WO2010064362A1 - Field effect transistor - Google Patents

Field effect transistor Download PDF

Info

Publication number
WO2010064362A1
WO2010064362A1 PCT/JP2009/006038 JP2009006038W WO2010064362A1 WO 2010064362 A1 WO2010064362 A1 WO 2010064362A1 JP 2009006038 W JP2009006038 W JP 2009006038W WO 2010064362 A1 WO2010064362 A1 WO 2010064362A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor layer
nitride semiconductor
fet
field effect
effect transistor
Prior art date
Application number
PCT/JP2009/006038
Other languages
French (fr)
Japanese (ja)
Inventor
按田義治
石田秀俊
上田哲三
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN200980148577.4A priority Critical patent/CN102239550A/en
Publication of WO2010064362A1 publication Critical patent/WO2010064362A1/en
Priority to US13/118,945 priority patent/US20110227132A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Definitions

  • the present invention relates to a field effect transistor, and more particularly to a field effect transistor composed of a group III nitride semiconductor.
  • Group III nitride semiconductors typified by gallium nitride (GaN) have a large band gap, a high breakdown electric field, and a high saturation electron velocity that surpass silicon and gallium arsenide. Because of this physical advantage, field effect transistors (FETs) using group III nitride semiconductors are promising as next-generation high-frequency devices and high-power switching devices, and are actively researched and developed.
  • GaN gallium nitride
  • the above-mentioned FET is required to achieve both a high breakdown voltage and a high on-resistance, but generally both are in a trade-off relationship with the same material. Further, normally-off FETs are required for high power switching devices, and the parasitic resistance between the gate and the source and between the gate and the drain tends to be further increased. It is also known that a high density trap level exists on the surface of the group III nitride semiconductor, and the trap level trapped during high-speed switching operation cannot follow switching, resulting in a current collapse in which the drain current decreases. It has been.
  • FIG. 8 is a cross-sectional view showing the structure of the FET described in Patent Document 1.
  • FIG. 8 is a cross-sectional view showing the structure of the FET described in Patent Document 1.
  • a carrier traveling layer 802 and a carrier supply layer 803 are provided on a substrate 801, and a GaN-based protective layer 804 is provided on the upper surface of the carrier supply layer 803. .
  • the surface of the GaN-based protective layer 804 is covered with a protective layer 805 made of silicon nitride (SiN) between the gate electrode 806 and the source electrode 808 and between the gate electrode 806 and the drain electrode 807. .
  • SiN silicon nitride
  • the on-resistance cannot be said to be sufficiently low, and further reduction of the on-resistance is required.
  • the breakdown voltage of the element is determined by the distance between the gate electrode and the drain electrode. Increasing the distance improves the breakdown voltage, but increases the parasitic resistance between the gate and the drain and increases the on-resistance.
  • the on-resistance is sufficiently low as a power loss in both the high-frequency device and the high-power switching device. In the future, it will be necessary to further reduce the on-resistance for higher performance FETs. An improvement in the device structure is effective in reducing the on-resistance.
  • normally-off type FETs tend to increase the parasitic resistance between the gate and the source and between the gate and the drain.
  • the influence of the surface state is suppressed and consideration is given to an increase in the parasitic resistance.
  • further resistance reduction is necessary.
  • the present invention has been made to solve the above problems, and an object thereof is to provide a field effect transistor having a low on-resistance.
  • a field effect transistor according to the present invention is formed on a first nitride semiconductor layer and the first nitride semiconductor layer, and more than the first nitride semiconductor layer.
  • a fourth nitride semiconductor layer having a band gap energy larger than that of the third nitride semiconductor layer, and a heterojunction interface between the first nitride semiconductor layer and the second nitride semiconductor layer.
  • a channel is formed.
  • the heterojunction interface between the first nitride semiconductor layer and the second nitride semiconductor layer but also between the third nitride semiconductor layer and the fourth nitride semiconductor layer.
  • a channel is also formed at the heterojunction interface. That is, in addition to the conventional two-dimensional electron gas forming the channel, a two-dimensional electron gas is further formed on the surface side. Therefore, sheet resistance can be reduced and on-resistance can be reduced.
  • the channel is moved away from the semiconductor layer on the outermost surface side of the FET as compared with the conventional FET, the influence of the surface level on the channel can be reduced. As a result, current collapse due to the surface state can be suppressed.
  • the two heterojunction interfaces are formed of a nitride semiconductor, a two-dimensional electron gas is generated at the heterojunction interface due to piezo polarization and spontaneous polarization resulting from lattice mismatch. Therefore, since it is not necessary to add impurities for forming the channel, a high breakdown voltage FET can be realized.
  • the gate electrode of the field effect transistor is formed in a recess provided in the fourth nitride semiconductor layer.
  • the channel can be brought close to the gate electrode while keeping the channel away from the semiconductor layer on the outermost surface side of the FET. As a result, it is possible to easily control the threshold voltage of the gate while suppressing current collapse.
  • the recess penetrates a heterojunction interface between the third nitride semiconductor layer and the fourth nitride semiconductor layer.
  • the recess penetrates through the third nitride semiconductor layer and the fourth nitride semiconductor layer to reach the surface of the second nitride semiconductor layer, and the second as the bottom surface of the recess.
  • the surface of the nitride semiconductor layer is preferably flush with the interface between the second nitride semiconductor layer and the third nitride semiconductor layer.
  • the gate threshold voltage is determined by the film thickness and Al composition ratio of the second nitride semiconductor layer, the gate threshold voltage can be easily controlled. Therefore, an FET having a uniform gate threshold voltage in the wafer surface can be realized.
  • the field effect transistor preferably further includes an insulating film formed on the bottom surface of the recess.
  • the FET is made into a MIS (Metal Insulator Semiconductor) structure, the current flowing into the gate can be suppressed and a positive bias can be applied to the gate electrode, so that an effective structure as a normally-off type FET can be realized.
  • MIS Metal Insulator Semiconductor
  • the field effect transistor further includes a fifth nitride semiconductor layer formed on a bottom surface of the recess, and an insulating film formed between the gate electrode and the fifth nitride semiconductor layer. It is preferable to provide.
  • the insulating film can be formed continuously with the epitaxial growth of the fifth nitride semiconductor layer in the recess, an insulating film having good insulating characteristics can be realized.
  • the insulating film is preferably made of a laminated structure of silicon nitride and aluminum nitride.
  • the insulating film contains AlN excellent in heat conduction, an FET that is particularly effective for a device that drives a large power can be realized.
  • the insulating film is preferably formed by an atomic layer deposition apparatus.
  • the film thickness of the second nitride semiconductor layer is preferably smaller than the film thickness of the fourth nitride semiconductor layer.
  • the electrons in the channel at the heterojunction interface between the third nitride semiconductor layer and the fourth nitride semiconductor layer are converted into the first nitride semiconductor layer and the second nitride semiconductor layer.
  • the channel resistance can be further reduced, and the on-resistance can be reduced.
  • the thickness of the second nitride semiconductor layer directly under the gate electrode can be reduced, a configuration effective for a normally-off type FET can be realized.
  • the source electrode and the drain electrode of the field effect transistor respectively include a heterojunction interface between the first nitride semiconductor layer and the second nitride semiconductor layer, the third nitride semiconductor layer, and the fourth nitride semiconductor layer. It is preferable to contact the heterojunction interface of the nitride semiconductor layer.
  • the contact resistance of the source electrode and the drain electrode can be reduced.
  • a low on-resistance can be realized in an FET composed of a nitride semiconductor.
  • FIG. 1 is a cross-sectional view showing the configuration of the FET according to the first embodiment of the present invention.
  • FIG. 2 is an energy band diagram of the FET according to the embodiment.
  • FIG. 3A is a diagram showing an FET having a single channel structure.
  • FIG. 3B is a diagram showing a FET having a double channel structure.
  • FIG. 3C is a diagram illustrating experimental results of the relationship between the breakdown voltage and the on-resistance in the diode characteristics of the gate electrode and the drain electrode.
  • FIG. 4 is a cross-sectional view showing the configuration of the FET according to the second exemplary embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing the configuration of the FET according to the third exemplary embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing the configuration of the FET according to the fourth exemplary embodiment of the present invention.
  • FIG. 7 is a sectional view showing the structure of an FET according to the fifth embodiment of the present invention.
  • FIG. 8 is a cross-sectional view showing the structure of a conventional FET.
  • FIG. 1 is a cross-sectional view showing the configuration of the FET according to the present embodiment.
  • This FET includes a substrate 101, a buffer layer 102, a first nitride semiconductor layer 103, a second nitride semiconductor layer 104, a third nitride semiconductor layer 105, and a fourth nitride semiconductor layer.
  • 106 an insulating film 107, a drain electrode 108, a source electrode 109, a gate electrode 110, and an element isolation layer 111.
  • the substrate 101 is, for example, a sapphire substrate, a SiC substrate, a Si substrate, or a GaN substrate having a thickness (film thickness) of 10 ⁇ m or more and 1000 ⁇ m or less.
  • the buffer layer 102 is made of AlN having a thickness corresponding to the substrate 101, for example, 100 nm, and is formed on the substrate 101.
  • the first nitride semiconductor layer 103 is made of undoped GaN having a thickness of 2 ⁇ m, for example, and is formed on the buffer layer 102.
  • “undoped” means that impurities are not intentionally introduced.
  • the second nitride semiconductor layer 104 is formed on the first nitride semiconductor layer 103 and has a larger band gap energy than the first nitride semiconductor layer 103.
  • the second nitride semiconductor layer 104 is made of, for example, undoped Al x Ga 1-x N (0 ⁇ x ⁇ 1).
  • the second nitride semiconductor layer 104 is made of undoped Al 0.25 Ga 0.75 N having a thickness of 20 nm.
  • the third nitride semiconductor layer 105 is formed on the second nitride semiconductor layer 104 and has a lower band gap energy than the second nitride semiconductor layer 104.
  • the third nitride semiconductor layer 105 is made of undoped GaN having a thickness of 20 nm, for example.
  • the fourth nitride semiconductor layer 106 is formed on the third nitride semiconductor layer 105 and has a larger band gap energy than the third nitride semiconductor layer 105.
  • the fourth nitride semiconductor layer 106 is made of, for example, undoped Al y Ga 1-y N (0 ⁇ y ⁇ 1).
  • the fourth nitride semiconductor layer 106 is made of undoped Al 0.25 Ga 0.75 N having a thickness of 25 nm.
  • Spontaneous polarization occurs between the heterojunction interface of the first nitride semiconductor layer 103 and the second nitride semiconductor layer 104 and the heterojunction interface of the third nitride semiconductor layer 105 and the fourth nitride semiconductor layer 106.
  • electric charges of, for example, about 1 ⁇ 10 13 cm ⁇ 2 are generated by piezo polarization, and electrons run through the heterojunction interface when the gate is on, and the lateral resistance can be greatly reduced particularly in FETs.
  • the drain electrode 108 and the source electrode 109 are formed in regions on both sides of the gate electrode 110, and the heterojunction interface between the first nitride semiconductor layer 103 and the second nitride semiconductor layer 104 and the third nitride, respectively. It is in contact with the heterojunction interface between the semiconductor layer 105 and the fourth nitride semiconductor layer 106 and is electrically connected to the electron transit region (channel) generated in the interface region.
  • the drain electrode 108 and the source electrode 109 are in contact with the first nitride semiconductor layer 103.
  • the drain electrode 108 and the source electrode 109 are composed of, for example, a laminated structure of Ti and Al.
  • a recess 120 is formed in the second nitride semiconductor layer 104, the third nitride semiconductor layer 105, and the fourth nitride semiconductor layer 106.
  • the recess 120 penetrates the third nitride semiconductor layer 105 and the fourth nitride semiconductor layer 106, that is, penetrates the heterojunction interface between the third nitride semiconductor layer 105 and the fourth nitride semiconductor layer 106. And reaches the surface of the second nitride semiconductor layer 104.
  • a gate electrode 110 is formed in the recess 120.
  • the gate electrode 110 is made of, for example, palladium (Pd), nickel (Ni), platinum (Pt), or the like. Note that the gate electrode 110 may be made of Ti when the material constituting the gate electrode 110 is not diffused into the nitride semiconductor layer by the insulating film 107.
  • the insulating film 107 is formed on the bottom and side surfaces of the recess 120 and the surface of the fourth nitride semiconductor layer 106.
  • the insulating film 107 formed on the bottom and side surfaces of the recess 120 is sandwiched between the second nitride semiconductor layer 104, the third nitride semiconductor layer 105, the fourth nitride semiconductor layer 106, and the gate electrode 110. Yes.
  • the insulating film 107 includes, for example, silicon nitride (SiN), silicon oxide (SiO), aluminum nitride (AlN), aluminum oxide (AlO), a stacked structure of SiN and AlN, a stacked structure of SiN and AlO, and the like.
  • SiN silicon nitride
  • SiO silicon oxide
  • AlN aluminum nitride
  • AlO aluminum oxide
  • a stacked structure of SiN and AlN a stacked structure of SiN and AlO, and the like.
  • the insulating film 107 is made of SiN or SiO
  • the insulating film 107 is formed by, for example, a plasma chemical vapor deposition (CVD) method or a low pressure CVD method.
  • CVD plasma chemical vapor deposition
  • the insulating film 107 is made of AlN or AlO
  • the insulating film 107 is formed by, for example, a sputtering method or an atomic layer deposition method (atomic layer deposition: ALD method) using an atomic layer deposition apparatus.
  • the element isolation layer 111 is formed by ion-implanting impurities such as boron (B) into the nitride semiconductor layer, for example, and electrically isolates the FET from other elements.
  • impurities such as boron (B)
  • FIG. 2 is an energy band diagram of the FET according to the present embodiment.
  • a two-dimensional electron gas is generated at the heterojunction interface between the first nitride semiconductor layer 103 and the second nitride semiconductor layer 104, and a channel (referred to as a bulk side channel) is formed.
  • a two-dimensional electron gas is generated at the heterojunction interface between the third nitride semiconductor layer 105 and the fourth nitride semiconductor layer 106, whereby a channel (referred to as a surface side channel) is also formed on the surface side. ing.
  • a channel referred to as a surface side channel
  • the on-resistance can be reduced by the reduced channel resistance.
  • the bulk side channel is away from the semiconductor layer (the surface of the fourth nitride semiconductor layer 106) on the outermost surface side of the FET, the influence of the surface level on the channel is not increased. Reduced. As a result, current collapse due to the surface state can be suppressed.
  • the Al composition ratio of the fourth nitride semiconductor layer 106 is higher than the Al composition ratio of the second nitride semiconductor layer 104 so that electrons in the surface-side channel are more effectively guided to the bulk-side channel.
  • the larger one is desirable, and the thickness of the fourth nitride semiconductor layer 106 is desirably larger than the thickness of the second nitride semiconductor layer 104.
  • the thickness of the second nitride semiconductor layer 104 is set to It is desirable that the thickness is smaller than the thickness of the nitride semiconductor layer 106.
  • two heterojunction interfaces are formed by a laminated structure of, for example, GaN / AlGaN / GaN / AlGaN.
  • a two-dimensional electron gas is generated at the interface between the two heterojunctions due to piezoelectric polarization caused by lattice mismatch between AlGaN and GaN and spontaneous polarization caused by the GaN-based layer itself. Accordingly, since a plurality of electron transit layers (channels) formed at the AlGaN / GaN heterojunction interface are provided, the on-resistance between the gate electrode 110 and the source electrode 109 and between the gate electrode 110 and the drain electrode 108 is provided. Can be reduced.
  • 3C shows the breakdown voltage and on-resistance in the diode characteristics of the gate electrode 110 and the drain electrode 108 for the single channel structure having one electron transit layer of FIG. 3A and the double channel structure having two electron transit layers of FIG. 3B. It shows the experimental result of the relationship.
  • FIG. 3C shows that the on-resistance can be reduced to about half in the double channel structure when the breakdown voltage is almost the same in both cases. Therefore, for example, by using a laminated structure of GaN / AlGaN / GaN / AlGaN, the amount of electrons traveling with respect to a conventional FET having only one heterojunction interface of GaN / AlGaN is increased, and the on-resistance is reduced. Is possible. By providing this double channel structure on both sides of the gate electrode 110, the parasitic resistance of the source and drain of the FET can be suppressed to about half while maintaining the same breakdown voltage.
  • the drain side is usually a portion where the electric field is concentrated, but even if a multi-layer electron transit layer is provided, the breakdown voltage is not lowered.
  • the longitudinal resistance of the laminated structure of GaN / AlGaN / GaN / AlGaN can be reduced by designing the film thickness and composition of each nitride semiconductor layer.
  • the insulating film 107 is provided under the gate electrode 110 and the MIS structure is adopted. Therefore, the current flowing into the gate electrode 110 can be suppressed, a positive bias can be applied to the gate electrode 110, and an effective structure as a normally-off type FET can be realized.
  • the first nitride semiconductor layer 103, the second nitride semiconductor layer 104, the third nitride semiconductor layer 105, and the fourth nitride semiconductor layer 106 contain In. May be.
  • the first nitride semiconductor layer 103 may partially include a doping layer. This structure makes it easy to control the amount of charge in the nitride semiconductor layer and adjust the threshold voltage of the gate.
  • another semiconductor layer may be disposed on the fourth nitride semiconductor layer 106.
  • the first nitride semiconductor layer 103, the second nitride semiconductor layer 104, the third nitride semiconductor layer 105, and the fourth nitride semiconductor layer 106 include, for example, Si.
  • N-type impurities such as n-type impurities may be doped.
  • the depth of the recess 120 is a depth that penetrates the third nitride semiconductor layer 105 and the fourth nitride semiconductor layer 106. If the distance to the channel can be shortened, the depth is not limited to this.
  • the depth of the recess 120 is a depth that stops in the middle of the fourth nitride semiconductor layer 106 without reaching the third nitride semiconductor layer 105, or penetrates the fourth nitride semiconductor layer 106, 3 may be a depth that stops halfway through the nitride semiconductor layer 105.
  • FIG. 4 is a cross-sectional view showing the configuration of the FET according to the present embodiment.
  • the FET includes a substrate 201, a buffer layer 202, a first nitride semiconductor layer 203, a second nitride semiconductor layer 204, a third nitride semiconductor layer 205, and a fourth nitride semiconductor layer. 206, an insulating film 207, a drain electrode 208, a source electrode 209, a gate electrode 210, and an element isolation layer 211.
  • the substrate 201 is, for example, a sapphire substrate, a SiC substrate, a Si substrate, or a GaN substrate having a thickness of 10 ⁇ m or more and 1000 ⁇ m or less.
  • the buffer layer 202 is made of AlN having a thickness corresponding to the substrate 201, for example, 100 nm, and is formed on the substrate 201.
  • the first nitride semiconductor layer 203 is made of undoped GaN having a thickness of 2 ⁇ m, for example, and is formed on the buffer layer 202.
  • the second nitride semiconductor layer 204 is formed on the first nitride semiconductor layer 203 and has a larger band gap energy than the first nitride semiconductor layer 203.
  • the second nitride semiconductor layer 204 is made of, for example, undoped Al x Ga 1-x N (0 ⁇ x ⁇ 1).
  • the second nitride semiconductor layer 204 is made of undoped Al 0.25 Ga 0.75 N having a thickness of 20 nm.
  • the third nitride semiconductor layer 205 is formed on the second nitride semiconductor layer 204 and has a lower band gap energy than the second nitride semiconductor layer 204.
  • the third nitride semiconductor layer 205 is made of undoped GaN having a thickness of 20 nm, for example.
  • the fourth nitride semiconductor layer 206 is formed on the third nitride semiconductor layer 205 and has a larger band gap energy than the third nitride semiconductor layer 205.
  • the fourth nitride semiconductor layer 206 is made of, for example, undoped Al y Ga 1-y N (0 ⁇ y ⁇ 1).
  • the fourth nitride semiconductor layer 206 is made of undoped Al 0.25 Ga 0.75 N having a thickness of 25 nm.
  • Spontaneous polarization occurs between the heterojunction interface of the first nitride semiconductor layer 203 and the second nitride semiconductor layer 204 and the heterojunction interface of the third nitride semiconductor layer 205 and the fourth nitride semiconductor layer 206.
  • electric charges of, for example, about 1 ⁇ 10 13 cm ⁇ 2 are generated by piezo polarization, and electrons run through the heterojunction interface when the gate is on, and the lateral resistance can be greatly reduced particularly in FETs.
  • the Al composition ratio of the fourth nitride semiconductor layer 206 is higher than the Al composition ratio of the second nitride semiconductor layer 204 so that electrons in the surface-side channel are more effectively guided to the bulk-side channel.
  • the larger one is desirable, and the thickness of the fourth nitride semiconductor layer 206 is desirably larger than the thickness of the second nitride semiconductor layer 204.
  • the thickness of the second nitride semiconductor layer 204 is set to It is desirable that the thickness is smaller than the thickness of the nitride semiconductor layer 206.
  • the drain electrode 208 and the source electrode 209 are formed in regions on both sides of the gate electrode 210, and the heterojunction interface between the first nitride semiconductor layer 203 and the second nitride semiconductor layer 204 and the third nitride, respectively. It contacts the heterojunction interface between the semiconductor layer 205 and the fourth nitride semiconductor layer 206 and is electrically connected to the electron transit region generated in the interface region.
  • the drain electrode 208 and the source electrode 209 are in contact with the first nitride semiconductor layer 203.
  • the drain electrode 208 and the source electrode 209 are made of, for example, a laminated structure of Ti and Al.
  • a recess 220 is formed in the third nitride semiconductor layer 205 and the fourth nitride semiconductor layer 206.
  • the recess 220 penetrates the third nitride semiconductor layer 205 and the fourth nitride semiconductor layer 206, that is, penetrates the heterojunction interface between the third nitride semiconductor layer 205 and the fourth nitride semiconductor layer 206. And reaches the surface of the second nitride semiconductor layer 204.
  • a gate electrode 210 is formed in the recess 220.
  • the recess 220 is formed by selectively etching the third nitride semiconductor layer 205 with respect to the second nitride semiconductor layer 204 in particular.
  • the concave portion 220 is not formed in the second nitride semiconductor layer 204, and the surface of the second nitride semiconductor layer 204 serving as the bottom surface of the concave portion 220 is the second nitride semiconductor layer 204 and the second nitride semiconductor layer 204. 3 is flush with the interface of the nitride semiconductor layer 205.
  • the gate electrode 210 is made of, for example, Pd, Ni, Pt, or the like. Note that the gate electrode 210 may be made of Ti when the material constituting the gate electrode 210 is not diffused into the nitride semiconductor layer by the insulating film 207.
  • the insulating film 207 is formed on the bottom and side surfaces of the recess 220 and the surface of the fourth nitride semiconductor layer 206.
  • the insulating film 207 formed on the bottom and side surfaces of the recess 220 is sandwiched between the second nitride semiconductor layer 204, the third nitride semiconductor layer 205, the fourth nitride semiconductor layer 206, and the gate electrode 210. Yes.
  • the insulating film 207 includes, for example, a stacked structure of SiN, SiO, AlN, AlO, SiN, and AlN, a stacked structure of SiN and AlO, and the like.
  • the insulating film 207 is formed by, for example, a CVD method or a low pressure CVD method.
  • the insulating film 207 is formed by, for example, a sputtering method or an ALD method using an atomic layer deposition apparatus.
  • the element isolation layer 211 is formed by ion-implanting impurities such as B into the nitride semiconductor layer, for example, and electrically isolates the FET from other elements.
  • the on-resistance can be reduced for the same reason as the FET of the first embodiment.
  • an effective structure as a normally-off type FET can be realized for the same reason as the FET of the first embodiment.
  • the recess 220 is formed by selective etching, and the thickness of the second nitride semiconductor layer 204 immediately below the gate electrode 210 can be accurately controlled. Therefore, it becomes easy to adjust the threshold voltage of the gate.
  • the first nitride semiconductor layer 203, the second nitride semiconductor layer 204, the third nitride semiconductor layer 205, and the fourth nitride semiconductor layer 206 contain In. May be.
  • the first nitride semiconductor layer 203 may partially include a doping layer. This structure makes it easy to control the amount of charge in the nitride semiconductor layer and adjust the threshold voltage of the gate.
  • another semiconductor layer may be disposed on the fourth nitride semiconductor layer 206.
  • the first nitride semiconductor layer 203, the second nitride semiconductor layer 204, the third nitride semiconductor layer 205, and the fourth nitride semiconductor layer 206 include, for example, Si.
  • N-type impurities such as n-type impurities may be doped.
  • FIG. 5 is a cross-sectional view showing the configuration of the FET according to the present embodiment.
  • the FET includes a substrate 301, a buffer layer 302, a first nitride semiconductor layer 303, a second nitride semiconductor layer 304, a third nitride semiconductor layer 305, and a fourth nitride semiconductor layer.
  • 306 an insulating film 307, a drain electrode 308, a source electrode 309, a gate electrode 310, an element isolation layer 311, and a fifth nitride semiconductor layer 312.
  • the substrate 301 is, for example, a sapphire substrate having a thickness of 10 ⁇ m or more and 1000 ⁇ m or less, a SiC substrate, a Si substrate, a GaN substrate, or the like.
  • the buffer layer 302 is made of AlN having a thickness corresponding to the substrate 301, for example, 100 nm, and is formed on the substrate 301.
  • the first nitride semiconductor layer 303 is made of undoped GaN having a thickness of 2 ⁇ m, for example, and is formed on the buffer layer 302.
  • the second nitride semiconductor layer 304 is formed on the first nitride semiconductor layer 303 and has a larger band gap energy than the first nitride semiconductor layer 303.
  • the second nitride semiconductor layer 304 is made of, for example, undoped Al x Ga 1-x N (0 ⁇ x ⁇ 1).
  • the second nitride semiconductor layer 304 is composed of 20 nm thick undoped Al 0.25 Ga 0.75 N.
  • the third nitride semiconductor layer 305 is formed on the second nitride semiconductor layer 304 and has a lower band gap energy than the second nitride semiconductor layer 304.
  • the third nitride semiconductor layer 305 is made of undoped GaN having a thickness of 20 nm, for example.
  • the fourth nitride semiconductor layer 306 is formed on the third nitride semiconductor layer 305 and has a larger band gap energy than the third nitride semiconductor layer 305.
  • the fourth nitride semiconductor layer 306 is made of, for example, undoped Al y Ga 1-y N (0 ⁇ y ⁇ 1).
  • the fourth nitride semiconductor layer 306 is made of undoped Al 0.25 Ga 0.75 N having a thickness of 25 nm.
  • Spontaneous polarization occurs between the heterojunction interface between the first nitride semiconductor layer 303 and the second nitride semiconductor layer 304 and the heterojunction interface between the third nitride semiconductor layer 305 and the fourth nitride semiconductor layer 306.
  • electric charges of, for example, about 1 ⁇ 10 13 cm ⁇ 2 are generated by piezo polarization, and electrons run through the heterojunction interface when the gate is on, and the lateral resistance can be greatly reduced particularly in FETs.
  • the Al composition ratio of the fourth nitride semiconductor layer 306 is set so that the electrons in the surface side channel are guided to the bulk side channel more effectively.
  • the Al composition ratio of the semiconductor layer 312 is desirably larger, and the thickness of the fourth nitride semiconductor layer 306 is more than the thickness of the second nitride semiconductor layer 304 and the fifth nitride semiconductor layer 312. The larger one is desirable.
  • the thickness of the fifth nitride semiconductor layer 312 is It is desirable that the thickness is smaller than the thickness of the nitride semiconductor layer 306.
  • the drain electrode 308 and the source electrode 309 are formed in regions on both sides of the gate electrode 310, and the heterojunction interface between the first nitride semiconductor layer 303 and the second nitride semiconductor layer 304 and the third nitride, respectively. It is in contact with the heterojunction interface between the semiconductor layer 305 and the fourth nitride semiconductor layer 306, and is electrically connected to the electron transit region generated in the interface region.
  • the drain electrode 308 and the source electrode 309 are in contact with the first nitride semiconductor layer 303.
  • the drain electrode 308 and the source electrode 309 are composed of a laminated structure of Ti and Al, for example.
  • a recess 320 is formed in the first nitride semiconductor layer 303, the second nitride semiconductor layer 304, the third nitride semiconductor layer 305, and the fourth nitride semiconductor layer 306.
  • the recess 320 penetrates through the second nitride semiconductor layer 304, the third nitride semiconductor layer 305, and the fourth nitride semiconductor layer 306, that is, the third nitride semiconductor layer 305 and the fourth nitride semiconductor.
  • the heterojunction interface of the layer 306 and the heterojunction interfaces of the first nitride semiconductor layer 303 and the second nitride semiconductor layer 304 penetrate to the surface of the first nitride semiconductor layer 303.
  • a gate electrode 310 is formed in the recess 320.
  • the gate electrode 310 is made of, for example, Pd, Ni, Pt, or the like. Note that the gate electrode 310 may be made of Ti when the material constituting the gate electrode 310 is not diffused into the nitride semiconductor layer by the insulating film 307.
  • the fifth nitride semiconductor layer 312 is formed on the bottom and side surfaces of the recess 320 and the surface of the fourth nitride semiconductor layer 306, and is made of, for example, undoped Al z Ga 1 -z N (0 ⁇ z ⁇ 1). .
  • the fifth nitride semiconductor layer 312 is made of undoped Al 0.25 Ga 0.75 N having a thickness of 10 nm.
  • the fifth nitride semiconductor layer 312 is formed by epitaxially growing a nitride semiconductor layer in the recess 320 by, for example, metal-organic chemical vapor deposition (MOCVD).
  • MOCVD metal-organic chemical vapor deposition
  • the insulating film 307 is formed continuously in this epitaxial growth without being exposed to the atmosphere (in-situ).
  • the gate electrode 310 is in contact with the insulating film 307 in the recess 320.
  • the presence of the fifth nitride semiconductor layer 312 can increase the crystallinity of the insulating film 307 and can be formed with good reproducibility. Rather than directly growing the insulating film 307 on the nitride semiconductor on the bottom surface of the recess 320, the fifth nitride semiconductor layer 312 that is the same nitride semiconductor layer is formed and then the insulating film 307 is formed by continuous growth. However, the crystallinity and reproducibility of the insulating film 307 can be improved.
  • the fifth nitride semiconductor layer 312 is, for example, an undoped Al z Ga 1-z N (0 ⁇ z ⁇ 1) layer, and the layer in contact with the bottom surface of the recess 320 is, for example, a GaN layer.
  • a channel layer is formed under the fifth nitride semiconductor layer 312 when the Al composition X of the fifth nitride semiconductor layer 312 is larger than the Al composition at the bottom of the recess 320.
  • the amount of charge induced at that time is determined by the film thickness and composition of the fifth nitride semiconductor layer 312 formed by epitaxial growth with high controllability, so that reproducibility can be enhanced.
  • the insulating film 307 is formed on the fifth nitride semiconductor layer 312.
  • the insulating film 307 in the recess 320 is formed and sandwiched between the fifth nitride semiconductor layer 312 and the gate electrode 310.
  • the insulating film 307 is composed of, for example, a laminated structure of SiN, SiO, AlN, AlO, SiN and AlN having a thickness of 1 to 5 nm, a laminated structure of SiN and AlO, and the like.
  • the insulating film 307 is made of SiN or SiO
  • the insulating film 307 is formed by, for example, a CVD method or a low pressure CVD method.
  • the insulating film 307 is made of AlN or AlO
  • the insulating film 307 is formed by, for example, a sputtering method or an ALD method using an atomic layer deposition apparatus.
  • the element isolation layer 311 is formed by ion-implanting impurities such as B into the nitride semiconductor layer, for example, and electrically isolates the FET from other elements.
  • the on-resistance can be reduced for the same reason as the FET of the first embodiment.
  • an effective structure as a normally-off type FET can be realized for the same reason as the FET of the first embodiment.
  • the insulating film 307 can be formed continuously with the epitaxial growth of the fifth nitride semiconductor layer 312 in the recess 320, the insulating film 307 having good insulating characteristics can be formed. realizable.
  • the first nitride semiconductor layer 303, the second nitride semiconductor layer 304, the third nitride semiconductor layer 305, and the fourth nitride semiconductor layer 306 contain In. May be.
  • the first nitride semiconductor layer 303 may partially include a doping layer. This structure makes it easy to control the amount of charge in the nitride semiconductor layer and adjust the threshold voltage of the gate.
  • another semiconductor layer may be disposed on the fourth nitride semiconductor layer 306.
  • the physical semiconductor layer 312 may be doped with an n-type impurity such as Si.
  • the depth of the recess 320 is a depth penetrating the second nitride semiconductor layer 304, the third nitride semiconductor layer 305, and the fourth nitride semiconductor layer 306.
  • the depth is not limited as long as the distance between the gate electrode 310 and the bulk side channel can be shortened.
  • the depth of the recess 320 is deep enough to stop in the middle of the fourth nitride semiconductor layer 306 without reaching the third nitride semiconductor layer 305, penetrate through the fourth nitride semiconductor layer 306, The depth that stops in the middle of the nitride semiconductor layer 305, or the depth that passes through the fourth nitride semiconductor layer 306 and the third nitride semiconductor layer 305 and stops in the middle of the second nitride semiconductor layer 304. There may be.
  • FIG. 6 is a cross-sectional view showing the configuration of the FET according to the present embodiment.
  • This FET includes a substrate 401, a buffer layer 402, a first nitride semiconductor layer 403, a second nitride semiconductor layer 404, a third nitride semiconductor layer 405, and a fourth nitride semiconductor layer.
  • a drain electrode 408, a source electrode 409, a gate electrode 410, and an element isolation layer 411 are provided.
  • the substrate 401 is, for example, a sapphire substrate, a SiC substrate, a Si substrate, a GaN substrate, or the like having a thickness of 10 ⁇ m to 1000 ⁇ m.
  • the buffer layer 402 is made of AlN having a thickness corresponding to the substrate 401, for example, 100 nm, and is formed on the substrate 401.
  • the first nitride semiconductor layer 403 is made of undoped GaN having a thickness of 2 ⁇ m, for example, and is formed on the buffer layer 402.
  • the second nitride semiconductor layer 404 is formed on the first nitride semiconductor layer 403 and has a larger band gap energy than the first nitride semiconductor layer 403.
  • the second nitride semiconductor layer 404 is made of, for example, undoped Al x Ga 1-x N (0 ⁇ x ⁇ 1).
  • the second nitride semiconductor layer 404 is made of undoped Al 0.25 Ga 0.75 N having a thickness of 30 nm.
  • the third nitride semiconductor layer 405 is formed on the second nitride semiconductor layer 404 and has a lower band gap energy than the second nitride semiconductor layer 404.
  • the third nitride semiconductor layer 405 is made of undoped GaN having a thickness of 30 nm, for example.
  • the fourth nitride semiconductor layer 406 is formed on the third nitride semiconductor layer 405 and has a larger band gap energy than the third nitride semiconductor layer 405.
  • the fourth nitride semiconductor layer 406 is made of, for example, undoped Al y Ga 1-y N (0 ⁇ y ⁇ 1).
  • the fourth nitride semiconductor layer 406 is made of undoped Al 0.25 Ga 0.75 N having a thickness of 30 nm.
  • Spontaneous polarization occurs between the heterojunction interface between the first nitride semiconductor layer 403 and the second nitride semiconductor layer 404 and the heterojunction interface between the third nitride semiconductor layer 405 and the fourth nitride semiconductor layer 406.
  • electric charges of, for example, about 1 ⁇ 10 13 cm ⁇ 2 are generated by piezo polarization, and electrons run through the heterojunction interface when the gate is on, and the lateral resistance can be greatly reduced particularly in FETs.
  • the Al composition ratio of the fourth nitride semiconductor layer 406 is higher than the Al composition ratio of the second nitride semiconductor layer 404 so that electrons in the surface-side channel are more effectively guided to the bulk-side channel.
  • the larger one is desirable, and the thickness of the fourth nitride semiconductor layer 406 is desirably larger than the thickness of the second nitride semiconductor layer 404.
  • the drain electrode 408 and the source electrode 409 are formed in the regions on both sides of the gate electrode 410, and the heterojunction interface between the first nitride semiconductor layer 403 and the second nitride semiconductor layer 404 and the third nitride, respectively. It contacts the heterojunction interface between the semiconductor layer 405 and the fourth nitride semiconductor layer 406 and is electrically connected to the electron transit region generated in the interface region.
  • the drain electrode 408 and the source electrode 409 are in contact with the first nitride semiconductor layer 403.
  • the drain electrode 408 and the source electrode 409 are made of a laminated structure of Ti and Al, for example.
  • a recess 420 is formed in the third nitride semiconductor layer 405 and the fourth nitride semiconductor layer 406.
  • the recess 420 penetrates the third nitride semiconductor layer 405 and the fourth nitride semiconductor layer 406, that is, penetrates the heterojunction interface between the third nitride semiconductor layer 405 and the fourth nitride semiconductor layer 406. And reaches the surface of the second nitride semiconductor layer 404.
  • a gate electrode 410 is formed in the recess 420 so as to cover the bottom and side surfaces of the recess 420.
  • the gate electrode 410 in the recess 420 is in direct contact with the second nitride semiconductor layer 404, the third nitride semiconductor layer 405, and the fourth nitride semiconductor layer 406 without an insulating film interposed therebetween.
  • the recess 420 is formed by selectively etching the third nitride semiconductor layer 405 with respect to the second nitride semiconductor layer 404 in particular.
  • the concave portion 420 is not formed in the second nitride semiconductor layer 404, and the surface of the second nitride semiconductor layer 404 serving as the bottom surface of the concave portion 420 is the second nitride semiconductor layer 404 and the second nitride semiconductor layer 404. 3 is flush with the interface of the nitride semiconductor layer 405.
  • the gate electrode 410 is in Schottky junction with the second nitride semiconductor layer 404, the third nitride semiconductor layer 405, and the fourth nitride semiconductor layer 406, and is made of, for example, Pd, Ni, Pt, or the like.
  • the element isolation layer 411 is formed by ion-implanting impurities such as B into the nitride semiconductor layer, for example, and electrically isolates the FET from other elements.
  • the on-resistance can be reduced for the same reason as the FET of the first embodiment.
  • the first nitride semiconductor layer 403, the second nitride semiconductor layer 404, the third nitride semiconductor layer 405, and the fourth nitride semiconductor layer 406 contain In. May be.
  • the first nitride semiconductor layer 403 may partially include a doping layer. This structure makes it easy to control the amount of charge in the nitride semiconductor layer and adjust the threshold voltage of the gate.
  • another semiconductor layer may be disposed on the fourth nitride semiconductor layer 406.
  • the first nitride semiconductor layer 403, the second nitride semiconductor layer 404, the third nitride semiconductor layer 405, and the fourth nitride semiconductor layer 406 include, for example, Si.
  • N-type impurities such as n-type impurities may be doped.
  • the depth of the recess 420 is a depth that penetrates the third nitride semiconductor layer 405 and the fourth nitride semiconductor layer 406. If the distance to the channel can be shortened, the depth is not limited to this.
  • the depth of the recess 420 is a depth that stops in the middle of the fourth nitride semiconductor layer 406 without reaching the third nitride semiconductor layer 405, or penetrates the fourth nitride semiconductor layer 406, 3 may be a depth that stops halfway through the nitride semiconductor layer 405.
  • FIG. 7 is a cross-sectional view showing the configuration of the FET according to the present embodiment.
  • This FET includes a substrate 501, a buffer layer 502, a first nitride semiconductor layer 503, a second nitride semiconductor layer 504, a third nitride semiconductor layer 505, and a fourth nitride semiconductor layer. 506, an insulating film 507, a drain electrode 508, a source electrode 509, a gate electrode 510, and an element isolation layer 511 are provided.
  • the substrate 501 is, for example, a sapphire substrate, a SiC substrate, a Si substrate, a GaN substrate, or the like having a thickness of 10 ⁇ m or more and 1000 ⁇ m or less.
  • the buffer layer 502 is made of AlN having a thickness corresponding to the substrate 501, for example, 100 nm, and is formed on the substrate 501.
  • the first nitride semiconductor layer 503 is made of undoped GaN having a thickness of 2 ⁇ m, for example, and is formed on the buffer layer 502.
  • the second nitride semiconductor layer 504 is formed on the first nitride semiconductor layer 503 and has a larger band gap energy than the first nitride semiconductor layer 503.
  • the second nitride semiconductor layer 504 is made of, for example, undoped Al x Ga 1-x N (0 ⁇ x ⁇ 1).
  • the second nitride semiconductor layer 504 is composed of 20 nm thick undoped Al 0.25 Ga 0.75 N.
  • the third nitride semiconductor layer 505 is formed on the second nitride semiconductor layer 504 and has a smaller band gap energy than the second nitride semiconductor layer 504.
  • the third nitride semiconductor layer 505 is made of undoped GaN having a thickness of 20 nm, for example.
  • the fourth nitride semiconductor layer 506 is formed on the third nitride semiconductor layer 505 and has a larger band gap energy than the third nitride semiconductor layer 505.
  • the fourth nitride semiconductor layer 506 is made of, for example, undoped Al y Ga 1-y N (0 ⁇ y ⁇ 1).
  • the fourth nitride semiconductor layer 506 is made of undoped Al 0.25 Ga 0.75 N having a thickness of 25 nm.
  • Spontaneous polarization occurs between the heterojunction interface between the first nitride semiconductor layer 503 and the second nitride semiconductor layer 504 and the heterojunction interface between the third nitride semiconductor layer 505 and the fourth nitride semiconductor layer 506.
  • electric charges of, for example, about 1 ⁇ 10 13 cm ⁇ 2 are generated by piezo polarization, and electrons run through the heterojunction interface when the gate is on, and the lateral resistance can be greatly reduced particularly in FETs.
  • the Al composition ratio of the fourth nitride semiconductor layer 506 is higher than the Al composition ratio of the second nitride semiconductor layer 504 so that electrons in the surface-side channel are more effectively guided to the bulk-side channel.
  • the larger one is desirable, and the thickness of the fourth nitride semiconductor layer 506 is desirably larger than the thickness of the second nitride semiconductor layer 504.
  • the thickness of the second nitride semiconductor layer 504 is set to It is desirable that the thickness is smaller than the thickness of the nitride semiconductor layer 506.
  • the drain electrode 508 and the source electrode 509 are formed in regions on both sides of the gate electrode 510, and the heterojunction interface between the first nitride semiconductor layer 503 and the second nitride semiconductor layer 504 and the third nitride, respectively.
  • the semiconductor layer 505 and the fourth nitride semiconductor layer 506 are in contact with the heterojunction interface and are electrically connected to the electron transit region generated in the interface region.
  • the drain electrode 508 and the source electrode 509 are in contact with the first nitride semiconductor layer 503.
  • the drain electrode 508 and the source electrode 509 are composed of a laminated structure of Ti and Al, for example.
  • the insulating film 507 is formed on the surface of the fourth nitride semiconductor layer 506 and includes, for example, a stacked structure of SiN, SiO, AlN, AlO, SiN, and AlN, a stacked structure of SiN and AlO, and the like.
  • the insulating film 507 is made of SiN or SiO
  • the insulating film 507 is formed by, for example, a CVD method or a low pressure CVD method.
  • the insulating film 507 is made of AlN or AlO
  • the insulating film 507 is formed by, for example, a sputtering method or an ALD method using an atomic layer deposition apparatus.
  • the gate electrode 510 is formed on the insulating film 507 and is made of, for example, Pd, Ni, Pt, or the like. Note that the gate electrode 510 may be made of Ti when the material constituting the gate electrode 510 is not diffused into the nitride semiconductor layer by the insulating film 507.
  • the element isolation layer 511 is formed by ion-implanting impurities such as B into the nitride semiconductor layer, for example, and electrically isolates the FET from other elements.
  • the on-resistance can be reduced for the same reason as the FET of the first embodiment.
  • an effective structure as a normally-off type FET can be realized for the same reason as the FET of the first embodiment.
  • the first nitride semiconductor layer 503, the second nitride semiconductor layer 504, the third nitride semiconductor layer 505, and the fourth nitride semiconductor layer 506 contain In. May be.
  • the first nitride semiconductor layer 503 may partially include a doping layer. This structure makes it easy to control the amount of charge in the nitride semiconductor layer and adjust the threshold voltage of the gate.
  • another semiconductor layer may be disposed on the fourth nitride semiconductor layer 506.
  • the first nitride semiconductor layer 503, the second nitride semiconductor layer 504, the third nitride semiconductor layer 505, and the fourth nitride semiconductor layer 506 include, for example, Si.
  • N-type impurities such as n-type impurities may be doped.
  • the FET of the above embodiment may take the form of a Schottky junction type FET in which the insulating film 507 is not provided as in the FET of the third embodiment.
  • the FET of the present invention has been described based on the embodiment, the present invention is not limited to this embodiment.
  • the present invention includes various modifications made by those skilled in the art without departing from the scope of the present invention.
  • the present invention can be applied to FETs, and in particular to high power high frequency devices such as mobile phone base stations, high power switching devices such as inverters, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

Disclosed is an FET having a low on-resistance.  The FET comprises: a first nitride semiconductor layer (103); a second nitride semiconductor layer (104) which is formed on the first nitride semiconductor layer (103) and has a larger band gap energy than the first nitride semiconductor layer (103); a third nitride semiconductor layer (105) which is formed on the second nitride semiconductor layer (104); and a fourth nitride semiconductor layer (106) which is formed on the third nitride semiconductor layer (105) and has a larger band gap energy than the third nitride semiconductor layer (105).  In the FET, a channel is formed at the heterojunction interface between the first nitride semiconductor layer (103) and the second nitride semiconductor layer (104).

Description

電界効果トランジスタField effect transistor
 本発明は、電界効果トランジスタに関し、特に、III族窒化物半導体から構成される電界効果トランジスタに関するものである。 The present invention relates to a field effect transistor, and more particularly to a field effect transistor composed of a group III nitride semiconductor.
 窒化ガリウム(GaN)に代表されるIII族窒化物半導体はシリコンやガリウム砒素を凌ぐ、大きなバンドギャップ、高い破壊電界、及び高い飽和電子速度を有する。この物性的な優位性からIII族窒化物半導体を用いた電界効果トランジスタ(FET)は次世代の高周波デバイスやハイパワースイッチングデバイスとして有望であり、盛んに研究開発されている。 Group III nitride semiconductors typified by gallium nitride (GaN) have a large band gap, a high breakdown electric field, and a high saturation electron velocity that surpass silicon and gallium arsenide. Because of this physical advantage, field effect transistors (FETs) using group III nitride semiconductors are promising as next-generation high-frequency devices and high-power switching devices, and are actively researched and developed.
 上記のFETでは、高い耐圧と高いオン抵抗とを両立することが求められるが、一般的には同一材料において両者はトレードオフの関係にある。さらにハイパワースイッチングデバイスではノーマリーオフ型のFETが求められ、ゲート・ソース間、及びゲート・ドレイン間の寄生抵抗は更に大きくなる傾向である。また、III族窒化物半導体の表面には高密度のトラップ準位が存在し、高速スイッチング動作時には捕獲されたトラップ準位がスイッチングに追随できず、ドレイン電流が減少する電流コラプスが生じることが知られている。 The above-mentioned FET is required to achieve both a high breakdown voltage and a high on-resistance, but generally both are in a trade-off relationship with the same material. Further, normally-off FETs are required for high power switching devices, and the parasitic resistance between the gate and the source and between the gate and the drain tends to be further increased. It is also known that a high density trap level exists on the surface of the group III nitride semiconductor, and the trap level trapped during high-speed switching operation cannot follow switching, resulting in a current collapse in which the drain current decreases. It has been.
 従来の窒化物半導体を用いたFETとしては、例えば、特許文献1及び2に記載のものが知られている。図8は特許文献1に記載のFETの構造を示す断面図である。 As FETs using conventional nitride semiconductors, for example, those described in Patent Documents 1 and 2 are known. FIG. 8 is a cross-sectional view showing the structure of the FET described in Patent Document 1. In FIG.
 図8に示すように、特許文献1のFETでは、基板801上にキャリア走行層802及びキャリア供給層803が設けられ、さらにキャリア供給層803の上面にはGaN系保護層804が設けられている。そして、GaN系保護層804の表面のうちゲート電極806とソース電極808との間、及びゲート電極806とドレイン電極807との間は、窒化シリコン(SiN)からなる保護層805で被覆されている。これにより、III族窒化物半導体の表面準位を低減することができ、ゲート電極806脇の表面トラップ準位による電流コラプスを低減することができる。 As shown in FIG. 8, in the FET of Patent Document 1, a carrier traveling layer 802 and a carrier supply layer 803 are provided on a substrate 801, and a GaN-based protective layer 804 is provided on the upper surface of the carrier supply layer 803. . The surface of the GaN-based protective layer 804 is covered with a protective layer 805 made of silicon nitride (SiN) between the gate electrode 806 and the source electrode 808 and between the gate electrode 806 and the drain electrode 807. . Thereby, the surface level of the group III nitride semiconductor can be reduced, and current collapse due to the surface trap level beside the gate electrode 806 can be reduced.
特開2002-359256号公報JP 2002-359256 A 特開2008-211172号公報JP 2008-2111172 A
 しかしながら、従来のIII族窒化物半導体を用いたFETでは、オン抵抗が十分低いとは言えず、更なるオン抵抗の低減が求められている。また、素子の耐圧はゲート電極とドレイン電極との距離により決定され、その距離を大きくすることで耐圧は向上するがゲート・ドレイン間の寄生抵抗は増大し、オン抵抗が増大してしまう。 However, in a conventional FET using a group III nitride semiconductor, the on-resistance cannot be said to be sufficiently low, and further reduction of the on-resistance is required. The breakdown voltage of the element is determined by the distance between the gate electrode and the drain electrode. Increasing the distance improves the breakdown voltage, but increases the parasitic resistance between the gate and the drain and increases the on-resistance.
 ここで、オン抵抗は高周波デバイスとハイパワースイッチングデバイスとのいずれにおいても電力ロスとなり十分低いことが望まれる。今後、FETの高性能化に向けて、さらなるオン抵抗の低減が必要である。そして、オン抵抗の低減にはデバイス構造の改善が効果的である。 Here, it is desirable that the on-resistance is sufficiently low as a power loss in both the high-frequency device and the high-power switching device. In the future, it will be necessary to further reduce the on-resistance for higher performance FETs. An improvement in the device structure is effective in reducing the on-resistance.
 また、ノーマリーオフ型のFETでは、ゲート・ソース間、及びゲート・ドレイン間の寄生抵抗は大きくなる傾向であり、特許文献1のFETでは表面準位の影響を抑え、寄生抵抗の増大に配慮しているものの、一層の抵抗の低減が必要である。 Further, normally-off type FETs tend to increase the parasitic resistance between the gate and the source and between the gate and the drain. In the FET of Patent Document 1, the influence of the surface state is suppressed and consideration is given to an increase in the parasitic resistance. However, further resistance reduction is necessary.
 そこで、本発明は、上記課題を解決するためになされたもので、低オン抵抗の電界効果トランジスタを提供することを目的とする。 Therefore, the present invention has been made to solve the above problems, and an object thereof is to provide a field effect transistor having a low on-resistance.
 上記目的を達成するために、本発明に係る電界効果トランジスタは、第1の窒化物半導体層と、前記第1の窒化物半導体層の上に形成され、前記第1の窒化物半導体層よりもバンドギャップエネルギーが大きい第2の窒化物半導体層と、前記第2の窒化物半導体層の上に形成された第3の窒化物半導体層と、前記第3の窒化物半導体層の上に形成され、前記第3の窒化物半導体層よりもバンドギャップエネルギーが大きい第4の窒化物半導体層とを備え、前記第1の窒化物半導体層及び前記第2の窒化物半導体層のヘテロ接合界面には、チャネルが形成されることを特徴とする。 In order to achieve the above object, a field effect transistor according to the present invention is formed on a first nitride semiconductor layer and the first nitride semiconductor layer, and more than the first nitride semiconductor layer. A second nitride semiconductor layer having a large band gap energy; a third nitride semiconductor layer formed on the second nitride semiconductor layer; and a third nitride semiconductor layer formed on the third nitride semiconductor layer. A fourth nitride semiconductor layer having a band gap energy larger than that of the third nitride semiconductor layer, and a heterojunction interface between the first nitride semiconductor layer and the second nitride semiconductor layer. A channel is formed.
 この構成によれば、第1の窒化物半導体層と第2の窒化物半導体層との間のヘテロ接合界面だけでなく、第3の窒化物半導体層と第4の窒化物半導体層との間のヘテロ接合界面にもチャネルが形成される。すなわち、従来のチャネルを形成する2次元電子ガスに加えて表面側にさらに2次元電子ガスが形成される。従って、シート抵抗を低減することができ、オン抵抗を低減することができる。 According to this configuration, not only the heterojunction interface between the first nitride semiconductor layer and the second nitride semiconductor layer but also between the third nitride semiconductor layer and the fourth nitride semiconductor layer. A channel is also formed at the heterojunction interface. That is, in addition to the conventional two-dimensional electron gas forming the channel, a two-dimensional electron gas is further formed on the surface side. Therefore, sheet resistance can be reduced and on-resistance can be reduced.
 また、従来のFETと比較して、FETの最表面側にある半導体層からチャネルが遠ざけられるため、チャネルへの表面準位による影響を低減できる。その結果、表面準位に起因した電流コラプスを抑制することができる。 Moreover, since the channel is moved away from the semiconductor layer on the outermost surface side of the FET as compared with the conventional FET, the influence of the surface level on the channel can be reduced. As a result, current collapse due to the surface state can be suppressed.
 また、2つのヘテロ接合界面は窒化物半導体により形成されるため、ヘテロ接合界面には格子不整合から生じるピエゾ分極と自発分極とにより2次元電子ガスが生成される。従って、チャネルの形成に不純物の添加が必要ないので、高耐圧のFETを実現できる。 Also, since the two heterojunction interfaces are formed of a nitride semiconductor, a two-dimensional electron gas is generated at the heterojunction interface due to piezo polarization and spontaneous polarization resulting from lattice mismatch. Therefore, since it is not necessary to add impurities for forming the channel, a high breakdown voltage FET can be realized.
 ここで、前記電界効果トランジスタのゲート電極は、前記第4の窒化物半導体層に設けられた凹部内に形成されることが好ましい。 Here, it is preferable that the gate electrode of the field effect transistor is formed in a recess provided in the fourth nitride semiconductor layer.
 この構成によれば、FETの最表面側にある半導体層からチャネルを遠ざけつつ、ゲート電極にチャネルを近付けることができる。その結果、電流コラプスを抑制しつつ、ゲートの閾値電圧の制御を容易にすることができる。 According to this configuration, the channel can be brought close to the gate electrode while keeping the channel away from the semiconductor layer on the outermost surface side of the FET. As a result, it is possible to easily control the threshold voltage of the gate while suppressing current collapse.
 ここで、前記凹部は、前記第3の窒化物半導体層及び前記第4の窒化物半導体層のヘテロ接合界面を貫通していることが好ましい。特に、前記凹部は、前記第3の窒化物半導体層及び前記第4の窒化物半導体層を貫通して前記第2の窒化物半導体層の表面まで達し、前記凹部の底面としての前記第2の窒化物半導体層の表面は、前記第2の窒化物半導体層及び前記第3の窒化物半導体層の界面と面一であることが好ましい。 Here, it is preferable that the recess penetrates a heterojunction interface between the third nitride semiconductor layer and the fourth nitride semiconductor layer. In particular, the recess penetrates through the third nitride semiconductor layer and the fourth nitride semiconductor layer to reach the surface of the second nitride semiconductor layer, and the second as the bottom surface of the recess. The surface of the nitride semiconductor layer is preferably flush with the interface between the second nitride semiconductor layer and the third nitride semiconductor layer.
 この構成によれば、第2の窒化物半導体層の膜厚及びAl組成比によりゲートの閾値電圧が決定されるので、ゲートの閾値電圧の制御を容易にすることができる。従って、ウェハ面内で均一なゲートの閾値電圧を有するFETを実現できる。 According to this configuration, since the gate threshold voltage is determined by the film thickness and Al composition ratio of the second nitride semiconductor layer, the gate threshold voltage can be easily controlled. Therefore, an FET having a uniform gate threshold voltage in the wafer surface can be realized.
 また、前記電界効果トランジスタは、さらに、前記凹部の底面に形成された絶縁膜を備えることが好ましい。 The field effect transistor preferably further includes an insulating film formed on the bottom surface of the recess.
 この構成によれば、FETをMIS(Metal Insulator Semiconductor)構造にしてゲートに流れ込む電流を抑制し、ゲート電極に正バイアスを印加できるので、ノーマリーオフ型FETとして効果的な構造を実現できる。 According to this configuration, since the FET is made into a MIS (Metal Insulator Semiconductor) structure, the current flowing into the gate can be suppressed and a positive bias can be applied to the gate electrode, so that an effective structure as a normally-off type FET can be realized.
 また、前記電界効果トランジスタは、さらに、前記凹部の底面に形成された第5の窒化物半導体層と、前記ゲート電極と前記第5の窒化物半導体層との間に形成された絶縁膜とを備えることが好ましい。 The field effect transistor further includes a fifth nitride semiconductor layer formed on a bottom surface of the recess, and an insulating film formed between the gate electrode and the fifth nitride semiconductor layer. It is preferable to provide.
 この構成によれば、凹部内における第5の窒化物半導体層のエピタキシャル成長と連続して絶縁膜を形成することができるので、良好な絶縁特性の絶縁膜を実現できる。 According to this configuration, since the insulating film can be formed continuously with the epitaxial growth of the fifth nitride semiconductor layer in the recess, an insulating film having good insulating characteristics can be realized.
 また、前記絶縁膜は、窒化シリコン及び窒化アルミニウムの積層構造体からなることが好ましい。 The insulating film is preferably made of a laminated structure of silicon nitride and aluminum nitride.
 この構成によれば、絶縁膜は熱伝導に優れたAlNを含むため、特に大電力を駆動するデバイスに対して特に有効なFETを実現できる。 According to this configuration, since the insulating film contains AlN excellent in heat conduction, an FET that is particularly effective for a device that drives a large power can be realized.
 また、前記絶縁膜は、原子層堆積装置により形成されることが好ましい。 The insulating film is preferably formed by an atomic layer deposition apparatus.
 この構成によれば、絶縁膜の膜質の向上と、優れた膜厚の制御とが可能となる。 According to this configuration, it is possible to improve the quality of the insulating film and to control the film thickness.
 また、前記第2の窒化物半導体層の膜厚は、前記第4の窒化物半導体層の膜厚よりも小さいことが好ましい。 The film thickness of the second nitride semiconductor layer is preferably smaller than the film thickness of the fourth nitride semiconductor layer.
 この構成によれば、第3の窒化物半導体層と第4の窒化物半導体層との間のヘテロ接合界面のチャネルの電子を、第1の窒化物半導体層と第2の窒化物半導体層との間のヘテロ接合界面のチャネルに効果的に導くことができる。その結果、さらにチャネル抵抗を低減することができ、オン抵抗を低減することができる。また、ゲート電極直下の第2の窒化物半導体層の膜厚を薄くすることができるので、ノーマリーオフ型のFETに対して有効な構成を実現できる。 According to this configuration, the electrons in the channel at the heterojunction interface between the third nitride semiconductor layer and the fourth nitride semiconductor layer are converted into the first nitride semiconductor layer and the second nitride semiconductor layer. Can effectively lead to the channel of the heterojunction interface between. As a result, the channel resistance can be further reduced, and the on-resistance can be reduced. In addition, since the thickness of the second nitride semiconductor layer directly under the gate electrode can be reduced, a configuration effective for a normally-off type FET can be realized.
 また、前記電界効果トランジスタのソース電極及びドレイン電極は、それぞれ前記第1の窒化物半導体層及び前記第2の窒化物半導体層のヘテロ接合界面と、前記第3の窒化物半導体層及び前記第4の窒化物半導体層のヘテロ接合界面とに接触することが好ましい。 In addition, the source electrode and the drain electrode of the field effect transistor respectively include a heterojunction interface between the first nitride semiconductor layer and the second nitride semiconductor layer, the third nitride semiconductor layer, and the fourth nitride semiconductor layer. It is preferable to contact the heterojunction interface of the nitride semiconductor layer.
 この構成によれば、ソース電極及びドレイン電極のコンタクト抵抗を低減することができる。 According to this configuration, the contact resistance of the source electrode and the drain electrode can be reduced.
 本発明によれば、窒化物半導体から構成されるFETにおいて低オン抵抗を実現することができる。 According to the present invention, a low on-resistance can be realized in an FET composed of a nitride semiconductor.
図1は、本発明の第1の実施の形態に係るFETの構成を示す断面図である。FIG. 1 is a cross-sectional view showing the configuration of the FET according to the first embodiment of the present invention. 図2は、同実施の形態に係るFETのエネルギーバンド図である。FIG. 2 is an energy band diagram of the FET according to the embodiment. 図3Aは、シングルチャネル構造のFETを示す図である。FIG. 3A is a diagram showing an FET having a single channel structure. 図3Bは、ダブルチャネル構造のFETを示す図である。FIG. 3B is a diagram showing a FET having a double channel structure. 図3Cは、ゲート電極及びドレイン電極のダイオード特性における耐圧及びオン抵抗の関係の実験結果を示す図である。FIG. 3C is a diagram illustrating experimental results of the relationship between the breakdown voltage and the on-resistance in the diode characteristics of the gate electrode and the drain electrode. 図4は、本発明の第2の実施の形態に係るFETの構成を示す断面図である。FIG. 4 is a cross-sectional view showing the configuration of the FET according to the second exemplary embodiment of the present invention. 図5は、本発明の第3の実施の形態に係るFETの構成を示す断面図である。FIG. 5 is a cross-sectional view showing the configuration of the FET according to the third exemplary embodiment of the present invention. 図6は、本発明の第4の実施の形態に係るFETの構成を示す断面図である。FIG. 6 is a cross-sectional view showing the configuration of the FET according to the fourth exemplary embodiment of the present invention. 図7は、本発明の第5の実施の形態に係るFETの構成を示す断面図である。FIG. 7 is a sectional view showing the structure of an FET according to the fifth embodiment of the present invention. 図8は、従来のFETの構造を示す断面図である。FIG. 8 is a cross-sectional view showing the structure of a conventional FET.
 以下、本発明の実施の形態におけるFETについて、図面を参照しながら説明する。 Hereinafter, FETs according to embodiments of the present invention will be described with reference to the drawings.
 (第1の実施の形態)
 以下、本発明の第1の実施の形態におけるFETの構成及びその製造方法を説明する。
(First embodiment)
Hereinafter, the configuration of the FET and the manufacturing method thereof according to the first embodiment of the present invention will be described.
 図1は、本実施の形態に係るFETの構成を示す断面図である。 FIG. 1 is a cross-sectional view showing the configuration of the FET according to the present embodiment.
 このFETは、基板101と、バッファ層102と、第1の窒化物半導体層103と、第2の窒化物半導体層104と、第3の窒化物半導体層105と、第4の窒化物半導体層106と、絶縁膜107と、ドレイン電極108と、ソース電極109と、ゲート電極110と、素子分離層111とを備えている。 This FET includes a substrate 101, a buffer layer 102, a first nitride semiconductor layer 103, a second nitride semiconductor layer 104, a third nitride semiconductor layer 105, and a fourth nitride semiconductor layer. 106, an insulating film 107, a drain electrode 108, a source electrode 109, a gate electrode 110, and an element isolation layer 111.
 基板101は、例えば10μm以上1000μm以下の厚み(膜厚)のサファイア基板、SiC基板、Si基板、及びGaN基板等である。 The substrate 101 is, for example, a sapphire substrate, a SiC substrate, a Si substrate, or a GaN substrate having a thickness (film thickness) of 10 μm or more and 1000 μm or less.
 バッファ層102は、基板101に応じた厚み、例えば100nmのAlNから構成され、基板101の上に形成される。 The buffer layer 102 is made of AlN having a thickness corresponding to the substrate 101, for example, 100 nm, and is formed on the substrate 101.
 第1の窒化物半導体層103は、例えば2μmの厚みのアンドープGaNから構成され、バッファ層102の上に形成される。ここで、「アンドープ」とは、不純物が意図的に導入されていないことを意味するものとする。 The first nitride semiconductor layer 103 is made of undoped GaN having a thickness of 2 μm, for example, and is formed on the buffer layer 102. Here, “undoped” means that impurities are not intentionally introduced.
 第2の窒化物半導体層104は、第1の窒化物半導体層103の上に形成され、第1の窒化物半導体層103よりもバンドギャップエネルギーが大きい。第2の窒化物半導体層104は、例えばアンドープAlxGa1-xN(0<x≦1)から構成される。例えば、第2の窒化物半導体層104は、20nmの厚みのアンドープAl0.25Ga0.75Nから構成される。 The second nitride semiconductor layer 104 is formed on the first nitride semiconductor layer 103 and has a larger band gap energy than the first nitride semiconductor layer 103. The second nitride semiconductor layer 104 is made of, for example, undoped Al x Ga 1-x N (0 <x ≦ 1). For example, the second nitride semiconductor layer 104 is made of undoped Al 0.25 Ga 0.75 N having a thickness of 20 nm.
 第3の窒化物半導体層105は、第2の窒化物半導体層104の上に形成され、第2の窒化物半導体層104よりもバンドギャップエネルギーが小さい。第3の窒化物半導体層105は、例えば20nmの厚みのアンドープGaNから構成される。 The third nitride semiconductor layer 105 is formed on the second nitride semiconductor layer 104 and has a lower band gap energy than the second nitride semiconductor layer 104. The third nitride semiconductor layer 105 is made of undoped GaN having a thickness of 20 nm, for example.
 第4の窒化物半導体層106は、第3の窒化物半導体層105の上に形成され、第3の窒化物半導体層105よりもバンドギャップエネルギーが大きい。第4の窒化物半導体層106は、例えばアンドープAlyGa1-yN(0<y≦1)から構成される。例えば、第4の窒化物半導体層106は、25nmの厚みのアンドープAl0.25Ga0.75Nから構成される。 The fourth nitride semiconductor layer 106 is formed on the third nitride semiconductor layer 105 and has a larger band gap energy than the third nitride semiconductor layer 105. The fourth nitride semiconductor layer 106 is made of, for example, undoped Al y Ga 1-y N (0 <y ≦ 1). For example, the fourth nitride semiconductor layer 106 is made of undoped Al 0.25 Ga 0.75 N having a thickness of 25 nm.
 第1の窒化物半導体層103及び第2の窒化物半導体層104のヘテロ接合界面と、第3の窒化物半導体層105及び第4の窒化物半導体層106のヘテロ接合界面とには、自発分極及びピエゾ分極により例えば1×1013cm-2程度の電荷が生じており、ゲートがオンの状態ではヘテロ接合界面を電子が走行し、特にFETにおいて横方向の抵抗を大きく下げることができる。 Spontaneous polarization occurs between the heterojunction interface of the first nitride semiconductor layer 103 and the second nitride semiconductor layer 104 and the heterojunction interface of the third nitride semiconductor layer 105 and the fourth nitride semiconductor layer 106. In addition, electric charges of, for example, about 1 × 10 13 cm −2 are generated by piezo polarization, and electrons run through the heterojunction interface when the gate is on, and the lateral resistance can be greatly reduced particularly in FETs.
 ドレイン電極108及びソース電極109は、ゲート電極110の両側方の領域に形成され、それぞれ第1の窒化物半導体層103及び第2の窒化物半導体層104のヘテロ接合界面と、第3の窒化物半導体層105及び第4の窒化物半導体層106のヘテロ接合界面とに接触し、該界面領域に生成された電子走行領域(チャネル)と電気的に接続されている。ドレイン電極108及びソース電極109は、第1の窒化物半導体層103に接触している。 The drain electrode 108 and the source electrode 109 are formed in regions on both sides of the gate electrode 110, and the heterojunction interface between the first nitride semiconductor layer 103 and the second nitride semiconductor layer 104 and the third nitride, respectively. It is in contact with the heterojunction interface between the semiconductor layer 105 and the fourth nitride semiconductor layer 106 and is electrically connected to the electron transit region (channel) generated in the interface region. The drain electrode 108 and the source electrode 109 are in contact with the first nitride semiconductor layer 103.
 ドレイン電極108及びソース電極109は、例えばTi及びAlの積層構造体から構成される。 The drain electrode 108 and the source electrode 109 are composed of, for example, a laminated structure of Ti and Al.
 第2の窒化物半導体層104、第3の窒化物半導体層105及び第4の窒化物半導体層106には、凹部120が形成されている。この凹部120は、第3の窒化物半導体層105及び第4の窒化物半導体層106を貫通、つまり第3の窒化物半導体層105及び第4の窒化物半導体層106のヘテロ接合界面を貫通して第2の窒化物半導体層104の表面まで達している。そして、凹部120内には、ゲート電極110が形成されている。 A recess 120 is formed in the second nitride semiconductor layer 104, the third nitride semiconductor layer 105, and the fourth nitride semiconductor layer 106. The recess 120 penetrates the third nitride semiconductor layer 105 and the fourth nitride semiconductor layer 106, that is, penetrates the heterojunction interface between the third nitride semiconductor layer 105 and the fourth nitride semiconductor layer 106. And reaches the surface of the second nitride semiconductor layer 104. A gate electrode 110 is formed in the recess 120.
 ゲート電極110は、例えばパラジウム(Pd)、ニッケル(Ni)及び白金(Pt)等から構成される。なお、ゲート電極110は、ゲート電極110を構成する材料が絶縁膜107により窒化物半導体層に拡散しない場合にはTiから構成されてもよい。 The gate electrode 110 is made of, for example, palladium (Pd), nickel (Ni), platinum (Pt), or the like. Note that the gate electrode 110 may be made of Ti when the material constituting the gate electrode 110 is not diffused into the nitride semiconductor layer by the insulating film 107.
 絶縁膜107は、凹部120の底面及び側面並びに第4の窒化物半導体層106表面に形成されている。凹部120の底面及び側面に形成された絶縁膜107は、第2の窒化物半導体層104、第3の窒化物半導体層105及び第4の窒化物半導体層106とゲート電極110とに挟み込まれている。 The insulating film 107 is formed on the bottom and side surfaces of the recess 120 and the surface of the fourth nitride semiconductor layer 106. The insulating film 107 formed on the bottom and side surfaces of the recess 120 is sandwiched between the second nitride semiconductor layer 104, the third nitride semiconductor layer 105, the fourth nitride semiconductor layer 106, and the gate electrode 110. Yes.
 絶縁膜107は、例えば窒化シリコン(SiN)、酸化シリコン(SiO)、窒化アルミニウム(AlN)、酸化アルミ(AlO)、SiN及びAlNの積層構造体、並びにSiN及びAlOの積層構造体等から構成される。絶縁膜107がSiN又はSiOから構成される場合、絶縁膜107は例えばプラズマ化学気相成長(CVD)法や減圧CVD法により成膜される。一方、絶縁膜107がAlN又はAlOにより構成される場合、絶縁膜107は例えばスパッタ法や原子層堆積装置を用いた原子層堆積法(アトミックレイヤーデポジション:ALD法)により成膜される。 The insulating film 107 includes, for example, silicon nitride (SiN), silicon oxide (SiO), aluminum nitride (AlN), aluminum oxide (AlO), a stacked structure of SiN and AlN, a stacked structure of SiN and AlO, and the like. The When the insulating film 107 is made of SiN or SiO, the insulating film 107 is formed by, for example, a plasma chemical vapor deposition (CVD) method or a low pressure CVD method. On the other hand, when the insulating film 107 is made of AlN or AlO, the insulating film 107 is formed by, for example, a sputtering method or an atomic layer deposition method (atomic layer deposition: ALD method) using an atomic layer deposition apparatus.
 素子分離層111は、例えば窒化物半導体層にホウ素(B)等の不純物をイオン注入することにより形成され、FETを他の素子と電気的に分離する。 The element isolation layer 111 is formed by ion-implanting impurities such as boron (B) into the nitride semiconductor layer, for example, and electrically isolates the FET from other elements.
 図2は本実施の形態に係るFETのエネルギーバンド図である。 FIG. 2 is an energy band diagram of the FET according to the present embodiment.
 ゲートバイアスがゼロの場合において、第1の窒化物半導体層103及び第2の窒化物半導体層104のヘテロ接合界面には2次元電子ガスが発生し、チャネル(バルク側チャネルと呼ぶ)が形成されると共に、第3の窒化物半導体層105及び第4の窒化物半導体層106のヘテロ接合界面にも2次元電子ガスが発生することにより表面側にもチャネル(表面側チャネルと呼ぶ)が形成されている。このようにバルク側チャネルと表面側チャネルの2つのチャネルが形成されるため、トータルのチャネル抵抗は低減される。この2つのチャネル間にはポテンシャル障壁が存在するが、トンネリングにより電子の移動が可能であるため、表面側チャネルの電子もドレイン電流として寄与する。そのため、低減されたチャネル抵抗分だけオン抵抗を低減することができる。また、従来のFETと比較して、バルク側チャネルがFETの最表面側にある半導体層(第4の窒化物半導体層106表面)から遠ざけられているため、表面準位によるチャネルへの影響が低減される。その結果、表面準位に起因した電流コラプスを抑制することができる。 When the gate bias is zero, a two-dimensional electron gas is generated at the heterojunction interface between the first nitride semiconductor layer 103 and the second nitride semiconductor layer 104, and a channel (referred to as a bulk side channel) is formed. In addition, a two-dimensional electron gas is generated at the heterojunction interface between the third nitride semiconductor layer 105 and the fourth nitride semiconductor layer 106, whereby a channel (referred to as a surface side channel) is also formed on the surface side. ing. Thus, since two channels of the bulk side channel and the surface side channel are formed, the total channel resistance is reduced. Although there is a potential barrier between the two channels, electrons can move by tunneling, and thus electrons in the surface side channel also contribute as drain currents. Therefore, the on-resistance can be reduced by the reduced channel resistance. Further, as compared with the conventional FET, since the bulk side channel is away from the semiconductor layer (the surface of the fourth nitride semiconductor layer 106) on the outermost surface side of the FET, the influence of the surface level on the channel is not increased. Reduced. As a result, current collapse due to the surface state can be suppressed.
 ここで、より効果的に表面側チャネルの電子がバルク側チャネルに導かれるように、第4の窒化物半導体層106のAl組成比は、第2の窒化物半導体層104のAl組成比よりも大きい方が望ましく、さらに、第4の窒化物半導体層106の厚さは、第2の窒化物半導体層104の厚さよりも大きい方が望ましい。また、ゲート電極110直下の第2の窒化物半導体層104の膜厚を薄くし、ノーマリーオフ型のFETを実現するために、第2の窒化物半導体層104の厚さは、第4の窒化物半導体層106の厚さよりも小さい方が望ましい。 Here, the Al composition ratio of the fourth nitride semiconductor layer 106 is higher than the Al composition ratio of the second nitride semiconductor layer 104 so that electrons in the surface-side channel are more effectively guided to the bulk-side channel. The larger one is desirable, and the thickness of the fourth nitride semiconductor layer 106 is desirably larger than the thickness of the second nitride semiconductor layer 104. In addition, in order to reduce the thickness of the second nitride semiconductor layer 104 immediately below the gate electrode 110 and realize a normally-off FET, the thickness of the second nitride semiconductor layer 104 is set to It is desirable that the thickness is smaller than the thickness of the nitride semiconductor layer 106.
 以上のように、本実施の形態のFETによれば、例えばGaN/AlGaN/GaN/AlGaNの積層構造により2つのヘテロ接合界面が形成される。そして、2つのヘテロ接合界面には、AlGaNとGaNとの間での格子不整合から生じるピエゾ分極とGaN系層自体から生じる自発分極とにより2次元電子ガスが生成される。従って、AlGaN/GaNのヘテロ接合界面で形成される電子走行層(チャネル)が複数備えられるため、ゲート電極110とソース電極109との間、及びゲート電極110とドレイン電極108との間のオン抵抗を低減することができる。 As described above, according to the FET of the present embodiment, two heterojunction interfaces are formed by a laminated structure of, for example, GaN / AlGaN / GaN / AlGaN. A two-dimensional electron gas is generated at the interface between the two heterojunctions due to piezoelectric polarization caused by lattice mismatch between AlGaN and GaN and spontaneous polarization caused by the GaN-based layer itself. Accordingly, since a plurality of electron transit layers (channels) formed at the AlGaN / GaN heterojunction interface are provided, the on-resistance between the gate electrode 110 and the source electrode 109 and between the gate electrode 110 and the drain electrode 108 is provided. Can be reduced.
 図3Cは、図3Aの1つの電子走行層を有するシングルチャネル構造と、図3Bの2つの電子走行層を有するダブルチャネル構造とについて、ゲート電極110及びドレイン電極108のダイオード特性における耐圧及びオン抵抗の関係の実験結果を示したものである。 3C shows the breakdown voltage and on-resistance in the diode characteristics of the gate electrode 110 and the drain electrode 108 for the single channel structure having one electron transit layer of FIG. 3A and the double channel structure having two electron transit layers of FIG. 3B. It shows the experimental result of the relationship.
 図3Cから、耐圧が両者でほぼ同等の場合、ダブルチャネル構造ではオン抵抗は約半分に低減可能であることがわかる。従って、例えばGaN/AlGaN/GaN/AlGaNの積層構造を用いることで、GaN/AlGaNの1つのヘテロ接合界面のみを備える従来のFETに対して走行する電子の量を増し、オン抵抗を低減することが可能である。このダブルチャネル構造をゲート電極110の両脇に設けることで、同一の耐圧を維持したまま、FETのソース及びドレインの寄生抵抗を約半分に抑制することができる。特に、ドレイン側は通常電界が集中する箇所であるが、多層の電子走行層を備えても耐圧を低下させることはない。このとき、GaN/AlGaN/GaN/AlGaNの積層構造の縦方向抵抗は各窒化物半導体層の膜厚や組成を設計することで低減することが可能である。 FIG. 3C shows that the on-resistance can be reduced to about half in the double channel structure when the breakdown voltage is almost the same in both cases. Therefore, for example, by using a laminated structure of GaN / AlGaN / GaN / AlGaN, the amount of electrons traveling with respect to a conventional FET having only one heterojunction interface of GaN / AlGaN is increased, and the on-resistance is reduced. Is possible. By providing this double channel structure on both sides of the gate electrode 110, the parasitic resistance of the source and drain of the FET can be suppressed to about half while maintaining the same breakdown voltage. In particular, the drain side is usually a portion where the electric field is concentrated, but even if a multi-layer electron transit layer is provided, the breakdown voltage is not lowered. At this time, the longitudinal resistance of the laminated structure of GaN / AlGaN / GaN / AlGaN can be reduced by designing the film thickness and composition of each nitride semiconductor layer.
 また、本実施の形態のFETによれば、ゲート電極110の下に絶縁膜107が設けられ、MIS構造が採用されている。従って、ゲート電極110に流れ込む電流を抑制し、ゲート電極110に正バイアスを印加でき、ノーマリーオフ型FETとして効果的な構造を実現できる。 Further, according to the FET of the present embodiment, the insulating film 107 is provided under the gate electrode 110 and the MIS structure is adopted. Therefore, the current flowing into the gate electrode 110 can be suppressed, a positive bias can be applied to the gate electrode 110, and an effective structure as a normally-off type FET can be realized.
 なお、上記実施の形態のFETにおいて、第1の窒化物半導体層103、第2の窒化物半導体層104、第3の窒化物半導体層105及び第4の窒化物半導体層106はInを含んでいてもよい。 In the FET of the above embodiment, the first nitride semiconductor layer 103, the second nitride semiconductor layer 104, the third nitride semiconductor layer 105, and the fourth nitride semiconductor layer 106 contain In. May be.
 また、上記実施の形態のFETにおいて、第1の窒化物半導体層103は、一部にドーピング層を備えていてもよい。この構造により、窒化物半導体層内での電荷量を制御し、ゲートの閾値電圧を調整することが容易となる。 Further, in the FET of the above embodiment, the first nitride semiconductor layer 103 may partially include a doping layer. This structure makes it easy to control the amount of charge in the nitride semiconductor layer and adjust the threshold voltage of the gate.
 また、上記実施の形態のFETにおいて、第4の窒化物半導体層106の上には、さらに別の半導体層が配置されてもよい。 In the FET of the above embodiment, another semiconductor layer may be disposed on the fourth nitride semiconductor layer 106.
 また、上記実施の形態のFETにおいて、第1の窒化物半導体層103、第2の窒化物半導体層104、第3の窒化物半導体層105及び第4の窒化物半導体層106には、例えばSi等のn型不純物のドーピングが施されていてもよい。 In the FET of the above-described embodiment, the first nitride semiconductor layer 103, the second nitride semiconductor layer 104, the third nitride semiconductor layer 105, and the fourth nitride semiconductor layer 106 include, for example, Si. N-type impurities such as n-type impurities may be doped.
 また、上記実施の形態のFETにおいて、凹部120の深さは第3の窒化物半導体層105及び第4の窒化物半導体層106を貫通する深さであるとしたが、ゲート電極110とバルク側チャネルとの距離を短くすることができれば、この深さに限られない。例えば、凹部120の深さは、第3の窒化物半導体層105に達することなく第4の窒化物半導体層106の途中で止まる深さ、又は第4の窒化物半導体層106を貫通し、第3の窒化物半導体層105の途中で止まる深さであってもよい。 In the FET of the above-described embodiment, the depth of the recess 120 is a depth that penetrates the third nitride semiconductor layer 105 and the fourth nitride semiconductor layer 106. If the distance to the channel can be shortened, the depth is not limited to this. For example, the depth of the recess 120 is a depth that stops in the middle of the fourth nitride semiconductor layer 106 without reaching the third nitride semiconductor layer 105, or penetrates the fourth nitride semiconductor layer 106, 3 may be a depth that stops halfway through the nitride semiconductor layer 105.
 (第2の実施の形態)
 以下、本発明の第2の実施の形態におけるFETの構成及びその製造方法を説明する。
(Second Embodiment)
Hereinafter, the configuration of the FET and the manufacturing method thereof according to the second embodiment of the present invention will be described.
 図4は、本実施の形態に係るFETの構成を示す断面図である。 FIG. 4 is a cross-sectional view showing the configuration of the FET according to the present embodiment.
 このFETは、基板201と、バッファ層202と、第1の窒化物半導体層203と、第2の窒化物半導体層204と、第3の窒化物半導体層205と、第4の窒化物半導体層206と、絶縁膜207と、ドレイン電極208と、ソース電極209と、ゲート電極210と、素子分離層211とを備えている。 The FET includes a substrate 201, a buffer layer 202, a first nitride semiconductor layer 203, a second nitride semiconductor layer 204, a third nitride semiconductor layer 205, and a fourth nitride semiconductor layer. 206, an insulating film 207, a drain electrode 208, a source electrode 209, a gate electrode 210, and an element isolation layer 211.
 基板201は、例えば10μm以上1000μm以下の厚みのサファイア基板、SiC基板、Si基板、及びGaN基板等である。 The substrate 201 is, for example, a sapphire substrate, a SiC substrate, a Si substrate, or a GaN substrate having a thickness of 10 μm or more and 1000 μm or less.
 バッファ層202は、基板201に応じた厚み、例えば100nmのAlNから構成され、基板201の上に形成される。 The buffer layer 202 is made of AlN having a thickness corresponding to the substrate 201, for example, 100 nm, and is formed on the substrate 201.
 第1の窒化物半導体層203は、例えば2μmの厚みのアンドープGaNから構成され、バッファ層202の上に形成される。 The first nitride semiconductor layer 203 is made of undoped GaN having a thickness of 2 μm, for example, and is formed on the buffer layer 202.
 第2の窒化物半導体層204は、第1の窒化物半導体層203の上に形成され、第1の窒化物半導体層203よりもバンドギャップエネルギーが大きい。第2の窒化物半導体層204は、例えばアンドープAlxGa1-xN(0<x≦1)から構成される。例えば、第2の窒化物半導体層204は、20nmの厚みのアンドープAl0.25Ga0.75Nから構成される。 The second nitride semiconductor layer 204 is formed on the first nitride semiconductor layer 203 and has a larger band gap energy than the first nitride semiconductor layer 203. The second nitride semiconductor layer 204 is made of, for example, undoped Al x Ga 1-x N (0 <x ≦ 1). For example, the second nitride semiconductor layer 204 is made of undoped Al 0.25 Ga 0.75 N having a thickness of 20 nm.
 第3の窒化物半導体層205は、第2の窒化物半導体層204の上に形成され、第2の窒化物半導体層204よりもバンドギャップエネルギーが小さい。第3の窒化物半導体層205は、例えば20nmの厚みのアンドープGaNから構成される。 The third nitride semiconductor layer 205 is formed on the second nitride semiconductor layer 204 and has a lower band gap energy than the second nitride semiconductor layer 204. The third nitride semiconductor layer 205 is made of undoped GaN having a thickness of 20 nm, for example.
 第4の窒化物半導体層206は、第3の窒化物半導体層205の上に形成され、第3の窒化物半導体層205よりもバンドギャップエネルギーが大きい。第4の窒化物半導体層206は、例えばアンドープAlyGa1-yN(0<y≦1)から構成される。例えば、第4の窒化物半導体層206は、25nmの厚みのアンドープAl0.25Ga0.75Nから構成される。 The fourth nitride semiconductor layer 206 is formed on the third nitride semiconductor layer 205 and has a larger band gap energy than the third nitride semiconductor layer 205. The fourth nitride semiconductor layer 206 is made of, for example, undoped Al y Ga 1-y N (0 <y ≦ 1). For example, the fourth nitride semiconductor layer 206 is made of undoped Al 0.25 Ga 0.75 N having a thickness of 25 nm.
 第1の窒化物半導体層203及び第2の窒化物半導体層204のヘテロ接合界面と、第3の窒化物半導体層205及び第4の窒化物半導体層206のヘテロ接合界面とには、自発分極及びピエゾ分極により例えば1×1013cm-2程度の電荷が生じており、ゲートがオンの状態ではヘテロ接合界面を電子が走行し、特にFETにおいて横方向の抵抗を大きく下げることができる。 Spontaneous polarization occurs between the heterojunction interface of the first nitride semiconductor layer 203 and the second nitride semiconductor layer 204 and the heterojunction interface of the third nitride semiconductor layer 205 and the fourth nitride semiconductor layer 206. In addition, electric charges of, for example, about 1 × 10 13 cm −2 are generated by piezo polarization, and electrons run through the heterojunction interface when the gate is on, and the lateral resistance can be greatly reduced particularly in FETs.
 ここで、より効果的に表面側チャネルの電子がバルク側チャネルに導かれるように、第4の窒化物半導体層206のAl組成比は、第2の窒化物半導体層204のAl組成比よりも大きい方が望ましく、さらに、第4の窒化物半導体層206の厚さは、第2の窒化物半導体層204の厚さよりも大きい方が望ましい。また、ゲート電極210直下の第2の窒化物半導体層204の膜厚を薄くし、ノーマリーオフ型のFETを実現するために、第2の窒化物半導体層204の厚さは、第4の窒化物半導体層206の厚さよりも小さい方が望ましい。 Here, the Al composition ratio of the fourth nitride semiconductor layer 206 is higher than the Al composition ratio of the second nitride semiconductor layer 204 so that electrons in the surface-side channel are more effectively guided to the bulk-side channel. The larger one is desirable, and the thickness of the fourth nitride semiconductor layer 206 is desirably larger than the thickness of the second nitride semiconductor layer 204. Further, in order to reduce the thickness of the second nitride semiconductor layer 204 immediately below the gate electrode 210 and realize a normally-off type FET, the thickness of the second nitride semiconductor layer 204 is set to It is desirable that the thickness is smaller than the thickness of the nitride semiconductor layer 206.
 ドレイン電極208及びソース電極209は、ゲート電極210の両側方の領域に形成され、それぞれ第1の窒化物半導体層203及び第2の窒化物半導体層204のヘテロ接合界面と、第3の窒化物半導体層205及び第4の窒化物半導体層206のヘテロ接合界面とに接触し、該界面領域に生成された電子走行領域と電気的に接続されている。ドレイン電極208及びソース電極209は、第1の窒化物半導体層203に接触している。 The drain electrode 208 and the source electrode 209 are formed in regions on both sides of the gate electrode 210, and the heterojunction interface between the first nitride semiconductor layer 203 and the second nitride semiconductor layer 204 and the third nitride, respectively. It contacts the heterojunction interface between the semiconductor layer 205 and the fourth nitride semiconductor layer 206 and is electrically connected to the electron transit region generated in the interface region. The drain electrode 208 and the source electrode 209 are in contact with the first nitride semiconductor layer 203.
 ドレイン電極208及びソース電極209は、例えばTi及びAlの積層構造体から構成される。 The drain electrode 208 and the source electrode 209 are made of, for example, a laminated structure of Ti and Al.
 第3の窒化物半導体層205及び第4の窒化物半導体層206には、凹部220が形成されている。この凹部220は、第3の窒化物半導体層205及び第4の窒化物半導体層206を貫通、つまり第3の窒化物半導体層205及び第4の窒化物半導体層206のヘテロ接合界面を貫通して第2の窒化物半導体層204の表面まで達している。そして、凹部220内には、ゲート電極210が形成されている。凹部220は、特に第2の窒化物半導体層204に対して第3の窒化物半導体層205を選択的にエッチングすることにより形成されている。 A recess 220 is formed in the third nitride semiconductor layer 205 and the fourth nitride semiconductor layer 206. The recess 220 penetrates the third nitride semiconductor layer 205 and the fourth nitride semiconductor layer 206, that is, penetrates the heterojunction interface between the third nitride semiconductor layer 205 and the fourth nitride semiconductor layer 206. And reaches the surface of the second nitride semiconductor layer 204. A gate electrode 210 is formed in the recess 220. The recess 220 is formed by selectively etching the third nitride semiconductor layer 205 with respect to the second nitride semiconductor layer 204 in particular.
 ここで、第2の窒化物半導体層204には凹部220は形成されておらず、凹部220の底面としての第2の窒化物半導体層204の表面は、第2の窒化物半導体層204及び第3の窒化物半導体層205の界面と面一である。ここでの面一とは、第2の窒化物半導体層204の表面に対するエッチングの精度による、数nm程度のずれがあっても良い。 Here, the concave portion 220 is not formed in the second nitride semiconductor layer 204, and the surface of the second nitride semiconductor layer 204 serving as the bottom surface of the concave portion 220 is the second nitride semiconductor layer 204 and the second nitride semiconductor layer 204. 3 is flush with the interface of the nitride semiconductor layer 205. Here, there may be a deviation of about several nanometers depending on the etching accuracy with respect to the surface of the second nitride semiconductor layer 204.
 ゲート電極210は、例えばPd、Ni及びPt等から構成される。なお、ゲート電極210は、ゲート電極210を構成する材料が絶縁膜207により窒化物半導体層に拡散しない場合にはTiから構成されてもよい。 The gate electrode 210 is made of, for example, Pd, Ni, Pt, or the like. Note that the gate electrode 210 may be made of Ti when the material constituting the gate electrode 210 is not diffused into the nitride semiconductor layer by the insulating film 207.
 絶縁膜207は、凹部220の底面及び側面並びに第4の窒化物半導体層206表面に形成されている。凹部220の底面及び側面に形成された絶縁膜207は、第2の窒化物半導体層204、第3の窒化物半導体層205及び第4の窒化物半導体層206とゲート電極210とに挟み込まれている。 The insulating film 207 is formed on the bottom and side surfaces of the recess 220 and the surface of the fourth nitride semiconductor layer 206. The insulating film 207 formed on the bottom and side surfaces of the recess 220 is sandwiched between the second nitride semiconductor layer 204, the third nitride semiconductor layer 205, the fourth nitride semiconductor layer 206, and the gate electrode 210. Yes.
 絶縁膜207は、例えばSiN、SiO、AlN、AlO、SiN及びAlNの積層構造体、並びにSiN及びAlOの積層構造体等から構成される。絶縁膜207がSiN又はSiOから構成される場合、絶縁膜207は例えばCVD法や減圧CVD法により成膜される。一方、絶縁膜207がAlN又はAlOから構成される場合、絶縁膜207は例えばスパッタ法や原子層堆積装置を用いたALD法により成膜される。 The insulating film 207 includes, for example, a stacked structure of SiN, SiO, AlN, AlO, SiN, and AlN, a stacked structure of SiN and AlO, and the like. When the insulating film 207 is made of SiN or SiO, the insulating film 207 is formed by, for example, a CVD method or a low pressure CVD method. On the other hand, when the insulating film 207 is made of AlN or AlO, the insulating film 207 is formed by, for example, a sputtering method or an ALD method using an atomic layer deposition apparatus.
 素子分離層211は、例えば窒化物半導体層にB等の不純物をイオン注入することにより形成され、FETを他の素子と電気的に分離する。 The element isolation layer 211 is formed by ion-implanting impurities such as B into the nitride semiconductor layer, for example, and electrically isolates the FET from other elements.
 以上のように、本実施の形態のFETによれば、第1の実施の形態のFETと同様の理由により、オン抵抗を低減することができる。 As described above, according to the FET of the present embodiment, the on-resistance can be reduced for the same reason as the FET of the first embodiment.
 また、本実施の形態のFETによれば、第1の実施の形態のFETと同様の理由により、ノーマリーオフ型FETとして効果的な構造を実現できる。 Further, according to the FET of the present embodiment, an effective structure as a normally-off type FET can be realized for the same reason as the FET of the first embodiment.
 また、本実施の形態のFETによれば、選択エッチングにより凹部220が形成され、ゲート電極210直下の第2の窒化物半導体層204の膜厚を正確に制御することができる。従って、ゲートの閾値電圧を調整することが容易となる。 Further, according to the FET of the present embodiment, the recess 220 is formed by selective etching, and the thickness of the second nitride semiconductor layer 204 immediately below the gate electrode 210 can be accurately controlled. Therefore, it becomes easy to adjust the threshold voltage of the gate.
 なお、上記実施の形態のFETにおいて、第1の窒化物半導体層203、第2の窒化物半導体層204、第3の窒化物半導体層205及び第4の窒化物半導体層206はInを含んでいてもよい。 In the FET of the above embodiment, the first nitride semiconductor layer 203, the second nitride semiconductor layer 204, the third nitride semiconductor layer 205, and the fourth nitride semiconductor layer 206 contain In. May be.
 また、上記実施の形態のFETにおいて、第1の窒化物半導体層203は、一部にドーピング層を備えていてもよい。この構造により、窒化物半導体層内での電荷量を制御し、ゲートの閾値電圧を調整することが容易となる。 Further, in the FET of the above embodiment, the first nitride semiconductor layer 203 may partially include a doping layer. This structure makes it easy to control the amount of charge in the nitride semiconductor layer and adjust the threshold voltage of the gate.
 また、上記実施の形態のFETにおいて、第4の窒化物半導体層206の上には、さらに別の半導体層が配置されてもよい。 In the FET of the above embodiment, another semiconductor layer may be disposed on the fourth nitride semiconductor layer 206.
 また、上記実施の形態のFETにおいて、第1の窒化物半導体層203、第2の窒化物半導体層204、第3の窒化物半導体層205及び第4の窒化物半導体層206には、例えばSi等のn型不純物のドーピングが施されていてもよい。 In the FET of the above-described embodiment, the first nitride semiconductor layer 203, the second nitride semiconductor layer 204, the third nitride semiconductor layer 205, and the fourth nitride semiconductor layer 206 include, for example, Si. N-type impurities such as n-type impurities may be doped.
 (第3の実施の形態)
 以下、本発明の第3の実施の形態におけるFETの構成及びその製造方法を説明する。
(Third embodiment)
Hereinafter, the configuration of the FET and the manufacturing method thereof according to the third embodiment of the present invention will be described.
 図5は、本実施の形態に係るFETの構成を示す断面図である。 FIG. 5 is a cross-sectional view showing the configuration of the FET according to the present embodiment.
 このFETは、基板301と、バッファ層302と、第1の窒化物半導体層303と、第2の窒化物半導体層304と、第3の窒化物半導体層305と、第4の窒化物半導体層306と、絶縁膜307と、ドレイン電極308と、ソース電極309と、ゲート電極310と、素子分離層311と、第5の窒化物半導体層312とを備えている。 The FET includes a substrate 301, a buffer layer 302, a first nitride semiconductor layer 303, a second nitride semiconductor layer 304, a third nitride semiconductor layer 305, and a fourth nitride semiconductor layer. 306, an insulating film 307, a drain electrode 308, a source electrode 309, a gate electrode 310, an element isolation layer 311, and a fifth nitride semiconductor layer 312.
 基板301は、例えば10μm以上1000μm以下の厚みのサファイア基板、SiC基板、Si基板、及びGaN基板等である。 The substrate 301 is, for example, a sapphire substrate having a thickness of 10 μm or more and 1000 μm or less, a SiC substrate, a Si substrate, a GaN substrate, or the like.
 バッファ層302は、基板301に応じた厚み、例えば100nmのAlNから構成され、基板301の上に形成される。 The buffer layer 302 is made of AlN having a thickness corresponding to the substrate 301, for example, 100 nm, and is formed on the substrate 301.
 第1の窒化物半導体層303は、例えば2μmの厚みのアンドープGaNから構成され、バッファ層302の上に形成される。 The first nitride semiconductor layer 303 is made of undoped GaN having a thickness of 2 μm, for example, and is formed on the buffer layer 302.
 第2の窒化物半導体層304は、第1の窒化物半導体層303の上に形成され、第1の窒化物半導体層303よりもバンドギャップエネルギーが大きい。第2の窒化物半導体層304は、例えばアンドープAlxGa1-xN(0<x≦1)から構成される。例えば、第2の窒化物半導体層304は、20nmの厚みのアンドープAl0.25Ga0.75Nから構成される。 The second nitride semiconductor layer 304 is formed on the first nitride semiconductor layer 303 and has a larger band gap energy than the first nitride semiconductor layer 303. The second nitride semiconductor layer 304 is made of, for example, undoped Al x Ga 1-x N (0 <x ≦ 1). For example, the second nitride semiconductor layer 304 is composed of 20 nm thick undoped Al 0.25 Ga 0.75 N.
 第3の窒化物半導体層305は、第2の窒化物半導体層304の上に形成され、第2の窒化物半導体層304よりもバンドギャップエネルギーが小さい。第3の窒化物半導体層305は、例えば20nmの厚みのアンドープGaNから構成される。 The third nitride semiconductor layer 305 is formed on the second nitride semiconductor layer 304 and has a lower band gap energy than the second nitride semiconductor layer 304. The third nitride semiconductor layer 305 is made of undoped GaN having a thickness of 20 nm, for example.
 第4の窒化物半導体層306は、第3の窒化物半導体層305の上に形成され、第3の窒化物半導体層305よりもバンドギャップエネルギーが大きい。第4の窒化物半導体層306は、例えばアンドープAlyGa1-yN(0<y≦1)から構成される。例えば、第4の窒化物半導体層306は、25nmの厚みのアンドープAl0.25Ga0.75Nから構成される。 The fourth nitride semiconductor layer 306 is formed on the third nitride semiconductor layer 305 and has a larger band gap energy than the third nitride semiconductor layer 305. The fourth nitride semiconductor layer 306 is made of, for example, undoped Al y Ga 1-y N (0 <y ≦ 1). For example, the fourth nitride semiconductor layer 306 is made of undoped Al 0.25 Ga 0.75 N having a thickness of 25 nm.
 第1の窒化物半導体層303及び第2の窒化物半導体層304のヘテロ接合界面と、第3の窒化物半導体層305及び第4の窒化物半導体層306のヘテロ接合界面とには、自発分極及びピエゾ分極により例えば1×1013cm-2程度の電荷が生じており、ゲートがオンの状態ではヘテロ接合界面を電子が走行し、特にFETにおいて横方向の抵抗を大きく下げることができる。 Spontaneous polarization occurs between the heterojunction interface between the first nitride semiconductor layer 303 and the second nitride semiconductor layer 304 and the heterojunction interface between the third nitride semiconductor layer 305 and the fourth nitride semiconductor layer 306. In addition, electric charges of, for example, about 1 × 10 13 cm −2 are generated by piezo polarization, and electrons run through the heterojunction interface when the gate is on, and the lateral resistance can be greatly reduced particularly in FETs.
 ここで、より効果的に表面側チャネルの電子がバルク側チャネルに導かれるように、第4の窒化物半導体層306のAl組成比は、第2の窒化物半導体層304及び第5の窒化物半導体層312のAl組成比よりも大きい方が望ましく、さらに、第4の窒化物半導体層306の厚さは、第2の窒化物半導体層304及び第5の窒化物半導体層312の厚さよりも大きい方が望ましい。また、ゲート電極310直下の第5の窒化物半導体層312の膜厚を薄くし、ノーマリーオフ型のFETを実現するために、第5の窒化物半導体層312の厚さは、第4の窒化物半導体層306の厚さよりも小さい方が望ましい。 Here, the Al composition ratio of the fourth nitride semiconductor layer 306 is set so that the electrons in the surface side channel are guided to the bulk side channel more effectively. The Al composition ratio of the semiconductor layer 312 is desirably larger, and the thickness of the fourth nitride semiconductor layer 306 is more than the thickness of the second nitride semiconductor layer 304 and the fifth nitride semiconductor layer 312. The larger one is desirable. In addition, in order to reduce the thickness of the fifth nitride semiconductor layer 312 immediately below the gate electrode 310 and realize a normally-off FET, the thickness of the fifth nitride semiconductor layer 312 is It is desirable that the thickness is smaller than the thickness of the nitride semiconductor layer 306.
 ドレイン電極308及びソース電極309は、ゲート電極310の両側方の領域に形成され、それぞれ第1の窒化物半導体層303及び第2の窒化物半導体層304のヘテロ接合界面と、第3の窒化物半導体層305及び第4の窒化物半導体層306のヘテロ接合界面とに接触し、該界面領域に生成された電子走行領域と電気的に接続されている。ドレイン電極308及びソース電極309は、第1の窒化物半導体層303に接触している。 The drain electrode 308 and the source electrode 309 are formed in regions on both sides of the gate electrode 310, and the heterojunction interface between the first nitride semiconductor layer 303 and the second nitride semiconductor layer 304 and the third nitride, respectively. It is in contact with the heterojunction interface between the semiconductor layer 305 and the fourth nitride semiconductor layer 306, and is electrically connected to the electron transit region generated in the interface region. The drain electrode 308 and the source electrode 309 are in contact with the first nitride semiconductor layer 303.
 ドレイン電極308及びソース電極309は、例えばTi及びAlの積層構造体から構成される。 The drain electrode 308 and the source electrode 309 are composed of a laminated structure of Ti and Al, for example.
 第1の窒化物半導体層303、第2の窒化物半導体層304、第3の窒化物半導体層305及び第4の窒化物半導体層306には、凹部320が形成されている。この凹部320は、第2の窒化物半導体層304、第3の窒化物半導体層305及び第4の窒化物半導体層306を貫通、つまり第3の窒化物半導体層305及び第4の窒化物半導体層306のヘテロ接合界面と第1の窒化物半導体層303及び第2の窒化物半導体層304のヘテロ接合界面とを貫通して第1の窒化物半導体層303表面まで達している。そして、凹部320内には、ゲート電極310が形成されている。 A recess 320 is formed in the first nitride semiconductor layer 303, the second nitride semiconductor layer 304, the third nitride semiconductor layer 305, and the fourth nitride semiconductor layer 306. The recess 320 penetrates through the second nitride semiconductor layer 304, the third nitride semiconductor layer 305, and the fourth nitride semiconductor layer 306, that is, the third nitride semiconductor layer 305 and the fourth nitride semiconductor. The heterojunction interface of the layer 306 and the heterojunction interfaces of the first nitride semiconductor layer 303 and the second nitride semiconductor layer 304 penetrate to the surface of the first nitride semiconductor layer 303. A gate electrode 310 is formed in the recess 320.
 ゲート電極310は、例えばPd、Ni及びPt等から構成される。なお、ゲート電極310は、ゲート電極310を構成する材料が絶縁膜307により窒化物半導体層に拡散しない場合にはTiから構成されてもよい。 The gate electrode 310 is made of, for example, Pd, Ni, Pt, or the like. Note that the gate electrode 310 may be made of Ti when the material constituting the gate electrode 310 is not diffused into the nitride semiconductor layer by the insulating film 307.
 第5の窒化物半導体層312は、凹部320の底面及び側面並びに第4の窒化物半導体層306表面に形成され、例えばアンドープAlzGa1-zN(0<z≦1)から構成される。例えば、第5の窒化物半導体層312は、10nmの厚みのアンドープAl0.25Ga0.75Nから構成される。第5の窒化物半導体層312は、例えば有機金属化学気相蒸着法(Metal-Organic Chemical Vapor Deposition:MOCVD法)により凹部320内で窒化物半導体層をエピタキシャル成長させることにより形成される。絶縁膜307は、このエピタキシャル成長に連続して大気にさらすことなく(in-situで)形成される。ゲート電極310は凹部320内で絶縁膜307に接している。 The fifth nitride semiconductor layer 312 is formed on the bottom and side surfaces of the recess 320 and the surface of the fourth nitride semiconductor layer 306, and is made of, for example, undoped Al z Ga 1 -z N (0 <z ≦ 1). . For example, the fifth nitride semiconductor layer 312 is made of undoped Al 0.25 Ga 0.75 N having a thickness of 10 nm. The fifth nitride semiconductor layer 312 is formed by epitaxially growing a nitride semiconductor layer in the recess 320 by, for example, metal-organic chemical vapor deposition (MOCVD). The insulating film 307 is formed continuously in this epitaxial growth without being exposed to the atmosphere (in-situ). The gate electrode 310 is in contact with the insulating film 307 in the recess 320.
 第5の窒化物半導体層312が存在することにより、絶縁膜307の結晶性を高め、また再現性よく形成することができる。凹部320の底面の窒化物半導体上に直接絶縁膜307を成長させるよりも、同じ窒化物半導体層である第5の窒化物半導体層312を形成してから連続成長により絶縁膜307を形成した方が、絶縁膜307の結晶性および再現性を向上できる。また、第5の窒化物半導体層312が例えばアンドープAlzGa1-zN(0<z≦1)層であり、凹部320の底面で接する層が例えばGaN層である構成のように、第5の窒化物半導体層312のAl組成Xが凹部320底面のAl組成と比較して大きい場合に、第5の窒化物半導体層312下にチャネル層が形成される。その際に誘起される電荷量は、制御性の高いエピタキシャル成長で形成される第5の窒化物半導体層312の膜厚や組成で決定されることから、再現性を高くすることが可能となる。 The presence of the fifth nitride semiconductor layer 312 can increase the crystallinity of the insulating film 307 and can be formed with good reproducibility. Rather than directly growing the insulating film 307 on the nitride semiconductor on the bottom surface of the recess 320, the fifth nitride semiconductor layer 312 that is the same nitride semiconductor layer is formed and then the insulating film 307 is formed by continuous growth. However, the crystallinity and reproducibility of the insulating film 307 can be improved. Further, the fifth nitride semiconductor layer 312 is, for example, an undoped Al z Ga 1-z N (0 <z ≦ 1) layer, and the layer in contact with the bottom surface of the recess 320 is, for example, a GaN layer. A channel layer is formed under the fifth nitride semiconductor layer 312 when the Al composition X of the fifth nitride semiconductor layer 312 is larger than the Al composition at the bottom of the recess 320. The amount of charge induced at that time is determined by the film thickness and composition of the fifth nitride semiconductor layer 312 formed by epitaxial growth with high controllability, so that reproducibility can be enhanced.
 絶縁膜307は、第5の窒化物半導体層312の上に形成されている。凹部320内の絶縁膜307は、第5の窒化物半導体層312とゲート電極310との間に形成され、挟み込まれている。 The insulating film 307 is formed on the fifth nitride semiconductor layer 312. The insulating film 307 in the recess 320 is formed and sandwiched between the fifth nitride semiconductor layer 312 and the gate electrode 310.
 絶縁膜307は、例えば1~5nmの厚みのSiN、SiO、AlN、AlO、SiN及びAlNの積層構造体、並びにSiN及びAlOの積層構造体等から構成される。絶縁膜307がSiN又はSiOから構成される場合、絶縁膜307は例えばCVD法や減圧CVD法により成膜される。一方、絶縁膜307がAlN又はAlOから構成される場合、絶縁膜307は例えばスパッタ法や原子層堆積装置を用いたALD法により成膜される。 The insulating film 307 is composed of, for example, a laminated structure of SiN, SiO, AlN, AlO, SiN and AlN having a thickness of 1 to 5 nm, a laminated structure of SiN and AlO, and the like. When the insulating film 307 is made of SiN or SiO, the insulating film 307 is formed by, for example, a CVD method or a low pressure CVD method. On the other hand, when the insulating film 307 is made of AlN or AlO, the insulating film 307 is formed by, for example, a sputtering method or an ALD method using an atomic layer deposition apparatus.
 素子分離層311は、例えば窒化物半導体層にB等の不純物をイオン注入することにより形成され、FETを他の素子と電気的に分離する。 The element isolation layer 311 is formed by ion-implanting impurities such as B into the nitride semiconductor layer, for example, and electrically isolates the FET from other elements.
 以上のように、本実施の形態のFETによれば、第1の実施の形態のFETと同様の理由により、オン抵抗を低減することができる。 As described above, according to the FET of the present embodiment, the on-resistance can be reduced for the same reason as the FET of the first embodiment.
 また、本実施の形態のFETによれば、第1の実施の形態のFETと同様の理由により、ノーマリーオフ型FETとして効果的な構造を実現できる。 Further, according to the FET of the present embodiment, an effective structure as a normally-off type FET can be realized for the same reason as the FET of the first embodiment.
 また、本実施の形態のFETによれば、凹部320内における第5の窒化物半導体層312のエピタキシャル成長と連続して絶縁膜307を形成することができるので、良好な絶縁特性の絶縁膜307を実現できる。 Further, according to the FET of the present embodiment, since the insulating film 307 can be formed continuously with the epitaxial growth of the fifth nitride semiconductor layer 312 in the recess 320, the insulating film 307 having good insulating characteristics can be formed. realizable.
 なお、上記実施の形態のFETにおいて、第1の窒化物半導体層303、第2の窒化物半導体層304、第3の窒化物半導体層305及び第4の窒化物半導体層306はInを含んでいてもよい。 Note that in the FET of the above embodiment, the first nitride semiconductor layer 303, the second nitride semiconductor layer 304, the third nitride semiconductor layer 305, and the fourth nitride semiconductor layer 306 contain In. May be.
 また、上記実施の形態のFETにおいて、第1の窒化物半導体層303は、一部にドーピング層を備えていてもよい。この構造により、窒化物半導体層内での電荷量を制御し、ゲートの閾値電圧を調整することが容易となる。 In the FET of the above embodiment, the first nitride semiconductor layer 303 may partially include a doping layer. This structure makes it easy to control the amount of charge in the nitride semiconductor layer and adjust the threshold voltage of the gate.
 また、上記実施の形態のFETにおいて、第4の窒化物半導体層306の上には、さらに別の半導体層が配置されてもよい。 Further, in the FET of the above embodiment, another semiconductor layer may be disposed on the fourth nitride semiconductor layer 306.
 また、上記実施の形態のFETにおいて、第1の窒化物半導体層303、第2の窒化物半導体層304、第3の窒化物半導体層305、第4の窒化物半導体層306及び第5の窒化物半導体層312には、例えばSi等のn型不純物のドーピングが施されていてもよい。 In the FET of the above embodiment, the first nitride semiconductor layer 303, the second nitride semiconductor layer 304, the third nitride semiconductor layer 305, the fourth nitride semiconductor layer 306, and the fifth nitride The physical semiconductor layer 312 may be doped with an n-type impurity such as Si.
 また、上記実施の形態のFETにおいて、凹部320の深さは第2の窒化物半導体層304、第3の窒化物半導体層305及び第4の窒化物半導体層306を貫通する深さであるとしたが、ゲート電極310とバルク側チャネルとの距離を短くすることができれば、この深さに限られない。例えば、凹部320の深さは、第3の窒化物半導体層305に達することなく第4の窒化物半導体層306の途中で止まる深さ、第4の窒化物半導体層306を貫通し、第3の窒化物半導体層305の途中で止まる深さ、又は第4の窒化物半導体層306及び第3の窒化物半導体層305を貫通し、第2の窒化物半導体層304の途中で止まる深さであってもよい。 Further, in the FET of the above embodiment, the depth of the recess 320 is a depth penetrating the second nitride semiconductor layer 304, the third nitride semiconductor layer 305, and the fourth nitride semiconductor layer 306. However, the depth is not limited as long as the distance between the gate electrode 310 and the bulk side channel can be shortened. For example, the depth of the recess 320 is deep enough to stop in the middle of the fourth nitride semiconductor layer 306 without reaching the third nitride semiconductor layer 305, penetrate through the fourth nitride semiconductor layer 306, The depth that stops in the middle of the nitride semiconductor layer 305, or the depth that passes through the fourth nitride semiconductor layer 306 and the third nitride semiconductor layer 305 and stops in the middle of the second nitride semiconductor layer 304. There may be.
 (第4の実施の形態)
 以下、本発明の第4の実施の形態におけるFETの構成及びその製造方法を説明する。
(Fourth embodiment)
Hereinafter, the configuration of the FET and the manufacturing method thereof according to the fourth embodiment of the present invention will be described.
 図6は、本実施の形態に係るFETの構成を示す断面図である。 FIG. 6 is a cross-sectional view showing the configuration of the FET according to the present embodiment.
 このFETは、基板401と、バッファ層402と、第1の窒化物半導体層403と、第2の窒化物半導体層404と、第3の窒化物半導体層405と、第4の窒化物半導体層406と、ドレイン電極408と、ソース電極409と、ゲート電極410と、素子分離層411とを備えている。 This FET includes a substrate 401, a buffer layer 402, a first nitride semiconductor layer 403, a second nitride semiconductor layer 404, a third nitride semiconductor layer 405, and a fourth nitride semiconductor layer. 406, a drain electrode 408, a source electrode 409, a gate electrode 410, and an element isolation layer 411 are provided.
 基板401は、例えば10μm以上1000μm以下の厚みのサファイア基板、SiC基板、Si基板、及びGaN基板等である。 The substrate 401 is, for example, a sapphire substrate, a SiC substrate, a Si substrate, a GaN substrate, or the like having a thickness of 10 μm to 1000 μm.
 バッファ層402は、基板401に応じた厚み、例えば100nmのAlNから構成され、基板401の上に形成される。 The buffer layer 402 is made of AlN having a thickness corresponding to the substrate 401, for example, 100 nm, and is formed on the substrate 401.
 第1の窒化物半導体層403は、例えば2μmの厚みのアンドープGaNから構成され、バッファ層402の上に形成される。 The first nitride semiconductor layer 403 is made of undoped GaN having a thickness of 2 μm, for example, and is formed on the buffer layer 402.
 第2の窒化物半導体層404は、第1の窒化物半導体層403の上に形成され、第1の窒化物半導体層403よりもバンドギャップエネルギーが大きい。第2の窒化物半導体層404は、例えばアンドープAlxGa1-xN(0<x≦1)から構成される。例えば、第2の窒化物半導体層404は、30nmの厚みのアンドープAl0.25Ga0.75Nから構成される。 The second nitride semiconductor layer 404 is formed on the first nitride semiconductor layer 403 and has a larger band gap energy than the first nitride semiconductor layer 403. The second nitride semiconductor layer 404 is made of, for example, undoped Al x Ga 1-x N (0 <x ≦ 1). For example, the second nitride semiconductor layer 404 is made of undoped Al 0.25 Ga 0.75 N having a thickness of 30 nm.
 第3の窒化物半導体層405は、第2の窒化物半導体層404の上に形成され、第2の窒化物半導体層404よりもバンドギャップエネルギーが小さい。第3の窒化物半導体層405は、例えば30nmの厚みのアンドープGaNから構成される。 The third nitride semiconductor layer 405 is formed on the second nitride semiconductor layer 404 and has a lower band gap energy than the second nitride semiconductor layer 404. The third nitride semiconductor layer 405 is made of undoped GaN having a thickness of 30 nm, for example.
 第4の窒化物半導体層406は、第3の窒化物半導体層405の上に形成され、第3の窒化物半導体層405よりもバンドギャップエネルギーが大きい。第4の窒化物半導体層406は、例えばアンドープAlyGa1-yN(0<y≦1)から構成される。例えば、第4の窒化物半導体層406は、30nmの厚みのアンドープAl0.25Ga0.75Nから構成される。 The fourth nitride semiconductor layer 406 is formed on the third nitride semiconductor layer 405 and has a larger band gap energy than the third nitride semiconductor layer 405. The fourth nitride semiconductor layer 406 is made of, for example, undoped Al y Ga 1-y N (0 <y ≦ 1). For example, the fourth nitride semiconductor layer 406 is made of undoped Al 0.25 Ga 0.75 N having a thickness of 30 nm.
 第1の窒化物半導体層403及び第2の窒化物半導体層404のヘテロ接合界面と、第3の窒化物半導体層405及び第4の窒化物半導体層406のヘテロ接合界面とには、自発分極及びピエゾ分極により例えば1×1013cm-2程度の電荷が生じており、ゲートがオンの状態ではヘテロ接合界面を電子が走行し、特にFETにおいて横方向の抵抗を大きく下げることができる。 Spontaneous polarization occurs between the heterojunction interface between the first nitride semiconductor layer 403 and the second nitride semiconductor layer 404 and the heterojunction interface between the third nitride semiconductor layer 405 and the fourth nitride semiconductor layer 406. In addition, electric charges of, for example, about 1 × 10 13 cm −2 are generated by piezo polarization, and electrons run through the heterojunction interface when the gate is on, and the lateral resistance can be greatly reduced particularly in FETs.
 ここで、より効果的に表面側チャネルの電子がバルク側チャネルに導かれるように、第4の窒化物半導体層406のAl組成比は、第2の窒化物半導体層404のAl組成比よりも大きい方が望ましく、さらに、第4の窒化物半導体層406の厚さは、第2の窒化物半導体層404の厚さよりも大きい方が望ましい。 Here, the Al composition ratio of the fourth nitride semiconductor layer 406 is higher than the Al composition ratio of the second nitride semiconductor layer 404 so that electrons in the surface-side channel are more effectively guided to the bulk-side channel. The larger one is desirable, and the thickness of the fourth nitride semiconductor layer 406 is desirably larger than the thickness of the second nitride semiconductor layer 404.
 ドレイン電極408及びソース電極409は、ゲート電極410の両側方の領域に形成され、それぞれ第1の窒化物半導体層403及び第2の窒化物半導体層404のヘテロ接合界面と、第3の窒化物半導体層405及び第4の窒化物半導体層406のヘテロ接合界面とに接触し、該界面領域に生成された電子走行領域と電気的に接続されている。ドレイン電極408及びソース電極409は、第1の窒化物半導体層403に接触している。 The drain electrode 408 and the source electrode 409 are formed in the regions on both sides of the gate electrode 410, and the heterojunction interface between the first nitride semiconductor layer 403 and the second nitride semiconductor layer 404 and the third nitride, respectively. It contacts the heterojunction interface between the semiconductor layer 405 and the fourth nitride semiconductor layer 406 and is electrically connected to the electron transit region generated in the interface region. The drain electrode 408 and the source electrode 409 are in contact with the first nitride semiconductor layer 403.
 ドレイン電極408及びソース電極409は、例えばTi及びAlの積層構造体から構成される。 The drain electrode 408 and the source electrode 409 are made of a laminated structure of Ti and Al, for example.
 第3の窒化物半導体層405及び第4の窒化物半導体層406には凹部420が形成されている。この凹部420は、第3の窒化物半導体層405及び第4の窒化物半導体層406を貫通、つまり第3の窒化物半導体層405及び第4の窒化物半導体層406のヘテロ接合界面を貫通して第2の窒化物半導体層404の表面まで達している。そして、凹部420内には、凹部420の底面及び側面を覆うようにゲート電極410が形成されている。従って、凹部420内のゲート電極410は、絶縁膜を介することなく、第2の窒化物半導体層404、第3の窒化物半導体層405及び第4の窒化物半導体層406に直接接している。凹部420は、特に第2の窒化物半導体層404に対して第3の窒化物半導体層405を選択的にエッチングすることにより形成されている。 A recess 420 is formed in the third nitride semiconductor layer 405 and the fourth nitride semiconductor layer 406. The recess 420 penetrates the third nitride semiconductor layer 405 and the fourth nitride semiconductor layer 406, that is, penetrates the heterojunction interface between the third nitride semiconductor layer 405 and the fourth nitride semiconductor layer 406. And reaches the surface of the second nitride semiconductor layer 404. A gate electrode 410 is formed in the recess 420 so as to cover the bottom and side surfaces of the recess 420. Therefore, the gate electrode 410 in the recess 420 is in direct contact with the second nitride semiconductor layer 404, the third nitride semiconductor layer 405, and the fourth nitride semiconductor layer 406 without an insulating film interposed therebetween. The recess 420 is formed by selectively etching the third nitride semiconductor layer 405 with respect to the second nitride semiconductor layer 404 in particular.
 ここで、第2の窒化物半導体層404には凹部420は形成されておらず、凹部420の底面としての第2の窒化物半導体層404の表面は、第2の窒化物半導体層404及び第3の窒化物半導体層405の界面と面一である。 Here, the concave portion 420 is not formed in the second nitride semiconductor layer 404, and the surface of the second nitride semiconductor layer 404 serving as the bottom surface of the concave portion 420 is the second nitride semiconductor layer 404 and the second nitride semiconductor layer 404. 3 is flush with the interface of the nitride semiconductor layer 405.
 ゲート電極410は、第2の窒化物半導体層404、第3の窒化物半導体層405及び第4の窒化物半導体層406とショットキー接合し、例えばPd、Ni及びPt等から構成される。 The gate electrode 410 is in Schottky junction with the second nitride semiconductor layer 404, the third nitride semiconductor layer 405, and the fourth nitride semiconductor layer 406, and is made of, for example, Pd, Ni, Pt, or the like.
 素子分離層411は、例えば窒化物半導体層にB等の不純物をイオン注入することにより形成され、FETを他の素子と電気的に分離する。 The element isolation layer 411 is formed by ion-implanting impurities such as B into the nitride semiconductor layer, for example, and electrically isolates the FET from other elements.
 以上のように、本実施の形態のFETによれば、第1の実施の形態のFETと同様の理由により、オン抵抗を低減することができる。 As described above, according to the FET of the present embodiment, the on-resistance can be reduced for the same reason as the FET of the first embodiment.
 なお、上記実施の形態のFETにおいて、第1の窒化物半導体層403、第2の窒化物半導体層404、第3の窒化物半導体層405及び第4の窒化物半導体層406はInを含んでいてもよい。 Note that in the FET of the above embodiment, the first nitride semiconductor layer 403, the second nitride semiconductor layer 404, the third nitride semiconductor layer 405, and the fourth nitride semiconductor layer 406 contain In. May be.
 また、上記実施の形態のFETにおいて、第1の窒化物半導体層403は、一部にドーピング層を備えていてもよい。この構造により、窒化物半導体層内での電荷量を制御し、ゲートの閾値電圧を調整することが容易となる。 In the FET of the above embodiment, the first nitride semiconductor layer 403 may partially include a doping layer. This structure makes it easy to control the amount of charge in the nitride semiconductor layer and adjust the threshold voltage of the gate.
 また、上記実施の形態のFETにおいて、第4の窒化物半導体層406の上には、さらに別の半導体層が配置されてもよい。 In the FET of the above embodiment, another semiconductor layer may be disposed on the fourth nitride semiconductor layer 406.
 また、上記実施の形態のFETにおいて、第1の窒化物半導体層403、第2の窒化物半導体層404、第3の窒化物半導体層405及び第4の窒化物半導体層406には、例えばSi等のn型不純物のドーピングが施されていてもよい。 In the FET of the above embodiment, the first nitride semiconductor layer 403, the second nitride semiconductor layer 404, the third nitride semiconductor layer 405, and the fourth nitride semiconductor layer 406 include, for example, Si. N-type impurities such as n-type impurities may be doped.
 また、上記実施の形態のFETにおいて、凹部420の深さは第3の窒化物半導体層405及び第4の窒化物半導体層406を貫通する深さであるとしたが、ゲート電極410とバルク側チャネルとの距離を短くすることができれば、この深さに限られない。例えば、凹部420の深さは、第3の窒化物半導体層405に達することなく第4の窒化物半導体層406の途中で止まる深さ、又は第4の窒化物半導体層406を貫通し、第3の窒化物半導体層405の途中で止まる深さであってもよい。 In the FET of the above embodiment, the depth of the recess 420 is a depth that penetrates the third nitride semiconductor layer 405 and the fourth nitride semiconductor layer 406. If the distance to the channel can be shortened, the depth is not limited to this. For example, the depth of the recess 420 is a depth that stops in the middle of the fourth nitride semiconductor layer 406 without reaching the third nitride semiconductor layer 405, or penetrates the fourth nitride semiconductor layer 406, 3 may be a depth that stops halfway through the nitride semiconductor layer 405.
 (第5の実施の形態)
 以下、本発明の第5の実施の形態におけるFETの構成及びその製造方法を説明する。
(Fifth embodiment)
Hereinafter, the configuration of the FET and the manufacturing method thereof according to the fifth embodiment of the present invention will be described.
 図7は、本実施の形態に係るFETの構成を示す断面図である。 FIG. 7 is a cross-sectional view showing the configuration of the FET according to the present embodiment.
 このFETは、基板501と、バッファ層502と、第1の窒化物半導体層503と、第2の窒化物半導体層504と、第3の窒化物半導体層505と、第4の窒化物半導体層506と、絶縁膜507と、ドレイン電極508と、ソース電極509と、ゲート電極510と、素子分離層511とを備えている。 This FET includes a substrate 501, a buffer layer 502, a first nitride semiconductor layer 503, a second nitride semiconductor layer 504, a third nitride semiconductor layer 505, and a fourth nitride semiconductor layer. 506, an insulating film 507, a drain electrode 508, a source electrode 509, a gate electrode 510, and an element isolation layer 511 are provided.
 基板501は、例えば10μm以上1000μm以下の厚みのサファイア基板、SiC基板、Si基板、及びGaN基板等である。 The substrate 501 is, for example, a sapphire substrate, a SiC substrate, a Si substrate, a GaN substrate, or the like having a thickness of 10 μm or more and 1000 μm or less.
 バッファ層502は、基板501に応じた厚み、厚さ例えば100nmのAlNから構成され、基板501の上に形成される。 The buffer layer 502 is made of AlN having a thickness corresponding to the substrate 501, for example, 100 nm, and is formed on the substrate 501.
 第1の窒化物半導体層503は、例えば2μmの厚みのアンドープGaNから構成され、バッファ層502の上に形成される。 The first nitride semiconductor layer 503 is made of undoped GaN having a thickness of 2 μm, for example, and is formed on the buffer layer 502.
 第2の窒化物半導体層504は、第1の窒化物半導体層503の上に形成され、第1の窒化物半導体層503よりもバンドギャップエネルギーが大きい。第2の窒化物半導体層504は、例えばアンドープAlxGa1-xN(0<x≦1)から構成される。例えば、第2の窒化物半導体層504は、20nmの厚みのアンドープAl0.25Ga0.75Nから構成される。 The second nitride semiconductor layer 504 is formed on the first nitride semiconductor layer 503 and has a larger band gap energy than the first nitride semiconductor layer 503. The second nitride semiconductor layer 504 is made of, for example, undoped Al x Ga 1-x N (0 <x ≦ 1). For example, the second nitride semiconductor layer 504 is composed of 20 nm thick undoped Al 0.25 Ga 0.75 N.
 第3の窒化物半導体層505は、第2の窒化物半導体層504の上に形成され、第2の窒化物半導体層504よりもバンドギャップエネルギーが小さい。第3の窒化物半導体層505は、例えば20nmの厚みのアンドープGaNから構成される。 The third nitride semiconductor layer 505 is formed on the second nitride semiconductor layer 504 and has a smaller band gap energy than the second nitride semiconductor layer 504. The third nitride semiconductor layer 505 is made of undoped GaN having a thickness of 20 nm, for example.
 第4の窒化物半導体層506は、第3の窒化物半導体層505の上に形成され、第3の窒化物半導体層505よりもバンドギャップエネルギーが大きい。第4の窒化物半導体層506は、例えばアンドープAlyGa1-yN(0<y≦1)から構成される。例えば、第4の窒化物半導体層506は、25nmの厚みのアンドープAl0.25Ga0.75Nから構成される。 The fourth nitride semiconductor layer 506 is formed on the third nitride semiconductor layer 505 and has a larger band gap energy than the third nitride semiconductor layer 505. The fourth nitride semiconductor layer 506 is made of, for example, undoped Al y Ga 1-y N (0 <y ≦ 1). For example, the fourth nitride semiconductor layer 506 is made of undoped Al 0.25 Ga 0.75 N having a thickness of 25 nm.
 第1の窒化物半導体層503及び第2の窒化物半導体層504のヘテロ接合界面と、第3の窒化物半導体層505及び第4の窒化物半導体層506のヘテロ接合界面とには、自発分極及びピエゾ分極により例えば1×1013cm-2程度の電荷が生じており、ゲートがオンの状態ではヘテロ接合界面を電子が走行し、特にFETにおいて横方向の抵抗を大きく下げることができる。 Spontaneous polarization occurs between the heterojunction interface between the first nitride semiconductor layer 503 and the second nitride semiconductor layer 504 and the heterojunction interface between the third nitride semiconductor layer 505 and the fourth nitride semiconductor layer 506. In addition, electric charges of, for example, about 1 × 10 13 cm −2 are generated by piezo polarization, and electrons run through the heterojunction interface when the gate is on, and the lateral resistance can be greatly reduced particularly in FETs.
 ここで、より効果的に表面側チャネルの電子がバルク側チャネルに導かれるように、第4の窒化物半導体層506のAl組成比は、第2の窒化物半導体層504のAl組成比よりも大きい方が望ましく、さらに、第4の窒化物半導体層506の厚さは、第2の窒化物半導体層504の厚さよりも大きい方が望ましい。また、ゲート電極510直下の第2の窒化物半導体層504の膜厚を薄くし、ノーマリーオフ型のFETを実現するために、第2の窒化物半導体層504の厚さは、第4の窒化物半導体層506の厚さよりも小さい方が望ましい。 Here, the Al composition ratio of the fourth nitride semiconductor layer 506 is higher than the Al composition ratio of the second nitride semiconductor layer 504 so that electrons in the surface-side channel are more effectively guided to the bulk-side channel. The larger one is desirable, and the thickness of the fourth nitride semiconductor layer 506 is desirably larger than the thickness of the second nitride semiconductor layer 504. In addition, in order to reduce the thickness of the second nitride semiconductor layer 504 immediately below the gate electrode 510 and realize a normally-off FET, the thickness of the second nitride semiconductor layer 504 is set to It is desirable that the thickness is smaller than the thickness of the nitride semiconductor layer 506.
 ドレイン電極508及びソース電極509は、ゲート電極510の両側方の領域に形成され、それぞれ第1の窒化物半導体層503及び第2の窒化物半導体層504のヘテロ接合界面と、第3の窒化物半導体層505及び第4の窒化物半導体層506のヘテロ接合界面とに接触し、該界面領域に生成された電子走行領域と電気的に接続されている。ドレイン電極508及びソース電極509は、第1の窒化物半導体層503に接触している。 The drain electrode 508 and the source electrode 509 are formed in regions on both sides of the gate electrode 510, and the heterojunction interface between the first nitride semiconductor layer 503 and the second nitride semiconductor layer 504 and the third nitride, respectively. The semiconductor layer 505 and the fourth nitride semiconductor layer 506 are in contact with the heterojunction interface and are electrically connected to the electron transit region generated in the interface region. The drain electrode 508 and the source electrode 509 are in contact with the first nitride semiconductor layer 503.
 ドレイン電極508及びソース電極509は、例えばTi及びAlの積層構造体から構成される。 The drain electrode 508 and the source electrode 509 are composed of a laminated structure of Ti and Al, for example.
 絶縁膜507は、第4の窒化物半導体層506表面に形成され、例えばSiN、SiO、AlN、AlO、SiN及びAlNの積層構造体、並びにSiN及びAlOの積層構造体等から構成される。絶縁膜507がSiN又はSiOから構成される場合、絶縁膜507は例えばCVD法や減圧CVD法により成膜される。一方、絶縁膜507がAlN又はAlOから構成される場合、絶縁膜507は例えばスパッタ法や原子層堆積装置を用いたALD法により成膜される。 The insulating film 507 is formed on the surface of the fourth nitride semiconductor layer 506 and includes, for example, a stacked structure of SiN, SiO, AlN, AlO, SiN, and AlN, a stacked structure of SiN and AlO, and the like. When the insulating film 507 is made of SiN or SiO, the insulating film 507 is formed by, for example, a CVD method or a low pressure CVD method. On the other hand, when the insulating film 507 is made of AlN or AlO, the insulating film 507 is formed by, for example, a sputtering method or an ALD method using an atomic layer deposition apparatus.
 ゲート電極510は、絶縁膜507の上に形成され、例えばPd、Ni及びPt等から構成される。なお、ゲート電極510は、ゲート電極510を構成する材料が絶縁膜507により窒化物半導体層に拡散しない場合にはTiから構成されてもよい。 The gate electrode 510 is formed on the insulating film 507 and is made of, for example, Pd, Ni, Pt, or the like. Note that the gate electrode 510 may be made of Ti when the material constituting the gate electrode 510 is not diffused into the nitride semiconductor layer by the insulating film 507.
 素子分離層511は、例えば窒化物半導体層にB等の不純物をイオン注入することにより形成され、FETを他の素子と電気的に分離する。 The element isolation layer 511 is formed by ion-implanting impurities such as B into the nitride semiconductor layer, for example, and electrically isolates the FET from other elements.
 以上のように、本実施の形態のFETによれば、第1の実施の形態のFETと同様の理由により、オン抵抗を低減することができる。 As described above, according to the FET of the present embodiment, the on-resistance can be reduced for the same reason as the FET of the first embodiment.
 また、本実施の形態のFETによれば、第1の実施の形態のFETと同様の理由により、ノーマリーオフ型FETとして効果的な構造を実現できる。 Further, according to the FET of the present embodiment, an effective structure as a normally-off type FET can be realized for the same reason as the FET of the first embodiment.
 なお、上記実施の形態のFETにおいて、第1の窒化物半導体層503、第2の窒化物半導体層504、第3の窒化物半導体層505及び第4の窒化物半導体層506はInを含んでいてもよい。 Note that in the FET of the above embodiment, the first nitride semiconductor layer 503, the second nitride semiconductor layer 504, the third nitride semiconductor layer 505, and the fourth nitride semiconductor layer 506 contain In. May be.
 また、上記実施の形態のFETにおいて、第1の窒化物半導体層503は、一部にドーピング層を備えていてもよい。この構造により、窒化物半導体層内での電荷量を制御し、ゲートの閾値電圧を調整することが容易となる。 In the FET of the above embodiment, the first nitride semiconductor layer 503 may partially include a doping layer. This structure makes it easy to control the amount of charge in the nitride semiconductor layer and adjust the threshold voltage of the gate.
 また、上記実施の形態のFETにおいて、第4の窒化物半導体層506の上には、さらに別の半導体層が配置されてもよい。 Further, in the FET of the above embodiment, another semiconductor layer may be disposed on the fourth nitride semiconductor layer 506.
 また、上記実施の形態のFETにおいて、第1の窒化物半導体層503、第2の窒化物半導体層504、第3の窒化物半導体層505及び第4の窒化物半導体層506には、例えばSi等のn型不純物のドーピングが施されていてもよい。 In the FET of the above embodiment, the first nitride semiconductor layer 503, the second nitride semiconductor layer 504, the third nitride semiconductor layer 505, and the fourth nitride semiconductor layer 506 include, for example, Si. N-type impurities such as n-type impurities may be doped.
 また、上記実施の形態のFETにおいて、第3の実施の形態のFETと同様に絶縁膜507が設けられないショットキー接合型のFETの形態がとられてもよい。 Further, the FET of the above embodiment may take the form of a Schottky junction type FET in which the insulating film 507 is not provided as in the FET of the third embodiment.
 以上、本発明のFETについて、実施の形態に基づいて説明したが、本発明は、この実施の形態に限定されるものではない。本発明の要旨を逸脱しない範囲内で当業者が思いつく各種変形を施したものも本発明の範囲内に含まれる。 As mentioned above, although the FET of the present invention has been described based on the embodiment, the present invention is not limited to this embodiment. The present invention includes various modifications made by those skilled in the art without departing from the scope of the present invention.
 本発明は、FETに適用でき、特に携帯電話基地局等のハイパワー高周波装置やインバーター等のハイパワースイッチング装置等に適用できる。 The present invention can be applied to FETs, and in particular to high power high frequency devices such as mobile phone base stations, high power switching devices such as inverters, and the like.
  101、201、301、401、501、801  基板
  102、202、302、402、502  バッファ層
  103、203、303、403、503  第1の窒化物半導体層
  104、204、304、404、504  第2の窒化物半導体層
  105、205、305、405、505  第3の窒化物半導体層
  106、206、306、406、506  第4の窒化物半導体層
  107、207、307、507  絶縁膜
  108、208、308、408、508、807  ドレイン電極
  109、209、309、409、509、808  ソース電極
  110、210、310、410、510、806  ゲート電極
  111、211、311、411、511  素子分離層
  120、220、320、420  凹部
  312  第5の窒化物半導体層
  802  キャリア走行層
  803  キャリア供給層
  804  GaN系保護層
  805  保護層
 
101, 201, 301, 401, 501, 801 Substrate 102, 202, 302, 402, 502 Buffer layer 103, 203, 303, 403, 503 First nitride semiconductor layer 104, 204, 304, 404, 504 Second Nitride semiconductor layer 105, 205, 305, 405, 505 Third nitride semiconductor layer 106, 206, 306, 406, 506 Fourth nitride semiconductor layer 107, 207, 307, 507 Insulating film 108, 208, 308, 408, 508, 807 Drain electrode 109, 209, 309, 409, 509, 808 Source electrode 110, 210, 310, 410, 510, 806 Gate electrode 111, 211, 311, 411, 511 Element isolation layer 120, 220 320, 420 Recess 312 Fifth nitrogen SEMICONDUCTOR layer 802 carrier transit layer 803 carrier supply layer 804 GaN-based protective layer 805 protective layer

Claims (14)

  1.  第1の窒化物半導体層と、
     前記第1の窒化物半導体層の上に形成され、前記第1の窒化物半導体層よりもバンドギャップエネルギーが大きい第2の窒化物半導体層と、
     前記第2の窒化物半導体層の上に形成された第3の窒化物半導体層と、
     前記第3の窒化物半導体層の上に形成され、前記第3の窒化物半導体層よりもバンドギャップエネルギーが大きい第4の窒化物半導体層とを備え、
     前記第1の窒化物半導体層及び前記第2の窒化物半導体層のヘテロ接合界面には、チャネルが形成される
     電界効果トランジスタ。
    A first nitride semiconductor layer;
    A second nitride semiconductor layer formed on the first nitride semiconductor layer and having a band gap energy larger than that of the first nitride semiconductor layer;
    A third nitride semiconductor layer formed on the second nitride semiconductor layer;
    A fourth nitride semiconductor layer formed on the third nitride semiconductor layer and having a band gap energy larger than that of the third nitride semiconductor layer;
    A field effect transistor, wherein a channel is formed at a heterojunction interface between the first nitride semiconductor layer and the second nitride semiconductor layer.
  2.  前記電界効果トランジスタのゲート電極は、前記第4の窒化物半導体層に設けられた凹部内に形成される
     請求項1に記載の電界効果トランジスタ。
    The field effect transistor according to claim 1, wherein a gate electrode of the field effect transistor is formed in a recess provided in the fourth nitride semiconductor layer.
  3.  前記凹部は、前記第3の窒化物半導体層及び前記第4の窒化物半導体層のヘテロ接合界面を貫通している
     請求項2に記載の電界効果トランジスタ。
    The field effect transistor according to claim 2, wherein the recess penetrates a heterojunction interface between the third nitride semiconductor layer and the fourth nitride semiconductor layer.
  4.  前記凹部は、前記第3の窒化物半導体層及び前記第4の窒化物半導体層を貫通して前記第2の窒化物半導体層の表面まで達し、
     前記凹部の底面としての前記第2の窒化物半導体層の表面は、前記第2の窒化物半導体層及び前記第3の窒化物半導体層の界面と面一である
     請求項3に記載の電界効果トランジスタ。
    The recess penetrates the third nitride semiconductor layer and the fourth nitride semiconductor layer and reaches the surface of the second nitride semiconductor layer,
    The field effect according to claim 3, wherein a surface of the second nitride semiconductor layer as a bottom surface of the recess is flush with an interface between the second nitride semiconductor layer and the third nitride semiconductor layer. Transistor.
  5.  前記凹部は、前記第2の窒化物半導体層、前記第3の窒化物半導体層及び前記第4の窒化物半導体層を貫通して前記第1の窒化物半導体層まで達する
     請求項4に記載の電界効果トランジスタ。
    5. The concave portion reaches the first nitride semiconductor layer through the second nitride semiconductor layer, the third nitride semiconductor layer, and the fourth nitride semiconductor layer. Field effect transistor.
  6.  前記電界効果トランジスタは、さらに、前記凹部の底面に形成された絶縁膜を備える
     請求項2~5のいずれか1項に記載の電界効果トランジスタ。
    6. The field effect transistor according to claim 2, further comprising an insulating film formed on a bottom surface of the concave portion.
  7.  前記電界効果トランジスタは、さらに、
     前記凹部の底面に形成された第5の窒化物半導体層と、
     前記ゲート電極と前記第5の窒化物半導体層との間に形成された絶縁膜とを備える
     請求項2~5のいずれか1項に記載の電界効果トランジスタ。
    The field effect transistor further comprises:
    A fifth nitride semiconductor layer formed on the bottom surface of the recess;
    6. The field effect transistor according to claim 2, further comprising an insulating film formed between the gate electrode and the fifth nitride semiconductor layer.
  8.  前記第5の窒化物半導体層は、AlzGa1-zN(0<z≦1)からなる
     請求項7に記載の電界効果トランジスタ。
    The field effect transistor according to claim 7, wherein the fifth nitride semiconductor layer is made of Al z Ga 1-z N (0 <z ≦ 1).
  9.  前記絶縁膜は、窒化シリコンからなる
     請求項6~8のいずれか1項に記載の電界効果トランジスタ。
    The field effect transistor according to any one of claims 6 to 8, wherein the insulating film is made of silicon nitride.
  10.  前記絶縁膜は、窒化シリコン及び窒化アルミニウムの積層構造体からなる
     請求項6~8のいずれか1項に記載の電界効果トランジスタ。
    The field effect transistor according to any one of claims 6 to 8, wherein the insulating film is formed of a laminated structure of silicon nitride and aluminum nitride.
  11.  前記絶縁膜は、原子層堆積装置により形成される
     請求項6~8のいずれか1項に記載の電界効果トランジスタ。
    The field effect transistor according to any one of claims 6 to 8, wherein the insulating film is formed by an atomic layer deposition apparatus.
  12. 前記第2の窒化物半導体層の膜厚は、前記第4の窒化物半導体層の膜厚よりも小さい
     請求項1~11のいずれか1項に記載の電界効果トランジスタ。
    The field effect transistor according to any one of claims 1 to 11, wherein a film thickness of the second nitride semiconductor layer is smaller than a film thickness of the fourth nitride semiconductor layer.
  13.  前記電界効果トランジスタのソース電極及びドレイン電極は、それぞれ前記第1の窒化物半導体層及び前記第2の窒化物半導体層のヘテロ接合界面と、前記第3の窒化物半導体層及び前記第4の窒化物半導体層のヘテロ接合界面とに接触する
     請求項1~12のいずれか1項に記載の電界効果トランジスタ。
    The source electrode and the drain electrode of the field effect transistor are respectively heterojunction interfaces of the first nitride semiconductor layer and the second nitride semiconductor layer, the third nitride semiconductor layer, and the fourth nitride. The field effect transistor according to any one of claims 1 to 12, which is in contact with a heterojunction interface of a physical semiconductor layer.
  14.  前記第1の窒化物半導体層は、GaNからなり、
     前記第2の窒化物半導体層は、AlxGa1-xN(0<x≦1)からなり、
     前記第3の窒化物半導体層は、GaNからなり、
     前記第4の窒化物半導体層は、AlyGa1-yN(0<y≦1)からなる
     請求項1~13のいずれか1項に記載の電界効果トランジスタ。
    The first nitride semiconductor layer is made of GaN,
    The second nitride semiconductor layer is made of Al x Ga 1-x N (0 <x ≦ 1),
    The third nitride semiconductor layer is made of GaN,
    The field effect transistor according to any one of claims 1 to 13, wherein the fourth nitride semiconductor layer is made of Al y Ga 1-y N (0 <y ≦ 1).
PCT/JP2009/006038 2008-12-05 2009-11-12 Field effect transistor WO2010064362A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200980148577.4A CN102239550A (en) 2008-12-05 2009-11-12 Field effect transistor
US13/118,945 US20110227132A1 (en) 2008-12-05 2011-05-31 Field-effect transistor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008311416A JP2010135640A (en) 2008-12-05 2008-12-05 Field-effect transistor
JP2008-311416 2008-12-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/118,945 Continuation US20110227132A1 (en) 2008-12-05 2011-05-31 Field-effect transistor

Publications (1)

Publication Number Publication Date
WO2010064362A1 true WO2010064362A1 (en) 2010-06-10

Family

ID=42233021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006038 WO2010064362A1 (en) 2008-12-05 2009-11-12 Field effect transistor

Country Status (4)

Country Link
US (1) US20110227132A1 (en)
JP (1) JP2010135640A (en)
CN (1) CN102239550A (en)
WO (1) WO2010064362A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103563060A (en) * 2011-05-25 2014-02-05 夏普株式会社 Switching element

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4705412B2 (en) * 2005-06-06 2011-06-22 パナソニック株式会社 Field effect transistor and manufacturing method thereof
JP5468768B2 (en) * 2008-12-05 2014-04-09 パナソニック株式会社 Field effect transistor and manufacturing method thereof
JPWO2011161791A1 (en) * 2010-06-24 2013-08-19 富士通株式会社 Semiconductor device
JP5645304B2 (en) * 2010-07-16 2014-12-24 パナソニックIpマネジメント株式会社 diode
JP5845568B2 (en) * 2010-11-02 2016-01-20 富士通株式会社 Semiconductor device and manufacturing method thereof
JP5942204B2 (en) * 2011-07-01 2016-06-29 パナソニックIpマネジメント株式会社 Semiconductor device
JP6132242B2 (en) * 2011-07-12 2017-05-24 パナソニックIpマネジメント株式会社 Nitride semiconductor device and manufacturing method thereof
JP5765147B2 (en) * 2011-09-01 2015-08-19 富士通株式会社 Semiconductor device
CN103314444B (en) 2011-10-28 2016-09-28 株式会社日本有机雷特显示器 Thin-film semiconductor device and the manufacture method of thin-film semiconductor device
JP5864214B2 (en) * 2011-10-31 2016-02-17 株式会社日立製作所 Semiconductor device
JP5494622B2 (en) * 2011-11-17 2014-05-21 株式会社豊田中央研究所 Semiconductor device
JP5848680B2 (en) * 2011-11-22 2016-01-27 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method of semiconductor device
JP5899879B2 (en) * 2011-12-05 2016-04-06 富士通セミコンダクター株式会社 Compound semiconductor device and manufacturing method thereof
JP5696083B2 (en) * 2012-03-26 2015-04-08 株式会社東芝 Nitride semiconductor device and manufacturing method thereof
KR102024290B1 (en) * 2012-11-08 2019-11-04 엘지이노텍 주식회사 Power semiconductor device
WO2014108945A1 (en) * 2013-01-08 2014-07-17 パナソニック株式会社 Nitride semiconductor device
US20150333141A1 (en) * 2013-03-25 2015-11-19 Fudan University A high electron mobility device based on the gate-first process and the production method thereof
KR102182016B1 (en) 2013-12-02 2020-11-23 엘지이노텍 주식회사 Semiconductor device and semiconductor circuit including the device
JP6341679B2 (en) * 2014-02-06 2018-06-13 ルネサスエレクトロニクス株式会社 Semiconductor device
KR102137747B1 (en) * 2014-02-13 2020-07-24 엘지이노텍 주식회사 Power Device
JP6439789B2 (en) * 2014-02-21 2018-12-19 パナソニック株式会社 Field effect transistor
JP6332021B2 (en) * 2014-12-26 2018-05-30 株式会社デンソー Semiconductor device
WO2016143265A1 (en) * 2015-03-11 2016-09-15 パナソニック株式会社 Nitride semiconductor device
US10381472B2 (en) * 2015-03-31 2019-08-13 Sharp Kabushiki Kaisha Nitride-semiconductor field-effect transistor
JP6561559B2 (en) * 2015-04-21 2019-08-21 富士通株式会社 Semiconductor device and manufacturing method of semiconductor device
CN107735863A (en) * 2015-07-01 2018-02-23 香港科技大学 Enhanced double channel HEMT
JP6507983B2 (en) * 2015-10-09 2019-05-08 株式会社デンソー Nitride semiconductor device
ITUB20155503A1 (en) 2015-11-12 2017-05-12 St Microelectronics Srl METHOD OF MANUFACTURE OF A HEMT TRANSISTOR AND HEMT TRANSISTOR WITH IMPROVED ELECTRONIC MOBILITY
JP6361800B2 (en) * 2017-07-18 2018-07-25 富士通株式会社 Semiconductor device
US11121229B2 (en) 2017-12-28 2021-09-14 Vanguard International Semiconductor Corporation Methods of fabricating semiconductor structures and high electron mobility transistors
CN116247078A (en) * 2018-06-20 2023-06-09 顶诺微电子(无锡)有限公司 Mixed channel compound semiconductor device
JP7021034B2 (en) * 2018-09-18 2022-02-16 株式会社東芝 Semiconductor device
JP7204491B2 (en) * 2019-01-08 2023-01-16 株式会社東芝 semiconductor equipment
CN113571516B (en) * 2020-04-29 2024-02-06 广东致能科技有限公司 III-nitride semiconductor integrated circuit structure, manufacturing method and application thereof
CN113644128A (en) * 2021-06-29 2021-11-12 西安电子科技大学 GaN-based high electron mobility transistor with groove-grid multi-channel structure and manufacturing method
WO2024018892A1 (en) * 2022-07-22 2024-01-25 ローム株式会社 Semiconductor device and manufacturing method therefor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0774347A (en) * 1993-06-17 1995-03-17 Nec Corp Hetero junction field-effect transistor
WO2000065663A1 (en) * 1999-04-26 2000-11-02 Kansai Research Institute Heterostructure field-effect transistor
JP2006032911A (en) * 2004-06-15 2006-02-02 Ngk Insulators Ltd Semiconductor laminated structure, semiconductor device, and hemt element
JP2008098455A (en) * 2006-10-13 2008-04-24 Eudyna Devices Inc Semiconductor device
JP2008103617A (en) * 2006-10-20 2008-05-01 Toshiba Corp Nitride semiconductor device
JP2008211089A (en) * 2007-02-27 2008-09-11 Fujitsu Ltd Compound semiconductor device and doherty amplifier using it
JP2009049288A (en) * 2007-08-22 2009-03-05 Nec Corp Semiconductor device
JP2009176929A (en) * 2008-01-24 2009-08-06 Toshiba Corp Semiconductor device and manufacturing method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4751150B2 (en) * 2005-08-31 2011-08-17 株式会社東芝 Nitride semiconductor devices
US7838904B2 (en) * 2007-01-31 2010-11-23 Panasonic Corporation Nitride based semiconductor device with concave gate region
US7800116B2 (en) * 2007-03-29 2010-09-21 Panasonic Corporation Group III-nitride semiconductor device with a cap layer
JP2009231508A (en) * 2008-03-21 2009-10-08 Panasonic Corp Semiconductor device
EP2120266B1 (en) * 2008-05-13 2015-10-28 Imec Scalable quantum well device and method for manufacturing the same
US8384129B2 (en) * 2009-06-25 2013-02-26 The United States Of America, As Represented By The Secretary Of The Navy Transistor with enhanced channel charge inducing material layer and threshold voltage control

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0774347A (en) * 1993-06-17 1995-03-17 Nec Corp Hetero junction field-effect transistor
WO2000065663A1 (en) * 1999-04-26 2000-11-02 Kansai Research Institute Heterostructure field-effect transistor
JP2006032911A (en) * 2004-06-15 2006-02-02 Ngk Insulators Ltd Semiconductor laminated structure, semiconductor device, and hemt element
JP2008098455A (en) * 2006-10-13 2008-04-24 Eudyna Devices Inc Semiconductor device
JP2008103617A (en) * 2006-10-20 2008-05-01 Toshiba Corp Nitride semiconductor device
JP2008211089A (en) * 2007-02-27 2008-09-11 Fujitsu Ltd Compound semiconductor device and doherty amplifier using it
JP2009049288A (en) * 2007-08-22 2009-03-05 Nec Corp Semiconductor device
JP2009176929A (en) * 2008-01-24 2009-08-06 Toshiba Corp Semiconductor device and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103563060A (en) * 2011-05-25 2014-02-05 夏普株式会社 Switching element
US20140084346A1 (en) * 2011-05-25 2014-03-27 Sharp Kabushiki Kaisha Switching element
US9171945B2 (en) * 2011-05-25 2015-10-27 Sharp Kabushiki Kaisha Switching element utilizing recombination

Also Published As

Publication number Publication date
CN102239550A (en) 2011-11-09
JP2010135640A (en) 2010-06-17
US20110227132A1 (en) 2011-09-22

Similar Documents

Publication Publication Date Title
WO2010064362A1 (en) Field effect transistor
US9343542B2 (en) Method for fabricating enhancement mode transistor
US7498618B2 (en) Nitride semiconductor device
US8390029B2 (en) Semiconductor device for reducing and/or preventing current collapse
JP4744109B2 (en) Semiconductor device and manufacturing method thereof
US7956383B2 (en) Field effect transistor
JP5383652B2 (en) Field effect transistor and manufacturing method thereof
JP4705481B2 (en) Nitride semiconductor device
JP4967708B2 (en) Compound semiconductor device and Doherty amplifier using the same
US20140110759A1 (en) Semiconductor device
WO2010082272A1 (en) Semiconductor device and method for producing the same
EP3326210A1 (en) Semiconductor device and method for fabricating semiconductor device
JP2011166067A (en) Nitride semiconductor device
US10600901B2 (en) Compound semiconductor device and manufacturing method thereof
JP5468301B2 (en) Nitride semiconductor device and method for manufacturing nitride semiconductor device
JP2011238805A (en) Field effect transistor, method of manufacturing field effect transistor and electronic device
JP6244557B2 (en) Nitride semiconductor devices
JP2012227456A (en) Semiconductor device
JP2010171416A (en) Semiconductor device, manufacturing method therefor, and leakage-current reduction method therefor
JP2010258313A (en) Field-effect transistor and manufacturing method thereof
JP2013062494A (en) Nitride semiconductor device
JP5415668B2 (en) Semiconductor element
JP5549081B2 (en) Semiconductor device and manufacturing method thereof
JP5721782B2 (en) Semiconductor device
JP2015126034A (en) Field effect semiconductor element

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980148577.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09830133

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09830133

Country of ref document: EP

Kind code of ref document: A1