工手段は、この信号前処理部46はリミッタ40の前段に置かれたものとして説明する。ただし、図20における信号前処理部46の位置は、同様の効果が得られる場所であれば前記位置に限定されるものではない。 In the following, various processing methods are exemplified. For example, the signal preprocessing unit 46 is used for the diffusion carrier processing unit 13 and the signal preprocessing unit 46 is used for the despread carrier processing unit 15 shown in FIG. That is, the noise signals x T and x R are processed by the signal pre-processing unit 46, and the outputs x PT and x PR are supplied to the previous processing steps to be converted into the spread carrier c T and the despread carrier c R. Processed. Unless otherwise specified, the processing means appearing in the following description will be described assuming that the signal preprocessing unit 46 is placed in front of the limiter 40. However, the position of the signal preprocessing unit 46 in FIG. 20 is not limited to the above position as long as the same effect can be obtained.
 また、特に加工について、時間的に離散的なディジタル信号処理を用いる場合に特有の工程を考慮する場合は図21に示される構成を用いる。これは、図12に示す拡散キャリア加工手段13と逆拡散キャリア加工手段15におけるノイズ信号x、xの入力部に信号前処理部46を配置したもので、図20と等価となる。特に断らない限り、以下の説明で現れる加工手段は、この各信号前処理部の位置に置かれたものとして説明する。図21における信号前処理部46の位置も、前記と同様の効果が得られる場所であれば前記位置に限定されるものではない。
 また、加工方法によっては、その加工方法で直接拡散キャリアと逆拡散キャリアとして使用可能な信号を出力できる場合がある。その場合は、その加工方法を図9あるいは図12に示される構成の拡散キャリア加工手段や逆拡散キャリア加工に換えてよいものである。その他の構成及びその作用効果は図1の実施形態1と同一になっている。
Further, in particular, in the case of processing, in the case where a unique process is considered when using temporally discrete digital signal processing, the configuration shown in FIG. 21 is used. This is equivalent to FIG. 20 in which the signal preprocessing unit 46 is arranged at the input portion of the noise signals x T and x R in the diffusion carrier processing means 13 and the despread carrier processing means 15 shown in FIG. Unless otherwise specified, the processing means appearing in the following description will be described as being placed at the position of each signal preprocessing unit. The position of the signal preprocessing unit 46 in FIG. 21 is not limited to the above position as long as the same effect as described above can be obtained.
In addition, depending on the processing method, a signal that can be used as a direct spread carrier and a despread carrier may be output by the processing method. In that case, the processing method may be changed to diffusion carrier processing means or despread carrier processing having the configuration shown in FIG. 9 or FIG. Other configurations and the operation and effects thereof are the same as those of the first embodiment shown in FIG.
(実施形態3-2)
 図20、図21に示される拡散キャリア加工手段13の信号前処理部46と、逆拡散キャリア加工手段15の信号前処理部46とに遅延器を用いて、図22(A)に示したような入力するノイズ信号x、xに対し、図22(B)に示したように時間tだけ遅延させた信号xPT、xPRを作成して拡散キャリアと逆拡散キャリアを作成してよいものである。
 既述したように、図1に示す実施形態1によれば、ノイズ信号xには、自己相関が全くない完全に不規則な信号を使用することができるが、そのような信号を異なる時間だけ遅延させた信号同士に相互相関がないことを利用して、それらを加工して相互相関がない拡散キャリアや逆拡散キャリアを作成する。
 相互相関がない前記拡散キャリアや前記逆拡散キャリアを用いたスペクトル拡散通信は互いに干渉しないため、これを用いると多重通信が可能となる。その他の構成及びその作用効果は図1の実施形態1と同一になっている。
Embodiment 3-2
As shown in FIG. 22A, a delay device is used for the signal preprocessing unit 46 of the spread carrier processing unit 13 and the signal preprocessing unit 46 of the despread carrier processing unit 15 shown in FIGS. As shown in FIG. 22B, signals x PT , x PR delayed by time t D are created for the input noise signals x T , x R to create spread carriers and despread carriers. It ’s good.
As described above, according to the first embodiment shown in FIG. 1, the noise signal x W can be a completely irregular signal having no autocorrelation, but such a signal can be used at different times. By utilizing the fact that there is no cross-correlation between signals delayed by a certain amount, they are processed to create spread carriers and despread carriers without cross-correlation.
Since spread spectrum communication using the spread carrier and the despread carrier without cross-correlation do not interfere with each other, using this enables multiple communication. Other configurations and the operation and effects thereof are the same as those of the first embodiment shown in FIG.
 このように、本発明の実施形態3-2によれば、同一のノイズ信号を使用しても、異なる遅延時間を用いて相互相関がない多数の拡散キャリアとそれに対応した逆拡散キャリアとを提供できる。その他の構成及びその作用効果は図9及び図12の実施形態と同一になっている。 Thus, according to Embodiment 3-2 of the present invention, even if the same noise signal is used, a large number of spread carriers having no cross-correlation using different delay times and corresponding despread carriers are provided. it can. Other configurations and the effects thereof are the same as those of the embodiment shown in FIGS.
(実施形態3-3)
 図20、図21に示される拡散キャリア加工手段13の信号前処理部46と、逆拡散キャリア加工手段15の信号前処理部46とに、図23に示したような自己相関のない複数の異なるノイズ信号x…x入力と、それらの信号を加算器61で適当に組み合わせて出力信号を生成する組合わせ部60を設けて、信号xPT、xPRを作成して拡散キャリアと逆拡散キャリアを作成してもよいものである。
 自己相関のない信号を組み合わせると新たな波形パターンの自己相関のない信号を作ることが出来る。その信号をノイズ信号に用いることにより、作成できる自己相関のない信号の波形パターン数を増やすことができる。
Embodiment 3-3
The signal preprocessing unit 46 of the spread carrier processing unit 13 shown in FIGS. 20 and 21 and the signal preprocessing unit 46 of the despread carrier processing unit 15 are different from each other without autocorrelation as shown in FIG. A noise signal x 1 ... X n input and a combination unit 60 that generates an output signal by appropriately combining these signals with an adder 61 are provided to generate signals x PT and x PR to despread and spread carriers. A career may be created.
When signals without autocorrelation are combined, a signal without autocorrelation of a new waveform pattern can be created. By using the signal as a noise signal, the number of waveform patterns of a signal without autocorrelation that can be generated can be increased.
 図23では組合せ手法に加算器61を用いた例を示したが、その手法に代わる複数のノイズ信号x…xを組み合わせる方法として、加減乗除を適当に組み合わせて構成する算術演算組合せ、n個のノイズ信号x…xの内からいくつかのノイズ信号を選択する選択組合せ、ノイズ信号x…xをそれぞれ二値や多値に離散値化して論理的に和や積などの論理演算を適当に組合わせて構成する論理演算組合せ、ノイズ信号x…x相互間の大小関係などによって値を決める関係演算組合せ、それらを適当に組み合わせる混合組合せなどの種々の手法を適宜選択することもできるものである。
 拡散キャリア加工手段13と逆拡散キャリア加工手段15で前記組合せ加工の結果得られる信号は、相互相関確立状態にあって対オブジェクト広帯域性を有さなければならない。この時、結果としてのノイズ信号xPT、xPRが対オブジェクト広帯域性を有し相互相関確立状態であるならば、拡散キャリア加工手段13と逆拡散キャリア加工手段15それぞれが入力する全てのノイズ信号x…xが対オブジェクト広帯域性を有し相互相関確立状態である必要はないものである。
FIG. 23 shows an example in which the adder 61 is used as the combination method. However, as a method of combining a plurality of noise signals x 1 ... X n instead of the method, an arithmetic operation combination configured by appropriately combining addition, subtraction, multiplication and division, n select combination of selecting some of the noise signal among the pieces of noise signal x 1 ... x n, the noise signal x 1 ... x n to each discrete value into a binary or multi-valued, such as logical sum or product Appropriate selection of various methods such as logical operation combinations configured by appropriately combining logical operations, relational operation combinations that determine values according to the magnitude relationship between noise signals x 1 ... x n , and mixed combinations that combine them appropriately It can also be done.
The signal obtained as a result of the combination processing by the diffusion carrier processing means 13 and the despread carrier processing means 15 must be in a cross-correlation established state and have a broadband property against an object. At this time, if the resulting noise signals x PT and x PR have a wide band property with respect to the object and are in a cross-correlation established state, all the noise signals input by the diffusion carrier processing means 13 and the despread carrier processing means 15 respectively. x 1 ... x n does not need to be in a cross-correlation established state with object wide bandwidth.
 このように本発明の実施形態3-3によれば、多数のノイズ信号を組合すことにより、自己相関がない多数の異なる波形パターンの拡散キャリアとそれに対応した逆拡散キャリアとを提供できる。その他の構成及びその作用効果は図9及び図12の実施形態と同一になっている。 As described above, according to Embodiment 3-3 of the present invention, by combining a large number of noise signals, it is possible to provide a large number of spread carriers having different waveform patterns having no autocorrelation and a corresponding despread carrier. Other configurations and the effects thereof are the same as those of the embodiment shown in FIGS.
(実施形態3-4)
 図20、図21に示される拡散キャリア加工手段13の信号前処理部46と、逆拡散キャリア加工手段15の信号前処理部46とに、図24に示す特性をもつスペクトル構成調整部を設け、ノイズ信号のスペクトル構成を調整した信号xPT、xPRを作成して拡散キャリアと逆拡散キャリアを作成してよいものである。
 図24に示す特性は、信号の広帯域な占有周波数帯域幅は変わらないものの、その帯域の中で、周波数fC1~fC2の特定帯域に対する利得を制限してスペクトル構成を調整するとともに、周波数fC3~fC6の間で特定帯域に対する利得を強調してノイズ信号のスペクトル構成を調整している例である。なお、図24の平坦な線で示した通過領域の特性を傾けるなどによりスペクトル構成を調整するようにしてもよいものである。このような操作は、フィルタを組み合わせることにより実現でき、また、DSP(ディジタル信号処理)によっても実現できる。このほかにも、周波数ヘテロダインを用いることにより周波数帯をシフトしたり、n乗器、周波数逓倍器、分周器などの信号変換器を用いて周波数帯域を縮小・拡大してもよい。
Embodiment 3-4
A spectrum configuration adjustment unit having the characteristics shown in FIG. 24 is provided in the signal preprocessing unit 46 of the spread carrier processing unit 13 and the signal preprocessing unit 46 of the despread carrier processing unit 15 shown in FIGS. The spread carrier and the despread carrier may be created by creating signals x PT and x PR in which the spectrum configuration of the noise signal is adjusted.
The characteristic shown in FIG. 24 is that the wide band occupied frequency bandwidth of the signal is not changed, but the gain of the frequency f C1 to f C2 within the band is limited to adjust the spectrum configuration, and the frequency f In this example, the spectrum configuration of the noise signal is adjusted by emphasizing the gain for a specific band between C3 and fC6 . Note that the spectrum configuration may be adjusted by, for example, tilting the characteristics of the passing region indicated by the flat line in FIG. Such an operation can be realized by combining filters, and can also be realized by DSP (digital signal processing). In addition, the frequency band may be shifted by using frequency heterodyne, or the frequency band may be reduced or expanded by using a signal converter such as an n-th power multiplier, a frequency multiplier, or a frequency divider.
 このような適当にスペクトル構成を調整したノイズ信号を拡散キャリアと逆拡散キャリアへの加工材料に用いると、同じノイズ信号を用いても生成する拡散キャリアと逆拡散キャリアの信号パターンを変えることができ、加工を複雑にして解読の難しさを増加させて秘話性を向上させたり、遅延と組合わせて多数の相互相関の低い信号の生成方法を提供する手段としては有効なものである。 When such a noise signal with an appropriately adjusted spectrum configuration is used as a material for processing a spread carrier and a despread carrier, the signal pattern of the generated spread carrier and the despread carrier can be changed using the same noise signal. It is effective as a means for improving the secrecy by increasing the complexity of processing and increasing the difficulty of decoding, or providing a method for generating a large number of signals having low cross-correlation in combination with delay.
 このように本発明の実施形態3-4によれば、同一のノイズ信号を使用しても、異なるスペクトル構成を用いてパターンの異なる拡散キャリアとそれに対応した逆拡散キャリアとを提供できる。その他の構成及びその作用効果は図9及び図12の実施形態と同一になっている。 As described above, according to Embodiment 3-4 of the present invention, even if the same noise signal is used, it is possible to provide spread carriers having different patterns and corresponding despread carriers using different spectrum configurations. Other configurations and the effects thereof are the same as those of the embodiment shown in FIGS.
(実施形態3-5)
 次に、特徴検出処理と信号発生とを組み合わせた加工について図25及び図26に基づいて説明する。
 図20、図21に示される拡散キャリア加工手段13の信号前処理部46と、逆拡散キャリア加工手段15の信号前処理部46とに、図25に示したような特徴検出手段と信号発生手段で構成された信号前処理部を設けた構成で信号xPT、xPRを作成して拡散キャリアと逆拡散キャリアを作成してもよいものである。
 これまで説明した加工方法は、いずれも入力する加工材料信号を直接的に加工して加工出力信号そのものに変化させたものであった。
 それに対し、入力信号からは入力信号系列中の特定の位置情報を得るだけで、それに基づいた出力信号系列中の位置に入力信号とは無関係な既知の対オブジェクト広帯域性である信号を発生させて加工出力信号としても良いものである。
Embodiment 3-5
Next, processing combining feature detection processing and signal generation will be described with reference to FIGS.
The signal preprocessing unit 46 of the diffusion carrier processing unit 13 shown in FIGS. 20 and 21 and the signal preprocessing unit 46 of the despreading carrier processing unit 15 include a feature detection unit and a signal generation unit as shown in FIG. The signals x PT and x PR may be created with the configuration provided with the signal preprocessing unit configured as described above to create the spread carrier and the despread carrier.
In all of the processing methods described so far, the input processing material signal is directly processed and changed into the processing output signal itself.
On the other hand, only a specific position information in the input signal sequence is obtained from the input signal, and a signal having a wide band property with respect to the object that is not related to the input signal is generated at a position in the output signal sequence based on the information. It may be a machining output signal.
 入力信号から入力信号系列中の特定の位置情報を得るとは、入力信号の特徴的な要素に注目し、入力信号を解析してその特徴要素の存在を発見し、入力信号系列中のその特徴要素の存在位置を出力することである。それは、すなわち、特徴検出処理である。入力信号の特徴的な要素とは、例えば、ある特定の波形パターンや、ゼロクロス点、波形の頂点である。また、その存在の発見のための解析とは、例えば、比較器と基準信号源を用いた方法や、信号系列の連続した区間の情報を信号処理装置でパターンマッチングや回帰分析をする方法である。また、特徴検出のための解析には、例えば本伝送システムのスペクトル逆拡散モジュールと信号処理装置を組み合わせた構成を用い、入力信号の特徴的な要素として逆拡散出力オブジェクトのある特定の波形パターンや、ゼロクロス点、波形の頂点を用いても良いものである。
 ノイズ信号の波形パターンは不規則性なので、系列中にその特徴が検出される位置は、その系列中に不規則に現れる。その不規則に現れる位置を基準に発生される信号は不規則な信号となる。
 また、同一のノイズ信号について同一の特性の特徴検出処理で検出される特徴の位置はノイズ信号の系列中の同一の点となり、その特徴の位置を基準にした点の並びやその特徴の位置を基準にしたノイズ信号上の適当な点の値の並びは同一なものとなり、それは相互相関確立状態のものである。
 また、その同一の検出点を起点として同一の安定した非同期のリズムである規定のパターンの信号を発生させるとき、それらは独立して発生される非同期の信号であっても、短い期間において実用上相互相関が確立されたものとみなせる信号となる。この時、発生させる信号を適当な対オブジュクト広帯域性で不規則性を有する波形パターンの信号をとすることにより、それらはノイズ信号としての要件を満足する信号となる。
 さらに、この時、発生させる信号を互いに乗ずるとゼロでない規定の定数になる対をなす信号関係とすることにより、それらは拡散キャリアと逆拡散キャリアとしての要件を満足する信号となる。
Obtaining specific position information in the input signal sequence from the input signal focuses on the characteristic elements of the input signal, analyzes the input signal to discover the existence of the characteristic element, and It is to output the location of the element. That is, a feature detection process. The characteristic elements of the input signal are, for example, a specific waveform pattern, a zero cross point, and a waveform vertex. The analysis for finding the presence is, for example, a method using a comparator and a reference signal source, or a method of performing pattern matching or regression analysis on information on continuous sections of a signal sequence using a signal processing device. . For analysis for feature detection, for example, a configuration combining a spectrum despreading module and a signal processing device of this transmission system is used, and a specific waveform pattern having a despread output object as a characteristic element of the input signal or , Zero cross points, and vertices of waveforms may be used.
Since the waveform pattern of the noise signal is irregular, the position where the feature is detected in the sequence appears irregularly in the sequence. A signal generated based on the irregularly appearing position is an irregular signal.
In addition, the position of the feature detected by the feature detection process of the same characteristic for the same noise signal is the same point in the series of noise signals, and the arrangement of points based on the position of the feature and the position of the feature are determined. The sequence of values of appropriate points on the noise signal used as a reference is the same, which is in a cross-correlation established state.
In addition, when generating a signal of a prescribed pattern that is the same stable asynchronous rhythm starting from the same detection point, even if they are asynchronous signals generated independently, they are practical in a short period of time. The signal can be regarded as having established cross-correlation. At this time, the signals to be generated are signals having a waveform pattern having irregularity with an appropriate anti-object wideband characteristic, so that the signals satisfy the requirements as noise signals.
Further, at this time, when the signals to be generated are multiplied by each other, a pair of signal relations that become a predetermined constant that is not zero is obtained, so that they satisfy the requirements as a spread carrier and a despread carrier.
 本加工方法はこの原理に基づいて、ノイズ信号から、別の波形パターンのノイズ信号としての要件を満足する信号、あるいは、拡散キャリアと逆拡散キャリアとしての要件を満足する信号を加工作成して出力するものである。
 図25と図26を用いて、特徴検出手段と信号発生手段を用いた加工について、具体的に説明する。ここでは、検出する特徴として、入力されるノイズ信号の極性を用いるものを例にして説明する。
Based on this principle, this processing method processes and creates a signal that satisfies the requirements as a noise signal of another waveform pattern, or a signal that satisfies the requirements as a spread carrier and a despread carrier, from the noise signal. To do.
The processing using the feature detection unit and the signal generation unit will be specifically described with reference to FIGS. Here, a description will be given by taking an example of using the polarity of an input noise signal as a feature to be detected.
 図25に示す特徴検出手段62は、図26(A)に示した不規則に値が変化するノイズ信号を入力し、ノイズ信号の極性という特徴に対応した信号を出力する。
 図26(B)は、図26(A)に示したノイズ信号から検出された特徴検出出力信号zである。
 その特徴検出出力信号zは、ノイズ信号がゼロ以上のゼロか正の極性の場合には正のある一定の値となるものであり、ノイズ信号がゼロより小さい負の極性の場合は負のある一定の値となるものである。
 この時、拡散キャリア加工手段の特徴検出手段と逆拡散キャリア加工手段の特徴検出手段とは同一の入出力特性で特徴検出を行うものとする。
 これにより、拡散キャリア加工手段の特徴検出手段と逆拡散キャリア加工手段の特徴検出手段とは独立した別の装置なのでそれぞれが出力する特徴検出出力信号は別の信号ではあるが、それぞれの特徴検出手段は共通のノイズ信号xを入力して同一の入出力特性で特徴検出を行うので、それぞれが出力する特徴検出出力信号は同一となり、それらは相互相関確立状態のものとなる。
The feature detection unit 62 shown in FIG. 25 receives the noise signal whose value changes irregularly shown in FIG. 26A, and outputs a signal corresponding to the feature of the polarity of the noise signal.
FIG. 26B shows a feature detection output signal z O detected from the noise signal shown in FIG.
The feature detection output signal z O is a certain positive value when the noise signal is zero or more or a positive polarity, and negative when the noise signal is a negative polarity smaller than zero. It is a certain value.
At this time, the feature detection unit of the diffusion carrier processing unit and the feature detection unit of the despread carrier processing unit perform feature detection with the same input / output characteristics.
Thus, since the feature detection means of the diffusion carrier processing means and the feature detection means of the despread carrier processing means are separate and independent devices, the feature detection output signals output by the respective devices are different signals. because performs feature detection in the same input-output characteristic by entering a common noise signal x W, wherein the detection output signal, each of which output is the same, they will be that of the cross-correlation established state.
 信号発生手段63は、この特徴検出出力信号zを入力し、信号zが負から正に変化する位置で正の極性のある規定の幅と高さの細いパルスを発生させ、信号zが正から負に変化する位置では負の極性のある規定の幅と高さの細いインパルス状のパルスを発生させる。
 この時、拡散キャリア加工手段の信号発生手段と逆拡散キャリア加工手段の信号発生手段もまた同一の入出力特性で信号を発生させるものとする。
これにより、拡散キャリア加工手段の信号発生手段と逆拡散キャリア加工手段の信号発生手段とは独立した別の装置なのでそれぞれが出力する発生出力信号は別の信号ではあるが、それぞれの発生出力信号は同一の特徴検出出力信号を入力して同一の入出力特性で信号を発生させるので、それぞれが出力する発生出力信号は同一となり、それらは相互相関確立状態のものとなる。
 すなわち、それぞれが出力する発生出力信号は、ノイズ信号の系列について同じ位置から開始する同一の波形の信号となる。
 ここで、ノイズ信号は不規則信号なので、その値がゼロ以上であるか負であるかに規則性はなく、その状態が変化するゼロクロス位置は不規則に現れる。だから、図26(C)の信号のインパルス状のパルスが現れる位置は不規則となり、図26(C)の信号は不規則にインパルス状信号が並んだ系列の不規則信号といえる。
 また、インパルス状信号の波形について、その波形の幅をこのキャリア加工部を用いる本伝送システムの拡散入力オブジェクトの一次変調キャリアの繰返し周期に対して例えば数千分の一のようにはるかに狭いものにすることにより、発生出力信号を対オブジェクト広帯域性を有したものにすることが出来る。
 この結果、共通の不規則性を有したノイズ信号xから図25の構成の加工方法で作成された信号xPTとxPRとは、対オブジェクト広帯域性と不規則性を有し、相互相関確立状態のものとなり、ノイズ信号の要件を満たすので、拡散モジュールと逆拡散モジュールはこれらの信号をノイズ信号として用いることが出来るものである。
The signal generating means 63 receives the feature detection output signal z O and generates a pulse with a specified width and height having a positive polarity at a position where the signal z O changes from negative to positive, and the signal z O In a position where the voltage changes from positive to negative, an impulse-like pulse having a negative polarity and a specified width and height is generated.
At this time, the signal generation means of the diffusion carrier processing means and the signal generation means of the despread carrier processing means also generate signals with the same input / output characteristics.
Thus, since the signal generating means of the diffusion carrier processing means and the signal generating means of the despread carrier processing means are separate and independent devices, the generated output signals output from each are separate signals, but the generated output signals are Since the same feature detection output signal is input and a signal is generated with the same input / output characteristics, the generated output signals output by each are the same, and they are in a cross-correlation established state.
In other words, the generated output signals output from each are signals having the same waveform starting from the same position in the series of noise signals.
Here, since the noise signal is an irregular signal, there is no regularity whether the value is zero or more or negative, and the zero cross position where the state changes appears irregularly. Therefore, the position where the impulse-like pulse of the signal shown in FIG. 26C appears irregularly, and the signal shown in FIG.
Also, for the waveform of an impulse signal, the width of the waveform is much narrower, for example, a thousandth of the repetition period of the primary modulation carrier of the spread input object of this transmission system using this carrier processing unit. Thus, the generated output signal can have a broad object-to-object bandwidth.
As a result, has been the signal x PT and x PR created in the configuration of the processing method of FIG. 25 from the noise signal x W having a common irregularities have versus object broadband property and irregularity, the cross-correlation Since it becomes an established state and satisfies the requirements of the noise signal, the diffusion module and the despreading module can use these signals as noise signals.
 この例では、信号発生手段63が発生させる正と負のインパルス状信号の高さは等しくなるようにしている。
 この場合、拡散モジュール側にインパルス状信号を発生させているときに、逆拡散モジュール側でも全く同じインパルス状信号を発生させているので、インパルス状信号を発生させている期間については本加工方法の出力信号xPTとxPRとは相互相関確立状態であり、互いに乗ずるとゼロでないある定数となる対をなす信号関係をも成立させる。
 すなわち、この場合の本加工方法の出力信号xPTとxPRとは、ノイズ信号として使用できるばかりでなく、インパルス状の不連続な拡散キャリアと逆拡散キャリアとしても使用可能なものである。
 このように、本加工方法は、ノイズ信号として使用できる信号の加工としてだけでなく、拡散キャリアと逆拡散キャリアへの加工としても使用可能なものである。
 この信号発生手段63が発生させる信号の大きさは、この例で示した一定値に限るものではなく、例えばある規定のパターンで変化する信号としたり、その発生する信号の前の特徴区間のノイズ信号の平均値としたり、その発生する信号の前の特徴区間の長さに比例する信号のように、ノイズ信号を適当に加工して得られるノイズ信号に由来する信号としてもよいものである。
 また、この信号発生手段63が発生させる信号の波形もインパルス状の波形に限るものではなく、例えば規定の擬似ノイズ信号のパターンのように、本加工方法の出力信号xPTとxPRとを対オブジェクト広帯域性と不規則性を有し相互相関確立状態とするとともに、必要に応じて対をなす信号関係とするものであれば任意の波形でよいものである。
In this example, the heights of the positive and negative impulse signals generated by the signal generating means 63 are made equal.
In this case, when the impulse signal is generated on the diffusion module side, the same impulse signal is also generated on the despreading module side. the output signal x PT and x PR are cross-correlation established state, also to establish a signal relationships paired to be some constant non-zero when multiplied together.
In other words, the output signal x PT and x PR of the processing method in this case, not only can be used as a noise signal, but also can be used as an impulse-like discontinuous diffusion carrier and despread carrier.
As described above, the present processing method can be used not only for processing a signal that can be used as a noise signal, but also for processing a spread carrier and a despread carrier.
The magnitude of the signal generated by the signal generating means 63 is not limited to the constant value shown in this example. It may be a signal derived from a noise signal obtained by appropriately processing the noise signal, such as an average value of the signal or a signal proportional to the length of the feature section before the generated signal.
Further, the signal waveform of the generator 63 is a signal to be generated is not limited to a impulse-like waveform, as the pattern of the specified pseudo-noise signal, the output signal x PT and x PR of the machining process pair Any waveform may be used as long as it has an object broadband property and irregularity to establish a cross-correlation established state and a signal relationship that makes a pair as necessary.
 このように、本発明の実施形態3-5によれば、同一のノイズ信号を使用しても、特徴検出処理と信号発生とを組み合わせた加工を用いて波形パターンの異なる拡散キャリアとそれに対応した逆拡散キャリアとを提供できる。 As described above, according to the embodiment 3-5 of the present invention, even if the same noise signal is used, spread carriers having different waveform patterns and the corresponding processing can be handled by using a combination of feature detection processing and signal generation. And a despread carrier.
 このような拡散キャリア及び逆拡散キャリアの作成過程は、狭義には出力信号の波形も対オブジェクト広帯域性や不規則性という性質も入力信号の性質を継承したものではないが、出力する波形の開始位置の不規則性は入力信号と因果関係に有るので、これを入力信号の不規則性が出力の不規則性に継承されると広義に解釈し、出力信号を入力信号を加工したものとみなすものである。その他の構成及びその作用効果は図9及び図12の実施形態と同一になっている。 The process of creating such spread carriers and despread carriers, in a narrow sense, does not inherit the characteristics of the input signal, nor the nature of the object broadband or irregularity, but the start of the output waveform. Since the irregularity of the position has a causal relationship with the input signal, this is interpreted in a broad sense that the irregularity of the input signal is inherited by the irregularity of the output, and the output signal is regarded as a modification of the input signal. Is. Other configurations and the effects thereof are the same as those of the embodiment shown in FIGS.
(実施形態3-6)
 図20、図21に示される拡散キャリア加工手段13の信号前処理部46と、逆拡散キャリア加工手段15の信号前処理部46とに、図27に示したような複数の加工部を組合わせてなる加工部を設け、ノイズ信号を複数の加工手法を組み合わせて加工した信号xPT、xPRを作成して拡散キャリアと逆拡散キャリアを加工してよいものである。
 ノイズ信号を拡散キャリアと逆拡散キャリアに加工する過程は、図22に示した遅延、図23に示した複数のノイズ信号の組合せ、図24に示したスペクトルの調整、図25に示した特徴検出処理と信号発生とを組み合わせた加工、後述する図28に示す低域制限、後述する図30及び図31に示す高域制限による加工のどれか、または全て、またはその幾つかの種類については複数を、適当に組合わせて構成するようにしても良く、その例を図27に示す。
 前記加工或いは前記処理を組み合わせる場合、これらの加工或いは処理を並列的にして合成する方法と、直列的に並べて加工或いは処理を継続して行うことにより組み合わせるようにしてもよいものである。
Embodiment 3-6
A combination of a plurality of processing units as shown in FIG. 27 is combined with the signal preprocessing unit 46 of the diffusion carrier processing unit 13 and the signal preprocessing unit 46 of the despreading carrier processing unit 15 shown in FIGS. And processing the spread carrier and the despread carrier by creating signals x PT and x PR obtained by processing a noise signal by combining a plurality of processing methods.
The process of processing a noise signal into a spread carrier and a despread carrier includes the delay shown in FIG. 22, the combination of a plurality of noise signals shown in FIG. 23, the spectrum adjustment shown in FIG. 24, and the feature detection shown in FIG. A combination of processing and signal generation, low-frequency restriction shown in FIG. 28 described later, processing by high-frequency restriction shown in FIG. 30 and FIG. 31 described later, or all, or some types thereof May be configured in appropriate combinations, and an example is shown in FIG.
When the processes or the processes are combined, the processes or processes may be combined in parallel with the method in which the processes or processes are combined in parallel and the processes or processes are continuously performed in series.
 図27に示す例は、これらの加工或いは処理を並列的にして合成する方法と、直列的に並べて加工或いは処理を継続して行う方法と、それらの加工或いは処理の結果を組み合わせるようにしたものである。加工手段65aは、加工手段65b、65cと並列的に加工処理を行って、ノイズ信号xまたはxから信号zを作成する。加工手段65cは、加工手段65bに対して直列的に加工処理を行って、信号zから信号zを作成して加算器66に供給する。加算器66は、直列的な加工処理の加工手段65cの出力zと加工手段65aの出力zを組合せて、信号xPT、xPRを出力する。
 ここでは組み合わせ方法について直列と並列という例を示したが、組み合わせ方法はこれに限ったものではなく、既述したように、例えば、入れ子構造や、フィードバック構造やそれらを任意に組み合わせてなる複雑な構造であってもよいものである。また、例えば、積分や微分、整合フィルタ、ディジタル演算装置による逐次数値処理などはこのような信号処理の基本要素を複雑に組み合わせたものであり、それらを用いて構成してもよいものである。
The example shown in FIG. 27 is a combination of a method of combining these processes or processes in parallel, a method of arranging the processes in series and continuing the processes or processes, and the results of these processes or processes. It is. Processing means 65a is processing means 65b, performs 65c and parallel processing, to create a signal z 1 from the noise signal x T or x R. Processing means 65c performs a serially processed with respect to the processing unit 65b, and supplies to the adder 66 to create a signal z 3 from the signal z 2. The adder 66 combines the output z 1 of the output z 3 and the machining unit 65a of the processing unit 65c of the series of processing, and outputs a signal x PT, x PR.
Here, the example of the combination method is shown as serial and parallel, but the combination method is not limited to this, and as described above, for example, a nested structure, a feedback structure, or a complicated combination of them arbitrarily It may be a structure. Further, for example, integration, differentiation, matched filter, sequential numerical processing by a digital arithmetic device, and the like are complex combinations of such basic elements of signal processing, and may be configured using them.
 このように、本発明の実施形態3-6によれば、多数の加工或いは処理を組み合わせて信号xPT、PRを得ることにより、信号パターンや波形の異なるユニークな信号や、相互相関の低いユニークな信号を得て、例えば多重伝送においては互いに干渉しない拡散キャリアと逆拡散キャリアを多数提供し、また例えばセキュアな伝送においては解読や偽造が困難な複雑な拡散キャリアと逆拡散キャリアを多数提供できるものである。 As described above, according to Embodiment 3-6 of the present invention, signals xPT and xPR are obtained by combining a large number of processes or processes, so that unique signals with different signal patterns and waveforms and low cross-correlation are obtained. Obtaining unique signals, for example, providing many spread carriers and despread carriers that do not interfere with each other in multiplex transmission, and providing many complex spread carriers and despread carriers that are difficult to decipher and forge in secure transmission, for example It can be done.
 次に、理想的な動作環境と現実の動作環境の差に起因する現象が実用上影響がないと見なせるようにする手法を説明する。これらは本伝送システムの動作に不可欠ではないが、実用上適用することが望ましいものである。その他の構成及びその作用効果は図9及び図12の実施形態と同一になっている。 Next, a method for enabling a phenomenon caused by a difference between an ideal operating environment and an actual operating environment to be regarded as having no practical effect will be described. These are not indispensable for the operation of the present transmission system, but are desirably applied in practice. Other configurations and the effects thereof are the same as those of the embodiment shown in FIGS.
(実施形態3-7)
 図20、図21に示される拡散キャリア加工手段13の信号前処理部46と、逆拡散キャリア加工手段15の信号前処理部46とに、図28に示す特性をもつ低域制限部を設け、ノイズ信号の低周波成分を抑制した信号xPT、xPRを作成して拡散キャリアと逆拡散キャリアを加工してよいものである。
 ノイズ信号には対オブジェクト広帯域性が求められている。しかし、実際の信号ではスペクトルの分布は時々刻々波打ち、ある一時期だけを見ればある周波数成分の信号が他より大きくなる場合がある。そのうちで、とりわけ低い周波数成分が大きくなることはスペクトル拡散通信の特徴に影響が考えられるので好ましくない。
Embodiment 3-7
The signal preprocessing unit 46 of the diffusion carrier processing unit 13 shown in FIGS. 20 and 21 and the signal preprocessing unit 46 of the despread carrier processing unit 15 are provided with a low-frequency limiting unit having the characteristics shown in FIG. The spread carrier and the despread carrier may be processed by creating signals x PT and x PR in which the low frequency component of the noise signal is suppressed.
The noise signal is required to have a broadband property against an object. However, in an actual signal, the spectrum distribution undulates from time to time, and a signal of a certain frequency component may become larger than the other if only a certain period is observed. Among them, it is not preferable that the low frequency component is particularly large because it may affect the characteristics of the spread spectrum communication.
 理解を容易にするために、ノイズ信号を、その正負の極性に対応して絶対値がゼロでなく等しい正負の二値信号に加工する拡散キャリア加工手段を用いて説明する。このような拡散キャリア加工手段13に、図29(A)に示すような小刻みな不規則信号信号の成分に特定の低周波成分が含まれたノイズ信号が入力された場合、それを加工した拡散キャリアは、低周波成分の正負のピーク付近では図29(B)に示したような幅の長いパルス67a、67bが生成されてしまう。これは、他の成分に比べて低周波成分が過大なために発生する。 In order to facilitate understanding, the noise signal will be described using diffusion carrier processing means for processing a positive / negative binary signal whose absolute value is not zero but equal to the positive / negative polarity. When a noise signal including a specific low-frequency component in a small irregular signal signal component as shown in FIG. 29A is input to such a diffusion carrier processing means 13, a diffusion obtained by processing the noise signal is processed. For the carrier, pulses 67a and 67b having a long width as shown in FIG. 29B are generated near the positive and negative peaks of the low frequency component. This occurs because the low frequency component is excessive compared to the other components.
 スペクトル拡散通信の耐ノイズ性や秘話性には、単位時間に高い頻度で変化する信号が効果的であり、このような長いパルス67a、67bは少なくてよい。このような長いパルス67a、67bが発生するのはノイズ信号に低い周波数成分に信号が大きく存在するときなので、それを過大にならないように抑えるために、図28に示す特性をもつ低域を制限するフィルタを用いる。この時、例えば、そのフィルタのカットオフ周波数fCLには、図29の67aに示した長さが過大な矩形の長さを周期とする正弦波の周波数を用いる。具体的にどのような遮断特性が必要かは、使用するノイズ信号が低域成分をどれだけ含むかと言う特性に合わせて決める。図29(A)の信号の低域成分を適当に制限した例を図29(C)に示す。これを前述したのと同様に二値化したものが図29(D)であり、この例では長い幅のパルス67a、67bは発生しない。 Signals that change at a high frequency per unit time are effective for noise resistance and confidentiality of spread spectrum communication, and such long pulses 67a and 67b may be small. Such a long pulse 67a, 67b is generated when a large amount of signal is present in a low frequency component in the noise signal. Therefore, in order to prevent it from becoming excessive, the low range having the characteristics shown in FIG. 28 is limited. Use a filter. At this time, for example, a frequency of a sine wave having a length of a rectangle having an excessive length as indicated by 67a in FIG. 29 is used as the cutoff frequency f CL of the filter. Specifically, what kind of cutoff characteristic is necessary is determined in accordance with the characteristic of how much low frequency components are included in the noise signal to be used. FIG. 29C shows an example in which the low frequency component of the signal in FIG. 29A is appropriately limited. FIG. 29D shows a binarized version in the same manner as described above. In this example, long-width pulses 67a and 67b are not generated.
 このように本発明の実施形態3-7によれば、ノイズ信号の過大な低い周波数成分を適当に抑制することにより、拡散キャリアと逆拡散キャリアの不規則性を維持し、耐ノイズ性や秘話性を提供するものである。その他の構成及びその作用効果は図9及び図12の実施形態と同一になっている。なお、本実施形態の低減制限部の特性は、図24に示すスペクトル構成調整部と組み合わせることにより双方の利点を得るようにしてもよいものである。 As described above, according to Embodiment 3-7 of the present invention, by appropriately suppressing an excessively low frequency component of the noise signal, the irregularity of the spread carrier and the despread carrier is maintained, and the noise resistance and the secret story are maintained. It provides sex. Other configurations and the effects thereof are the same as those of the embodiment shown in FIGS. Note that the characteristics of the reduction limiting unit of the present embodiment may be obtained by combining both with the spectrum configuration adjusting unit shown in FIG.
(実施形態3-8)
 図20、図21に示される拡散キャリア加工手段13の信号前処理部46と、逆拡散キャリア加工手段15の信号前処理部46とに、図30に示す特性をもつ高域制限部を設け、ノイズ信号の高周波成分を抑制した信号xPT、xPRを作成して拡散キャリアと逆拡散キャリアを加工してよいものである。
Embodiment 3-8
The signal preprocessing unit 46 of the diffusion carrier processing unit 13 shown in FIGS. 20 and 21 and the signal preprocessing unit 46 of the despread carrier processing unit 15 are provided with a high frequency band limiting unit having the characteristics shown in FIG. The spread carrier and the despread carrier may be processed by creating signals x PT and x PR in which the high frequency component of the noise signal is suppressed.
 理解を容易にするため、ノイズ信号信号を、その正負の極性に対応して絶対値がゼロでなく等しい正負の二値信号に加工する拡散キャリア加工手段を用いて説明する。ノイズ信号を時間的に離散化して取り扱う場合、すなわちノイズ信号をディジタルサンプリングして加工する場合、拡散モジュール3の発信器54と、逆拡散モジュール4の発信器54は独立に動作しているので、それらが供給するクロック信号の位相はずれている。 In order to facilitate understanding, the noise signal signal will be described using diffusion carrier processing means for processing a positive / negative binary signal whose absolute value is not zero but equal to the positive / negative polarity. When the noise signal is discretized in time, that is, when the noise signal is digitally sampled and processed, the transmitter 54 of the diffusion module 3 and the transmitter 54 of the despreading module 4 operate independently. The clock signals they supply are out of phase.
 図31(A)のようにノイズ信号が正から負に変化しようとしており、例えば拡散キャリア加工手段13のAD変換器50は、図31(B)のような波形のクロック信号の立ち上がりエッジのタイミングでサンプルするとする。このAD変換器50は、正から負に変化するノイズ信号を、変化した後の最初のクロック信号の立ち上がりエッジ時刻tではじめてサンプルし、その出力は図31(C)に示されるように時刻tの後に変化する。一方、拡散モジュールとは独立して非同期で動作する逆拡散キャリア加工手段15のクロック信号は拡散キャリア加工手段が用いるクロック信号とは位相が同一ではないので、AD変換器50は、図31(E)のような波形のクロック信号の立ち上がりエッジのタイミングでサンプルするとする。このAD変換器50は、正から負に変化したノイズ信号を、変化した後の最初のクロック信号立ち上がりエッジ時刻tではじめてサンプルし、その出力は図31(D)に示されるように時刻tの後に変化する。 The noise signal is going to change from positive to negative as shown in FIG. 31A. For example, the AD converter 50 of the diffusion carrier processing means 13 is the timing of the rising edge of the clock signal having the waveform as shown in FIG. Say you sample in The AD converter 50 samples the noise signal that changes from positive to negative for the first time at the rising edge time t T of the first clock signal after the change, and the output thereof is the time as shown in FIG. to change after the t T. On the other hand, since the clock signal of the despread carrier processing means 15 that operates asynchronously independently of the spreading module is not in phase with the clock signal used by the spread carrier processing means, the AD converter 50 is shown in FIG. ) Is sampled at the timing of the rising edge of the clock signal having a waveform like The AD converter 50 samples the noise signal that has changed from positive to negative for the first time at the rising edge time t R of the first clock signal after the change, and the output is time t as shown in FIG. Changes after R.
 このように、同期していないクロック信号間には必ず位相差があるので、その位相差があるクロック信号で制御される二つのAD変換器50の出力では、入力が変化した直後のサンプリング時に、出力が異なる時間帯tが厳密には必ず生じる。 Thus, since there is always a phase difference between the clock signals that are not synchronized, the outputs of the two AD converters 50 controlled by the clock signal having the phase difference are as follows when sampling immediately after the input changes: Strictly speaking, a time zone t E with different outputs always occurs.
 ノイズ信号のサンプルを制御する拡散キャリア加工手段と逆拡散キャリア加工手段のサンプリングクロック信号はある矩形の波形を一定周期で繰り返す信号なので、その周期が同一であるとき、二つのクロック信号間の位相差はそのクロック信号の一周期分の長さを超えることはないので、このサンプリング出力が異なる時間の幅tは最大でも1サンプリング周期分である。この期間は、拡散キャリアcと逆拡散キャリアcとが異なっており、それらは相互相関確率状態の対をなす信号とならないから、この拡散キャリアと逆拡散キャリアとを用いた逆拡散操作では拡散入力オブジェクトaの成分が正しく逆拡散されない。この正しく逆拡散されない部分は拡散キャリアと逆拡散キャリアの値が変化する位置で最大でクロックの1周期分だけ必ず発生するが、この正しく逆拡散されていない部分の単位時間当たりの発生が多いと、逆拡散出力オブジェクトaにおける拡散入力オブジェクトaの成分のSN比を劣化させるので、耐ノイズ性が低下して好ましくない。 The sampling clock signal of the spread carrier processing means and the despread carrier processing means for controlling the sample of the noise signal is a signal that repeats a certain rectangular waveform at a certain period, so when the period is the same, the phase difference between the two clock signals Does not exceed the length of one cycle of the clock signal, and therefore, the time width t E at which the sampling outputs are different is at most one sampling cycle. This period is different from the diffusion carrier c T despreading carrier c R is, since they are not a signal pairs of the cross-correlation probability state, despreading operation using the diffusion carrier and despread carrier component of spread input object a T is not despread properly. This portion that is not correctly despread is always generated at the position where the values of the spread carrier and the despread carrier change at maximum for one cycle of the clock. However, if the portion that is not correctly despread is generated per unit time since degrading the components SN ratio of the spread input object a T at the despread output object a R, undesirable noise resistance is lowered.
 この正しく逆拡散されていない部分は拡散キャリアと逆拡散キャリアが変化するところに発生しているのであり、それがノイズ信号の変化によってもたらされているので、単位時間当たりの正しく逆拡散されていない部分の数を減らすためには、ノイズ信号の単位時間あたりの変化を減らせばよい。そのためにノイズ信号の高域を適当に制限する。
 図32(A)は高い周波数成分が多く含まれているノイズ信号を示しており、このノイズ信号を二値化すると、図32(B)に示すように、単位時間当たりの変化数が多い拡散キャリアや逆拡散キャリアが得られてしまう。そこで、図30に示すような特性のフィルタでノイズ信号のスペクトルの高い周波数成分を適当に減衰させる。図32(C)は、図32(A)に示す信号の高域を適当に減衰させたもので、この信号をノイズ信号として二値すると、図32(D)に示すように、図32(B)に示した信号に比べて単位時間当たりの変化数が少ない拡散キャリアや逆拡散キャリアが得られる。
 図32(B)の信号を拡散キャリアと逆拡散キャリアに用いても、図32(D)の信号を拡散キャリアと逆拡散キャリアに用いても、信号が変化する位置では必ず正しく逆拡散されていない部分は発生している。しかし、図32(B)の信号よりも図32(D)の信号を拡散キャリアと逆拡散キャリアに用いた方が、短時間当たりに発生する正しく逆拡散されていない部分の数が少ないため、逆拡散出力オブジェクトにおける逆拡散された逆拡散された拡散入力オブジェクトのSN比が良好となり、耐ノイズ性が向上する。
 ここでは、上記の拡散キャリアと逆拡散キャリアの間の位相差問題を、非同期ディジタル信号処理における問題として説明した。しかし、現実の回路においては、例えばアナログ信号処理においても拡散キャリア加工手段と逆拡散キャリア加工手段それぞれの回路間に伝搬遅延の差があるので、同様の位相差問題がある。本実施形態の高域制限部は非同期ディジタル信号処理に限らず適用して有効なものである。
This part that is not correctly despread is generated where the spread carrier and the despread carrier change, and because it is caused by the change of the noise signal, it is correctly despread per unit time. In order to reduce the number of non-existing portions, it is only necessary to reduce the change per unit time of the noise signal. Therefore, the high range of the noise signal is appropriately limited.
FIG. 32A shows a noise signal containing a lot of high frequency components. When this noise signal is binarized, as shown in FIG. 32B, diffusion with a large number of changes per unit time is shown. Carriers and despread carriers are obtained. Therefore, the high frequency component of the spectrum of the noise signal is appropriately attenuated with a filter having characteristics as shown in FIG. FIG. 32C is a diagram in which the high frequency range of the signal shown in FIG. 32A is appropriately attenuated. When this signal is binarized as a noise signal, as shown in FIG. A spread carrier or a despread carrier having a smaller number of changes per unit time than the signal shown in B) can be obtained.
Even if the signal of FIG. 32B is used for the spreading carrier and the despreading carrier, and the signal of FIG. 32D is used for the spreading carrier and the despreading carrier, the signal is always correctly despread at the position where the signal changes. No part has occurred. However, when the signal of FIG. 32 (D) is used for the spreading carrier and the despreading carrier as compared with the signal of FIG. The S / N ratio of the despread and despread diffused input object in the despread output object becomes good, and the noise resistance is improved.
Here, the phase difference problem between the spread carrier and the despread carrier has been described as a problem in asynchronous digital signal processing. However, in an actual circuit, for example, in analog signal processing, there is a difference in propagation delay between the circuits of the diffusion carrier processing means and the despread carrier processing means, so that there is a similar phase difference problem. The high-frequency limiting unit of this embodiment is effective when applied not only to asynchronous digital signal processing.
 このような高域制限には例えばローパスフィルタを用いる。実際、サンプリング周波数に対して、10分の一程度の周波数にカットオフ周波数を設定したローパスフィルタを用いることで、実用的な多重通信や耐ノイズ性・秘匿性を備えた上に実用的なSN比が得られることを確認している。 For example, a low-pass filter is used for such high-frequency restriction. In fact, by using a low-pass filter in which the cutoff frequency is set to about one-tenth of the sampling frequency, practical multiplex communication, noise resistance and secrecy are provided, and practical SN The ratio is confirmed.
 このように、本発明の実施形態3-8によれば、ノイズ信号の高い周波数成分を適当に抑制することにより、拡散キャリアと逆拡散キャリアの相互相関の状態を高め、耐ノイズ性や秘話性を提供するものである。その他の構成及びその作用効果は図9及び図12の実施形態と同一になっている。なお、本実施形態の高域制限部の特性は、図24に示したスペクトル構成調整部、あるいは、図28及び図29に示した低域制限部の特性と図30に示した高域制限部の特性とを組み併せることにより双方の利点を得るようにしてもよいものである。
 なお、逆拡散手段における信号処理過程において、拡散入力オブジェクトを構成するスペクトルのうち、一次変調キャリアの周波数より下の部分は伝送する情報内容の表現にはほとんど寄与しない部分があるので、前記低域部分を適当に遮断する低域遮断フィルタに逆拡散出力オブジェクトを通すのは拡散入力オブジェクトの成分のSN比向上に有益である。
As described above, according to Embodiment 3-8 of the present invention, by appropriately suppressing high frequency components of the noise signal, the state of cross-correlation between the spread carrier and the despread carrier is improved, and noise resistance and confidentiality are improved. Is to provide. Other configurations and the operation and effects thereof are the same as those of the embodiment of FIGS. The characteristics of the high frequency band limiting unit of this embodiment are the spectrum configuration adjusting unit shown in FIG. 24, or the characteristics of the low frequency band limiting unit shown in FIGS. 28 and 29 and the high frequency band limiting unit shown in FIG. By combining these characteristics, the advantages of both may be obtained.
In the signal processing process in the despreading means, the portion below the frequency of the primary modulation carrier in the spectrum constituting the spread input object has a portion that hardly contributes to the representation of the information content to be transmitted. Passing the despread output object through a low-pass cutoff filter that appropriately cuts off the portion is useful for improving the signal-to-noise ratio of the components of the diffuse input object.
 このフィルタは、例えば、一次変調にBPSKを用い、その一次キャリアに固定周波数の正弦波を用いる場合、そのキャリアの周波数以下を遮断する低域遮断フィルタである。 This filter is, for example, a low-frequency cutoff filter that cuts off the frequency of the carrier when BPSK is used for the primary modulation and a fixed frequency sine wave is used for the primary carrier.
 また、例えば上記のように一次変調した拡散入力オブジェクトの場合、その拡散入力オブジェクトのスペクトルは、実際には一次キャリアのスペクトルだけでなくその高調波も成分としている。一方、逆拡散モジュールの逆拡散手段における信号処理過程において拡散入力オブジェクトの成分の抽出操作を行うフィルタは、一次キャリアのスペクトルを通過させる程度の通過帯域幅しかないのが一般的なので、上記の高調波成分はフィルタで減衰させられてしまう。その結果、逆拡散出力オブジェクトの波形は厳密には拡散入力オブジェクトに相似のものとはならない。 Further, for example, in the case of a spread input object subjected to primary modulation as described above, the spectrum of the spread input object actually includes not only the spectrum of the primary carrier but also its harmonic. On the other hand, the filter that performs the extraction operation of the component of the spread input object in the signal processing process of the despreading means of the despreading module generally has only a pass bandwidth that allows the spectrum of the primary carrier to pass. The wave component is attenuated by the filter. As a result, the waveform of the despread output object is not strictly similar to the diffuse input object.
 この時、一次変調後の拡散入力オブジェクトに対して、逆拡散手段での信号処理過程のフィルタで減衰される帯域成分を通過帯域の成分に対してフィルタで相対的に増加させるプリエンファシス操作を行い、逆拡散手段での信号処理過程のフィルタの出力に対して、プリエンファシスの効果を元に戻すフィルタを通すディエンファシス操作を行うことも逆拡散出力オブジェクトの拡散入力オブジェクトに対する忠実性が高まって有益である。 At this time, a pre-emphasis operation is performed on the diffusion input object after the primary modulation to increase the band component attenuated by the filter in the signal processing process in the despreading unit relatively to the pass band component by the filter. It is also beneficial to perform a de-emphasis operation through the filter that restores the pre-emphasis effect to the output of the filter in the signal processing process in the despreading means, which increases the fidelity of the despread output object to the diffuse input object. It is.
 これら低域遮断フィルタ、プリエンファシスフィルタ、ディエンファシスフィルタは従来の通信技術で知られたものであり、本伝送システムの構成に特徴はないので記述は省略している。 These low-frequency cutoff filters, pre-emphasis filters, and de-emphasis filters are known in the conventional communication technology, and are not described because they have no characteristics in the configuration of this transmission system.
 このように、ノイズ信号の高域と低域のスペクトルを調整することと、拡散入力オブジェクトの高域と低域のスペクトルを調整することにより、本発明の実際の応用環境を理想的な動作環境に近づけることが出来、より良好な伝送性能を提供できるものである。その他の構成及びその作用効果は図9及び図12の実施形態と同一になっている。なお、ここで述べたスペクトルの調整は、図24に示したスペクトル構成調整部、あるいは、図28及び図29に示した低域制限部の特性、あるいは、図30に示した高域制限部の特性とを組み併せることにより双方の利点を得るようにしてもよいものである。 In this way, the actual application environment of the present invention is made an ideal operating environment by adjusting the high-frequency and low-frequency spectra of the noise signal and adjusting the high-frequency and low-frequency spectra of the diffuse input object. It is possible to provide better transmission performance. Other configurations and the operation and effects thereof are the same as those of the embodiment of FIGS. Note that the spectrum adjustment described here is performed by the spectrum configuration adjusting unit shown in FIG. 24, the characteristics of the low-frequency limiting unit shown in FIGS. 28 and 29, or the high-frequency limiting unit shown in FIG. Both advantages may be obtained by combining the characteristics.
(実施形態4)
 次に、実施形態4について説明する。図33は、図1に示す本発明の実施形態1に係るキャリア加工装置に相当するキャリア加工部1をオブジェクトの伝送を行う伝送システムに応用した例を示すものであり、図1に示す本実施形態に係るキャリア加工装置における伝送媒体11と、そのキャリア加工装置を応用した本伝送システムの伝送媒体7とを併合した例である。また図34は、図33に示す伝送システムを拡散モジュール3と逆拡散モジュール4とに分離して図示したものである。
(Embodiment 4)
Next, Embodiment 4 will be described. FIG. 33 shows an example in which the carrier processing unit 1 corresponding to the carrier processing apparatus according to the first embodiment of the present invention shown in FIG. 1 is applied to a transmission system for transmitting objects, and this embodiment shown in FIG. It is the example which merged the transmission medium 11 in the carrier processing apparatus which concerns on a form, and the transmission medium 7 of this transmission system which applied the carrier processing apparatus. FIG. 34 shows the transmission system shown in FIG. 33 separated into the diffusion module 3 and the despreading module 4.
 この形態の伝送システムは、図33及び図34に示す様に、拡散モジュール3、逆拡散モジュール4、ノイズ信号供給部2、伝送媒体11から構成される。図33及び図34に示した伝送システムの構成は、図1に示したものとは伝送媒体の構成に違いがある。図33及び図34に示した構成を図1の構成に対応させて説明すると、図1の構成では、ノイズ信号供給部2の要素としてノイズ信号xを伝送する伝送媒体11と拡散出力オブジェクトsを伝送する伝送媒体7が個別に存在したのに対し、図33及び図34の構成では、伝送媒体がノイズ信号xの伝送と拡散出力オブジェクトsの伝送とに共用する伝送媒体11という単一媒体にまとめられた構成となっている。その他の構成要素の内部は図1に示した伝送システムの構成と同様である。 As shown in FIGS. 33 and 34, the transmission system of this form includes a diffusion module 3, a despreading module 4, a noise signal supply unit 2, and a transmission medium 11. The configuration of the transmission system shown in FIGS. 33 and 34 is different from that shown in FIG. 1 in the configuration of the transmission medium. To explain in correspondence of the structures described in the configuration of FIG. 1 in FIGS. 33 and 34, in the configuration of FIG. 1, the transmission medium 11 and the diffusion output object s for transmitting the noise signal x W as an element of the noise signal supplying section 2 while transmission medium 7 to transmit is present individually, in the configuration of FIGS. 33 and 34, a single of transmission medium 11 that the transmission medium is shared by the transmission of the transmission and diffusion output object s of the noise signal x W The configuration is summarized in a medium. The other components are the same as those of the transmission system shown in FIG.
 この単一式伝送媒体11は、図33及び図34に示すように、拡散モジュール3と逆拡散モジュール4とが存在する環境内(系内)に設置してある。この単一式伝送媒体11には、例えば、一般の電線、通信ケーブル、電灯線、鉄道線路、圧力容器、配管、建物の構造体、ガラス、水などを用いることができる。すなわち、単一式伝送媒体11は、信号の双方向への伝送能力をもつものであれば、これらに限らず、これらと同じような性質のものであってよいものである。ここでは信号形態の変換過程(インターフェース)の説明を省くため、単一式伝送媒体11を電線とし、信号形態を電気信号として説明する。 This single transmission medium 11 is installed in an environment (inside the system) where the diffusion module 3 and the despreading module 4 exist as shown in FIGS. As this single transmission medium 11, for example, a general electric wire, communication cable, electric light line, railway line, pressure vessel, piping, building structure, glass, water, and the like can be used. That is, the single transmission medium 11 is not limited to these as long as it has a bidirectional transmission capability of signals, and may have the same properties as these. Here, in order to omit the description of the signal form conversion process (interface), the single transmission medium 11 will be described as an electric wire, and the signal form will be described as an electric signal.
 以下、図33及び図34に示す本実施形態4に係る伝送システムのオブジェクトの伝送動作を、図35に基づいて説明する。
 ノイズ信号供給部2では、拡散モジュール3及び逆拡散モジュール4が存在する環境内において、素ノイズ信号源10が素ノイズ信号xを発生させるとともに、その環境内外に存在するノイズxと、例えば多重通信の他のチャンネルの通信信号などのノイズmがノイズ信号供給部2に侵入する(図35のステップS201、S202)。
 発生させた素ノイズ信号xは単一式伝送媒体11に供給され、この環境に侵入したノイズxと、例えば多重通信の他のチャンネルの通信信号などのノイズmも単一式伝送媒体11に侵入し、それらは単一式伝送媒体11上で、単一式伝送媒体11の特性により互いに重畳し、それらを合算した信号がノイズ信号xとして単一式伝送媒体11を介して拡散キャリア加工手段13と逆拡散キャリア加工手段15とに供給される(図35のステップS203)。
The object transmission operation of the transmission system according to the fourth embodiment shown in FIGS. 33 and 34 will be described below with reference to FIG.
In noise signal supply unit 2, in the environment with a diffusion module 3 and despreading module 4, together with the prime noise signal source 10 generates the prime noise signal x E, the noise x N existing in the environment inside and outside, for example, Noise m such as communication signals of other channels of multiplex communication enters the noise signal supply unit 2 (steps S201 and S202 in FIG. 35).
Containing the noise signal x E which is generated is supplied to a single-type transmission medium 11, penetrates the noise x N which enters this environment, for example to noise m also unitary transmission medium 11 such as a communication signal of another channel multiplex communication Then, they are superimposed on each other on the single transmission medium 11 due to the characteristics of the single transmission medium 11, and a signal obtained by adding them is reversed as the noise signal x W via the single transmission medium 11 and the diffusion carrier processing means 13. It is supplied to the diffusion carrier processing means 15 (step S203 in FIG. 35).
 拡散モジュール3のオブジェクト伝送動作は、単一式伝送媒体11からノイズ信号xを入力することからはじまる。拡散モジュール3は、拡散キャリア加工手段13で前記ノイズ信号xをノイズ信号xとして入力すると、それを拡散キャリアcに加工する(図35のステップS204)。
 具体的に説明すると、拡散キャリア加工手段13は、例えばノイズ信号xに図10に示すような特性の写像を行って、ノイズ信号xに対して-2.0~-0.5或いは+0.5~+2.0の範囲の一意の値をとるような拡散キャリアcを生成する。
 拡散手段14は、外部から入力する拡散入力オブジェクトaと拡散キャリア加工手段13から供給される拡散キャリアcとを乗じて拡散入力オブジェクトaをスペクトル拡散した拡散出力オブジェクトsを作成し、単一式伝送媒体11に送出する(図35のステップS205)。
Objects transmission operation of the diffusion module 3, begins by inputting the noise signal x W from the unitary transmission medium 11. Diffusion module 3, entering the noise signal x W as a noise signal x T in the diffusion carrier processing means 13 is processed into a spread carrier c T it (step S204 in FIG. 35).
Specifically, diffusion carrier processing means 13, for example, the noise signal x T performs mapping characteristic shown in FIG. 10, -2.0 to -0.5 or the noise signal x T +0 generating a spread carrier c T that takes a unique value in the range of .5 to +2.0.
Spreading means 14, the spread input object a T to create a spread spectrum diffusion output object s by multiplying the spread carrier c T supplied from the spread input object a T and the diffusion carrier processing means 13 for inputting from the outside, the single The data is sent to the set transmission medium 11 (step S205 in FIG. 35).
 単一式伝送媒体11には、それまでの素ノイズ信号xとこの環境に侵入したノイズxと例えば多重通信の他のチャンネルの通信信号などのノイズmに、拡散モジュール3の拡散手段14が出力した拡散出力オブジェクトsが加わり、それらは単一式伝送媒体11上で、単一式伝送媒体11の特性により互いに重畳し、それらを合算した信号がノイズ信号xとして単一式伝送媒体11を介して拡散モジュール3と逆拡散モジュール4とに供給される(図35のステップS206、S207、S208)。この拡散モジュール3が拡散出力オブジェクトsを単一式伝送媒体11に出力している状態では、拡散モジュール3の拡散キャリア加工手段13は、その拡散出力オブジェクトsを含むノイズ信号xをノイズ信号xとして入力して拡散キャリアcへの加工材料とする。 The unitary transmission medium 11, the noise m such that up containing the noise signal x E and the communication signal of another channel noise x N and eg multiplex communication has entered this environment, the diffusion means 14 of the diffusion module 3 added output by diffusion output object s, they on unitary transmission medium 11, superimposed to one another by the characteristics of the unitary transmission medium 11, the signal obtained by summing them over a single type transmission medium 11 as a noise signal x W It is supplied to the diffusion module 3 and the despreading module 4 (steps S206, S207, S208 in FIG. 35). In a state where the diffusion module 3 is outputting the spread output object s single type transmission medium 11, the diffusion carrier processing means 13 of the diffusion module 3, the noise signal x W noise signals x T including the diffusion output object s input to the work material to the diffusion carrier c T as.
 一方、逆拡散モジュール4の情報通信動作も、単一式伝送媒体11からノイズ信号xを入力することからはじまる。逆拡散モジュール4は、逆拡散キャリア加工手段15で前記拡散出力オブジェクトsを含む前記ノイズ信号xをノイズ信号xとして入力すると、それを逆拡散キャリアcに加工する(図37のステップS209)。具体的に説明すると、逆拡散キャリア加工手段15は、例えばノイズ信号xに図11に示すような特性の写像を行って、ノイズ信号xに対して-2.0~-0.5或いは+0.5~+2.0の範囲の一意の値をとるような拡散キャリアcを生成する。
 逆拡散手段16は、単一式伝送媒体11から拡散出力オブジェクトsを含むノイズ信号xを逆拡散入力オブジェクトhとして入力し、それを逆拡散キャリア加工手段15から供給される逆拡散キャリアcと乗じて拡散入力オブジェクトaをスペクトル逆拡散した信号を含む逆拡散出力オブジェクトaを出力する(図35のステップS210)。
On the other hand, information communication operation of the despreading module 4 also begins by inputting the noise signal x W from the unitary transmission medium 11. Despreading module 4, the despreading carrier processing means 15 for inputting the noise signal x W including said diffusion output object s as a noise signal x R, processed it to despread carrier c R (step S209 in FIG. 37 ). More specifically, despreading carrier processing means 15, for example, the noise signal x R by performing a mapping characteristic shown in FIG. 11, -2.0 to -0.5 or the noise signal x R + 0.5 generates a spread carrier c R that takes a unique value in the range of ~ + 2.0.
Despreading means 16 receives the noise signal x W containing diffusion output object s from unitary transmission medium 11 as despreading input object h, despreading carrier c R supplied it from despreading carrier processing means 15 multiplied and outputs the despread output object a R including the spectrum despread signal spread input object a T (step S210 in FIG. 35).
 現実の伝送システムでは、拡散モジュール3と逆拡散モジュール4とが入力するノイズ信号xとxとの間には差があるのが一般的である。それは、ノイズ信号xを構成する個々の信号が、それらの信号源から拡散モジュール3に伝搬される経路と逆拡散モジュール4に伝搬される経路に差があるためである。この差が大きいくなると、拡散モジュール3と逆拡散モジュール4が入力するノイズ信号xとxとの間の相互相関は低くなる。
 この時、例えば拡散モジュール3及び逆拡散モジュール4とノイズ信号供給部2の採りうる地理的な位置をある範囲に規定することにより、その規定の範囲内では前記の経路差による拡散モジュール3と逆拡散モジュール4が入力する信号間の差をある小さい範囲に抑える。
 それにより、拡散モジュール3と逆拡散モジュール4が入力するノイズ信号間の相互相関が確立状態となり、拡散モジュール3及び逆拡散モジュール4は、実用上同一のノイズ信号xを入力したと見なせるようになる。図33及び図34に示す本発明の実施形態4に係る伝送システムの拡散モジュール3及び逆拡散モジュール4の拡散キャリア加工手段13と逆拡散キャリア加工手段15は、このように実用上同一と見なせる共通のノイズ信号xを入力して動作する。
In real transmission systems, it is common that there is a difference between the noise signal x T and x R to enter the diffusion module 3 and the despreading module 4. It individual signals that make up the noise signal x W is because there is a difference in the path propagated from their source to the path despreading module 4 to be propagated to the diffusion module 3. If this difference is large Ku becomes, the cross-correlation between the noise signal x T and x R to enter the despreading module 4 and the diffusion module 3 is low.
At this time, for example, by defining the geographical positions that can be taken by the diffusion module 3 and the despreading module 4 and the noise signal supply unit 2 within a certain range, the reverse of the diffusion module 3 due to the path difference within the specified range. The difference between the signals input by the diffusion module 4 is suppressed to a certain small range.
Thus, it is the cross-correlation is established state between the noise signal for despreading module 4 inputs the diffusion module 3, diffusion modules 3 and despreading module 4, as considered to have entered the practical same noise signal x W Become. The spreading module 3 and the spreading carrier processing means 13 and the spreading carrier processing means 15 of the despreading module 4 in the transmission system according to the fourth embodiment of the present invention shown in FIGS. 33 and 34 are common in this way that can be regarded as practically the same. to work by entering the noise signal x W.
 次に、図33及び図34に示す本発明の実施形態4に係る伝送システムが、伝送媒体を単一としても、拡散キャリア加工手段13と逆拡散キャリア加工手段15が相互相関確立状態で、対オブジェクト広帯域性を有した拡散キャリアcと逆拡散キャリアcへの加工材料信号を得ることができるということと、拡散モジュール3と逆拡散モジュール4の間で干渉などの障害無くスペクトル拡散通信できることとを両立させることができることを確認する。 Next, in the transmission system according to the fourth embodiment of the present invention shown in FIG. 33 and FIG. 34, even if the transmission medium is single, the spread carrier processing means 13 and the despread carrier processing means 15 and that it is possible to obtain a workpiece signal to spread the carrier c T despreading carrier c R having the object broadband performance, can be disorders without spread spectrum communications such as interference between the despreading module 4 and the diffusion module 3 Confirm that both can be achieved.
 図33及び図34に示す実施形態4のノイズ信号供給部2は、ノイズ信号xの基となる素ノイズ信号xを出力する素ノイズ信号源10と、素ノイズ信号源10が出力する素ノイズ信号xにノイズxとノイズmを信号成分として重畳した信号を伝送する単一の伝送媒体11と含んでいる。
 具体的に説明すると、素ノイズ信号源10が素ノイズ信号xを供給する単一式伝送媒体11には、拡散モジュール3及び逆拡散モジュール4が設置された環境内に発生するノイズ、例えば自然雑音或いは人工雑音などのノイズxと例えば多重通信の他のチャンネルの通信信号などのノイズmが侵入し、その単一式伝送媒体11は、伝送媒体それ自身の特性により、素ノイズ信号xにノイズxとノイズmを重畳する。
 ノイズ信号供給部2は、その素ノイズ信号xにノイズxとノイズmを加えた信号を、ノイズ信号xとして両キャリア加工手段13、15に供給する。素ノイズ信号xに重畳するノイズをnとしてそれらを式で表すと、以下のようになる。
  n=x+m     (数式53)
  x=x+n    (数式54)
 ここで、ノイズ信号xは対オブジェクト広帯域性を有した信号であるとする。それは、例えば、素ノイズ信号xもノイズxもノイズmも対オブジェクト広帯域性を有した信号であるか、あるいは、少なくとも素ノイズ信号xを対オブジェクト広帯域性を有しノイズxとノイズmを合計した数式53の信号nより充分大きな信号とするなどして実現する。
 拡散キャリア加工手段13は、このノイズ信号xを入力し、関数fで表される入出力特性の拡散キャリア加工手段で拡散キャリアcを作成し、拡散手段14は、その拡散キャリアcを拡散入力オブジェクトaに乗じて作成した拡散出力オブジェクトsを伝送媒体11に送出する。この時、拡散入力オブジェクトaは、例えば、固定周波数ののBPSKなどで一次変調した占有周波数帯域がある領域に制限された信号とする。この過程は以下のように示される。
  c=f(x)    (数式55)
  s=a*c
   =a*f(x)  (数式56)
Noise signal supplying section 2 of the fourth embodiment shown in FIGS. 33 and 34, and containing noise signal source 10 for outputting a containing noise signal x E which is the basis of the noise signal x W, containing the output from the prime noise signal source 10 It contains a single transmission medium 11 that transmits the superimposed signal to the noise signal x E noise x N and noise m as the signal component.
Specifically, the unitary transmission medium 11 and supplies containing noise signal source 10 is a hydrogen noise signal x E, the noise generated in the diffusion module 3 and despreading module 4 is installed in the environment, for example natural noise Alternatively to noise m intrusion such as noise x N and for example, a communication signal of another channel multiplex communication such as artificial noise, the unitary transmission medium 11, the characteristics of the transmission medium itself, noise based on the noise signal x E superimposing the x N and noise m.
Noise signal supply unit 2 supplies a signal plus noise x N and noise m to its original noise signal x E, as a noise signal x W on both carrier processing means 13, 15. Expressing noise superimposed on containing the noise signal x E them by the formula as n A, as follows.
n A = x N + m (Formula 53)
x W = x E + n A ( Equation 54)
Here, the noise signal x W is assumed to be signals having a pair object broadband property. It may, for example, containing the noise signal x or E is also the noise x N signal also noise m also had a pair object broadband, alternatively, the noise x E has a pair object broadband property at least containing noise signal x E Noise for example, by sufficiently large signal from the signal n a of formula 53 which is the sum of m realized.
Diffusing carrier processing means 13 receives the noise signal x W, to create a diffused carrier c T by diffusion carrier processing means of the input and output characteristic represented by a function f, diffuser means 14, the spread carrier c T A diffusion output object s created by multiplying the diffusion input object a T is sent to the transmission medium 11. At this time, the spread input object a T is, for example, a signal limited to an area having an occupied frequency band that is primarily modulated by BPSK having a fixed frequency. This process is shown as follows.
c T = f (x W ) (Formula 55)
s = a T * c T
= A T * f (x W ) (Formula 56)
 一方、拡散手段14が出力する拡散出力オブジェクトsを逆拡散手段16に伝送する時、伝送媒体11では、伝送媒体それ自身の特性により、拡散出力オブジェクトsと素ノイズ信号xとノイズxとノイズmとが互いに重畳する。
 すなわち、拡散モジュール3が拡散出力オブジェクトsを出力している状態では、伝送媒体11の信号であるノイズ信号xは、それまでの素ノイズ信号xとノイズxとノイズmとに新たに拡散出力オブジェクトsというノイズが重畳したように見える。この場合、数式53で表された素ノイズ信号xに重畳するノイズnは以下のようになる。
  n=n+m+s   (数式57)
 そして、この時のノイズ信号xは、この数式57のnを用いた数式54で求められるものとなる。
 ここで、拡散モジュール3と逆拡散モジュール4とが入力するノイズ信号xとxに含まれる素ノイズ信号xと単一式伝送媒体11に侵入するノイズxとノイズmを重畳した信号の成分は対オブジェクト広帯域性を有した信号である。
 また、対オブジェクト広帯域性を有した拡散キャリアで拡散入力オブジェクトをスペクトル拡散した拡散出力オブジェクトsも対オブジェクト広帯域性を有した信号である。
Meanwhile, when transmitting a spread output object s output from diffuser means 14 to the despreading means 16, the transmission medium 11, the characteristics of the transmission medium itself, the diffusion output object s and containing noise signal x E and the noise x N Noise m overlaps with each other.
That is, in the state where the diffusion module 3 outputs the spread signal object s, the noise signal x W is the signal transmission medium 11 is newly thereto until elementary noise signal x E and the noise x N and noise m It seems that the noise of the diffuse output object s is superimposed. In this case, the noise n A that overlaps the original noise signal x E expressed by Equation 53 is as follows.
n A = n N + m + s (Formula 57)
Then, the noise signal x W at this time is made shall be determined by the equation 54 using n A of the formula 57.
Here, the noise signal x T noise x N and the signal obtained by superimposing noise m entering the prime noise signal x E and unitary transmission medium 11 contained in x R to enter the diffusion module 3 and the despreading module 4 The component is a signal having a broadband property against an object.
A spread output object s obtained by spectrum-spreading a spread input object with a spread carrier having object wideband property is also a signal having object wideband property.
 この拡散出力オブジェクトsについても、現実の伝送システムでは、拡散モジュール3と逆拡散モジュール4とが入力するノイズ信号xとxに含まれる拡散出力オブジェクトsの成分の間には差があるのが一般的である。それは、拡散出力オブジェクトsの成分が拡散モジュール3の拡散手段14から拡散モジュール3の拡散キャリア加工手段13に伝搬される経路と、拡散モジュール3の拡散手段14から逆拡散モジュール4の逆拡散キャリア加工手段15に伝搬される経路に差があるためである。この差が大きいくなると、拡散モジュール3と逆拡散モジュール4が入力する拡散出力オブジェクトsの成分の間の相互相関は低くなる。
 この時、例えば拡散モジュール3と逆拡散モジュール4の採りうる地理的な位置をある範囲に規定することにより、その規定の範囲内では拡散モジュール3と逆拡散モジュール4が入力するノイズ信号x中の拡散出力オブジェクトsの成分は相互相関確立状態となり、拡散モジュール3及び逆拡散モジュール4は実用上同一の拡散出力オブジェクトsの成分を入力したと見なせるようになる。
 それにより、拡散モジュール3と逆拡散モジュール4とが入力するノイズ信号xとxは、対オブジェクト広帯域性を有した相互相関確立状態の素ノイズ信号xとノイズxとノイズmを重畳した信号の成分と、同様に対オブジェクト広帯域性を有した相互相関確立状態の拡散出力オブジェクトsの成分が互いに重畳した信号となり、対オブジェクト広帯域性を有した相互相関確立状態の信号となる。
 結果として、上記の条件を満足する限り、数式54で表されるノイズ信号xは、拡散出力オブジェクトが含まれる場合も含まれない場合も、拡散キャリア加工手段13と逆拡散キャリア加工手段15とに共通に供給されることによって、拡散キャリア加工手段13と逆拡散キャリア加工手段15とに充分高い相互相関状態で入力される信号であり、かつ対オブジェクト広帯域性を有す信号となる。
This diffusion output object s also the in the real transmission systems, there is a difference between the components of the spread signal object s and the diffusion module 3 and the despreading module 4 included in the noise signal x T and x R to enter Is common. That is, the path through which the component of the diffusion output object s is propagated from the diffusion means 14 of the diffusion module 3 to the diffusion carrier processing means 13 of the diffusion module 3 and the despreading carrier processing of the despreading module 4 from the diffusion means 14 of the diffusion module 3 This is because there is a difference in the path propagated to the means 15. As this difference increases, the cross-correlation between the components of the diffusion output object s input by the diffusion module 3 and the despreading module 4 decreases.
In this case, for example, by defining the range of the geographic location can take the diffusion module 3 despreading module 4, the noise signal x W in the scope of the provisions to enter the despreading module 4 and the diffusion module 3 The components of the diffusion output object s are in a cross-correlation established state, so that the diffusion module 3 and the despreading module 4 can be regarded as having input the components of the same diffusion output object s in practice.
Thereby, the noise signal x T and x R to enter the diffusion module 3 and the despreading module 4 may superimpose the prime noise signal x E and the noise x N and noise m of the cross-correlation established state of having a pair object broadband property The signal component and the components of the diffusion output object s in the cross-correlation establishment state having the broadband property with respect to the object are superimposed on each other, and the signal in the cross-correlation establishment state with the object broadband property is obtained.
As a result, as long as it satisfies the above conditions, the noise signal x W represented by equation 54, may not be included if they contain diffused output object, the spread carrier processing means 13 the despread carrier processing means 15 Are commonly supplied to the diffusion carrier processing means 13 and the despread carrier processing means 15, and are signals having a sufficiently high cross-correlation state, and having a wide band property against objects.
 一方、拡散出力オブジェクトsを受信する逆拡散手段16にとっては、伝送媒体のノイズ信号xは拡散出力オブジェクトsに、素ノイズ信号xと、単一式伝送媒体11に侵入するノイズxと、例えば多重通信の他のチャンネルの通信信号などのノイズmとからなるノイズnが重畳した信号と見える。それらを式で表すと、以下のようになる。
  n=x+x+m  (数式58)
  x=s+n     (数式59)
Meanwhile, for the despreading means 16 for receiving a spread output object s, the noise signal x W is diffused output object s transmission medium, and containing noise signal x E, the noise x N entering the unitary transmission medium 11, For example, it appears as a signal on which noise n B composed of noise m such as a communication signal of another channel of multiplex communication is superimposed. These are expressed as follows.
n B = x E + x N + m (Formula 58)
x W = s + n B (Formula 59)
 逆拡散モジュールの逆拡散手段は、数式59で示された伝送媒体の信号xを逆拡散入力オブジェクトhとして入力するとともに、同じ信号xを逆拡散キャリア加工手段の入力信号xとして入力する。逆拡散キャリア加工手段は、信号xを数式11で示される加工特性gによって逆拡散キャリアcに加工する。逆拡散手段の過程で、逆拡散入力オブジェクトhと逆拡散キャリアcは乗じられる。この乗じた結果をAとし、それをここで述べた関係と数式1、数式5、数式11、数式58、数式59などを用いて展開すると次のようになる。
  A=h*c
   =x*c
   =(s+n)*c
   =(a*c+n)*c
   =a*c*c+n*g(x
   =a*k+n*g(x
   =a*k+n*g(s+n
   =a*k+(x+x+m)*g(s+x+x+m)  (数式60)
Despreading means for despreading module inputs the signal x W transmission medium shown in Equation 59 as despreading input object h, and inputs the same signal x W as an input signal x R despreading carrier processing means . Despreading the carrier processing means for processing the despread carrier c R by processing properties g represented a signal x R in Equation 11. In the course of despreading means, despreading input object h despreading carrier c R is multiplied. The result of this multiplication is denoted as A, and it is expanded as follows using the relationship described here and Formula 1, Formula 5, Formula 11, Formula 58, Formula 59, and the like.
A = h * c R
= X W * c R
= (S + n B ) * c R
= (A T * c T + n B ) * c R
= A T * c T * c R + n B * g (x R )
= A T * k C + n B * g (x W )
= A T * k C + n B * g (s + n B )
= A T * k C + ( x E + x N + m) * g (s + x E + x N + m) ( Equation 60)
 実際のスペクトル拡散通信の逆拡散手段で行う逆拡散操作では、逆拡散入力オブジェクトと逆拡散キャリアの乗算の後に、スペクトル拡散されたノイズと逆拡散された拡散入力オブジェクトの成分の混合信号から拡散入力オブジェクトの成分を分離抽出するために、拡散出力オブジェクトにオブジェクトの占有周波数帯域を通過させる、例えば低域通過フィルタを作用させる。その結果得られるオブジェクトをaとすると、低域通過フィルタによる処理に記号∫dtの積分演算を用いて下記のように表せる。
=∫Adt
 =∫{a*k+(x+x+m)*g(s+x+x+m)}dt
 =a*k+∫{(x+x+m)*g(s+x+x+m)}dt  (数式61)
 ここで、数式61右辺第一項a*kは、フィルタの通過帯域内なので信号がそのまま出力される拡散入力オブジェクトの成分であり、これによって、伝送システムの送信側である拡散モジュール3から受信側である逆拡散モジュール4にオブジェクトが伝送されたことが示されている。
In the despreading operation performed by the despreading means of the actual spread spectrum communication, after the multiplication of the despread input object and the despread carrier, the spread signal is input from the mixed signal of the spread spectrum noise and the despread input object components. In order to separate and extract the components of the object, for example, a low-pass filter is applied to the diffuse output object to pass the occupied frequency band of the object. Assuming that the object obtained as a result is a R , it can be expressed as follows using the integral operation of the symbol ∫dt in the processing by the low-pass filter.
a R = ∫Adt
= ∫ {a T * k C + (x E + x N + m) * g (s + x E + x N + m)} dt
= A T * k C + ∫ {(x E + x N + m) * g (s + x E + x N + m)} dt ( Equation 61)
Here, the first term a T * k C on the right side of Formula 61 is a component of the spread input object from which the signal is output as it is because it is within the pass band of the filter, and thus, from the spread module 3 on the transmission side of the transmission system. It is shown that the object has been transmitted to the despreading module 4 which is the receiving side.
 一方、数式61右辺第二項がノイズの影響項であり、通信には不要なもので、ゼロ或いはオブジェクト成分との分離が容易な形式であることが望ましい。数式61右辺第二項を構成する信号s、x、x、mはいずれも不規則様で耐オブジェクト広帯域性な信号である。もし、それらよりなる信号も不規則で耐オブジェクト広帯域性であれば、フィルタを通過できるのはフィルタの通過帯域である拡散入力オブジェクトの占有周波数帯域の成分だけなので、拡散入力オブジェクトの占有周波数帯域の幅を小さくすることにより、ノイズの影響を拡散入力オブジェクトよりも小さくすることができる。 On the other hand, the second term on the right side of Formula 61 is an influence term of noise, which is unnecessary for communication, and is preferably in a format that can be easily separated from zero or an object component. The signals s, x E , x N , and m that constitute the second term on the right side of Formula 61 are all irregular and object-resistant broadband signals. If the signal composed of them is also irregular and object broadband resistant, only the components of the occupied frequency band of the spread input object that is the pass band of the filter can pass through the filter. By reducing the width, the influence of noise can be made smaller than that of the diffusion input object.
 ところで、数式61右辺第二項の被積分関数の二つの乗算要素は、x+x+mという共通部分を有している。
また、数式61右辺第二項の逆拡散キャリア加工特性を表す関数gに含まれる拡散出力オブジェクトsは数式56、数式58、数式59より次のように表せる。
  s=a*f(x
   =a*f(s+n
   =a*f(s+x+x+m)  (数式62)
 すなわち、拡散出力オブジェクトsもまた数式61右辺第二項の被積分関数の二つの乗算要素とx+x+mという共通部分を有している。この結果、数式61右辺第二項を構成するx+x+mとg(s+x+x+m)とはある程度の相関を示すことが考えられる。この場合、不規則様で耐オブジェクト広帯域性な信号s、x、x、mよりなる数式61の右辺第二項を拡散入力オブジェクトの占有周波数帯域を通過させるフィルタに通すことはx+x+mとg(s+x+x+m)との相互相関の積分操作を行うことと等価となり、ある程度の相関の効果は直流的な信号としてフィルタの出力に現れる。
 この場合、拡散モジュール側では拡散入力オブジェクトを直流分のない信号とし、逆拡散モジュール側では逆拡散手段における上記のフィルタ出力を、例えば直流成分を通過させない交流結合として直流分の影響を排除して取り出すことにより、逆拡散出力オブジェクトについて数式61第二項が示すノイズの影響が軽減される。
Incidentally, the two multiplication factors of the integrand of Equation 61 second term on the right-hand side has a common portion that x E + x N + m.
Further, the diffusion output object s included in the function g representing the despread carrier processing characteristic of the second term on the right side of the equation 61 can be expressed as follows from the equations 56, 58, and 59.
s = a T * f (x W )
= A T * f (s + n B )
= A T * f (s + x E + x N + m) ( Equation 62)
That is, the diffusion output object s also has a common part of two multiplication elements of the integrand of the second term on the right side of Formula 61 and x E + x N + m. As a result, it is considered to exhibit a degree of correlation between x E + x N + m and g constituting the formula 61 second term on the right (s + x E + x N + m). In this case, passing the second term on the right-hand side of the equation 61 composed of the irregular and object-resistant broadband signals s, x E , x N , and m through a filter that passes the occupied frequency band of the diffusion input object is x E + x This is equivalent to performing an integration operation of cross-correlation between N + m and g (s + x E + x N + m), and a certain degree of correlation effect appears in the output of the filter as a DC signal.
In this case, on the diffusion module side, the diffusion input object is a signal having no DC component, and on the despreading module side, the filter output in the despreading means is, for example, an AC coupling that does not allow the DC component to pass, thereby eliminating the influence of the DC component. By taking out, the influence of noise indicated by the second term of Formula 61 for the despread output object is reduced.
 また、数式10の拡散キャリア加工特性を示す関数fや数式11の逆拡散キャリア加工特性を示す関数gは、例えば時間的に遅れを与えるような、信号を系列方向に推移させる特性を含まない写像のような加工特性を示しているが、既述したように、拡散キャリアと逆拡散キャリアの加工では信号を系列方向に推移させてもよいものである。この場合、数式61右辺第二項を構成するx+x+mとg(s+x+x+m)とは相互相関がなくなり、その結果数式61右辺第二項の被積分関数はただの不規則様で耐オブジェクト広帯域性の信号となるので、フィルタを通過できるのはフィルタの通過帯域である拡散入力オブジェクトの占有周波数帯域の成分だけとなる。この場合も拡散入力オブジェクトの占有周波数帯域の幅を小さくすることにより、ノイズの影響を拡散入力オブジェクトよりも小さくすることができる。 Further, the function f indicating the diffusion carrier processing characteristic of Formula 10 and the function g indicating the despread carrier processing characteristic of Formula 11 do not include a mapping that does not include a characteristic that causes the signal to shift in the sequence direction, for example, giving a delay in time. However, as described above, in the processing of the spread carrier and the despread carrier, the signal may be shifted in the sequence direction. In this case, there is no cross-correlation between x E + x N + m and g constituting the formula 61 second term on the right (s + x E + x N + m), the integrand results formula 61 second term on the right-hand side is only irregularly Therefore, only the component of the occupied frequency band of the spread input object that is the pass band of the filter can pass through the filter. In this case as well, by reducing the width of the occupied frequency band of the spread input object, the influence of noise can be made smaller than that of the spread input object.
 このように、図33及び図34に示す実施形態4の構成は、相互相関確立状態で対オブジェクト広帯域性を有したノイズ信号を拡散キャリア加工手段13と逆拡散キャリア加工手段15とに共通に供給することと、スペクトル拡散したオブジェクトを伝送してオブジェクトをノイズの影響を排除して逆拡散して分離抽出することとを、単一式伝送媒体11を用いて両立させることが出来る。それにより、図33及び図34に示す実施形態4の構成によれば、単一式伝送媒体11によってスペクトル拡散通信システムが可能となる。
 数式60の右辺第二項に示されたノイズの影響項について、ノイズと逆拡散キャリアとがある程度の相互相関を示す場合、そのノイズの影響項の逆拡散出力オブジェクトへの効果は、逆拡散手段に設けた拡散入力オブジェクトを抽出するフィルタによって、逆拡散出力オブジェクトに重畳する直流的な成分となって現れる。
 この事象は、図1に示したノイズ信号xを伝送する伝送媒体7と、拡散出力オブジェクトsを伝送する伝送媒体11とが別である本伝送システムの構成においても、オブジェクト伝送の動作原理上は同じである。
 すなわち、図1に示した構成の本伝送システムでも、例えば拡散出力オブジェクトsを伝送する伝送媒体11で拡散出力オブジェクトsに重畳するノイズmが、逆拡散キャリアcとある程度の相互相関を示す場合、その効果は逆拡散出力オブジェクトに重畳する直流的な成分となって現れるのである。
 これは、例えば、拡散・逆拡散キャリアへの加工材料とするノイズ信号に用いる何らかの信号が拡散出力オブジェクトsを伝送する伝送媒体11にも侵入した場合であり、具体的には、例えば、雷ノイズのような強力な電磁波が本伝送システムの近傍で発生し、伝送媒体7と伝送媒体11の両方に侵入した場合である。
 この場合でも、逆拡散手段の出力を交流結合とするなどして直流的な成分を排除することにより、そのノイズ項の影響は排除できるものである。
As described above, the configuration of the fourth embodiment shown in FIGS. 33 and 34 commonly supplies a noise signal having a broadband property to an object in a cross-correlation established state to the diffusion carrier processing means 13 and the despread carrier processing means 15. It is possible to use the single transmission medium 11 to achieve both the transmission of the spectrum-spread object and the separation and extraction of the object by eliminating the influence of noise and despreading the object. Thereby, according to the configuration of the fourth embodiment shown in FIGS. 33 and 34, the spread spectrum communication system is enabled by the single transmission medium 11.
When the noise influence term shown in the second term on the right side of Expression 60 shows a certain degree of cross-correlation between the noise and the despread carrier, the effect of the noise influence term on the despread output object is despreading means. It appears as a DC component superimposed on the despread output object by the filter for extracting the diffuse input object provided in.
This event is the transmission medium 7 for transmitting the noise signal x W shown in FIG. 1, in the configuration of the transmission system and the transmission medium 11 is another for transmitting a spread output object s, the operating principle of the object transmission Are the same.
That is, even in the transmission system of the configuration shown in FIG. 1, for example, noise m which overlaps the diffusion output object s a transmission medium 11 that transmits a spread output object s is, indicating a cross-correlation of certain degree of despread carrier c R The effect appears as a direct current component superimposed on the despread output object.
This is the case, for example, when a signal used as a noise signal as a processing material for the diffusion / de-spreading carrier also enters the transmission medium 11 that transmits the diffusion output object s. This is a case where such a strong electromagnetic wave is generated in the vicinity of the transmission system and enters both the transmission medium 7 and the transmission medium 11.
Even in this case, the influence of the noise term can be eliminated by eliminating the DC component by, for example, making the output of the despreading means AC coupling.
 この図33及び図34に示した、本発明の実施形態4の構成のスペクトル拡散通信システムのオブジェクト伝送性能を、図1に示した実施形態1の構成のスペクトル拡散通信システムのオブジェクト伝送性能と比較して評価してみる。
 具体的には、数式21と数式60を比較する。これらは両式とも逆拡散モジュールの逆拡散手段内の信号で、逆拡散入力オブジェクトと逆拡散キャリアとを乗じた結果の信号を示している。両式の右辺第一項はそれぞれ逆拡散された拡散入力オブジェクトの成分を示しており、両式で全く同一である。
 一方、右辺第二項はそれぞれ伝送媒体で拡散出力オブジェクトに重畳したノイズが逆拡散キャリアでスペクトル拡散された成分を示している。両式で逆拡散キャリアは表現が異なってはいるものの、これまで説明したその物理的な意味は同じであり、同一のものと言って差し支えない。
 その結果、両式間で異なるのは逆拡散キャリアでスペクトル拡散される伝送媒体で拡散出力オブジェクトに重畳したノイズだけであることがわかる。
The object transmission performance of the spread spectrum communication system having the configuration of the fourth embodiment of the present invention shown in FIGS. 33 and 34 is compared with the object transmission performance of the spread spectrum communication system having the configuration of the first embodiment shown in FIG. And evaluate it.
Specifically, Formula 21 and Formula 60 are compared. Both of these expressions are signals in the despreading means of the despreading module, and indicate signals obtained by multiplying the despreading input object and the despreading carrier. The first term on the right side of both formulas indicates the components of the diffused input object that has been despread, and is the same in both formulas.
On the other hand, the second term on the right side represents a component in which the noise superimposed on the spread output object in the transmission medium is spectrally spread by the despread carrier. Although the expressions of despread carriers in both types are different, their physical meanings explained so far are the same and can be said to be the same.
As a result, it can be seen that the only difference between the two expressions is the noise superimposed on the spread output object in the transmission medium that is spread spectrum by the despread carrier.
 図1に示した実施形態1の構成のスペクトル拡散通信システムの場合、そのノイズはmだけであるのに対し、図33及び図34に示した実施形態4の構成のスペクトル拡散通信システムの場合は、そのmに加え、xとxが含まれる点が異なる。ここで伝送媒体で拡散出力オブジェクトに重畳するノイズについて考察する。
 図1に示した実施形態1の構成におけるノイズmは同じ伝送媒体を共有利用する多重通信の信号であるほか、伝送媒体自身やその外部から侵入するノイズを総合したものである。
 一方、図33及び図34に示した実施形態4の構成におけるノイズxは伝送媒体自身やその外部から侵入するノイズであり、この構成におけるノイズmは同じ伝送媒体を共有利用する多重通信の信号だけである。
 すなわち、図1のノイズmと図33及び図34のx+mが同じものといえる。
また、図33及び図34に示した実施形態4の構成における素ノイズ信号xは、伝送媒体を共有利用する多重通信の1信号程度のエネルギーの信号で良いものであり、多数の多重通信の信号が伝送される場合、伝送媒体上のエネルギーはその多重通信の全エネルギーであるノイズmのエネルギーが支配的となる。
 それは例えば、十数チャンネルの多重度の場合、素ノイズ信号xのエネルギーは全体の十数分の一に過ぎないものとなることである。
 また、例えば雷や周囲の機器が発して伝送媒体に侵入するノイズxもまた素ノイズ信号xより大きいエネルギーであると考えてよい。
 このことから、現実の応用環境では数式21と数式60のノイズの部分はほとんど同一と考えて良く、両式とも同一の意味であると言ってよいものである。
In the case of the spread spectrum communication system having the configuration of the first embodiment shown in FIG. 1, the noise is only m, whereas in the case of the spread spectrum communication system having the configuration of the fourth embodiment shown in FIGS. In addition to m, x E and x N are included. Consider the noise superimposed on the diffuse output object in the transmission medium.
The noise m in the configuration of the first embodiment shown in FIG. 1 is a multiplex communication signal that shares and uses the same transmission medium, and is a total of noise that enters from the transmission medium itself or from the outside.
On the other hand, the noise x N in the configuration of the fourth embodiment shown in FIGS. 33 and 34 are noise entering from the transmission medium itself and its external noise m the signal multiplex communications shared use the same transmission medium in this configuration Only.
That is, it can be said that the noise m in FIG. 1 is the same as x N + m in FIGS. 33 and 34.
Further, containing the noise signal x E in the configuration of the fourth embodiment shown in FIGS. 33 and 34 are those good energy signal of about 1 signal multiplex communication sharing use of transmission media, the number of multiplex communication When a signal is transmitted, the energy on the transmission medium is dominated by the energy of noise m, which is the total energy of the multiplex communication.
It is, for example, if the multiplicity of ten channels, the energy of the elementary noise signal x E is to be merely the entire ten fraction of.
Further, it can be considered as noise x N also containing noise signal x E greater energy entering the transmission medium for example lightning or surrounding equipment emits.
For this reason, in the actual application environment, the noise portions of Equation 21 and Equation 60 may be considered to be almost the same, and it can be said that both equations have the same meaning.
 結果として、図33及び図34に示した、本発明の実施形態4の構成のスペクトル拡散通信システムのオブジェクト伝送性能は、図1に示した実施形態1の構成のスペクトル拡散通信システムのオブジェクト伝送性能と同一と考えてよいものであると言える。
 これにより、図33及び図34に示した、本発明の実施形態4の構成のスペクトル拡散通信システムは、図1に示した実施形態1の構成のスペクトル拡散通信システムと同じ特徴を提供できることとなる。
 すなわち、図33及び図34に示した、本発明の実施形態4に係るキャリア加工装置を適用したスペクトル拡散オブジェクト伝送システムによれば、スペクトル拡散通信技術に特有の耐ノイズ性に由来する、低干渉感受性や、微小信号性、低与干渉性、秘匿性、多重性が従来の参照信号内蔵方式のスペクトル拡散通信システムと同程度に提供できるものである。さらに、本伝送システムによれば、従来の参照信号内蔵方式のスペクトル拡散通信システム以上の秘話性や、通信の要求に即応できる即応性、低消費電力性、逆拡散モジュールを同期装置なしに構成できる小規模性も提供できるものである。
 さらに、本伝送システムによれば、インパルス状やバースト状の不連続な拡散キャリアや逆拡散キャリアを用いて従来のスペクトル拡散通信システムに対して、小型で安価に、耐ノイズ性を向上させたり、伝送能力を向上させたり、秘匿性を向上させたりすることができるものである。そのうえ、本伝送システムによれば、従来のスペクトル拡散の応用であった情報伝送でも測距でもない、特に情報内容を表現しない単純なオブジェクトの伝送や電力伝送に上記の特性を提供できるものである。また、本伝送システムによれば、従来のスペクトル拡散の応用であった情報伝送でも測距でもない、新たな用途を開拓することが出来るものである。その他の構成及びその作用効果は図1の実施形態1と同一になっている。
 実際、絶対値がゼロで無く等しい正負の二値をとる拡散キャリアと逆拡散キャリアを用いた本実施形態のオブジェクト伝送システムで上記の特徴が得られることを確認している。
As a result, the object transmission performance of the spread spectrum communication system having the configuration of the fourth embodiment of the present invention shown in FIGS. 33 and 34 is the same as that of the spread spectrum communication system having the configuration of the first embodiment shown in FIG. It can be said that it can be considered the same.
Thus, the spread spectrum communication system having the configuration of the fourth embodiment of the present invention shown in FIGS. 33 and 34 can provide the same features as the spread spectrum communication system having the configuration of the first embodiment shown in FIG. .
That is, according to the spread spectrum object transmission system to which the carrier processing apparatus according to the fourth embodiment of the present invention shown in FIG. 33 and FIG. 34 is applied, the low interference derived from the noise resistance specific to the spread spectrum communication technology. Sensitivity, minute signal characteristics, low coherence, secrecy, and multiplicity can be provided to the same extent as a conventional spread spectrum communication system with a built-in reference signal. Furthermore, according to the present transmission system, it is possible to configure a secrecy higher than that of a conventional spread spectrum communication system with a built-in reference signal, quick response capable of promptly responding to communication requirements, low power consumption, and a despreading module without a synchronization device. Small scale can also be provided.
Furthermore, according to the present transmission system, noise resistance can be improved in a small and inexpensive manner with respect to a conventional spread spectrum communication system using a discontinuous spread carrier or despread carrier in the form of impulse or burst. It is possible to improve transmission capability and improve confidentiality. In addition, according to the present transmission system, the above characteristics can be provided for transmission of simple objects that do not express information contents, and power transmission, which is neither information transmission nor distance measurement, which is a conventional application of spread spectrum. . Further, according to the present transmission system, it is possible to pioneer a new application which is neither information transmission nor distance measurement, which is a conventional spread spectrum application. Other configurations and the operation and effects thereof are the same as those of the first embodiment shown in FIG.
In fact, it has been confirmed that the above characteristics can be obtained in the object transmission system of the present embodiment using a spread carrier and a despread carrier that take the same positive and negative binary values, not absolute values of zero.
(実施形態5)
 次に、図1に示すノイズ信号供給部2の素ノイズ信号源10の具体的な例を実施形態5として示す。図36に示すのは、擬似雑音信号源を用いた素ノイズ信号源10である。
(Embodiment 5)
Next, a specific example of the elementary noise signal source 10 of the noise signal supply unit 2 shown in FIG. FIG. 36 shows an elementary noise signal source 10 using a pseudo noise signal source.
 本実施形態における素ノイズ信号xは、対オブジェクト広帯域性を有す信号とする。また、多重性や、秘話性の目的がある場合は、さらに自己相関がない信号とする。そして、その素ノイズ信号源10は、それが供給する素ノイズ信号を利用する拡散キャリア加工手段及び逆拡散キャリア加工手段に、その素ノイズ信号を、相互相関確立状態の信号として供給する。この要件に適合する限り、本発明の実施形態ではノイズを含めてどのような信号を用いても良い。 Containing the noise signal x E in this embodiment, a signal having a pair object broadband property. In addition, when there is a purpose of multiplicity or secrecy, the signal further has no autocorrelation. The elementary noise signal source 10 supplies the elementary noise signal as a signal in a cross-correlation established state to the diffusion carrier processing means and the despreading carrier processing means that use the elementary noise signal supplied by the elementary noise signal source 10. As long as this requirement is met, any signal including noise may be used in the embodiments of the present invention.
 図36に示す実施形態5の素ノイズ信号源10は、二値擬似雑音発生器を多数組合わせてその要件に適合した素ノイズ信号xを供給するものである。 Containing the noise signal source in the embodiment 5 shown in FIG. 36. 10, and it supplies the hydrogen noise signal x E which is adapted to the requirements by combining a large number of binary pseudo-noise generator.
 図36に示す実施形態5に係るノイズ信号供給部2の素ノイズ信号源10は、シングルチップのマイクロコントローラ68と、抵抗網69とで構成する。 36. The elementary noise signal source 10 of the noise signal supply unit 2 according to the fifth embodiment shown in FIG. 36 includes a single-chip microcontroller 68 and a resistor network 69.
 マイクロコントローラ68は、多数の独立に動作する16ビット長のM系列疑似雑音信号発生器(以下、M系列発生器と記す)は、線形帰還シフトレジスタ68a、68bを有している。M系列発生器68a、68bは、ソフトウェアにより等価的に複数構成されている。ここで、各M系列発生器68a、68bは、帰還タップ位置やシフトレジスタの初期値、スタートタイミング、駆動クロック速度が異なるよう構成されている。また、各M系列発生器68a、68bは、駆動クロック速度を、拡散入力オブジェクトの一次変調のキャリアの周波数に対して、例えば数百倍以上となるようにして作成される素ノイズ信号が対オブジェクト広帯域性を有したものとなるようにしている。 The microcontroller 68 includes a large number of independently operated 16-bit length M-sequence pseudo-noise signal generators (hereinafter referred to as M-sequence generators) having linear feedback shift registers 68a and 68b. A plurality of M-sequence generators 68a and 68b are equivalently configured by software. Here, each of the M series generators 68a and 68b is configured such that the feedback tap position, the initial value of the shift register, the start timing, and the drive clock speed are different. Further, each M-sequence generator 68a, 68b is configured to receive an elementary noise signal generated so that the drive clock speed is several hundred times or more, for example, several hundred times the carrier frequency of the primary modulation of the spread input object. It is designed to have a broadband property.
 M系列発生器68a、68bの出力はマイクロコントローラのチップ外に引き出された0〔V〕と5〔V〕のCMOS標準ロジック信号レベルを取る二値信号である。全てのM系列発生器68a、68bの出力信号は、-5〔V〕へのプルダウンを組み合わせた抵抗網69で平均値がほぼゼロとなるように合成される。抵抗網69で合成された前記擬似雑音信号には多少の直流分が残るとともに、マイクロコントローラの動作に伴うディジタルノイズが重畳しているが、対オブジェクト広帯域性を有し、自己相関がほとんどない信号である。本素ノイズ信号源10は、このディジタルノイズも出力する素ノイズ信号の一部として有益に用いる。抵抗網69で合成された信号は、図示しない増幅器とコンデンサ結合を通して有線の伝送媒体11に出力される。 The outputs of the M series generators 68a and 68b are binary signals that take the CMOS standard logic signal levels of 0 [V] and 5 [V] drawn outside the chip of the microcontroller. The output signals of all the M series generators 68a and 68b are synthesized by a resistor network 69 combined with a pull-down to −5 [V] so that the average value becomes almost zero. The pseudo-noise signal synthesized by the resistor network 69 has some DC component and digital noise accompanying the operation of the microcontroller superimposed on it, but it has a wide band-to-object property and has almost no autocorrelation. It is. The elementary noise signal source 10 is beneficially used as a part of the elementary noise signal that also outputs the digital noise. The signal synthesized by the resistor network 69 is output to the wired transmission medium 11 through amplifier and capacitor coupling (not shown).
 図40で示した従来の参照信号内蔵方式のスペクトル拡散通信システムでは、受信機側での同期捕捉動作において、拡散符号に使用する擬似雑音信号が長い周期で繰り返すことを利用して相互相関値を計算して同期点を発見しているので、不規則信号といえども長時間での信号の特性は一定の周期で同一パターンの不規則性を有する波形が繰り返えされる周期性が必要であった。 In the conventional spread spectrum communication system with a built-in reference signal shown in FIG. 40, the cross-correlation value is obtained by using the fact that the pseudo-noise signal used for the spread code is repeated in a long period in the synchronization acquisition operation on the receiver side. Since the synchronization point is found by calculation, the characteristics of the signal over a long period of time, even for an irregular signal, must have a periodicity in which waveforms with irregularities of the same pattern are repeated at a constant period. It was.
 これに対して本発明の実施形態では、共有することによって相互相関を確立状態にした、対オブジェクト広帯域性を有した信号をノイズ信号xとして拡散モジュール1及び逆拡散モジュール2に供給することが求められるのであって、ノイズ信号xには、周期性は要求されず、求められる前記条件を満足できれば任意の擬似雑音信号をノイズ信号xに利用できるので、その基とする素ノイズ信号の生成が容易であるという利点がある。 In an embodiment of the present invention, on the other hand, is possible to supply a correlation was established state, a signal having a pair object broadband performance as a noise signal x W in the diffusion module 1 and despreading module 2 by sharing a than demanded, the noise signal x W, periodicity is not required, it is possible to utilize any of the pseudo-noise signal to the noise signal x W if satisfying the conditions required, elementary noise signal to the base There is an advantage that it is easy to generate.
 このように、本発明の実施形態5によれば、素ノイズ信号を容易に生成・供給できるものである。その他の構成及びその作用効果は図1の実施形態1と同一になっている。 Thus, according to the fifth embodiment of the present invention, an elementary noise signal can be easily generated and supplied. Other configurations and the operation and effects thereof are the same as those of the first embodiment shown in FIG.
(実施形態6)
 次に、ワイヤレスとしての実施形態を説明する。上述した各実施形態では、図1に代表する伝送媒体11として電線に代表される電気的な導体を用いて説明してきた。例えば図33の伝送システムの構成は、1本の電線を伝送媒体11とした有線伝送システムを表現したものであった。
 しかしながら、本実施形態に係る伝送システムは、電気的な導体を伝送媒体としたものに限るものではない。例えば光や放射線を含む電磁波を伝播させる空間を伝送媒体としても良いし、音波などの圧力の波動や、変形や位置変動などを伝搬させる固体や液体、気体を伝送媒体としても良いものである。
 一例として、図1に示す伝送媒体11として電気的な導体に代わる前記伝送媒体を用いた例を説明する。前記伝送媒体は電気的な導体を用いないので、それを用いた伝送はいわゆるワイヤレス伝送となる。
(Embodiment 6)
Next, a wireless embodiment will be described. In each of the above-described embodiments, the transmission medium 11 represented in FIG. 1 has been described using an electrical conductor typified by an electric wire. For example, the configuration of the transmission system in FIG. 33 represents a wired transmission system using one electric wire as the transmission medium 11.
However, the transmission system according to the present embodiment is not limited to a transmission medium using an electrical conductor. For example, a space in which electromagnetic waves including light and radiation are propagated may be used as a transmission medium, and a solid, liquid, or gas that propagates a wave of pressure such as a sound wave, deformation, position change, or the like may be used as the transmission medium.
As an example, an example will be described in which the transmission medium 11 shown in FIG. 1 is used instead of the electrical conductor. Since the transmission medium does not use an electrical conductor, transmission using the transmission medium is so-called wireless transmission.
 図37は、図1に代表する本実施形態1をワイヤレス方式としたスペクトル拡散伝送システムの構成例である。
 本伝送システムは、拡散モジュール3、逆拡散モジュール4、ノイズ信号供給部2を有している。拡散モジュール3と逆拡散モジュール4とは伝送媒体(以下、ワイヤレス伝送媒体と記す。)11を介して連繋される。
 ノイズ信号供給部2は、素ノイズ信号源10と、送信インターフェース部70とで構成する。拡散モジュール3は、受信インターフェース部71と、拡散キャリア加工手段13と、拡散手段14と、送信インターフェース部72とで構成する。逆拡散モジュール4は、第一の受信インターフェース部73と、逆拡散キャリア加工手段15と、逆拡散手段16と、第二の受信インターフェース部74とで構成する。
FIG. 37 is a configuration example of a spread spectrum transmission system in which the first embodiment represented by FIG. 1 is a wireless system.
The transmission system includes a diffusion module 3, a despreading module 4, and a noise signal supply unit 2. The diffusion module 3 and the despreading module 4 are connected via a transmission medium (hereinafter referred to as a wireless transmission medium) 11.
The noise signal supply unit 2 includes an elementary noise signal source 10 and a transmission interface unit 70. The diffusion module 3 includes a reception interface unit 71, a diffusion carrier processing unit 13, a diffusion unit 14, and a transmission interface unit 72. The despreading module 4 includes a first reception interface unit 73, a despread carrier processing unit 15, a despreading unit 16, and a second reception interface unit 74.
 図37の構成は、図33及び図34に示した実施形態4の構成について、伝送媒体をワイヤレス伝送媒体とし、それにあわせて拡散モジュール3、逆拡散モジュール4、ノイズ信号供給部2が伝送媒体と入出力する部分に送受信インターフェース部を設けた構成である。
 ノイズ信号供給部2では、送信インターフェース部70が素ノイズ信号源10で発生させた素ノイズ信号xをワイヤレス素ノイズ信号wとしてワイヤレス伝送媒体11に送出する。拡散モジュール3では、受信インターフェース部71がワイヤレス伝送媒体11のワイヤレスノイズ信号wをノイズ信号xとして入力して、これを拡散キャリア加工手段13に供給し、送信インターフェース部72は拡散出力オブジェクトsをワイヤレス拡散出力オブジェクトwとしてワイヤレス伝送媒体11に送出する。
 逆拡散モジュール4では、第一の受信インターフェース部73がワイヤレス伝送媒体11のワイヤレスノイズ信号wをノイズ信号xとして入力して逆拡散キャリア加工手段13に供給し、第二の受信インターフェース部74がワイヤレス伝送媒体11のワイヤレスノイズ信号wを拡散出力オブジェクトsを含む逆拡散入力オブジェクトhとして逆拡散手段16に供給する。
 ワイヤレス伝送媒体11では、ノイズ信号供給部2が供給するワイヤレス素ノイズ信号wと、拡散モジュール3が供給するワイヤレス拡散出力オブジェクトwと、内外のノイズ源12からワイオヤレス伝送媒体11に侵入するノイズwと、伝送媒体11を用いて通信を行っている本伝送システム以外の通信などの信号mとが互いに重畳し、拡散モジュール3及び逆拡散モジュール4は、それらを合計したワイヤレスノイズ信号wを入力する。なお、逆拡散モジュール4に設ける第一の受信インターフェース部73と第二の受信インターフェース部74とは、機能上問題がなければいずれか一方を共用しても良いものである。
The configuration of FIG. 37 is the same as the configuration of the fourth embodiment shown in FIGS. 33 and 34, in which the transmission medium is a wireless transmission medium, and the spreading module 3, the despreading module 4, and the noise signal supply unit 2 are In this configuration, a transmission / reception interface unit is provided in the input / output part.
In the noise signal supply unit 2, the transmission interface unit 70 transmits the elementary noise signal x E generated by the elementary noise signal source 10 to the wireless transmission medium 11 as a wireless elementary noise signal w E. In the diffusion module 3, the reception interface unit 71 by entering a wireless noise signal w W wireless transmission medium 11 as a noise signal x T, which was supplied to the diffusion carrier processing means 13, transmission interface 72 spread output object s Is transmitted to the wireless transmission medium 11 as a wireless diffusion output object w S.
Despreading module 4, supplied to the first wireless noise signal w W noise signal x inputted as R despreading carrier processing means 13 of the receiving interface unit 73 is a wireless transmission medium 11, a second receiving interface 74 Supplies the wireless noise signal w W of the wireless transmission medium 11 to the despreading means 16 as the despread input object h including the spread output object s.
In the wireless transmission medium 11, the wireless elementary noise signal w E supplied by the noise signal supply unit 2, the wireless diffusion output object w S supplied by the diffusion module 3, and noise that enters the wireless transmission medium 11 from the internal and external noise sources 12. w N and the signal m, such as communication other than the transmission system performing communications is overlapped with a transmission medium 11, diffusion modules 3 and despreading module 4, the wireless noise signal w W which is the sum of them Enter. Note that the first reception interface unit 73 and the second reception interface unit 74 provided in the despreading module 4 may share one of them if there is no problem in function.
 以下では、幾つかの伝送媒体とその伝送媒体を介して伝送する信号形態をワイヤレス方式の例として具体的に説明する。
 ここに示すのは伝送媒体あるいはその伝送媒体を介して伝送する信号形態として使用可能な全てのものではなく、本実施形態6で示す各種要件が満足されれば同様に適用して良いものである。
Hereinafter, several transmission media and signal forms transmitted via the transmission media will be specifically described as an example of a wireless system.
This is not all of those that can be used as a transmission medium or a signal form to be transmitted through the transmission medium, but can be applied in the same manner as long as various requirements shown in the sixth embodiment are satisfied. .
(実施形態6-1)無線電波を伝送媒体とした場合
 まず、無線電波を伝送信号形態とした場合について説明する。この場合、伝送媒体は無線電波を伝搬させる空間となる。
 図37の構成において、送信インターフェース70、72は、例えば送信用の無線アンテナと無線送信機とを組合わせたものとなる。また、図37の構成において、受信インターフェース71、73、74は、例えば受信用の無線アンテナと無線受信機とを組合わせたものとなる。
 ノイズ信号供給部2は、素ノイズ信号源10で対オブジェクト広帯域性を有した素ノイズ信号xを発生させ、それを送信インターフェース70でワイヤレス素ノイズ信号wに変換して空間に送出する。空間には様々な無線通信信号があり、伝送媒体11を用いて通信を行っている本伝送システム以外の通信などの信号をノイズmとする。また、空間には雷放電や静電気放電、周囲の電気機器が発するものなどの様々無線ノイズがあり、それらを総合したノイズをwとする。これらのノイズm、wは前記送出信号wE、に重畳し、それらの合計した信号がワイヤレスノイズ信号wとして拡散キャリア加工手段13、逆拡散キャリア加工手段15に共通に供給される。
 拡散モジュール3及び逆拡散モジュール4は、このワイヤレス素ノイズ信号wとワイヤレス伝送空間のノイズm、wとワイヤレス伝送空間の拡散出力オブジェクトwが重畳したワイヤレス伝送空間のワイヤレスノイズ信号wをノイズ信号x、xとしてそれぞれ入力し、拡散キャリア加工手段13と逆拡散キャリア加工手段15に供給するが、それらのノイズ信号x、xを拡散キャリアcと逆拡散キャリアcを加工するためのノイズ信号として使用するためには、それらのノイズ信号x、xが相互相関確立状態でなければならない。一般に、この相互相関を低下させる要因は信号の発信点から受信点までの信号の伝搬経路差であり、それが小さいノイズ信号供給部2の近傍では相互相関確立状態が得易いので、例えば拡散キャリア加工手段13と逆拡散キャリア加工手段15は、ノイズ信号供給部2の近傍で動作させる。
(Embodiment 6-1) When radio waves are used as a transmission medium First, a case where radio waves are set as a transmission signal will be described. In this case, the transmission medium is a space through which radio waves are propagated.
In the configuration of FIG. 37, the transmission interfaces 70 and 72 are, for example, a combination of a wireless antenna for transmission and a wireless transmitter. In the configuration of FIG. 37, the reception interfaces 71, 73, and 74 are, for example, a combination of a reception wireless antenna and a wireless receiver.
Noise signal supply unit 2 generates a prime noise signal x E having a pair object broadband property under the noise signal source 10, and sends it to the space into a wireless-containing noise signal w E at the transmission interface 70. There are various wireless communication signals in the space, and a signal such as communication other than the present transmission system performing communication using the transmission medium 11 is defined as noise m. In addition, lightning discharge or discharge of static electricity in space, there are various radio noise, such as those emitted from the periphery of the electrical equipment, a comprehensive them was the noise and w N. These noises m, w N is the outgoing signal w E, superimposed on w S, is commonly supplied to the diffusion carrier processing means 13, the despreading carrier processing means 15 thereof summed signal as a wireless noise signal w W .
Diffusion module 3 and despreading module 4, a wireless noise signal w W of the wireless-containing noise signal w E and noise m wireless transmission space, w N and wireless transmission space diffusion output object w S wireless transmission space is superimposed The noise signals x T and x R are respectively input and supplied to the diffusion carrier processing means 13 and the despread carrier processing means 15, and these noise signals x T and x R are converted into the diffusion carrier c T and the despread carrier c R , respectively. In order to use them as noise signals for processing, the noise signals x T and x R must be in a cross-correlation established state. In general, a factor that lowers the cross-correlation is a signal propagation path difference from the signal transmission point to the signal reception point, and since it is easy to obtain a cross-correlation establishment state in the vicinity of the noise signal supply unit 2 that is small, for example, a spread carrier The processing means 13 and the despread carrier processing means 15 are operated in the vicinity of the noise signal supply unit 2.
 また、逆拡散モジュール4の逆拡散手段16が入力する逆拡散キャリアcは、逆拡散入力オブジェクトh中の拡散出力オブジェクトsの成分の中の拡散キャリアcの成分と相互相関確立状態である必要がある。この相互相関を低下させる要因は主にワイヤレス拡散出力オブジェクトwの発信点から受信点までの信号の伝搬経路であり、拡散モジュール3と逆拡散モジュール4間の距離を近づけると相互相関確立状態が得易いので、例えば拡散モジュール3と逆拡散モジュール4とは互いの近傍で動作させる。これは、逆拡散モジュール4の逆拡散キャリア加工手段15がノイズ信号を逆拡散キャリアcに加工する過程で逆拡散キャリアcを信号の系列方向に適当に遅延させ、逆拡散モジュール4の逆拡散手段16が入力する逆拡散キャリアcに対して拡散出力オブジェクトが拡散モジュールから逆拡散モジュールに伝送される過程で生じる信号の系列方向のずれを見かけ上小さくするようにしても良いものである。 The despread carrier c R despreading means 16 despreads module 4 enters is the component and the cross-correlation established state diffusion carrier c T in a component diffusion output object s in despreading input object h There is a need. The factor that lowers the cross-correlation is mainly the signal propagation path from the transmission point to the reception point of the wireless spread output object w S. When the distance between the spread module 3 and the despread module 4 is reduced, the cross-correlation established state is established. Since it is easy to obtain, for example, the diffusion module 3 and the despreading module 4 are operated in the vicinity of each other. This despreading the despread carrier processing means 15 of the module 4 is appropriately delayed despread carrier c R in the series direction of the signal in the course of processing the noise signal to despread carrier c R, reverse despreading module 4 those diffusion output object may be look smaller series direction of the deviation of the signal caused in the process of being transmitted to the despread module from the diffusion module relative to despread carrier c R a diffuser 16 is input .
 これにより、本発明の実施形態6-1によれば、平易な部品で、小規模な構成で無線電波方式のスペクトル拡散通信を行うことが出来る。
 従来、RFIDや小型の無線リモコンなどの小規模な構成の無線通信デバイスではスペクトル拡散通信は用いられてこなかったが、本発明の実施形態6-1を適用すれば、それらにスペクトル拡散通信に特有の、耐ノイズ性や微小な電力密度で通信できる能力、多重性の高さ、セキュリティ性が高いなどの特徴を与えることができる。
Thus, according to the embodiment 6-1 of the present invention, it is possible to perform spread spectrum communication of a radio wave system with simple components and a small configuration.
Conventionally, spread spectrum communication has not been used in a small-sized wireless communication device such as an RFID or a small wireless remote controller. It is possible to give features such as noise resistance, ability to communicate with a minute power density, high multiplicity, and high security.
(実施形態6-2)音響信号を伝送媒体とした場合
 次に、音響信号を伝送信号形態とした場合について説明する。音響信号には、例えば可聴周波数帯の信号や超音波帯や超低周波帯の信号があり、どのようなものを用いても良い。この場合、伝送媒体は例えば空気である。そのほかに、伝送媒体には、ガスや粉体、水や機械油や石油等の液体、コンクリートや鉄骨や配管、鋼索、レールなどの固体、人体などいろいろなものが考えられる。
 図37の構成において、送信インターフェース70、72は、例えばスピーカと音響アンプとを組合わせたものとなる。また、図37の構成において、受信インターフェース71、73、74は、例えばマイクロフォンとマイクアンプとを組合わせたものとなる。
 ノイズ信号供給部2は素ノイズ信号源10で対オブジェクト広帯域性を有した素ノイズ信号xを発生させ、それを送信インターフェース70でワイヤレス素ノイズ信号wに変換して空間に送出する。また、拡散モジュールが出力する拡散出力オブジェクトsも送信インターフェース72で送出信号wに変換されて空間に送出される。空間には様々な音があり、伝送媒体11を用いて通信を行っている本伝送システム以外の通信の音をノイズmとする。また、空間にはそれ以外の音があり、それを総合したものをノイズwとする。これらのノイズm、wは前記送出信号w、wに重畳し、それらの合計した信号がワイヤレスノイズ信号wとなる。
 拡散モジュール3と逆拡散モジュール4は、このワイヤレス素ノイズ信号wとワイヤレス伝送空間のノイズm、wとワイヤレス伝送空間の拡散出力オブジェクトwが重畳した前記ワイヤレス伝送空間のワイヤレスノイズ信号wをノイズ信号x、xとしてそれぞれ入力し、拡散キャリア加工手段と逆拡散キャリア加工手段に供給するが、それらのノイズ信号x、xを拡散キャリアと逆拡散キャリアを加工するためのノイズ信号として使用するためには、それらのノイズ信号x、xが相互相関確立状態でなければならない。一般に、この相互相関を低下させる要因は信号の発信点から受信点までの信号の伝搬経路差であり、それが小さいノイズ信号供給部2の近傍では相互相関確立状態が得易いので、例えば拡散キャリア加工手段13と逆拡散キャリア加工手段15は、ノイズ信号供給部2の近傍で動作させる。
(Embodiment 6-2) When an acoustic signal is used as a transmission medium Next, a case where an acoustic signal is in a transmission signal form will be described. The acoustic signal includes, for example, an audible frequency band signal, an ultrasonic band, and an ultra-low frequency band signal, and any signal may be used. In this case, the transmission medium is, for example, air. In addition, there are various transmission media such as gas, powder, liquid such as water, machine oil, and petroleum, solid such as concrete, steel frame, piping, steel cord, rail, and human body.
In the configuration of FIG. 37, the transmission interfaces 70 and 72 are, for example, a combination of a speaker and an acoustic amplifier. In the configuration of FIG. 37, the reception interfaces 71, 73, and 74 are, for example, a combination of a microphone and a microphone amplifier.
Noise signal supply unit 2 generates a prime noise signal x E having a pair object broadband property under the noise signal source 10, and sends it to the space into a wireless-containing noise signal w E at the transmission interface 70. The diffusion output object s output from the diffusion module is also converted into a transmission signal w S by the transmission interface 72 and transmitted to the space. There are various sounds in the space, and the sound of communication other than the present transmission system that performs communication using the transmission medium 11 is defined as noise m. In addition, the space there are other sounds, to what was overall it with noise w N. These noises m, w N is superimposed the outgoing signal w E, a w S, their sum signal is a wireless noise signal w W.
Despreading module 4 and the diffusion module 3, the noise m of the wireless-containing noise signal w E and wireless transmission space, w N and wireless noise signal w W of the wireless transmission space diffusion output object w S is superimposed wireless transmission space Are input as noise signals x T and x R , respectively, and supplied to the diffusion carrier processing means and the despread carrier processing means. The noise signals x T and x R are noises for processing the diffusion carrier and the despread carrier. In order to use them as signals, the noise signals x T and x R must be in a cross-correlation established state. In general, a factor that lowers the cross-correlation is a signal propagation path difference from the signal transmission point to the signal reception point, and since it is easy to obtain a cross-correlation establishment state in the vicinity of the noise signal supply unit 2 that is small, for example, a spread carrier The processing means 13 and the despread carrier processing means 15 are operated in the vicinity of the noise signal supply unit 2.
 また、逆拡散モジュール4の逆拡散手段16が入力する逆拡散キャリアcは、逆拡散入力オブジェクトh中の拡散出力オブジェクトsの成分の中の拡散キャリアcの成分と相互相関確立状態である必要がある。この相互相関を低下させる要因は主にワイヤレス拡散出力オブジェクトwの発信点から受信点までの信号の伝搬経路であり、拡散モジュール3と逆拡散モジュール4間の距離を近づけると相互相関確立状態が得易いので、例えば拡散モジュール3と逆拡散モジュール4とは互いの近傍で動作させる。これは、逆拡散モジュール4の逆拡散キャリア加工手段15がノイズ信号を逆拡散キャリアcに加工する過程で逆拡散キャリアcを信号の系列方向に適当に遅延させ、逆拡散モジュール4の逆拡散手段16が入力する逆拡散キャリアcに対して拡散出力オブジェクトが拡散モジュールから逆拡散モジュールに伝送される過程で生じる信号の系列方向のずれを見かけ上小さくするようにしても良いものである。 The despread carrier c R despreading means 16 despreads module 4 enters is the component and the cross-correlation established state diffusion carrier c T in a component diffusion output object s in despreading input object h There is a need. The factor that lowers the cross-correlation is mainly the signal propagation path from the transmission point to the reception point of the wireless spread output object w S. When the distance between the spread module 3 and the despread module 4 is reduced, the cross-correlation established state is established. Since it is easy to obtain, for example, the diffusion module 3 and the despreading module 4 are operated in the vicinity of each other. This despreading the despread carrier processing means 15 of the module 4 is appropriately delayed despread carrier c R in the series direction of the signal in the course of processing the noise signal to despread carrier c R, reverse despreading module 4 those diffusion output object may be look smaller series direction of the deviation of the signal caused in the process of being transmitted to the despread module from the diffusion module relative to despread carrier c R a diffuser 16 is input .
 これにより、本実施形態6-2によれば、平易な部品で、小規模な構成で音響信号方式のスペクトル拡散通信を行うことが出来る。
 従来、超音波リモコンやセンシングなどの小規模な構成の音響信号デバイスではスペクトル拡散通信は用いられてこなかったが、本実施形態6-2を適用すれば、それらにスペクトル拡散通信に特有の、耐ノイズ性や微小な電力密度で通信できる能力、多重性の高さ、セキュリティ性が高いなどの特徴を与えることができる。
As a result, according to the present embodiment 6-2, it is possible to perform the spread spectrum communication of the acoustic signal system with a simple configuration and a small configuration.
Conventionally, spread spectrum communication has not been used in small-scale acoustic signal devices such as an ultrasonic remote controller and sensing. However, if the present embodiment 6-2 is applied, the spread spectrum communication is unique to the spread spectrum communication. Features such as noise, ability to communicate with minute power density, high multiplicity, and high security can be given.
(実施形態6-3)光信号を伝送媒体とした場合
 次に、光信号を伝送信号形態とした場合について説明する。光信号には、可視光の信号や、赤外領域の信号、紫外領域の信号があり、そのほか類似したものとして、放射線のようなものがあり、どのようなものを用いても良い。この場合、伝送媒体は例えば大気中である。そのほかに、伝送媒体には、宇宙空間、ガス、水やオイルなどの液体、ガラスや光ファイバなどの固体などいろいろなものが考えられる。
 図37の構成において、送信インターフェース70、72は、例えば発光ダイオード(LED)とLED駆動アンプとを組合わせたものとなる。また、図37の構成において、受信インターフェース71、73、74は、例えばフォトトランジスタとフォトトランジスタアンプとを組合わせたものとなる。
 ノイズ信号供給部2は素ノイズ信号源10で対オブジェクト広帯域性を有した素ノイズ信号xを発生させ、それを送信インターフェース70でワイヤレス素ノイズ信号wに変換して空間に送出する。また、拡散モジュールが出力する拡散出力オブジェクトsも送信インターフェース72で送出信号wに変換されて空間に送出される。空間には様々な光があり、伝送媒体11を用いて通信を行っている本伝送システム以外の通信の光をノイズmとする。また、空間にはそれ以外の光があり、それを総合したものをノイズwとする。これらのノイズm、wは前記送出信号w、wに重畳し、それらの合計した信号がワイヤレスノイズ信号wとなる。
 拡散モジュール及び逆拡散モジュールは、このワイヤレス素ノイズ信号wとワイヤレス伝送空間のノイズm、wとワイヤレス伝送空間の拡散出力オブジェクトwが重畳した前記ワイヤレス伝送空間のワイヤレスノイズ信号wをノイズ信号x、xとしてそれぞれ入力し、拡散キャリア加工手段及び逆拡散キャリア加工手段に供給するが、それらのノイズ信号x、xを拡散キャリア及び逆拡散キャリアを加工するためのノイズ信号として使用するためには、それらのノイズ信号x、xが相互相関確立状態でなければならない。一般に、この相互相関を低下させる要因は信号の発信点から受信点までの信号の伝搬経路差であり、それが小さいノイズ信号供給部2の近傍では相互相関確立状態が得易いので、例えば拡散キャリア加工手段13と逆拡散キャリア加工手段15は、ノイズ信号供給部2の近傍で動作させる。
(Embodiment 6-3) Case where optical signal is used as transmission medium Next, a case where an optical signal is used as a transmission signal will be described. The optical signal includes a visible light signal, an infrared region signal, and an ultraviolet region signal. Other similar signals include radiation, and any signal may be used. In this case, the transmission medium is, for example, in the atmosphere. In addition, various transmission media may be used such as outer space, gas, liquid such as water and oil, and solid such as glass and optical fiber.
In the configuration of FIG. 37, the transmission interfaces 70 and 72 are, for example, a combination of a light emitting diode (LED) and an LED drive amplifier. In the configuration of FIG. 37, the reception interfaces 71, 73, and 74 are, for example, a combination of a phototransistor and a phototransistor amplifier.
Noise signal supply unit 2 generates a prime noise signal x E having a pair object broadband property under the noise signal source 10, and sends it to the space into a wireless-containing noise signal w E at the transmission interface 70. The diffusion output object s output from the diffusion module is also converted into a transmission signal w S by the transmission interface 72 and transmitted to the space. There are various lights in the space, and the light of communication other than the present transmission system that performs communication using the transmission medium 11 is defined as noise m. In addition, the space there are other light, to what was overall it with noise w N. These noises m, w N is superimposed the outgoing signal w E, a w S, their sum signal is a wireless noise signal w W.
Diffusion module and despreading module, noise m of the wireless-containing noise signal w E and wireless transmission space, w N and noise wireless noise signal w W of the wireless transmission space diffusion output object w S wireless transmission space is superimposed The signals x T and x R are respectively input and supplied to the diffusion carrier processing means and the despread carrier processing means, and these noise signals x T and x R are used as noise signals for processing the diffusion carrier and the despread carrier. In order to use them, the noise signals x T and x R must be in a cross-correlation established state. In general, a factor that lowers the cross-correlation is a signal propagation path difference from the signal transmission point to the signal reception point, and since it is easy to obtain a cross-correlation establishment state in the vicinity of the noise signal supply unit 2 that is small, for example, a spread carrier The processing means 13 and the despread carrier processing means 15 are operated in the vicinity of the noise signal supply unit 2.
 また、逆拡散モジュール4の逆拡散手段16が入力する逆拡散キャリアcは、逆拡散入力オブジェクトh中の拡散出力オブジェクトsの成分の中の拡散キャリアcの成分と相互相関確立状態である必要がある。この相互相関を低下させる要因は主にワイヤレス拡散出力オブジェクトwの発信点から受信点までの信号の伝搬経路であり、拡散モジュール3と逆拡散モジュール4間の距離を近づけると相互相関確立状態が得易いので、例えば拡散モジュール3と逆拡散モジュール4とは互いの近傍で動作させる。これは、逆拡散モジュール4の逆拡散キャリア加工手段15がノイズ信号を逆拡散キャリアcに加工する過程で逆拡散キャリアcを信号の系列方向に適当に遅延させ、逆拡散モジュール4の逆拡散手段16が入力する逆拡散キャリアcに対して拡散出力オブジェクトが拡散モジュールから逆拡散モジュールに伝送される過程で生じる信号の系列方向のずれを見かけ上小さくするようにしても良いものである。 The despread carrier c R despreading means 16 despreads module 4 enters is the component and the cross-correlation established state diffusion carrier c T in a component diffusion output object s in despreading input object h There is a need. The factor that lowers the cross-correlation is mainly the signal propagation path from the transmission point to the reception point of the wireless spread output object w S. When the distance between the spread module 3 and the despread module 4 is reduced, the cross-correlation established state is established. Since it is easy to obtain, for example, the diffusion module 3 and the despreading module 4 are operated in the vicinity of each other. This despreading the despread carrier processing means 15 of the module 4 is appropriately delayed despread carrier c R in the series direction of the signal in the course of processing the noise signal to despread carrier c R, reverse despreading module 4 those diffusion output object may be look smaller series direction of the deviation of the signal caused in the process of being transmitted to the despread module from the diffusion module relative to despread carrier c R a diffuser 16 is input .
 これにより、本実施形態6-3によれば、平易な部品で、小規模な構成で光信号方式のスペクトル拡散通信を行うことが出来る。
 従来、光リモコンやセンシングなどの小規模な構成の光信号デバイスではスペクトル拡散通信は用いられてこなかったが、本発明の実施形態6-3を適用すれば、それらにスペクトル拡散通信に特有の、耐ノイズ性や微小な電力密度で通信できる能力、多重性の高さ、セキュリティ性が高いなどの特徴を与えることができる。
Thus, according to the sixth embodiment, optical signal spread spectrum communication can be performed with simple components and a small configuration.
Conventionally, spread spectrum communication has not been used in small-scale optical signal devices such as optical remote controllers and sensing. However, if Embodiment 6-3 of the present invention is applied, they are specific to spread spectrum communication. Features such as noise resistance, ability to communicate with minute power density, high multiplicity, and high security can be given.
(実施形態6-4)磁気信号を伝送媒体とした場合
 次に、磁気信号を伝送信号形態とした場合について説明する。この場合、伝送媒体は例えば空間や鉄骨などの固体、ガスや水、人体などである。
 図37の構成において、送信インターフェース70、72は、例えば送信コイルとコイル駆動アンプとを組合わせたものとなる。また、図37の構成において、受信インターフェース71、73、74は、例えば受信コイルと受信アンプとを組合わせたものとなる。
 ノイズ信号供給部2は素ノイズ信号源10で対オブジェクト広帯域性を有した素ノイズ信号xを発生させ、それを送信インターフェース70でワイヤレス素ノイズ信号wに変換して空間に送出する。また、拡散モジュールが出力する拡散出力オブジェクトsも送信インターフェース72で送出信号wに変換されて空間に送出される。空間には様々な磁界があり、伝送媒体11を用いて通信を行っている本伝送システム以外の通信の磁界をノイズmとする。また、空間にはそれ以外の磁界があり、それを総合したものをノイズwとする。これらのノイズm、wは前記送出信号w、wに重畳し、それらの合計した信号がワイヤレスノイズ信号wとなる。
 拡散モジュール及び逆拡散モジュールは、このワイヤレス素ノイズ信号wとワイヤレス伝送空間のノイズm、wとワイヤレス伝送空間の拡散出力オブジェクトwが重畳した前記ワイヤレス伝送空間のワイヤレスノイズ信号wをノイズ信号x、xとしてそれぞれ入力し、拡散キャリア加工手段及び逆拡散キャリア加工手段に供給するが、それらのノイズ信号x、xを拡散キャリア及び逆拡散キャリアを加工するためのノイズ信号として使用するためには、それらのノイズ信号x、xが相互相関確立状態でなければならない。一般に、この相互相関を低下させる要因は信号の発信点から受信点までの信号の伝搬経路差であり、それが小さいノイズ信号供給部2の近傍では相互相関確立状態が得易いので、例えば拡散キャリア加工手段13と逆拡散キャリア加工手段15は、ノイズ信号供給部2の近傍で動作させる。
(Embodiment 6-4) Case where magnetic signal is used as transmission medium Next, a case where a magnetic signal is used as a transmission signal will be described. In this case, the transmission medium is, for example, a solid such as a space or a steel frame, gas or water, or a human body.
In the configuration of FIG. 37, the transmission interfaces 70 and 72 are, for example, a combination of a transmission coil and a coil drive amplifier. In the configuration of FIG. 37, the reception interfaces 71, 73, and 74 are, for example, a combination of a reception coil and a reception amplifier.
Noise signal supply unit 2 generates a prime noise signal x E having a pair object broadband property under the noise signal source 10, and sends it to the space into a wireless-containing noise signal w E at the transmission interface 70. The diffusion output object s output from the diffusion module is also converted into a transmission signal w S by the transmission interface 72 and transmitted to the space. There are various magnetic fields in the space, and a magnetic field of communication other than the present transmission system that performs communication using the transmission medium 11 is defined as noise m. In addition, the space has a magnetic field other than that, the thing that was comprehensive it with noise w N. These noises m, w N is superimposed the outgoing signal w E, a w S, their sum signal is a wireless noise signal w W.
Diffusion module and despreading module, noise m of the wireless-containing noise signal w E and wireless transmission space, w N and noise wireless noise signal w W of the wireless transmission space diffusion output object w S wireless transmission space is superimposed The signals x T and x R are respectively input and supplied to the diffusion carrier processing means and the despread carrier processing means, and these noise signals x T and x R are used as noise signals for processing the diffusion carrier and the despread carrier. In order to use them, the noise signals x T and x R must be in a cross-correlation established state. In general, a factor that lowers the cross-correlation is a signal propagation path difference from the signal transmission point to the signal reception point, and since it is easy to obtain a cross-correlation establishment state in the vicinity of the noise signal supply unit 2 that is small, for example, a spread carrier The processing means 13 and the despread carrier processing means 15 are operated in the vicinity of the noise signal supply unit 2.
 また、逆拡散モジュール4の逆拡散手段16が入力する逆拡散キャリアcは、逆拡散入力オブジェクトh中の拡散出力オブジェクトsの成分の中の拡散キャリアcの成分と相互相関確立状態である必要がある。この相互相関を低下させる要因は主にワイヤレス拡散出力オブジェクトwの発信点から受信点までの信号の伝搬経路であり、拡散モジュール3と逆拡散モジュール4間の距離を近づけると相互相関確立状態が得易いので、例えば拡散モジュール3と逆拡散モジュール4とは互いの近傍で動作させる。これは、逆拡散モジュール4の逆拡散キャリア加工手段15がノイズ信号を逆拡散キャリアcに加工する過程で逆拡散キャリアcを信号の系列方向に適当に遅延させ、逆拡散モジュール4の逆拡散手段16が入力する逆拡散キャリアcに対して拡散出力オブジェクトが拡散モジュールから逆拡散モジュールに伝送される過程で生じる信号の系列方向のずれを見かけ上小さくするようにしても良いものである。 The despread carrier c R despreading means 16 despreads module 4 enters is the component and the cross-correlation established state diffusion carrier c T in a component diffusion output object s in despreading input object h There is a need. The factor that lowers the cross-correlation is mainly the signal propagation path from the transmission point to the reception point of the wireless spread output object w S. When the distance between the spread module 3 and the despread module 4 is reduced, the cross-correlation established state is established. Since it is easy to obtain, for example, the diffusion module 3 and the despreading module 4 are operated in the vicinity of each other. This despreading the despread carrier processing means 15 of the module 4 is appropriately delayed despread carrier c R in the series direction of the signal in the course of processing the noise signal to despread carrier c R, reverse despreading module 4 those diffusion output object may be look smaller series direction of the deviation of the signal caused in the process of being transmitted to the despread module from the diffusion module relative to despread carrier c R a diffuser 16 is input .
 これにより、本発明の実施形態6-4によれば、平易な部品で、小規模な構成で光信号方式のスペクトル拡散通信を行うことが出来る。
 従来、磁気カードや磁気式センシングなどの小規模な構成の時期信号デバイスではスペクトル拡散通信は用いられてこなかったが、本発明の実施形態6-4を適用すれば、それらにスペクトル拡散通信に特有の、耐ノイズ性や微小な電力密度で通信できる能力、多重性の高さ、セキュリティ性が高いなどの特徴を与えることができる。また、磁界に代えて電界を用いても同様である。その他の構成及びその作用効果は前述した図1の実施形態1の場合と同一になっている。
Thus, according to Embodiment 6-4 of the present invention, optical signal spread spectrum communication can be performed with simple components and a small-scale configuration.
Conventionally, spread spectrum communication has not been used in a small-scale timing signal device such as a magnetic card or magnetic sensing. However, if Embodiment 6-4 of the present invention is applied, the spread spectrum communication is unique to them. It is possible to provide features such as noise resistance, ability to communicate with minute power density, high multiplicity, and high security. The same applies when an electric field is used instead of a magnetic field. Other configurations and the operation and effects thereof are the same as those of the first embodiment shown in FIG.
(実施形態7)
 次に、図33及び図34に示す伝送媒体11を単一の有線式とした実施形態4の応用例を実施形態7として図38に基づいて説明する。
 図38に示す本発明の実施形態7は、本発明の実施形態を鉄道模型に適用し、1本の線路上に複数の列車を別々に独立に運行して、実際の鉄道のように衝突の危険のある臨場感を提供しようとしたものである。
(Embodiment 7)
Next, an application example of the fourth embodiment in which the transmission medium 11 shown in FIGS. 33 and 34 is a single wired type will be described as a seventh embodiment with reference to FIG.
In Embodiment 7 of the present invention shown in FIG. 38, the embodiment of the present invention is applied to a railway model, and a plurality of trains are operated independently on one track, and the collision is performed as in an actual railway. It is intended to provide a sense of realism that is dangerous.
 図38において、列車83はレール11上を走行する。そして、列車には、逆拡散モジュール4が搭載され、列車を制御するコントローラ82には拡散モジュール3が搭載される。レール11は図33及び図34に示す単一の有線式の伝送媒体11に相当する。
 拡散キャリア加工手段13、拡散手段14、逆拡散キャリア加工手段15及び逆拡散手段16の構成及び動作は図33及び図34に示すものと同様である。
 図33及び図34に示す構成と相違するのは、拡散入力オブジェクトaが、列車83の動きをコントロールする制御指令であり、その制御指令が操作スイッチ部85から出力される点である。また、逆拡散手段16から出力される拡散入力オブジェクトaに基づいて列車83のモータ86の速度制御が行われる。
 レール(単一式伝送媒体)11はアンテナとして作用することにより、拡散モジュール3及び逆拡散モジュール4が設置された環境内に存在するノイズを捕捉する。その環境内に存在するノイズとは、例えば蛍光灯の放電管やインバータが発するノイズである。本伝送システムは、その蛍光灯の放電管やインバータを素ノイズ信号源10として、そしてレールに捕捉されたその蛍光灯のノイズを素ノイズ信号xとして用いる。それとは別に、レール11には例えばモータ86が発する人工雑音などのノイズxが侵入するとともに、レールを伝送媒体とするほかの通信信号源17aからの信号などのノイズmが存在し、そのレール(単一式伝送媒体)11は、伝送媒体それ自身の特性により、素ノイズ信号xにノイズx、mを重畳する。前記レールで捕捉したノイズ信号x又はこのノイズ信号xにノイズx,mが重畳した信号が図33及び図34のノイズ信号供給部2が拡散モジュール3及び逆拡散モジュール4に供給するノイズ信号xとなる。
In FIG. 38, a train 83 travels on the rail 11. The despreading module 4 is mounted on the train, and the diffusion module 3 is mounted on the controller 82 that controls the train. The rail 11 corresponds to the single wired transmission medium 11 shown in FIGS.
The configurations and operations of the diffusion carrier processing unit 13, the diffusion unit 14, the despreading carrier processing unit 15 and the despreading unit 16 are the same as those shown in FIGS.
The difference from the configuration shown in FIGS. 33 and 34 is that the diffusion input object a T is a control command for controlling the movement of the train 83, and that control command is output from the operation switch unit 85. The speed control of the motor 86 of the train 83 is performed based on the spread input object a T output from the despreading means 16.
The rail (single transmission medium) 11 acts as an antenna to capture noise existing in the environment where the diffusion module 3 and the despreading module 4 are installed. The noise existing in the environment is, for example, noise generated by a fluorescent lamp discharge tube or an inverter. This transmission system employs a discharge tube and the inverter of the fluorescent lamp as containing a noise signal source 10, and the noise of the captured fluorescence lamp rail as containing noise signal x E. Separately, with the rails 11 penetrate the noise x N of artificial noise for example the motor 86 is emitted, noise m, such as a signal from other communication signal source 17a to the rail to the transmission medium is present, the rail The (single transmission medium) 11 superimposes noises x N and m on the elementary noise signal x E due to the characteristics of the transmission medium itself. It said rail noise signal captured by x E or noise x N in the noise signal x E, the noise and supplies the signal m is superimposed noise signal supplying unit 2 of FIGS. 33 and 34 to the diffusion module 3 and despreading module 4 the signal x W.
 ノイズ信号供給部2は、その素ノイズ信号xにノイズx、mを加えた信号を、ノイズ信号xとして両キャリア加工手段13、15に共通に供給する。これにより、両キャリア加工手段13,15はノイズ信号xを共有することになる。
 拡散キャリア加工手段13は、このノイズ信号xを入力して拡散キャリアcを作成し、拡散手段14は、その拡散キャリアcを拡散入力オブジェクトaに乗じて作成した拡散出力オブジェクトsをレール11に送出する。拡散入力オブジェクトaは、操作スイッチ部に備えた操作スイッチが操作されたときに操作スイッチ部から出力される信号であり、操作スイッチの操作情報を例えばBPSKなどで一次変調した信号である。
 一方、拡散手段14が出力する拡散出力オブジェクトsを逆拡散手段16に伝送する時、レール11では、伝送媒体それ自身の特性により、拡散出力オブジェクトsと、素ノイズ信号xと、ノイズx、mとが互いに重畳する。
 この時、レール11の信号をノイズ信号xとして入力する拡散モジュール3の拡散キャリア加工手段13と逆拡散モジュール4の逆拡散キャリア加工手段15とにとっては、ノイズ信号xは、素ノイズ信号xにレール11に侵入するノイズx、mと拡散出力オブジェクトsというノイズが互いに重畳した信号と見える。
The noise signal supply unit 2 supplies a signal obtained by adding the noises x N and m to the elementary noise signal x E to both the carrier processing units 13 and 15 as a noise signal x W. Thus, both carriers processing means 13 and 15 will share the noise signal x W.
Diffusing carrier processing means 13 inputs the noise signal x W creates a diffused carrier c T, diffuser means 14, the spread output object s created by multiplying its diffusion carrier c T spread input object a T It is sent to the rail 11. Spread input object a T is a signal outputted from the operation switch unit when the operation switch provided in the operation switch section is operated, a signal obtained by primary modulation operation information of the operation switch for example BPSK or the like.
Meanwhile, when transmitting a spread output object s output from diffuser means 14 to the despreading means 16, the rail 11, the characteristics of the transmission medium itself, the diffusion output object s, and containing noise signal x E, the noise x N , M overlap each other.
In this case, for the diffusion carrier processing means 13 the despread carrier processing means 15 of the despreading module 4 of the diffusion module 3 to input a signal of the rail 11 as a noise signal x W, the noise signal x W is hydrogen noise signal x E appears to be a signal in which noises x N and m entering the rail 11 and noise of the diffuse output object s are superimposed on each other.
 逆拡散キャリア加工手段15はそのレール11の信号を車輪84を介してノイズ信号xとして入力し、これを逆拡散キャリアcに加工する。同様に逆拡散手段16は、前記したレール11の信号を逆拡散入力オブジェクトhとして入力し、その信号に前記逆拡散キャリアを乗じて伝送した拡散入力オブジェクトを逆拡散出力オブジェクトとしてモータ86に出力する。逆拡散出力オブジェクトを入力したモータ86は、一次変調された信号から操作スイッチ部85のスイッチ操作情報を復調してモータの制御信号を作成し、それに従ったモータの動作に基づいて車輪84の駆動力が調整され、例えば速度や走行方向などが制御される。 Despreading the carrier processing means 15 inputs the signal of the rail 11 as a noise signal x R through the wheel 84 is processed it to despread carrier c R. Similarly, the despreading means 16 inputs the signal of the rail 11 as a despread input object h, and outputs the spread input object transmitted by multiplying the signal by the despread carrier to the motor 86 as a despread output object. . The motor 86 to which the despread output object is input demodulates the switch operation information of the operation switch unit 85 from the primary modulated signal to create a motor control signal, and drives the wheel 84 based on the motor operation according to the motor control signal. The force is adjusted and, for example, the speed and the traveling direction are controlled.
 このように、本発明の実施形態7によれば、レールと言う既に列車への電力供給媒体に用いられている単一の有線式の伝送媒体を、さらにノイズの捕捉とノイズ信号の供給と情報の伝送とに共用してスペクトル拡散通信応用システムを構成できるものである。その他の構成及びその作用効果は前述した図33及び図34に示す実施形態4と同一になっている。 As described above, according to the seventh embodiment of the present invention, a single wired transmission medium that is already used as a power supply medium for a train, called a rail, is further used to capture noise, supply noise signals, and information. It is possible to construct a spread spectrum communication application system in common with other transmissions. Other configurations and the operation and effects thereof are the same as those of the fourth embodiment shown in FIGS. 33 and 34 described above.
(実施形態8)
 次に、図37に示すワイヤレスの実施形態6の応用例を実施形態8として図39に基づいて説明する。図39に示す本発明の実施形態8は、本発明の実施形態を盲人用の杖と信号機とに適用し、信号の情報を盲人にワイヤレスで伝達する機能を提供しようとしたものである。
(Embodiment 8)
Next, an application example of the wireless sixth embodiment shown in FIG. 37 will be described as an eighth embodiment with reference to FIG. The eighth embodiment of the present invention shown in FIG. 39 is intended to provide a function of wirelessly transmitting signal information to the blind person by applying the embodiment of the present invention to a cane and a traffic light for the blind person.
 図39において、信号機97は拡散モジュール3を備え、また、盲人が携行する杖には内部に逆拡散モジュール4を内蔵した受信機91が仕込まれている。信号機の近傍にあって、その信号機の灯器による表示に従って通行人が通行する領域には、例えば街灯の水銀灯や蛍光灯、ネオンサインの放電管、自動車のガソリンエンジンの点火システムなどのノイズを供給するノイズ源があり、本実施形態はこれらを素ノイズ信号源10とし、それらから供給されるノイズを素ノイズ信号xとして用いる。また、前記領域には、ノイズmとなる他の通信信号を発するノイズ源17a、或いは、例えば雷放電のノイズのような、前記ノイズ以外のノイズxを発するノイズ源12も存在する。 In FIG. 39, the traffic light 97 includes the diffusion module 3, and a receiver 91 incorporating the despreading module 4 is installed in a walking stick carried by a blind person. In the vicinity of traffic lights, the area where passers-by passes according to the indications by the lamps of the traffic lights, for example, noise from streetlight mercury lamps and fluorescent lights, neon sign discharge tubes, automobile gasoline engine ignition systems, etc. to a noise source, this embodiment these and containing noise signal source 10, using a noise supplied from them as containing a noise signal x E. Further, the region, noise source 17a which emits another communication signal as noise m, or such as a lightning discharge noise, there noise source 12 that emits noise x N other than the noise.
 図39での前記素ノイズ信号源10、ノイズ源17a或いはノイズ源12がノイズ信号供給部2として作用する。したがって、図39でのノイズ信号供給部2は信号機97及び信号機97の近傍にあって通行人が通行する領域にノイズ信号xを供給している。この場合、信号機97の近傍での通行領域に位置する盲人が携えている杖90に組み込んだ逆拡散モジュール4及び信号機97の拡散モジュール3と、ノイズ信号供給部2との距離をほぼ等しい距離に設定しておく。 The elementary noise signal source 10, the noise source 17 a, or the noise source 12 in FIG. 39 functions as the noise signal supply unit 2. Accordingly, the noise signal supplying section 2 in FIG. 39 passerby In the vicinity of the traffic signal 97 and signal unit 97 is supplying the noise signal x W in a region passing. In this case, the distance between the despreading module 4 and the diffusion module 3 of the traffic light 97 incorporated in the cane 90 carried by a blind person located in the traffic area in the vicinity of the traffic light 97 and the noise signal supply unit 2 are set to be substantially equal distances. Set it.
 盲人が杖90を使って信号機97の近傍の通行領域に差し掛かると、ノイズ信号供給部2は、信号機97の拡散モジュール3と杖90の逆拡散モジュール4とにノイズ信号xを共通に供給する。これにより、拡散モジュール3の拡散キャリア加工手段13と逆拡散モジュール4の逆拡散キャリア加工手段15とは、ノイズ信号供給部2からのノイズ信号xを共有することとなる。 When the blind comes to passing region in the vicinity of the signal device 97 using the wand 90, the noise signal supply unit 2, the common supply noise signal x W in despreading module 4 of the diffusion module 3 and wand 90 of the traffic signal 97 To do. Thus, the diffusion carrier processing means 13 the despread carrier processing means 15 of the despreading module 4 of the diffusion module 3, and share the noise signal x W from the noise signal supply unit 2.
 信号機97はこれらのノイズをノイズ信号xとして入力して拡散キャリアcを加工生成し、その拡散キャリアcで信号情報aをスペクトル拡散して拡散出力オブジェクトsとして発信する。
 盲人の杖90は、杖自体をアンテナとして用い、そのアンテナで信号機と共通の前記ノイズをノイズ信号xとして入力して逆拡散キャリアcを加工生成し、その逆拡散キャリアcで受信信号hにスペクトル逆拡散操作を行い、信号情報を逆拡散出力オブジェクトaとして得て何らかの報知手段98を用いて信号情報96を盲人に伝える。
 具体的に説明すると、拡散モジュール3は信号機97近傍の図示しないコントールボックスに組み込むとともに、受信アンテナ93と送信アンテナ94とを同様に信号機97近傍に設置する。
 盲人用の杖90はその目的からして金属製であり、例えばこれをノイズ信号xを受け取るアンテナとして利用する。また、杖90の内部91には、逆拡散モジュール4と音声回路8とを組み込む。
 ここで、盲人が杖90を携えて信号の状態を確認したり、信号が変わるのを待機する位置は信号の近傍とし、素ノイズ信号源10と杖90間の距離と、素ノイズ信号源10と信号機の拡散モジュールの受信アンテナ93間の距離はいずれも近く、杖が受信するノイズも信号機が受信するノイズも実用上同一と見なせるものとする。
また、信号機の拡散モジュールの受信アンテナ93と杖90間の距離も同様に充分近いものとする。
Signal device 97 generates input to processing the spread carrier c T such noise as a noise signal x T, transmits the signal information a T at the diffusion carrier c T as spread spectrum to spread output object s.
Wand blind 90 uses a cane itself as an antenna, the despread carrier c R Enter generate processed in common the noise and traffic at the antenna as a noise signal x R, the received signal in the despread carrier c R A spectrum despreading operation is performed on h, signal information is obtained as a despread output object a R , and signal information 96 is transmitted to a blind person using some notification means 98.
More specifically, the spreading module 3 is incorporated in a control box (not shown) near the traffic signal 97, and the reception antenna 93 and the transmission antenna 94 are similarly installed near the traffic signal 97.
Cane 90 for blind is made of metal and from its purpose, use for example this as an antenna for receiving the noise signal x W. Further, the despreading module 4 and the audio circuit 8 are incorporated in the interior 91 of the cane 90.
Here, the position where the blind person carries the cane 90 to check the state of the signal or waits for the signal to change is in the vicinity of the signal, the distance between the elementary noise signal source 10 and the cane 90, and the elementary noise signal source 10 It is assumed that the distance between the receiving antennas 93 of the diffusion module of the traffic signal is close, and the noise received by the walking stick and the noise received by the traffic signal can be regarded as practically the same.
Similarly, the distance between the receiving antenna 93 and the wand 90 of the diffusion module of the traffic light is also sufficiently close.
 この環境では、素ノイズ信号源からのノイズxと、他の通信の信号mと、拡散モジュールが送出する拡散出力オブジェクトsとが互いに重畳してなるノイズ信号xは、信号機側の拡散モジュール3の拡散キャリア加工手段13と、杖側の逆拡散モジュール4の逆拡散キャリア加工手段15とに同一の信号として入力される。
 信号機90の灯器による表示が例えば赤から青に変化すると、その変化を示す情報は信号機90内で例えばBPSKで一次変調された拡散入力オブジェクトaとなって拡散手段14に入力され、拡散手段14は、拡散キャリア加工手段13が加工作成した拡散キャリアcを前記拡散入力オブジェクトaに乗じて拡散出力オブジェクトsを作成し、それを送信アンテナ94から空間に出力する。
In this environment, the noise x E from containing noise signal source, the signal m the other communication, the noise signal x W diffusion and output object s is superimposed each other diffusion module sends the spreading module of the signal-side 3 and the despread carrier processing means 15 of the wand side despreading module 4 are input as the same signal.
When the display by the lamp of the traffic light 90 changes from, for example, red to blue, information indicating the change is input to the diffusion means 14 as a diffusion input object a T that is first-order modulated with BPSK in the traffic light 90, for example. 14 creates a spread output object s by multiplying the spread input object a T by the spread carrier c T processed and created by the spread carrier processing means 13, and outputs it to the space from the transmission antenna 94.
 盲人の杖90は、杖そのものがアンテナとなってその環境の信号を捕捉する。捕捉した信号は、信号機97からの拡散出力オブジェクトsを含むその環境のノイズである。盲人の杖90は、そのノイズを受信すると、その信号を、逆拡散キャリア加工手段15にはノイズ信号xとして、そして逆拡散手段16には逆拡散入力オブジェクトhとして供給する。逆拡散キャリア加工手段15はそのノイズ信号xを加工して逆拡散キャリアcを作成し、逆拡散手段16に供給する。逆拡散手段16は、逆拡散キャリア加工手段15からの逆拡散キャリアcを逆拡散入力オブジェクトhに乗じて拡散入力オブジェクトaの成分を逆拡散・抽出し、逆拡散出力オブジェクトcとして音声回路98に出力する。出力された逆拡散出力オブジェクトaは、音声回路98に入力されて、例えば音声96として信号機97の表示が赤から青に変化したことを盲人に知らせる。 The cane 90 of the blind person captures the environmental signal by using the cane itself as an antenna. The captured signal is the environmental noise including the diffuse output object s from the traffic light 97. Blind wand 90 receives the noise and supplies the signal as a noise signal x R is despread carrier processing means 15, and the despreading means 16 as despreading input object h. Despreading the carrier processing means 15 creates a despread carrier c R by processing the noise signal x R, supplied to the despreading means 16. Despreading means 16, a component of the spread input object a T despread-extracted by multiplying the despread carrier c R from despreading carrier processing means 15 to despread the input object h, audio as despreading output object c R Output to circuit 98. The output despread output object a R is input to the audio circuit 98 to inform the blind person that the display of the traffic light 97 has changed from red to blue, for example, as audio 96.
 このように、本発明の実施形態8によれば、共有した空間のノイズをノイズ信号として共有し、その共通のノイズ信号を用いてスペクトル拡散通信応用システムを構成できるものである。その他の構成及びその作用効果は図33及び図34に示す実施形態4の場合と同一に成っている。 Thus, according to the eighth embodiment of the present invention, the noise in the shared space can be shared as a noise signal, and a spread spectrum communication application system can be configured using the common noise signal. Other configurations and the operation and effects thereof are the same as those of the fourth embodiment shown in FIGS.
 以上説明したように本発明の実施形態によれば、スペクトル拡散キャリア加工手段とスペクトル逆拡散キャリア加工手段とが不規則性を有するノイズ信号を共有することによって前記ノイズ信号を相互相関のとれた不規則性の前記スペクトル拡散キャリアと前記スペクトル逆拡散キャリアに加工するとともに、前記スペクトル拡散キャリアの値如何に関わらず前記スペクトル拡散キャリアの値と前記スペクトル逆拡散キャリアの値との積が定数を示す前記スペクトル拡散キャリアと前記スペクトル逆拡散キャリアの対を得るものであるものであるため、、積極的な同期操作を行うことなく、自由空間に存在する不規則性を有するノイズを用いてスペクトル拡散キャリア及びスペクトル逆拡散キャリアを生成することができる。さらに、耐ノイズ性の高さと即応性とを両立させたオブジェクト伝送システムを提供できる。 As described above, according to the embodiment of the present invention, the spread spectrum carrier processing means and the spread spectrum despread carrier processing means share the noise signal having irregularity so that the noise signal is correlated with each other. The regular spread spectrum carrier and the spread spectrum despread carrier are processed, and the product of the spread spectrum carrier value and the spread spectrum carrier value indicates a constant regardless of the spread spectrum carrier value. Since it is to obtain a pair of a spread spectrum carrier and the spread spectrum spread carrier, the spread spectrum carrier and the noise having irregularity existing in free space can be obtained without performing an active synchronization operation. Spectral despread carriers can be generated. Furthermore, it is possible to provide an object transmission system that achieves both high noise resistance and quick response.
産業上の利用分野Industrial application fields
 本発明によれば、スペクトル拡散通信方式の技術を情報通信や測距などの目的ばかりでなく、即応やより高い秘話性、小型、低消費電力などの新たな特徴とともに、新たな用途におけるオブジェクトの伝送に応用することができるものである。 According to the present invention, the spread spectrum communication system technology is used not only for information communication and ranging, but also for new features such as quick response, higher secrecy, small size, and low power consumption. It can be applied to transmission.
本発明の実施形態に係るキャリア加工装置をスペクトル拡散情報伝送システムに応用した例をブロック図である。It is a block diagram which applied the carrier processing apparatus which concerns on embodiment of this invention to the spread spectrum information transmission system. 図1に開示した実施形態の全体的な動作を示すフローチャートである。It is a flowchart which shows the whole operation | movement of embodiment disclosed in FIG. 本発明の実施形態に係るキャリア加工装置の応用例を示すブロック図である。It is a block diagram which shows the application example of the carrier processing apparatus which concerns on embodiment of this invention. 本発明の実施形態に係るキャリア加工装置の応用例を示すブロック図である。It is a block diagram which shows the application example of the carrier processing apparatus which concerns on embodiment of this invention. 平面画像の構成を示す図である。It is a figure which shows the structure of a plane image. 本発明の実施形態に係るキャリア加工装置を平面画像の伝送に応用した例において、を示すブロック図である。It is a block diagram which shows in the example which applied the carrier processing apparatus which concerns on embodiment of this invention to transmission of a plane image. 本発明の実施形態に係るキャリア加工装置を平面画像の伝送に応用した例を示すブロック図である。It is a block diagram which shows the example which applied the carrier processing apparatus which concerns on embodiment of this invention to transmission of a planar image. 本発明の実施形態に係るキャリア加工装置に用いることが可能な拡散キャリア及び逆拡散キャリアの形態例を示す図である。It is a figure which shows the form example of the spreading | diffusion carrier and de-spreading carrier which can be used for the carrier processing apparatus which concerns on embodiment of this invention. 本発明の実施形態に係るキャリア加工装置におけるアナログ構成の拡散キャリア加工手段及び逆拡散キャリア加工手段の具体例を示すブロック図である。It is a block diagram which shows the specific example of the spreading | diffusion carrier processing means of an analog structure, and a de-spreading carrier processing means in the carrier processing apparatus which concerns on embodiment of this invention. 図9に示す拡散キャリア加工手段及び逆拡散キャリア加工手段についての入力特性を示す図である。It is a figure which shows the input characteristic about the spreading | diffusion carrier processing means and de-diffusion carrier processing means which are shown in FIG. 図9に示す拡散キャリア加工手段及び逆拡散キャリア加工手段についての入力特性を示す図である。It is a figure which shows the input characteristic about the spreading | diffusion carrier processing means and de-diffusion carrier processing means which are shown in FIG. 本発明の実施形態に係るキャリア加工装置におけるディジタル構成の拡散キャリア加工手段と逆拡散キャリア加工手段の具体例を示すブロック図である。It is a block diagram which shows the specific example of the spreading | diffusion carrier processing means of a digital structure, and a de-spreading carrier processing means in the carrier processing apparatus which concerns on embodiment of this invention. 図12に示す拡散キャリア加工手段及び逆拡散キャリア加工手段についての入力特性を示す図である。It is a figure which shows the input characteristic about the spreading | diffusion carrier processing means and de-diffusion carrier processing means which are shown in FIG. 図12に示す拡散キャリア加工手段及び逆拡散キャリア加工手段についての入力特性を示す図である。It is a figure which shows the input characteristic about the spreading | diffusion carrier processing means and de-diffusion carrier processing means which are shown in FIG. 図12に示す拡散キャリア加工手段及び逆拡散キャリア加工手段での入力特性を示す図である。It is a figure which shows the input characteristic in the spreading | diffusion carrier processing means and de-diffusion carrier processing means shown in FIG. 図12に示す拡散キャリア加工手段及び逆拡散キャリア加工手段での入力特性を示す図である。It is a figure which shows the input characteristic in the spreading | diffusion carrier processing means and de-diffusion carrier processing means shown in FIG. 図15及び図6に示す特性の具体的な数値例である。It is a specific numerical example of the characteristic shown in FIG.15 and FIG.6. 図15及び図6に示す特性の具体的な数値例である。It is a specific numerical example of the characteristic shown in FIG.15 and FIG.6. 図17に示した数値例に変更を加える手法を示す図である。It is a figure which shows the method of adding a change to the numerical example shown in FIG. 本発明の実施形態に係るキャリア加工装置における拡散キャリア及び逆拡散キャリア加工手段の具体例を示すブロック図である。It is a block diagram which shows the specific example of the spreading | diffusion carrier and de-diffusion carrier processing means in the carrier processing apparatus which concerns on embodiment of this invention. 本発明の実施形態に係るキャリア加工装置における拡散キャリア及び逆拡散キャリア加工手段の具体例を示すブロック図である。It is a block diagram which shows the specific example of the spreading | diffusion carrier and de-diffusion carrier processing means in the carrier processing apparatus which concerns on embodiment of this invention. ノイズ信号を拡散キャリアと逆拡散キャリアに加工する過程に遅延を設けた場合の説明図である。It is explanatory drawing at the time of providing a delay in the process which processes a noise signal into a spreading | diffusion carrier and a de-spreading carrier. ノイズ信号を拡散キャリアと逆拡散キャリアに加工する過程について、複数のノイズ信号の組合せ処理を行うための構成図である。It is a block diagram for performing a combination process of a plurality of noise signals in the process of processing a noise signal into a spread carrier and a despread carrier. ノイズ信号を拡散キャリアと逆拡散キャリアに加工する過程について、ノイズ信号のスペクトル構成の調整を行うための特性図である。It is a characteristic view for adjusting the spectrum composition of a noise signal about the process which processes a noise signal into a spreading | diffusion carrier and a de-spreading carrier. ノイズ信号を拡散キャリアと逆拡散キャリアに加工する過程について、拡散キャリア及び逆拡散キャリアを加工する信号を生成するための構成図である。It is a block diagram for producing | generating the signal which processes a spreading | diffusion carrier and a de-spreading carrier about the process which processes a noise signal into a spreading | diffusion carrier and a de-spreading carrier. 図25による信号処理の過程を説明する特性図である。It is a characteristic view explaining the process of the signal processing by FIG. ノイズ信号を拡散キャリアと逆拡散キャリアに加工する過程について、ノイズ信号を複数の加工の組合せ処理により行うための構成図である。It is a block diagram for performing the process which processes a noise signal into a spreading | diffusion carrier and a de-spreading carrier, and a noise signal by the combination process of a some process. ノイズ信号を拡散キャリアと逆拡散キャリアに加工する過程について、ノイズ信号の低域制限を行う際の特性図である。It is a characteristic view at the time of performing the low-frequency restriction | limiting of a noise signal about the process which processes a noise signal into a spreading | diffusion carrier and a de-spreading carrier. ノイズ信号を拡散キャリアと逆拡散キャリアに加工する過程について、ノイズ信号の低域制限を行う際の説明図である。It is explanatory drawing at the time of performing low-frequency restriction | limiting of a noise signal about the process which processes a noise signal into a spreading | diffusion carrier and a de-spreading carrier. ノイズ信号を拡散キャリアと逆拡散キャリアに加工する過程について、ノイズ信号の高域制限を行う際の特性図である。It is a characteristic view at the time of performing the high frequency restriction | limiting of a noise signal about the process which processes a noise signal into a spreading | diffusion carrier and a de-spreading carrier. ノイズ信号を拡散キャリアと逆拡散キャリアに加工する過程について、ノイズ信号の高域制限を行う際の説明図である。It is explanatory drawing at the time of performing the high region restriction | limiting of a noise signal about the process which processes a noise signal into a spreading | diffusion carrier and a de-spreading carrier. ノイズ信号を拡散キャリアと逆拡散キャリアに加工する過程について、ノイズ信号の高域制限を行う際の説明図である。It is explanatory drawing at the time of performing the high region restriction | limiting of a noise signal about the process which processes a noise signal into a spreading | diffusion carrier and a de-spreading carrier. 図1に示す本発明の実施形態に係るスペクトル拡散情報通信システムにおける伝送媒体を1線式とした例を示す構成図である。It is a block diagram which shows the example which made the transmission medium in the spread spectrum information communication system which concerns on embodiment of this invention shown in FIG. 図1に示す本発明の実施形態に係るスペクトル拡散情報通信システムにおける伝送媒体を1線式とした例を示す構成図である。It is a block diagram which shows the example which made the transmission medium in the spread spectrum information communication system which concerns on embodiment of this invention shown in FIG. 本発明の実施形態3に係るスペクトル拡散情報通信システムの全体的な動作を示すフローチャートである。It is a flowchart which shows the whole operation | movement of the spread spectrum information communication system which concerns on Embodiment 3 of this invention. 図1に示す本発明の実施形態に係るスペクトル拡散情報通信システムにおけるノイズ信号供給部の素ノイズ信号源の一例を示す構成図である。It is a block diagram which shows an example of the elementary noise signal source of the noise signal supply part in the spread spectrum information communication system which concerns on embodiment of this invention shown in FIG. 図1に示す本発明の実施形態に係るスペクトル拡散情報通信システムにおける伝送媒体をワイヤレス式とした例を示す構成図である。It is a block diagram which shows the example which made the transmission medium in the spread spectrum information communication system which concerns on embodiment of this invention shown in FIG. 1 wireless. 本発明の実施形態3の応用例を示す構成図である。It is a block diagram which shows the application example of Embodiment 3 of this invention. 図37に示す伝送媒体をワイヤレス方式とした実施形態の応用例を示す構成図である。It is a block diagram which shows the application example of embodiment which made the transmission medium shown in FIG. 37 the wireless system. 関連する技術のスペクトル拡散通信システムであって、参照信号内蔵方式の例を示す構成図である。It is a spread spectrum communication system of a related technique, and is a configuration diagram showing an example of a reference signal built-in method. 関連する技術のスペクトル拡散通信システムであって、第一の参照信号送信方式の例を示す構成図である。It is a spread spectrum communication system of related technology, Comprising: It is a block diagram which shows the example of a 1st reference signal transmission system. 関連する技術のスペクトル拡散通信システムであって、第二の参照信号送信方式の例を示す構成図である。It is a spread-spectrum communication system of related technology, Comprising: It is a block diagram which shows the example of a 2nd reference signal transmission system.
符号の説明Explanation of symbols
1 キャリア加工部(キャリア加工装置)
2 ノイズ信号供給部
3 拡散モジュール(スペクトル拡散モジュール)
4 逆拡散モジュール(スペクトル逆拡散モジュール)
7、11 伝送媒体
13 拡散キャリア加工手段(スペクトル拡散キャリア加工手段)
14 拡散手段(スペクトル拡散手段)
15 逆拡散キャリア加工手段(スペクトル逆拡散キャリア加工手段)
16 逆拡散手段(スペクトル逆拡散手段)
1 Carrier processing section (carrier processing equipment)
2 Noise signal supply unit 3 Spread module (spread spectrum module)
4 Despreading module (Spectrum despreading module)
7, 11 Transmission medium 13 Spread carrier processing means (spread spectrum carrier processing means)
14 Spreading means (spread spectrum means)
15 Despread carrier processing means (spectrum despread carrier processing means)
16 Despreading means (spectrum despreading means)

Claims (22)

  1.  拡散入力オブジェクトを伝送する際に伝送元で必要なスペクトル拡散キャリアと伝送先で必要なスペクトル逆拡散キャリアとをそれぞれ出力するキャリア加工装置であって、ノイズ成分を信号成分として含む不規則性のノイズ信号を出力するノイズ信号供給部と、前記ノイズ信号を前記スペクトル拡散キャリアに加工するスペクトル拡散キャリア加工手段と、前記ノイズ信号を前記スペクトル逆拡散キャリアに加工するスペクトル逆拡散キャリア加工手段とを含み、前記ノイズ信号供給部は、前記ノイズ信号を前記両キャリア加工手段に共通に供給するものであり、前記スペクトル拡散キャリア加工手段と前記スペクトル逆拡散キャリア加工手段とは、前記ノイズ信号を共有することによって前記ノイズ信号を相互相関のとれた不規則性の前記スペクトル拡散キャリアと前記スペクトル逆拡散キャリアに加工するとともに、前記スペクトル拡散キャリアの値の如何に関わらず前記スペクトル拡散キャリアの値と前記スペクトル逆拡散キャリアの値との積が定数を示す前記スペクトル拡散キャリアと前記スペクトル逆拡散キャリアの対を得るものであることを特徴とするキャリア加工装置。 A carrier processing device that outputs a spread spectrum carrier required at a transmission source and a spread spectrum despread carrier required at a transmission destination when transmitting a spread input object, and includes irregular noise including a noise component as a signal component. A noise signal supply unit that outputs a signal; a spread spectrum carrier processing unit that processes the noise signal into the spread spectrum carrier; and a spread spectrum carrier processing unit that processes the noise signal into the spread spectrum carrier. The noise signal supply unit supplies the noise signal to both the carrier processing means in common, and the spread spectrum carrier processing means and the spread spectrum despread carrier processing means share the noise signal. The noise signal is cross-correlated irregularities The spread spectrum carrier is processed into the spread spectrum carrier and the spread spectrum spread carrier, and the product of the spread spectrum carrier value and the spread spectrum carrier value indicates a constant regardless of the spread spectrum carrier value. A carrier processing apparatus for obtaining a pair of a carrier and the spectrum despread carrier.
  2.  前記スペクトル拡散キャリア加工手段又は前記スペクトル逆拡散キャリア加工手段は、前記ノイズ信号を、二値信号、多値信号、或いはアナログ信号である前記キャリアに加工するものである請求項1に記載のキャリア加工装置。 The carrier processing according to claim 1, wherein the spread spectrum carrier processing means or the spread spectrum despread carrier processing means processes the noise signal into the carrier that is a binary signal, a multi-value signal, or an analog signal. apparatus.
  3.  前記ノイズ信号が、素ノイズ信号と、これに混入するノイズ成分とを含む信号である請求項1に記載のキャリア加工装置。 The carrier processing apparatus according to claim 1, wherein the noise signal is a signal including an elementary noise signal and a noise component mixed therein.
  4.  前記素ノイズ信号が、アナログ信号、離散値列又はこれらを組み合わせた信号である請求項2に記載のキャリア加工装置。 3. The carrier processing apparatus according to claim 2, wherein the elementary noise signal is an analog signal, a discrete value sequence, or a signal obtained by combining them.
  5.  前記素ノイズ信号が、ノイズ、擬似雑音信号又はこれらを組み合わせた信号である請求項2に記載のキャリア加工装置。 3. The carrier processing apparatus according to claim 2, wherein the elementary noise signal is a noise, a pseudo noise signal, or a signal obtained by combining these.
  6.  前記ノイズ成分が、前記両キャリア加工手段に入力するノイズ信号に重畳するノイズである請求項2に記載のキャリア加工装置。 The carrier processing apparatus according to claim 2, wherein the noise component is noise superimposed on a noise signal input to both the carrier processing means.
  7.  前記スペクトル拡散キャリア加工手段及び前記スペクトル逆拡散キャリア加工手段が、前記ノイズ信号を遅延させる遅延部を有する請求項1に記載のキャリア加工装置。 The carrier processing apparatus according to claim 1, wherein the spread spectrum carrier processing means and the spread spectrum despread carrier processing means include a delay unit that delays the noise signal.
  8.  前記スペクトル拡散キャリア加工手段及び前記スペクトル逆拡散キャリア加工手段が、前記ノイズ信号の周波数帯域に対する強度分布の構成を調整する手段を有する請求項1に記載のキャリア加工装置。 2. The carrier processing apparatus according to claim 1, wherein the spread spectrum carrier processing means and the spread spectrum despread carrier processing means have means for adjusting a configuration of intensity distribution with respect to a frequency band of the noise signal.
  9.  前記スペクトル拡散キャリア加工手段及び前記スペクトル逆拡散キャリア加工手段が、前記ノイズ信号に、2以上のノイズ信号を組み合わせる手段を有する請求項1に記載のキャリア加工装置。 The carrier processing apparatus according to claim 1, wherein the spread spectrum carrier processing means and the spread spectrum despread carrier processing means include means for combining the noise signal with two or more noise signals.
  10.  前記スペクトル拡散キャリア加工手段及び前記スペクトル逆拡散キャリア加工手段が、前記ノイズ信号を写像変換する手段を有する請求項1に記載のキャリア加工装置。 The carrier processing apparatus according to claim 1, wherein the spread spectrum carrier processing means and the spread spectrum despread carrier processing means have means for mapping the noise signal.
  11.  前記スペクトル拡散キャリア加工手段及び前記スペクトル逆拡散キャリア加工手段が、前記ノイズ信号に、異種のノイズ信号又はノイズ信号を加工した信号、又はノイズ信号を加工した複数の異種の信号を組み合わせる手段を有する請求項1に記載のキャリア加工装置。 The spread spectrum carrier processing means and the spread spectrum spread carrier processing means have means for combining the noise signal with a different noise signal, a signal processed with a noise signal, or a plurality of different signals processed with a noise signal. Item 2. The carrier processing apparatus according to Item 1.
  12.  前記スペクトル拡散キャリア加工手段及び前記スペクトル逆拡散キャリア加工手段が、前記ノイズ信号またはそれを加工した信号の波形の特徴点を抽出する手段を有する請求項1に記載のキャリア加工装置。 The carrier processing apparatus according to claim 1, wherein the spread spectrum carrier processing means and the reverse spectrum spread carrier processing means include means for extracting a feature point of a waveform of the noise signal or a signal obtained by processing the noise signal.
  13.  前記抽出した信号波形の特徴点を基準とした波形の信号を発生させる手段を有する請求項12に記載のキャリア加工装置。 13. The carrier processing apparatus according to claim 12, further comprising means for generating a waveform signal based on a feature point of the extracted signal waveform.
  14.  前記ノイズ信号供給部が、前記スペクトル拡散手段及び前記スペクトル逆拡散手段に前記ノイズ信号を共通に供給する有線の伝送媒体を有する請求項1に記載のキャリア加工装置。 The carrier processing apparatus according to claim 1, wherein the noise signal supply unit includes a wired transmission medium that supplies the noise signal to the spectrum spreading means and the spectrum despreading means in common.
  15.  前記ノイズ信号供給部が、前記スペクトル拡散手段及び前記スペクトル逆拡散手段に前記ノイズ信号を共通に供給する無線の伝送媒体を有する請求項1に記載のキャリア加工装置。 The carrier processing apparatus according to claim 1, wherein the noise signal supply unit includes a wireless transmission medium that supplies the noise signal to the spectrum spreading means and the spectrum despreading means in common.
  16.  スペクトル拡散通信技術を応用して拡散入力オブジェクトを伝送するオブジェクト伝送システムであって、ノイズ成分を信号成分として含む不規則性のノイズ信号を出力するノイズ信号供給部と、前記ノイズ信号を前記スペクトル拡散キャリアに加工するスペクトル拡散キャリア加工手段と、前記ノイズ信号を前記スペクトル逆拡散キャリアに加工するスペクトル逆拡散キャリア加工手段とを含み、前記スペクトル拡散キャリアで前記拡散入力オブジェクトをスペクトル拡散したスペクトル拡散出力オブジェクトを出力するスペクトル拡散手段と、前記スペクトル逆拡散キャリアで前記スペクトル拡散出力オブジェクトを含む信号から前記拡散入力ブジェクトの成分をスペクトル逆拡散して出力するスペクトル逆拡散手段とを含み、前記ノイズ信号供給部は、前記ノイズ信号を前記両キャリア加工手段に共通に供給するものであり、前記拡散キャリア加工手段と、前記逆拡散キャリア加工手段とは、前記ノイズ信号を共有することによって前記ノイズ信号を相互相関のとれた不規則性の前記スペクトル拡散キャリアと前記スペクトル逆拡散キャリアに加工するとともに、前記スペクトル拡散キャリアの値如何に関わらず前記スペクトル逆拡散キャリアの値との積が定数を示す前記スペクトル拡散キャリアと前記スペクトル逆拡散キャリアの対を得るものであり、さらに、前記スペクトル拡散手段と前記スペクトル逆拡散手段とを連繋させる伝送媒体を有することを特徴とするオブジェクト伝送システム。 An object transmission system for transmitting a spread input object by applying spread spectrum communication technology, a noise signal supply unit for outputting an irregular noise signal including a noise component as a signal component, and the spread spectrum of the noise signal A spread spectrum output object comprising spread spectrum carrier processing means for processing a carrier and spread spectrum despread carrier processing means for processing the noise signal to the spread spectrum spread carrier, wherein the spread input object is spread spectrum by the spread spectrum carrier. And a spectrum despreading unit that despreads and outputs a component of the spread input object from a signal including the spread spectrum output object by the spectrum despread carrier. The noise signal supply unit supplies the noise signal to both the carrier processing means in common, and the diffusion carrier processing means and the despread carrier processing means share the noise signal to share the noise signal. The signal is processed into cross-correlated irregular spread spectrum carrier and spread spectrum spread carrier, and the product of the spread spectrum carrier value shows a constant regardless of the spread spectrum carrier value. An object transmission system for obtaining a pair of the spread spectrum carrier and the spread spectrum spread carrier, and further comprising a transmission medium for connecting the spread spectrum means and the spread spectrum spread means.
  17.  前記ノイズ信号が、前記スペクトル拡散出力オブジェクトを含む請求項16に記載のオブジェクト伝送システム。 The object transmission system according to claim 16, wherein the noise signal includes the spread spectrum output object.
  18.  前記ノイズ信号が、多重伝送での他チャンネルのスペクトル拡散出力オブジェクトを含む請求項16に記載のオブジェクト伝送システム。 The object transmission system according to claim 16, wherein the noise signal includes a spread spectrum output object of another channel in multiplex transmission.
  19.  前記スペクトル拡散手段と前記スペクトル逆拡散手段とが、単一の伝送媒体で接続され、2以上の前記スペクトル拡散キャリ手段と2以上の前記スペクトル逆拡キャリア散手段とが、前記ノイズ信号を異なるスペクトル拡散キャリア及びスペクトル逆拡散キャリアに加工するものであり、前記スペクトル拡散手段と前記スペクトル逆拡散手段とが、前記異なるスペクトル拡散キャリア及び前記スペクトル逆拡散キャリアを用いて、前記単一の伝送媒体上でオブジェクトを並列伝送する請求項16に記載のオブジェクト伝送システム。 The spread spectrum means and the spread spectrum spread means are connected by a single transmission medium, and two or more spread spectrum carry means and two or more spread spectrum spread carriers differ in the noise signal. A spread carrier and a spectrum despread carrier, wherein the spectrum spread means and the spectrum despread means use the different spectrum spread carrier and the spectrum despread carrier on the single transmission medium. The object transmission system according to claim 16, wherein the objects are transmitted in parallel.
  20.  前記スペクトル拡散手段と前記スペクトル逆拡散手段とが、有線の伝送媒体で接続されている請求項16に記載のオブジェクト伝送システム。 The object transmission system according to claim 16, wherein the spectrum spreading means and the spectrum despreading means are connected by a wired transmission medium.
  21.  前記スペクトル拡散手段と前記スペクトル逆拡散手段とが、無線の伝送媒体で接続されている請求項16に記載のオブジェクト伝送システム。 The object transmission system according to claim 16, wherein the spectrum spreading means and the spectrum despreading means are connected by a wireless transmission medium.
  22.  スペクトル拡散通信技術を応用して拡散入力オブジェクトを伝送するオブジェクト伝送方法であって、ノイズ成分を信号成分として含む不規則性のノイズ信号を出力する工程と、前記ノイズ信号を共有することによって前記ノイズ信号を相互相関のとれた不規則性の前記スペクトル拡散キャリアと前記スペクトル逆拡散キャリアに加工するとともに、前記スペクトル拡散キャリアの値如何に関わらず前記スペクトル逆拡散キャリアの値との積が定数を示す前記スペクトル拡散キャリアと前記スペクトル逆拡散キャリアの対を得る工程と、前記スペクトル拡散キャリアで前記拡散入力オブジェクトをスペクトル拡散してスペクトル拡散出力オブジェクトを伝送する工程と、前記スペクトル逆拡散キャリアで前記スペクトル拡散出力オブジェクトを含む信号から前記拡散入力オブジェクトの成分をスペクトル逆拡散する工程とを実行することを特徴とするオブジェクト伝送方法。 An object transmission method for transmitting a spread input object by applying spread spectrum communication technology, the step of outputting an irregular noise signal including a noise component as a signal component, and the noise by sharing the noise signal The signal is processed into a cross-correlated irregular spread spectrum carrier and the spread spectrum spread carrier, and the product of the spread spectrum spread carrier value indicates a constant regardless of the spread spectrum carrier value. Obtaining a pair of the spread spectrum carrier and the spread spectrum spread carrier; spreading the spread input object with the spread spectrum carrier and transmitting the spread spectrum output object; and spreading the spread spectrum with the spread spectrum carrier. Output object Object Transmission method characterized by performing a step of spectral despreading component of the spread input object from a signal including.
PCT/JP2008/073741 2008-12-26 2008-12-26 Carrier processing device, object transmission system, and method WO2010073370A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010543704A JP5378414B2 (en) 2008-12-26 2008-12-26 Carrier processing apparatus, object transmission system and method
PCT/JP2008/073741 WO2010073370A1 (en) 2008-12-26 2008-12-26 Carrier processing device, object transmission system, and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/073741 WO2010073370A1 (en) 2008-12-26 2008-12-26 Carrier processing device, object transmission system, and method

Publications (1)

Publication Number Publication Date
WO2010073370A1 true WO2010073370A1 (en) 2010-07-01

Family

ID=42287038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/073741 WO2010073370A1 (en) 2008-12-26 2008-12-26 Carrier processing device, object transmission system, and method

Country Status (2)

Country Link
JP (1) JP5378414B2 (en)
WO (1) WO2010073370A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63275233A (en) * 1987-05-06 1988-11-11 Victor Co Of Japan Ltd Spread spectrum communication system
JP2000022593A (en) * 1998-07-03 2000-01-21 Takashi Ushita Spread spectrum transmission and reception system
JP2003036166A (en) * 2001-07-23 2003-02-07 Oki Electric Ind Co Ltd Method and device for phase shifting of pn code string
JP2006101112A (en) * 2004-09-29 2006-04-13 Texas Instr Japan Ltd Generation circuit for frequency spread spectrum waveform, and circuit using same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63275233A (en) * 1987-05-06 1988-11-11 Victor Co Of Japan Ltd Spread spectrum communication system
JP2000022593A (en) * 1998-07-03 2000-01-21 Takashi Ushita Spread spectrum transmission and reception system
JP2003036166A (en) * 2001-07-23 2003-02-07 Oki Electric Ind Co Ltd Method and device for phase shifting of pn code string
JP2006101112A (en) * 2004-09-29 2006-04-13 Texas Instr Japan Ltd Generation circuit for frequency spread spectrum waveform, and circuit using same

Also Published As

Publication number Publication date
JPWO2010073370A1 (en) 2012-05-31
JP5378414B2 (en) 2013-12-25

Similar Documents

Publication Publication Date Title
CN107122738B (en) Radio signal identification method based on deep learning model and implementation system thereof
Win et al. History and applications of UWB
JP4618082B2 (en) Transmitting apparatus, receiving apparatus, and communication system
US11581918B2 (en) Near field communications system having enhanced security
JP6328181B2 (en) Transmission signal generation detection method, communication system, and measurement system using code sequence
JPH10508725A (en) Ultra wideband communication system and method
TW200710422A (en) A parallel correlator implementation using hybrid correlation in spread-spectrum communication
JP2007097154A (en) Synchronization acquiring device and synchronization acquiring method
CN106130602B (en) A kind of CDMA coding method based on visible light indoor positioning
WO2018165944A1 (en) Touch detection method and system
Qiao et al. Biologically inspired covert underwater acoustic communication—A review
KR20150112048A (en) music-generation method based on real-time image
TWI266495B (en) Method and system of transmitting information from one to many terminals in a wireless local area network
CN103339980B (en) Cognitive radio frequency spectrum sensing is carried out via CDMA receiver coding
JP2013225888A (en) Common wave and sideband mitigation communication systems and methods for increasing communication speeds and spectral efficiency and enabling other benefits
JP5378414B2 (en) Carrier processing apparatus, object transmission system and method
US5619527A (en) Chip-based selective receiving system for a spread spectrum signal
Selmi et al. Indoor positioning with GPS and GLONASS-like signals use of new codes and a repealite-based infrastructure in a typical museum building
Pereira et al. Spread spectrum techniques in wireless communication
FI111579B (en) A spread spectrum receiver
RU2816580C1 (en) Method of transmitting discrete information using broadband signals
JP5051051B2 (en) Apparatus, method and program for embedding and extracting digital watermark information
WO2005117307A1 (en) Method for communicating by means of a noise-like carrier and device for carrying out said method
Sahu et al. Multichannel direct sequence spectrum signaling using code phase shift keying
RU2713384C1 (en) Method of transmitting information using broadband signals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08879165

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010543704

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08879165

Country of ref document: EP

Kind code of ref document: A1