WO2010038848A1 - 超音波診断装置及び超音波診断用の画像処理装置 - Google Patents

超音波診断装置及び超音波診断用の画像処理装置 Download PDF

Info

Publication number
WO2010038848A1
WO2010038848A1 PCT/JP2009/067211 JP2009067211W WO2010038848A1 WO 2010038848 A1 WO2010038848 A1 WO 2010038848A1 JP 2009067211 W JP2009067211 W JP 2009067211W WO 2010038848 A1 WO2010038848 A1 WO 2010038848A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
dimensional
cross
section
diagnostic apparatus
Prior art date
Application number
PCT/JP2009/067211
Other languages
English (en)
French (fr)
Inventor
智章 長野
Original Assignee
株式会社 日立メディコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立メディコ filed Critical 株式会社 日立メディコ
Priority to US13/121,263 priority Critical patent/US8262572B2/en
Priority to JP2010531916A priority patent/JP5491405B2/ja
Publication of WO2010038848A1 publication Critical patent/WO2010038848A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0883Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/483Diagnostic techniques involving the acquisition of a 3D volume of data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52053Display arrangements
    • G01S7/52057Cathode ray tube displays
    • G01S7/5206Two-dimensional coordinated display of distance and direction; B-scan display
    • G01S7/52063Sector scan display
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52053Display arrangements
    • G01S7/52057Cathode ray tube displays
    • G01S7/52074Composite displays, e.g. split-screen displays; Combination of multiple images or of images and alphanumeric tabular information
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/523Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for generating planar views from image data in a user selectable plane not corresponding to the acquisition plane
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8993Three dimensional imaging systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52053Display arrangements
    • G01S7/52057Cathode ray tube displays
    • G01S7/52073Production of cursor lines, markers or indicia by electronic means

Definitions

  • the present invention in ultrasonic three-dimensional image diagnosis of an organ of a subject including a heart, a position of a cross section of a part to be observed by an examiner is set from an ultrasonic three-dimensional signal, and an image of the part is displayed.
  • the present invention relates to an ultrasonic diagnostic apparatus and an image processing apparatus for ultrasonic diagnosis.
  • the 3D diagnostic ultrasound of the heart since display and measurement are 3D display, it is not necessary for the examiner to improve the examination efficiency by using display and operation methods that are easy to understand.
  • the information that the examiner wants to observe is part of 3D data that contains a large amount of information, and technology that can handle this efficiently is necessary, but at present, the 3D image is rendered and displayed, such as a trackball input.
  • An operation for obtaining a desired image while searching by rotating, enlarging / reducing a three-dimensional image using a device or adjusting a rendering threshold is required.
  • Patent Document 1 As a technology for improving the efficiency of measurement settings in 3D measurement, in Patent Document 1, the device displays a 2D image extracted from 3D data in order to set the measurement target area, while the examiner observes this.
  • An input device such as a joystick is manually operated to adjust the position of a measurement target region.
  • the apparatus extracts and displays a two-dimensional image from three-dimensional data, and the examiner needs an operation of adjusting the position of the measurement target region while observing the image. Need to be improved.
  • an ultrasonic diagnostic apparatus and an ultrasonic diagnostic apparatus that determine the positional relationship between a probe and an organ, determine various display parameters of a cross section that the examiner wants to observe, and perform display processing of a three-dimensional ultrasonic image of the organ.
  • An image processing apparatus for sonic diagnosis is provided.
  • the ultrasonic diagnostic apparatus of the present invention which has been made to solve the above problem, sets means for acquiring a three-dimensional ultrasonic signal of an organ of a subject and a direction of a two-dimensional standard cross section of the organ 2D standard cross-sectional image is generated from the 3D ultrasound signal based on the means, the means for adjusting the display parameters of the image of the part that the examiner wants to observe, and the 2D standard cross-sectional direction of the organ set above Means for generating an observation cross-sectional image and a rendering image from the three-dimensional ultrasonic signal based on the adjusted display parameters of the image, and synthesizing the two-dimensional standard cross-sectional image, the observation cross-sectional image and the rendering image. It is characterized by having display means for displaying.
  • the positional relationship between the probe and the organ is recognized by setting the direction of the two-dimensional standard cross section of the organ in the three-dimensional ultrasonic signal of the acquired organ of the subject. Then, the image display parameters corresponding to the part that the examiner wants to observe are adjusted, and the apparatus can display the three-dimensional image.
  • the image processing apparatus for ultrasonic diagnosis of the present invention is an image processing apparatus used for processing a three-dimensional ultrasonic signal of an organ of a subject, and means for setting the direction of a two-dimensional standard cross section of the organ;
  • a two-dimensional standard cross-sectional image is generated from the three-dimensional ultrasonic signal of the organ based on the means for adjusting the display parameter of the image of the part desired by the examiner and the direction of the two-dimensional standard cross section of the organ set as described above
  • the positional relationship between the probe and the organ is recognized by setting the direction of the two-dimensional standard cross section of the organ in the three-dimensional ultrasonic signal of the acquired organ of the subject. Then, the image display parameters corresponding to the part that the examiner wants to observe are adjusted, and the apparatus can display the three-dimensional image.
  • the image display adjustment is performed while assisting with automatic or semi-automatic processing, thereby improving the convenience of operation, and the ultrasonic inspection. This makes it possible to reduce the burden on the examiner in the operation of.
  • the block diagram which shows schematic structure of this invention Diagram showing the acquisition of a 2D standard section with the opening direction of the 2D array probe as the axis Diagram showing rotation angle of 2D standard section in apex approach and parasternal approach Diagram showing 2D standard cross section Diagram showing the positional relationship between the probe and the observation cross section Diagram showing observation cross section selection screen Figure showing a display example of an observation cross-sectional image and a 3D image Figure showing an example of observation cross-section presets Diagram showing the processing flow for obtaining a 2D standard section from a 3D signal Diagram showing the processing flow for obtaining an observation cross section from a three-dimensional signal Block diagram of an ultrasonic diagnostic apparatus to which the present invention is applied The figure which shows the switching timing of the observation section synchronized with the ECG signal
  • FIG. 11 is a block diagram of an ultrasonic diagnostic apparatus to which the present invention is applied.
  • the ultrasonic diagnostic apparatus 100 forms and displays an ultrasonic image using a reflected echo signal obtained by transmitting and receiving ultrasonic waves in the subject 200, and vibrates by irradiating the subject 200 with ultrasonic waves and receiving it.
  • An ultrasonic probe 300 including a child element, an ultrasonic transmission / reception unit 400 that transmits / receives an ultrasonic signal, an ultrasonic image configuration unit 500 that forms an ultrasonic image based on the received signal, and an ultrasonic wave that is configured It includes a display unit 600 that displays an image, a control unit 700 that controls each component, a control panel 800 that gives instructions to the control unit, and an electrocardiograph 900 that is provided as necessary.
  • FIG. 1 is a block diagram showing an outline of the ultrasonic diagnostic apparatus in the present embodiment.
  • the ultrasonic diagnostic apparatus shown in FIG. 1 includes a three-dimensional ultrasonic signal generation unit 1 composed of a known ultrasonic probe, an ultrasonic transmission / reception unit, etc.
  • the standard cross-section recognition unit 2 the two-dimensional standard cross-sectional image generation unit 3 that generates a two-dimensional standard cross-sectional image from a three-dimensional signal
  • the observation site designation unit 4 that the examiner designates the observation site
  • the designated site An observation slice recognition unit 5 for recognizing a slice including a three-dimensional signal, an observation slice image generation unit 6 for generating an observation slice image from the three-dimensional signal, and a rendering image generation unit 7 for generating an image rendered from the three-dimensional signal
  • an image composition display unit 8 for composing and displaying the two-dimensional standard cross-sectional image, the observation cross-sectional image, and the rendering image.
  • the 2D standard cross section recognition unit 2 is given as a standard cross section signal pattern storage unit 9 that stores a typical pattern of a 2D standard cross section signal, and a rotation angle about the opening direction of the 2D array probe.
  • a standard cross-sectional angle storage unit 10 for storing a standard two-dimensional standard cross-section angle and a standard cross-sectional angle calculation unit 11 for recognizing a standard cross-sectional angle from the data in the storage unit are provided.
  • the observation section recognition unit 5 includes an observation section signal pattern storage unit 12 that stores a typical pattern of a two-dimensional observation section signal, and an observation section position storage unit 13 that stores a standard position of the section.
  • a display parameter storage unit 14 that stores standard parameters for displaying the cross section, and an observation cross section display parameter calculation unit 15 that recognizes the position and display parameters of the observation cross section from the data in the storage unit. ing.
  • the 3D ultrasound signal generator 1 is composed of a known ultrasound probe, ultrasound transmitter / receiver, etc., and receives backscattered waves from living tissue with a connected 2D array ultrasound probe. Then, three-dimensional ultrasonic signal data is generated.
  • the 2D standard cross section recognition unit 2 is a 2D included in the cross section group 19 that rotates from the 3D ultrasonic signal of the 3D ultrasonic signal generation unit 1 about the opening direction (dashed line in FIG. 2) of the 2D array probe. Calculate the rotation angle of standard sections 20, 21, and 22. The rotation angle is used in the 2D standard cross-sectional image generation unit 3 to specify the position (angle) of the 2D standard cross-sectional image from the data of the 3D ultrasonic signal and generate a 2D standard cross-sectional image.
  • the 2D standard cross-sectional image generation unit 3 generates a 2D cross-sectional image of the rotation angle calculated by the 2D standard cross-section recognition unit 2 from the 3D ultrasonic signal obtained by the 3D ultrasonic signal generation unit 1 To do. This is a process of extracting the images 20, 21, and 22 of the rotation angle from the two-dimensional section group 19 of FIG.
  • the observation part designating unit 4 is an input device for designating a part that the examiner wants to observe, such as a touch panel, a switch, a keyboard, and a trackball. Also included is a process of selecting a cross section to be observed from the preset observation cross section list 35 of FIG.
  • the observation cross section recognition unit 5 recognizes a cross section including the part specified by the observation part specifying unit 4 from the three-dimensional ultrasonic signal, and sets image display parameters of the cross section.
  • the image display parameters are used as image processing parameters such as a position and a gain for generating a cross-sectional image to be observed from the data of the three-dimensional ultrasonic signal in the observation cross-sectional image generation unit 6.
  • the image display parameters are also used as image processing parameters such as threshold settings and viewpoints for generating a rendering image from data of a three-dimensional ultrasonic signal in the rendering image generation unit 7.
  • the observation cross-sectional image generation unit 6 generates a two-dimensional cross-sectional image from the three-dimensional ultrasonic signal obtained by the three-dimensional ultrasonic signal generation unit 1 based on the display parameters calculated by the observation cross-section recognition unit 5.
  • the observation cross-sectional image 34 of FIG. 7 is generated.
  • the rendering image generation unit 7 generates a rendering image based on the display parameters calculated by the observation cross section recognition unit 5 from the 3D ultrasonic signal obtained by the 3D ultrasonic signal generation unit 1.
  • a three-dimensional rendering image of the heart displayed in the two-dimensional sectional image display window 31 of FIG. 7 and a rendering image of the observation sectional image 34 of FIG. 7 are generated.
  • the image composition display unit 8 synthesizes images output from the two-dimensional standard cross-sectional image generation unit 3, the observation cross-sectional image generation unit 6, and the rendering image generation unit 7, and displays them on the screen 30 of the ultrasonic diagnostic apparatus.
  • the standard cross-section signal pattern storage unit 9 is a standard cross-section serving as a reference for matching in order to obtain a position of a cross-section with a standard cross-section signal from the three-dimensional signal in the two-dimensional standard cross-section recognition unit 2 (FIG. 4).
  • the signal patterns of the apex 2-chamber image 21, the apex 4-chamber image 22, the apex long-axis image 20, the parasternal long-axis image 24, and the para-sternal short-axis image 25) are stored.
  • the standard section angle storage unit 10 stores the standard position (angle) of the standard section in the three-dimensional signal, and corresponds to the angles 23 and 26 in FIG. This is used when the angle is detected semi-automatically without performing the matching process (FIG. 9B).
  • the standard section angle calculation unit 11 determines the angle of the standard section by matching the signal pattern stored in the standard section signal pattern storage unit 9 with the two-dimensional signal pattern in the three-dimensional signal. That is, a matching operation between the cross-section group 19 obtained by rotating at 0 to 180 degrees in FIG. 2 and the standard cross-section signal pattern of the standard cross-section signal pattern storage unit 9 is performed to obtain the most matched cross-section angle.
  • the standard section angle is determined by combining the standard angle stored in the standard section angle storage unit 10 and the angle contacting the body surface of the two-dimensional array probe. That is, since the rough direction of the heart can be known from the angle to the body surface of the probe, the angle of the standard cross section is calculated by adding the standard cross section angle thereto.
  • the observation cross-section signal pattern storage unit 12 stores a signal pattern of a representative cross-section that is optimally observed in cardiac ultrasonography (for example, a cross-section that allows easy observation of the mitral valve or a cross-section that facilitates observation of the papillary muscle).
  • the pattern designated by the observation site designation unit 4 is called. These are stored in pairs with the position data stored in the observation section position storage unit 13 and the display parameters stored in the display parameter storage unit 14.
  • the observation cross-section position storage unit 13 stores the position of the representative cross-section in the three-dimensional signal, and designates the position such as the distance from the probe to the cross-section and the normal vector of the cross-section, for example. .
  • the display parameter storage unit 14 stores parameters for displaying the observation cross section, and includes, for example, a threshold, a gain, a viewpoint, and a scale setting when rendering a three-dimensional image.
  • the observation cross-section display parameter calculation unit 15 calls the observation cross-section standard position in the observation cross-section position storage unit 13 of the part specified by the observation part specification unit 4, roughly determines the observation cross-section, and then observes the observation cross-section signal pattern It reads out from the cross-section signal pattern storage unit 12, and performs a matching operation between this signal pattern and a two-dimensional signal pattern near the standard position to determine the position of the observation cross-section signal in detail.
  • the observation cross-sectional position is determined as a standard cross-sectional position stored in the observation cross-section position storage unit 13.
  • FIG. This parameter is used as an image processing parameter for generating an image in the observation slice image generation unit 6 and the rendering image generation unit 7.
  • the two-dimensional standard cross-section image generation unit 3, the observation cross-section image generation unit 6, the rendering image generation unit 7, the standard cross-section angle calculation unit 11, and the observation cross-section display parameter calculation unit 15 are usually configured by a CPU and operate according to a program. Is.
  • the 2D standard section recognition unit 2 When the examiner brings the 2D array probe into contact with the body surface, the 2D standard section recognition unit 2 first determines the rotation angle of the 2D standard section obtained by the section rotating around the opening direction of the 2D array probe. Calculate. Then, a two-dimensional standard cross-sectional image generation unit 3 obtains a two-dimensional standard cross-sectional image at the rotation angle position. Next, the observation section recognition unit 5 calculates the position in the three-dimensional signal of the part that the examiner wants to observe. Then, the cross-sectional image at the position is obtained by the observation cross-sectional image generation unit 6. In addition, a rendering image is generated by the rendering image generation unit 7 using the standard display parameters of the observation site from the display parameter storage unit 14. Finally, the screen is displayed by the image composition display unit 8 that synthesizes the two-dimensional standard slice image, the observation slice image, and the rendering image.
  • the image composition display unit 8 synthesizes the two-dimensional standard cross-sectional image, the observation cross-sectional image, and the rendering image and displays them on the screen, it is not necessary to synthesize and display all the images. good.
  • the image processing can be online processing in the ultrasonic diagnostic apparatus, but can also be online processing or offline processing in the image processing apparatus.
  • the cross section observed from the three-dimensional data is recognized, and the result is displayed as shown in FIG.
  • a cross-section (in the example, a short-axis image) 34 to be observed is displayed.
  • the two-dimensional cross-sectional image display window 31 displays the cross-sectional position 28 in the three-dimensional data.
  • the cross section 28 is displayed superimposed on the three-dimensional image, and the line-of-sight direction 32 is displayed.
  • the two-dimensional standard cross-section recognition unit 2 is used to determine the direction of the two-dimensional standard cross-section of the heart in the three-dimensional signal, among the plurality of cross-sections 19 rotated about the opening direction of the probe.
  • the dimensional standard cross section (apical apex 2-chamber image 21, apex apex 4-chamber image 22, apex long-axis image 20, parasternal long-axis image 24, para-sternal short-axis image 25 in FIG. 4) is recognized. This will be described with reference to FIGS.
  • the examiner brings the two-dimensional array probe into contact with the body surface (S111).
  • the apparatus obtains a two-dimensional section signal 19 ranging from 0 to 180 degrees obtained by rotating the opening direction of the two-dimensional array probe 16 as an axis (S112).
  • the standard cross-section signal pattern stored in the standard cross-section signal pattern storage unit 9 is matched with the cross-section signal pattern, and the angle of the most matched pattern is set as the angle 23 of the two-dimensional standard cross section (S113).
  • the matching calculation is performed by a known method such as a correlation calculation.
  • the description will be made along the flowchart of FIG.
  • the examiner brings the two-dimensional array probe into contact with the body surface (S121).
  • the mark 18 attached to the probe is brought into contact in a specific direction such as the body surface direction or the head direction.
  • a rough angle in the drawing direction of the heart is obtained.
  • the standard sectional angle stored in the standard sectional angle storage unit 10 is read out, and the standard sectional angle is set by adding the standard sectional angle to the drawing direction of the heart (S122).
  • these are converted into standard sections and imaged by the two-dimensional standard section image generating unit 3 and displayed on the standard section image display window 31 by the image composition display unit 8 (S123).
  • observation cross section recognition unit 5 determines the position of the cross section of the part that the examiner wants to observe in the three-dimensional signal. This will be described with reference to FIG.
  • the examiner designates a site to be observed on the observation cross-section list 35 using an input device (S211). Designation is performed using a trackball or the like on the ultrasonic diagnostic apparatus main body or a part selection switch 17 provided on the housing of the two-dimensional array probe shown in FIG.
  • the preset observation cross section is synchronized with the specific time phase of the electrocardiogram signal (one heart rate to several heartbeats). You may switch to every).
  • the R wave time phase of the electrocardiogram may be switched at every switching timing (thick arrow) or every four heartbeats (dotted arrow).
  • the preset cross-section is displayed as a list on the screen like the observation cross-section list 35, and each time the cross-section is switched, highlighting such as highlighting the currently selected cross-section is performed.
  • presets include a list 36 for observing only a valve, a list 37 for observing a standard section, a list 38 for observing a short axis image, and the like. May be. It is also possible to create an arbitrary list including a cross section necessary for a specific patient, disease, and examination, and it is also possible to list 39 the sites to be observed along the examination procedure in advance.
  • the position information stored in the observation cross-section position storage unit 13 is read, and a signal of the position is acquired (S212).
  • the position information of the observation cross section can be expressed by the distance 27 from the probe and the normal vector 29 of the cross section, but may be expressed by a numerical value such as an angle from an arbitrary reference position. Since the direction (rotation angle) of the heart in the three-dimensional signal is calculated by the two-dimensional standard section recognition unit 2, for example, the position of the observation section can be obtained by rotating the normal vector by this rotation angle.
  • Matching calculation is performed by a known method such as correlation calculation. Then, the display parameter of the part specified by the observation part specifying unit 4 is extracted from the display parameter storage unit 14, and the observation cross-sectional image generation unit 6 and the rendering image generation unit 7 generate an image using this display parameter, The image is displayed on the image composition display unit 8 (S214).
  • the standard cross-sectional position can be obtained more accurately, and furthermore, the display parameters are automatically set, so that an easily viewable image can be obtained. Easy operation with one hand is also possible by the site selection switch 17 provided on the probe housing.
  • the examiner designates a site to be observed using the input device as in the third embodiment (S221).
  • the position information of the designated part is read from the observation cross-section position storage unit 13, and the observation cross-section is set at that position (S222).
  • the display parameter of the designated part is retrieved from the display parameter storage unit 14 and set to display an image (S223).
  • the position is finely adjusted using an input device such as a trackball (S224).
  • the position of the cross section 28 in FIG. 7 also changes.
  • the display parameters are finely adjusted simultaneously with the operation (S225), and the observation cross-sectional image 34 is displayed (S226).
  • the examiner can adjust the position to be observed once and then manually perform fine adjustment, there is no need to search for a site to be observed from the entire three-dimensional signal as in the conventional case, and the local It is possible to display an image by a simple operation with only fine adjustment.
  • the image synthesis display unit 8 synthesizes the two-dimensional standard cross-sectional image, the observation cross-sectional image, and the rendering image and displays them on the screen of the ultrasonic diagnostic apparatus.
  • FIG. 7 shows a screen 30 of the display device of the ultrasonic diagnostic apparatus.
  • the standard cross-sectional image output from the two-dimensional standard cross-sectional image generation unit 3 and the rendered image 40 of the heart are displayed, and the line-of-sight direction and the viewpoint 32 are displayed in the normal vector direction in the window.
  • an observation cross-sectional image 34 of the part designated by the examiner is displayed.
  • the cross section 28 indicates where the observation cross section is located in the three-dimensional space.
  • observation cross-sectional image 34 is an image at the position of the cross-section 28, and displays the relationship between the three-dimensional signal and the observation site in an easily understandable manner.
  • the examiner has designated an image of the left ventricular short-axis image papillary muscle level, and a short-axis image is displayed by taking a cross-section of the apex approach image in the horizontal direction.
  • the list 35 has a function of designating a section to be observed by an input device, and displays preset section types.
  • the currently displayed cross-section is highlighted, for example, highlighted.
  • the example of the organ of the subject has been described with the heart, but the present invention can also be applied to other organs and organs.
  • the embodiment of the present invention can be easily extended even to an organ such as the liver that is affected by the heart beat and body movement.
  • 1 3D ultrasonic signal generator 2 2D standard cross section recognition unit, 3 2D standard cross section image generation unit, 4 observation site designation unit, 5 observation cross section recognition unit, 6 observation cross section image generation unit, 7 rendering image generation unit , 8 Image composition display section, 9 Standard section signal pattern storage section, 10 Standard section angle storage section, 11 Standard section angle calculation section, 12 Observation section signal pattern storage section, 13 Observation section position storage section, 14 Display parameter storage section, 15 Observation section display parameter calculation section, 16 2D array probe, 17 Observation site selection switch, 18 2D array probe direction indication mark, 19 2D section image with 2D array probe opening direction as axis, 20 Apex long axis Image, 21 apex 2 chamber images, 22 apex 4 chamber images, 23 2D standard cross section rotation angle in apex approach, 24 Parasternal long axis image, 25 parasternal short axis image, 26 rotation angle of 2D standard cross section in parasternal approach, 27 distance from probe to observation cross section, 28 observation cross section on 2D cross section image

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Cardiology (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

 本発明の超音波診断装置は、被検体の臓器の3次元超音波信号を取得する手段と、臓器の2次元標準断面の方向を設定する手段と、検者が観察したい部位の画像の表示パラメータを調整する手段と、上記設定された臓器の2次元標準断面の方向に基づいて、上記3次元超音波信号から2次元標準断面画像を生成する手段と、上記調整された画像の表示パラメータに基づいて、上記3次元超音波信号から観察断面画像及びレンダリング画像を生成する手段と、上記2次元標準断面画像と観察断面画像とレンダリング画像を合成して表示する表示手段を備える。

Description

超音波診断装置及び超音波診断用の画像処理装置
 本発明は、心臓を含む被検体の臓器の超音波3次元画像診断において、検者が観察したい部位の断面の位置を超音波3次元信号から設定して、その部位の画像を表示するようにした超音波診断装置及び超音波診断用の画像処理装置に関する。
 心臓の超音波3次元画像診断では、表示や計測が3次元表示となるため、検者にとって手間がかからず、かつ、理解しやすい表示や操作方法による検査効率の向上が望まれている。検者が観察したい情報は、大量の情報を含む3次元データの一部であり、これを効率良く扱う技術が必要であるが、現状では、3次元画像をレンダリング表示し、トラックボール等の入力機器を用いて3次元画像を回転、拡大・縮小させたり、レンダリングしきい値の調整を行ったりして探索しながら所望の画像を得る操作を必要としている。
 3次元計測における計測設定の効率向上技術としては、特許文献1において、計測対象領域を設定するために、装置が3次元データから抽出した2次元画像を表示し、検者がこれを観察しながらジョイスティック等の入力機器を手動操作して、計測対象領域の位置を調整するシステムが提案されている。
特開2001-128975号公報
 3次元画像を表示するには、検者が観察したい断面の位置や方向、レンダリング等のパラメータを決定する必要がある。上述の特許文献1の方法では、装置が3次元データから2次元画像を抽出して表示し、検者がこれを観察しながら計測対象領域の位置を調整する操作を必要としており、さらなる操作効率の向上が必要である。
 そこで、本発明では、プローブと臓器の位置関係を決定するとともに、検者が観察したい断面の各種表示パラメータを決定して、臓器の3次元超音波画像の表示処理を行う超音波診断装置及び超音波診断用の画像処理装置を提供する。
 上記課題を解決するためになされた請求項1記載の本発明の超音波診断装置は、被検体の臓器の3次元超音波信号を取得する手段と、臓器の2次元標準断面の方向を設定する手段と、検者が観察したい部位の画像の表示パラメータを調整する手段と、上記設定された臓器の2次元標準断面の方向に基づいて、上記3次元超音波信号から2次元標準断面画像を生成する手段と、上記調整された画像の表示パラメータに基づいて、上記3次元超音波信号から観察断面画像及びレンダリング画像を生成する手段と、上記2次元標準断面画像と観察断面画像とレンダリング画像を合成して表示する表示手段を備えたことを特徴としている。
 このような特徴を有する本発明によれば、取得した被検体の臓器の3次元超音波信号内での臓器の2次元標準断面の方向を設定することで、プローブと臓器の位置関係が認識される。そして、検者が観察したい部位に応じた画像表示パラメータが調整されて、その3次元画像を表示することが可能な装置になる。
 また、本発明の超音波診断用の画像処理装置は、被検体の臓器の3次元超音波信号の処理に用いる画像処理装置であって、臓器の2次元標準断面の方向を設定する手段と、検者が観察したい部位の画像の表示パラメータを調整する手段と、上記設定された臓器の2次元標準断面の方向に基づいて、上記臓器の3次元超音波信号から2次元標準断面画像を生成する手段と、上記調整された画像の表示パラメータに基づいて、上記臓器の3次元超音波信号から観察断面画像及びレンダリング画像を生成する手段と、上記2次元標準断面画像と観察断面画像とレンダリング画像を合成して表示する表示手段を備えたことを特徴とする。
 このような特徴を有する本発明によれば、取得した被検体の臓器の3次元超音波信号内での臓器の2次元標準断面の方向を設定することで、プローブと臓器の位置関係が認識される。そして、検者が観察したい部位に応じた画像表示パラメータが調整されて、その3次元画像を表示することが可能な装置になる。
 本発明によれば、従来の入力機器を用いた手動による複雑な画像表示調整に比べて、自動又は半自動処理で補助しながら画像表示調整することにより操作の簡便性を向上させて、超音波検査の操作における検者の負担を軽減することを可能にする。
本発明の概略構成を示すブロック図 2次元アレイプローブの開口方向を軸にした2次元標準断面の取得を示す図 心尖部アプローチと傍胸骨アプローチにおける2次元標準断面の回転角を示す図 2次元標準断面を示す図 プローブと観察断面の位置関係を示す図 観察断面選択画面を示す図 観察断面画像と3次元画像の表示例を示す図 観察断面プリセット例を示す図 3次元信号から2次元標準断面を得るための処理フローを示す図 3次元信号から観察断面を得るための処理フローを示す図 本発明が適用される超音波診断装置のブロック図 心電図信号に同期させた観察断面の切り替えタイミングを示す図
 図11は、本発明が適用される超音波診断装置のブロック図である。超音波診断装置100は、被検体200内に超音波を送受信し得られた反射エコー信号を用いて超音波画像を形成して表示するもので、被検体200に超音波を照射し受信する振動子素子を備えた超音波探触子300と、超音波信号を送受信する超音波送受信部400と、受信信号に基づいて超音波画像を構成する超音波画像構成部500と、構成された超音波画像を表示する表示部600と、各構成を制御する制御部700と、制御部に指示を与えるコントロールパネル800と、必要に応じて設けられる心電計900とを有している。
 本発明は、図11の超音波診断装置における、特に「超音波画像構成部500」に特徴を有するものであり、以下、この発明の実施の形態を、図1を用いて説明する。図1は、本実施の形態における超音波診断装置の概略を示すブロック図である。
 図1に示す超音波診断装置は、公知の超音波探触子や超音波送受信部等により構成される3次元超音波信号生成部1と、3次元信号から2次元標準断面を認識する2次元標準断面認識部2と、3次元信号から2次元標準断面画像を生成する2次元標準断面画像生成部3と、検者が観察部位を指定する観察部位指定部4と、前記指定された部位を含む断面を3次元信号から認識する観察断面認識部5と、3次元信号から観察断面画像を生成する観察断面画像生成部6と、3次元信号からレンダリングした画像を生成するレンダリング画像生成部7と、前記2次元標準断面画像と観察断面画像とレンダリング画像を合成して表示する画像合成表示部8を備えている。
 また、2次元標準断面認識部2は、2次元標準断面信号の典型的パターンを記憶している標準断面信号パターン記憶部9と、2次元アレイプローブの開口方向を軸にした回転角度として与えられる標準的な2次元標準断面の角度を記憶する標準断面角度記憶部10と、前記記憶部のデータから標準断面角度を認識する標準断面角度演算部11を備えている。また、観察断面認識部5は、2次元観察断面信号の典型的パターンを記憶している観察断面信号パターン記憶部12と、前記断面の標準的な位置を記憶している観察断面位置記憶部13と、前記断面を表示するための標準的なパラメータを記憶している表示パラメータ記憶部14と、前記記憶部のデータから観察断面の位置や表示パラメータを認識する観察断面表示パラメータ演算部15を備えている。
 以下、各構成要素を説明する。 
 3次元超音波信号生成部1は、公知の超音波探触子や超音波送受信部等から構成されるものであり、接続された2次元アレイ超音波プローブで生体組織からの後方散乱波を受信して3次元の超音波信号データを生成する。
 2次元標準断面認識部2は、3次元超音波信号生成部1の3次元超音波信号から、2次元アレイプローブの開口方向(図2破線)を軸に回転する断面群19に含まれる2次元標準断面20、21,22の回転角度を演算する。回転角度は、2次元標準断面画像生成部3において、3次元超音波信号のデータから2次元標準断面画像の位置(角度)を指定して2次元標準断面画像を生成するために用いられる。
 2次元標準断面画像生成部3は、3次元超音波信号生成部1で得られた3次元超音波信号から、2次元標準断面認識部2で計算された回転角度の2次元断面の画像を生成する。
図2の2次元断面群19の中から、前記回転角度の画像20、21、22を抽出する処理である。
 観察部位指定部4は、検者が観察したい部位を指定する入力機器で、タッチパネル、スイッチ、キーボード、トラックボール等である。また、図6のプリセットされた観察断面リスト35から観察したい断面を選択する処理も含まれる。
 観察断面認識部5は、前記観察部位指定部4で指定された部位を含む断面を、前記3次元超音波信号から認識し、その断面の画像表示パラメータを設定する。画像表示パラメータは、観察断面画像生成部6において、3次元超音波信号のデータから観察したい断面画像を生成するための位置やゲイン等の画像処理パラメータとして用いられる。また、前記画像表示パラメータは、レンダリング画像生成部7において3次元超音波信号のデータからレンダリング画像を生成するためのしきい値設定や視点等の画像処理パラメータとしても用いられる。
 観察断面画像生成部6は、3次元超音波信号生成部1で得られた3次元超音波信号から、観察断面認識部5で計算された表示パラメータに基づいて2次元断面画像を生成する。図7の観察断面画像34を生成する。
 レンダリング画像生成部7は、3次元超音波信号生成部1で得られた3次元超音波信号から、観察断面認識部5で計算された表示パラメータに基づいてレンダリング画像を生成する。図7の2次元断面画像表示用サブィンドウ31内に表示される心臓の3次元レンダリング像や、図7の観察断面画像34のレンダリング画像を生成する。
 画像合成表示部8は、前記2次元標準断面画像生成部3と観察断面画像生成部6とレンダリング画像生成部7から出力される画像を合成して、超音波診断装置の画面30に表示する。
 標準断面信号パターン記憶部9は、2次元標準断面認識部2において、3次元信号の中から標準断面信号のある断面の位置を得るために、マッチングをとるための基準となる標準断面(図4の心尖部2腔像21、心尖部4腔像22、心尖部長軸像20、傍胸骨長軸像24、傍胸骨短軸像25)の信号パターンが記憶されている。
 標準断面角度記憶部10は、3次元信号における標準断面の標準的な位置(角度)を記憶しており、図3の角度23、26に相当する。前記マッチング処理を行わず、半自動的に角度を検出する際(図9(b))に用いられる。
 標準断面角度演算部11は、標準断面信号パターン記憶部9に記憶されている信号パターンと3次元信号中の2次元信号パターンのマッチングを行って標準断面の角度を決定する。すなわち、図2の0~180度で回転させて得られた断面群19と標準断面信号パターン記憶部9の標準断面信号パターンとのマッチング演算を行って、最もマッチした断面の角度を得る。
 または、標準断面角度記憶部10に記憶されている標準の角度と、2次元アレイプローブの体表へ接する角度とを併せて標準断面角度を決定する。すなわち、プローブの体表への角度により、おおまかな心臓の方向がわかるので、これに、標準的断面角度を加えることにより、標準断面の角度を計算する。
 観察断面信号パターン記憶部12は、心臓超音波検査で最適に観察される代表的な断面(例えば、僧帽弁を観察しやすい断面や、乳頭筋を観察しやすい断面など)の信号パターンが記憶されており、観察部位指定部4で指定されたパターンが呼び出される。これらは、観察断面位置記憶部13に記憶されている位置データおよび表示パラメータ記憶部14に記憶されている表示パラメータと対になって記憶されている。
 観察断面位置記憶部13は、前記代表的な断面の3次元信号中での位置が記憶されており、例えば、プローブから断面への距離や、断面の法線ベクトルなど位置を指定するものである。
 表示パラメータ記憶部14は、観察断面を表示する際のパラメータが記憶されており、例えば、3次元画像のレンダリングの際のしきい値や、ゲイン、視点、スケール設定などである。
 観察断面表示パラメータ演算部15は、観察部位指定部4で指定された部位の観察断面位置記憶部13の観察断面標準位置を呼び出して、おおまかに観察断面を決定した後、観察断面信号パターンを観察断面信号パターン記憶部12から読み出し、この信号パターンと前記標準位置近傍の2次元信号パターンとのマッチング演算を行って観察断面信号の位置を詳細に決定する。または、半自動的な処理(図10(b))の場合には、観察断面位置記憶部13に記憶されている標準的な断面位置として観察断面位置を決定する。そして、表示パラメータ記憶部14に記憶されている表示パラメータ群から観察部位指定部4で指定された部位のパラメータを読み出す。このパラメータは、観察断面画像生成部6とレンダリング画像生成部7において画像を生成するための画像処理パラメータとして用いられる。
 なお、2次元標準断面画像生成部3、観察断面画像生成部6、レンダリング画像生成部7、標準断面角度演算部11及び観察断面表示パラメータ演算部15は、通常CPUにより構成され、プログラムによって動作するものである。
 (全体の動作)
 検者が2次元アレイプローブを体表面に接触させると、最初に2次元標準断面認識部2によって、2次元アレイプローブの開口方向を軸に回転する断面で得られる2次元標準断面の回転角度を演算する。そして、2次元標準断面画像生成部3によって前記回転角度位置の2次元標準断面画像を得る。次に、観察断面認識部5によって、検者が観察したい部位の3次元信号中での位置を計算する。そして、観察断面画像生成部6によって前記位置の断面画像を得る。また、表示パラメータ記憶部14から観察部位の標準的な表示パラメータを用いて、レンダリング画像生成部7によってレンダリング画像を生成する。最後に、2次元標準断面画像と観察断面画像とレンダリング画像を合成する画像合成表示部8によって画面表示する。
 なお、画像合成表示部8が、2次元標準断面画像と観察断面画像とレンダリング画像を合成して画面表示する際に、全ての画像を合成表示する必要はなく、適宜選択して表示しても良い。
 また、本発明において、画像処理は、超音波診断装置におけるオンライン処理とすることもできるが、画像処理装置におけるオンライン処理あるいはオフライン処理とすることもできる。
 GUI上での動作を説明する。3次元データが取得されると、最初に図6の画面が表示される。前記のとおり2次元標準断面画像は3次元信号から自動的に認識されて、図6の2次元断面画像表示用サブィンドウ31内において、3次元画像に重畳して表示20、21、22される。また、プリセットされている観察したい断面のリスト35が表示されている。
 次に、リスト35から観察したい断面を選択する。これは、検者が入力機器を用いて手動で選択するか、心電図信号の特定の時相で自動的に選択される。図6では、短軸像を選択したところで、わかりやすいように反転や点滅表示する。
 前記のように観察断面が選択されると、3次元データから観察した断面を認識して、その結果を図7のように表示する。図7の観察断面表示用サブィンドウ33には、観察したい断面(例では短軸像)34が表示される。これと同時に、2次元断面画像表示用サブィンドウ31では、3次元データにおける断面の位置28を表示する。その断面28は3次元画像に重畳して表示され、その視線方向32が表示される。
 以下、2次元標準断面認識部2と観察断面認識部5と画像合成表示部8の動作について詳細に説明する。
 (2次元標準断面認識部2の動作)
 2次元標準断面認識部2は、3次元信号中における心臓の2次元標準断面の方向を決定することを目的として、プローブの開口方向を軸にして回転させた複数の断面19の中で、2次元標準断面(図4の心尖部2腔像21、心尖部4腔像22、心尖部長軸像20、傍胸骨長軸像24、傍胸骨短軸像25)を認識するものである。図2、3、4およびフローチャート図9を用いて説明する。
 信号のパターンマッチングを利用し全自動で動作するものである。図9(a)のフローチャートに沿って説明する。最初に検者は2次元アレイプローブを体表面に接触させる(S111)。装置は、図2のように2次元アレイプローブ16の開口方向を軸にして回転させて得られる0~180度にわたる2次元断面信号19を得る(S112)。標準断面信号パターン記憶部9に記憶しておいた標準断面信号パターンと前記断面信号のパターンのマッチング演算を行い、最もマッチしたパターンの角度を2次元標準断面の角度23として設定する(S113)。マッチングの演算は、相関演算などの公知の方法による。
 例えば、図3(a)のように心尖部アプローチの場合には、心尖部長軸像20、心尖部2腔像21、心尖部4腔像22がどの角度の画像かが認識されることにより、それらの角度関係23が得られ、これらを標準断面として、2次元標準断面画像生成部3によって画像化し、画像合成表示部8によって標準断面画像表示用のサブィンドウ31に表示する(S114)。図3(b)のように傍胸骨アプローチの場合には、同様に傍胸骨長軸像24と傍胸骨短軸像25との角度関係26を得て画像表示する。
 これにより、検者に設定操作をさせることなく、自動的に標準断面を表示することが可能である。また、信号のパターンマッチング演算を用いることによって、より正確に標準断面位置を求めることが可能である。
 2次元アレイプローブの筺体に設けたマーク18を利用して半自動的に動作する方法である。図9(b)のフローチャートに沿って説明する。最初に検者は2次元アレイプローブを体表面に接触させる(S121)。このとき、プローブに付されたマーク18を例えば体表方向や頭部方向のように特定の方向に向けて接触させる。このとき、プローブと心臓の位置関係は物理的に決まるので心臓の描画方向のおおまかな角度が求められる。標準断面角度記憶部10に記憶しておいた標準断面角度を読み出して、前記心臓の描画方向に標準断面の角度を加えることによって標準断面角度を設定する(S122)。
 実施例1と同様に、これらを標準断面として、2次元標準断面画像生成部3によって画像化し、画像合成表示部8によって標準断面画像表示用サブィンドウ31に表示する(S123)。
 これにより、検者は、2次元アレイプローブの向きを特定方向に合わせて体表面に接触させる簡単な操作により、標準断面を表示することが可能である。画像のパターンマッチングを用いなくても、プローブに付されたマークを利用することによって、簡便に標準断面位置を求めることが可能である。
 (観察断面認識部5の動作)
 観察断面認識部5は、3次元信号中における、検者が観察したい部位の断面の位置を決定するものである。図5とフローチャート図10を用いて説明する。
 画像のパターンマッチングを利用して自動的に設定する方法である。図10(a)のフローチャートに沿って説明する。最初に、検者は観察したい部位を観察断面リスト35上で入力機器を用いて指定する(S211)。超音波診断装置本体上のトラックボール等か図5に示す2次元アレイプローブの筺体に設けてある部位選択スイッチ17を用いて指定する。
 または、フットスイッチや音声認識の少なくとも一つによって指定しても良い。心電計からの心電図信号が入力されている場合には、心電図信号の特定の時相に同期して、先にプリセットしておいた観察断面を特定時相になる度(1心拍ないし数心拍毎)に切り替えても良い。
 例えば、図12のように心電図のR波の時相を切り替えタイミング(太線矢印)、4心拍(点線矢印)毎に切り替えても良い。プリセットされた断面は観察断面リスト35のように画面上にリスト表示しておき、断面が切り替わる毎に、現在選択されている断面を反転表示させるなどの強調表示を行う。
 プリセットは、例えば、図8に示すように、弁を観察するために弁のみのリスト36、標準断面を観察するためのリスト37、短軸像を観察するためのリスト38などを用意しておいても良い。また、特定の患者、疾患、検査に必要な断面を含んだ任意のリストを作成することも可能であり、あらかじめ検査手順に沿って観察したい部位をリスト化39しておくことも可能である。前記指定した部位について、観察断面位置記憶部13に記憶されている位置情報を読みだして、その位置の信号を取得する(S212)。観察断面の位置情報は、プローブからの距離27、断面の法線ベクトル29で表現することができるが、任意の基準位置からの角度などの数値で表現してもよい。2次元標準断面認識部2によって3次元信号中の心臓の方向(回転角)が計算されているので、例えば、法線ベクトルをこの回転角だけ回転させれば観察断面の位置が求められる。
 これだけでは、位置の精度に不十分な場合があるので、観察断面信号パターン記憶部12に記憶されている観察断面信号パターンを用いた信号パターンマッチングによる微調整を行う。S212で取得された断面の位置の近傍において、この断面を3次元超音波信号内で微小距離移動または微小角度傾けながら、前記観察断面信号パターンに最もよく一致した断面を探索し、その位置を観察断面の位置として認識する(S213)。
 マッチングの演算は、相関演算などの公知の方法による。そして、観察部位指定部4によって指定された部位の表示パラメータを表示パラメータ記憶部14から取り出して、観察断面画像生成部6とレンダリング画像生成部7において、この表示パラメータを用いた画像を生成し、画像合成表示部8で画像を表示する(S214)。
 この実施例によれば、検者が指定する部位の断面を自動的に表示することが可能である。
 また、画像のパターンマッチングを用いることによって、より正確に標準断面位置が求められ、さらに、表示パラメータを自動設定するので簡便に見やすい画像を得ることが可能である。プローブ筺体に設けた部位選択スイッチ17により片手での容易な操作も可能である。
 実施例3をベースにして半自動的に設定する方法である。図10(b)のフローチャートに沿って説明する。最初に、検者は観察したい部位を実施例3と同様に入力機器を用いて指定する(S221)。観察断面位置記憶部13から前記指定した部位の位置情報を読み出して、その位置に観察断面を設定する(S222)。そして、指定された部位の表示パラメータを表示パラメータ記憶部14から取り出して設定して画像表示する(S223)。ここで、トラックボール等の入力機器を用いて、その位置を微調整する(S224)。入力機器の操作と連動して、図7の断面28の位置も変化する。また、操作と同時に表示パラメータの微調整を行って(S225)、観察断面画像34を表示する(S226)。
 この実施例によれば、検者が観察したい位置にいったん調整した後に微調整を手動で行うことができるので、従来のように3次元信号全体から観察したい部位を探索する手間が無くなり、局所的な微調整のみの簡便な操作で画像表示することが可能である。
 (画像合成表示部8の動作)
 画像合成表示部8は、2次元標準断面画像と観察断面画像とレンダリング画像を合成して、超音波診断装置の画面に表示する。図7は超音波診断装置の表示装置の画面30である。サブィンドウ31には、2次元標準断面画像生成部3から出力される標準断面画像と心臓のレンダリング画像40が表示され、そのウィンドウの中に法線ベクトル方向に視線方向と視点32が表示される。サブィンドウ33には、検者が指定した部位の観察断面画像34が表示される。また、断面28は、3次元空間上で、観察断面がどの位置にあるかを示している。図7では、観察断面画像34は、断面28の位置の画像であることを示しており、3次元信号と観察部位の関係を理解しやすく表示する。この例では、左心室短軸像乳頭筋レベルの画像を検者が指定したところであり、心尖部アプローチ像を横方向に断面をとって短軸像を表示しているところである。リスト35は、観察したい断面を入力機器によって指定する機能を有しており、プリセットされている断面種類が表示される。また、現在表示中の断面は反転表示されるなど強調表示される。
 これにより、2次元アレイプローブが向いている方向の画像と観察したい部位の画像を同時表示し、かつ、視点を表示することによって、その位置関係が理解しやすい表示方法になる。
 以上の実施形態では、被検体の臓器の例を心臓で説明したが、他の臓器、器官にも適用可能である。例えば、肝臓など心臓の拍動や体動に影響される臓器であっても、本発明の実施形態を簡単に拡張できる。
 以上、本発明者によってなされた発明を実施形態に基づき具体的に説明したが、本発明は上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。
 1 3次元超音波信号生成部、 2 2次元標準断面認識部、 3 2次元標準断面画像生成部、 4 観察部位指定部、 5 観察断面認識部、 6 観察断面画像生成部、 7 レンダリング画像生成部、 8 画像合成表示部、 9 標準断面信号パターン記憶部、 10 標準断面角度記憶部、 11 標準断面角度演算部、 12 観察断面信号パターン記憶部、 13 観察断面位置記憶部、 14 表示パラメータ記憶部、 15 観察断面表示パラメータ演算部、 16 2次元アレイプローブ、 17 観察部位選択スイッチ、 18 2次元アレイプローブ方向指示マーク、 19 2次元アレイプローブの開口方向を軸にした2次元断面画像、 20 心尖部長軸像、 21 心尖部2腔像、 22 心尖部4腔像、 23 心尖部アプローチにおける2次元標準断面の回転角度、 24 傍胸骨長軸像、 25 傍胸骨短軸像、 26 傍胸骨アプローチにおける2次元標準断面の回転角度、 27 プローブから観察断面への距離、 28 2次元断面像上における観察断面、 29 観察断面の法線ベクトル、 30 超音波診断装置の表示画面、 31 2次元断面画像表示用サブィンドウ、 32 視点と視線方向、 33 観察断面表示用サブィンドウ、 34 観察断面画像、 35 観察断面リスト、 36 弁観察用プリセット、 37 標準断面観察用プリセット、 38 短軸像観察用プリセット、 39 任意断面観察用プリセット、 40 心臓の3次元レンダリング像、100 超音波診断装置、200 被検体、300 超音波探触子、400 超音波送受信部、500 超音波画像構成部、600 表示部、700 制御部、800 コントロールパネル、900 心電計

Claims (15)

  1.  被検体の臓器の3次元超音波信号を取得する手段と、
     臓器の2次元標準断面の方向を設定する手段と、
     検者が観察したい部位の画像の表示パラメータを調整する手段と、
     上記設定された臓器の2次元標準断面の方向に基づいて、上記3次元超音波信号から2次元標準断面画像を生成する手段と、
     上記調整された画像の表示パラメータに基づいて、上記3次元超音波信号から観察断面画像及びレンダリング画像を生成する手段と、
     上記2次元標準断面画像と観察断面画像とレンダリング画像を合成して表示する表示手段を備えたことを特徴とする超音波診断装置。
  2.  請求項1の超音波診断装置において、
     上記臓器の2次元標準断面の方向を設定する手段は、超音波3次元信号のパターン認識手段であることを特徴とする超音波診断装置。
  3.  請求項2の超音波診断装置において、
     上記3次元信号パターン認識手段は、2次元アレイプローブを体表面に垂直な方向を軸に電子的に回転して得られる複数の2次元断面の信号を認識する手段であることを特徴とする超音波診断装置。
  4.  請求項2の超音波診断装置において、
     上記3次元信号パターン認識手段は、臓器の2次元画像による検査で使用される標準断面の回転角度を決定することを特徴とする超音波診断装置。
  5.  請求項1の超音波診断装置において、
     上記臓器の2次元標準断面の方向を設定する手段は、2次元アレイプローブ筺体に付されたその体表面に対する方向を示すマークを含むことを特徴とする超音波診断装置。
  6.  請求項5の超音波診断装置において、
     上記臓器の2次元標準断面の方向を設定する手段は、マークの方向を基準にした標準の回転角として決定されることを特徴とする超音波診断装置。
  7.  請求項1の超音波診断装置において、
     上記画像表示パラメータの調整手段は、検者が観察したい部位の種類を指定するユーザインターフェイスを有し、指定された部位の種類に対する標準的な信号パターンとのマッチング演算による観察位置認識手段または記憶装置に記憶されている標準的な位置データを選択する手段を有し、記憶装置に記憶された前記部位の種類に関連づけられた画像表示パラメータを選択する手段を有することを特徴とする超音波診断装置。
  8.  請求項7の超音波診断装置において、
     上記検者が観察したい部位の種類を指定するユーザインターフェイスは、装置画面上のメニューからの選択またはプローブ筺体に設置されたスイッチ機構またはフットスイッチまたは音声認識または心電図信号同期の少なくとも一つによって切り替える手段を有することを特徴とする超音波診断装置。
  9.  請求項8の超音波診断装置において、
     上記心電図信号同期によって断面種類を切り替える手段は、プリセットされた断面種類を、心電図の特定の時相に同期させて順に切り替えていくシーケンス機能を有していることを特徴とする超音波診断装置。
  10.  請求項7の超音波診断装置において、
     上記指定された部位の種類に対する標準的な信号パターンとのマッチング演算による観察位置認識手段は、記憶装置に記憶しておいた信号パターンを前記取得した3次元信号から信号パターン認識演算によって認識した位置とすることを特徴とする超音波診断装置。
  11.  請求項7の超音波診断装置において、
     上記記憶装置に記憶されている標準的な位置データを選択する手段は、記憶装置に記憶された部位ごとに関連づけられた標準的な位置データ群から、指定された部位の種類に対応する位置データを選択することを特徴とする超音波診断装置。
  12.  請求項7の超音波診断装置において、
     上記記憶装置に記憶された部位の種類に関連づけられた画像表示パラメータを選択する手段は、記憶装置に記憶されている部位の種類に関連付けられた標準的なゲイン、視点、レンダリング、スケールパラメータ群から、指定された部位の各パラメータを選択する ことを特徴とする超音波診断装置。
  13.  請求項1の超音波診断装置において、
     上記表示手段は、表示装置上に2次元アレイプローブの向きで取得した2次元標準断面画像と検者が観察したい画像を同時に表示し、前記2次元標準断面画像上に、観察している断面と視点及び視線方向とを表示することを特徴とする超音波診断装置。
  14.  被検体の臓器の3次元超音波信号の処理に用いる画像処理装置であって、
     臓器の2次元標準断面の方向を設定する手段と、
     検者が観察したい部位の画像の表示パラメータを調整する手段と、
     上記設定された臓器の2次元標準断面の方向に基づいて、上記臓器の3次元超音波信号から2次元標準断面画像を生成する手段と、
     上記調整された画像の表示パラメータに基づいて、上記臓器の3次元超音波信号から観察断面画像及びレンダリング画像を生成する手段と、
     上記2次元標準断面画像と観察断面画像とレンダリング画像を合成して表示する表示手段を備えたことを特徴とする超音波診断用の画像処理装置。
  15.  請求項14の画像処理装置において、
     上記臓器の2次元標準断面の方向を設定する手段は、超音波3次元信号のパターン認識手段であることを特徴とする超音波診断用の画像処理装置。
PCT/JP2009/067211 2008-10-03 2009-10-02 超音波診断装置及び超音波診断用の画像処理装置 WO2010038848A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/121,263 US8262572B2 (en) 2008-10-03 2009-10-02 Ultrasonic diagnostic apparatus and image processing apparatus for ultrasonic diagnosis
JP2010531916A JP5491405B2 (ja) 2008-10-03 2009-10-02 超音波診断装置及び超音波診断用の画像処理装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008258822 2008-10-03
JP2008-258822 2008-10-03

Publications (1)

Publication Number Publication Date
WO2010038848A1 true WO2010038848A1 (ja) 2010-04-08

Family

ID=42073606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067211 WO2010038848A1 (ja) 2008-10-03 2009-10-02 超音波診断装置及び超音波診断用の画像処理装置

Country Status (3)

Country Link
US (1) US8262572B2 (ja)
JP (1) JP5491405B2 (ja)
WO (1) WO2010038848A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014000393A (ja) * 2012-05-22 2014-01-09 Toshiba Corp 医用画像診断装置及び画像表示装置
CN110742654A (zh) * 2019-11-05 2020-02-04 深圳度影医疗科技有限公司 一种基于三维超声图像的标准切面的定位和测量方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7660488B2 (en) 2004-11-04 2010-02-09 Dr Systems, Inc. Systems and methods for viewing medical images
US7885440B2 (en) 2004-11-04 2011-02-08 Dr Systems, Inc. Systems and methods for interleaving series of medical images
US7970625B2 (en) 2004-11-04 2011-06-28 Dr Systems, Inc. Systems and methods for retrieval of medical data
US7920152B2 (en) 2004-11-04 2011-04-05 Dr Systems, Inc. Systems and methods for viewing medical 3D imaging volumes
US7787672B2 (en) 2004-11-04 2010-08-31 Dr Systems, Inc. Systems and methods for matching, naming, and displaying medical images
US7953614B1 (en) 2006-11-22 2011-05-31 Dr Systems, Inc. Smart placement rules
US8380533B2 (en) 2008-11-19 2013-02-19 DR Systems Inc. System and method of providing dynamic and customizable medical examination forms
US8712120B1 (en) 2009-09-28 2014-04-29 Dr Systems, Inc. Rules-based approach to transferring and/or viewing medical images
US9092551B1 (en) 2011-08-11 2015-07-28 D.R. Systems, Inc. Dynamic montage reconstruction
JP2013123459A (ja) * 2011-12-13 2013-06-24 Seiko Epson Corp 生体検査用プローブ
JP5996908B2 (ja) * 2012-04-02 2016-09-21 富士フイルム株式会社 超音波診断装置及び超音波診断装置の表示方法
KR20140035747A (ko) * 2012-09-14 2014-03-24 삼성전자주식회사 초음파 영상 장치 및 그 제어방법
JP2014064637A (ja) 2012-09-25 2014-04-17 Fujifilm Corp 超音波診断装置
US9495604B1 (en) 2013-01-09 2016-11-15 D.R. Systems, Inc. Intelligent management of computerized advanced processing
US20170046483A1 (en) 2015-04-30 2017-02-16 D.R. Systems, Inc. Database systems and interactive user interfaces for dynamic interaction with, and comparison of, digital medical image data
KR102446343B1 (ko) * 2015-06-15 2022-09-22 삼성메디슨 주식회사 초음파 장치 및 그 제어방법
KR102655299B1 (ko) * 2016-11-15 2024-04-08 삼성메디슨 주식회사 초음파 영상장치 및 그 제어방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08131403A (ja) * 1994-11-09 1996-05-28 Toshiba Medical Eng Co Ltd 医用画像処理装置
JP2004141522A (ja) * 2002-10-28 2004-05-20 Aloka Co Ltd 超音波診断装置
JP2006526451A (ja) * 2003-06-03 2006-11-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 旋回3次元超音波表示の振動対象との同期化
JP2008534082A (ja) * 2005-03-25 2008-08-28 イースタン ヴァージニア メディカル スクール 胎児、新生児及び成体の器官のオペレータに依存しない標準超音波画像を取得及び生成するシステム、方法及び媒体

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4659950B2 (ja) 1999-08-20 2011-03-30 株式会社東芝 超音波診断装置
JP4614548B2 (ja) * 2001-01-31 2011-01-19 パナソニック株式会社 超音波診断装置
JP4958348B2 (ja) * 2001-09-06 2012-06-20 株式会社日立メディコ 超音波撮像装置
JP4201311B2 (ja) * 2002-03-12 2008-12-24 株式会社日立メディコ 超音波診断装置
JP4551051B2 (ja) * 2002-04-17 2010-09-22 オリンパス株式会社 超音波診断装置
JP2004215987A (ja) * 2003-01-16 2004-08-05 Matsushita Electric Ind Co Ltd 超音波診断装置および超音波診断方法
US20090247879A1 (en) * 2004-03-09 2009-10-01 Angelsen Bjorn A J Extended ultrasound imaging probe for insertion into the body
JP2007020908A (ja) * 2005-07-19 2007-02-01 Toshiba Corp 超音波診断装置及び超音波診断装置の制御プログラム
JP4096014B2 (ja) * 2006-08-08 2008-06-04 日立Geニュークリア・エナジー株式会社 原子炉圧力容器の超音波検査方法及び装置
CA2675619C (en) * 2007-01-19 2016-08-16 Sunnybrook Health Sciences Centre Scanning mechanisms for imaging probe
CN101438967B (zh) * 2007-11-22 2012-09-05 Ge医疗系统环球技术有限公司 超声成像设备
JP2010014626A (ja) * 2008-07-04 2010-01-21 Toshiba Corp 三次元超音波検査装置
CN101744639A (zh) * 2008-12-19 2010-06-23 Ge医疗系统环球技术有限公司 超声成像方法及设备
JP5394299B2 (ja) * 2010-03-30 2014-01-22 富士フイルム株式会社 超音波診断装置
JP5462076B2 (ja) * 2010-06-01 2014-04-02 株式会社東芝 超音波診断装置および画像情報管理装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08131403A (ja) * 1994-11-09 1996-05-28 Toshiba Medical Eng Co Ltd 医用画像処理装置
JP2004141522A (ja) * 2002-10-28 2004-05-20 Aloka Co Ltd 超音波診断装置
JP2006526451A (ja) * 2003-06-03 2006-11-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 旋回3次元超音波表示の振動対象との同期化
JP2008534082A (ja) * 2005-03-25 2008-08-28 イースタン ヴァージニア メディカル スクール 胎児、新生児及び成体の器官のオペレータに依存しない標準超音波画像を取得及び生成するシステム、方法及び媒体

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014000393A (ja) * 2012-05-22 2014-01-09 Toshiba Corp 医用画像診断装置及び画像表示装置
CN110742654A (zh) * 2019-11-05 2020-02-04 深圳度影医疗科技有限公司 一种基于三维超声图像的标准切面的定位和测量方法

Also Published As

Publication number Publication date
JPWO2010038848A1 (ja) 2012-03-01
JP5491405B2 (ja) 2014-05-14
US20110178405A1 (en) 2011-07-21
US8262572B2 (en) 2012-09-11

Similar Documents

Publication Publication Date Title
JP5491405B2 (ja) 超音波診断装置及び超音波診断用の画像処理装置
US10410409B2 (en) Automatic positioning of standard planes for real-time fetal heart evaluation
JP5645811B2 (ja) 医用画像診断装置、関心領域設定方法、医用画像処理装置、及び関心領域設定プログラム
JP4831465B2 (ja) 超音波検出指標に基づいた超音波収集の最適化
US6951543B2 (en) Automatic setup system and method for ultrasound imaging systems
JP5606076B2 (ja) 超音波診断装置、医用画像処理装置及び医用画像処理プログラム
US20060034513A1 (en) View assistance in three-dimensional ultrasound imaging
JP4989262B2 (ja) 医用画像診断装置
KR20100087521A (ko) 영상 지시자를 제공하는 초음파 시스템 및 방법
US20110087094A1 (en) Ultrasonic diagnosis apparatus and ultrasonic image processing apparatus
JP2009530010A (ja) 心機能異常の分析のための心臓エコー検査装置及び方法
EP2253275A1 (en) Ultrasonic diagnostic apparatus, ultrasonic image processing apparatus and ultrasonic image processing method
JP2006197967A (ja) 超音波診断装置及び超音波画像表示装置
JP2009089736A (ja) 超音波診断装置
JP5253893B2 (ja) 医用画像処理装置、超音波診断装置、及び超音波画像取得プログラム
JP2018057428A (ja) 超音波診断装置および超音波診断支援プログラム
JP2005296436A (ja) 超音波診断装置
JP2013532541A (ja) 個別のバイプレーン画像の表示及びエクスポート
JP2008073423A (ja) 超音波診断装置、診断パラメータ計測装置及び診断パラメータ計測方法
JP5942217B2 (ja) 超音波診断装置、超音波画像処理装置及び超音波画像処理プログラム
JP2008104695A (ja) 超音波診断装置、画像処理装置、及び画像処理プログラム
JP2008289548A (ja) 超音波診断装置及び診断パラメータ計測装置
JP4634814B2 (ja) 超音波診断装置
JP5331313B2 (ja) 超音波診断装置
JP5976472B2 (ja) 超音波診断装置及び制御プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09817880

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010531916

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13121263

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09817880

Country of ref document: EP

Kind code of ref document: A1