WO2010061455A1 - Plasma display panel driving method, and plasma display device - Google Patents

Plasma display panel driving method, and plasma display device Download PDF

Info

Publication number
WO2010061455A1
WO2010061455A1 PCT/JP2008/071551 JP2008071551W WO2010061455A1 WO 2010061455 A1 WO2010061455 A1 WO 2010061455A1 JP 2008071551 W JP2008071551 W JP 2008071551W WO 2010061455 A1 WO2010061455 A1 WO 2010061455A1
Authority
WO
WIPO (PCT)
Prior art keywords
address
electrode
voltage
scan
discharge
Prior art date
Application number
PCT/JP2008/071551
Other languages
French (fr)
Japanese (ja)
Inventor
熊谷 純一
佐々木 孝
信義 近藤
Original Assignee
日立プラズマディスプレイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立プラズマディスプレイ株式会社 filed Critical 日立プラズマディスプレイ株式会社
Priority to PCT/JP2008/071551 priority Critical patent/WO2010061455A1/en
Publication of WO2010061455A1 publication Critical patent/WO2010061455A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/296Driving circuits for producing the waveforms applied to the driving electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/2803Display of gradations
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/291Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes
    • G09G3/293Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes for address discharge
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0238Improving the black level

Definitions

  • the present invention relates to a plasma display panel driving method and a plasma display device.
  • an X electrode group and a Y electrode group arranged in parallel on the first substrate, and a second substrate facing the first substrate so as to intersect the X electrode group and the Y electrode group.
  • the plurality of subfields select cells to be lit.
  • a first subfield including an address period in which address discharge is performed, a sustain period in which sustain discharge is performed in a cell selected in the address period, and a second subfield including an address period without the sustain period.
  • Address discharge is performed between the electrode group and the Y electrode group.
  • the Y electrode group and the address are not transferred to the discharge between the X electrode group and the Y electrode group.
  • An address electrode is provided between the electrode group and a subfield in which the voltage of the address pulse applied to the address electrode is set lower than a normal value is further provided in the second subfield. Is known in which two sub-fields are provided (see, for example, Patent Document 1).
  • the address voltage value when expressing a low luminance gradation in which the sustain discharge does not continue, is set to two levels to thereby reduce the intensity of the address discharge to two levels. Improve expression ability.
  • an object of the present invention is to provide a plasma display panel driving method and a plasma display device capable of expressing low luminance gradation with high definition with a simple configuration.
  • a driving method of a plasma display panel includes scan electrodes and sustain electrodes extending in a first direction and alternately arranged in a second direction, A driving method of a plasma display panel, comprising a plurality of address electrodes arranged so as to cross the scan electrodes and sustain electrodes, wherein cells that emit light by discharge are formed at intersections of the scan electrodes, sustain electrodes, and address electrodes Because One frame or one field is composed of a plurality of subfields, and the subfields generate an address discharge by applying a pulse voltage to the scan electrodes and the address electrodes, and an address period for selecting the cells to be lit.
  • a sustain period in which a voltage is applied between the scan electrode and the sustain electrode selected in the address period to generate a sustain discharge and express gray levels When expressing the lowest gradation of the gradation, the sustain discharge is not performed, and in the address discharge, one of the pulse voltages applied to the scan electrode or the address electrode is set to a voltage over time.
  • a subfield is provided for switching the voltage waveform to an obtuse wave in which the voltage changes.
  • the magnitude of the voltage applied at the time of address discharge itself is not changed, and the discharge can be weakened by applying a blunt wave, so that the address discharge can be reliably generated and the discharge intensity is weakened,
  • the lowest gradation can be expressed with high definition.
  • a configuration for controlling the magnitude of the voltage itself is unnecessary, and a low luminance gradation can be expressed with a simple configuration.
  • a second invention is a method for driving a plasma display panel according to the first invention, wherein: The obtuse wave is generated by switching the connection of a resistor to a circuit that outputs the pulse voltage.
  • a third invention is a method of driving a plasma display panel according to the second invention, wherein Whether or not to provide the obtuse wave subfield is determined based on a ratio of the cells displaying the lowest gradation to the total number of cells.
  • a fourth invention is a method of driving a plasma display panel according to the third invention, When outputting the obtuse wave, the pulse width of the pulse voltage is widened.
  • a fifth invention is a method of driving a plasma display panel according to the fourth invention, When expressing a gradation that is one step larger than the lowest gradation, the sustain discharge is not performed, and in the address discharge, both of the pulse voltages applied to the scan electrode or the address electrode are fixed potentials. A subfield is provided.
  • a gradation that is one step larger than the lowest gradation can be expressed without providing a large gradation difference from the lowest gradation, and a low-luminance gradation can be expressed with high definition.
  • a sixth aspect of the invention is a plasma display panel driving method according to the fifth aspect of the invention, When expressing a gradation that is two steps higher than the lowest gradation, the sustain discharge is not performed, and the pulse voltage applied to the scan electrode and the address electrode in the address discharge is both set to a fixed potential. And a subfield for applying a voltage to the sustain electrode so that a discharge is generated between the scan electrode and the sustain electrode after the discharge is generated between the scan electrode and the address electrode. It is characterized by that.
  • a plasma display device is arranged to extend in the first direction and to be arranged so as to intersect the scan electrodes and sustain electrodes alternately arranged in the second direction and the scan electrodes and sustain electrodes.
  • a scan driver for driving the scan electrode by applying a pulse voltage to the scan electrode;
  • An address driver for driving the address electrode by applying a pulse voltage to the address electrode;
  • a voltage waveform switching circuit connected to the scan driver or the address driver and configured to make the pulse voltage an obtuse wave whose voltage changes with time.
  • the generation of the blunt wave can be easily generated by the voltage switching circuit, and the low luminance can be expressed with high definition with a simple configuration.
  • An eighth invention is the plasma display device according to the seventh invention, wherein
  • the voltage waveform switching circuit is a circuit that switches a resistance value connected to the scan driver or the address driver by a switch.
  • a ninth invention is the plasma display device according to the eighth invention, A scan driving circuit for inputting an image signal to be displayed on the plasma display, converting one frame or one field of the image signal into a plurality of subfields, and driving the scan driver using the subfields, and the address driver A control circuit for controlling an address drive circuit for driving When the ratio of the number of cells including the luminance signal of the lowest gradation included in the subfield to the total number of cells is equal to or greater than a predetermined value, the control circuit sets the voltage switching circuit to the obtuse wave output side. It has the voltage switching control means to switch to.
  • the tenth invention is the plasma display device according to the ninth invention.
  • the voltage switching control unit is configured to increase a pulse width of the voltage pulse output from the scan driver or the address driver to which the voltage switching circuit is connected when switching the voltage switching circuit to an obtuse wave output side. It is characterized by performing.
  • blunt waves can be generated reliably, and voltage waveforms can be switched reliably when low luminance representation is required.
  • An eleventh invention is the plasma display device according to the tenth invention, wherein The scan electrode, the sustain electrode, and the address electrode are provided on opposing surfaces of the cell.
  • low luminance gradation can be expressed with high definition with a simple configuration.
  • FIG. 1 is an overall configuration diagram of a plasma display device according to an embodiment.
  • 1 is an exploded perspective view of an example of a plasma display panel 10.
  • FIG. It is the figure which showed an example of the voltage waveform of 1st subfield SF1, 2nd subfield SF2, and 3rd subfield SF3. It is the figure which showed an example of the voltage waveform of 4th subfield SF4 and 5th subfield SF5. It is the figure which showed the voltage waveform of 1st subfield SF1 which displays the minimum gradation of the drive method of the plasma display panel 10 concerning a present Example. It is the figure shown about an example of the structure of the scanning drive circuit of the plasma display apparatus which concerns on a present Example. It is the figure which showed an example of the scan pulse and address pulse in the address discharge expressing the lowest gradation.
  • FIG. 8 is a diagram showing an example of a configuration of an address driving circuit 20 for generating an address pulse blunt wave Vad shown in FIG. 7.
  • FIG. 1 is an overall configuration diagram of a plasma display device according to an embodiment to which the present invention is applied.
  • the plasma display apparatus according to the present embodiment includes a plasma display panel 10, an address driving circuit 20, a sustain driving circuit 30, a scan driving circuit 40, and a drive control circuit 50.
  • the plasma display panel 10 is a display panel for displaying an image.
  • the plasma display panel 10 includes a plurality of sustain electrodes X1, X2, X3,... And a plurality of scan electrodes Y1, Y2, Y3,.
  • each of the sustain electrodes X1, X2, X3,... Or their generic name is referred to as a sustain electrode Xi, and each of the scan electrodes Y1, Y2, Y3,. It is called Yi. i means a subscript.
  • the plasma display panel 10 includes a plurality of address electrodes A1, A2, A3,... Extending in the vertical direction.
  • the sustain electrodes Xi and the scan electrodes Yi extending in the horizontal direction are alternately arranged in the vertical direction.
  • the sustain electrode Xi may be called the X electrode Xi
  • the scan electrode Yi may be called the Y electrode Yi.
  • a cell Cij is formed at a position where the sustain electrode Xi, the scan electrode Yi, and the address electrode Aj intersect.
  • the discharge cells Cij correspond to pixels, and the plasma display panel 10 can display a two-dimensional image.
  • the sustain electrode Xi and the scan electrode Yi in the cell Cij have a space therebetween, and constitute a capacitive load.
  • the address drive circuit 20 is a circuit for driving the address electrode Aj, and supplies an address pulse having a predetermined voltage value to the address electrode Aj in the address period to generate an address discharge.
  • the address drive circuit 20 may include a plurality of address drivers 21 configured as an IC (Integrated Circuit, integrated circuit device). Each address driver 21 may be configured as an IC having a plurality of outputs, and by providing a plurality of address drivers 21, all the address electrodes Aj may be driven.
  • the address driving circuit 20 may include a voltage waveform switching circuit 22.
  • the voltage waveform switching circuit 21 is means for switching the address pulse output from the address driver 21 to a square wave or an obtuse wave.
  • the address pulse output from the address driver 21 is usually a square wave whose voltage is constant between cycles.
  • time elapses when expressing the lowest gradation.
  • an obtuse wave whose voltage changes is applied as a voltage pulse to weaken the discharge intensity.
  • the address pulse applied to the address electrode Aj may be a blunt wave
  • the scan pulse applied to the scan electrode Yi may be a blunt wave.
  • the scan drive circuit 40 is a circuit for driving the scan electrode Yi, and includes a scan driver 41, a sustain driver 42, a reset circuit 43, and a voltage waveform switching circuit 44.
  • the scan driver 41 supplies a scan pulse having a predetermined voltage value to the scan electrode Yi according to the control of the drive control circuit 50 and the sustain driver 42, and generates an address discharge.
  • the scan driver 41 may be configured as an IC having a plurality of outputs, and further provided with a plurality of scan drivers 41, so that all the scan electrodes Yi can be driven.
  • the scan pulse that is normally output may be a square wave having a constant voltage value between cycles.
  • the sustain driver 42 is a circuit that supplies a sustain pulse having the same voltage to the scan electrodes Yi to generate a sustain discharge.
  • the reset circuit 43 is a circuit that supplies a reset pulse having a predetermined voltage value to the scan electrode Yi according to the control of the drive control circuit 50, generates a reset discharge, and initializes and arranges the wall charge of the discharge cell Cij. is there.
  • the reset discharge may be performed as an all-cell reset that discharges all the cells Cij and an on-cell reset that resets only the cells Cij that have undergone the sustain discharge.
  • the voltage waveform switching circuit 44 switches the pulse voltage waveform of the scan pulse applied from the address driver 41 to the scan electrode Yi to an obtuse wave whose voltage changes over time when generating an address discharge in the address period. Circuit.
  • the voltage waveform switching circuit 44 has a function similar to that of the voltage waveform switching circuit 22 described in the address driving circuit 20 and is a circuit having a function of switching a square wave to an obtuse wave when expressing the lowest gradation.
  • a voltage waveform switching circuit 44 is provided on the scan drive circuit 40. Details of the specific configuration and function of the voltage waveform switching circuit 44 will be described later.
  • the sustain drive circuit 30 is a circuit for driving the sustain electrode Xi, and supplies a sustain pulse having the same voltage to the sustain electrode Xi to generate a sustain discharge.
  • Each sustain electrode Xi is interconnected and has the same voltage level.
  • the drive control circuit 50 is a circuit that drives and controls the address drive circuit 20, the sustain drive circuit 30, and the scan drive circuit 40.
  • the drive control circuit 50 includes a subfield conversion circuit 51, an address data generation circuit 52, a scan data generation circuit 53, and a maintenance data generation circuit 55.
  • the drive control circuit 50 may include voltage waveform switching control means 54 as necessary.
  • the voltage waveform switching control means 54 does not cause the plasma display apparatus according to the present embodiment to generate a blunt wave at the time of address discharge for all the lowest gradations, but to display the lowest among the image signals to be displayed. Only when the ratio of the pixels occupied by the gradation is high, when performing such a low gradation expression using blunt waves, whether to perform voltage waveform switching control and control based on the determination result are performed. And may be provided as necessary.
  • the subfield conversion circuit 51 subdivides one frame or one field image into a plurality of subfields. Perform conversion. Based on the converted subfield, the address data generation circuit 52 and the scan data generation circuit 53 generate address data and scan data necessary to drive the scan driver 41 of the address drive circuit 20 and the scan drive circuit 40. The sustain data generation circuit 55 generates sustain data necessary for driving the sustain driver 42 of the sustain drive circuit 30 and the scan drive circuit 40.
  • the voltage waveform switching control means 54 Based on the conversion result of the subfield conversion circuit 51 or the input signal S, the voltage waveform switching control means 54 includes the cell Cij that expresses the lowest gradation at a ratio of the entire cell Cij. Is calculated.
  • the image signal when an image signal is expressed with 256 levels of gradation, the image signal is scaled up so that it is multiplied by 4 and expressed with 1024 levels of gradation.
  • the lowest gradation expressed by the plasma display apparatus according to the present embodiment is lower in luminance, such as 0.5, 0.25, and 0.125, when the conventional lowest gradation is 1. This is the gradation to be expressed. Therefore, for example, by expressing 256 levels of gradation in 1024 levels, the above-mentioned levels of 0.5, 0.25, and 0.125 can be expressed.
  • a gradation of 1 indicates 0.125 of 256 gradations
  • a gradation of 2 indicates 0.25 of 256 gradations
  • a gradation of 3 indicates 0.5 of 256 gradations.
  • a predetermined threshold is provided for this ratio, and when the cell Cij displaying the minimum luminance is 10% or more with respect to the total number of cells, for example, address discharge is performed using blunt waves.
  • voltage waveform switching control can be performed according to the display ratio.
  • the voltage waveform switching control unit 54 performs the voltage waveform switching control based on the pixel ratio of the lowest luminance included in the image signal to be displayed based on the input signal S or the subfield conversion result of the SF conversion circuit 51. be able to.
  • the voltage waveform switching circuit 44 or the address driving circuit in the scan driving circuit 40 is based on the scan data generating circuit 53 and the address data generating circuit 54.
  • the voltage waveform switching circuit 22 in 20 may switch the voltage waveform.
  • the voltage waveform switching control means 54 expands the pulse width of the voltage pulse to which the blunt wave is applied when the voltage waveform switching control in which the scan pulse or the address pulse is a blunt wave is executed in the address discharge. Further, control for extending the pulse application time may be performed. For example, if the display image itself is a dark image and an overall low-brightness image is displayed, the number of subfields can be reduced, and even if the pulse width is increased to express low-brightness gradations. In many cases, it does not affect the whole. In such a case, control may be performed so that the pulse width is widened and the voltage waveform switching circuits 22 and 44 reliably generate an obtuse wave.
  • the pulse width when generating a normal blunt wave, is set to about twice as wide, and when there is a margin in the time of the subfield, it is expanded to a level of 5 times or 10 times. Also good.
  • the degree of expansion of the pulse width when outputting blunt waves can be controlled in various ways as long as the total time of the subfields is within the range of one frame or one field. Depending on the application, various settings may be made.
  • FIG. 2 is a diagram showing an example of an exploded perspective view of the plasma display panel 10.
  • the plasma display panel 10 includes a front substrate 11 and a rear substrate 15 and is configured by bonding them facing each other.
  • the front substrate 11 includes a front glass substrate 12, and a plurality of sustain electrodes Xi and scan electrodes Yi extend on the inner surface of the front substrate 11 in the horizontal direction (horizontal direction) of the screen and are alternately arranged in the vertical direction (vertical direction). It is formed so that. Then, the dielectric layer 13 and the protective film 14 cover the sustain electrodes Xi and the scan electrodes Yi, and the upper surface substrate 11 is configured.
  • the back substrate 15 has a back glass substrate 16 on the outside, and a plurality of address electrodes Aj are formed on the surface of the back glass substrate 16 so as to extend in the vertical direction of the screen, and the dielectric layer 17 is formed thereon. Covered. A raised partition wall (rib) 18 is formed on the dielectric layer 17. A partition 18 forms a partition on the opposing surface of the front substrate 11 and the back substrate 15, thereby dividing and forming a plurality of cells Cij. A region in the partition where the sustain electrode Xi and the scan electrode Yi of the front substrate 11 intersect with the address electrode Aj of the rear substrate 15 forms one cell Cij.
  • the sustain electrode Xi, the scan electrode Yi, and the address electrode Aj may be provided on the opposing substrates 11 and 15 to constitute the cell Cij. Further, a phosphor 19 is formed on the surface of the cell Cij, that is, between the adjacent partition walls 18. There are three types of phosphor 19, red phosphor 19R, green phosphor 19G, and blue phosphor 19B, and these three colors form one pixel.
  • the discharge space between the front substrate 11 and the back substrate 15 is filled with a discharge gas such as Ne—Xe, and excites the red phosphor 19R, the green phosphor 19G, and the blue phosphor 19B by ultraviolet rays generated by the discharge. Each color emits light.
  • a discharge gas such as Ne—Xe
  • the discharge gas tends to be high concentration Xe in order to improve the luminous efficiency of the plasma display panel 10.
  • concentration of Xe gas is increased, the light emission efficiency is improved, but the drive voltage is increased, and unless the high voltage is applied, the discharge itself is difficult to occur.
  • the magnitude of the maximum value of the driving voltage itself is not changed, and the discharge intensity is controlled by controlling the time when the maximum value is reached using an obtuse wave. Since it is weakened, it is possible to weaken only the discharge intensity of the plasma display panel 10 having a high concentration of Xe while reliably generating the address discharge itself.
  • the reset discharge also includes a reset discharge called an on-cell reset that selects and discharges a cell Cij that has emitted light in the previous subfield.
  • an address discharge is generated, and wall charges due to the address discharge are accumulated in the cell Cij.
  • an ON signal of an address pulse is applied to a cell Cij that emits light
  • an OFF signal of an address pulse is applied to a non-light emitting cell Cij that does not emit light
  • all address electrodes A1 to Aj Address pulses corresponding to light emission / non-light emission are applied simultaneously.
  • a scan pulse is sequentially applied from Y1 to Yi to the line of the scan electrode Yi for performing address selection, and an address discharge is generated in the cell Cij to which the on signal is applied in response to the on / off signal of the address electrode Aj.
  • the address discharge is not generated in the cell Cij generated and applied with the off signal.
  • a period in which the address discharge is generated and the cell Cij to emit light is selected is called an address period.
  • one of the address pulse and the scan pulse is not a square wave that keeps the maximum voltage during pulse application, but changes with time.
  • An obtuse wave having a slope and reaching a maximum value is applied.
  • the address discharge can be made weaker than the address discharge caused by the square waves, and a low luminance gradation can be expressed.
  • a sustain pulse is applied to each of the sustain electrodes Xi and the scan electrodes Yi, and the discharge cells Cij that have undergone address discharge store sufficient wall charges, so that sustain discharge occurs and light is emitted.
  • the discharge cell Cij that has not occurred does not emit sustain discharge and does not emit light. Note that a period during which the sustain discharge occurs is called a sustain period.
  • the plasma display panel 10 having the configuration shown in FIG. 2 may be applied to the plasma display device according to the present embodiment.
  • the plasma display panel 10 driving method and the plasma display apparatus according to the present embodiment can be applied to various plasma display panels 10 that perform address discharge. Therefore, the plasma display panel 10 is not limited to the plasma display panel 10 shown in FIG. However, as long as the plasma display panel 10 performs address discharge, the plasma display panel 10 of various modes can be applied.
  • FIG. 3 is a diagram illustrating an example of voltage waveforms applied to the address electrodes Aj, the scan electrodes Yi, and the sustain electrodes Xi in the first subfield SF1, the second subfield SF2, and the third subfield SF3.
  • the voltage waveform applied to the address electrode Aj is indicated by ADD
  • the voltage waveform applied to the scan electrode Yi is indicated by Y
  • the voltage waveform applied to the sustain electrode Xi is indicated by X.
  • a first subfield SF1 indicates a subfield expressing the lowest gradation.
  • the first subfield SF1 only the reset period Ta and the address period Ta are provided, and no sustain period is provided. In this way, in the first subfield SF1, the sustain discharge is not performed in order to express a gradation that is lower than the first stage gradation in which the normal sustain discharge is performed.
  • the sustain electrode Xi is maintained in the high impedance state of the float state, and the cell Cij is a load having capacitive coupling. Therefore, the sustain electrode Xi is affected by the voltage application of the scan electrode Yi. The voltage increases slightly and reaches HiZ.
  • an address pulse Va is applied to the address electrode Aj, and a blunt wave (-Vyd) is applied to the scan electrode Yi.
  • the address pulse Va is a positive square wave whose voltage is Va during the pulse application period, but the obtuse wave (-Vyd) applied to the scan electrode Yi falls from the potential 0 [V] as time passes.
  • the voltage ( ⁇ Vy) is reached.
  • a square wave of voltage ( ⁇ Vy) is applied to the scan electrode Yi.
  • the potential difference between the two electrodes is always (Va ⁇ Vy) during the pulse application period, but in the driving method of the plasma display panel 10 according to the present embodiment, an obtuse wave having such an inclination is applied to the scanning electrode Yi. Apply.
  • a period in which the applied voltage difference between the address electrode Aj and the scan electrode Yi is smaller than (Va ⁇ Vy) can be made longer than when a square wave is applied, and the address discharge can be reduced.
  • no voltage is applied to the sustain electrode Xi, the voltage is maintained at the ground potential, and no discharge is generated at the sustain electrode Xi.
  • the subfield is provided so that the address discharge in the address period Ta has a lower luminance than usual and the low luminance gradation can be appropriately expressed. ing.
  • the second subfield SF2 is a subfield that represents a gradation that is one step higher than the first subfield that represents the lowest gradation.
  • the reset period Tr applies the same voltage waveform as that of the first subfield SF1 to the electrodes Aj, Yi, Yj, and thus the description thereof is omitted. Similar to the first subfield SF1, the state of the wall charges of all the cells Cij is appropriately adjusted by the reset period Tr.
  • a square wave address pulse Va is applied to the address electrode Aj.
  • a square-wave scan pulse ( ⁇ Vy) is also applied to the scan electrode Yi.
  • a potential difference (Va ⁇ Vy) is applied between the address electrode Aj and the scan electrode Yi, thereby generating an address discharge. Since the address pulse Va and the scan pulse ( ⁇ Vy) are applied at the same timing and with the same pulse width, there is no decrease in the potential difference between the electrodes Aj and Yi during the application of the address pulse Va and the scan pulse ( ⁇ Vy). A discharge stronger than that of the first subfield SF1 occurs.
  • a gradation with higher luminance than the first subfield SF1 can be expressed, and an area having a luminance lower than that of the normal gradation expression is further divided into two stages.
  • the gradation expression can be performed separately.
  • the sustain electrode Xi is adjusted to be kept at the ground potential and no discharge is generated in the sustain electrode Xi, similarly to the first subfield SF1.
  • the third subfield SF3 is a subfield that expresses a gradation that is two steps higher than the first subfield SF1 showing the lowest gradation and one step higher than the second subfield SF2.
  • the third subfield SF3 is the same as the first subfield SF1 and the second subfield SF2 in that the third subfield SF3 does not include the sustain period and includes only the reset period Tr and the address period Ta.
  • the address electrode Aj is kept at the ground potential, and the reset pulse is applied to the scan electrode Yi, as in the first subfield SF1 and the second subfield SF2. Further, the reset pulse applied to the scan electrode Yi has the same voltage waveform as that of the first subfield SF1 and the second subfield SF2, and therefore the description thereof is omitted.
  • the point that the pulse of the voltage Vx1 is applied to the sustain electrode Xi first and last in the reset period Tr is different from the first subfield SF1 and the second subfield SF2.
  • the reset pulse applied to the scan electrode Yi applies the decreasing voltage waveform for adjusting the wall charge of the cell Cij after applying the maximum voltage (Vs + Vw) and scans with the sustain electrode Xi. This is to generate a slightly stronger discharge between the electrodes Yi.
  • a constant voltage Vx2 having a positive potential is applied to the sustain electrode Xi.
  • This point is different from the second subfield SF2.
  • a discharge is continuously generated between the scan electrode Yi and the sustain electrode Xi using this as a trigger.
  • This is also a kind of address discharge that occurs during the address period Ta, and is a second stage address discharge.
  • the third subfield SF3 not only the address discharge between the scan electrode Yi and the address electrode Aj but also the address discharge is generated between the scan electrode Yi and the sustain electrode Xi in the address period. Accordingly, a gradation with higher luminance than that of the second subfield SF2 can be expressed, and a gradation with a luminance lower than that of the subfield having the sustain period can be expressed.
  • the three-stage low luminance gradation is obtained by using the subfield including only the reset period Tr and the address period Ta without including the sustain period. Can be expressed. Thereby, the low luminance gradation can be expressed with high definition.
  • the luminance difference between the first subfield SF1, the second subfield SF2, and the third subfield is a setting of the blunt wave (-Vyd), the scan pulse (-Vy), and the voltage Vx2 applied to the sustain electrode Xi.
  • the luminance of the first subfield SF1 is half the luminance of the second subfield SF2
  • the luminance of the second subfield SF2 is the third luminance.
  • the luminance may be set to be half the luminance of the subfield SF3.
  • the third subfield SF3 expresses a gradation of 0.5
  • the second subfield SF2 can express a gradation of 0.25
  • the first subfield SF1 becomes 0 .125 gradations can be expressed, and low luminance gradations can be expressed with high definition.
  • FIG. 4 shows voltage waveforms applied to the address electrodes Aj, the scan electrodes Yi, and the sustain electrodes Xi in the fourth subfield SF4 and the fifth subfield SF5 in the driving method of the plasma display panel 10 according to the present embodiment. It is the figure which showed an example.
  • a sustain period Ts is provided after the reset period Tr and the address period Ta.
  • the voltage waveform is the same as that of the third subfield SF3, and thus the description thereof is omitted.
  • the address discharge is not terminated by the discharge between the address electrode Aj and the scan electrode Yi, and then the scan is performed.
  • Address discharge is continuously generated between the electrode Yi and the sustain electrode Xi. Thereby, during the subsequent sustain discharge, the wall charges in the cell Cij are sufficiently present, and the sustain discharge is reliably and appropriately performed.
  • the sustain pulse Vs is alternately applied to the sustain electrode Xi and the scan electrode Yi, and the sustain discharge is continuously performed alternately while changing the polarity. Then, a high luminance gradation is expressed in proportion to the length of the sustain period Ts, that is, the number of sustain pulses Vs.
  • the fourth subfield SF4 the subfield in which the sustain period Ts is provided after the address period Ta and the sustain discharge is performed after the address discharge is shown.
  • a subfield having such a sustain period Ts in one field or one frame including a plurality of subfields is more general.
  • the fifth subfield SF5 is a diagram showing the voltage waveform of the subfield including the on-cell reset.
  • the fifth subfield SF5 is a subfield that is selectively performed only for the cell Cij in which the cell Cij is turned on. That is, the fifth subfield SF5 is a subfield performed only for the cell Cij in which the fourth subfield SF4 is executed, and the first subfield SF1, the second subfield SF2, or the second subfield SF5 It is not performed immediately following the third subfield.
  • the reset period Tr is different from the fourth subfield SF4, and the voltage waveforms in the address period Ta and the sustain period Ts are the same as those in the fourth subfield SF4.
  • the positive reset pulse is not applied in the reset period Tr of the fourth subfield SF4, and the negative reset pulse is applied to the scan electrode Yi.
  • Such a reset discharge is called an on-cell reset.
  • the wall charge at the time of the sustain discharge remains in the cell Cij. Reset discharge can be completed simply by applying voltage pulses to be adjusted.
  • the address period Ta and the sustain period Ts are the same as those in the fourth subfield SF4, and thus description thereof is omitted.
  • FIG. 5 is a diagram illustrating a voltage waveform of the first subfield SF1 that displays the lowest gradation of the driving method of the plasma display panel 10 according to the present embodiment.
  • A indicates a voltage waveform applied to the address electrode Aj
  • Y indicates a voltage waveform applied to the scan electrode Yi.
  • the pulse voltage (address pulse) applied to the address electrode Aj is a pulse voltage close to a constant square wave with the positive voltage Va, but the pulse voltage (scan pulse) applied to the scan electrode Yi.
  • This waveform shows an obtuse wave that gradually decreases with time from the ground potential. That is, in FIG. 5, an example in which the address pulse is a fixed potential and the scan pulse is an obtuse wave will be described.
  • the lowest potential of the scan pulse is ( ⁇ Vy). If the voltage between the scan electrode Yi and the address electrode Aj reaches the discharge start voltage before reaching the lowest potential ( ⁇ Vy), the address discharge is generated. . As described in FIG.
  • the voltage between the electrodes (Va ⁇ Vy) is a value that surely exceeds the discharge start voltage, and therefore, in the blunt wave ( ⁇ Vyd), the address is at the timing when the potential is decreasing. A discharge is generated, and a weaker discharge is generated than when the scan pulse is close to a square wave of ( ⁇ Vy).
  • the pulse voltage applied to the scan electrode Yi a blunt wave
  • a weak address discharge can be easily generated without changing the set voltage of the scan driver 41 itself.
  • the blunt wave (-Vyd) is a pulse voltage that eventually reaches (-Vy)
  • the address discharge itself can be reliably performed even in the plasma display panel 10 in which high-concentration xenon is sealed. Can be generated.
  • FIG. 6 is a diagram showing an example of the configuration of the scan drive circuit of the plasma display apparatus according to the present embodiment.
  • a scan driver 40 including a scan driver 40 connected to the discharge cell Cij, a voltage waveform switching circuit 44, and a sustain driver 42 is shown.
  • the scan driver 41 includes a high potential side MOS transistor My1 and a low potential side MOS transistor My2.
  • the high potential side MOS transistor My1 is connected to the ground potential. Therefore, when the high potential side MOS transistor My1 is turned on, the ground potential is supplied to the scan electrode Yi.
  • the low potential side MOS transistor My2 is connected to the voltage waveform switching circuit 44.
  • the voltage waveform switching circuit 44 is constituted by a parallel connection of a resistor R1 and a switch SW1.
  • the opposite side of the voltage waveform switching circuit 44 is connected to the low potential supply MOS transistor My5 and to the sustain driver 42.
  • the voltage waveform switching circuit 44 is a circuit for switching between supplying a scan pulse ( ⁇ Vy) or a blunt wave ( ⁇ Vyd) of a fixed potential to the low potential side MOS transistor My2 of the scan driver 41.
  • a scan pulse ⁇ Vy
  • a blunt wave ⁇ Vyd
  • the low potential connection MOS transistor My5 is turned on and the switch SW1 is turned on.
  • the resistor R1 is short-circuited, so that the fixed voltage ( ⁇ Vy) is supplied to the low potential side MOS transistor My2.
  • a voltage pulse of a fixed potential ( ⁇ Vy) is applied to the scan electrode Yi by switching the switch SW1 on or off, or a voltage of a blunt wave ( ⁇ Vyd) is applied. Whether to apply a pulse can be easily switched, and there is no need to perform complicated control to change the voltage value.
  • the switch SW1 may be controlled to be turned on in a subfield representing the lowest gradation based on the scan data generated by the scan data generation circuit 53 of the drive control circuit 50, or may be the lowest of the display image. On / off may be controlled in accordance with the ratio of signals indicating gradation. In this case, for example, on / off switching of the switch SW1 may be controlled by the voltage waveform switching control means 54 of the drive control circuit 54. At this time, the voltage waveform switching control means 54 may also control the time during which the low potential side MOS transistor My2 and the low potential connection MOS transistor My5 of the scan driver 41 are turned on, that is, the pulse width of the blunt wave.
  • the voltage waveform switching control means 54 may be configured as an arithmetic processing means for performing such arithmetic processing, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory) or a ROM (Read Only Memory). It may be configured as a microcomputer provided with storage means such as, or may be configured as a predetermined electronic circuit.
  • a CPU Central Processing Unit
  • RAM Random Access Memory
  • ROM Read Only Memory
  • the sustain driver 42 functions as a potential supply means for supplying the sustain pulse Vs or the ground potential.
  • Vs is supplied to the scan electrode Yi
  • the MOS transistor My3 is turned on and the ground potential is set.
  • the MOS transistor My4 is turned on.
  • FIG. 7 is a diagram showing an example of a scan pulse and an address pulse in the address discharge for displaying the lowest gradation.
  • the voltage pulse applied to the scan electrode Yi is indicated by Y
  • the voltage pulse applied to the address electrode Aj is indicated by A.
  • a voltage pulse (scan pulse) of a fixed potential ( ⁇ Vy) is applied to the scan electrode Yi, and the obtuse wave Vad whose voltage gradually increases with time changes is applied to the address electrode Aj. Is supplied.
  • the obtuse wave Vad eventually reaches the voltage value Va, and the discharge start voltage is set lower than (Va ⁇ Vy). Therefore, the address discharge is also generated while the voltage of the obtuse wave Vad is rising. appear.
  • the discharge intensity is smaller than that when a potential difference of (Va ⁇ Vy) is applied between the scan electrode Yi and the address electrode Aj at the same timing. Therefore, similarly to the case shown in FIG. 5, it is possible to generate a discharge that is weaker than the address discharge by applying a square wave, and appropriately express the minimum gradation.
  • the obtuse wave voltage pulse may be applied to the address electrode Aj, and the substantially square wave fixed voltage Va may be applied to the scan electrode Yi. Also by this, a weak address discharge can be generated, so that the lowest gradation can be expressed appropriately.
  • FIG. 8 is a diagram showing an example of the configuration of the address drive circuit 20 for generating the blunt wave Vad of the address pulse shown in FIG.
  • the address driving circuit 20 of the plasma display device includes an address driver 21 and a voltage waveform switching circuit 22.
  • the address driver 21 includes a high potential side switching element Ma1 and a low potential side switching element Ma2.
  • the high-potential side switching element Ma1 and the low-potential side switching element Ma2 are indicated by switch symbols. However, for example, a switching element such as a MOS transistor may be applied.
  • the voltage waveform switching circuit 22 is configured by a parallel connection circuit of a resistor R2 and a switch SW1, one end is connected to the high potential side switching element Ma1, and the other end is connected to the fixed potential Va.
  • the switching element Ma1 and the switch SW1 of the voltage waveform switching circuit 22 are turned on, the resistor R2 is short-circuited, and directly to the switching element Ma1. Is supplied with a fixed potential Va.
  • the switch SW1 of the voltage waveform switching circuit 22 is turned off to switch to a circuit in which the resistor R2 is connected in series. As described above, the blunt wave Vad can be easily generated for the voltage pulse applied to the address electrode Aj by switching the switch SW1.
  • the switching control of the switch SW1 may be performed directly based on the address data generated by the address data generation circuit 52, or the voltage waveform switching control means in consideration of the pulse width, the display rate, etc. 54 may be controlled.
  • the low potential side switching element Ma2 may be turned on and the high potential side switching element Ma1 may be turned off.
  • the present invention can be applied to a plasma display device that displays a moving image with high definition.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of Gas Discharge Display Tubes (AREA)

Abstract

Disclosed is a driving method for driving a plasma display panel comprising scanning electrodes and maintaining electrodes extending in a first direction and arranged alternately in a second direction, and a plurality of address electrodes arranged to intersect the scanning electrodes and the maintaining electrodes. The driving method is characterized in that one frame or one field is constituted of a plurality of subfields, in that the subfields include an address period, for which a pulse voltage is applied to the scanning electrodes and the address electrodes to generate an address discharge thereby to select a cell to be turned on, and a maintaining period, for which a voltage is applied to the scanning electrode and the maintaining electrode selected for the address period, to generate a maintaining discharge thereby to express a gradation, in that the maintaining discharge is not performed when the minimum of the gradation is expressed, and in that the subfields, in which a voltage waveform change is made such that one pulse voltage to be applied to the scanning electrode or the address electrode is made so obtuse that the voltage changes with the lapse of time, are provided in the address discharge.

Description

プラズマディスプレイパネルの駆動方法及びプラズマディスプレイ装置Plasma display panel driving method and plasma display apparatus
 本発明は、プラズマディスプレイパネルの駆動方法及びプラズマディスプレイ装置に関する。 The present invention relates to a plasma display panel driving method and a plasma display device.
 従来から、第1の基板上に並行に配置されたX電極群及びY電極群と、第1の基板に対向する第2の基板上にX電極群及びY電極群に対して交差するように配置されたアドレス電極群とを備えたプラズマディスプレイパネルを、1フレームを複数のサブフィールドで構成したサブフィールド法で駆動するプラズマディスプレイ装置において、複数のサブフィールドは、点灯すべきセルを選択するためのアドレス放電を行うアドレス期間と、アドレス期間にて選択したセルにおいてサステイン放電を行うサステイン期間とを含む第1のサブフィールドと、サステイン期間を伴わずにアドレス期間を含む第2のサブフィールドとを有し、第1のサブフィールドにおけるアドレス期間においては、Y電極群とアドレス電極群との間に引き続いて、X電極群とY電極群との間においてアドレス放電を行い、第2のサブフィールドにおけるアドレス期間においては、X電極群とY電極群との間での放電に移行することなく、Y電極群とアドレス電極群との間においてアドレス電極を行うようにするとともに、第2のサブフィールド内に、アドレス電極に印加するアドレスパルスの電圧が、通常の値より低く設定されたサブフィールドを更に設け、第2のサブフィールドを2段階設けるようにしたものが知られている(例えば、特許文献1参照)。 Conventionally, an X electrode group and a Y electrode group arranged in parallel on the first substrate, and a second substrate facing the first substrate so as to intersect the X electrode group and the Y electrode group. In a plasma display apparatus for driving a plasma display panel having address electrode groups arranged by a subfield method in which one frame is composed of a plurality of subfields, the plurality of subfields select cells to be lit. A first subfield including an address period in which address discharge is performed, a sustain period in which sustain discharge is performed in a cell selected in the address period, and a second subfield including an address period without the sustain period. And in the address period in the first subfield, following the Y electrode group and the address electrode group, Address discharge is performed between the electrode group and the Y electrode group. In the address period in the second subfield, the Y electrode group and the address are not transferred to the discharge between the X electrode group and the Y electrode group. An address electrode is provided between the electrode group and a subfield in which the voltage of the address pulse applied to the address electrode is set lower than a normal value is further provided in the second subfield. Is known in which two sub-fields are provided (see, for example, Patent Document 1).
 かかるプラズマディスプレイ装置によれば、サステイン放電が続かない低輝度階調を表現する際には、アドレス電圧の値を2段階とすることにより、アドレス放電の強度を2段階として、低輝度階調の表現能力を向上させることができる。
特開2005-157064号公報
According to such a plasma display device, when expressing a low luminance gradation in which the sustain discharge does not continue, the address voltage value is set to two levels to thereby reduce the intensity of the address discharge to two levels. Improve expression ability.
Japanese Patent Laying-Open No. 2005-157064
 しかしながら、上述の特許文献1に記載の構成では、アドレス電圧の値を、サブフィールドによって変化させるため、アドレスドライバの回路構成が複雑となり、コスト増を招くという問題があった。 However, in the configuration described in Patent Document 1 described above, the value of the address voltage is changed depending on the subfield, so that there is a problem that the circuit configuration of the address driver is complicated and the cost is increased.
 また、近年、プラズマディスプレイパネルに封入されるXeガスは高濃度化傾向にあるが、Xeガスを高濃度化すると、放電が発生し難くなり、特許文献1に記載されたアドレス電圧を通常よりも低下させたアドレスパルスでは、アドレス放電が発生せず、そのため結局最低階調を表現することができないという問題があった。 In recent years, the concentration of Xe gas sealed in the plasma display panel tends to increase. However, when the concentration of Xe gas is increased, it becomes difficult for discharge to occur, and the address voltage described in Patent Document 1 is set higher than usual. With the lowered address pulse, there is a problem that address discharge does not occur, and consequently the lowest gradation cannot be expressed.
 そこで、本発明は、簡素な構成で低輝度階調を高精細に表現することができるプラズマディスプレイパネルの駆動方法及びプラズマディスプレイ装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a plasma display panel driving method and a plasma display device capable of expressing low luminance gradation with high definition with a simple configuration.
 上記目的を達成するため、本発明の第1の発明に係るプラズマディスプレイパネルの駆動方法は、第1の方向に延在し、第2の方向に交互に配置された走査電極及び維持電極と、該走査電極及び維持電極に交わるように配置されたアドレス電極とを複数備え、前記走査電極及び維持電極と前記アドレス電極との交点に、放電により発光するセルが形成されたプラズマディスプレイパネルの駆動方法であって、
 1フレーム又は1フィールドを複数のサブフィールドで構成し、該サブフィールドは、前記走査電極と前記アドレス電極にパルス電圧を印加してアドレス放電を発生させ、点灯させる前記セルを選択するアドレス期間と、該アドレス期間で選択された前記走査電極及び維持電極間に電圧を印加して維持放電を発生させ、階調を表現する維持期間とを含み、
 前記階調の最低階調を表現するときに、前記維持放電を行わず、かつ、前記アドレス放電においては、前記走査電極又は前記アドレス電極に印加する前記パルス電圧の一方を、時間の経過とともに電圧が変化する鈍波とする電圧波形切替を行うサブフィールドを設けることを特徴とする。
In order to achieve the above object, a driving method of a plasma display panel according to a first aspect of the present invention includes scan electrodes and sustain electrodes extending in a first direction and alternately arranged in a second direction, A driving method of a plasma display panel, comprising a plurality of address electrodes arranged so as to cross the scan electrodes and sustain electrodes, wherein cells that emit light by discharge are formed at intersections of the scan electrodes, sustain electrodes, and address electrodes Because
One frame or one field is composed of a plurality of subfields, and the subfields generate an address discharge by applying a pulse voltage to the scan electrodes and the address electrodes, and an address period for selecting the cells to be lit. A sustain period in which a voltage is applied between the scan electrode and the sustain electrode selected in the address period to generate a sustain discharge and express gray levels,
When expressing the lowest gradation of the gradation, the sustain discharge is not performed, and in the address discharge, one of the pulse voltages applied to the scan electrode or the address electrode is set to a voltage over time. A subfield is provided for switching the voltage waveform to an obtuse wave in which the voltage changes.
 これにより、アドレス放電時に印加する電圧の大きさ自体は変化させず、鈍波を印加することにより放電を弱めることができるので、アドレス放電を確実に発生させることができるとともに、放電強度を弱め、最低階調を高精細に表現することができる。また、印加電圧の大きさは変化させないので、電圧の大きさ自体を制御する構成は不要であり、簡素な構成で低輝度階調を表現することができる。 Thereby, the magnitude of the voltage applied at the time of address discharge itself is not changed, and the discharge can be weakened by applying a blunt wave, so that the address discharge can be reliably generated and the discharge intensity is weakened, The lowest gradation can be expressed with high definition. Further, since the magnitude of the applied voltage is not changed, a configuration for controlling the magnitude of the voltage itself is unnecessary, and a low luminance gradation can be expressed with a simple configuration.
 第2の発明は、第1の発明に係るプラズマディスプレイパネルの駆動方法において、
 前記鈍波は、前記パルス電圧を出力する回路への抵抗の接続の切り替えにより生成されることを特徴とする。
A second invention is a method for driving a plasma display panel according to the first invention, wherein:
The obtuse wave is generated by switching the connection of a resistor to a circuit that outputs the pulse voltage.
 これにより、簡素な構成で確実に電圧波形を切り替えることができ、低輝度階調を容易かつ高精細に表現することができる。 This makes it possible to switch the voltage waveform reliably with a simple configuration, and to express low luminance gradation easily and with high definition.
 第3の発明は、第2の発明に係るプラズマディスプレイパネルの駆動方法において、
 前記鈍波サブフィールドを設けるか否かは、前記最低階調を表示するセルの全体のセル数に対する比率に基づいて定められることを特徴とする。
A third invention is a method of driving a plasma display panel according to the second invention, wherein
Whether or not to provide the obtuse wave subfield is determined based on a ratio of the cells displaying the lowest gradation to the total number of cells.
 これにより、最低階調を表示するセルの割合に基づいて、このような最低階調を表現するための鈍波サブフィールドを設けるか否かを定めることができ、必要なときにのみ適切なタイミングで低輝度階調を高精細に表現することができる。 This makes it possible to determine whether or not to provide such an obtuse wave subfield for expressing the lowest gradation based on the proportion of cells displaying the lowest gradation, and only when necessary. The low luminance gradation can be expressed with high definition.
 第4の発明は、第3の発明に係るプラズマディスプレイパネルの駆動方法において、
 前記鈍波を出力するときには、前記パルス電圧のパルス幅を広くすることを特徴とする。
A fourth invention is a method of driving a plasma display panel according to the third invention,
When outputting the obtuse wave, the pulse width of the pulse voltage is widened.
 これにより、鈍波を確実に生成して出力することができ、適切に低輝度階調を表現することができる。 This makes it possible to reliably generate and output a blunt wave, and to appropriately express a low luminance gradation.
 第5の発明は、第4の発明に係るプラズマディスプレイパネルの駆動方法において、
 前記最低階調よりも1段階大きい階調を表現するときには、前記維持放電を行わず、かつ、前記アドレス放電においては、前記走査電極又は前記アドレス電極に印加する前記パルス電圧を、双方とも固定電位とするサブフィールドを設けることを特徴とする。
A fifth invention is a method of driving a plasma display panel according to the fourth invention,
When expressing a gradation that is one step larger than the lowest gradation, the sustain discharge is not performed, and in the address discharge, both of the pulse voltages applied to the scan electrode or the address electrode are fixed potentials. A subfield is provided.
 これにより、最低階調よりも1段階大きい階調についても、最低階調と大きく階調差を設けずに表現することができ、低輝度の階調を高精細に表現することができる。 Thus, even a gradation that is one step larger than the lowest gradation can be expressed without providing a large gradation difference from the lowest gradation, and a low-luminance gradation can be expressed with high definition.
 第6の発明は、第5の発明に係るプラズマディスプレイパネルの駆動方法において、
 前記最低階調よりも2段階高い階調を表現するときには、前記維持放電を行わず、かつ、前記アドレス放電において、前記走査電極及び前記アドレス電極に印加する前記パルス電圧を、双方とも固定電位とするとともに、前記走査電極と前記アドレス電極との間で放電を発生させた後に、前記走査電極と前記維持電極との間で放電が発生するように前記維持電極に電圧を印加するサブフィールドを設けることを特徴とする。
A sixth aspect of the invention is a plasma display panel driving method according to the fifth aspect of the invention,
When expressing a gradation that is two steps higher than the lowest gradation, the sustain discharge is not performed, and the pulse voltage applied to the scan electrode and the address electrode in the address discharge is both set to a fixed potential. And a subfield for applying a voltage to the sustain electrode so that a discharge is generated between the scan electrode and the sustain electrode after the discharge is generated between the scan electrode and the address electrode. It is characterized by that.
 これにより、維持放電を行わずに低階調表現を行う場合に、更に多くの低階調を表現することができ、高精細な低輝度階調表現を行うことができる。 Thereby, when low gradation expression is performed without performing sustain discharge, more low gradations can be expressed, and high-definition low luminance gradation expression can be performed.
 第7の発明に係るプラズマディスプレイ装置は、第1の方向に延在し、第2の方向に交互に配置された走査電極及び維持電極と、該走査電極及び維持電極に交わるように配置されたアドレス電極とを複数備え、前記走査電極及び維持電極と前記アドレス電極との交点に、放電により発光するセルが形成されたプラズマディスプレイパネルと、
 前記走査電極にパルス電圧を印加して前記走査電極を駆動するスキャンドライバと、
 前記アドレス電極にパルス電圧を印加して前記アドレス電極を駆動するアドレスドライバと、
 前記スキャンドライバ又は前記アドレスドライバに接続され、前記パルス電圧を時間の経過とともに電圧が変化する鈍波にする電圧波形切替回路と、を有することを特徴とする。
A plasma display device according to a seventh aspect of the present invention is arranged to extend in the first direction and to be arranged so as to intersect the scan electrodes and sustain electrodes alternately arranged in the second direction and the scan electrodes and sustain electrodes. A plurality of address electrodes, a plasma display panel in which cells that emit light by discharge are formed at intersections of the scan electrodes, the sustain electrodes, and the address electrodes;
A scan driver for driving the scan electrode by applying a pulse voltage to the scan electrode;
An address driver for driving the address electrode by applying a pulse voltage to the address electrode;
A voltage waveform switching circuit connected to the scan driver or the address driver and configured to make the pulse voltage an obtuse wave whose voltage changes with time.
 これにより、鈍波の生成を電圧切替回路により容易に生成することができ、簡素な構成で低輝度を高精細に表現することができる。 Thereby, the generation of the blunt wave can be easily generated by the voltage switching circuit, and the low luminance can be expressed with high definition with a simple configuration.
 第8の発明は、第7の発明に係るプラズマディスプレイ装置において、
 前記電圧波形切替回路は、前記スキャンドライバ又は前記アドレスドライバに接続される抵抗値をスイッチにより切り替える回路であることを特徴とする。
An eighth invention is the plasma display device according to the seventh invention, wherein
The voltage waveform switching circuit is a circuit that switches a resistance value connected to the scan driver or the address driver by a switch.
 これにより、抵抗とスイッチにより簡素に電圧波形切替回路を構成できるとともに、正確に鈍波を生成することができる。 This makes it possible to simply configure a voltage waveform switching circuit with resistors and switches, and to accurately generate a blunt wave.
 第9の発明は、第8の発明に係るプラズマディスプレイ装置において、
 前記プラズマディスプレイに表示する画像信号が入力され、該画像信号の1フレーム又は1フィールドを複数のサブフィールドに変換するとともに、該サブフィールドを用いて前記スキャンドライバを駆動するスキャン駆動回路及び前記アドレスドライバを駆動するアドレス駆動回路を制御する制御回路を備え、
 該制御回路は、前記サブフィールドに含まれる最低階調の輝度信号を含むセル数の、前記セルの全セル数に対する比率が所定値以上であったときに、前記電圧切替回路を鈍波出力側に切り替えさせる電圧切替制御手段を有することを特徴とする。
A ninth invention is the plasma display device according to the eighth invention,
A scan driving circuit for inputting an image signal to be displayed on the plasma display, converting one frame or one field of the image signal into a plurality of subfields, and driving the scan driver using the subfields, and the address driver A control circuit for controlling an address drive circuit for driving
When the ratio of the number of cells including the luminance signal of the lowest gradation included in the subfield to the total number of cells is equal to or greater than a predetermined value, the control circuit sets the voltage switching circuit to the obtuse wave output side. It has the voltage switching control means to switch to.
 これにより、低輝度の表現が必要なタイミングでのみ鈍波を生成することができ、適切に的輝度の表現を広げることができる。 This makes it possible to generate a dull wave only at a timing when low luminance expression is necessary, and to appropriately expand the expression of target luminance.
 第10の発明は、第9の発明に係るプラズマディスプレイ装置において、
 前記電圧切替制御手段は、前記電圧切替回路を鈍波出力側に切り替えさせるときに、前記電圧切替回路が接続された前記スキャンドライバ又は前記アドレスドライバから出力される前記電圧パルスのパルス幅を広げる制御を行うことを特徴とする。
The tenth invention is the plasma display device according to the ninth invention,
The voltage switching control unit is configured to increase a pulse width of the voltage pulse output from the scan driver or the address driver to which the voltage switching circuit is connected when switching the voltage switching circuit to an obtuse wave output side. It is characterized by performing.
 これにより、鈍波を確実に生成することができ、低輝度表現が必要な場合には、確実に電圧波形切替を行うことができる。 As a result, blunt waves can be generated reliably, and voltage waveforms can be switched reliably when low luminance representation is required.
 第11の発明は、第10の発明に係るプラズマディスプレイ装置において、
 前記走査電極及び維持電極と、前記アドレス電極とは、前記セルの対向面同士に設けられていることを特徴とする。
An eleventh invention is the plasma display device according to the tenth invention, wherein
The scan electrode, the sustain electrode, and the address electrode are provided on opposing surfaces of the cell.
 これにより、対向型のプラズマディスプレイにおいて、低輝度階調を確実かつ高精細に表現することができる。 This makes it possible to express low luminance gradation with high precision in a counter-type plasma display.
 本発明によれば、低輝度階調を簡素な構成で高精細に表現することができる。 According to the present invention, low luminance gradation can be expressed with high definition with a simple configuration.
本実施例に係るプラズマディスプレイ装置の全体構成図である。1 is an overall configuration diagram of a plasma display device according to an embodiment. プラズマディスプレイパネル10の分解斜視図の一例を示した図である。1 is an exploded perspective view of an example of a plasma display panel 10. FIG. 第1のサブフィールドSF1、第2のサブフィールドSF2及び第3のサブフィールドSF3の電圧波形の一例を示した図である。It is the figure which showed an example of the voltage waveform of 1st subfield SF1, 2nd subfield SF2, and 3rd subfield SF3. 第4のサブフィールドSF4及び第5のサブフィールドSF5の電圧波形の一例を示した図である。It is the figure which showed an example of the voltage waveform of 4th subfield SF4 and 5th subfield SF5. 本実施例に係るプラズマディスプレイパネル10の駆動方法の最低階調を表示する第1のサブフィールドSF1の電圧波形を示した図である。It is the figure which showed the voltage waveform of 1st subfield SF1 which displays the minimum gradation of the drive method of the plasma display panel 10 concerning a present Example. 本実施例に係るプラズマディスプレイ装置の走査駆動回路の構成の一例について示した図である。It is the figure shown about an example of the structure of the scanning drive circuit of the plasma display apparatus which concerns on a present Example. 最低階調を表現するアドレス放電におけるスキャンパルスとアドレスパルスの一例を示した図である。It is the figure which showed an example of the scan pulse and address pulse in the address discharge expressing the lowest gradation. 図7に示したアドレスパルスの鈍波Vadを発生させるためのアドレス駆動回路20の構成の一例を示した図である。FIG. 8 is a diagram showing an example of a configuration of an address driving circuit 20 for generating an address pulse blunt wave Vad shown in FIG. 7.
符号の説明Explanation of symbols
10  プラズマディスプレイパネル
11  前面基板
12  前面ガラス基板
13、17  誘電体層
14  保護膜
15  背面基板
16  背面ガラス基板
18  隔壁
19、19R、19G、19B  蛍光体
20  アドレス駆動回路
21  アドレスドライバ
22、44  電圧波形切替回路
30  維持駆動回路
40  走査駆動回路
41  スキャンドライバ
42  サステインドライバ
43  リセット回路
50  駆動制御回路
51  サブフィールド変換回路
52  アドレスデータ発生回路
53  スキャンデータ発生回路
54  電圧波形切替制御手段
55  維持データ発生手段
DESCRIPTION OF SYMBOLS 10 Plasma display panel 11 Front substrate 12 Front glass substrate 13, 17 Dielectric layer 14 Protective film 15 Back substrate 16 Rear glass substrate 18 Bulkheads 19, 19R, 19G, 19B Phosphor 20 Address drive circuit 21 Address drivers 22, 44 Voltage waveform Switching circuit 30 Sustain drive circuit 40 Scan drive circuit 41 Scan driver 42 Sustain driver 43 Reset circuit 50 Drive control circuit 51 Subfield conversion circuit 52 Address data generation circuit 53 Scan data generation circuit 54 Voltage waveform switching control means 55 Maintenance data generation means
 以下、図面を参照して、本発明を実施するための最良の形態の説明を行う。 Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.
 図1は、本発明を適用した実施例に係るプラズマディスプレイ装置の全体構成図である。図1において、本実施例に係るプラズマディスプレイ装置は、プラズマディスプレイパネル10と、アドレス駆動回路20と、維持駆動回路30と、走査駆動回路40と、駆動制御回路50とを有する。 FIG. 1 is an overall configuration diagram of a plasma display device according to an embodiment to which the present invention is applied. In FIG. 1, the plasma display apparatus according to the present embodiment includes a plasma display panel 10, an address driving circuit 20, a sustain driving circuit 30, a scan driving circuit 40, and a drive control circuit 50.
 プラズマディスプレイパネル10は、画像を表示するための表示パネルである。プラズマディスプレイパネル10は、横方向に延在する複数の維持電極X1,X2,X3,・・・及び複数の走査電極Y1,Y2,Y3,・・・を備える。以下、維持電極X1,X2,X3,・・・の各々を又はそれらの総称を、維持電極Xiといい、走査電極Y1,Y2,Y3,・・・の各々を又はそれらの総称を、走査電極Yiという。iは添え字を意味する。また、プラズマディスプレイパネル10は、縦方向に延在する複数のアドレス電極A1,A2,A3,・・・を備える。以下、アドレス電極A1,A2,A3,・・・の各々を又はそれらの総称を、アドレス電極Ajといい、jは添え字を意味する。横方向に延在する維持電極Xi及び走査電極Yiは、縦方向には交互に配置される。維持電極Xiは、X電極Xiと呼んでもよく、走査電極Yiは、Y電極Yiと呼んでもよい。平面的に、維持電極Xi、走査電極Yi及びアドレス電極Ajが交わる位置には、セルCijが形成されている。この放電セルCijが画素に対応し、プラズマディスプレイパネル10は2次元画像を表示することができる。セルCij内の維持電極Xi及び走査電極Yiは、その間に空間を有し、容量性負荷を構成する。 The plasma display panel 10 is a display panel for displaying an image. The plasma display panel 10 includes a plurality of sustain electrodes X1, X2, X3,... And a plurality of scan electrodes Y1, Y2, Y3,. Hereinafter, each of the sustain electrodes X1, X2, X3,... Or their generic name is referred to as a sustain electrode Xi, and each of the scan electrodes Y1, Y2, Y3,. It is called Yi. i means a subscript. The plasma display panel 10 includes a plurality of address electrodes A1, A2, A3,... Extending in the vertical direction. Hereinafter, each of the address electrodes A1, A2, A3,... Or their generic name is referred to as an address electrode Aj, and j means a subscript. The sustain electrodes Xi and the scan electrodes Yi extending in the horizontal direction are alternately arranged in the vertical direction. The sustain electrode Xi may be called the X electrode Xi, and the scan electrode Yi may be called the Y electrode Yi. In a plan view, a cell Cij is formed at a position where the sustain electrode Xi, the scan electrode Yi, and the address electrode Aj intersect. The discharge cells Cij correspond to pixels, and the plasma display panel 10 can display a two-dimensional image. The sustain electrode Xi and the scan electrode Yi in the cell Cij have a space therebetween, and constitute a capacitive load.
 アドレス駆動回路20は、アドレス電極Ajを駆動するための回路であり、アドレス期間において、アドレス電極Ajに所定の電圧値を有するアドレスパルスを供給し、アドレス放電を発生させる。アドレス駆動回路20は、IC(Integrated Circuit、集積回路装置)として構成された複数のアドレスドライバ21を備えてよい。アドレスドライバ21は、各々が複数の出力を備えたICとして構成され、更に複数のアドレスドライバ21を設けるにより、総てのアドレス電極Ajを駆動可能に構成してよい。 The address drive circuit 20 is a circuit for driving the address electrode Aj, and supplies an address pulse having a predetermined voltage value to the address electrode Aj in the address period to generate an address discharge. The address drive circuit 20 may include a plurality of address drivers 21 configured as an IC (Integrated Circuit, integrated circuit device). Each address driver 21 may be configured as an IC having a plurality of outputs, and by providing a plurality of address drivers 21, all the address electrodes Aj may be driven.
 また、本実施例に係るプラズマディスプレイ装置においては、アドレス駆動回路20は、電圧波形切替回路22を備えてもよい。電圧波形切替回路21は、アドレスドライバ21から出力されるアドレスパルスを、方形波又は鈍波に切り替えるための手段である。アドレスドライバ21から出力されるアドレスパルスは、通常は、周期間で電圧が一定の方形波であるが、本実施例に係るプラズマディスプレイ装置においては、最低階調を表現する際に、時間の経過とともに電圧が変化する鈍波を電圧パルスとして印加し、放電強度を弱めることを行う。その際、電圧パルスは、アドレス電極Ajに印加されるアドレスパルスを鈍波としてもよいし、走査電極Yiに印加されるスキャンパルスを鈍波としてもよいが、アドレスパルスを鈍波とする場合には、アドレス駆動回路20内に電圧波形切替回路22を設けて、鈍波の生成を行う。なお、電圧波形切替回路22の具体的な構成や機能の詳細は、後述する。 Further, in the plasma display device according to the present embodiment, the address driving circuit 20 may include a voltage waveform switching circuit 22. The voltage waveform switching circuit 21 is means for switching the address pulse output from the address driver 21 to a square wave or an obtuse wave. The address pulse output from the address driver 21 is usually a square wave whose voltage is constant between cycles. However, in the plasma display device according to the present embodiment, time elapses when expressing the lowest gradation. At the same time, an obtuse wave whose voltage changes is applied as a voltage pulse to weaken the discharge intensity. At this time, as for the voltage pulse, the address pulse applied to the address electrode Aj may be a blunt wave, and the scan pulse applied to the scan electrode Yi may be a blunt wave. Provides a voltage waveform switching circuit 22 in the address drive circuit 20 to generate blunt waves. Details of the specific configuration and function of the voltage waveform switching circuit 22 will be described later.
 走査駆動回路40は、走査電極Yiを駆動するための回路であり、スキャンドライバ41と、サステインドライバ42と、リセット回路43と、電圧波形切替回路44とを有する。 The scan drive circuit 40 is a circuit for driving the scan electrode Yi, and includes a scan driver 41, a sustain driver 42, a reset circuit 43, and a voltage waveform switching circuit 44.
 スキャンドライバ41は、駆動制御回路50及びサステインドライバ42の制御に応じて、走査電極Yiに所定の電圧値を有するスキャンパルスを供給し、アドレス放電を発生させる。スキャンドライバ41も、アドレスドライバ21と同様、複数の出力を有するICとして構成され、更に複数のスキャンドライバ41が設けられることにより、総ての走査電極Yiを駆動できるように構成されてよい。スキャンドライバ41においても、通常に出力するスキャンパルスは、周期間で電圧値が一定の方形波であってもよい。 The scan driver 41 supplies a scan pulse having a predetermined voltage value to the scan electrode Yi according to the control of the drive control circuit 50 and the sustain driver 42, and generates an address discharge. Similarly to the address driver 21, the scan driver 41 may be configured as an IC having a plurality of outputs, and further provided with a plurality of scan drivers 41, so that all the scan electrodes Yi can be driven. Also in the scan driver 41, the scan pulse that is normally output may be a square wave having a constant voltage value between cycles.
 サステインドライバ42は、走査電極Yiにそれぞれ同一の電圧を有する維持パルスを供給し、維持放電を発生させる回路である。 The sustain driver 42 is a circuit that supplies a sustain pulse having the same voltage to the scan electrodes Yi to generate a sustain discharge.
 リセット回路43は、駆動制御回路50の制御に応じて、走査電極Yiに所定の電圧値を有するリセットパルスを供給し、リセット放電を発生させ、放電セルCijの壁電荷を初期化して整える回路である。リセット放電は、総てのセルCijを放電させる全セルリセットと、維持放電が行われたセルCijのみをリセットするオンセルリセットとが実行されてもよい。 The reset circuit 43 is a circuit that supplies a reset pulse having a predetermined voltage value to the scan electrode Yi according to the control of the drive control circuit 50, generates a reset discharge, and initializes and arranges the wall charge of the discharge cell Cij. is there. The reset discharge may be performed as an all-cell reset that discharges all the cells Cij and an on-cell reset that resets only the cells Cij that have undergone the sustain discharge.
 電圧波形切替回路44は、アドレス期間でアドレス放電を発生させる場合に、アドレスドライバ41から走査電極Yiに印加されるスキャンパルスのパルス電圧波形を、時間の経過とともに電圧が変化する鈍波に切り替えるための回路である。電圧波形切替回路44は、アドレス駆動回路20において説明した電圧波形切替回路22と同様の機能を有し、最低階調を表現するときに、方形波を鈍波に切り替える機能を有する回路であるが、スキャンパルスの方を鈍波とし、アドレスパルスを方形波のままとする場合には、走査駆動回路40の方に電圧波形切替回路44を設けるようにする。なお、電圧波形切替回路44の具体的構成及び機能の詳細は、後述する。 The voltage waveform switching circuit 44 switches the pulse voltage waveform of the scan pulse applied from the address driver 41 to the scan electrode Yi to an obtuse wave whose voltage changes over time when generating an address discharge in the address period. Circuit. The voltage waveform switching circuit 44 has a function similar to that of the voltage waveform switching circuit 22 described in the address driving circuit 20 and is a circuit having a function of switching a square wave to an obtuse wave when expressing the lowest gradation. When the scan pulse is a dull wave and the address pulse is a square wave, a voltage waveform switching circuit 44 is provided on the scan drive circuit 40. Details of the specific configuration and function of the voltage waveform switching circuit 44 will be described later.
 維持駆動回路30は、維持電極Xiを駆動するための回路であり、維持電極Xiにそれぞれ同一の電圧を有する維持パルスを供給し、維持放電を発生させる。各維持電極Xiは相互接続され、同一の電圧レベルを有する。 The sustain drive circuit 30 is a circuit for driving the sustain electrode Xi, and supplies a sustain pulse having the same voltage to the sustain electrode Xi to generate a sustain discharge. Each sustain electrode Xi is interconnected and has the same voltage level.
 駆動制御回路50は、アドレス駆動回路20、維持駆動回路30及び走査駆動回路40を駆動させ、制御する回路である。駆動制御回路50は、サブフィールド変換回路51と、アドレスデータ発生回路52と、スキャンデータ発生回路53と、維持データ発生回路55とを有する。 The drive control circuit 50 is a circuit that drives and controls the address drive circuit 20, the sustain drive circuit 30, and the scan drive circuit 40. The drive control circuit 50 includes a subfield conversion circuit 51, an address data generation circuit 52, a scan data generation circuit 53, and a maintenance data generation circuit 55.
 また、駆動制御回路50は、必要に応じて、電圧波形切替制御手段54を備えていてもよい。電圧波形切替制御手段54は、本実施例に係るプラズマディスプレイ装置が、最低階調の総てに対して、アドレス放電の際に鈍波を発生させるのではなく、表示する画像信号のうち、最低階調の占める画素の割合が高いときにのみ、そのような鈍波を用いた低階調の表現を行う場合に、電圧波形切替制御を行うか否かの判定及び判定結果に基づく制御を行うための手段であり、必要に応じて備えられてよい。 Further, the drive control circuit 50 may include voltage waveform switching control means 54 as necessary. The voltage waveform switching control means 54 does not cause the plasma display apparatus according to the present embodiment to generate a blunt wave at the time of address discharge for all the lowest gradations, but to display the lowest among the image signals to be displayed. Only when the ratio of the pixels occupied by the gradation is high, when performing such a low gradation expression using blunt waves, whether to perform voltage waveform switching control and control based on the determination result are performed. And may be provided as necessary.
 駆動制御回路50に一般的な画像信号である1フレーム又は1フィールドの入力信号Sが入力されたら、サブフィールド変換回路51は、1フレーム又は1フィールドの画像を複数のサブフィールドに分割するサブフィールド変換を行う。変換されたサブフィールドにより、アドレスデータ発生回路52及びスキャンデータ発生回路53は、アドレス駆動回路20及び走査駆動回路40のスキャンドライバ41を駆動させるのに必要なアドレスデータ及びスキャンデータを発生させる。維持データ発生回路55は、維持駆動回路30及び走査駆動回路40のサステインドライバ42を駆動させるのに必要な維持データを発生させる。 When one frame or one field input signal S, which is a general image signal, is input to the drive control circuit 50, the subfield conversion circuit 51 subdivides one frame or one field image into a plurality of subfields. Perform conversion. Based on the converted subfield, the address data generation circuit 52 and the scan data generation circuit 53 generate address data and scan data necessary to drive the scan driver 41 of the address drive circuit 20 and the scan drive circuit 40. The sustain data generation circuit 55 generates sustain data necessary for driving the sustain driver 42 of the sustain drive circuit 30 and the scan drive circuit 40.
 電圧波形切替制御手段54は、サブフィールド変換回路51の変換結果又は入力信号Sに基づいて、最低階調を表現するセルCijが、全体のセルCijの中で、どの位の比率で含まれているかを演算する。 Based on the conversion result of the subfield conversion circuit 51 or the input signal S, the voltage waveform switching control means 54 includes the cell Cij that expresses the lowest gradation at a ratio of the entire cell Cij. Is calculated.
 具体的には、例えば、画像信号を256段階の階調で表現する場合に、これを4倍して1024段階の階調で表現するように拡大換算する。本実施例に係るプラズマディスプレイ装置で表現する最低階調は、従来の最低階調を1とすると、これよりも更に輝度の低い、0.5、0.25、0.125といったレベルの輝度を表現する階調である。従って、例えば、256段階の階調を、1024段階に拡大して表現することにより、上述の0.5、0.25、0.125といった段階の階調を表現することができ、1024段階で1の階調は256段階の階調の0.125を示し、2の階調は256段階の階調の0.25を示し、3の階調は256段階の0.5を示すことになる。例えば、このような換算を行うことにより、画像信号の中で、最低階調を表現するセルCijの全体のセルCijに対する数の比率を算出することが可能となる。例えば、この比率に所定の閾値を設けておき、最低輝度を表示するセルCijが、例えば全体のセル数に対して、10%以上であったときに、鈍波を用いてアドレス放電を行う、というように定めておけば、表示比率に応じて電圧波形切替制御を行うことができる。 Specifically, for example, when an image signal is expressed with 256 levels of gradation, the image signal is scaled up so that it is multiplied by 4 and expressed with 1024 levels of gradation. The lowest gradation expressed by the plasma display apparatus according to the present embodiment is lower in luminance, such as 0.5, 0.25, and 0.125, when the conventional lowest gradation is 1. This is the gradation to be expressed. Therefore, for example, by expressing 256 levels of gradation in 1024 levels, the above-mentioned levels of 0.5, 0.25, and 0.125 can be expressed. A gradation of 1 indicates 0.125 of 256 gradations, a gradation of 2 indicates 0.25 of 256 gradations, and a gradation of 3 indicates 0.5 of 256 gradations. . For example, by performing such conversion, it is possible to calculate the ratio of the number of cells Cij that express the lowest gradation to the total cells Cij in the image signal. For example, a predetermined threshold is provided for this ratio, and when the cell Cij displaying the minimum luminance is 10% or more with respect to the total number of cells, for example, address discharge is performed using blunt waves. Thus, voltage waveform switching control can be performed according to the display ratio.
 このように、電圧波形切替制御手段54は、入力信号S又はSF変換回路51のサブフィールド変換結果に基づいて、表示する画像信号に含まれる最低輝度の画素比率に基づいて電圧波形切替制御を行うことができる。 As described above, the voltage waveform switching control unit 54 performs the voltage waveform switching control based on the pixel ratio of the lowest luminance included in the image signal to be displayed based on the input signal S or the subfield conversion result of the SF conversion circuit 51. be able to.
 なお、最低輝度の表示比率に基づく電圧波形切替制御を行わない場合には、スキャンデータ発生回路53及びアドレスデータ発生回路54に基づいて、走査駆動回路40内の電圧波形切替回路44又はアドレス駆動回路20内の電圧波形切替回路22が、電圧波形の切替を行うようにしてもよい。 When the voltage waveform switching control based on the display ratio of the lowest luminance is not performed, the voltage waveform switching circuit 44 or the address driving circuit in the scan driving circuit 40 is based on the scan data generating circuit 53 and the address data generating circuit 54. The voltage waveform switching circuit 22 in 20 may switch the voltage waveform.
 また、電圧波形切替制御手段54は、アドレス放電において、スキャンパルス又はアドレスパルスを鈍波とする電圧波形切替制御が実行される場合には、鈍波が印加される電圧パルスのパルス幅を拡大し、パルス印加時間を長くする制御を行うようにしてもよい。例えば、表示画像自体が暗い画像であり、全体的に低輝度の画像を表示する場合には、サブフィールド数が少なく済み、低輝度の階調を表現するのに、パルス幅を拡大しても全体には影響を与えない場合が多い。このような場合、パルス幅を広げ、確実に電圧波形切替回路22、44で鈍波が生成されるような制御を行うようにしてもよい。パルス幅は、例えば、通常の鈍波を生成する際には、2倍程度の拡大幅としておき、サブフィールドの時間に余裕がある場合には、5倍、10倍というレベルにまで拡大してもよい。このような、鈍波を出力する際のパルス幅の拡大度合いは、サブフィールドの合計時間は、1フレーム又は1フィールドの範囲内に収まっている限り、種々の制御が可能であるので、パネル特性や用途に応じて、種々の設定を行うように構成してよい。 Further, the voltage waveform switching control means 54 expands the pulse width of the voltage pulse to which the blunt wave is applied when the voltage waveform switching control in which the scan pulse or the address pulse is a blunt wave is executed in the address discharge. Further, control for extending the pulse application time may be performed. For example, if the display image itself is a dark image and an overall low-brightness image is displayed, the number of subfields can be reduced, and even if the pulse width is increased to express low-brightness gradations. In many cases, it does not affect the whole. In such a case, control may be performed so that the pulse width is widened and the voltage waveform switching circuits 22 and 44 reliably generate an obtuse wave. For example, when generating a normal blunt wave, the pulse width is set to about twice as wide, and when there is a margin in the time of the subfield, it is expanded to a level of 5 times or 10 times. Also good. The degree of expansion of the pulse width when outputting blunt waves can be controlled in various ways as long as the total time of the subfields is within the range of one frame or one field. Depending on the application, various settings may be made.
 図2は、プラズマディスプレイパネル10の分解斜視図の一例を示した図である。図2において、プラズマディスプレイパネル10は、前面基板11と背面基板15とを有し、これらが対向して貼り合わされることにより構成される。 FIG. 2 is a diagram showing an example of an exploded perspective view of the plasma display panel 10. In FIG. 2, the plasma display panel 10 includes a front substrate 11 and a rear substrate 15 and is configured by bonding them facing each other.
 前面基板11は、前面ガラス基板12を備え、その内側表面に複数の維持電極Xi及び走査電極Yiが画面の横方向(水平方向)に延在し、縦方向(垂直方向)に交互に配置されるように形成されている。そして、維持電極Xi及び走査電極Yiの上を誘電体層13及び保護膜14が覆って、上面基板11が構成される。 The front substrate 11 includes a front glass substrate 12, and a plurality of sustain electrodes Xi and scan electrodes Yi extend on the inner surface of the front substrate 11 in the horizontal direction (horizontal direction) of the screen and are alternately arranged in the vertical direction (vertical direction). It is formed so that. Then, the dielectric layer 13 and the protective film 14 cover the sustain electrodes Xi and the scan electrodes Yi, and the upper surface substrate 11 is configured.
 背面基板15は、外側に背面ガラス基板16を有し、背面ガラス基板16の表面上には、複数のアドレス電極Ajが画面の縦方向に延在して形成され、その上を誘電体層17が覆っている。誘電体層17の上には、隆起した隔壁(リブ)18が形成されている。隔壁18により、前面基板11と背面基板15の対向面に仕切りが形成され、これにより複数のセルCijが区画して形成される。前面基板11の維持電極Xi及び走査電極Yiと、背面基板15のアドレス電極Ajが交わる位置の隔壁内の領域が、1つのセルCijを形成することになる。このように、本実施例に係るプラズマディスプレイ装置においては、維持電極Xi及び走査電極Yiと、アドレス電極Ajとは、対向する基板11、15同士に設けられ、セルCijが構成されてよい。また、セルCijの表面、つまり隣接する隔壁18間には、表面に蛍光体19が形成される。蛍光体19は、赤色蛍光体19R、緑色蛍光体19G及び青色蛍光体19Bの3種類があり、これら3色で1画素を形成する。 The back substrate 15 has a back glass substrate 16 on the outside, and a plurality of address electrodes Aj are formed on the surface of the back glass substrate 16 so as to extend in the vertical direction of the screen, and the dielectric layer 17 is formed thereon. Covered. A raised partition wall (rib) 18 is formed on the dielectric layer 17. A partition 18 forms a partition on the opposing surface of the front substrate 11 and the back substrate 15, thereby dividing and forming a plurality of cells Cij. A region in the partition where the sustain electrode Xi and the scan electrode Yi of the front substrate 11 intersect with the address electrode Aj of the rear substrate 15 forms one cell Cij. As described above, in the plasma display device according to the present embodiment, the sustain electrode Xi, the scan electrode Yi, and the address electrode Aj may be provided on the opposing substrates 11 and 15 to constitute the cell Cij. Further, a phosphor 19 is formed on the surface of the cell Cij, that is, between the adjacent partition walls 18. There are three types of phosphor 19, red phosphor 19R, green phosphor 19G, and blue phosphor 19B, and these three colors form one pixel.
 前面基板11と背面基板15との間の放電空間には、Ne-Xe等の放電ガスが封入され、放電により生じる紫外線により、赤色蛍光体19R、緑色蛍光体19G及び青色蛍光体19Bを励起し、各色が発光するようになっている。 The discharge space between the front substrate 11 and the back substrate 15 is filled with a discharge gas such as Ne—Xe, and excites the red phosphor 19R, the green phosphor 19G, and the blue phosphor 19B by ultraviolet rays generated by the discharge. Each color emits light.
 放電ガスは、近年、プラズマディスプレイパネル10の発光効率を改善すべく、高濃度Xe化の傾向にある。しかしながら、Xeガスを高濃度化すると、発光効率は改善されるものの、駆動電圧が上昇してしまい、高電圧を印加しないと、放電自体が発生し難くなる。本実施例に係るプラズマディスプレイ装置の駆動方法によれば、駆動電圧の最大値の大きさ自体は変化させず、鈍波を用いて最大値に達している時間を制御することにより、放電強度を弱めるので、高濃度Xe化のプラズマディスプレイパネル10に対しても、アドレス放電自体は確実に発生させつつ、その放電強度のみを弱くすることができる。 In recent years, the discharge gas tends to be high concentration Xe in order to improve the luminous efficiency of the plasma display panel 10. However, when the concentration of Xe gas is increased, the light emission efficiency is improved, but the drive voltage is increased, and unless the high voltage is applied, the discharge itself is difficult to occur. According to the driving method of the plasma display apparatus according to the present embodiment, the magnitude of the maximum value of the driving voltage itself is not changed, and the discharge intensity is controlled by controlling the time when the maximum value is reached using an obtuse wave. Since it is weakened, it is possible to weaken only the discharge intensity of the plasma display panel 10 having a high concentration of Xe while reliably generating the address discharge itself.
 セルCijの放電は、総ての走査電極Yiにリセットパルスが印加されたときに、リセット放電が発生し、セルCijの総てに均一に、制御用の壁電荷が蓄積される。このように、全セルCijをリセットすることを、全セルリセットと呼ぶ。また、リセット放電には、前回のサブフィールドで発光したセルCijを選択してリセット放電させるオンセルリセットと呼ばれるリセット放電も存在する。 In the discharge of the cells Cij, when the reset pulse is applied to all the scan electrodes Yi, the reset discharge is generated, and the wall charges for control are uniformly accumulated in all the cells Cij. Resetting all cells Cij in this way is called all cell reset. The reset discharge also includes a reset discharge called an on-cell reset that selects and discharges a cell Cij that has emitted light in the previous subfield.
 次いで、アドレス電極Ajと走査電極Yiにパルスが印加されたときに、アドレス放電が発生し、セルCij内に、アドレス放電による壁電荷が蓄積される。アドレス放電の際には、発光させるセルCijについては、アドレスパルスのオン信号が印加され、発光させない非発光セルCijについては、アドレスパルスのオフ信号が印加され、A1~Ajの総てのアドレス電極に発光・非発光に応じたアドレスパルスが同時に印加される。そして、アドレス選択を行う走査電極Yiのラインについて、Y1~Yiまで、順次スキャンパルスが印加され、アドレス電極Ajのオン・オフ信号に応じて、オン信号が印加されたセルCijにはアドレス放電が発生し、オフ信号が印加されたセルCijには、アドレス放電が発生しない。このアドレス放電を発生させ、発光させるセルCijを選択する期間を、アドレス期間という。 Next, when a pulse is applied to the address electrode Aj and the scan electrode Yi, an address discharge is generated, and wall charges due to the address discharge are accumulated in the cell Cij. At the time of address discharge, an ON signal of an address pulse is applied to a cell Cij that emits light, and an OFF signal of an address pulse is applied to a non-light emitting cell Cij that does not emit light, and all address electrodes A1 to Aj Address pulses corresponding to light emission / non-light emission are applied simultaneously. A scan pulse is sequentially applied from Y1 to Yi to the line of the scan electrode Yi for performing address selection, and an address discharge is generated in the cell Cij to which the on signal is applied in response to the on / off signal of the address electrode Aj. The address discharge is not generated in the cell Cij generated and applied with the off signal. A period in which the address discharge is generated and the cell Cij to emit light is selected is called an address period.
 本実施例に係るプラズマディスプレイパネル10の駆動方法及びプラズマディスプレイ装置においては、アドレス放電の際、アドレスパルス又はスキャンパルスの一方に、パルス印加中に最大電圧を保つ方形波ではなく、時間とともに変化する傾斜を有して最大値に達する鈍波を印加する。これにより、アドレス放電を、方形波同士によるアドレス放電よりも弱めることができ、低輝度の階調を表現することが可能となる。 In the driving method of the plasma display panel 10 and the plasma display apparatus according to the present embodiment, at the time of address discharge, one of the address pulse and the scan pulse is not a square wave that keeps the maximum voltage during pulse application, but changes with time. An obtuse wave having a slope and reaching a maximum value is applied. As a result, the address discharge can be made weaker than the address discharge caused by the square waves, and a low luminance gradation can be expressed.
 次いで、維持電極Xiと走査電極Yiには、各々維持パルスが印加され、アドレス放電があった放電セルCijは、十分な壁電荷を蓄えているので維持放電が発生して発光し、アドレス放電が発生していない放電セルCijは、維持放電が発生せず非発光となる。なお、この維持放電が発生する期間を、維持期間と呼ぶ。 Next, a sustain pulse is applied to each of the sustain electrodes Xi and the scan electrodes Yi, and the discharge cells Cij that have undergone address discharge store sufficient wall charges, so that sustain discharge occurs and light is emitted. The discharge cell Cij that has not occurred does not emit sustain discharge and does not emit light. Note that a period during which the sustain discharge occurs is called a sustain period.
 本実施例に係るプラズマディスプレイ装置には、例えば、図2に示したような構成のプラズマディスプレイパネル10が適用されてもよい。なお、本実施例に係るプラズマディスプレイパネル10の駆動方法及びプラズマディスプレイ装置は、アドレス放電を行う種々のプラズマディスプレイパネル10に適用可能であるので、図2に示した形態のプラズマディスプレイパネル10以外にも、アドレス放電を行うプラズマディスプレイパネル10であれば、種々の態様のプラズマディスプレイパネル10を適用することができる。 For example, the plasma display panel 10 having the configuration shown in FIG. 2 may be applied to the plasma display device according to the present embodiment. The plasma display panel 10 driving method and the plasma display apparatus according to the present embodiment can be applied to various plasma display panels 10 that perform address discharge. Therefore, the plasma display panel 10 is not limited to the plasma display panel 10 shown in FIG. However, as long as the plasma display panel 10 performs address discharge, the plasma display panel 10 of various modes can be applied.
 次に、図3及び図4を用いて、本実施例に係るプラズマディスプレイパネル10の駆動方法及びプラズマディスプレイ装置のサブフィールド波形の例について説明する。 Next, a method for driving the plasma display panel 10 according to the present embodiment and an example of a subfield waveform of the plasma display device will be described with reference to FIGS.
 図3は、第1のサブフィールドSF1、第2のサブフィールドSF2及び第3のサブフィールドSF3のアドレス電極Aj、走査電極Yi及び維持電極Xiに印加する電圧波形の一例を示した図である。図3において、アドレス電極Ajに印加される電圧波形はADD、走査電極Yiに印加される電圧波形はY、維持電極Xiに印加される電圧波形はXで示されている。 FIG. 3 is a diagram illustrating an example of voltage waveforms applied to the address electrodes Aj, the scan electrodes Yi, and the sustain electrodes Xi in the first subfield SF1, the second subfield SF2, and the third subfield SF3. In FIG. 3, the voltage waveform applied to the address electrode Aj is indicated by ADD, the voltage waveform applied to the scan electrode Yi is indicated by Y, and the voltage waveform applied to the sustain electrode Xi is indicated by X.
 図3において、第1のサブフィールドSF1は、最低階調を表現するサブフィールドを示している。第1のサブフィールドSF1においては、リセット期間Taとアドレス期間Taのみであり、維持期間は設けられていない。このように、第1のサブフィールドSF1においては、通常の維持放電を行う1段階目の階調よりも、更に低い階調を表現するため、維持放電は行わないこととしている。 In FIG. 3, a first subfield SF1 indicates a subfield expressing the lowest gradation. In the first subfield SF1, only the reset period Ta and the address period Ta are provided, and no sustain period is provided. In this way, in the first subfield SF1, the sustain discharge is not performed in order to express a gradation that is lower than the first stage gradation in which the normal sustain discharge is performed.
 リセット期間Trにおいては、アドレス電極Ajには電圧は印加されず、走査電極Yiにのみリセット電圧が印加される。リセット電圧は、最初に電圧Vsが印加されるが、その後電圧が上昇し、最高電圧(Vs+Vw)の電圧が印加される。この際、全セルCijにおいてリセット放電が発生し、セルCij内には、壁電荷が蓄積される。その後、リセット電圧が時間の経過とともに低下し、極性が負極性となり、電圧(-Vy+Vα)で最小値をとる。この、最大値から最小値に電圧が変化する間に、小さな放電が発生し、セルCij内の壁電荷が、適切な量に調整される。なお、図3に示したVs、(Vs+Vw)、(-Vy+Vα)は、パネル特性等や用途に応じて、種々の値に設定することができるが、例えば、Vs=200〔V〕、(Vs+Vw)=400〔V〕、(-Vy+Vα)=-150〔V〕程度であってもよい。 In the reset period Tr, no voltage is applied to the address electrode Aj, and a reset voltage is applied only to the scan electrode Yi. As the reset voltage, the voltage Vs is first applied, but then the voltage rises and the highest voltage (Vs + Vw) is applied. At this time, reset discharge occurs in all the cells Cij, and wall charges are accumulated in the cells Cij. Thereafter, the reset voltage decreases with time, the polarity becomes negative, and the voltage (−Vy + Vα) takes the minimum value. While the voltage changes from the maximum value to the minimum value, a small discharge is generated, and the wall charge in the cell Cij is adjusted to an appropriate amount. Note that Vs, (Vs + Vw), and (−Vy + Vα) shown in FIG. 3 can be set to various values depending on the panel characteristics and the application, for example, Vs = 200 [V], (Vs + Vw). ) = 400 [V], (−Vy + Vα) = − 150 [V].
 また、このとき、維持電極Xiは、フロート状態のハイインピーダンス状態に保たれており、セルCijは容量結合性を有する負荷であるので、走査電極Yiの電圧印加の影響を受けて、維持電極Xiの電圧も少し上昇し、HiZに達する。 At this time, the sustain electrode Xi is maintained in the high impedance state of the float state, and the cell Cij is a load having capacitive coupling. Therefore, the sustain electrode Xi is affected by the voltage application of the scan electrode Yi. The voltage increases slightly and reaches HiZ.
 次いで、第1のサブフィールドSF1のアドレス期間においては、アドレス電極AjにアドレスパルスVaが印加されるとともに、走査電極Yiに、鈍波(-Vyd)が印加される。アドレスパルスVaは、パルス印加期間において、電圧がVaの正の方形波であるが、走査電極Yiに印加されている鈍波(-Vyd)は、時間の経過とともに電位0〔V〕から下降し、最終的に電圧(-Vy)に達している。通常、走査電極Yiには、電圧(-Vy)の方形波が印加される。この場合、両電極の電位差はパルス印加期間で常に(Va-Vy)となるが、本実施例に係るプラズマディスプレイパネル10の駆動方法においては、このような傾斜を有する鈍波を走査電極Yiに印加する。これにより、方形波を印加する場合よりも、アドレス電極Ajと走査電極Yi間の印加電圧差が(Va-Vy)よりも小さい期間を長く作ることができ、アドレス放電を小さくすることができる。なお、このとき、維持電極Xiには、何ら電圧は印加されず、接地電位に保たれ、維持電極Xiで放電は生じないように設定されている。 Next, in the address period of the first subfield SF1, an address pulse Va is applied to the address electrode Aj, and a blunt wave (-Vyd) is applied to the scan electrode Yi. The address pulse Va is a positive square wave whose voltage is Va during the pulse application period, but the obtuse wave (-Vyd) applied to the scan electrode Yi falls from the potential 0 [V] as time passes. Finally, the voltage (−Vy) is reached. Usually, a square wave of voltage (−Vy) is applied to the scan electrode Yi. In this case, the potential difference between the two electrodes is always (Va−Vy) during the pulse application period, but in the driving method of the plasma display panel 10 according to the present embodiment, an obtuse wave having such an inclination is applied to the scanning electrode Yi. Apply. As a result, a period in which the applied voltage difference between the address electrode Aj and the scan electrode Yi is smaller than (Va−Vy) can be made longer than when a square wave is applied, and the address discharge can be reduced. At this time, no voltage is applied to the sustain electrode Xi, the voltage is maintained at the ground potential, and no discharge is generated at the sustain electrode Xi.
 このように、第1のサブフィールドSF1においては、維持期間を設けないばかりでなく、アドレス期間Taにおけるアドレス放電も通常より低輝度とし、低輝度階調を適切に表現できるようにサブフィールドを設けている。 Thus, in the first subfield SF1, not only the sustain period is provided, but also the subfield is provided so that the address discharge in the address period Ta has a lower luminance than usual and the low luminance gradation can be appropriately expressed. ing.
 第2のサブフィールドSF2は、最低階調を表現する第1のサブフィールドよりも、1段階高い階調を表現するサブフィールドである。第2のサブフィールドSF2において、リセット期間Trは、各電極Aj、Yi、Yjに対して、第1のサブフィールドSF1と同様の電圧波形を印加するので、その説明を省略する。第1のサブフィールドSF1と同様に、リセット期間Trにより、全セルCijの壁電荷の状態が適切に調整される。 The second subfield SF2 is a subfield that represents a gradation that is one step higher than the first subfield that represents the lowest gradation. In the second subfield SF2, the reset period Tr applies the same voltage waveform as that of the first subfield SF1 to the electrodes Aj, Yi, Yj, and thus the description thereof is omitted. Similar to the first subfield SF1, the state of the wall charges of all the cells Cij is appropriately adjusted by the reset period Tr.
 アドレス期間Taにおいては、アドレス電極Ajには、方形波のアドレスパルスVaが印加される。一方、走査電極Yiにも、方形波のスキャンパルス(-Vy)が印加される。これにより、アドレス期間Taにおいては、アドレス電極Ajと走査電極Yiとの間に電位差(Va-Vy)が印加され、これによりアドレス放電が発生する。アドレスパルスVaとスキャンパルス(-Vy)は、同じタイミングで同じパルス幅で印加されているため、アドレスパルスVa及びスキャンパルス(-Vy)印加中は両電極Aj、Yi間の電位差の減少が無く、第1のサブフィールドSF1よりも強い放電が発生する。このように、第2のサブフィールドSF2においては、第1のサブフィールドSF1よりも高輝度の階調を表現することができ、通常の階調表現よりも低輝度の領域を、更に2段階に分けて階調表現を行うことができる。また、この間、維持電極Xiは、第1のサブフィールドSF1と同様に、接地電位に保たれ、維持電極Xiに放電は生じないように調整されている。 In the address period Ta, a square wave address pulse Va is applied to the address electrode Aj. On the other hand, a square-wave scan pulse (−Vy) is also applied to the scan electrode Yi. Thereby, in the address period Ta, a potential difference (Va−Vy) is applied between the address electrode Aj and the scan electrode Yi, thereby generating an address discharge. Since the address pulse Va and the scan pulse (−Vy) are applied at the same timing and with the same pulse width, there is no decrease in the potential difference between the electrodes Aj and Yi during the application of the address pulse Va and the scan pulse (−Vy). A discharge stronger than that of the first subfield SF1 occurs. As described above, in the second subfield SF2, a gradation with higher luminance than the first subfield SF1 can be expressed, and an area having a luminance lower than that of the normal gradation expression is further divided into two stages. The gradation expression can be performed separately. In the meantime, the sustain electrode Xi is adjusted to be kept at the ground potential and no discharge is generated in the sustain electrode Xi, similarly to the first subfield SF1.
 第3のサブフィールドSF3は、最低階調を示す第1のサブフィールドSF1よりも2段階高く、第2のサブフィールドSF2よりも1段階高い階調を表現するサブフィールドである。 The third subfield SF3 is a subfield that expresses a gradation that is two steps higher than the first subfield SF1 showing the lowest gradation and one step higher than the second subfield SF2.
 第3のサブフィールドSF3は、維持期間を含まず、リセット期間Tr及びアドレス期間Taのみから構成されている点では、第1のサブフィールドSF1及び第2のサブフィールドSF2と同様である。 The third subfield SF3 is the same as the first subfield SF1 and the second subfield SF2 in that the third subfield SF3 does not include the sustain period and includes only the reset period Tr and the address period Ta.
 リセット期間Trにおいては、アドレス電極Ajは接地電位に保たれ、走査電極Yiには、リセットパルスが印加される点は、第1のサブフィールドSF1及び第2のサブフィールドSF2と同様である。また、走査電極Yiに印加されているリセットパルスは、第1のサブフィールドSF1及び第2のサブフィールドSF2と同じ電圧波形であるので、その説明を省略する。 In the reset period Tr, the address electrode Aj is kept at the ground potential, and the reset pulse is applied to the scan electrode Yi, as in the first subfield SF1 and the second subfield SF2. Further, the reset pulse applied to the scan electrode Yi has the same voltage waveform as that of the first subfield SF1 and the second subfield SF2, and therefore the description thereof is omitted.
 一方、リセット期間Trにおいて、維持電極Xiに、電圧Vx1のパルスが最初と最後に印加されている点は、第1のサブフィールドSF1及び第2のサブフィールドSF2と異なっている。これは、走査電極Yiに印加されるリセットパルスが、最大電圧(Vs+Vw)を印加した後、セルCijの壁電荷の調整を行う減少する電圧波形を印加しているときに、維持電極Xiと走査電極Yi間の放電をやや強めに発生させるためである。 On the other hand, the point that the pulse of the voltage Vx1 is applied to the sustain electrode Xi first and last in the reset period Tr is different from the first subfield SF1 and the second subfield SF2. This is because the reset pulse applied to the scan electrode Yi applies the decreasing voltage waveform for adjusting the wall charge of the cell Cij after applying the maximum voltage (Vs + Vw) and scans with the sustain electrode Xi. This is to generate a slightly stronger discharge between the electrodes Yi.
 アドレス期間Taにおいては、第2のサブフィールドSF2と同様に、アドレス電極Ajには正極性の方形波のアドレスパルスVaが印加され、走査電極Yiには負極性の方形波のスキャンパルス(-Vy)が印加される。これにより、アドレス電極Ajと走査電極Yi間には、第2のサブフィールドSF2と同様に、第1のサブフィールドSF1よりも強いアドレス放電が発生する。 In the address period Ta, as in the second subfield SF2, a positive square wave address pulse Va is applied to the address electrode Aj, and a negative square wave scan pulse (−Vy is applied to the scan electrode Yi. ) Is applied. As a result, an address discharge stronger than that of the first subfield SF1 is generated between the address electrode Aj and the scan electrode Yi, similarly to the second subfield SF2.
 更に、アドレス期間Taにおいて、維持電極Xiには、正電位の一定電圧Vx2が印加される。この点は、第2のサブフィールドSF2とは異なる点である。維持電極Xiに印加される電圧Vx2により、アドレス電極Ajと走査電極Yiとの間で放電が生じた後、これをトリガーとして、走査電極Yiと維持電極Xiとの間にも引き続き放電が発生する。これも、アドレス期間Ta中に発生するアドレス放電の一種であり、第2段階目のアドレス放電である。このように、第3のサブフィールドSF3においては、アドレス期間において、走査電極Yiとアドレス電極Aj間のアドレス放電のみならず、その後、走査電極Yiと維持電極Xi間でもアドレス放電を発生させる。これにより、第2のサブフィールドSF2よりも高輝度の階調を表現できるとともに、維持期間を有するサブフィールドよりは低い輝度の階調を表現することができる。 Further, in the address period Ta, a constant voltage Vx2 having a positive potential is applied to the sustain electrode Xi. This point is different from the second subfield SF2. After a discharge is generated between the address electrode Aj and the scan electrode Yi by the voltage Vx2 applied to the sustain electrode Xi, a discharge is continuously generated between the scan electrode Yi and the sustain electrode Xi using this as a trigger. . This is also a kind of address discharge that occurs during the address period Ta, and is a second stage address discharge. In this way, in the third subfield SF3, not only the address discharge between the scan electrode Yi and the address electrode Aj but also the address discharge is generated between the scan electrode Yi and the sustain electrode Xi in the address period. Accordingly, a gradation with higher luminance than that of the second subfield SF2 can be expressed, and a gradation with a luminance lower than that of the subfield having the sustain period can be expressed.
 このように、本実施例に係るプラズマディスプレイパネル10の駆動方法によれば、維持期間を含まず、リセット期間Trとアドレス期間Taのみを含むサブフィールドを用いて、3段階の低輝度階調を表現することができる。これにより、低輝度階調を高精細に表現することができる。 As described above, according to the driving method of the plasma display panel 10 according to the present embodiment, the three-stage low luminance gradation is obtained by using the subfield including only the reset period Tr and the address period Ta without including the sustain period. Can be expressed. Thereby, the low luminance gradation can be expressed with high definition.
 なお、第1のサブフィールドSF1、第2のサブフィールドSF2及び第3のサブフィールドの輝度差は、鈍波(-Vyd)、スキャンパルス(-Vy)及び維持電極Xiに印加する電圧Vx2の設定により、種々の設定が可能であるが、例えば、第1のサブフィールドSF1の輝度が、第2のサブフィールドSF2の輝度の半分の輝度となり、第2のサブフィールドSF2の輝度が、第3のサブフィールドSF3の輝度の半分の輝度となるように設定してもよい。この場合、例えば、第3のサブフィールドSF3が0.5の階調を表現するとすれば、第2のサブフィールドSF2は0.25の階調を表現でき、第1のサブフィールドSF1は、0.125の階調を表現できることになり、低輝度階調を高精細に表現することができる。 Note that the luminance difference between the first subfield SF1, the second subfield SF2, and the third subfield is a setting of the blunt wave (-Vyd), the scan pulse (-Vy), and the voltage Vx2 applied to the sustain electrode Xi. However, for example, the luminance of the first subfield SF1 is half the luminance of the second subfield SF2, and the luminance of the second subfield SF2 is the third luminance. The luminance may be set to be half the luminance of the subfield SF3. In this case, for example, if the third subfield SF3 expresses a gradation of 0.5, the second subfield SF2 can express a gradation of 0.25, and the first subfield SF1 becomes 0 .125 gradations can be expressed, and low luminance gradations can be expressed with high definition.
 次に、図4を用いて、第4のサブフィールドSF4以降の電圧波形の例について説明する。図4は、本実施例に係るプラズマディスプレイパネル10の駆動方法における、第4のサブフィールドSF4及び第5のサブフィールドSF5のアドレス電極Aj、走査電極Yi及び維持電極Xiに印加された電圧波形の一例を示した図である。 Next, an example of voltage waveforms after the fourth subfield SF4 will be described with reference to FIG. FIG. 4 shows voltage waveforms applied to the address electrodes Aj, the scan electrodes Yi, and the sustain electrodes Xi in the fourth subfield SF4 and the fifth subfield SF5 in the driving method of the plasma display panel 10 according to the present embodiment. It is the figure which showed an example.
 第4のサブフィールドSF4においては、リセット期間Tr及びアドレス期間Taの後に、維持期間Tsが設けられている。 In the fourth subfield SF4, a sustain period Ts is provided after the reset period Tr and the address period Ta.
 リセット期間Tr及びアドレス期間Taにおいては、第3のサブフィールドSF3と同じ電圧波形であるので、その説明を省略する。 In the reset period Tr and the address period Ta, the voltage waveform is the same as that of the third subfield SF3, and thus the description thereof is omitted.
 なお、維持期間Tsを有し、アドレス放電の後に維持放電を行う第4のサブフィールドSF4においては、アドレス電極Ajと走査電極Yiとの間の放電でアドレス放電を終了させず、その後に、走査電極Yiと維持電極Xiとの間でもアドレス放電を引き続き発生させるようにする。これにより、続いて起こる維持放電の際、セルCij内の壁電荷が十分に存在し、維持放電が確実かつ適切に行われることになる。 Note that in the fourth subfield SF4 having the sustain period Ts and performing the sustain discharge after the address discharge, the address discharge is not terminated by the discharge between the address electrode Aj and the scan electrode Yi, and then the scan is performed. Address discharge is continuously generated between the electrode Yi and the sustain electrode Xi. Thereby, during the subsequent sustain discharge, the wall charges in the cell Cij are sufficiently present, and the sustain discharge is reliably and appropriately performed.
 維持期間Tsにおいては、維持電極Xiと走査電極Yiに、交互にサステインパルスVsが印加され、極性を交替しつつ、交互にサステイン放電が継続的に行われる。そして、維持期間Tsの長さ、つまりサステインパルスVsの数に比例して、高輝度の階調が表現される。 In the sustain period Ts, the sustain pulse Vs is alternately applied to the sustain electrode Xi and the scan electrode Yi, and the sustain discharge is continuously performed alternately while changing the polarity. Then, a high luminance gradation is expressed in proportion to the length of the sustain period Ts, that is, the number of sustain pulses Vs.
 このように、第4のサブフィールドSF4においては、アドレス期間Taの後に維持期間Tsを設け、アドレス放電の後に維持放電を行うサブフィールドを示した。通常、複数のサブフィールドを含む1フィールド又は1フレーム内において、このような維持期間Tsを有するサブフィールドの方が一般的であるが、低階調を高精細に表現したい場合には、第1のサブフィールドSF1、第2のサブフィールドSF2及び第3のサブフィールドSF3を更に設けることにより、低階調の表現領域を拡大することができる。 As described above, in the fourth subfield SF4, the subfield in which the sustain period Ts is provided after the address period Ta and the sustain discharge is performed after the address discharge is shown. Usually, a subfield having such a sustain period Ts in one field or one frame including a plurality of subfields is more general. By further providing the subfield SF1, the second subfield SF2, and the third subfield SF3, it is possible to expand the low gradation expression area.
 第5のサブフィールドSF5は、オンセルリセットを含むサブフィールドの電圧波形を示した図である。第5のサブフィールドSF5は、セルCijの点灯が行われたセルCijに対してのみ、選択的に行われるサブフィールドである。つまり、第5のサブフィールドSF5は、第4のサブフィールドSF4が実行されたセルCijに対してのみ対象として行われるサブフィールドであり、第1のサブフィールドSF1、第2のサブフィールドSF2又は第3のサブフィールドの直後に続いては行われない。 The fifth subfield SF5 is a diagram showing the voltage waveform of the subfield including the on-cell reset. The fifth subfield SF5 is a subfield that is selectively performed only for the cell Cij in which the cell Cij is turned on. That is, the fifth subfield SF5 is a subfield performed only for the cell Cij in which the fourth subfield SF4 is executed, and the first subfield SF1, the second subfield SF2, or the second subfield SF5 It is not performed immediately following the third subfield.
 第5のサブフィールドSF5においては、リセット期間Trのみが第4のサブフィールドSF4と異なり、アドレス期間Ta及び維持期間Tsの電圧波形は、第4のサブフィールドSF4と同様である。リセット期間Trにおいては、第4のサブフィールドSF4のリセット期間Trにおける正極性のリセットパルスの印加が行われなくなり、負極性の部分のリセットパルスの走査電極Yiへの印加が行われている。このようなリセット放電を、オンセルリセットと呼ぶが、サステイン放電が行われたセルCijについては、サステイン放電時の壁電荷がセルCij内に十分残っているため、このように壁電荷の状態を調整するような電圧パルスを印加するだけでリセット放電を済ますことができる。なお、アドレス期間Ta及び維持期間Tsについては、第4のサブフィールドSF4と同様であるので、その説明を省略する。 In the fifth subfield SF5, only the reset period Tr is different from the fourth subfield SF4, and the voltage waveforms in the address period Ta and the sustain period Ts are the same as those in the fourth subfield SF4. In the reset period Tr, the positive reset pulse is not applied in the reset period Tr of the fourth subfield SF4, and the negative reset pulse is applied to the scan electrode Yi. Such a reset discharge is called an on-cell reset. For the cell Cij in which the sustain discharge has been performed, the wall charge at the time of the sustain discharge remains in the cell Cij. Reset discharge can be completed simply by applying voltage pulses to be adjusted. Note that the address period Ta and the sustain period Ts are the same as those in the fourth subfield SF4, and thus description thereof is omitted.
 次に、図5を用いて、本実施例に係るプラズマディスプレイパネル10の駆動方法の第1のサブフィールドSFのアドレス期間Taの電圧波形についてより詳細に説明する。図5は、本実施例に係るプラズマディスプレイパネル10の駆動方法の最低階調を表示する第1のサブフィールドSF1の電圧波形を示した図である。図5において、Aはアドレス電極Ajに印加された電圧波形を示し、Yは走査電極Yiに印加された電圧波形を示す。 Next, the voltage waveform in the address period Ta of the first subfield SF of the driving method of the plasma display panel 10 according to the present embodiment will be described in detail with reference to FIG. FIG. 5 is a diagram illustrating a voltage waveform of the first subfield SF1 that displays the lowest gradation of the driving method of the plasma display panel 10 according to the present embodiment. In FIG. 5, A indicates a voltage waveform applied to the address electrode Aj, and Y indicates a voltage waveform applied to the scan electrode Yi.
 図5において、アドレス電極Ajに印加されたパルス電圧(アドレスパルス)は、電圧が正電圧Vaで一定の方形波に近いパルス電圧であるが、走査電極Yiに印加されたパルス電圧(スキャンパルス)の波形は、接地電位から緩やかに時間の経過とともに減少する鈍波が示されている。つまり、図5においては、アドレスパルスは固定電位とし、スキャンパルスを鈍波としている例について説明する。スキャンパルスの最低電位は、(-Vy)であるが、最低電位(-Vy)に達するまでに、走査電極Yiとアドレス電極Ajの電極間電圧が放電開始電圧に達すれば、アドレス放電は発生する。図3において説明したように、両電極間電圧(Va-Vy)は、放電開始電圧を確実に超えている値であるので、鈍波(-Vyd)においては、電位が減少中のタイミングでアドレス放電が発生することになり、スキャンパルスが(-Vy)の方形波に近い状態のときよりも、弱い放電が発生することになる。 In FIG. 5, the pulse voltage (address pulse) applied to the address electrode Aj is a pulse voltage close to a constant square wave with the positive voltage Va, but the pulse voltage (scan pulse) applied to the scan electrode Yi. This waveform shows an obtuse wave that gradually decreases with time from the ground potential. That is, in FIG. 5, an example in which the address pulse is a fixed potential and the scan pulse is an obtuse wave will be described. The lowest potential of the scan pulse is (−Vy). If the voltage between the scan electrode Yi and the address electrode Aj reaches the discharge start voltage before reaching the lowest potential (−Vy), the address discharge is generated. . As described in FIG. 3, the voltage between the electrodes (Va−Vy) is a value that surely exceeds the discharge start voltage, and therefore, in the blunt wave (−Vyd), the address is at the timing when the potential is decreasing. A discharge is generated, and a weaker discharge is generated than when the scan pulse is close to a square wave of (−Vy).
 このように、走査電極Yiに印加するパルス電圧を鈍波とすることにより、スキャンドライバ41の設定電圧自体は変化させることなく、容易に弱いアドレス放電を発生させることができる。また、鈍波(-Vyd)は、最終的には(-Vy)に達するパルス電圧であるので、アドレス放電自体は、高濃度のキセノンが封入されたプラズマディスプレイパネル10であっても、確実に発生させることができる。 Thus, by making the pulse voltage applied to the scan electrode Yi a blunt wave, a weak address discharge can be easily generated without changing the set voltage of the scan driver 41 itself. In addition, since the blunt wave (-Vyd) is a pulse voltage that eventually reaches (-Vy), the address discharge itself can be reliably performed even in the plasma display panel 10 in which high-concentration xenon is sealed. Can be generated.
 次に、図6を用いて、図5に示した鈍波(-Vyd)のスキャンパルスを発生させるための走査駆動回路40の構成について説明する。図6は、本実施例に係るプラズマディスプレイ装置の走査駆動回路の構成の一例について示した図である。図6において、放電セルCijに接続されたスキャンドライバ40と、電圧波形切替回路44と、サステインドライバ42を含むスキャン駆動回路40が示されている。 Next, the configuration of the scan driving circuit 40 for generating the blunt wave (-Vyd) scan pulse shown in FIG. 5 will be described with reference to FIG. FIG. 6 is a diagram showing an example of the configuration of the scan drive circuit of the plasma display apparatus according to the present embodiment. In FIG. 6, a scan driver 40 including a scan driver 40 connected to the discharge cell Cij, a voltage waveform switching circuit 44, and a sustain driver 42 is shown.
 スキャンドライバ41は、高電位側MOSトランジスタMy1と、低電位側MOSトランジスタMy2を備える。また、高電位側MOSトランジスタMy1は、接地電位に接続されている。よって、高電位側MOSトランジスタMy1がオンとなったときには、スキャン電極Yiには、接地電位が供給される。 The scan driver 41 includes a high potential side MOS transistor My1 and a low potential side MOS transistor My2. The high potential side MOS transistor My1 is connected to the ground potential. Therefore, when the high potential side MOS transistor My1 is turned on, the ground potential is supplied to the scan electrode Yi.
 また、低電位側MOSトランジスタMy2は、電圧波形切替回路44に接続されている。電圧波形切替回路44は、抵抗R1とスイッチSW1の並列接続から構成される。また、電圧波形切替回路44の反対側は、低電位供給MOSトランジスタMy5に接続されるとともに、サステインドライバ42に接続されている。 The low potential side MOS transistor My2 is connected to the voltage waveform switching circuit 44. The voltage waveform switching circuit 44 is constituted by a parallel connection of a resistor R1 and a switch SW1. The opposite side of the voltage waveform switching circuit 44 is connected to the low potential supply MOS transistor My5 and to the sustain driver 42.
 電圧波形切替回路44は、スキャンドライバ41の低電位側MOSトランジスタMy2に、固定電位のスキャンパルス(-Vy)を供給するか、鈍波(-Vyd)を供給するかを切り替える回路である。固定電位のスキャンパルス(-Vy)を供給する場合には、低電位接続MOSトランジスタMy5をオンにするとともに、スイッチSW1をオンとする。これにより、抵抗R1は短絡されるので、低電位側MOSトランジスタMy2には、固定電圧(-Vy)が供給されることになる。 The voltage waveform switching circuit 44 is a circuit for switching between supplying a scan pulse (−Vy) or a blunt wave (−Vyd) of a fixed potential to the low potential side MOS transistor My2 of the scan driver 41. When supplying a fixed potential scan pulse (-Vy), the low potential connection MOS transistor My5 is turned on and the switch SW1 is turned on. As a result, the resistor R1 is short-circuited, so that the fixed voltage (−Vy) is supplied to the low potential side MOS transistor My2.
 一方、鈍波(-Vyd)をスキャン電極Yiに印加する場合、つまり最低輝度階調を表現する場合には、低電位接続MOSトランジスタMy5をオンにするとともに、スイッチSW1をオフにする。この場合には、抵抗R1が直列接続されることになるので、固定電位(-Vy)は、鈍波(-Vyd)となって低電位側MOSトランジスタMy2に供給される。 On the other hand, when a blunt wave (-Vyd) is applied to the scan electrode Yi, that is, when the lowest luminance gradation is expressed, the low potential connection MOS transistor My5 is turned on and the switch SW1 is turned off. In this case, since the resistor R1 is connected in series, the fixed potential (−Vy) becomes an obtuse wave (−Vyd) and is supplied to the low potential side MOS transistor My2.
 このように、本実施例に係るプラズマディスプレイ装置においては、スイッチSW1のオン・オフ切替により、走査電極Yiに固定電位(-Vy)の電圧パルスを印加するか、鈍波(-Vyd)の電圧パルスを印加するかを容易に切り替えることができ、電圧値を変化させるような複雑な制御を行う必要が無い。 Thus, in the plasma display device according to the present embodiment, a voltage pulse of a fixed potential (−Vy) is applied to the scan electrode Yi by switching the switch SW1 on or off, or a voltage of a blunt wave (−Vyd) is applied. Whether to apply a pulse can be easily switched, and there is no need to perform complicated control to change the voltage value.
 スイッチSW1は、例えば、駆動制御回路50のスキャンデータ発生回路53で発生したスキャンデータに基づいて、最低階調を表現するサブフィールドにおいてオンとなるように制御されてもよいし、表示画像の最低階調を示す信号の割合に応じてオン・オフが制御されてもよい。この場合、例えば、駆動制御回路54の、電圧波形切替制御手段54によりスイッチSW1のオン・オフ切替が制御されてもよい。また、その際、スキャンドライバ41の低電位側MOSトランジスタMy2及び低電位接続MOSトランジスタMy5をオンとする時間、つまり鈍波のパルス幅の制御も、電圧波形切替制御手段54により行われてよい。電圧波形切替制御手段54は、このような演算処理を行う演算処理手段として構成されてよく、例えば、CPU(Central Processing Unit、中央処理装置)、RAM(Random Access Memory)やROM(Read Only Memory)等の記憶手段を備えるマイクロコンピュータとして構成去れてもよいし、所定の電子回路として構成されてもよい。 For example, the switch SW1 may be controlled to be turned on in a subfield representing the lowest gradation based on the scan data generated by the scan data generation circuit 53 of the drive control circuit 50, or may be the lowest of the display image. On / off may be controlled in accordance with the ratio of signals indicating gradation. In this case, for example, on / off switching of the switch SW1 may be controlled by the voltage waveform switching control means 54 of the drive control circuit 54. At this time, the voltage waveform switching control means 54 may also control the time during which the low potential side MOS transistor My2 and the low potential connection MOS transistor My5 of the scan driver 41 are turned on, that is, the pulse width of the blunt wave. The voltage waveform switching control means 54 may be configured as an arithmetic processing means for performing such arithmetic processing, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory) or a ROM (Read Only Memory). It may be configured as a microcomputer provided with storage means such as, or may be configured as a predetermined electronic circuit.
 なお、図6において、サステインドライバ42は、サステインパルスVsか接地電位を供給するための電位供給手段として機能し、Vsを走査電極Yiに供給する場合は、MOSトランジスタMy3がオンし、接地電位を供給する場合には、MOSトランジスタMy4がオンする。 In FIG. 6, the sustain driver 42 functions as a potential supply means for supplying the sustain pulse Vs or the ground potential. When Vs is supplied to the scan electrode Yi, the MOS transistor My3 is turned on and the ground potential is set. In the case of supply, the MOS transistor My4 is turned on.
 次に、図7を用いて、走査電極Yiには固定電位を供給し、アドレス電極Ajに鈍波を供給するアドレス放電について説明する。図7は、最低階調を表示するアドレス放電におけるスキャンパルスとアドレスパルスの一例を示した図である。図7において、走査電極Yiに印加されている電圧パルスはYで示され、アドレス電極Ajに印加されている電圧パルスはAで示されている。 Next, an address discharge for supplying a fixed potential to the scan electrode Yi and supplying an obtuse wave to the address electrode Aj will be described with reference to FIG. FIG. 7 is a diagram showing an example of a scan pulse and an address pulse in the address discharge for displaying the lowest gradation. In FIG. 7, the voltage pulse applied to the scan electrode Yi is indicated by Y, and the voltage pulse applied to the address electrode Aj is indicated by A.
 図7に示されるように、走査電極Yiには、固定電位(-Vy)の電圧パルス(スキャンパルス)が印加され、アドレス電極Ajには、時間の変化とともに徐々に電圧が増加する鈍波Vadが供給されている。鈍波Vadは、最終的には、電圧値Vaに達し、放電開始電圧は(Va-Vy)よりも低く設定されているので、やはり鈍波Vadの電圧が上昇している途中にアドレス放電が発生する。そして、この放電強度は、一気に同じタイミングで走査電極Yiとアドレス電極Aj間に(Va-Vy)の電位差が印加されるよりも、小さくなる。よって、図5に示した場合と同様に、方形波の印加によるアドレス放電よりも、弱い放電を発生させることができ、最低階調を適切に表現することができる。 As shown in FIG. 7, a voltage pulse (scan pulse) of a fixed potential (−Vy) is applied to the scan electrode Yi, and the obtuse wave Vad whose voltage gradually increases with time changes is applied to the address electrode Aj. Is supplied. The obtuse wave Vad eventually reaches the voltage value Va, and the discharge start voltage is set lower than (Va−Vy). Therefore, the address discharge is also generated while the voltage of the obtuse wave Vad is rising. appear. The discharge intensity is smaller than that when a potential difference of (Va−Vy) is applied between the scan electrode Yi and the address electrode Aj at the same timing. Therefore, similarly to the case shown in FIG. 5, it is possible to generate a discharge that is weaker than the address discharge by applying a square wave, and appropriately express the minimum gradation.
 このように、鈍波の電圧パルスは、アドレス電極Ajの方に印加し、走査電極Yiには、略方形波の固定電圧Vaを印加するようにしてもよい。これによっても、弱いアドレス放電を発生させることができるので、最低階調を適切に表現できる。 As described above, the obtuse wave voltage pulse may be applied to the address electrode Aj, and the substantially square wave fixed voltage Va may be applied to the scan electrode Yi. Also by this, a weak address discharge can be generated, so that the lowest gradation can be expressed appropriately.
 図8は、図7に示したアドレスパルスの鈍波Vadを発生させるためのアドレス駆動回路20の構成の一例を示した図である。 FIG. 8 is a diagram showing an example of the configuration of the address drive circuit 20 for generating the blunt wave Vad of the address pulse shown in FIG.
 本実施例に係るプラズマディスプレイ装置のアドレス駆動回路20は、アドレスドライバ21と、電圧波形切替回路22とを含む。アドレスドライバ21は、高電位側スイッチング素子Ma1と、低電位側スイッチング素子Ma2とを備える。図8においては、高電位側スイッチング素子Ma1及び低電位側スイッチング素子Ma2は、スイッチの記号で表示されているが、例えば、MOSトランジスタ等のスイッチング素子が適用されてよい。 The address driving circuit 20 of the plasma display device according to the present embodiment includes an address driver 21 and a voltage waveform switching circuit 22. The address driver 21 includes a high potential side switching element Ma1 and a low potential side switching element Ma2. In FIG. 8, the high-potential side switching element Ma1 and the low-potential side switching element Ma2 are indicated by switch symbols. However, for example, a switching element such as a MOS transistor may be applied.
 電圧波形切替回路22は、抵抗R2と、スイッチSW1との並列接続回路で構成され、一端は、高電位側スイッチング素子Ma1に接続されており、他端は、固定電位Vaに接続されている。セルCijのアドレス電極Ajに、固定電位Vaの電圧パルスが供給される場合には、スイッチング素子Ma1及び電圧波形切替回路22のスイッチSW1をオンさせ、抵抗R2を短絡し、スイッチング素子Ma1に直接的に固定電位Vaを供給する。一方、アドレス電極Ajに鈍波を印加する場合には、電圧波形切替回路22のスイッチSW1をオフにし、抵抗R2が直列接続されるような回路に切り替える。このように、アドレス電極Ajに印加する電圧パルスについても、スイッチSW1の切り替えにより、容易に鈍波Vadを生成することができる。 The voltage waveform switching circuit 22 is configured by a parallel connection circuit of a resistor R2 and a switch SW1, one end is connected to the high potential side switching element Ma1, and the other end is connected to the fixed potential Va. When the voltage pulse of the fixed potential Va is supplied to the address electrode Aj of the cell Cij, the switching element Ma1 and the switch SW1 of the voltage waveform switching circuit 22 are turned on, the resistor R2 is short-circuited, and directly to the switching element Ma1. Is supplied with a fixed potential Va. On the other hand, when applying an obtuse wave to the address electrode Aj, the switch SW1 of the voltage waveform switching circuit 22 is turned off to switch to a circuit in which the resistor R2 is connected in series. As described above, the blunt wave Vad can be easily generated for the voltage pulse applied to the address electrode Aj by switching the switch SW1.
 また、スイッチSW1の切り替え制御は、アドレスデータ発生回路52で発生されたアドレスデータに基づいて、直接的に行われてもよいし、パルス幅や表示率等を考慮して、電圧波形切替制御手段54により制御されてもよい。 Further, the switching control of the switch SW1 may be performed directly based on the address data generated by the address data generation circuit 52, or the voltage waveform switching control means in consideration of the pulse width, the display rate, etc. 54 may be controlled.
 なお、アドレス電極Ajに接地電位を供給する場合には、低電位側スイッチング素子Ma2をオンとし、高電位側スイッチング素子Ma1をオフとすればよい。 Note that when the ground potential is supplied to the address electrode Aj, the low potential side switching element Ma2 may be turned on and the high potential side switching element Ma1 may be turned off.
 以上、本発明の好ましい実施例について詳説したが、本発明は、上述した実施例に制限されることはなく、本発明の範囲を逸脱することなく、上述した実施例に種々の変形及び置換を加えることができる。 The preferred embodiments of the present invention have been described in detail above. However, the present invention is not limited to the above-described embodiments, and various modifications and substitutions can be made to the above-described embodiments without departing from the scope of the present invention. Can be added.
 本発明は、動画像を高精細に表示するプラズマディスプレイ装置に適用可能である。 The present invention can be applied to a plasma display device that displays a moving image with high definition.

Claims (11)

  1.  第1の方向に延在し、第2の方向に交互に配置された走査電極及び維持電極と、該走査電極及び維持電極に交わるように配置されたアドレス電極とを複数備え、前記走査電極及び維持電極と前記アドレス電極との交点に、放電により発光するセルが形成されたプラズマディスプレイパネルの駆動方法であって、
     1フレーム又は1フィールドを複数のサブフィールドで構成し、該複数のサブフィールドは、前記走査電極と前記アドレス電極にパルス電圧を印加してアドレス放電を発生させ、点灯させる前記セルを選択するアドレス期間と、該アドレス期間で選択された前記走査電極及び維持電極間に電圧を印加して維持放電を発生させ、階調を表現する維持期間とを有するサブフィールドを含み、
     前記階調の最低階調を表現するときに、前記維持放電を行わず、かつ、前記アドレス放電においては、前記走査電極又は前記アドレス電極に印加する前記パルス電圧の一方を、時間の経過とともに電圧が変化する鈍波とする鈍波サブフィールドを設けることを特徴とするプラズマディスプレイパネルの駆動方法。
    A plurality of scan electrodes and sustain electrodes extending in a first direction and alternately arranged in a second direction; and a plurality of address electrodes arranged to intersect the scan electrodes and the sustain electrodes, A plasma display panel driving method in which cells that emit light by discharge are formed at intersections between sustain electrodes and the address electrodes,
    One frame or one field is composed of a plurality of subfields, and the plurality of subfields generate an address discharge by applying a pulse voltage to the scan electrodes and the address electrodes to select the cells to be lit. And a subfield having a sustain period for generating a sustain discharge by applying a voltage between the scan electrode and the sustain electrode selected in the address period and expressing a gray level,
    When expressing the lowest gradation of the gradation, the sustain discharge is not performed, and in the address discharge, one of the pulse voltages applied to the scan electrode or the address electrode is set to a voltage over time. A driving method of a plasma display panel, characterized in that an obtuse wave subfield having an obtuse wave with a change is provided.
  2.  前記鈍波は、前記パルス電圧を出力する回路への抵抗の接続の切り替えにより生成されることを特徴とする請求項1に記載のプラズマディスプレイパネルの駆動方法。 The method of driving a plasma display panel according to claim 1, wherein the obtuse wave is generated by switching connection of a resistor to a circuit that outputs the pulse voltage.
  3.  前記鈍波サブフィールドを設けるか否かは、前記最低階調を表示するセルの全体のセル数に対する比率に基づいて定められることを特徴とする請求項2に記載のプラズマディスプレイパネルの駆動方法。 3. The plasma display panel driving method according to claim 2, wherein whether or not the obtuse wave subfield is provided is determined based on a ratio of the cells displaying the lowest gradation to the total number of cells.
  4.  前記鈍波を出力するときには、前記パルス電圧のパルス幅を広くすることを特徴とする請求項3に記載のプラズマディスプレイパネルの駆動方法。 4. The method of driving a plasma display panel according to claim 3, wherein when outputting the obtuse wave, a pulse width of the pulse voltage is widened.
  5.  前記最低階調よりも1段階高い階調を表現するときには、前記維持放電を行わず、かつ、前記アドレス放電において、前記走査電極及び前記アドレス電極に印加する前記パルス電圧を、双方とも固定電位とするサブフィールドを設けることを特徴とする請求項4に記載のプラズマディスプレイパネルの駆動方法。 When expressing a gradation that is one step higher than the lowest gradation, the sustain discharge is not performed, and the pulse voltage applied to the scan electrode and the address electrode in the address discharge is both set to a fixed potential. 5. The method of driving a plasma display panel according to claim 4, wherein a subfield is provided.
  6.  前記最低階調よりも2段階高い階調を表現するときには、前記維持放電を行わず、かつ、前記アドレス放電において、前記走査電極及び前記アドレス電極に印加する前記パルス電圧を、双方とも固定電位とするとともに、前記走査電極と前記アドレス電極との間で放電を発生させた後に、前記走査電極と前記維持電極との間で放電が発生するように前記維持電極に電圧を印加するサブフィールドを設けることを特徴とする請求項5に記載のプラズマディスプレイパネルの駆動方法。 When expressing a gradation that is two steps higher than the lowest gradation, the sustain discharge is not performed, and the pulse voltage applied to the scan electrode and the address electrode in the address discharge is both set to a fixed potential. And a subfield for applying a voltage to the sustain electrode so that a discharge is generated between the scan electrode and the sustain electrode after the discharge is generated between the scan electrode and the address electrode. The method of driving a plasma display panel according to claim 5.
  7.  第1の方向に延在し、第2の方向に交互に配置された走査電極及び維持電極と、該走査電極及び維持電極に交わるように配置されたアドレス電極とを複数備え、前記走査電極及び維持電極と前記アドレス電極との交点に、放電により発光するセルが形成されたプラズマディスプレイパネルと、
     前記走査電極にパルス電圧を印加して前記走査電極を駆動するスキャンドライバと、
     前記アドレス電極にパルス電圧を印加して前記アドレス電極を駆動するアドレスドライバと、
     前記スキャンドライバ又は前記アドレスドライバに接続され、前記パルス電圧を時間の経過とともに電圧が変化する鈍波にする電圧波形切替回路と、を有することを特徴とするプラズマディスプレイ装置。
    A plurality of scan electrodes and sustain electrodes extending in a first direction and alternately arranged in a second direction; and a plurality of address electrodes arranged to intersect the scan electrodes and the sustain electrodes, A plasma display panel in which cells that emit light by discharge are formed at intersections of the sustain electrodes and the address electrodes;
    A scan driver for driving the scan electrode by applying a pulse voltage to the scan electrode;
    An address driver for driving the address electrode by applying a pulse voltage to the address electrode;
    A plasma display device comprising: a voltage waveform switching circuit connected to the scan driver or the address driver and configured to make the pulse voltage an obtuse wave whose voltage changes over time.
  8.  前記電圧波形切替回路は、前記スキャンドライバ又は前記アドレスドライバに接続される抵抗値をスイッチにより切り替える回路であることを特徴とする請求項7に記載のプラズマディスプレイ装置。 The plasma display device according to claim 7, wherein the voltage waveform switching circuit is a circuit that switches a resistance value connected to the scan driver or the address driver by a switch.
  9.  前記プラズマディスプレイに表示する画像信号が入力され、該画像信号の1フレーム又は1フィールドを複数のサブフィールドに変換するとともに、該サブフィールドを用いて前記スキャンドライバを駆動するスキャン駆動回路及び前記アドレスドライバを駆動するアドレス駆動回路を制御する制御回路を備え、
     該制御回路は、前記サブフィールドに含まれる最低階調の輝度信号を含むセル数の、前記セルの全セル数に対する比率が所定値以上であったときに、前記電圧切替回路を鈍波出力側に切り替えさせる電圧切替制御手段を有することを特徴とする請求項8に記載のプラズマディスプレイ装置。
    A scan driving circuit for inputting an image signal to be displayed on the plasma display, converting one frame or one field of the image signal into a plurality of subfields, and driving the scan driver using the subfields, and the address driver A control circuit for controlling an address drive circuit for driving
    When the ratio of the number of cells including the luminance signal of the lowest gradation included in the subfield to the total number of cells is equal to or greater than a predetermined value, the control circuit sets the voltage switching circuit to the obtuse wave output side. 9. The plasma display device according to claim 8, further comprising voltage switching control means for switching between the two.
  10.  前記電圧切替制御手段は、前記電圧切替回路を鈍波出力側に切り替えさせるときに、前記電圧切替回路が接続された前記スキャンドライバ又は前記アドレスドライバから出力される前記電圧パルスのパルス幅を広げる制御を行うことを特徴とする請求項9に記載のプラズマディスプレイ装置。 The voltage switching control unit is configured to increase a pulse width of the voltage pulse output from the scan driver or the address driver to which the voltage switching circuit is connected when switching the voltage switching circuit to an obtuse wave output side. The plasma display device according to claim 9, wherein:
  11.  前記走査電極及び維持電極と、前記アドレス電極とは、前記セルの対向面同士に設けられていることを特徴とする請求項10に記載のプラズマディスプレイ装置。 11. The plasma display apparatus according to claim 10, wherein the scan electrode, the sustain electrode, and the address electrode are provided on opposing surfaces of the cell.
PCT/JP2008/071551 2008-11-27 2008-11-27 Plasma display panel driving method, and plasma display device WO2010061455A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/071551 WO2010061455A1 (en) 2008-11-27 2008-11-27 Plasma display panel driving method, and plasma display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/071551 WO2010061455A1 (en) 2008-11-27 2008-11-27 Plasma display panel driving method, and plasma display device

Publications (1)

Publication Number Publication Date
WO2010061455A1 true WO2010061455A1 (en) 2010-06-03

Family

ID=42225348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/071551 WO2010061455A1 (en) 2008-11-27 2008-11-27 Plasma display panel driving method, and plasma display device

Country Status (1)

Country Link
WO (1) WO2010061455A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002304153A (en) * 2001-01-18 2002-10-18 Lg Electronics Inc Method and apparatus for representing gray scale for plasma display panel
JP2003066897A (en) * 2001-06-12 2003-03-05 Matsushita Electric Ind Co Ltd Plasma display panel display device and its driving method
JP2005249949A (en) * 2004-03-02 2005-09-15 Fujitsu Ltd Method for driving plasma display panel
JP2006235574A (en) * 2005-02-23 2006-09-07 Lg Electronics Inc Plasma display apparatus, driving method of the same, plasma display panel and driving gear of plasma display panel
WO2006103718A1 (en) * 2005-03-25 2006-10-05 Hitachi Plasma Patent Licensing Co., Ltd. Plasma display
JP2006301571A (en) * 2005-04-21 2006-11-02 Lg Electronics Inc Plasma display apparatus and driving method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002304153A (en) * 2001-01-18 2002-10-18 Lg Electronics Inc Method and apparatus for representing gray scale for plasma display panel
JP2003066897A (en) * 2001-06-12 2003-03-05 Matsushita Electric Ind Co Ltd Plasma display panel display device and its driving method
JP2005249949A (en) * 2004-03-02 2005-09-15 Fujitsu Ltd Method for driving plasma display panel
JP2006235574A (en) * 2005-02-23 2006-09-07 Lg Electronics Inc Plasma display apparatus, driving method of the same, plasma display panel and driving gear of plasma display panel
WO2006103718A1 (en) * 2005-03-25 2006-10-05 Hitachi Plasma Patent Licensing Co., Ltd. Plasma display
JP2006301571A (en) * 2005-04-21 2006-11-02 Lg Electronics Inc Plasma display apparatus and driving method thereof

Similar Documents

Publication Publication Date Title
KR100713789B1 (en) Driving device for plasma display panel
KR20070116213A (en) Driving method of plasma display device and plasma display device
JP2001337646A (en) Plasma display panel drive method
JP2007004169A (en) Plasma display apparatus and method of driving the same
JP2002006803A (en) Driving method for plasma display panel and plasma display device
JP2007041251A (en) Method for driving plasma display panel
JP4180828B2 (en) Method and apparatus for driving plasma display panel
WO2007032403A1 (en) Drive device and drive method of plasma display panel, and plasma display devie
KR100688368B1 (en) Display apparatus and driving method thereof
KR100674661B1 (en) Display panel drive method
JP5044895B2 (en) Plasma display device
JP4665548B2 (en) Driving method of plasma display panel
KR100560502B1 (en) Plasma display device and driving method thereof
KR20080042915A (en) Plasma display panel drive method and plasma display device
JP2007025635A (en) Plasma display device and method of treating the same
JP5017796B2 (en) Plasma display panel driving method and plasma display device
WO2010061455A1 (en) Plasma display panel driving method, and plasma display device
JP2008209590A (en) Driving device of display panel
WO2007007871A1 (en) Plasma display panel driving method and plasma display
JP2005338217A (en) Method of driving plasma display panel, and display device
JP5003713B2 (en) Plasma display panel driving method and plasma display device
JP2007041473A (en) Driving method of plasma display panel, and plasma display device
EP2023322B1 (en) Plasma display and driving method thereof
JP2005301013A (en) Method for driving plasma display panel
KR100667321B1 (en) Plasma display apparatus and driving method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08878412

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08878412

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP