WO2010067524A1 - Radio relay system, relay apparatus, transmitter apparatus, receiver apparatus, data relaying method, data transmitting method, and data receiving method - Google Patents

Radio relay system, relay apparatus, transmitter apparatus, receiver apparatus, data relaying method, data transmitting method, and data receiving method Download PDF

Info

Publication number
WO2010067524A1
WO2010067524A1 PCT/JP2009/006423 JP2009006423W WO2010067524A1 WO 2010067524 A1 WO2010067524 A1 WO 2010067524A1 JP 2009006423 W JP2009006423 W JP 2009006423W WO 2010067524 A1 WO2010067524 A1 WO 2010067524A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
mode
relay
wireless
transmission path
Prior art date
Application number
PCT/JP2009/006423
Other languages
French (fr)
Japanese (ja)
Inventor
田中昭生
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2010541981A priority Critical patent/JP5477298B2/en
Publication of WO2010067524A1 publication Critical patent/WO2010067524A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a wireless relay system including a relay station that relays data between different wireless networks such as a WPAN (Wireless Personal Area Network) and a WWAN (Wireless Wide Area Network).
  • a WPAN Wireless Personal Area Network
  • WWAN Wireless Wide Area Network
  • Patent Documents 1 to 7 exist as prior documents relating to wireless or wired communication devices.
  • the wired communication device disclosed in Patent Document 1 detects an error in a received packet received from a LAN, and discards the received packet when a serious error such as an error exists in the information header portion. If only a minor error has occurred, the received packet is directly transferred to another LAN without discarding the packet and correcting the error.
  • Patent Document 2 discloses a wireless relay device for digital broadcast signals mounted on an artificial satellite.
  • the radio relay apparatus detects quality degradation based on the received signal level or error rate of the uplink wave
  • the radio relay apparatus modulates the downlink wave using a modulation scheme different from that for the uplink wave.
  • the relay device for optical fiber transmission disclosed in Patent Document 3 relays data having FEC (Forward Error Correction) encoded payload data and overhead data including a BIP (Bit Interleaved Parity) operation result.
  • the relay apparatus performs only the parity check without performing the FEC decoding process on the received data, adds the check result to the overhead data, and transfers it to the next stage apparatus.
  • the communication device for satellite communication disclosed in Patent Document 4 determines satellite channel quality based on the quality of a received signal. Then, the communication apparatus changes the number of continuous transmissions of the transmission data packet and the user data length in the packet according to the determination result of the line quality.
  • Patent Document 5 discloses a relay device used for signal relay between a base station and a mobile station in a mobile radio communication system.
  • the relay apparatus performs signal relay without performing demodulation (symbol demapping) and error correction decoding.
  • the packet relay device disclosed in Patent Document 6 transfers a received packet without performing error correction decoding, and simultaneously executes error correction decoding of the received packet in parallel. Then, when the downstream apparatus cannot decode the packet relay apparatus, the packet relay apparatus re-encodes the decoded packet and transmits it to the downstream apparatus.
  • Patent Document 7 discloses a relay device for digital data broadcasting.
  • the relay device discards the received packet without relaying when the reception level of the received data broadcast carrier signal is reduced or when an error is detected in the error correction decoding process of the received packet.
  • the inventor of the present application has studied a form in which a wireless communication device connectable to two different wireless networks is used as a relay station.
  • a mobile phone terminal having a WWAN communication circuit for connecting to a mobile phone public network and a WPAN communication circuit for connecting to a WPAN.
  • a WPAN terminal for example, a personal computer
  • the mobile phone terminal can transfer transmission data of the WPAN terminal to a base station in the WWAN (that is, a mobile phone public network). That is, the mobile phone terminal operates as a bridge that relays data between WPAN and WWAN.
  • the transmission path encoding method specified by WPAN and the transmission path encoding method specified by WWAN are different. Therefore, a relay station such as a mobile phone terminal receives a radio signal from an end terminal such as a WPAN terminal, performs transmission path decoding corresponding to WPAN, restores received data, and further supports WWAN for the restored data. After the transmission path encoding is performed again, it must be transmitted to the WWAN. Therefore, the relay station has a problem that power consumption required for transmission line decoding and re-encoding of data to be relayed increases.
  • the quality of the wireless transmission path is characterized by large fluctuations compared to the wired transmission path due to the fact that it is easily affected by the mobility of the terminal and interference waves. For this reason, if the transmission path decoding (error correction decoding) at the relay station is always omitted as in the optical fiber transmission relay apparatus disclosed in Patent Document 3, code errors occur frequently and effective communication is performed. May reduce speed.
  • the packet relay apparatus disclosed in Patent Document 6 executes error correction decoding on the received packet in parallel with the received packet transfer process that omits error correction decoding. That is, it is considered that the error correction decoding for the received packet is always performed and thus does not contribute to the reduction of power consumption.
  • the present invention has been made based on the above-described knowledge, and aims to reduce power consumption accompanying transmission path decoding and re-encoding in a wireless relay station such as the above-described mobile phone terminal.
  • the wireless relay system includes a transmission device and a relay device.
  • the transmission device generates a first radio frequency signal including transmission data and transmits the first radio frequency signal to a first radio transmission path.
  • the relay apparatus receives the first radio frequency signal via the first radio transmission path, generates a second radio frequency signal including the transmission data, and generates a second radio transmission path. Relay transmission to.
  • the transmission device can be switched between the first transmission mode and the second transmission mode.
  • the first transmission mode is a mode in which transmission path encoding according to a first encoding rule is performed on the transmission data and then transmitted to the first wireless transmission path.
  • the second transmission mode the first wireless transmission path is obtained after performing transmission path encoding on the transmission data according to a second encoding rule different from the first encoding rule. Is the mode to send to.
  • the relay device can be switched between a first relay mode corresponding to the first transmission mode and a second relay mode corresponding to the second transmission mode.
  • the first relay mode performs transmission path decoding corresponding to the first encoding rule on the received data sequence demodulated from the first radio frequency signal, and converts the decoded data sequence to
  • the transmission mode is transmitted to the second wireless transmission path after performing transmission path encoding in accordance with the second encoding rule.
  • the second relay mode omits transmission path decoding corresponding to the first encoding rule and transmission path encoding according to the second encoding rule, and This is a mode for transmitting to the second wireless transmission path.
  • the 1st aspect of this invention can switch between the 1st relay mode which does not abbreviate
  • FIG. 2 is a sequence diagram showing a data relay procedure by the wireless relay system shown in FIG.
  • FIG. 2 is a diagram showing data transmission / reception timing in the wireless relay system shown in FIG.
  • FIG. 1 shows a wireless relay system according to the present embodiment.
  • the wireless relay system includes a short-range wireless station 1 and a relay station 2.
  • the wireless station 1 has a WPAN interface that can be connected to the relay station 2.
  • WPAN is a general term for short-range wireless networks having a communicable distance of about several tens of centimeters to several tens of meters.
  • WPAN includes UWB, Bluetooth (registered trademark), ZigBee, and the like whose standardization is being discussed by the IEEE 802.15 committee.
  • the radio station 1 transmits and receives a radio frequency signal R1 including user data to and from the relay station 2.
  • the relay station 2 has a WPAN interface for connecting to the short-range wireless station 1 and a WWAN interface for connecting to the base station 50.
  • WWAN is a general term for a wide area wireless network constructed by a radio access network between a base station and a mobile station and a core network generally constructed by a wired transmission path.
  • WCDMA Wideband CDMA, CDMA2000, LTE: Long Term Evolution
  • IMT-Advanced 4G mobile phone networks
  • IEEE which are being standardized by 3GPP (Third Generation Partnership Project), IEEE Mobile WiMAX, etc.
  • the relay station 2 relays the user data received from the wireless station 1 via the WPAN to the base station 50 on the radio frequency signal (RF2). Further, the relay station 2 relays the user data received from the base station 50 to the radio station 1 on the radio frequency signal (RF1).
  • the relay station 2 In relay processing of user data, the relay station 2 omits the relay mode in which error correction decoding and re-encoding of user data is performed, and the encoded data restored from the received signal without error correction decoding and re-encoding.
  • the relay mode for relaying can be switched.
  • the relay mode for performing error correction decoding and re-encoding is referred to as “normal mode”, and the relay mode in which these processes are omitted is referred to as “bypass mode”.
  • the short-range wireless station 1 sets the transmission path encoding rule used for the transmission path encoding and decoding of user data to the WPAN compatible rule and the WWAN. You can switch between rules.
  • the communication mode of the wireless station 1 that performs transmission path coding and decoding using a coding rule that conforms to WPAN is referred to as a “normal mode” in association with the designation of the relay station 2 for the relay mode.
  • the communication mode of the wireless station 1 that performs transmission path encoding and decoding using an encoding rule corresponding to WWAN is referred to as a “bypass mode”.
  • FIG. 2 is a block diagram illustrating a configuration example of the short-range wireless station 1.
  • a WPAN transmission line codec 10 performs transmission line encoding for transmission data and transmission line decoding for reception data based on a transmission line encoding rule suitable for WPAN.
  • a typical example of transmission path encoding is an FEC encoding system.
  • Known FEC coding methods include block coding, convolutional coding, a combination of these, and turbo coding as an advanced form of convolutional coding.
  • the selection of the coding method and the coding rate is determined in consideration of various factors such as the characteristics of the wireless transmission path, the required transmission rate, and the delay tolerance.
  • the WWAN transmission line codec 11 performs transmission line encoding for transmission data and transmission line decoding for reception data based on a transmission line encoding rule suitable for WWAN.
  • the main configuration of the codec 11 may be the same as that of the codec 10 described above, except that the transmission channel encoding / decoding rules are different.
  • the WPAN transmission / reception unit (wireless TX / RX) 12 converts the encoded data sequence encoded by the codec 10 or 11 into a transmission symbol sequence, and multiplies the transmission symbol sequence with the carrier frequency to generate a radio frequency signal (RF1). Generate.
  • the generated radio frequency signal is output from the antenna 13.
  • the WPAN transmission / reception unit 12 demodulates the encoded data sequence from the radio frequency signal received by the antenna 13 and supplies the demodulated data sequence to the codec 10 or 11.
  • the mode control unit 14 controls switching between the normal mode and the bypass mode.
  • user data transferred to the WWAN via the relay station 2 is encoded by the WPAN transmission line codec 11.
  • WPAN transmission line codec 11 On the other hand, in the bypass mode, user data is encoded by the WWAN transmission line codec 11. The same applies to user data received from the WWAN via the relay station 2.
  • the codec 10 suitable for WPAN performs encoding / decoding of control data transferred between the radio station 1 and the relay station 2 for WPAN control. Just do it.
  • control data transferred between the radio station 1 and the relay station 2 for controlling the WPAN for example, information specifying the transmission rate of the data portion, information specifying the modulation method, and information specifying the encoding method
  • the feedback information necessary for these controls is included.
  • the encoding / decoding of the PLCP header may be performed continuously by the WPAN transmission line codec 10 even when the bypass mode is used.
  • FIG. 4 shows a configuration example of the transmission line codec 10 described above.
  • the FEC encoder 1000 encodes transmission data using an FEC encoding scheme that conforms to WPAN.
  • the FEC encoder 1000 may perform rate matching (decimation) processing in order to achieve a desired coding rate.
  • the interleaver 1001 performs rearrangement (interleaving) of the bit order of the encoded data sequence generated by the encoder 1000.
  • the interleaver 1001 performs interleaving according to a bit replacement rule conforming to WPAN.
  • the deinterleaver 1004 restores the bit order by performing reverse processing (deinterleaving) of interleaving on the encoded data sequence demodulated from the received RF signal.
  • the error correction decoder 1003 performs error correction on the received data based on the FEC encoding performed on the transmission side, and restores the received data.
  • the transmission path codec 10 may perform only transmission path encoding / decoding and omit interleaving / deinterleaving. Interleaving / deinterleaving is commonly employed in wireless communications to deal with burst errors, but can be omitted.
  • FIG. 5 shows an example of an OFDM (Orthogonal Frequency Division Multiplexing) wireless transmission / reception unit 12.
  • OFDM Orthogonal Frequency Division Multiplexing
  • Examples of WPAN that employs OFDM include UWB and wireless USB (Universal Serial Bus).
  • the multiplexer 1200 multiplexes the user data encoded by the codec 10 or 11 and the control data / control channel encoded by the codec 10.
  • the symbol mapper 1201 converts the encoded data sequence supplied from the multiplexer into a complex symbol sequence.
  • the mapping by the symbol mapper 1201 is performed according to a modulation scheme adopted by WPAN.
  • the IFFT unit 1202 performs batch conversion on N symbols corresponding to a predetermined WPAN FFT size, and generates N OFDM symbols. Also, IFFT section 1202 inserts a guard interval (cyclic prefix) between the generated OFDM symbols. The OFDM symbol after insertion of the guard interval is converted into a continuous signal by the DA converter 1203 and then supplied to the quadrature modulation unit 1204.
  • the quadrature modulation unit 1204 multiplies the carrier frequency signal generated by the local oscillator 1206 and the baseband signal supplied from the DA converter 1203 to generate a radio frequency signal (RF1).
  • the radio frequency signal is amplified by the transmission power amplifier 1205 and then supplied to the antenna 13.
  • the low noise amplifier 1207 In the signal path from the low noise amplifier 1207 to the demultiplexer 1212, a process opposite to the process for the transmission signal described above is performed on the radio frequency signal received by the antenna 13.
  • the low noise amplifier 1207 amplifies the radio frequency signal received by the antenna 13 and supplies the amplified signal to the orthogonal demodulation unit 1208.
  • the orthogonal demodulation unit 1208 down-converts the received radio frequency signal to the baseband band by multiplying the received radio frequency signal with the carrier frequency signal.
  • the down-converted received signal is sampled by the AD converter 1209 and then supplied to the FFT unit 1210.
  • the FFT unit 1210 performs OFDM demodulation by executing an FFT operation on the received signal after sampling, and generates a symbol string.
  • the symbol demapper 1211 performs a determination process on the received symbol sequence generated by the FFT unit 1210 and demodulates the received data sequence.
  • the demultiplexer 1212 separates user data and control data.
  • the configuration of the WPAN transmission / reception unit 12 shown in FIG. 5 is merely an example.
  • the conversion between the baseband signal and the radio frequency signal may be performed via an intermediate frequency.
  • the WPAN transmission / reception unit 12 is not limited to the OFDM system.
  • the basic configuration of the WPAN transmission / reception unit 12 relating to modulation / demodulation may be the WCDMA wireless transceiver shown in FIG.
  • FIG. 3 is a block diagram illustrating a configuration example of the relay station 2.
  • the WPAN transmission / reception unit 21 performs wireless communication with the WPAN transmission / reception unit 12 of the wireless station 1 via the antenna 20.
  • the WPAN transmission / reception unit 21 converts the encoded data sequence encoded by the codec 22 corresponding to the WPAN into a transmission symbol sequence, and multiplies the transmission symbol sequence with the carrier frequency to generate a radio frequency signal (RF1). Generate.
  • the WPAN transmission / reception unit 21 demodulates the encoded data sequence from the radio frequency signal received by the antenna 20 and supplies the demodulated data sequence to the codec 22.
  • the operation in bypass mode is as follows.
  • the WPAN transmission / reception unit 21 receives the encoded user data demodulated by the WWAN transmission / reception unit 24 described later, and performs modulation processing.
  • the encoded user data demodulated from the received signal by the WPAN transmission / reception unit 21 is sent to the WWAN transmission / reception unit 24 without passing through the codecs 22 and 23.
  • data transmission / reception between the WPAN transmission / reception unit 21 and the WWAN transmission / reception unit 24 may be performed via a data buffer (not shown) for adjustment of processing timing.
  • the WWAN transmission / reception unit 24 performs wireless communication with the base station 50 via the antenna 25.
  • the WWAN transmission / reception unit 24 transmits / receives encoded user data to / from the codec 23 corresponding to the WWAN.
  • the encoded user data demodulated from the received signal by the WWAN transmission / reception unit 24 is sent to the WPAN transmission / reception unit 21 without passing through the codecs 23 and 22.
  • the control data transferred between the radio station 1 and the relay station 2 for WPAN control is encoded / decoded by the codec 22 adapted to WPAN. Is called.
  • the encoded control data demodulated by the WPAN transmitting / receiving unit 21 is sent to the codec 22 corresponding to WPAN.
  • the encoded control data demodulated by the WWAN transmitting / receiving unit 24 is sent to the codec 23 corresponding to the WWAN.
  • the control data regarding the WWAN includes a PILOT bit, a TFCI bit, an FBI bit, and the like.
  • the TFCI bit is information indicating the number of uplink transport channels and the channel format.
  • the FBI bit is response information related to transmission power control (TPC).
  • the mode control unit 26 controls switching between the normal mode and the bypass mode. A specific example of the communication mode switching determination by the mode control unit 26 will be described later.
  • FIG. 6 shows, as an example, a wireless transmission / reception unit 12 of the DS-SS system, specifically the WCDMA system.
  • the multiplexer 2400 multiplexes the encoded user data and the encoded control data / control channel.
  • the symbol mapper 2401 converts the encoded data sequence supplied from the multiplexer 2400 into a complex symbol sequence. The mapping by the symbol mapper 2401 is performed according to the primary modulation scheme of WCDMA.
  • the spreading unit 2402 performs spreading modulation by multiplying the symbol sequence generated by the symbol mapper 2401 by the spreading code.
  • the symbol sequence after the spread modulation is converted into a continuous signal by the DA converter 2403 and then supplied to the quadrature modulation unit 2404.
  • the quadrature modulation unit 2404 multiplies the carrier frequency signal generated by the local oscillator 2406 and the baseband signal supplied from the DA converter 2103 to generate a radio frequency signal (RF2).
  • the radio frequency signal is amplified by the transmission power amplifier 2405 and then supplied to the antenna 25.
  • the radio frequency signal received by the antenna 25 is subjected to a process opposite to the process for the transmission signal described above.
  • the low noise amplifier 2407 amplifies the radio frequency signal received by the antenna 25 and supplies the amplified signal to the quadrature demodulation unit 2408.
  • the orthogonal demodulator 2408 multi-converts the received radio frequency signal with the carrier frequency signal to down-convert it to the baseband band.
  • the down-converted received signal is sampled (that is, code determination) by the AD converter 2409 and then supplied to the despreading unit 2410.
  • the despreading unit 2410 performs a despreading process on the baseband signal sampled by the AD converter 2409 to generate a received symbol sequence.
  • the despreading unit 2410 is configured using, for example, a matched filter.
  • the symbol demapper 2411 performs a determination process on the received symbol sequence generated by the despreading unit 2410 and demodulates the received data sequence.
  • the demultiplexer 2412 separates user data and control data.
  • FIG. 7A and 7B are conceptual diagrams showing signal transfer paths when user data transmitted from the short-range wireless station 1 is transferred to the base station 50 in each of the normal mode and the bypass mode.
  • the relay station 2 executes transmission path decoding corresponding to WPAN and re-encoding corresponding to WWAN.
  • FIG. 7B these channel decoding and re-encoding are omitted.
  • the relay station 2 can omit transmission line decoding and re-encoding for user data to be relayed. For this reason, the power consumption accompanying transmission path decoding and re-encoding can be reduced. Further, the relay station 2 can switch between a normal mode that does not omit transmission path decoding and re-encoding and a bypass mode that is omitted. For example, the relay station 2 may select the normal mode when the transmission path quality in the WPAN section is low. Thereby, it is possible to prevent the effective communication speed from being lowered due to frequent code errors in the WPAN section.
  • the mode control unit 14 acquires the transmission path quality of the WPAN section.
  • the transmission path quality includes RSSI (Received Signal Strength Indicator) obtained by the orthogonal demodulator 1208 or AD converter 1209, LQI (Link Quality Quality Indicator) obtained by the symbol demapper 1211, WPAN transmission channel codec.
  • the code error rate (BER: Bit Error Rate) obtained at 10 may be acquired. Note that the measurement of the transmission path quality may be performed not only on one of the above-described RSSI, LQI, and BER but also on two or more indicators.
  • step S102 the mode control unit 14 (26) determines whether or not the transmission path quality level exceeds a predetermined threshold value. If the quality level exceeds the threshold and is good, the mode control unit 14 (26) determines to change to the bypass mode (S103). On the other hand, when the transmission path quality level does not satisfy the standard (below the threshold), the mode control unit 14 (26) determines to change to the normal mode (S104).
  • the transmission path quality described above generally has a correlation with the communication distance in the WPAN section. For this reason, it can be paraphrased that the determination in step S102 is determining the communication distance (proximity) between the radio station 1 and the relay station 2.
  • the determination process shown in FIG. 8 may be performed on the device side that receives the radio signal propagated through the WPAN transmission path.
  • the mode control unit 26 of the relay station 2 may measure the channel quality and perform the mode change determination.
  • the mode control unit 14 of the radio station 1 may measure the channel quality and perform the mode change determination.
  • the mode change determination may be performed intensively by either the radio station 1 or the relay station 2. For example, if the mode control unit 14 of the wireless station 1 performs intensively, the relay station 2 may transmit the measurement result of the transmission path quality to the wireless station 1. Further, the mode control unit 14 of the radio station 1 may switch the normal mode to the bypass mode together in the downlink direction and the uplink direction when the quality of the downlink transmission path is good.
  • FIG. 9 is a sequence diagram showing the interaction between the short-range radio station 1 and the relay station 2.
  • FIG. 10 is a diagram showing data transmission / reception timing corresponding to FIG. Reference numerals 201TX / RX to 208TX / RX related to data transmission / reception correspond to each other in FIG. 9 and FIG. 9 and 10, “TX” means data transmission, and “RX” means data reception.
  • WPAN beacons 201 and 202 are transmitted and received between the wireless station 1 and the relay station 2 in the normal mode.
  • the wireless station 1 transmits the data 203 encoded according to the WPAN transmission path encoding rule to the relay station 2.
  • the relay station 2 determines whether or not the mode can be changed to the bypass mode based on the data reception result from the radio station 1.
  • the relay station 2 transmits the data 205 encoded according to the WWAN transmission path encoding rule to the base station 50.
  • the relay station 2 transmits a data transmission permission 206 by WWAN encoding to the wireless station 1.
  • the wireless station 1 that has received the data transmission permission 206 by WWAN encoding encodes user data according to the WWAN transmission path encoding rule, and transmits this data 207 to the relay station 2.
  • the relay station 2 transmits the encoded data 207 received from the wireless station 1 to the base station 50 in the bypass mode (data 208).
  • the communication mode can be changed according to the quality level of the WPAN transmission line.
  • the use of the bypass mode can be limited to a case where the quality of the WPAN transmission line is good.
  • the case where the WPAN transmission path quality is good is, for example, a case where the radio station 1 and the relay station 2 are arranged sufficiently close to each other. Thereby, the radio station 1 and the relay station 2 can prevent the effective communication speed from being lowered due to the occurrence of an error in the WPAN section.
  • the mode change determination process by the mode control units 14 and 26 described above may be realized using a semiconductor processing apparatus such as an ASIC or a DSP.
  • the mode change determination process may be realized as an ASIC or DSP common to the wireless transmission / reception units 12, 21, or 24 and the codecs 10, 11, 22, or 23.
  • the mode change determination process may be realized by causing a computer such as a microprocessor to execute a control program describing the determination procedure described with reference to FIG.
  • This control program can be stored in various types of storage media, and can be transmitted via a communication medium.
  • the storage medium includes, for example, a flexible disk, a hard disk, a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD, a ROM cartridge, a RAM memory cartridge with battery backup, a flash memory cartridge, a nonvolatile RAM cartridge, and the like.
  • the communication medium includes a wired communication medium such as a telephone line, a wireless communication medium such as a microwave line, and the Internet.
  • the relay station 2 performs data relay between the WPAN and the WWAN.
  • the combination of networks in which the relay station 2 relays data is not particularly limited.
  • the relay station 2 may perform data relay between WPAN and WLAN.
  • the relay station 2 may perform data relay between the WLAN and the WWAN.

Abstract

The purpose of this invention is to reduce power consumption associated with transmission path decoding and re-encoding in a radio relay station.  A radio relay system comprises a radio station (1) and a relay station (2).  The radio station (1) generates and transmits an RF signal (RF1) including transport data to a WPAN transmission path.  The relay station (2) receives the RF signal (RF1) via the WPAN transmission path and generates and relays an RF signal (RF2) including the data received from the radio station (1) to a WWAN transmission path.  The radio station (1) can exhibit, for the transport data to be transmitted to the WPAN transmission path, any one of two alternative transmission modes: one for performing a WPAN-compliant transmission path encoding and the other for performing a WWAN-compliant transmission path encoding.  On the other hand, the relay station (2) can exhibit, for the encoded data received from the radio station (1), any one of two alternative relay modes: one for performing error correction code decoding and re-encoding and the other for skipping these processings.

Description

無線中継システム、中継装置、送信装置、受信装置、データ中継方法、データ送信方法、及びデータ受信方法Wireless relay system, relay device, transmission device, reception device, data relay method, data transmission method, and data reception method
 本発明は、WPAN(Wireless Personal Area Network)とWWAN(Wireless Wide Area Network)の間などの異なる無線ネットワーク間でデータを中継する中継局を含む無線中継システムに関する。 The present invention relates to a wireless relay system including a relay station that relays data between different wireless networks such as a WPAN (Wireless Personal Area Network) and a WWAN (Wireless Wide Area Network).
 ノート型PC(Personal Computer)等の携帯情報機器と携帯電話端末との間をケーブル接続することで、携帯情報機器の送信データを携帯電話公衆網に転送する利用形態が知られている。 There is known a usage form in which transmission data of a portable information device is transferred to a cellular phone public network by connecting a cable between a portable information device such as a notebook PC (Personal Computer) and a cellular phone terminal.
 また、無線又は有線の通信装置に関する先行文献として、特許文献1~7が存在する。 In addition, Patent Documents 1 to 7 exist as prior documents relating to wireless or wired communication devices.
 特許文献1に開示された有線通信装置は、LANから受信した受信パケットの誤り検出を行い、情報ヘッダ部分に誤りが存在する等の重大な誤りが発生している場合に受信パケットを廃棄する。また、軽微な誤りが発生しているのみであれば、パケット廃棄および誤り訂正を行うことなくそのまま受信パケットを他のLANへ転送する。 The wired communication device disclosed in Patent Document 1 detects an error in a received packet received from a LAN, and discards the received packet when a serious error such as an error exists in the information header portion. If only a minor error has occurred, the received packet is directly transferred to another LAN without discarding the packet and correcting the error.
 特許文献2は、人工衛星に搭載されるデジタル放送信号用の無線中継装置を開示している。当該無線中継装置は、アップリンク波の受信信号レベル又は誤り率に基づいて品質劣化を検知した場合に、アップリンク波とは異なる変調方式によってダウンリンク波を変調する。 Patent Document 2 discloses a wireless relay device for digital broadcast signals mounted on an artificial satellite. When the radio relay apparatus detects quality degradation based on the received signal level or error rate of the uplink wave, the radio relay apparatus modulates the downlink wave using a modulation scheme different from that for the uplink wave.
 特許文献3に開示された光ファイバ伝送用の中継装置は、FEC(Forward Error Correction)符号化されたペイロードデータとBIP(Bit Interleaved Parity)演算結果を含むオーバヘッドデータとを有するデータを中継する。当該中継装置は、受信データに対するFEC復号処理を行わずにパリティチェックのみを行い、チェック結果をオーバヘッドデータに付加して次段の装置に転送する。 The relay device for optical fiber transmission disclosed in Patent Document 3 relays data having FEC (Forward Error Correction) encoded payload data and overhead data including a BIP (Bit Interleaved Parity) operation result. The relay apparatus performs only the parity check without performing the FEC decoding process on the received data, adds the check result to the overhead data, and transfers it to the next stage apparatus.
 特許文献4に開示された衛星通信用の通信装置は、受信信号の品質に基づいて衛星回線品質を判定する。そして、当該通信装置は、回線品質の判定結果に応じて、送信データパケットの連続送信回数とパケット中のユーザデータ長を変更する。 The communication device for satellite communication disclosed in Patent Document 4 determines satellite channel quality based on the quality of a received signal. Then, the communication apparatus changes the number of continuous transmissions of the transmission data packet and the user data length in the packet according to the determination result of the line quality.
 特許文献5は、移動無線通信システムにおいて基地局と移動局との間の信号中継に使用される中継装置を開示している。当該中継装置は、復調(シンボルデマッピング)および誤り訂正復号を行わずに信号中継を行う。 Patent Document 5 discloses a relay device used for signal relay between a base station and a mobile station in a mobile radio communication system. The relay apparatus performs signal relay without performing demodulation (symbol demapping) and error correction decoding.
 特許文献6に開示されたパケット中継装置は、誤り訂正復号化を行わずに受信パケットを転送すると同時に、当該受信パケットの誤り訂正復号を並行して実行する。そして、当該パケット中継装置は、下流側の装置が復号できなかった場合に、復号済みのパケットを再符号化して下流側の装置に送信する。 The packet relay device disclosed in Patent Document 6 transfers a received packet without performing error correction decoding, and simultaneously executes error correction decoding of the received packet in parallel. Then, when the downstream apparatus cannot decode the packet relay apparatus, the packet relay apparatus re-encodes the decoded packet and transmits it to the downstream apparatus.
 特許文献7は、デジタルデータ放送用の中継装置を開示している。当該中継装置は、受信したデータ放送搬送波信号の受信レベルが低下した場合または受信パケットの誤り訂正復号処理において誤りを検出した場合に、受信パケットを中継することなく廃棄する。 Patent Document 7 discloses a relay device for digital data broadcasting. The relay device discards the received packet without relaying when the reception level of the received data broadcast carrier signal is reduced or when an error is detected in the error correction decoding process of the received packet.
特開2008-17016号公報JP 2008-17016 A 特開2006-50205号公報JP 2006-50205 A 特開2001-186061号公報JP 2001-186061 A 特開平06-112874号公報Japanese Patent Laid-Open No. 06-112874 特開2008-48237号公報JP 2008-48237 A 特開2007-325320号公報JP 2007-325320 A 特開2000-209273号公報JP 2000-209273 A
 本願の発明者は、2つの異なる無線ネットワークに接続可能な無線通信装置を中継局として利用する形態について検討を行った。例えば、携帯電話公衆網に接続するためのWWAN通信回路およびWPANに接続するためのWPAN通信回路を有する携帯電話端末が存在する。このような携帯電話端末とWPAN端末(例えばパーソナルコンピュータ)がWPANによって接続される場合、携帯電話端末は、WPAN端末の送信データをWWAN(つまり携帯電話公衆網)内の基地局に転送できる。つまり、携帯電話端末は、WPANとWWANの間でデータを中継するブリッジとして動作する。 The inventor of the present application has studied a form in which a wireless communication device connectable to two different wireless networks is used as a relay station. For example, there is a mobile phone terminal having a WWAN communication circuit for connecting to a mobile phone public network and a WPAN communication circuit for connecting to a WPAN. When such a mobile phone terminal and a WPAN terminal (for example, a personal computer) are connected by WPAN, the mobile phone terminal can transfer transmission data of the WPAN terminal to a base station in the WWAN (that is, a mobile phone public network). That is, the mobile phone terminal operates as a bridge that relays data between WPAN and WWAN.
 一般的に、WPANで規定される伝送路符号化方式とWWANで規定される伝送路符号化方式は異なる。よって、携帯電話端末などの中継局は、WPAN端末などのエンド端末から無線信号を受信し、WPANに対応した伝送路復号化を行って受信データを復元し、さらに、復元したデータにWWANに対応した伝送路符号化を改めて施した後に、WWANに送信しなければならない。したがって、中継局では、中継するデータの伝送路復号化および再符号化に要する消費電力の増大が生じるという問題がある。 Generally, the transmission path encoding method specified by WPAN and the transmission path encoding method specified by WWAN are different. Therefore, a relay station such as a mobile phone terminal receives a radio signal from an end terminal such as a WPAN terminal, performs transmission path decoding corresponding to WPAN, restores received data, and further supports WWAN for the restored data. After the transmission path encoding is performed again, it must be transmitted to the WWAN. Therefore, the relay station has a problem that power consumption required for transmission line decoding and re-encoding of data to be relayed increases.
 一方、端末の移動性や妨害波の影響を受けやすいという事情から、無線伝送路の品質は有線伝送路に比べて変動が大きいという特徴がある。このため、特許文献3に開示された光ファイバ伝送用の中継装置のように、中継局における伝送路復号化(誤り訂正復号化)を常に省略したのでは、符号誤りが多発し実効的な通信速度を低下させるおそれがある。 On the other hand, the quality of the wireless transmission path is characterized by large fluctuations compared to the wired transmission path due to the fact that it is easily affected by the mobility of the terminal and interference waves. For this reason, if the transmission path decoding (error correction decoding) at the relay station is always omitted as in the optical fiber transmission relay apparatus disclosed in Patent Document 3, code errors occur frequently and effective communication is performed. May reduce speed.
 なお、特許文献6に開示されたパケット中継装置は、誤り訂正復号化を省略した受信パケット転送処理と同時並行して、当該受信パケットに対する誤り訂正復号化を実行する。つまり、受信パケットに対する誤り訂正復号化は常時実行されているため、消費電力の低減には寄与しないものと考えられる。 Note that the packet relay apparatus disclosed in Patent Document 6 executes error correction decoding on the received packet in parallel with the received packet transfer process that omits error correction decoding. That is, it is considered that the error correction decoding for the received packet is always performed and thus does not contribute to the reduction of power consumption.
 本発明は上述した知見に基づいてなされたものであって、上述した携帯電話端末などの無線中継局における伝送路復号化及び再符号化に伴う消費電力の削減を目的とする。 The present invention has been made based on the above-described knowledge, and aims to reduce power consumption accompanying transmission path decoding and re-encoding in a wireless relay station such as the above-described mobile phone terminal.
 本発明の第1の態様にかかる無線中継システムは、送信装置と中継装置を含む。前記送信装置は、送信データを含む第1の無線周波数信号を生成して第1の無線伝送路に送信する。また、前記中継装置は、前記第1の無線伝送路を介して前記第1の無線周波数信号を受信するとともに、前記送信データを含む第2の無線周波数信号を生成して第2の無線伝送路に中継送信する。 The wireless relay system according to the first aspect of the present invention includes a transmission device and a relay device. The transmission device generates a first radio frequency signal including transmission data and transmits the first radio frequency signal to a first radio transmission path. The relay apparatus receives the first radio frequency signal via the first radio transmission path, generates a second radio frequency signal including the transmission data, and generates a second radio transmission path. Relay transmission to.
 前記送信装置は、第1の送信モードと第2の送信モードとの間で切り替え可能である。ここで、前記第1の送信モードは、第1の符号化規則に従った伝送路符号化を前記送信データに対して行った後に前記第1の無線伝送路に送信するモードである。一方、前記第2の送信モードは、前記第1の符号化規則とは異なる第2の符号化規則に従った伝送路符号化を前記送信データに対して行った後に前記第1の無線伝送路に送信するモードである。 The transmission device can be switched between the first transmission mode and the second transmission mode. Here, the first transmission mode is a mode in which transmission path encoding according to a first encoding rule is performed on the transmission data and then transmitted to the first wireless transmission path. On the other hand, in the second transmission mode, the first wireless transmission path is obtained after performing transmission path encoding on the transmission data according to a second encoding rule different from the first encoding rule. Is the mode to send to.
 さらに、前記中継装置は、前記第1の送信モードに対応した第1の中継モードと前記第2の送信モードに対応した第2の中継モードとの間で切り替え可能である。前記第1の中継モードは、前記第1の無線周波数信号から復調された受信データ列に対して前記第1の符号化規則に対応した伝送路復号化を行うとともに、復号化後のデータ列に対して前記第2の符号化規則に従った伝送路符号化を実行した後に前記第2の無線伝送路に送信するモードである。一方、前記第2の中継モードは、前記第1の符号化規則に対応した伝送路復号化及び前記第2の符号化規則に従った伝送路符号化を省略して、前記受信データ列を前記第2の無線伝送路に送信するモードである。 Furthermore, the relay device can be switched between a first relay mode corresponding to the first transmission mode and a second relay mode corresponding to the second transmission mode. The first relay mode performs transmission path decoding corresponding to the first encoding rule on the received data sequence demodulated from the first radio frequency signal, and converts the decoded data sequence to On the other hand, the transmission mode is transmitted to the second wireless transmission path after performing transmission path encoding in accordance with the second encoding rule. On the other hand, the second relay mode omits transmission path decoding corresponding to the first encoding rule and transmission path encoding according to the second encoding rule, and This is a mode for transmitting to the second wireless transmission path.
 上述した本発明の第1の態様によれば、無線中継装置における伝送路復号化及び再符号化に伴う消費電力を削減できる。また、本発明の第1の態様は、伝送路復号化及び再符号化を省略しない第1の中継モードと省略する第2の中継モードとを切り替え可能である。このため、例えば、伝送路品質が低い場合には第1の中継モードを選択することで、符号誤りの多発に起因して実効的な通信速度が低下することを防止できる。 According to the first aspect of the present invention described above, it is possible to reduce power consumption accompanying transmission path decoding and re-encoding in the wireless relay device. Moreover, the 1st aspect of this invention can switch between the 1st relay mode which does not abbreviate | omit transmission path decoding and re-encoding, and the 2nd relay mode which abbreviate | omits. For this reason, for example, when the transmission line quality is low, it is possible to prevent the effective communication speed from being reduced due to frequent occurrence of code errors by selecting the first relay mode.
本発明の実施の形態にかかる無線中継システムの構成図である。It is a block diagram of the radio relay system concerning embodiment of this invention. 図1に示す近距離無線局に関するブロック図ある。It is a block diagram regarding the short-range wireless station shown in FIG. 図1に示す中継局に関するブロック図である。It is a block diagram regarding the relay station shown in FIG. 伝送路CODECの構成例を示すブロック図である。It is a block diagram which shows the structural example of the transmission line CODEC. WPAN送受信部の構成例を示すブロック図である。It is a block diagram which shows the structural example of a WPAN transmission / reception part. WWAN無線送受信部の構成例を示すブロック図である。It is a block diagram which shows the structural example of a WWAN radio | wireless transmission / reception part. 通常モードの信号転送経路を示す概念図である。It is a conceptual diagram which shows the signal transfer path | route of normal mode. バイパスモードの信号転送経路を示す概念図である。It is a conceptual diagram which shows the signal transfer path | route in bypass mode. 通信モード変更の判定手順の一例を示すフローチャートである。It is a flowchart which shows an example of the determination procedure of a communication mode change. 図1に示す無線中継システムによるデータ中継手順を示すシーケンス図である。FIG. 2 is a sequence diagram showing a data relay procedure by the wireless relay system shown in FIG. 図1に示す無線中継システムにおけるデータ送受信タイミングを示す図である。FIG. 2 is a diagram showing data transmission / reception timing in the wireless relay system shown in FIG.
 以下では、本発明を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。各図面において、同一要素には同一の符号が付されており、説明の明確化のため、必要に応じて重複説明は省略される。 Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings. In the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted as necessary for the sake of clarity.
<発明の実施の形態1>
 図1は、本実施の形態にかかる無線中継システムを示している。当該無線中継システムは、近距離無線局1及び中継局2を有する。無線局1は、中継局2と接続可能なWPANインタフェースを有する。WPANは、数十cm~数十m程度の通信可能距離を有する近距離無線ネットワークの総称である。例えば、WPANには、IEEE802.15委員会にて標準化が議論されているUWB、Bluetooth(登録商標)、ZigBee等がある。無線局1は、ユーザデータを含む無線周波数信号R1を中継局2との間で送受信する。
<Embodiment 1 of the Invention>
FIG. 1 shows a wireless relay system according to the present embodiment. The wireless relay system includes a short-range wireless station 1 and a relay station 2. The wireless station 1 has a WPAN interface that can be connected to the relay station 2. WPAN is a general term for short-range wireless networks having a communicable distance of about several tens of centimeters to several tens of meters. For example, WPAN includes UWB, Bluetooth (registered trademark), ZigBee, and the like whose standardization is being discussed by the IEEE 802.15 committee. The radio station 1 transmits and receives a radio frequency signal R1 including user data to and from the relay station 2.
 中継局2は、近距離無線局1と接続するためのWPANインタフェースと、基地局50に接続するためのWWANインタフェースを有する。WWANは、基地局及び移動局の間の無線アクセスネットワークと、一般的には有線伝送路により構築されるコアネットワークによって構築される広域な無線ネットワークの総称である。例えば、WWANには、3GPP(Third Generation Partnership Project)により標準化が進められている3G携帯電話網(WCDMA:Wideband CDMA、CDMA2000、LTE:Long Term Evolution)及び4G携帯電話網(IMT-Advanced)、IEEEで承認されたモバイルWiMAX等がある。中継局2は、WPANを経由して無線局1から受信したユーザデータを、無線周波数信号(RF2)に乗せて基地局50に中継する。また、中継局2は、基地局50から受信したユーザデータを、無線周波数信号(RF1)に乗せて無線局1に中継する。 The relay station 2 has a WPAN interface for connecting to the short-range wireless station 1 and a WWAN interface for connecting to the base station 50. WWAN is a general term for a wide area wireless network constructed by a radio access network between a base station and a mobile station and a core network generally constructed by a wired transmission path. For example, in WWAN, 3G mobile phone networks (WCDMA: Wideband CDMA, CDMA2000, LTE: Long Term Evolution) and 4G mobile phone networks (IMT-Advanced), IEEE, which are being standardized by 3GPP (Third Generation Partnership Project), IEEE Mobile WiMAX, etc. The relay station 2 relays the user data received from the wireless station 1 via the WPAN to the base station 50 on the radio frequency signal (RF2). Further, the relay station 2 relays the user data received from the base station 50 to the radio station 1 on the radio frequency signal (RF1).
 中継局2は、ユーザデータの中継処理に際して、ユーザデータの誤り訂正復号化及び再符号化を行う中継モードと、誤り訂正復号化及び再符号化を省略し受信信号から復元した符号化データをそのまま中継する中継モードを切り替えることができる。以下では、誤り訂正復号化及び再符号化を行う中継モードを「通常モード」と呼び、これらの処理を省略する中継モードを「バイパスモード」と呼ぶ。 In relay processing of user data, the relay station 2 omits the relay mode in which error correction decoding and re-encoding of user data is performed, and the encoded data restored from the received signal without error correction decoding and re-encoding. The relay mode for relaying can be switched. Hereinafter, the relay mode for performing error correction decoding and re-encoding is referred to as “normal mode”, and the relay mode in which these processes are omitted is referred to as “bypass mode”.
 また、中継局2の中継モードの切り替えに対応するため、近距離無線局1は、ユーザデータの伝送路符号化及び復号化に用いる伝送路符号化規則を、WPANに適合した規則とWWANに適合した規則との間で切り換えることができる。以下では、WPANに適合した符号化規則を用いて伝送路符号化及び復号化を行う無線局1の通信モードを、中継局2の中継モードに対する呼称に対応させて「通常モード」と呼ぶ。一方、WWANに対応した符号化規則を用いて伝送路符号化及び復号化を行う無線局1の通信モードを「バイパスモード」と呼ぶ。 Also, in order to support switching of the relay mode of the relay station 2, the short-range wireless station 1 sets the transmission path encoding rule used for the transmission path encoding and decoding of user data to the WPAN compatible rule and the WWAN. You can switch between rules. Hereinafter, the communication mode of the wireless station 1 that performs transmission path coding and decoding using a coding rule that conforms to WPAN is referred to as a “normal mode” in association with the designation of the relay station 2 for the relay mode. On the other hand, the communication mode of the wireless station 1 that performs transmission path encoding and decoding using an encoding rule corresponding to WWAN is referred to as a “bypass mode”.
 続いて以下では、通常モードとバイパスモードの切り替えに対応した無線局1及び中継局2の構成例について図2~7Bを用いて説明する。 Subsequently, configuration examples of the radio station 1 and the relay station 2 corresponding to switching between the normal mode and the bypass mode will be described below with reference to FIGS. 2 to 7B.
 図2は、近距離無線局1の構成例を示すブロック図である。図2において、WPAN伝送路コーデック10は、WPANに適合した伝送路符号化規則に基づいて、送信データに対する伝送路符号化と、受信データに対する伝送路復号化を行う。伝送路符号化の典型例にFEC符号化方式がある。FEC符号化方式として、ブロック符号化もしくは畳み込み符号化またはこれらを組み合わせた方式、畳み込み符号化の発展形としてのターボ符号化などが知られている。符号化方式及びその符号化率の選択は、無線伝送路の特性、必要な伝送速度、遅延許容量等の様々な要因を考慮して決定される。 FIG. 2 is a block diagram illustrating a configuration example of the short-range wireless station 1. In FIG. 2, a WPAN transmission line codec 10 performs transmission line encoding for transmission data and transmission line decoding for reception data based on a transmission line encoding rule suitable for WPAN. A typical example of transmission path encoding is an FEC encoding system. Known FEC coding methods include block coding, convolutional coding, a combination of these, and turbo coding as an advanced form of convolutional coding. The selection of the coding method and the coding rate is determined in consideration of various factors such as the characteristics of the wireless transmission path, the required transmission rate, and the delay tolerance.
 WWAN伝送路コーデック11は、WWANに適合した伝送路符号化規則に基づいて、送信データに対する伝送路符号化と、受信データに対する伝送路復号化を行う。伝送路符号化/復号化の規則が異なる点を除き、コーデック11の主要な構成は、上述したコーデック10と同様とすればよい。 The WWAN transmission line codec 11 performs transmission line encoding for transmission data and transmission line decoding for reception data based on a transmission line encoding rule suitable for WWAN. The main configuration of the codec 11 may be the same as that of the codec 10 described above, except that the transmission channel encoding / decoding rules are different.
 WPAN送受信部(無線TX/RX)12は、コーデック10又は11によって符号化された符号化データ列を送信シンボル列に変換し、送信シンボル列を搬送波周波数と掛け合わせて無線周波数信号(RF1)を生成する。生成された無線周波数信号は、アンテナ13から出力される。また、WPAN送受信部12は、アンテナ13により受信された無線周波数信号から符号化データ列を復調し、これをコーデック10又は11に供給する。 The WPAN transmission / reception unit (wireless TX / RX) 12 converts the encoded data sequence encoded by the codec 10 or 11 into a transmission symbol sequence, and multiplies the transmission symbol sequence with the carrier frequency to generate a radio frequency signal (RF1). Generate. The generated radio frequency signal is output from the antenna 13. The WPAN transmission / reception unit 12 demodulates the encoded data sequence from the radio frequency signal received by the antenna 13 and supplies the demodulated data sequence to the codec 10 or 11.
 モード制御部14は、通常モードとバイパスモードの切り替えを制御する。通常モードでは、中継局2を経由してWWANに転送されるユーザデータは、WPAN伝送路コーデック11により符号化される。一方、バイパスモードでは、ユーザデータは、WWAN伝送路コーデック11により符号化される。中継局2を経由してWWANから受信されるユーザデータについても同様である。 The mode control unit 14 controls switching between the normal mode and the bypass mode. In the normal mode, user data transferred to the WWAN via the relay station 2 is encoded by the WPAN transmission line codec 11. On the other hand, in the bypass mode, user data is encoded by the WWAN transmission line codec 11. The same applies to user data received from the WWAN via the relay station 2.
 なお、バイパスモードを使用する場合であっても、WPANの制御ために無線局1と中継局2との間で転送される制御データの符号化/復号化は、WPANに適合したコーデック10が行えばよい。WPANの制御ために無線局1と中継局2との間で転送される制御データには、例えば、データ部分の伝送速度を指定する情報、変調方式を指定する情報、符号化方式を指定する情報、これらの制御に必要なフィードバック情報等が含まれる。例えば、UWBの場合、PLCPヘッダの符号化/復号化は、バイパスモードを使用する場合にも継続的にWPAN伝送路コーデック10が行えばよい。 Even when the bypass mode is used, the codec 10 suitable for WPAN performs encoding / decoding of control data transferred between the radio station 1 and the relay station 2 for WPAN control. Just do it. In the control data transferred between the radio station 1 and the relay station 2 for controlling the WPAN, for example, information specifying the transmission rate of the data portion, information specifying the modulation method, and information specifying the encoding method The feedback information necessary for these controls is included. For example, in the case of UWB, the encoding / decoding of the PLCP header may be performed continuously by the WPAN transmission line codec 10 even when the bypass mode is used.
 上述した、伝送路コーデック10の構成例を図4に示す。FECエンコーダ1000は、WPANに適合したFEC符号化方式によって送信データを符号化する。FECエンコーダ1000では、所望の符号化率を達成するために、レートマッチング(間引き)処理を行ってもよい。インタリーバ1001は、エンコーダ1000によって生成された符号化データ列のビット順序の並べ替え(インタリービング)を行う。インタリーバ1001は、WPANに適合したビット置換規則に従ってインタリービングを実行する。 FIG. 4 shows a configuration example of the transmission line codec 10 described above. The FEC encoder 1000 encodes transmission data using an FEC encoding scheme that conforms to WPAN. The FEC encoder 1000 may perform rate matching (decimation) processing in order to achieve a desired coding rate. The interleaver 1001 performs rearrangement (interleaving) of the bit order of the encoded data sequence generated by the encoder 1000. The interleaver 1001 performs interleaving according to a bit replacement rule conforming to WPAN.
 デインタリーバ1004は、受信したRF信号から復調された符号化データ列に対してインタリービングの逆処理(デインタリービング)を行うことにより、ビット順序を元に戻す。誤り訂正デコーダ1003は、送信側で施されたFEC符号化に基づいて受信データの誤り訂正を行い、受信データを復元する。なお、伝送路コーデック10は、伝送路符号化/復号化のみを行い、インタリービング/デインタリービングを省略してもよい。インタリービング/デインタリービングは、バースト誤りに対処するために無線通信において一般的に採用されているが省略も可能である。 The deinterleaver 1004 restores the bit order by performing reverse processing (deinterleaving) of interleaving on the encoded data sequence demodulated from the received RF signal. The error correction decoder 1003 performs error correction on the received data based on the FEC encoding performed on the transmission side, and restores the received data. The transmission path codec 10 may perform only transmission path encoding / decoding and omit interleaving / deinterleaving. Interleaving / deinterleaving is commonly employed in wireless communications to deal with burst errors, but can be omitted.
 次に、WPAN送受信部12の構成例について図5を用いて説明する。図5は、一例としてOFDM(Orthogonal Frequency Division Multiplexing)方式の無線送受信部12を示している。OFDMを採用するWPANには、例えば、UWB、ワイヤレスUSB(Universal Serial Bus)等がある。 Next, a configuration example of the WPAN transmission / reception unit 12 will be described with reference to FIG. FIG. 5 shows an example of an OFDM (Orthogonal Frequency Division Multiplexing) wireless transmission / reception unit 12. Examples of WPAN that employs OFDM include UWB and wireless USB (Universal Serial Bus).
 マルチプレクサ1200は、コーデック10又は11によって符号化されたユーザデータと、コーデック10によって符号化された制御データ/制御チャネルを多重化する。シンボルマッパ1201は、マルチプレクサから供給される符号化データ列を複素シンボル列に変換する。シンボルマッパ1201によるマッピングは、WPANが採用する変調方式に従って行われる。 The multiplexer 1200 multiplexes the user data encoded by the codec 10 or 11 and the control data / control channel encoded by the codec 10. The symbol mapper 1201 converts the encoded data sequence supplied from the multiplexer into a complex symbol sequence. The mapping by the symbol mapper 1201 is performed according to a modulation scheme adopted by WPAN.
 IFFT部1202は、WPAN所定のFFTサイズに対応したN個のシンボルを一括変換し、N個のOFDMシンボルを生成する。また、IFFT部1202は、生成したOFDMシンボル間へのガードインターバル(サイクリック・プリフィックス)の挿入を行う。ガードインターバル挿入後のOFDMシンボルは、DAコンバータ1203によって連続信号に変換された後に直交変調部1204に供給される。 The IFFT unit 1202 performs batch conversion on N symbols corresponding to a predetermined WPAN FFT size, and generates N OFDM symbols. Also, IFFT section 1202 inserts a guard interval (cyclic prefix) between the generated OFDM symbols. The OFDM symbol after insertion of the guard interval is converted into a continuous signal by the DA converter 1203 and then supplied to the quadrature modulation unit 1204.
 直交変調部1204は、ローカル発振器1206により生成される搬送波周波数信号とDAコンバータ1203から供給されるベースバンド信号を掛け合わせて無線周波数信号(RF1)を生成する。無線周波数信号は、送信パワーアンプ1205によって増幅された後にアンテナ13に供給される。 The quadrature modulation unit 1204 multiplies the carrier frequency signal generated by the local oscillator 1206 and the baseband signal supplied from the DA converter 1203 to generate a radio frequency signal (RF1). The radio frequency signal is amplified by the transmission power amplifier 1205 and then supplied to the antenna 13.
 低雑音アンプ1207からデマルチプレクサ1212に至る信号経路では、アンテナ13により受信された無線周波数信号に対して上述した送信信号に対する処理と逆の処理が行われる。低雑音アンプ1207は、アンテナ13により受信された無線周波数信号を増幅して直交復調部1208に供給する。 In the signal path from the low noise amplifier 1207 to the demultiplexer 1212, a process opposite to the process for the transmission signal described above is performed on the radio frequency signal received by the antenna 13. The low noise amplifier 1207 amplifies the radio frequency signal received by the antenna 13 and supplies the amplified signal to the orthogonal demodulation unit 1208.
 直交復調部1208は、受信した無線周波数信号を搬送波周波数信号と掛け合わせることで、ベースバンド帯域にダウンコンバートする。ダウンコンバート後の受信信号は、ADコンバータ1209によりサンプリングされた後にFFT部1210に供給される。 The orthogonal demodulation unit 1208 down-converts the received radio frequency signal to the baseband band by multiplying the received radio frequency signal with the carrier frequency signal. The down-converted received signal is sampled by the AD converter 1209 and then supplied to the FFT unit 1210.
 FFT部1210は、サンプリング後の受信信号に対するFFT演算を実行することによってOFDM復調を行い、シンボル列を生成する。シンボルデマッパ1211は、FFT部1210によって生成された受信シンボル列に対する判定処理を行って、受信データ列を復調する。デマルチプレクサ1212は、ユーザデータと制御データを分離する。 The FFT unit 1210 performs OFDM demodulation by executing an FFT operation on the received signal after sampling, and generates a symbol string. The symbol demapper 1211 performs a determination process on the received symbol sequence generated by the FFT unit 1210 and demodulates the received data sequence. The demultiplexer 1212 separates user data and control data.
 なお、図5に示すWPAN送受信部12の構成が一例に過ぎないことはもちろんである。例えば、ベースバンド信号と無線周波数信号との変換は、中間周波数を経由して行われてもよい。また、WPAN送受信部12が、OFDM方式に限定されないことは勿論である。例えば、WPANがDS-SS(Direct Sequence Spread Spectrum)方式を採用している場合、変復調に関するWPAN送受信部12の基本構成は、図6に示すWCDMA用の無線送受信機とすればよい。 Of course, the configuration of the WPAN transmission / reception unit 12 shown in FIG. 5 is merely an example. For example, the conversion between the baseband signal and the radio frequency signal may be performed via an intermediate frequency. Of course, the WPAN transmission / reception unit 12 is not limited to the OFDM system. For example, when the WPAN adopts a DS-SS (Direct Sequence Spread Spectrum) system, the basic configuration of the WPAN transmission / reception unit 12 relating to modulation / demodulation may be the WCDMA wireless transceiver shown in FIG.
 続いて以下では、中継局2の構成例について詳しく説明する。図3は、中継局2の構成例を示すブロック図である。WPAN送受信部21は、アンテナ20を介して無線局1のWPAN送受信部12との間で無線通信を行う。まず、通常モード時の動作について説明する。通常モードでは、WPAN送受信部21は、WPANに対応したコーデック22によって符号化された符号化データ列を送信シンボル列に変換し、送信シンボル列を搬送波周波数と掛け合わせて無線周波数信号(RF1)を生成する。また、WPAN送受信部21は、アンテナ20により受信された無線周波数信号から符号化データ列を復調し、これをコーデック22に供給する。 Subsequently, a configuration example of the relay station 2 will be described in detail below. FIG. 3 is a block diagram illustrating a configuration example of the relay station 2. The WPAN transmission / reception unit 21 performs wireless communication with the WPAN transmission / reception unit 12 of the wireless station 1 via the antenna 20. First, the operation in the normal mode will be described. In the normal mode, the WPAN transmission / reception unit 21 converts the encoded data sequence encoded by the codec 22 corresponding to the WPAN into a transmission symbol sequence, and multiplies the transmission symbol sequence with the carrier frequency to generate a radio frequency signal (RF1). Generate. The WPAN transmission / reception unit 21 demodulates the encoded data sequence from the radio frequency signal received by the antenna 20 and supplies the demodulated data sequence to the codec 22.
 一方、バイパスモード時の動作は以下の通りである。バイパスモードでは、コーデック23及び22による誤り訂正復号及び再符号化が省略される。このため、WPAN送受信部21は、後述するWWAN送受信部24によって復調された符号化ユーザデータを入力して変調処理を行う。同様に、WPAN送受信部21によって受信信号から復調された符号化ユーザデータは、コーデック22及び23を経由せずにWWAN送受信部24に送られる。なお、WPAN送受信部21とWWAN送受信部24との間でのデータ送受信は、処理タイミングの調整のためにデータバッファ(不図示)を介して行えばよい。 On the other hand, the operation in bypass mode is as follows. In the bypass mode, error correction decoding and re-encoding by the codecs 23 and 22 are omitted. For this reason, the WPAN transmission / reception unit 21 receives the encoded user data demodulated by the WWAN transmission / reception unit 24 described later, and performs modulation processing. Similarly, the encoded user data demodulated from the received signal by the WPAN transmission / reception unit 21 is sent to the WWAN transmission / reception unit 24 without passing through the codecs 22 and 23. Note that data transmission / reception between the WPAN transmission / reception unit 21 and the WWAN transmission / reception unit 24 may be performed via a data buffer (not shown) for adjustment of processing timing.
 WWAN送受信部24は、アンテナ25を介して基地局50との間で無線通信を行う。通常モードでは、WWAN送受信部24は、WWANに対応したコーデック23との間で符号化ユーザデータの送受を行う。一方、バイパスモードでは、WWAN送受信部24によって受信信号から復調された符号化ユーザデータは、コーデック23及び22を経由せずにWPAN送受信部21に送られる。 The WWAN transmission / reception unit 24 performs wireless communication with the base station 50 via the antenna 25. In the normal mode, the WWAN transmission / reception unit 24 transmits / receives encoded user data to / from the codec 23 corresponding to the WWAN. On the other hand, in the bypass mode, the encoded user data demodulated from the received signal by the WWAN transmission / reception unit 24 is sent to the WPAN transmission / reception unit 21 without passing through the codecs 23 and 22.
 なお、バイパスモードを使用する場合であっても、WPANの制御ために無線局1と中継局2との間で転送される制御データの符号化/復号化は、WPANに適合したコーデック22によって行われる。このため、WPAN送受信部21によって復調された符号化された制御データは、WPANに対応したコーデック22に送られる。同様に、WWAN送受信部24によって復調された符号化された制御データは、WWANに対応したコーデック23に送られる。例えば、WWANがWCDMAである場合、WWANに関する制御データには、PILOTビット、TFCIビット、FBIビット等が含まれる。TFCIビットは、上りリンクのトランスポートチャネル多重数、チャネルフォーマットを示す情報である。FBIビットは、送信電力制御(TPC:transmission power control)に関する応答情報である。 Even in the case of using the bypass mode, the control data transferred between the radio station 1 and the relay station 2 for WPAN control is encoded / decoded by the codec 22 adapted to WPAN. Is called. For this reason, the encoded control data demodulated by the WPAN transmitting / receiving unit 21 is sent to the codec 22 corresponding to WPAN. Similarly, the encoded control data demodulated by the WWAN transmitting / receiving unit 24 is sent to the codec 23 corresponding to the WWAN. For example, when the WWAN is WCDMA, the control data regarding the WWAN includes a PILOT bit, a TFCI bit, an FBI bit, and the like. The TFCI bit is information indicating the number of uplink transport channels and the channel format. The FBI bit is response information related to transmission power control (TPC).
 モード制御部26は、通常モードとバイパスモードの切り替えを制御する。モード制御部26による通信モード切り替え判定の具体例については後述する。 The mode control unit 26 controls switching between the normal mode and the bypass mode. A specific example of the communication mode switching determination by the mode control unit 26 will be described later.
 次に、WWAN送受信部24の構成例について図6を用いて説明する。図6は、一例としてDS-SS方式、具体的にはWCDMA方式の無線送受信部12を示している。マルチプレクサ2400は、符号化されたユーザデータと符号化された制御データ/制御チャネルを多重化する。シンボルマッパ2401は、マルチプレクサ2400から供給される符号化データ列を複素シンボル列に変換する。シンボルマッパ2401によるマッピングは、WCDMAの1次変調方式に従って行われる。 Next, a configuration example of the WWAN transmission / reception unit 24 will be described with reference to FIG. FIG. 6 shows, as an example, a wireless transmission / reception unit 12 of the DS-SS system, specifically the WCDMA system. The multiplexer 2400 multiplexes the encoded user data and the encoded control data / control channel. The symbol mapper 2401 converts the encoded data sequence supplied from the multiplexer 2400 into a complex symbol sequence. The mapping by the symbol mapper 2401 is performed according to the primary modulation scheme of WCDMA.
 拡散部2402は、シンボルマッパ2401により生成されたシンボル列に拡散コードを掛け合わせることにより拡散変調を行う。拡散変調後のシンボル列は、DAコンバータ2403により連続信号に変換された後に直交変調部2404に供給される。 The spreading unit 2402 performs spreading modulation by multiplying the symbol sequence generated by the symbol mapper 2401 by the spreading code. The symbol sequence after the spread modulation is converted into a continuous signal by the DA converter 2403 and then supplied to the quadrature modulation unit 2404.
 直交変調部2404は、ローカル発振器2406により生成される搬送波周波数信号とDAコンバータ2103から供給されるベースバンド信号を掛け合わせて無線周波数信号(RF2)を生成する。無線周波数信号は、送信パワーアンプ2405によって増幅された後にアンテナ25に供給される。 The quadrature modulation unit 2404 multiplies the carrier frequency signal generated by the local oscillator 2406 and the baseband signal supplied from the DA converter 2103 to generate a radio frequency signal (RF2). The radio frequency signal is amplified by the transmission power amplifier 2405 and then supplied to the antenna 25.
 低雑音アンプ2407からデマルチプレクサ2412に至る信号経路では、アンテナ25により受信された無線周波数信号に対して上述した送信信号に対する処理と逆の処理が行われる。低雑音アンプ2407は、アンテナ25により受信された無線周波数信号を増幅して直交復調部2408に供給する。 In the signal path from the low noise amplifier 2407 to the demultiplexer 2412, the radio frequency signal received by the antenna 25 is subjected to a process opposite to the process for the transmission signal described above. The low noise amplifier 2407 amplifies the radio frequency signal received by the antenna 25 and supplies the amplified signal to the quadrature demodulation unit 2408.
 直交復調部2408は、受信した無線周波数信号を搬送波周波数信号と掛け合わせることで、ベースバンド帯域にダウンコンバートする。ダウンコンバート後の受信信号は、ADコンバータ2409によりサンプリング(つまり符号判定)された後に逆拡散部2410に供給される。 The orthogonal demodulator 2408 multi-converts the received radio frequency signal with the carrier frequency signal to down-convert it to the baseband band. The down-converted received signal is sampled (that is, code determination) by the AD converter 2409 and then supplied to the despreading unit 2410.
 逆拡散部2410は、ADコンバータ2409によってサンプリングされたベースバンド信号に対する逆拡散処理を行い、受信シンボル列を生成する。逆拡散部2410は、例えばマッチドフィルタを用いて構成される。シンボルデマッパ2411は、逆拡散部2410によって生成された受信シンボル列に対する判定処理を行って、受信データ列を復調する。デマルチプレクサ2412は、ユーザデータと制御データを分離する。 The despreading unit 2410 performs a despreading process on the baseband signal sampled by the AD converter 2409 to generate a received symbol sequence. The despreading unit 2410 is configured using, for example, a matched filter. The symbol demapper 2411 performs a determination process on the received symbol sequence generated by the despreading unit 2410 and demodulates the received data sequence. The demultiplexer 2412 separates user data and control data.
 図7A及び7Bは、近距離無線局1から送信されるユーザデータが基地局50に転送される際の信号転送経路を、通常モード及びバイパスモードそれぞれの場合について示した概念図である。図7Aに示すように、通常モードでは、WPANに対応した伝送路復号化及びWWANに対応した再符号化が中継局2によって実行される。一方、図7Bに示すバイパスモードでは、これらの伝送路復号化及び再符号化が省略される。 7A and 7B are conceptual diagrams showing signal transfer paths when user data transmitted from the short-range wireless station 1 is transferred to the base station 50 in each of the normal mode and the bypass mode. As shown in FIG. 7A, in the normal mode, the relay station 2 executes transmission path decoding corresponding to WPAN and re-encoding corresponding to WWAN. On the other hand, in the bypass mode shown in FIG. 7B, these channel decoding and re-encoding are omitted.
 上述したように、本実施の形態にかかる中継局2は、中継するユーザデータに対する伝送路復号化及び再符号化を省略できる。このため、伝送路復号化及び再符号化に伴う消費電力を削減することができる。また、中継局2は、伝送路復号化及び再符号化を省略しない通常モードと省略するバイパスモードとを切り替え可能である。例えば、中継局2は、WPAN区間の伝送路品質が低い場合に通常モードを選択すればよい。これにより、WPAN区間での符号誤りの多発に起因して実効的な通信速度が低下することを防止できる。 As described above, the relay station 2 according to the present embodiment can omit transmission line decoding and re-encoding for user data to be relayed. For this reason, the power consumption accompanying transmission path decoding and re-encoding can be reduced. Further, the relay station 2 can switch between a normal mode that does not omit transmission path decoding and re-encoding and a bypass mode that is omitted. For example, the relay station 2 may select the normal mode when the transmission path quality in the WPAN section is low. Thereby, it is possible to prevent the effective communication speed from being lowered due to frequent code errors in the WPAN section.
 続いて以下では、通常モードとバイパスモードの間の変更処理について図8~10を用いて説明する。図8は、モード制御部14及び26によるモード変更判定の具体例を示すフローチャートである。ステップS101では、モード制御部14(26)は、WPAN区間の伝送路品質を取得する。例えば無線局1の場合、伝送路品質としては、直交復調部1208又はADコンバータ1209において得られるRSSI(Received Signal Strength Indicator)、シンボルデマッパ1211において得られるLQI(Link Quality Indicator)、WPAN伝送路コーデック10において得られる符号誤り率(BER:Bit Error Rate)等を取得すればよい。なお、伝送路品質の測定は、上述したRSSI、LQI及びBERのいずれか1つのみではなく、2つ以上の指標について行ってもよい。 Subsequently, the change process between the normal mode and the bypass mode will be described below with reference to FIGS. FIG. 8 is a flowchart showing a specific example of the mode change determination by the mode control units 14 and 26. In step S101, the mode control unit 14 (26) acquires the transmission path quality of the WPAN section. For example, in the case of the wireless station 1, the transmission path quality includes RSSI (Received Signal Strength Indicator) obtained by the orthogonal demodulator 1208 or AD converter 1209, LQI (Link Quality Quality Indicator) obtained by the symbol demapper 1211, WPAN transmission channel codec. The code error rate (BER: Bit Error Rate) obtained at 10 may be acquired. Note that the measurement of the transmission path quality may be performed not only on one of the above-described RSSI, LQI, and BER but also on two or more indicators.
 ステップS102では、モード制御部14(26)は、伝送路品質のレベルが予め定められた閾値を超えるか否かを判定する。品質レベルが閾値を超えて良好な場合、モード制御部14(26)は、バイパスモードへの変更を決定する(S103)。一方、伝送路品質レベルが基準を満たさない(閾値を下回る)場合、モード制御部14(26)は、通常モードへの変更を決定する(S104)。なお、上述した伝送路品質は、一般的に、WPAN区間の通信距離と相関を有している。このため、ステップS102における判定は、無線局1と中継局2との通信距離(近接度)を判定していると言い換えることもできる。 In step S102, the mode control unit 14 (26) determines whether or not the transmission path quality level exceeds a predetermined threshold value. If the quality level exceeds the threshold and is good, the mode control unit 14 (26) determines to change to the bypass mode (S103). On the other hand, when the transmission path quality level does not satisfy the standard (below the threshold), the mode control unit 14 (26) determines to change to the normal mode (S104). The transmission path quality described above generally has a correlation with the communication distance in the WPAN section. For this reason, it can be paraphrased that the determination in step S102 is determining the communication distance (proximity) between the radio station 1 and the relay station 2.
 図8に示した判定処理は、WPAN伝送路を伝搬した無線信号を受信する装置側で行えばよい。例えば、無線局1から中継局2へ向かう上り方向では、中継局2のモード制御部26が伝送路品質を計測し、モード変更判定を行えばよい。また、中継局2から無線局1へ向かう下り方向では、無線局1のモード制御部14が伝送路品質を計測し、モード変更判定を行えばよい。 The determination process shown in FIG. 8 may be performed on the device side that receives the radio signal propagated through the WPAN transmission path. For example, in the uplink direction from the radio station 1 to the relay station 2, the mode control unit 26 of the relay station 2 may measure the channel quality and perform the mode change determination. Further, in the downlink direction from the relay station 2 to the radio station 1, the mode control unit 14 of the radio station 1 may measure the channel quality and perform the mode change determination.
 また、モード変更判定は、無線局1又は中継局2のいずれか一方が集中的に行ってもよい。例えば、無線局1のモード制御部14が集中的に行う場合であれば、中継局2は伝送路品質の測定結果を無線局1に送信すればよい。また、無線局1のモード制御部14は、下り伝送路の品質が良好である場合に、下り方向と上り方向をまとめて通常モードからバイパスモードに切り替えてもよい。 Further, the mode change determination may be performed intensively by either the radio station 1 or the relay station 2. For example, if the mode control unit 14 of the wireless station 1 performs intensively, the relay station 2 may transmit the measurement result of the transmission path quality to the wireless station 1. Further, the mode control unit 14 of the radio station 1 may switch the normal mode to the bypass mode together in the downlink direction and the uplink direction when the quality of the downlink transmission path is good.
 次に、無線局1から中継局2へ向かう上り方向のデータ送信を通常モードからバイパスモードに切り替える際の動作について図9及び10を用いて具体的に説明する。図9は、近距離無線局1及び中継局2の相互作用を示すシーケンス図である。図10は、図9に対応したデータ送受信タイミングを示す図である。データ送受信に関する符号201TX/RX~208TX/RXは、図9と図10とで相互に対応している。図9及び10において、"TX"はデータ送信を意味し、"RX"はデータ受信を意味する。 Next, the operation when the uplink data transmission from the radio station 1 to the relay station 2 is switched from the normal mode to the bypass mode will be specifically described with reference to FIGS. FIG. 9 is a sequence diagram showing the interaction between the short-range radio station 1 and the relay station 2. FIG. 10 is a diagram showing data transmission / reception timing corresponding to FIG. Reference numerals 201TX / RX to 208TX / RX related to data transmission / reception correspond to each other in FIG. 9 and FIG. 9 and 10, “TX” means data transmission, and “RX” means data reception.
 図9のシーケンス図の先頭部分では、無線局1と中継局2との間でWPANのビーコン201及び202が通常モードで送受信される。次に、無線局1は、WPANの伝送路符号化規則に従って符号化されたデータ203を中継局2に送信する。次に、タイミング204において、中継局2は、無線局1からのデータ受信結果に基づいてバイパスモードへの変更可否を判定する。次に、中継局2は、WWANの伝送路符号化規則に従って符号化されたデータ205を基地局50に送信する。 9, WPAN beacons 201 and 202 are transmitted and received between the wireless station 1 and the relay station 2 in the normal mode. Next, the wireless station 1 transmits the data 203 encoded according to the WPAN transmission path encoding rule to the relay station 2. Next, at timing 204, the relay station 2 determines whether or not the mode can be changed to the bypass mode based on the data reception result from the radio station 1. Next, the relay station 2 transmits the data 205 encoded according to the WWAN transmission path encoding rule to the base station 50.
 タイミング204においてバイパスモードへの変更を判定した場合、中継局2は、WWAN符号化によるデータ送信許可206を無線局1に送信する。WWAN符号化によるデータ送信許可206を受信した無線局1は、WWANの伝送路符号化規則に従ってユーザデータを符号化し、このデータ207を中継局2に送信する。中継局2は、無線局1から受信した符号化されたデータ207をバイパスモードで基地局50に送信する(データ208)。 When the change to the bypass mode is determined at timing 204, the relay station 2 transmits a data transmission permission 206 by WWAN encoding to the wireless station 1. The wireless station 1 that has received the data transmission permission 206 by WWAN encoding encodes user data according to the WWAN transmission path encoding rule, and transmits this data 207 to the relay station 2. The relay station 2 transmits the encoded data 207 received from the wireless station 1 to the base station 50 in the bypass mode (data 208).
 図8~10を用いて説明したモード変更例によれば、WPAN伝送路の品質レベルに応じて通信モードの変更を行うことができる。WPAN伝送路の品質レベルが所定の基準を満たすことを条件としてバイパスモードに遷移することによって、バイパスモードの利用をWPAN伝送路品質が良好な場合に限定できる。WPAN伝送路品質が良好な場合とは、例えば、無線局1と中継局2が十分に近接して配置されている場合である。これにより、無線局1及び中継局2は、WPAN区間での誤り発生に起因して実効的な通信速度が低下することを防止できる。 According to the mode change example described with reference to FIGS. 8 to 10, the communication mode can be changed according to the quality level of the WPAN transmission line. By making a transition to the bypass mode on condition that the quality level of the WPAN transmission line satisfies a predetermined standard, the use of the bypass mode can be limited to a case where the quality of the WPAN transmission line is good. The case where the WPAN transmission path quality is good is, for example, a case where the radio station 1 and the relay station 2 are arranged sufficiently close to each other. Thereby, the radio station 1 and the relay station 2 can prevent the effective communication speed from being lowered due to the occurrence of an error in the WPAN section.
 ところで、上述したモード制御部14及び26によるモード変更判定処理は、ASIC、DSP等の半導体処理装置を用いて実現してもよい。また、このモード変更判定処理は、無線送受信部12、21又は24、コーデック10、11、22又は23と共通のASIC、DSPとして実現してもよい。 Incidentally, the mode change determination process by the mode control units 14 and 26 described above may be realized using a semiconductor processing apparatus such as an ASIC or a DSP. The mode change determination process may be realized as an ASIC or DSP common to the wireless transmission / reception units 12, 21, or 24 and the codecs 10, 11, 22, or 23.
 また、モード変更判定処理は、図8を用いて説明した判定手順を記述した制御プログラムをマイクロプロセッサ等のコンピュータに実行させることによって実現してもよい。この制御プログラムは、様々な種類の記憶媒体に格納することが可能であり、また、通信媒体を介して伝達されることが可能である。ここで、記憶媒体には、例えば、フレキシブルディスク、ハードディスク、磁気ディスク、光磁気ディスク、CD-ROM、DVD、ROMカートリッジ、バッテリバックアップ付きRAMメモリカートリッジ、フラッシュメモリカートリッジ、不揮発性RAMカートリッジ等が含まれる。また、通信媒体には、電話回線等の有線通信媒体、マイクロ波回線等の無線通信媒体等が含まれ、インターネットも含まれる。 Further, the mode change determination process may be realized by causing a computer such as a microprocessor to execute a control program describing the determination procedure described with reference to FIG. This control program can be stored in various types of storage media, and can be transmitted via a communication medium. Here, the storage medium includes, for example, a flexible disk, a hard disk, a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD, a ROM cartridge, a RAM memory cartridge with battery backup, a flash memory cartridge, a nonvolatile RAM cartridge, and the like. . In addition, the communication medium includes a wired communication medium such as a telephone line, a wireless communication medium such as a microwave line, and the Internet.
<その他の実施の形態>
 上述した発明の実施の形態1では、無線局1及び中継局2の双方向についてバイパスモードへの切り替えが可能な構成例について説明した。しかしながら、通常モードとバイパスモードとの切り替えは、上り方向と下り方向のいずれか一方向についてのみ行ってもよい。
<Other embodiments>
In the first embodiment of the present invention described above, the configuration example in which the radio station 1 and the relay station 2 can be switched to the bypass mode in both directions has been described. However, switching between the normal mode and the bypass mode may be performed only in one of the upward direction and the downward direction.
 また、上述した発明の実施の形態1では、中継局2が、WPANとWWANとの間でデータ中継を行う場合について説明した。しかしながら、中継局2がデータ中継を行うネットワークの組み合わせは特に限定されるものではない。例えば、中継局2は、WPANとWLANとの間でデータ中継を行ってもよい。また、中継局2は、WLANとWWANとの間でデータ中継を行ってもよい。 In the first embodiment of the present invention described above, the case where the relay station 2 performs data relay between the WPAN and the WWAN has been described. However, the combination of networks in which the relay station 2 relays data is not particularly limited. For example, the relay station 2 may perform data relay between WPAN and WLAN. Further, the relay station 2 may perform data relay between the WLAN and the WWAN.
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 The present invention has been described above with reference to the embodiment, but the present invention is not limited to the above. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the invention.
 この出願は、2008年12月11日に出願された日本出願特願2008-315240を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2008-315240 filed on Dec. 11, 2008, the entire disclosure of which is incorporated herein.
1 近距離無線局
2 中継局
10 WPAN伝送路コーデック
11 WWAN伝送路コーデック
12 WPAN送受信部
13 アンテナ
14 モード制御部
20 アンテナ
21 WPAN送受信部
22 WPAN伝送路コーデック
23 WWAN伝送路コーデック
24 WWAN無線送受信部
25 アンテナ
26 モード制御部
50 基地局
1000 FECエンコーダ
1001 インタリーバ
1002 デインタリーバ
1003 誤り訂正デコーダ
1200 マルチプレクサ
1201 シンボルマッパ
1202 IFFT部
1203 DAコンバータ
1204 直交変調部
1205 送信パワーアンプ
1206 ローカル発振器
1207 低雑音アンプ
1208 直交復調部
1209 ADコンバータ
1210 FFT部
1211 シンボルデマッパ
1212 デマルチプレクサ
2400 マルチプレクサ
2401 シンボルマッパ
2402 拡散部
2403 DAコンバータ
2404 直交変調部
2405 送信パワーアンプ
2406 ローカル発振器
2407 低雑音アンプ
2408 直交復調部
2409 ADコンバータ
2410 逆拡散部
2411 シンボルデマッパ
2412 デマルチプレクサ
DESCRIPTION OF SYMBOLS 1 Near field station 2 Relay station 10 WPAN transmission line codec 11 WWAN transmission line codec 12 WPAN transmission / reception part 13 Antenna 14 Mode control part 20 Antenna 21 WPAN transmission / reception part 22 WPAN transmission line codec 23 WWAN transmission line codec 24 WWAN wireless transmission / reception part 25 Antenna 26 Mode control unit 50 Base station 1000 FEC encoder 1001 Interleaver 1002 Deinterleaver 1003 Error correction decoder 1200 Multiplexer 1201 Symbol mapper 1202 IFFT unit 1203 DA converter 1204 Orthogonal modulation unit 1205 Transmission power amplifier 1206 Local oscillator 1207 Low noise amplifier 1208 Orthogonal demodulation unit 1209 AD converter 1210 FFT unit 1211 Symbol demapper 1212 Demultiplexer 240 Multiplexer 2401 symbol mapper 2402 spreading unit 2403 DA converter 2404 quadrature modulation unit 2405 of the transmission power amplifiers 2406 a local oscillator 2407 low-noise amplifier 2408 quadrature demodulator 2409 AD converter 2410 despreading unit 2411 symbol demapper 2412 demultiplexers

Claims (38)

  1.  送信データを含む第1の無線周波数信号を生成して第1の無線伝送路に送信する送信装置と、
     前記第1の無線伝送路を介して前記第1の無線周波数信号を受信するとともに、前記送信データを含む第2の無線周波数信号を生成して第2の無線伝送路に中継送信する中継装置と、を備え、
     前記送信装置は、第1の送信モードと第2の送信モードとの間で切り替え可能であり、
     前記第1の送信モードは、第1の符号化規則に従った伝送路符号化を前記送信データに対して行った後に前記第1の無線伝送路に送信するモードであり、
     前記第2の送信モードは、前記第1の符号化規則とは異なる第2の符号化規則に従った伝送路符号化を前記送信データに対して行った後に前記第1の無線伝送路に送信するモードであり、
     前記中継装置は、前記第1の送信モードに対応した第1の中継モードと前記第2の送信モードに対応した第2の中継モードとの間で切り替え可能であり、
     前記第1の中継モードは、前記第1の無線周波数信号から復調された受信データ列に対して前記第1の符号化規則に対応した伝送路復号化を行うとともに、復号化後のデータ列に対して前記第2の符号化規則に従った伝送路符号化を実行した後に前記第2の無線伝送路に送信するモードであり、
     前記第2の中継モードは、前記第1の符号化規則に対応した伝送路復号化及び前記第2の符号化規則に従った伝送路符号化を省略して、前記受信データ列を前記第2の無線伝送路に送信するモードである、
    無線中継システム。
    A transmitter for generating a first radio frequency signal including transmission data and transmitting the first radio frequency signal to the first radio transmission path;
    A relay device that receives the first radio frequency signal via the first radio transmission path, generates a second radio frequency signal including the transmission data, and relays the second radio frequency signal to the second radio transmission path; With
    The transmitter is switchable between a first transmission mode and a second transmission mode;
    The first transmission mode is a mode for transmitting to the first wireless transmission path after performing transmission path encoding on the transmission data according to a first encoding rule,
    In the second transmission mode, transmission channel encoding is performed on the transmission data according to a second encoding rule different from the first encoding rule, and then transmitted to the first wireless transmission channel. Mode to
    The relay device is switchable between a first relay mode corresponding to the first transmission mode and a second relay mode corresponding to the second transmission mode;
    The first relay mode performs transmission path decoding corresponding to the first encoding rule on the received data sequence demodulated from the first radio frequency signal, and converts the decoded data sequence to A mode for transmitting to the second wireless transmission path after performing transmission path encoding according to the second encoding rule for
    In the second relay mode, transmission path decoding corresponding to the first encoding rule and transmission path encoding according to the second encoding rule are omitted, and the received data string is changed to the second relay mode. Is a mode to transmit to the wireless transmission path of
    Wireless relay system.
  2.  前記中継装置は、前記第1の無線伝送路が予め定められた品質レベルを満足する場合に、前記第1の中継モードから前記第2の中継モードに切り替える、請求項1に記載の無線中継システム。 2. The wireless relay system according to claim 1, wherein the relay device switches from the first relay mode to the second relay mode when the first wireless transmission path satisfies a predetermined quality level. 3. .
  3.  前記送信装置は、前記中継装置における中継モードの切り替えに応答して、前記第1の送信モードと前記第2の送信モードの切り替えを行う、請求項2に記載の無線中継システム。 The wireless relay system according to claim 2, wherein the transmission device switches between the first transmission mode and the second transmission mode in response to switching of the relay mode in the relay device.
  4.  前記送信装置は、前記第1の無線伝送路が予め定められた品質レベルを満足する場合に、前記第1の送信モードから前記第2の送信モードに切り替える、請求項1~3のいずれか1項に記載の無線中継システム。 The transmission device according to any one of claims 1 to 3, wherein the transmission device switches from the first transmission mode to the second transmission mode when the first wireless transmission path satisfies a predetermined quality level. The wireless relay system according to item.
  5.  前記中継装置は、前記送信装置における送信モードの切り替えに応答して、前記第1の中継モードと前記第2の中継モードの切り替えを行う、請求項4に記載の無線中継システム。 The wireless relay system according to claim 4, wherein the relay device switches between the first relay mode and the second relay mode in response to switching of a transmission mode in the transmission device.
  6.  前記第2の送信モードにおいて、前記送信装置は、前記第1の無線伝送路の制御のために前記中継装置に送信する制御データに対しては前記第1の符号化規則に従った伝送路符号化を継続する、請求項1~5のいずれか1項に記載の無線中継システム。 In the second transmission mode, the transmission apparatus transmits a transmission line code according to the first encoding rule for control data transmitted to the relay apparatus for controlling the first wireless transmission line. The wireless relay system according to any one of claims 1 to 5, wherein the communication is continued.
  7.  前記第2の中継モードにおいて、前記中継装置は、前記第1の無線伝送路の制御のために前記送信装置から受信する制御データに対しては前記第1の符号化規則に従った伝送路復号化を継続する、請求項1~6のいずれか1項に記載の無線中継システム。 In the second relay mode, the relay apparatus performs transmission path decoding according to the first encoding rule for control data received from the transmission apparatus for controlling the first wireless transmission path. The wireless relay system according to any one of claims 1 to 6, wherein the communication is continued.
  8.  前記送信装置及び前記中継装置の間の通信距離が予め定められた距離以下となる場合に、前記送信装置及び前記中継装置は、前記第1の送信モード及び前記第1の中継モードから前記第2の送信モード及び第2の中継モードにそれぞれ遷移する、請求項1~7のいずれか1項に記載の無線中継システム。 When the communication distance between the transmission device and the relay device is equal to or less than a predetermined distance, the transmission device and the relay device can change the second transmission mode from the first transmission mode and the first relay mode. The wireless relay system according to any one of claims 1 to 7, wherein transition is made to each of the transmission mode and the second relay mode.
  9.  前記送信装置は、
     前記第1又は前記第2の符号化規則を選択的に用いて前記送信データを伝送路符号化する第1の符号化手段と、
     前記第1の符号化手段によって伝送路符号化された第1の符号化データ列を、第1の送信シンボル列に変換する第1のマッピング手段と、
     前記第1の送信シンボル列を第1の搬送波と掛け合わせて前記第1の無線周波数信号を生成し、前記第1の無線伝送路に送信する第1の無線送信手段と、を備え、
     前記中継装置は、
     前記第1の無線伝送路を介して受信された前記第1の無線周波数信号から受信シンボル列を抽出する受信手段と、
     前記受信シンボル列から前記受信データ列を復調するデマッピング手段と、
     前記第1の符号化規則に対応した伝送路復号化を前記受信データ列に対して行い、前記送信データを復元する復号化手段と、
     前記復号化手段によって復元された前記送信データに対して、前記第2の符号化規則に従って伝送路符号化を行う第2の符号化手段と、
     前記第2の符号化手段によって伝送路符号化された第2の符号化データ列および前記デマッピング手段によって復調された前記受信データ列のいずれか一方を選択的に入力し、入力されたデータ列を前記第2の無線伝送路に対応した第2の送信シンボル列に変換する第2のマッピング手段と、
     前記第2の送信シンボル列を第2の搬送波と掛け合わせて前記第2の無線周波数信号を生成し、前記第2の無線伝送路に送信する第2の無線送信手段と、を備え、
     前記第1の符号化手段が前記第1の符号化規則による伝送路符号化を行う場合に、前記第2のマッピング手段は前記第2の符号化データ列から前記第2の送信シンボル列を生成し、
     前記第1の符号化手段が前記第2の符号化規則による伝送路符号化を行う場合に、前記第2のマッピング手段は前記受信データ列から前記第2の送信シンボル列を生成する、
    請求項1~8のいずれか1項に記載の無線中継システム。
    The transmitter is
    First encoding means for selectively encoding the transmission data using the first or second encoding rule;
    First mapping means for converting a first encoded data sequence that has been transmission-line encoded by the first encoding means into a first transmission symbol sequence;
    First radio transmission means for generating the first radio frequency signal by multiplying the first transmission symbol string with a first carrier wave and transmitting the first radio frequency signal to the first radio transmission path;
    The relay device is
    Receiving means for extracting a received symbol sequence from the first radio frequency signal received via the first radio transmission path;
    Demapping means for demodulating the received data sequence from the received symbol sequence;
    Decoding means for performing transmission path decoding corresponding to the first encoding rule on the received data sequence and restoring the transmission data;
    Second encoding means for performing transmission path encoding on the transmission data restored by the decoding means in accordance with the second encoding rule;
    One of the second encoded data sequence that has been channel-coded by the second encoding unit and the received data sequence demodulated by the demapping unit is selectively input, and the input data sequence Second mapping means for converting a second transmission symbol sequence corresponding to the second wireless transmission path;
    Second radio transmission means for generating the second radio frequency signal by multiplying the second transmission symbol string with a second carrier wave and transmitting the second radio frequency signal to the second radio transmission path;
    When the first encoding unit performs transmission path encoding according to the first encoding rule, the second mapping unit generates the second transmission symbol sequence from the second encoded data sequence. And
    When the first encoding means performs transmission path encoding according to the second encoding rule, the second mapping means generates the second transmission symbol string from the received data string;
    The wireless relay system according to any one of claims 1 to 8.
  10.  前記中継装置は、携帯電話端末である、請求項1~9のいずれか1項に記載の無線中継システム。 10. The wireless relay system according to claim 1, wherein the relay device is a mobile phone terminal.
  11.  前記第1の無線通信路は、無線PAN(Personal Area Network)又は無線LAN(Local Area Network)であり、
     前記第2の無線通信路は、前記第1の無線通信路より遠距離通信が可能な無線通信網である、請求項1~10のいずれか1項に記載の無線中継システム。
    The first wireless communication path is a wireless PAN (Personal Area Network) or a wireless LAN (Local Area Network),
    The wireless relay system according to any one of claims 1 to 10, wherein the second wireless communication path is a wireless communication network capable of far-distance communication with respect to the first wireless communication path.
  12.  前記第1の符号化規則、前記第1のマッピング手段、前記第1の無線送信手段、前記受信手段、及び前記デマッピング手段は、UWB(Ultra Wide band)に適応しており、
     前記第2の符号化規則、前記第2のマッピング手段及び前記第2の無線送信手段は、無線LAN、モバイルWiMAX、W-CDMA、CDMA2000、LTE及びIMT-Advancedの少なくとも1つに適応している、請求項1~10のいずれか1項に記載の無線中継システム。
    The first encoding rule, the first mapping means, the first wireless transmission means, the receiving means, and the demapping means are adapted to UWB (Ultra Wide Band),
    The second encoding rule, the second mapping unit, and the second wireless transmission unit are adapted to at least one of wireless LAN, mobile WiMAX, W-CDMA, CDMA2000, LTE, and IMT-Advanced. The wireless relay system according to any one of claims 1 to 10.
  13.  第1の無線伝送路を介して第1の無線周波数信号を受信するとともに、前記第1の無線周波数信号に含まれていた送信データを含む第2の無線周波数信号を生成して第2の無線伝送路に中継送信する中継装置と、
     前記第2の無線通信路を介して前記第2の無線周波数信号を受信する受信装置と、を備え、
     前記中継装置は、第1の中継モードと第2の中継モードとの間で切り替え可能であり、
     前記第1の中継モードは、前記第1の無線周波数信号から復調された受信データ列に対して第1の符号化規則に対応した伝送路復号化を行うとともに、復号化後のデータ列に対して前記第1の符号化規則とは異なる第2の符号化規則に従った伝送路符号化を実行した後に前記第2の無線伝送路に送信するモードであり、
     前記第2の中継モードは、前記第1の符号化規則に対応した伝送路復号化及び前記第2の符号化規則に従った伝送路符号化を省略して、前記受信データ列を前記第2の無線伝送路に送信するモードであり、
     前記受信装置は、前記第1の中継モードに対応した第1の受信モードと前記第2の中継モードに対応した第2の受信モードとの間で切り替え可能であり、
     前記第1の受信モードは、前記第2の無線周波数信号から復調されたデータ列に対して前記第2の符号化規則に対応した伝送路復号化を行うことにより、前記送信データを復元するモードであり、
     前記第2の受信モードは、前記第2の無線周波数信号から復調されたデータ列に対して前記第1の符号化規則に対応した伝送路復号化を行って前記送信データを復元するモードである、
    無線中継システム。
    A first radio frequency signal is received via the first radio transmission path, and a second radio frequency signal including transmission data included in the first radio frequency signal is generated to generate a second radio frequency signal. A relay device for relay transmission to the transmission line;
    A receiver that receives the second radio frequency signal via the second radio communication path,
    The relay device is switchable between a first relay mode and a second relay mode;
    In the first relay mode, transmission line decoding corresponding to the first encoding rule is performed on the received data sequence demodulated from the first radio frequency signal, and the data sequence after decoding is performed. A mode of transmitting to the second wireless transmission path after performing transmission path encoding according to a second encoding rule different from the first encoding rule,
    In the second relay mode, transmission path decoding corresponding to the first encoding rule and transmission path encoding according to the second encoding rule are omitted, and the received data string is changed to the second relay mode. Mode to transmit to the wireless transmission path of
    The receiver is switchable between a first reception mode corresponding to the first relay mode and a second reception mode corresponding to the second relay mode;
    The first reception mode is a mode in which the transmission data is restored by performing transmission path decoding corresponding to the second encoding rule on the data sequence demodulated from the second radio frequency signal. And
    The second reception mode is a mode in which the transmission data is restored by performing transmission path decoding corresponding to the first encoding rule on the data sequence demodulated from the second radio frequency signal. ,
    Wireless relay system.
  14.  前記受信装置及び前記中継装置は、前記第2の無線伝送路が予め定められた品質レベルを満足する場合に、前記第1の受信モード及び前記第1の中継モードから前記第2の受信モード及び第2の中継モードにそれぞれ遷移する、請求項13に記載の無線中継システム。 When the second wireless transmission path satisfies a predetermined quality level, the receiving device and the relay device can change the second reception mode and the first reception mode from the first reception mode and the first relay mode. The wireless relay system according to claim 13, wherein the wireless relay system transitions to a second relay mode.
  15.  前記受信装置は、前記中継装置における中継モードの切り替えに応答して、前記第1の受信モードと前記第2の受信モードの切り替えを行う、請求項13又は14に記載の無線中継システム。 The wireless relay system according to claim 13 or 14, wherein the reception device switches between the first reception mode and the second reception mode in response to switching of the relay mode in the relay device.
  16.  前記中継装置は、前記受信装置における受信モードの切り替えに応答して、前記第1の中継モードと前記第2の中継モードの切り替えを行う、請求項13~15のいずれか1項に記載の無線中継システム。 The wireless device according to any one of claims 13 to 15, wherein the relay device performs switching between the first relay mode and the second relay mode in response to switching of a reception mode in the reception device. Relay system.
  17.  前記第2の受信モードにおいて、前記受信装置は、前記第2の無線伝送路の制御のために前記中継装置から受信する制御データに対しては前記第2の符号化規則に対応した伝送路復号化を継続する、請求項13~16のいずれか1項に記載の無線中継システム。 In the second reception mode, the receiving apparatus performs transmission path decoding corresponding to the second encoding rule for control data received from the relay apparatus for controlling the second wireless transmission path. The wireless relay system according to any one of claims 13 to 16, wherein the communication is continued.
  18.  前記第2の中継モードにおいて、前記中継装置は、前記第2の無線伝送路の制御のために前記受信装置に送信する制御データに対しては前記第2の符号化規則に従った伝送路符号化を継続する、請求項13~17のいずれか1項に記載の無線中継システム。 In the second relay mode, the relay apparatus transmits a transmission line code according to the second encoding rule for control data transmitted to the reception apparatus for controlling the second wireless transmission line. The wireless relay system according to any one of claims 13 to 17, wherein the communication is continued.
  19.  第1の無線伝送路を介して第1の無線周波数信号を受信するとともに、前記第1の無線周波数信号に含まれていた送信データを含む第2の無線周波数信号を生成して第2の無線伝送路に中継送信する中継装置であって、
     第1の中継モードと第2の中継モードとを切り替え可能な中継手段と、
     前記第1及び第2の中継モードの切り替えを制御する制御手段と、を備え、
     前記第1の中継モードは、前記第1の無線周波数信号から復調された受信データ列に対して第1の符号化規則に対応した伝送路復号化を行うとともに、復号化後のデータ列に対して前記第1の符号化規則とは異なる第2の符号化規則に従った伝送路符号化を実行した後に前記第2の無線伝送路に送信するモードであり、
     前記第2の中継モードは、前記第1の符号化規則に対応した伝送路復号化及び前記第2の符号化規則に従った伝送路符号化を省略して、前記受信データ列を前記第2の無線伝送路に送信するモードである、
    中継装置。
    A first radio frequency signal is received via the first radio transmission path, and a second radio frequency signal including transmission data included in the first radio frequency signal is generated to generate a second radio frequency signal. A relay device that relays and transmits to a transmission line,
    Relay means capable of switching between the first relay mode and the second relay mode;
    Control means for controlling switching between the first and second relay modes,
    In the first relay mode, transmission line decoding corresponding to the first encoding rule is performed on the received data sequence demodulated from the first radio frequency signal, and the data sequence after decoding is performed. A mode of transmitting to the second wireless transmission path after performing transmission path encoding according to a second encoding rule different from the first encoding rule,
    In the second relay mode, transmission line decoding corresponding to the first encoding rule and transmission line encoding according to the second encoding rule are omitted, and the received data string is changed to the second relay mode. It is a mode to transmit to the wireless transmission path of
    Relay device.
  20.  前記第2の中継モードにおいて、前記中継手段は、前記第1の無線周波数信号に含まれる前記第1の無線伝送路に関する制御データに対しては前記第1の符号化規則に従った伝送路復号化を継続する、請求項19に記載の中継装置。 In the second relay mode, the relay means performs transmission path decoding according to the first encoding rule for control data related to the first wireless transmission path included in the first radio frequency signal. The relay apparatus according to claim 19, wherein the relaying is continued.
  21.  前記中継手段は、
     前記第1の無線周波数信号から受信シンボル列を抽出する受信手段と、
     前記受信シンボル列から受信データ列を復調するデマッピング手段と、
     前記第1の符号化規則に対応した伝送路復号化を前記受信データ列に対して行い、前記送信データを復元する復号化手段と、
     前記復号化手段によって復元された前記送信データに対して、前記第2の符号化規則に従って伝送路符号化を行う符号化手段と、
     前記符号化手段によって伝送路符号化された符号化データ列および前記デマッピング手段によって復調された前記受信データ列のいずれか一方を選択的に入力し、入力されたデータ列を前記第2の無線伝送路に対応した送信シンボル列に変換するマッピング手段と、
     前記送信シンボル列を搬送波と掛け合わせて前記第2の無線周波数信号を生成し、前記第2の無線伝送路に送信する無線送信手段と、
    を備え、
     前記制御手段は、前記符号化データ列及び前記受信データ列のいずれを前記送信シンボル列の生成に使用するかを切り替える、
    請求項19又は20に記載の中継装置。
    The relay means is
    Receiving means for extracting a received symbol sequence from the first radio frequency signal;
    Demapping means for demodulating a received data sequence from the received symbol sequence;
    Decoding means for performing transmission path decoding corresponding to the first encoding rule on the received data sequence and restoring the transmission data;
    Encoding means for performing transmission path encoding on the transmission data restored by the decoding means according to the second encoding rule;
    Either one of the encoded data sequence that has been transmission path encoded by the encoding unit and the received data sequence demodulated by the demapping unit is selectively input, and the input data sequence is input to the second radio Mapping means for converting to a transmission symbol sequence corresponding to the transmission path;
    Wireless transmission means for generating the second radio frequency signal by multiplying the transmission symbol string with a carrier wave and transmitting the second radio frequency signal to the second radio transmission path;
    With
    The control means switches which of the encoded data sequence and the received data sequence is used for generation of the transmission symbol sequence,
    The relay device according to claim 19 or 20.
  22.  前記制御手段は、前記第1又は第2の無線伝送路の品質レベルに応じて、前記送信シンボル列の生成に使用するデータ列を決定する、請求項21に記載の中継装置。 The relay apparatus according to claim 21, wherein the control means determines a data sequence used for generating the transmission symbol sequence according to a quality level of the first or second wireless transmission path.
  23.  前記制御手段は、前記第1又は第2の無線伝送路における通信相手装置の通信モードの切り替えに応じて、前記送信シンボル列の生成に使用するデータ列を決定する、請求項21に記載の中継装置。 The relay according to claim 21, wherein the control means determines a data sequence to be used for generating the transmission symbol sequence in response to switching of a communication mode of a communication partner device in the first or second wireless transmission path. apparatus.
  24.  送信データを含む無線周波数信号を生成して無線伝送路に送信する送信装置であって、
     第1の送信モードと第2の送信モードとの間で切り替え可能な送信手段と、
     前記第1及び第2の送信モードの切り替えを制御する制御手段と、を備え、
     前記第1の送信モードは、第1の符号化規則に従った伝送路符号化を前記送信データに対して行った後に前記無線伝送路に送信するモードであり、
     前記第2の送信モードは、前記第1の符号化規則とは異なる第2の符号化規則に従った伝送路符号化を前記送信データに対して行った後に前記無線伝送路に送信するモードであり、
     前記制御手段は、前記第1及び第2の符号化規則のいずれにより前記送信データを符号化するかを前記無線伝送路の品質レベルに応じて決定する、
    送信装置。
    A transmission device that generates a radio frequency signal including transmission data and transmits the signal to a wireless transmission path,
    Transmission means switchable between a first transmission mode and a second transmission mode;
    Control means for controlling switching between the first and second transmission modes,
    The first transmission mode is a mode for transmitting to the wireless transmission path after performing transmission path encoding on the transmission data according to a first encoding rule,
    The second transmission mode is a mode in which transmission channel encoding according to a second encoding rule different from the first encoding rule is performed on the transmission data and then transmitted to the wireless transmission channel. Yes,
    The control means determines which of the first and second encoding rules to encode the transmission data according to the quality level of the wireless transmission path.
    Transmitter device.
  25.  前記第2の送信モードにおいて、前記送信手段は、前記無線伝送路の制御のために前記無線伝送路に送信する制御データに対しては前記第1の符号化規則に従った伝送路符号化を継続する、請求項24に記載の送信装置。 In the second transmission mode, the transmission means performs transmission path encoding according to the first encoding rule for control data transmitted to the wireless transmission path for controlling the wireless transmission path. The transmission device according to claim 24, which continues.
  26.  前記送信手段は、
     第1又は第2の符号化規則に従った伝送路符号化を送信データに対して行うことが可能な符号化手段と、
     前記符号化手段によって生成される符号化データ列を送信シンボル列に変換するマッピング手段と、
     前記送信シンボル列を搬送波と掛け合わせて無線周波数信号を生成し、無線伝送路に送信する無線送信手段と、
    を備える請求項24又は25に記載の送信装置。
    The transmission means includes
    Encoding means capable of performing transmission path encoding on transmission data in accordance with the first or second encoding rule;
    Mapping means for converting the encoded data sequence generated by the encoding means into a transmission symbol sequence;
    A wireless transmission means for generating a radio frequency signal by multiplying the transmission symbol sequence with a carrier wave and transmitting the signal to a wireless transmission path;
    The transmission device according to claim 24 or 25.
  27.  前記第1の符号化規則、前記マッピング手段及び前記無線送信手段は、無線PAN(Personal Area Network)又は無線LAN(Local Area Network)に適応しており、
     前記第2の符号化規則は、前記無線伝送路より遠距離通信が可能な無線通信網に適応している、請求項24~26のいずれか1項に記載の送信装置。
    The first encoding rule, the mapping unit, and the wireless transmission unit are adapted to a wireless PAN (Personal Area Network) or a wireless LAN (Local Area Network),
    The transmission device according to any one of claims 24 to 26, wherein the second encoding rule is adapted to a wireless communication network capable of long-distance communication through the wireless transmission path.
  28.  前記第1の符号化規則、前記マッピング手段及び前記無線送信手段は、UWB(Ultra Wide band)に適応しており、
     前記第2の符号化規則は、無線LAN、モバイルWiMAX、W-CDMA、CDMA2000、LTE及びIMT-Advancedの少なくとも1つに適応している、請求項24~26のいずれか1項に記載の送信装置。
    The first encoding rule, the mapping unit, and the wireless transmission unit are adapted to UWB (Ultra Wide band),
    The transmission according to any one of claims 24 to 26, wherein the second coding rule is adapted to at least one of wireless LAN, mobile WiMAX, W-CDMA, CDMA2000, LTE, and IMT-Advanced. apparatus.
  29.  無線通信路を介して無線周波数信号を受信する受信装置であって、
     第1の受信モードと第2の受信モードとの間で切り替え可能な受信手段と、
     前記第1及び第2の受信モードの切り替えを制御する制御手段と、を備え、
     前記第1の受信モードは、前記無線周波数信号から復調されたデータ列に対して第1の符号化規則に対応した伝送路復号化を行うことにより、送信データを復元するモードであり、
     前記第2の受信モードは、前記無線周波数信号から復調されたデータ列に対して、前記第1の符号化規則とは異なる第2の符号化規則に対応した伝送路復号化を行って送信データを復元するモードであり、
     前記制御手段は、前記第1及び第2の復号化規則のいずれに対応した伝送路復号化を行うかを前記無線伝送路の品質レベルに応じて決定する、
    受信装置。
    A receiving device that receives a radio frequency signal via a wireless communication path,
    Receiving means switchable between a first receiving mode and a second receiving mode;
    Control means for controlling switching between the first and second reception modes,
    The first reception mode is a mode in which transmission data is restored by performing transmission path decoding corresponding to a first encoding rule on a data sequence demodulated from the radio frequency signal,
    In the second reception mode, transmission data is obtained by performing transmission path decoding corresponding to a second encoding rule different from the first encoding rule on the data sequence demodulated from the radio frequency signal. Is the mode to restore
    The control means determines according to the quality level of the wireless transmission path whether to perform transmission path decoding corresponding to the first or second decoding rule,
    Receiver device.
  30.  前記第2の受信モードにおいて、前記受信手段は、前記無線周波数信号に含まれる前記第無線伝送路に関する制御データに対しては前記第1の符号化規則に対応した伝送路復号化を継続する、請求項29に記載の受信装置。 In the second reception mode, the receiving unit continues transmission path decoding corresponding to the first encoding rule for control data related to the first wireless transmission path included in the radio frequency signal. The receiving device according to claim 29.
  31.  前記受信手段は、
     前記無線伝送路を介して受信した前記無線周波数信号から受信シンボル列を抽出する無線受信手段と、
     前記受信シンボル列から受信データ列を復調するデマッピング手段と、
     第1又は第2の符号化規則に対応した伝送路復号化を前記受信データ列に対して行い送信データを復元する復号化手段と、
    を備える、請求項29又は30に記載の受信装置。
    The receiving means includes
    Radio receiving means for extracting a received symbol sequence from the radio frequency signal received via the radio transmission path;
    Demapping means for demodulating a received data sequence from the received symbol sequence;
    Decoding means for performing transmission path decoding corresponding to the first or second encoding rule on the received data sequence to restore transmission data;
    The receiving device according to claim 29 or 30, comprising:
  32.  前記第1の符号化規則、前記受信手段及び前記デマッピング手段は、無線PAN(Personal Area Network)又は無線LAN(Local Area Network)に適応しており、
     前記第2の符号化規則は、前記無線伝送路より遠距離通信が可能な無線通信網に適応している、請求項29~31のいずれか1項に記載の受信装置。
    The first encoding rule, the receiving unit, and the demapping unit are adapted to a wireless PAN (Personal Area Network) or a wireless LAN (Local Area Network),
    The receiving apparatus according to any one of claims 29 to 31, wherein the second encoding rule is adapted to a wireless communication network capable of long-distance communication through the wireless transmission path.
  33.  前記第1の符号化規則、前記受信手段及び前記デマッピング手段は、UWB(Ultra Wide band)に適応しており、
     前記第2の符号化規則は、無線LAN、モバイルWiMAX、W-CDMA、CDMA2000、LTE及びIMT-Advancedの少なくとも1つに適応している、請求項29~31のいずれか1項に記載の受信装置。
    The first encoding rule, the receiving unit, and the demapping unit are adapted to UWB (Ultra Wide band),
    The reception according to any one of claims 29 to 31, wherein the second coding rule is adapted to at least one of wireless LAN, mobile WiMAX, W-CDMA, CDMA2000, LTE, and IMT-Advanced. apparatus.
  34.  第1の無線伝送路を介して送信データを含む第1の無線周波数信号を受信するとともに、前記送信データを含む第2の無線周波数信号を生成して第2の無線伝送路に中継送信する中継装置のデータ中継方法であって、
     第1の中継モードから第2の中継モードへ切り替えるステップを備え、
     前記第1の中継モードは、前記第1の無線周波数信号から復調された受信データ列に対して第1の符号化規則に対応した伝送路復号化を行うとともに、復号化後のデータ列に対して前記第1の符号化規則とは異なる第2の符号化規則に従った伝送路符号化を実行した後に前記第2の無線伝送路に送信するモードであり、
     前記第2の中継モードは、前記第1の符号化規則に対応した伝送路復号化及び前記第2の符号化規則に従った伝送路符号化を省略して、前記受信データ列を前記第2の無線伝送路に送信するモードである、
    データ中継方法。
    A relay that receives a first radio frequency signal including transmission data via the first radio transmission path, generates a second radio frequency signal including the transmission data, and relays the second radio frequency signal to the second radio transmission path A device data relay method,
    Comprising switching from the first relay mode to the second relay mode,
    In the first relay mode, transmission line decoding corresponding to the first encoding rule is performed on the received data sequence demodulated from the first radio frequency signal, and the data sequence after decoding is performed. A mode of transmitting to the second wireless transmission path after performing transmission path encoding according to a second encoding rule different from the first encoding rule,
    In the second relay mode, transmission path decoding corresponding to the first encoding rule and transmission path encoding according to the second encoding rule are omitted, and the received data string is changed to the second relay mode. It is a mode to transmit to the wireless transmission path of
    Data relay method.
  35.  前記第1又は第2の無線伝送路が予め定められた品質レベルを満足する場合に、前記第1の中継モードから前記第2の中継モードへの切り替えを決定するステップをさらに備える、請求項34に記載の方法。 35. The method further comprises determining switching from the first relay mode to the second relay mode when the first or second wireless transmission path satisfies a predetermined quality level. The method described in 1.
  36.  前記第1又は第2の無線伝送路における通信相手装置の通信モードの切り替えに応答して、前記第1の中継モードから前記第2の中継モードへの切り替えを決定するステップをさらに備える、請求項34に記載の方法。 The method further comprises the step of determining switching from the first relay mode to the second relay mode in response to switching of the communication mode of the communication partner device in the first or second wireless transmission path. 34. The method according to 34.
  37.  送信データを含む無線周波数信号を生成して無線伝送路に送信する送信装置によるデータ送信方法であって、
     前記無線伝送路の品質レベルに応じて、第1の送信モードから第2の送信モードへの切り替えを決定するステップと、
     前記決定に基づいて、第1の送信モードから第2の送信モードに切り替えるステップを備え、
     前記第1の送信モードは、第1の符号化規則に従った伝送路符号化を前記送信データに対して行った後に前記第1の無線伝送路に送信するモードであり、
     前記第2の送信モードは、前記第1の符号化規則とは異なる第2の符号化規則に従った伝送路符号化を前記送信データに対して行った後に前記第1の無線伝送路に送信するモードである、
    データ送信方法。
    A data transmission method by a transmission device that generates a radio frequency signal including transmission data and transmits the signal to a wireless transmission path,
    Determining switching from the first transmission mode to the second transmission mode according to the quality level of the wireless transmission path;
    Based on the determination, comprising switching from a first transmission mode to a second transmission mode;
    The first transmission mode is a mode for transmitting to the first wireless transmission path after performing transmission path encoding on the transmission data according to a first encoding rule,
    In the second transmission mode, transmission channel encoding is performed on the transmission data according to a second encoding rule different from the first encoding rule, and then transmitted to the first wireless transmission channel. Is the mode to
    Data transmission method.
  38.  近距離無線通信路を介して無線周波数信号を受信する受信装置によるデータ受信方法であって、
     前記無線伝送路の品質レベルに応じて、第1の受信モードから第2の受信モードへの切り替えを決定するステップと、
     前記決定に基づいて、第1の受信モードから第2の受信モードに切り替えるステップを備え、
     前記第1の受信モードは、前記無線周波数信号から復調されたデータ列に対して第1の符号化規則に対応した伝送路復号化を行って送信データを復元するモードであり、
     前記第2の受信モードは、前記無線周波数信号から復調したデータ列に対して、前記第1の符号化規則とは異なる第2の符号化規則に対応した伝送路復号化を行って送信データを復元するモードである、
    データ受信方法。
    A data receiving method by a receiving device that receives a radio frequency signal via a short-range wireless communication path,
    Determining switching from the first reception mode to the second reception mode according to the quality level of the wireless transmission path;
    Based on the determination, comprising switching from a first reception mode to a second reception mode;
    The first reception mode is a mode in which transmission data is restored by performing transmission path decoding corresponding to a first coding rule for a data sequence demodulated from the radio frequency signal,
    In the second reception mode, transmission data is obtained by performing channel decoding corresponding to a second encoding rule different from the first encoding rule on a data sequence demodulated from the radio frequency signal. Is the mode to restore,
    Data reception method.
PCT/JP2009/006423 2008-12-11 2009-11-27 Radio relay system, relay apparatus, transmitter apparatus, receiver apparatus, data relaying method, data transmitting method, and data receiving method WO2010067524A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010541981A JP5477298B2 (en) 2008-12-11 2009-11-27 Wireless relay system, relay device, and data relay method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-315240 2008-12-11
JP2008315240 2008-12-11

Publications (1)

Publication Number Publication Date
WO2010067524A1 true WO2010067524A1 (en) 2010-06-17

Family

ID=42242522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006423 WO2010067524A1 (en) 2008-12-11 2009-11-27 Radio relay system, relay apparatus, transmitter apparatus, receiver apparatus, data relaying method, data transmitting method, and data receiving method

Country Status (2)

Country Link
JP (1) JP5477298B2 (en)
WO (1) WO2010067524A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012060303A (en) * 2010-09-07 2012-03-22 Media Global Links:Kk Digital broadcast signal retransmission system
JP2013034182A (en) * 2011-06-17 2013-02-14 Toshiba Corp Wireless communication method and apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001111561A (en) * 1999-10-06 2001-04-20 Sony Corp Method and device for radio transmission
JP2001175282A (en) * 1999-12-14 2001-06-29 Nec Corp Sound encoding selection system in repeating line and sound encoding selection method
WO2003021911A1 (en) * 2001-09-04 2003-03-13 Ntt Docomo, Inc. Encoding method selection method and terminal apparatus
WO2006098273A1 (en) * 2005-03-14 2006-09-21 Matsushita Electric Industrial Co., Ltd. Wireless communication system
WO2008047429A1 (en) * 2006-10-18 2008-04-24 Fujitsu Limited Wireless base station, relay station, wireless relay system and wireless relay method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8311543B2 (en) * 2005-07-07 2012-11-13 Qualcomm Incorporated Methods and devices for interworking of wireless wide area networks and wireless local area networks or wireless personal area networks
JP2008236370A (en) * 2007-03-20 2008-10-02 Fujitsu Ltd Radio transmission system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001111561A (en) * 1999-10-06 2001-04-20 Sony Corp Method and device for radio transmission
JP2001175282A (en) * 1999-12-14 2001-06-29 Nec Corp Sound encoding selection system in repeating line and sound encoding selection method
WO2003021911A1 (en) * 2001-09-04 2003-03-13 Ntt Docomo, Inc. Encoding method selection method and terminal apparatus
WO2006098273A1 (en) * 2005-03-14 2006-09-21 Matsushita Electric Industrial Co., Ltd. Wireless communication system
WO2008047429A1 (en) * 2006-10-18 2008-04-24 Fujitsu Limited Wireless base station, relay station, wireless relay system and wireless relay method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012060303A (en) * 2010-09-07 2012-03-22 Media Global Links:Kk Digital broadcast signal retransmission system
JP2013034182A (en) * 2011-06-17 2013-02-14 Toshiba Corp Wireless communication method and apparatus
US9083422B2 (en) 2011-06-17 2015-07-14 Kabushiki Kaisha Toshiba Wireless communications methods and apparatus

Also Published As

Publication number Publication date
JP5477298B2 (en) 2014-04-23
JPWO2010067524A1 (en) 2012-05-17

Similar Documents

Publication Publication Date Title
CN101505206B (en) Relay method, base station and user equipment for combined analog network coding
US9866334B2 (en) Method to control the effects of out-of-cell interference in a wireless cellular system using backhaul transmission of decoded data and formats
US8331425B2 (en) Apparatus, system and method for providing a multiple input/multiple output (MIMO) channel interface
KR101237230B1 (en) Method and apparatus for selecting and processing signals from a source station and relay stations
US8620230B2 (en) Wireless network architecture and method for base station utilization
KR100960567B1 (en) Hybrid duplex apparatus and method for supporting low complexity terminal in wireless communication system
JP2008017487A (en) Harq method, and relay equipment and communication system using the same
US20090287979A1 (en) System and method for relay coding
WO2007079696A1 (en) Method and device for relay station to forward downlink signal
KR20090094339A (en) Combining packets in physical layer for two-way relaying
CN106464340B (en) Method for orthogonally relaying user data for different users
JP3712070B2 (en) COMMUNICATION SYSTEM, TRANSMITTING APPARATUS AND TRANSMITTING METHOD, RECEIVING APPARATUS AND RECEIVING METHOD, CODE MULTIPLEXING METHOD, AND MULTICODE DECODING METHOD
US8958360B2 (en) Coordinated communication method using multiple terminals
WO2010109282A1 (en) Apparatus and method for bit remapping in a relay enhanced communication system
US8874028B2 (en) Terminal device, relay device, and base station communication method
JP5477298B2 (en) Wireless relay system, relay device, and data relay method
US20110134772A1 (en) Methods of radio communication involving multiple radio channels, and radio signal repeater and mobile station apparatuses implementing same
US20100202542A1 (en) Method for data transmission within a communication system, subscriber and communication system
JP5830375B2 (en) Relay device, terminal station, radio communication system, and relay method
JP5379298B2 (en) Method and apparatus for coupling processing in relay station and corresponding processing method and apparatus in base station
JP5413158B2 (en) Transfer device, communication system, and transfer method
Marczak Overview of cooperative communication methods
KR101712230B1 (en) Methods of radio communication involving multiple radio channels, and radio signal repeater and mobile station apparatuses implementing same
JP5084690B2 (en) Radio relay system, radio relay method, relay station, and transmitting / receiving station
Ngo et al. Erasure Insertion in Reed-Solomon Coded SFH M-ary FSK with Partial-Band Interference and Rayleigh Fading for Non-Coherent Cooperative Communications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09831632

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010541981

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09831632

Country of ref document: EP

Kind code of ref document: A1