WO2010035411A1 - Guided vehicle system - Google Patents

Guided vehicle system Download PDF

Info

Publication number
WO2010035411A1
WO2010035411A1 PCT/JP2009/004368 JP2009004368W WO2010035411A1 WO 2010035411 A1 WO2010035411 A1 WO 2010035411A1 JP 2009004368 W JP2009004368 W JP 2009004368W WO 2010035411 A1 WO2010035411 A1 WO 2010035411A1
Authority
WO
WIPO (PCT)
Prior art keywords
route
transport vehicle
transport
travel
junction
Prior art date
Application number
PCT/JP2009/004368
Other languages
French (fr)
Japanese (ja)
Inventor
原崎一見
Original Assignee
村田機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 村田機械株式会社 filed Critical 村田機械株式会社
Priority to JP2010530705A priority Critical patent/JP5088415B2/en
Priority to US13/120,944 priority patent/US20110178657A1/en
Priority to EP09815833.0A priority patent/EP2343616A4/en
Priority to CN2009801367848A priority patent/CN102160007B/en
Priority to KR1020117007339A priority patent/KR101246280B1/en
Publication of WO2010035411A1 publication Critical patent/WO2010035411A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0272Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means comprising means for registering the travel distance, e.g. revolutions of wheels
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/4189Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by the transport system
    • G05B19/41895Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by the transport system using automatic guided vehicles [AGV]
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0274Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/31From computer integrated manufacturing till monitoring
    • G05B2219/31003Supervise route, reserve route and allocate route to vehicle, avoid collision
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/31From computer integrated manufacturing till monitoring
    • G05B2219/31012Optimize number of vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/60Electric or hybrid propulsion means for production processes

Definitions

  • the present invention relates to a transport vehicle system, and more particularly, to a transport vehicle system in which a plurality of transport vehicles travel on a route having a junction of two routes.
  • a transport vehicle system having a circular track, a plurality of stations provided on the path of the circular track, and a plurality of transport vehicles that travel in one direction along the circular track to transport articles is known. Yes.
  • exclusive control is performed in order to prevent a collision at an intersection such as a branching section or a merging section (see, for example, Patent Document 1).
  • the transport vehicle With a predetermined section upstream of the intersection as a specific area, the transport vehicle that has entered the specific area requests the system controller to block the intersection. And if a blocking is permitted, a conveyance vehicle will approach an intersection, but if blocking is not permitted, it will wait in front of an intersection. When the transport vehicle passes the intersection, the transport vehicle requests the system controller to cancel the blocking. As a result, the next transport vehicle can travel the intersection. Note that the transport vehicle has a sensor that detects an obstacle ahead, and when the preceding transport vehicle is stopped, the preceding transport vehicle is detected by the obstacle sensor so as to avoid a collision. Stop.
  • An object of the present invention is to provide a transport vehicle system that realizes high transport efficiency by devising exclusive control at a junction.
  • a transport vehicle system includes a travel route, a plurality of transport vehicles, and a controller.
  • the travel route includes a first route, a second route, and a junction where the first route and the second route join.
  • the plurality of transport vehicles travel on the travel route.
  • the second path has a standby unit.
  • the controller controls traveling of the plurality of transport vehicles.
  • the controller continues the transport vehicle from the first route to the junction while keeping the transport vehicle in the standby portion of the second route until a predetermined number of transport vehicles stop at the standby portion of the second route. Let it pass.
  • the transport vehicle passes continuously from the first path to the junction.
  • the controller may continuously pass the junction portion through the plurality of transport vehicles on the second route.
  • the plurality of transport vehicles on the standby part of the second path pass through the joining part continuously, the transport efficiency of the entire system is increased.
  • the first path has a standby section, and the controller waits for the transport vehicle in the standby section of the first path until a predetermined condition is satisfied while the transport vehicle passes the merging section from the second path. You may let them.
  • a predetermined condition is satisfied, the transport vehicle on the standby portion of the first route can pass through the junction, and therefore the transport vehicle is unlikely to stagnate upstream in the transport direction of the first route. .
  • the controller may cause the transport vehicle that has been waiting to pass through the junction portion regardless of the number of standby vehicles.
  • the junction unit is allowed to pass through the junction unit that has been waiting at the timing when the predetermined time has elapsed. Thereby, the conveyance vehicle does not wait for a long time in the standby part of the second route.
  • a transport vehicle system includes a travel route, a plurality of transport vehicles, and a controller.
  • the travel route includes a first route, a second route, and a junction where the first route and the second route merge.
  • the plurality of transport vehicles travel on the travel route.
  • the controller controls traveling of the plurality of transport vehicles.
  • the controller can switch between a first mode that allows the transport vehicle to travel along the junction from only the first route and a second mode that allows the transport vehicle to travel along the junction from only the second route. is there. In at least one of the modes, the controller switches the mode when a predetermined number of transport vehicles are stopped on a route that is not permitted to travel to the junction.
  • the transport vehicle continuously passes through the junction from the first route when in the first mode, and the transport vehicle continuously passes through the junction from the second route during the second mode. Then, in at least one of the modes, the mode is switched when a predetermined number of transport vehicles are stopped on a route that is not permitted to travel to the junction.
  • the conveyance efficiency of the entire system is improved.
  • the mode is switched, so that the transport vehicles are unlikely to stagnate on a route that is not permitted to travel.
  • the controller travels along the junction from the route permitted to travel to the junction even if the number of transport vehicles stopped on the route that is not permitted to travel to the junction has not reached the predetermined number.
  • the mode may be switched. In this transport vehicle system, the transport vehicle is unlikely to stagnate on a route that is not permitted to travel to the junction.
  • the controller may switch the mode when the selected mode has passed a predetermined time even if the number of transport vehicles stopped on the route that is not permitted to travel to the junction is not reached. .
  • the transport vehicle is unlikely to stagnate on a route that is not permitted to travel to the junction.
  • the controller may preferentially select a mode in which only a route having a linear shape before and after the joining portion can travel on the first route and the second route.
  • the route that passes through the merging portion while traveling in a straight line is preferentially selected, so that the transport efficiency of the entire system is improved.
  • At least one of the first route and the second route may have a standby unit in which the transport vehicle can wait.
  • the transport vehicle stands by at the standby section on a route that is not permitted to travel to the junction.
  • a plurality of transport vehicles may be on standby in the standby unit.
  • this transport vehicle system since a plurality of transport vehicles can stand by in the standby section, it takes a long time for the transport vehicle to travel on the route permitted to travel to the merge section. As a result, the conveyance efficiency of the entire system is improved.
  • Each of the first route and the second route is from the junction to the first branch on the upstream side in the conveyance direction, and a transport vehicle that stops on a route that is not permitted to travel to the junction is predetermined.
  • the maximum number that does not prevent other vehicles from traveling to another route at the first branch when the vehicle is stopped on a route that is not permitted to travel to the junction. Is to reach a stoppable number of.
  • this transport vehicle system even when the transport vehicle is stopped on a route that is not permitted to travel to the junction, it is obstructive that another transport vehicle travels to another route at the first branch. Not. Therefore, the conveyance efficiency of the entire system is improved.
  • the partial top view which shows the layout of the carrier system which concerns on one Embodiment of this invention.
  • the block diagram which shows the control system of a conveyance vehicle system.
  • the flowchart which shows the switching timing control operation
  • the transport vehicle system 1 as one embodiment of the present invention is a system for causing a plurality of transport vehicles 3 to travel on a predetermined track.
  • the transport vehicle 3 travels in one direction on the track, loads an article from a target location according to a transport command assigned by a host controller (described later), and then travels to a transport destination location. Ship to the place.
  • the type of the transport vehicle may be any of an overhead transport vehicle, an automatic guided vehicle that travels without a track, and a tracked cart.
  • Fig. 1 shows the layout of the carrier system 1.
  • the transport vehicle system 1 includes a plurality of circuit travel paths 5 and a main travel path 7 that connects the plurality of circuit travel paths 5.
  • the trunk travel path 7 is a single circuit route as a whole.
  • a plurality of processing devices 9 are provided along the circumferential traveling path 5, and a plurality of stockers 11 are provided along the backbone traveling path 7. The stocker 11 realizes a buffer function between the processing device 9 groups in the circuit travel path 5.
  • the equipment such as the processing device 9 and the stocker 11 is provided with a warehousing port 13 for carrying the goods into the equipment and a warehousing port 15 for picking up the goods from the equipment to the transport vehicle 3.
  • a warehousing port 13 and the warehousing port 15 may be shared.
  • junctions such as junctions and branches in the transport vehicle system 1 will be described with reference to FIG.
  • a connecting path 31 for configuring a circuit shape is provided on the main travel path 7 side.
  • the connecting path 31 connects the linear portions of the circumferential traveling path 5 that extend substantially in parallel.
  • the main traveling path 7 and the circulating traveling path 5 are connected to each other by an inlet side connecting path 33 and an outlet side connecting path 39.
  • the entrance side connection path 33 is a path that allows the transport vehicle 3 to enter the circuit travel path 5 from the main travel path 7.
  • the inlet side connection path 33 extends from one portion of the straight line portion 45 of the trunk travel path 7, and is connected to the terminal portion of the connection path 31 in the circumferential travel path 5.
  • the inlet side connection path 33 is formed by bending and has a straight portion. With the above configuration, the first joining portion 35 where the connecting passage 31 and the inlet side connecting passage 33 join is formed, and the straight portion 37 extends therefrom.
  • the exit side connection path 39 is a path that enables the transport vehicle 3 to exit from the circuit travel path 5 to the main travel path 7.
  • the outlet side connection path 39 extends from the starting end of the connection path 31 of the circuit travel path 5 and is connected to one place of the straight portion 45 of the main travel path 7.
  • the outlet side connection path 39 is formed by bending and has a straight portion. With the above configuration, the second joining portion 41 where the straight portion 45 of the trunk traveling path 7 and the outlet side connecting passage 39 join is formed, and the straight portion 43 extends therefrom.
  • a first branch portion 47 where the inlet side connection path 33 and the straight portion 45 branch is formed in the trunk road 7.
  • a second branch portion 49 is formed in which the connection path 31 and the outlet side connection path 39 are branched.
  • one stop position 71 is secured between the first joining part 35 and the second branch part 49, and this constitutes a standby part 87 of the connection path 31.
  • a stop position 75 on the linear portion 73 on the upstream side in the transport direction from the second branch portion 49 is secured, and this may be included as part of the standby portions 81 and 87.
  • a stop position 79 on the linear portion 77 on the upstream side in the transport direction from the first branch portion 47 is secured, and this may be included as a part of the standby portions 83 and 85.
  • first branching portion 47 and the second branching portion 49 are positioned upstream of the straight portion 45 joining the second joining portion 41 and the outlet side connecting path 39 in the conveying direction, respectively. One or more stop positions are secured.
  • a first branching portion 47 and a second branching portion 49 are positioned upstream in the transport direction of the inlet-side connecting passage 33 and the connecting passage 31 that join the first joining portion 35, respectively. One or more is secured.
  • FIG. 2 shows a control system 19 of the transport vehicle system 1.
  • the control system 19 includes a production controller 21, a distribution controller 23, a stocker controller 25, and a transport vehicle controller 27.
  • the logistics controller 23 is a higher-order controller of the stocker controller 25 and the transport vehicle controller 27.
  • the transport vehicle controller 27 has a function of managing a plurality of transport vehicles 3 and assigning a transport command to them.
  • the manufacturing controller 21 can communicate with each processing device 9.
  • the processing device 9 transmits a conveyance request (load grasping request / unloading request) of the article for which processing has been completed to the manufacturing controller 21.
  • the manufacturing controller 21 transmits a transport request from the processing device 9 to the physical distribution controller 23, and the physical distribution controller 23 transmits a report to the manufacturing controller 21.
  • the distribution controller 23 When the distribution controller 23 receives a transport request from the production controller 21, if the stocker 11 is accompanied by a receipt or delivery, it sends a receipt or delivery command to the stocker controller 25 at a predetermined timing. Then, the stocker controller 25 transmits an incoming / outgoing command to the stocker 11 accordingly. Further, when the distribution controller 23 receives a conveyance request from the manufacturing controller 21, it converts it into a conveyance command, and performs an operation for assigning the conveyance command to the conveyance vehicle 3.
  • the transport vehicle controller 27 continuously communicates with each transport vehicle 3 to create a transport command, and obtains position information based on the position data transmitted from each transport vehicle 3.
  • position information There are the following two examples of acquiring position information.
  • a plurality of points are set on the circuit travel path 5 so that a passing signal is transmitted to the transport vehicle controller 27 when the transport vehicle 3 passes the points.
  • the conveyance vehicle controller 27 memorize
  • the position of 3 is calculated and obtained.
  • an encoder is provided in the transport vehicle 3, and the travel distance after passing the point is transmitted as position data from the transport vehicle 3 to the transport vehicle controller 27, and the transport vehicle controller 27 thereby transmits the position of the transport vehicle 3. To figure out.
  • the transport vehicle 3 has a controller (not shown) including a control unit and a memory.
  • the controller of the transport vehicle 3 is a computer that includes a CPU, a RAM, a ROM, and the like and executes a program.
  • the controller of the transport vehicle 3 can communicate with the transport vehicle controller 27.
  • the transport vehicle 3 has a route map in the memory, and continues traveling while comparing the coordinates described in the route map with the internal coordinates of the own machine (coordinates obtained by the encoder). Furthermore, each conveyance vehicle 3 will transmit a blocking request
  • the transport vehicle controller 27 When the transport vehicle controller 27 does not receive a blocking request from another transport vehicle 3 or receives a blocking request, but the priority of the blocking request from the other transport vehicle 3 is low, the transport vehicle controller 27 blocks the transport vehicle 3. Send a command (command to allow blocking request). The transport vehicle 3 that has received the blocking command can pass through the junction, and the transport vehicle 3 that has not received the blocking command is stopped before the junction. Further, each transport vehicle 3 transmits a blocking release request to the transport vehicle controller 27 after passing through the intersection. As a result, the conveyance vehicle controller 27 determines whether to wait for a blocking request from another conveyance vehicle 3 or to respond to a blocking request from another conveyance vehicle 3 that has already been received.
  • Blocking control at the junction The blocking control at the junction will be described using the flowchart shown in FIG.
  • step S1 of FIG. 3 the main route priority mode is adopted.
  • the “main path” in the second merging portion 41 is a straight portion 45 that is linearly connected to the straight portion 43 on the downstream side in the transport direction from the second merging portion 41, and the outlet side connecting path 39 is a sub-channel. It is a route.
  • the transport vehicle controller 27 permits a blocking request for the transport vehicle 3 traveling on the straight portion 45, but does not permit a blocking request for the transport vehicle 3 traveling on the outlet side connection path 39. Specifically, when the transport vehicle 3 traveling along the straight portion 45 approaches the second junction 41 and enters a predetermined area, the transport vehicle controller 27 is requested to block.
  • the transport vehicle controller 27 transmits a blocking command to the transport vehicle 3 and permits the transport vehicle 3 to pass through the second junction portion 41.
  • the carriage 3 that has passed requests the carriage controller 27 to cancel the blocking.
  • the transport vehicle controller 27 cancels blocking.
  • the above operation is repeatedly executed, and as a result, the plurality of transport vehicles 3 continuously pass through the second junction portion 41. In this way, since the plurality of transport vehicles 3 continuously pass through the second joining portion 41 without stopping once in front of the second joining portion 41, the travel amount of the transport vehicle 3 in the transport vehicle system 1 is increased. Is done. In particular, since the transport vehicle 3 that travels at a high speed in the straight portion passes through the second merging portion 41 at once, the above-described effect is further enhanced.
  • the transport vehicle 3 traveling on the outlet side connection path 39 approaches the second junction 41 and enters a predetermined area, and the transport vehicle 3 blocks the transport vehicle controller 27. Even if requested, the transport vehicle controller 27 does not transmit a blocking command to the transport vehicle 3. Accordingly, the transport vehicle 3 stops at the stop position 61 in front of the second junction 41.
  • the transport vehicle 3 stops at the stop position 61 in front of the second junction 41.
  • five transport vehicles A1, A2, A3, A4, and A5 traveling along the straight portion 45 are going to pass through the second junction 41 in succession, and two transport vehicles are transported on the outlet side connection path 39.
  • a state in which the cars B1 and B2 are waiting at the stop positions 61 and 63, respectively, is shown.
  • the second transport vehicle B2 itself stops at the stop position 63 in order to avoid a collision with the first transport vehicle B1 (the same applies to the following).
  • step S2 if the predetermined time has not elapsed, the process proceeds to step S3. If the predetermined time has elapsed, step S3 is passed and the process proceeds to step S4. Note that the timer of the transport vehicle controller 27 starts measuring the predetermined time from the time when the first transport vehicle 3 on the standby side (the transport vehicle B1 in FIG. 4) transmits a blocking request.
  • step S3 the three transport vehicles 3 stop on the exit side connection path 39, and further the transport vehicle 3 that tries to travel to the exit side connection path 39 side at a stop position 75 upstream of the second branch portion 49 in the transport direction. Wait for it to stop. If the fixed number of transporting vehicles 3 are not in the standby state, the process returns to step S2, and if in the standby state, the process proceeds to step S4.
  • the transport vehicles B 1, B 2, B 3 are stopped at the stop positions 61, 63, 65 of the outlet side connection path 39, and the fourth transport vehicle B 4 is stopped upstream of the second branch portion 49. A state of stopping at a position 75 is shown.
  • the conveyance vehicle controller 27 stores in advance how many conveyance vehicles 3 can be stopped on the exit side connection path 39 side as viewed from the second junction 41 (the number of units that can stand by in the standby unit). In order to realize the number of vehicles, a certain number of stoppage distances from the second merging portion 41 (a reference distance for switching the priority mode when the transport vehicle 3 stops at a further distance) is used. It is determined whether the transport vehicle 3 is in a standby state. The determination of the number of standby units in the standby unit is the same in other cases.
  • step S4 the main route priority mode is switched to the sub route priority mode.
  • the transport vehicle controller 27 permits a blocking request for the transport vehicle 3 traveling on the outlet side connection path 39, but does not permit a blocking request for the transport vehicle 3 traveling on the straight portion 45. Therefore, even if the transport vehicle 3 traveling along the straight portion 45 approaches the second junction 41 and enters a predetermined area and requests blocking from the transport vehicle controller 27, the transport vehicle controller 27 No blocking command is sent to 3. As a result, the transport vehicle 3 stops at the stop position 51. By repeating the above operation, the transport vehicle 3 stops in order in the straight line portion 45.
  • FIG. 5 shows a state in which the three conveyance vehicles A8, A9, and A10 are stopped at the linear portion 45.
  • the waiting transport vehicles B1, B2, B3, B4 in turn receive transmission of blocking permission from the transport vehicle controller 27, and then pass through the second junction 41 and then to the transport vehicle controller 27. Request unblocking. As a result, the waiting transport vehicles B1, B2, B3, and B4 continuously pass through the second junction 41.
  • step S5 if a part or all of the transport vehicles (transport vehicles B1 to B4) waiting on the sub route at the time of switching to the sub route priority mode pass through the second junction 41, the process returns to step S1. Thus, the sub route priority mode is switched to the main route priority mode. If the predetermined number has not passed the 2nd junction part 41, it will transfer to Step S6.
  • step S6 the five transport vehicles 3 stop on the exit side connection path 39, and the transport vehicle 3 that tries to travel to the linear portion 45 side stops at a stop position 79 that is upstream of the first branch portion 47 in the transport direction. Wait to do. If the fixed number of transport vehicles 3 is not in the standby state, the process returns to step S5, and if in the standby state, the process proceeds to step S1 to switch the sub route priority mode to the main route priority mode.
  • the priority mode is switched in the paths on both sides of the second junction unit 41, and the conveyance vehicle 3 passes through the second junction unit 41 only from one path each time. For this reason, the conveyance efficiency of the conveyance vehicle system 1 improves.
  • the priority mode switching is devised so as not to cause problems due to standby of the transport vehicle 3. Specifically, the transport vehicle 3 on the standby side is prevented from stopping at a position upstream of the first branching portion 47 and the second branching portion 49 in the transporting direction. Therefore, the first branching portion 47 and the second branching portion 49 are prevented. In this case, it is possible to prevent the transport vehicle 3 from traveling on the other side (the side that is not the confluence portion in question) from traveling. Further, since the waiting time of the waiting transport vehicle 3 is also checked, it is possible to prevent the transport vehicle 3 from waiting at the standby position for a long period of time.
  • step S1 of FIG. 3 the main route priority mode is adopted.
  • the “main path” is the inlet-side connecting path 33 that communicates linearly with the linear section 37 on the downstream side in the transport direction of the first merging section 35, and the connecting path 31 is a sub-path.
  • the transport vehicle controller 27 permits a blocking request for the transport vehicle 3 traveling on the entrance side connection path 33, but does not permit a blocking request for the transport vehicle 3 traveling on the connection path 31. Specifically, when the transport vehicle 3 traveling on the inlet side connecting path 33 approaches the first junction 35 and enters a predetermined area, the transport vehicle controller 27 is requested to block.
  • the transport vehicle controller 27 transmits a blocking command to the transport vehicle 3 and permits the transport vehicle 3 to pass through the first junction 35.
  • the transport vehicle 3 that has passed through the first junction 35 requests the transport controller 27 to cancel blocking.
  • the transport vehicle controller 27 cancels blocking.
  • the plurality of transport vehicles 3 continuously pass through the first junction portion 35.
  • the transport vehicle 3 traveling on the connection path 31 approaches the first junction 35 and enters a predetermined area and requests blocking from the transport vehicle controller 27 during the main route priority mode, the transport vehicle The controller 27 does not transmit a blocking command to the transport vehicle 3. Accordingly, the transport vehicle 3 stops at the stop position 71 in front of the first junction portion 35.
  • two transport vehicles C ⁇ b> 1 and C ⁇ b> 2 that are traveling on the entrance-side connection path 33 are going to pass through the first junction 35 in succession. Indicates a waiting state.
  • step S2 if the predetermined time has not elapsed, the process proceeds to step S3. If the predetermined time has elapsed, step S3 is passed and the process proceeds to step S4. Note that, during the predetermined time, the timer of the transport vehicle controller 27 starts measurement from the time when the transport vehicle 3 on the standby side (the transport vehicle D1 in FIG. 6) transmits a blocking request.
  • step S3 one transport vehicle 3 stops on the connection path 31, and the transport vehicle 3 that tries to travel to the connection path 31 side stops at a stop position 75 that is upstream of the second branch portion 49 in the transport direction. Wait for. If the fixed number of transporting vehicles 3 are not in the standby state, the process returns to step S2, and if in the standby state, the process proceeds to step S4.
  • the transport vehicle D1 is stopped at the stop position 71 of the connection path 31, and the second transport vehicle D2 is stopped at the stop position 75 upstream of the second branching portion 49 in the transport direction. Is shown.
  • step S4 the main route priority mode is switched to the sub route priority mode.
  • the transport vehicle controller 27 permits a blocking request for the transport vehicle 3 traveling on the connection path 31, but does not permit a blocking request for the transport vehicle 3 traveling on the entrance side connection path 33. Therefore, even if the transport vehicle 3 traveling on the inlet side connection path 33 approaches the first junction 35 and enters a predetermined area and requests the transport vehicle controller 27 to block, the transport vehicle controller 27 A blocking command is not transmitted to the transport vehicle 3. As a result, the transport vehicle 3 stops at the stop position 67. As a result, the transport vehicle 3 stops in order on the inlet side connection path 33.
  • FIG. 7 shows a state in which the two transport vehicles C4 and C5 are stopped in the entrance side connecting path 33.
  • the transporting vehicles D1 and D2 that are on standby sequentially receive the blocking permission from the transporting vehicle controller 27, and transmit a blocking release request to the transporting vehicle controller 27 after passing through the first junction 35.
  • the transporting vehicles D1 and D2 on standby pass through the second junction unit 41 continuously.
  • step S5 if a part or all of the transport vehicles (transport vehicles D1 to D2) waiting on the sub route at the time of switching to the sub route priority mode pass through the first junction 35, the process returns to step S1. Thus, the sub route priority mode is switched to the main route priority mode. If the predetermined number has not passed the 1st junction part 35, it will transfer to step S6.
  • step S6 the two transport vehicles 3 stop on the entrance-side connection path 33, and further, the transport vehicle intends to travel toward the entrance-side connection path 33 at a stop position 79 upstream of the first branching portion 47 in the transport direction. Wait for 3 to stop. If the fixed number of transport vehicles 3 is not in the standby state, the process returns to step S5, and if in the standby state, the process proceeds to step S1 to switch the sub route priority mode to the main route priority mode.
  • the priority mode is switched in the paths on both sides of the first junction 35, and the transport vehicle 3 passes through the first junction 35 only from one path each time. For this reason, the conveyance efficiency of the conveyance vehicle system 1 improves.
  • switching of the priority mode is devised so as not to cause a problem due to standby of the transport vehicle 3. Specifically, the transport vehicle 3 on the standby side does not stop at a position upstream of the first branching portion 47 and the second branching portion 49 in the transporting direction, so that the first branching portion 47 and the second branching portion 49 are prevented. In this case, it is possible to prevent the transport vehicle 3 from traveling on the other side (the side that is not the confluence portion in question) from traveling. In addition, since the waiting time of the waiting transport vehicle 3 is also checked, it is possible to prevent the transport vehicle 3 from waiting in the standby place for a long period of time.
  • the transport vehicle system 1 includes a travel route, a plurality of transport vehicles 3, and a transport vehicle controller 27.
  • the travel route includes a straight portion 45, an outlet side connection passage 39, and a second joining portion 41 where both join.
  • the plurality of transport vehicles 3 travel on the travel route.
  • the outlet side connection path 39 has a standby portion 81.
  • the transport vehicle controller 27 controls the traveling of the plurality of transport vehicles 3.
  • the transport vehicle controller 27 exits the transport vehicle 3 until a predetermined number of transport vehicles stop at the standby portion 81 (including the portion upstream of the second branch portion 49 in the transport direction) of the exit side connection path 39.
  • the carriage 3 is continuously passed from the straight portion 45 to the second junction portion 41 while waiting in the standby portion 81 of the side connection path 39.
  • the transport vehicle 3 passes continuously from the straight portion 45 to the second junction portion 41. And when the predetermined number of conveyance vehicles 3 stand by in the standby part 81 of the exit side connection path 39, the continuous passage of the conveyance vehicles 3 from the linear part 45 stops. Thus, since the conveyance vehicle 3 passes continuously, the conveyance efficiency of the conveyance vehicle system 1 whole improves. In addition, when the number of standby units on the standby unit 81 of the exit side connection path 39 reaches a predetermined number, the transport vehicle 3 can pass through the second junction 41 from the exit side connection path 39, so the exit side connection path It is possible to prevent the transport vehicle 3 from stagnating upstream in the transport direction 39.
  • the transport vehicle controller 27 When a predetermined number of transport vehicles 3 stop at the standby portion 81 of the exit side connection path 39, the transport vehicle controller 27 thereafter designates a plurality of transport vehicles on the standby portion 81 of the exit side connection path 39. 2 is continuously passed through the junction 41. In this case, since the plurality of transport vehicles 3 on the standby unit 81 of the outlet side connection path 39 passes through the second junction unit 41 continuously, the transport efficiency of the entire transport vehicle system 1 is increased.
  • the straight line portion 45 has a standby portion 83.
  • the transport vehicle controller 27 keeps the transport vehicles until a predetermined number of transport vehicles stop at the standby portion 83 of the straight portion 45 while the transport vehicle 3 passes through the first junction 35 from the outlet side connection path 39.
  • the standby part 83 of the straight line part 45 is made to wait. That is, when the number of standby units 83 in the straight line part 45 reaches a predetermined number, the straight line 45 can pass from the second joining part 41, so the transport vehicle 3 on the upstream side in the transport direction of the straight line part 45 It is possible to prevent stagnation.
  • the transport vehicle controller 27 passes the second junction 41 to the transport vehicle 3 that has been waiting, regardless of the number of standby vehicles. . That is, even if the number of standby units on the outlet side connection path 39 does not reach the predetermined number, the second junction 41 is passed through the transport vehicle 3 that has been waiting at the timing when the predetermined time has elapsed. Thereby, the conveyance vehicle 3 does not wait in the exit side connection path 39 for a long time.
  • the transport vehicle system 1 includes a travel route, a plurality of transport vehicles 3, and a transport vehicle controller 27.
  • the travel route includes a straight portion 45, an outlet side connection passage 39, and a second joining portion 41 where both join.
  • the plurality of transport vehicles 3 travel on the travel route.
  • the transport vehicle controller 27 includes a main route priority mode (first mode) that allows the transport vehicle 3 to travel the second junction 41 from only the straight portion 45, and the transport vehicle 3 from the outlet side connection path 9 only. It is possible to switch between the sub route priority mode (second mode) that allows the vehicle to travel through the two junctions 41. In at least one of the modes, the transport vehicle controller 27 switches the mode when the transport vehicle 3 stopped on the route not allowed to travel to the second junction 41 reaches a predetermined number.
  • the transport vehicle continuously passes through the second joining portion 41 from the straight portion 45 when in the main route priority mode, and the transport vehicle 3 passes through the outlet side connection path 39 when the sub route priority mode is set. It passes the 2 junction part 41 continuously.
  • the mode is switched when the number of transporting vehicles 3 that have stopped on the route that is not permitted to travel to the second junction 41 reaches a predetermined number.
  • the conveyance efficiency of the whole system improves.
  • the mode is switched, so that the transport vehicle 3 travels on a route that is not permitted to travel. It is hard to stagnate.
  • the transport vehicle controller 27 travels to the second junction 41 even if the transport vehicles 3 that have stopped on the route that is not permitted to travel to the second junction 41 have not reached the predetermined number.
  • the mode is switched. In this transport vehicle system, the transport vehicle 3 is unlikely to stagnate on a route that is not permitted to travel to the second junction 41.
  • the transport vehicle controller 27 determines that the selected mode is the predetermined time even if the transport vehicle 3 stopped on the route not allowed to travel to the second junction 41 has not reached the predetermined number. After elapse, switch the mode. In the transport vehicle system 1, the transport vehicle 3 is unlikely to stagnate on a route that is not permitted to travel to the second junction 41.
  • the transport vehicle controller 27 preferentially selects a mode in which only the route having a linear shape before and after the second junction 41 in the straight portion 45 and the outlet side connection path 39 can travel.
  • the conveyance efficiency of the whole system improves.
  • At least one of the straight line portion 45 and the outlet side connection path 39 has a standby portion (83, 81) in which the transport vehicle 3 can wait.
  • the transport vehicle 3 stands by at the standby section (83, 81) on a route that is not permitted to travel to the second junction section 41.
  • a plurality of transport vehicles 3 can stand by in the standby section (83, 81).
  • this transport vehicle system 1 since a plurality of transport vehicles 3 can stand by in the standby section (83, 81), it takes a long time for the transport vehicle 3 to travel on the route permitted to travel to the second junction section 41. Become. As a result, the conveyance efficiency of the entire system is improved.
  • the straight line portion 45 and the outlet side connection path 39 are each between the second junction portion 41 and the first branch portion (47, 49) on the upstream side in the transport direction. “When a predetermined number of transport vehicles 3 are stopped on a route that is not permitted to travel to the second junction 41”, the transport vehicle 3 is permitted to travel to the second junction 41. When the vehicle stops on a non-route, the maximum number of stops that does not interfere with the other transport vehicle 3 traveling on another route at the first branch portion (47, 49) is reached. In this transport vehicle system 1, even when the transport vehicle 3 is stopped on a route that is not permitted to travel to the second junction 41, another transport vehicle is used at the first branch portion (47, 49). It is not disturbed that 3 travels to another route. Therefore, the conveyance efficiency of the entire system is improved.
  • the inlet-side connecting path 33 or the outlet-side connecting path 39 has a bent shape, thereby securing a plurality of stop positions.
  • the exit-side connection path 39 is a place where a plurality of transport vehicles 3 that have been processed in the circuit travel path 5 are transferred to other circuit travel paths, and the transport vehicle 3 tends to stagnate. It is possible to stop a plurality of transport vehicles 3 by ensuring a long time, which contributes to an improvement in transport efficiency.
  • step S5 when the sub route priority mode is entered, if a part or all of the transport vehicles waiting on the sub route at the time of switching to the sub route priority mode pass through the junction (step S5), At that time, the mode has been switched to the main route priority mode, but the present invention is not limited to this. For example, it may be switched to the main route priority mode when a predetermined time has elapsed since the sub route priority mode was entered. Note that, for the predetermined time, the timer of the transport vehicle controller 27 starts measurement from the time when the first transport vehicle 3 on the standby side transmits a blocking request.
  • the standby time of the first transport vehicle on the standby side is measured in step S2 of FIG. 3 and when the predetermined time has elapsed, the main route priority mode is switched to the sub route priority mode.
  • the present invention is not limited to this. There is no need to perform the control based on the standby time, or the control based on the standby time is both switched from the main route priority mode to the sub route priority mode and from the sub route priority mode to the main route priority mode. May be adopted.
  • the transport vehicle in steps S3 and S6 in FIG. 3, the transport vehicle is moved to the stop positions 75 and 79 that are further upstream in the transport direction of the first branch portion 47 and the second branch portion 49 in each standby path.
  • the priority mode is switched after waiting for 3 to arrive, but the present invention is not limited to this.
  • the priority mode may be switched when the transport vehicle 3 arrives at any stop position downstream in the transport direction from the first branch portion 47 and the second branch portion 49.
  • the conveyance vehicle standby part was provided in the path
  • this invention is not limited to this.
  • the standby unit may not be provided on any one of the paths.
  • the main route is defined as a route in which the transport vehicle goes straight through the branch portion, but the present invention is not limited to this.
  • the curved portion may be the main route.
  • the present invention is useful for a transport vehicle system in which a plurality of transport vehicles travel on a route having a junction of two routes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Control Of Conveyors (AREA)

Abstract

A guided vehicle system which attains high carrying efficiency by designing an elaborate exclusion control at a joint section.  The guided vehicle system (1) is provided with a traveling path, a plurality of guided vehicles (3), and a guided vehicle controller (27).  The travelling path comprises a linear section (45), an exit-side connecting path (39), and a second joint section (41) where both of the paths join together.  The guided vehicles (3) travel on the traveling path.  The exit-side connecting path (39) comprises a standby section.  The guided vehicle controller (27) controls the traveling of the vehicles (3).  Until a predetermined number of guided vehicles (3) stop in the standby section of the exit-side connecting path (39), the guided vehicle controller (27) keeps the guided vehicles (3) on standby in the standby section of the exit-side connecting path (39) while allowing other guided vehicles (3) to continuously pass from the linear section (45) to the second joint section (41).

Description

搬送車システムTransport vehicle system
 本発明は、搬送車システム、特に、2つの経路の合流部を有する経路上を複数の搬送車が走行する搬送車システムに関する。 The present invention relates to a transport vehicle system, and more particularly, to a transport vehicle system in which a plurality of transport vehicles travel on a route having a junction of two routes.
 従来から、周回軌道と、周回軌道の経路上に設けられた複数のステーションと、周回軌道に沿って一方向に走行して物品を搬送する複数の搬送車とを有する搬送車システムが知られている。搬送車システムでは、分岐部や合流部などの交差点において、衝突を防止するために排他制御を行っている(例えば、特許文献1を参照。)。 2. Description of the Related Art Conventionally, a transport vehicle system having a circular track, a plurality of stations provided on the path of the circular track, and a plurality of transport vehicles that travel in one direction along the circular track to transport articles is known. Yes. In the transport vehicle system, exclusive control is performed in order to prevent a collision at an intersection such as a branching section or a merging section (see, for example, Patent Document 1).
 以下、排他制御について説明する。交差点の上流側の所定の区間を特定エリアとして、特定エリアに進入した搬送車は、システムコントローラに、交差点のブロッキングを要求する。そして、搬送車は、ブロッキングが許可されると交差点に進入するが、ブロッキングが許可されなければ交差点の前で待機する。搬送車が交差点を通過すると、搬送車はブロッキングの解除をシステムコントローラに要求する。これにより、次の搬送車が交差点を走行できるようになる。なお、搬送車は前方の障害物を検出するセンサを有しており、先行する搬送車が停止している場合には、障害物センサで先行搬送車を検出して、衝突を回避するように停止する。 Hereinafter, exclusive control will be described. With a predetermined section upstream of the intersection as a specific area, the transport vehicle that has entered the specific area requests the system controller to block the intersection. And if a blocking is permitted, a conveyance vehicle will approach an intersection, but if blocking is not permitted, it will wait in front of an intersection. When the transport vehicle passes the intersection, the transport vehicle requests the system controller to cancel the blocking. As a result, the next transport vehicle can travel the intersection. Note that the transport vehicle has a sensor that detects an obstacle ahead, and when the preceding transport vehicle is stopped, the preceding transport vehicle is detected by the obstacle sensor so as to avoid a collision. Stop.
特開2002-351543号JP 2002-351543 A
 従来の搬送車システムでは、合流部においては、2つの経路からそれぞれ複数の搬送車が走行してきたときには、各経路から交互に搬送車が合流部を通過するように排他制御されている。そのため、それぞれの経路において搬送車が一旦停止を繰り返すことになる。一旦停止があると再出発までのディレイタイムが生じるため、全体の搬送効率が低下する。 In the conventional transport vehicle system, when a plurality of transport vehicles have traveled from two routes in the junction unit, exclusive control is performed so that the transport vehicles alternately pass through the junction unit from each route. For this reason, the transportation vehicle repeatedly stops once in each route. If there is a stop once, a delay time until the restart will occur, so that the overall transport efficiency is lowered.
 本発明の課題は、合流点における排他制御を工夫することで、高い搬送効率を実現する搬送車システムを提供することにある。 An object of the present invention is to provide a transport vehicle system that realizes high transport efficiency by devising exclusive control at a junction.
 本発明の一見地に係る搬送車システムは、走行経路と、複数の搬送車と、コントローラとを備えている。走行経路は、第1経路と、第2経路と、第1経路と第2経路が合流する合流部とを有する。複数の搬送車は、走行経路上を走行する。第2経路は待機部を有する。コントローラは、複数の搬送車の走行を制御する。コントローラは、第2経路の待機部に所定の数の搬送車が停車するまでの間は搬送車を第2経路の待機部に待機させつつ、搬送車を第1経路から合流部に連続して通過させる。
 このシステムでは、搬送車は第1経路から合流部に連続して通過する。そして、第2経路の待機部に所定の数の搬送車が待機すると、第1経路からの搬送車の連続通過が停止する。
 このように搬送車が連続通過するので、システム全体の搬送効率が向上する。また、第2経路の待機部上の待機台数が所定台数になると、搬送車が第2経路から合流部を通過することが可能になるので、第2経路の搬送方向上流側で搬送車が停滞しにくい。
A transport vehicle system according to an aspect of the present invention includes a travel route, a plurality of transport vehicles, and a controller. The travel route includes a first route, a second route, and a junction where the first route and the second route join. The plurality of transport vehicles travel on the travel route. The second path has a standby unit. The controller controls traveling of the plurality of transport vehicles. The controller continues the transport vehicle from the first route to the junction while keeping the transport vehicle in the standby portion of the second route until a predetermined number of transport vehicles stop at the standby portion of the second route. Let it pass.
In this system, the transport vehicle passes continuously from the first path to the junction. And if a predetermined number of conveyance vehicles wait in the waiting part of the 2nd path, the continuous passage of the conveyance vehicles from the 1st path will stop.
Thus, since the conveyance vehicle passes continuously, the conveyance efficiency of the entire system is improved. In addition, when the number of standby units on the standby part of the second route reaches a predetermined number, the transport vehicle can pass through the junction from the second route, so the transport vehicle is stagnant on the upstream side in the transport direction of the second route. Hard to do.
 コントローラは、第2経路の待機部に所定の数の搬送車が停車すると、それ以後は第2経路上の複数の搬送車に合流部を連続して通過させてもよい。
 このシステムでは、第2経路の待機部上の複数の搬送車が合流部に連続して通過するため、システム全体の搬送効率が高くなる。
When a predetermined number of transport vehicles stop at the standby portion of the second route, the controller may continuously pass the junction portion through the plurality of transport vehicles on the second route.
In this system, since the plurality of transport vehicles on the standby part of the second path pass through the joining part continuously, the transport efficiency of the entire system is increased.
 第1経路は待機部を有しており、コントローラは、搬送車が第2経路から合流部を通過中に、所定の条件が満たされるまでの間は搬送車を第1経路の待機部に待機させてもよい。
 このシステムでは、所定の条件が満たされると、第1経路の待機部上の搬送車が合流部を通過することが可能になるので、第1経路の搬送方向上流側で搬送車が停滞しにくい。
The first path has a standby section, and the controller waits for the transport vehicle in the standby section of the first path until a predetermined condition is satisfied while the transport vehicle passes the merging section from the second path. You may let them.
In this system, if a predetermined condition is satisfied, the transport vehicle on the standby portion of the first route can pass through the junction, and therefore the transport vehicle is unlikely to stagnate upstream in the transport direction of the first route. .
 コントローラは、搬送車が第2経路に所定時間以上待機した場合には、待機台数にかかわらず、待機していた搬送車に合流部を通過させてもよい。
 このシステムでは、第2経路の待機部における待機台数が所定台数に達していなくても、所定時間が経過したタイミングで待機していた搬送車に合流部を通過させる。これにより、搬送車が第2経路の待機部に長時間待機することがない。
When the transport vehicle waits for a predetermined time or longer on the second route, the controller may cause the transport vehicle that has been waiting to pass through the junction portion regardless of the number of standby vehicles.
In this system, even if the number of standby units in the standby unit of the second path has not reached the predetermined number, the junction unit is allowed to pass through the junction unit that has been waiting at the timing when the predetermined time has elapsed. Thereby, the conveyance vehicle does not wait for a long time in the standby part of the second route.
 本発明の他の見地に係る搬送車システムは、走行経路と、複数の搬送車と、コントローラとを備えている。走行経路は、第1ルートと、第2ルートと、第1ルートと第2ルートが合流する合流部とを有する。複数の搬送車は、走行経路上を走行する。コントローラは、複数の搬送車の走行を制御する。コントローラは、搬送車が第1ルートのみから合流部を走行することを許容する第1モードと、搬送車が第2ルートのみから合流部を走行することを許容する第2モードとを切り換え可能である。コントローラは、少なくともいずれかのモードにおいて、合流部への走行を許可されていないルートで停止している搬送車が所定の数に達したら、モードを切り換える。
 この搬送車システムでは、第1モードの時に搬送車は第1ルートから合流部を連続して通過して、第2モードの時に搬送車は第2ルートから合流部を連続して通過する。そして、少なくともいずれかのモードにおいて、合流部への走行を許可されていないルートで停止している搬送車が所定の数に達したら、モードを切り換える。
 このように搬送車が連続通過するので、システム全体の搬送効率が向上する。また、合流部への走行を許可されていないルートで停止している搬送車が所定の数に達したら、モードが切り換えられるので、走行を許可されていないルートで搬送車が停滞しにくい。
A transport vehicle system according to another aspect of the present invention includes a travel route, a plurality of transport vehicles, and a controller. The travel route includes a first route, a second route, and a junction where the first route and the second route merge. The plurality of transport vehicles travel on the travel route. The controller controls traveling of the plurality of transport vehicles. The controller can switch between a first mode that allows the transport vehicle to travel along the junction from only the first route and a second mode that allows the transport vehicle to travel along the junction from only the second route. is there. In at least one of the modes, the controller switches the mode when a predetermined number of transport vehicles are stopped on a route that is not permitted to travel to the junction.
In this transport vehicle system, the transport vehicle continuously passes through the junction from the first route when in the first mode, and the transport vehicle continuously passes through the junction from the second route during the second mode. Then, in at least one of the modes, the mode is switched when a predetermined number of transport vehicles are stopped on a route that is not permitted to travel to the junction.
Thus, since the conveyance vehicle passes continuously, the conveyance efficiency of the entire system is improved. In addition, when the number of transport vehicles stopped on a route that is not permitted to travel to the junction reaches a predetermined number, the mode is switched, so that the transport vehicles are unlikely to stagnate on a route that is not permitted to travel.
 コントローラは、合流部への走行を許可されていないルートで停止している搬送車が所定の数に達していなくても、合流部への走行を許可されているルートから合流部を走行した搬送車の数が所定の数に達したら、モードを切り換えてもよい。
 この搬送車システムでは、合流部への走行を許可されていないルートで搬送車が停滞しにくい。
The controller travels along the junction from the route permitted to travel to the junction even if the number of transport vehicles stopped on the route that is not permitted to travel to the junction has not reached the predetermined number. When the number of cars reaches a predetermined number, the mode may be switched.
In this transport vehicle system, the transport vehicle is unlikely to stagnate on a route that is not permitted to travel to the junction.
 コントローラは、合流部への走行を許可されていないルートで停止している搬送車が所定の数に達していなくても、選択されているモードが所定時間を経過したら、モードを切り換えてもよい。
 この搬送車システムでは、合流部への走行を許可されていないルートで搬送車が停滞しにくい。
The controller may switch the mode when the selected mode has passed a predetermined time even if the number of transport vehicles stopped on the route that is not permitted to travel to the junction is not reached. .
In this transport vehicle system, the transport vehicle is unlikely to stagnate on a route that is not permitted to travel to the junction.
 コントローラは、第1ルートと第2ルートのうち合流部の前後で直線形状であるルートのみを走行可能とするモードを優先的に選択してもよい。
 この搬送車システムでは、合流部を直線走行しながら通過するルートが優先的に選択されるので、システム全体の搬送効率が向上する。
The controller may preferentially select a mode in which only a route having a linear shape before and after the joining portion can travel on the first route and the second route.
In this transport vehicle system, the route that passes through the merging portion while traveling in a straight line is preferentially selected, so that the transport efficiency of the entire system is improved.
 第1ルートと第2ルートの少なくとも一方は、搬送車が待機可能な待機部を有していてもよい。
 この搬送車システムでは、合流部への走行を許可されていないルートでは搬送車は待機部で待機している。
At least one of the first route and the second route may have a standby unit in which the transport vehicle can wait.
In this transport vehicle system, the transport vehicle stands by at the standby section on a route that is not permitted to travel to the junction.
 待機部には複数の搬送車が待機可能であってもよい。
 この搬送車システムでは、待機部には複数の搬送車が待機可能なので、合流部への走行が許可されているルートを搬送車が走行する時間が長くなる。その結果、システム全体の搬送効率が向上する。
A plurality of transport vehicles may be on standby in the standby unit.
In this transport vehicle system, since a plurality of transport vehicles can stand by in the standby section, it takes a long time for the transport vehicle to travel on the route permitted to travel to the merge section. As a result, the conveyance efficiency of the entire system is improved.
 第1ルートと第2ルートは、それぞれ、合流部から搬送方向上流側にある最初の分岐部までの間であり、合流部への走行を許可されていない経路で停止している搬送車が所定の数に達するとは、搬送車が合流部への走行を許可されていないルートで停止しているときに最初の分岐部において他の搬送車が別のルートに走行することを邪魔しない最大限の停止可能な数に達することである。
 この搬送車システムでは、搬送車が合流部への走行を許可されていないルートで停止しているときであっても、最初の分岐部において他の搬送車が別のルートに走行することが邪魔されない。したがって、システム全体の搬送効率が向上する。
Each of the first route and the second route is from the junction to the first branch on the upstream side in the conveyance direction, and a transport vehicle that stops on a route that is not permitted to travel to the junction is predetermined. The maximum number that does not prevent other vehicles from traveling to another route at the first branch when the vehicle is stopped on a route that is not permitted to travel to the junction. Is to reach a stoppable number of.
In this transport vehicle system, even when the transport vehicle is stopped on a route that is not permitted to travel to the junction, it is obstructive that another transport vehicle travels to another route at the first branch. Not. Therefore, the conveyance efficiency of the entire system is improved.
 本発明に係る搬送車システムでは、合流点における排他制御を工夫することで、高い搬送効率を実現できる。 In the transport vehicle system according to the present invention, high transport efficiency can be realized by devising exclusive control at the junction.
本発明の一実施形態に係る搬送車システムのレイアウトを示す部分平面図。The partial top view which shows the layout of the carrier system which concerns on one Embodiment of this invention. 搬送車システムの制御系を示すブロック図。The block diagram which shows the control system of a conveyance vehicle system. 各合流部における優先モードの切り換えタイミング制御動作を示すフローチャート。The flowchart which shows the switching timing control operation | movement of the priority mode in each junction part. 第2合流部において、主経路優先モードにおける搬送車の状態を説明するための模式図。The schematic diagram for demonstrating the state of the conveyance vehicle in the main path | route priority mode in a 2nd junction part. 第2合流部において、副経路優先モードにおける搬送車の状態を説明するための模式図。The schematic diagram for demonstrating the state of the conveyance vehicle in subroute priority mode in a 2nd junction part. 第1合流部において、主経路優先モードにおける搬送車の状態を説明するための模式図。The schematic diagram for demonstrating the state of the conveyance vehicle in the main route priority mode in a 1st junction part. 第1合流部において、副経路優先モードにおける搬送車の状態を説明するための模式図。The schematic diagram for demonstrating the state of the conveyance vehicle in subroute priority mode in a 1st junction part.
1.搬送車システムのレイアウト
 本発明の一実施形態としての搬送車システム1は、定められた軌道上に複数の搬送車3を走行させるためのシステムである。搬送車3は、軌道上を一方向に走行し、上位のコントローラ(後述)によって割り付けられる搬送指令に従い、目的の場所から物品を積み込み、次に搬送先の場所まで走行して物品を搬送先の場所に積み出す。搬送車の種類は、天井搬送車、無軌道で走行する無人搬送車や有軌道台車のいずれであってもよい。
1. The layout of the transport vehicle system The transport vehicle system 1 as one embodiment of the present invention is a system for causing a plurality of transport vehicles 3 to travel on a predetermined track. The transport vehicle 3 travels in one direction on the track, loads an article from a target location according to a transport command assigned by a host controller (described later), and then travels to a transport destination location. Ship to the place. The type of the transport vehicle may be any of an overhead transport vehicle, an automatic guided vehicle that travels without a track, and a tracked cart.
 図1に、搬送車システム1のレイアウトを示す。搬送車システム1は、複数の周回走行路5と、複数の周回走行路5を結ぶ基幹走行路7とを有している。基幹走行路7は全体で1つの周回経路となっている。周回走行路5に沿って複数の処理装置9が設けられ、基幹走行路7に沿って複数のストッカ11が設けられている。ストッカ11は、周回走行路5における処理装置9群間でのバッファの機能を実現している。 Fig. 1 shows the layout of the carrier system 1. The transport vehicle system 1 includes a plurality of circuit travel paths 5 and a main travel path 7 that connects the plurality of circuit travel paths 5. The trunk travel path 7 is a single circuit route as a whole. A plurality of processing devices 9 are provided along the circumferential traveling path 5, and a plurality of stockers 11 are provided along the backbone traveling path 7. The stocker 11 realizes a buffer function between the processing device 9 groups in the circuit travel path 5.
 処理装置9およびストッカ11等の設備には、設備内に物品を搬入するための入庫ポート13と、設備から搬送車3に物品を荷つかみするための出庫ポート15とが設けられている。なお入庫ポート13と出庫ポート15とは兼用されていてもよい。 The equipment such as the processing device 9 and the stocker 11 is provided with a warehousing port 13 for carrying the goods into the equipment and a warehousing port 15 for picking up the goods from the equipment to the transport vehicle 3. Note that the warehousing port 13 and the warehousing port 15 may be shared.
2.合流部のレイアウト
 図1を用いて、搬送車システム1における合流部や分岐部といった交差点の構造について説明する。
2. The layout of junctions such as junctions and branches in the transport vehicle system 1 will be described with reference to FIG.
 周回走行路5において、基幹走行路7側には、周回形状を構成するための連結路31が設けられている。この実施形態では、連結路31は、周回走行路5の概ね平行に延びる直線部同士を連絡している。 In the circuit travel path 5, a connecting path 31 for configuring a circuit shape is provided on the main travel path 7 side. In this embodiment, the connecting path 31 connects the linear portions of the circumferential traveling path 5 that extend substantially in parallel.
 基幹走行路7と周回走行路5は、入口側連結路33と出口側連結路39とによって連絡されている。 The main traveling path 7 and the circulating traveling path 5 are connected to each other by an inlet side connecting path 33 and an outlet side connecting path 39.
 入口側連結路33は、基幹走行路7から搬送車3が周回走行路5内に入ることを可能にする経路である。入口側連結路33は、基幹走行路7の直線部45の一カ所から延び、周回走行路5において連結路31の終端部に連結されている。入口側連結路33は屈曲して形成され、直線状部分を有している。以上の構成により、連結路31と入口側連結路33が合流する第1合流部35が形成され、そこから直線部37が延びている。 The entrance side connection path 33 is a path that allows the transport vehicle 3 to enter the circuit travel path 5 from the main travel path 7. The inlet side connection path 33 extends from one portion of the straight line portion 45 of the trunk travel path 7, and is connected to the terminal portion of the connection path 31 in the circumferential travel path 5. The inlet side connection path 33 is formed by bending and has a straight portion. With the above configuration, the first joining portion 35 where the connecting passage 31 and the inlet side connecting passage 33 join is formed, and the straight portion 37 extends therefrom.
 出口側連結路39は、周回走行路5から搬送車3が基幹走行路7に出ることを可能にする経路である。出口側連結路39は、周回走行路5の連結路31の出発端から延び、基幹走行路7の直線部45の一カ所に連結されている。出口側連結路39は屈曲して形成されており、直線状部分を有している。以上の構成により、基幹走行路7の直線部45と出口側連結路39が合流する第2合流部41が形成され、そこから直線部43が延びている。 The exit side connection path 39 is a path that enables the transport vehicle 3 to exit from the circuit travel path 5 to the main travel path 7. The outlet side connection path 39 extends from the starting end of the connection path 31 of the circuit travel path 5 and is connected to one place of the straight portion 45 of the main travel path 7. The outlet side connection path 39 is formed by bending and has a straight portion. With the above configuration, the second joining portion 41 where the straight portion 45 of the trunk traveling path 7 and the outlet side connecting passage 39 join is formed, and the straight portion 43 extends therefrom.
 また、基幹走行路7において、入口側連結路33と直線部45が分岐する第1分岐部47が形成されている。周回走行路5において、連結路31と出口側連結路39が分岐する第2分岐部49が形成されている。 Further, in the trunk road 7, a first branch portion 47 where the inlet side connection path 33 and the straight portion 45 branch is formed. In the circumferential traveling path 5, a second branch portion 49 is formed in which the connection path 31 and the outlet side connection path 39 are branched.
 さらに、図4に示すように、出口側連結路39において、第2合流部41と第2分岐部49との間には、搬送方向下流側から、3つの停止位置61,63,65が確保されており、これらが出口側連結路39の待機部81を構成している。基幹走行路7の直線部45において、第2合流部41と第1分岐部47との間には、搬送方向下流側から5つの停止位置51,53,55,57,59が確保されており、これらが直線部45の待機部83を構成している。さらに、また、入口側連結路33において、第1合流部35と第1分岐部47との間には、搬送方向下流側から、2つの停止位置67,69が確保されており、これらが入口側連結路33の待機部85を構成している。さらに、連結路31において、第1合流部35と第2分岐部49との間には、1つの停止位置71が確保されており、これが連結路31の待機部87を構成している。なお、図4には、第2分岐部49より搬送方向上流側の直線部73上の停止位置75が確保されており、これが待機部81,87の一部として含まれていてもよい。また、第1分岐部47より搬送方向上流側の直線部77上の停止位置79が確保されており、これが待機部83,85の一部として含まれていてもよい。 Further, as shown in FIG. 4, in the outlet side connection path 39, three stop positions 61, 63, 65 are secured between the second junction 41 and the second branch 49 from the downstream side in the transport direction. These constitute the standby portion 81 of the outlet side connection path 39. In the straight line portion 45 of the trunk road 7, five stop positions 51, 53, 55, 57, 59 are secured between the second junction portion 41 and the first branch portion 47 from the downstream side in the transport direction. These constitute the standby part 83 of the straight part 45. Furthermore, in the inlet side connection path 33, two stop positions 67 and 69 are secured between the first merging portion 35 and the first branching portion 47 from the downstream side in the transport direction. A standby portion 85 of the side connection path 33 is configured. Further, in the connection path 31, one stop position 71 is secured between the first joining part 35 and the second branch part 49, and this constitutes a standby part 87 of the connection path 31. In FIG. 4, a stop position 75 on the linear portion 73 on the upstream side in the transport direction from the second branch portion 49 is secured, and this may be included as part of the standby portions 81 and 87. Further, a stop position 79 on the linear portion 77 on the upstream side in the transport direction from the first branch portion 47 is secured, and this may be included as a part of the standby portions 83 and 85.
 以上をまとめると、第2合流部41に合流する直線部45と出口側連結路39の搬送方向上流にはそれぞれ第1分岐部47および第2分岐部49が位置しており、それぞれの間には停止位置が1つ以上確保されている。また、第1合流部35に合流する入口側連結路33と連結路31の搬送方向上流にはそれぞれ第1分岐部47および第2分岐部49が位置しており、それぞれの間には停止位置が1つ以上確保されている。 In summary, the first branching portion 47 and the second branching portion 49 are positioned upstream of the straight portion 45 joining the second joining portion 41 and the outlet side connecting path 39 in the conveying direction, respectively. One or more stop positions are secured. In addition, a first branching portion 47 and a second branching portion 49 are positioned upstream in the transport direction of the inlet-side connecting passage 33 and the connecting passage 31 that join the first joining portion 35, respectively. One or more is secured.
3.搬送車システムの制御系
 図2に、搬送車システム1の制御系19を示す。この制御系19は、製造コントローラ21と、物流コントローラ23と、ストッカコントローラ25と、搬送車コントローラ27とを有している。物流コントローラ23は、ストッカコントローラ25および搬送車コントローラ27の上位のコントローラである。搬送車コントローラ27は、複数の搬送車3を管理し、これらに搬送指令を割り付ける割り付け機能を有している。
3. FIG. 2 shows a control system 19 of the transport vehicle system 1. The control system 19 includes a production controller 21, a distribution controller 23, a stocker controller 25, and a transport vehicle controller 27. The logistics controller 23 is a higher-order controller of the stocker controller 25 and the transport vehicle controller 27. The transport vehicle controller 27 has a function of managing a plurality of transport vehicles 3 and assigning a transport command to them.
 製造コントローラ21は、各処理装置9との間で通信することができる。処理装置9は、処理が終了した物品の搬送要求(荷つかみ要求・荷おろし要求)を製造コントローラ21に送信する。 The manufacturing controller 21 can communicate with each processing device 9. The processing device 9 transmits a conveyance request (load grasping request / unloading request) of the article for which processing has been completed to the manufacturing controller 21.
 製造コントローラ21は、処理装置9からの搬送要求を物流コントローラ23に送信し、物流コントローラ23は報告を製造コントローラ21に送信する。 The manufacturing controller 21 transmits a transport request from the processing device 9 to the physical distribution controller 23, and the physical distribution controller 23 transmits a report to the manufacturing controller 21.
 物流コントローラ23は、製造コントローラ21から搬送要求を受けると、ストッカ11での入庫や出庫が伴っている場合、所定のタイミングで入庫や出庫指令をストッカコントローラ25へ送信する。そして、ストッカコントローラ25は、これに応じて入庫や出庫指令をストッカ11へ送信する。物流コントローラ23は、さらに、製造コントローラ21から搬送要求を受け取ると、それを搬送指令に変換し、搬送車3への搬送指令割り付け動作を行う。 When the distribution controller 23 receives a transport request from the production controller 21, if the stocker 11 is accompanied by a receipt or delivery, it sends a receipt or delivery command to the stocker controller 25 at a predetermined timing. Then, the stocker controller 25 transmits an incoming / outgoing command to the stocker 11 accordingly. Further, when the distribution controller 23 receives a conveyance request from the manufacturing controller 21, it converts it into a conveyance command, and performs an operation for assigning the conveyance command to the conveyance vehicle 3.
 搬送車コントローラ27は、搬送指令を作成するために各搬送車3と連続的に通信して、各搬送車3から送信された位置データをもとにその位置情報を得ている。位置情報を取得する例としては、以下の2つがある。
 ・周回走行路5に複数のポイントを設定しておき、搬送車3がポイントを通過したときに通過信号を搬送車コントローラ27に送信させるようにしておく。そして、搬送車コントローラ27が、搬送車3が直近に通過したポイントがどのポイントであるかと、ポイントを通過した時刻とを記憶しておき、そのポイント区間の規定速度と時間をもとに搬送車3の位置を演算して求める。
 ・例えばエンコーダを搬送車3に設けておいて、ポイントを通過してからの走行距離を搬送車3から搬送車コントローラ27へ位置データとして送信させ、搬送車コントローラ27がこれによって搬送車3の位置を把握するようにする。
The transport vehicle controller 27 continuously communicates with each transport vehicle 3 to create a transport command, and obtains position information based on the position data transmitted from each transport vehicle 3. There are the following two examples of acquiring position information.
A plurality of points are set on the circuit travel path 5 so that a passing signal is transmitted to the transport vehicle controller 27 when the transport vehicle 3 passes the points. And the conveyance vehicle controller 27 memorize | stores the point which the conveyance vehicle 3 passed most recently, and the time which passed the point, and the conveyance vehicle based on the regulation speed and time of the point area. The position of 3 is calculated and obtained.
For example, an encoder is provided in the transport vehicle 3, and the travel distance after passing the point is transmitted as position data from the transport vehicle 3 to the transport vehicle controller 27, and the transport vehicle controller 27 thereby transmits the position of the transport vehicle 3. To figure out.
 搬送車3は、制御部とメモリを含むコントローラ(図示せず)を有している。搬送車3のコントローラは、CPU、RAM、ROM等からなりプログラムを実行するコンピュータである。搬送車3のコントローラは、搬送車コントローラ27と交信可能である。搬送車3は、メモリ内にルートマップを有しており、ルートマップに記載の座標と自機の内部座標(エンコーダによって求めた座標)とを比較しながら走行を続ける。
 さらに、各搬送車3は、合流部手前の所定エリア内に入ると、ブロッキング要求を搬送車コントローラ27に送信する。搬送車コントローラ27は、他の搬送車3からブロッキング要求を受けていない場合またはブロッキング要求を受けていても他の搬送車3からのブロッキング要求の優先度が低い場合は、当該搬送車3にブロッキング指令(ブロッキング要求を許可する指令)を送信する。ブロッキング指令を受信した搬送車3は合流部を通過することができ、ブロッキング指令を受信していない搬送車3は合流部の手前で停止させられる。さらに、各搬送車3は、交差点を通過後にブロッキング解除要求を搬送車コントローラ27に送信する。この結果、搬送車コントローラ27は他の搬送車3からブロッキング要求を待つか、またはすでに受信している他の搬送車3からのブロッキング要求に応えるか、を判断する。
The transport vehicle 3 has a controller (not shown) including a control unit and a memory. The controller of the transport vehicle 3 is a computer that includes a CPU, a RAM, a ROM, and the like and executes a program. The controller of the transport vehicle 3 can communicate with the transport vehicle controller 27. The transport vehicle 3 has a route map in the memory, and continues traveling while comparing the coordinates described in the route map with the internal coordinates of the own machine (coordinates obtained by the encoder).
Furthermore, each conveyance vehicle 3 will transmit a blocking request | requirement to the conveyance vehicle controller 27, if it enters in the predetermined area before a junction part. When the transport vehicle controller 27 does not receive a blocking request from another transport vehicle 3 or receives a blocking request, but the priority of the blocking request from the other transport vehicle 3 is low, the transport vehicle controller 27 blocks the transport vehicle 3. Send a command (command to allow blocking request). The transport vehicle 3 that has received the blocking command can pass through the junction, and the transport vehicle 3 that has not received the blocking command is stopped before the junction. Further, each transport vehicle 3 transmits a blocking release request to the transport vehicle controller 27 after passing through the intersection. As a result, the conveyance vehicle controller 27 determines whether to wait for a blocking request from another conveyance vehicle 3 or to respond to a blocking request from another conveyance vehicle 3 that has already been received.
4.合流部におけるブロッキング制御
 図3に示すフローチャートを用いて、合流部におけるブロッキング制御について説明する。
4). Blocking control at the junction The blocking control at the junction will be described using the flowchart shown in FIG.
(1)第2合流部41
 最初に、第2合流部41におけるブロッキング制御について説明する。
(1) Second junction 41
Initially, the blocking control in the 2nd junction part 41 is demonstrated.
 図3のステップS1では、主経路優先モードが採用される。第2合流部41における「主経路」とは、第2合流部41より搬送方向下流側の直線部43に対して直線状に連絡している直線部45であり、出口側連結路39は副経路である。主経路優先モード中は、搬送車コントローラ27は、直線部45を走行する搬送車3のブロッキング要求を許可するが、出口側連結路39を走行する搬送車3のブロッキング要求を許可しない。具体的には、直線部45を走行する搬送車3が第2合流部41に接近して所定のエリアに入ると、搬送車コントローラ27に対してブロッキングを要求する。すると、搬送車コントローラ27は、当該搬送車3に対してブロッキング指令を送信して、当該搬送車3が第2合流部41を通過することを許可する。通過した搬送車3は、搬送車コントローラ27に対してブロッキング解除を要求する。この結果、搬送車コントローラ27はブロッキングを解除する。以上の動作が繰り返し実行され、その結果、複数の搬送車3が連続して第2合流部41を通過していく。このように、複数の搬送車3が第2合流部41の前で一旦停止せずに第2合流部41を連続して通過するので、搬送車システム1における搬送車3の走行量アップが実現される。特に、直線部において高速走行する搬送車3が第2合流部41を一気に通過するため、前述の効果がさらに高くなる。 In step S1 of FIG. 3, the main route priority mode is adopted. The “main path” in the second merging portion 41 is a straight portion 45 that is linearly connected to the straight portion 43 on the downstream side in the transport direction from the second merging portion 41, and the outlet side connecting path 39 is a sub-channel. It is a route. During the main route priority mode, the transport vehicle controller 27 permits a blocking request for the transport vehicle 3 traveling on the straight portion 45, but does not permit a blocking request for the transport vehicle 3 traveling on the outlet side connection path 39. Specifically, when the transport vehicle 3 traveling along the straight portion 45 approaches the second junction 41 and enters a predetermined area, the transport vehicle controller 27 is requested to block. Then, the transport vehicle controller 27 transmits a blocking command to the transport vehicle 3 and permits the transport vehicle 3 to pass through the second junction portion 41. The carriage 3 that has passed requests the carriage controller 27 to cancel the blocking. As a result, the transport vehicle controller 27 cancels blocking. The above operation is repeatedly executed, and as a result, the plurality of transport vehicles 3 continuously pass through the second junction portion 41. In this way, since the plurality of transport vehicles 3 continuously pass through the second joining portion 41 without stopping once in front of the second joining portion 41, the travel amount of the transport vehicle 3 in the transport vehicle system 1 is increased. Is done. In particular, since the transport vehicle 3 that travels at a high speed in the straight portion passes through the second merging portion 41 at once, the above-described effect is further enhanced.
 一方、主経路優先モード中に、出口側連結路39を走行する搬送車3が第2合流部41に接近して所定のエリアに入って、搬送車3が搬送車コントローラ27に対してブロッキングを要求しても、搬送車コントローラ27は、当該搬送車3に対してブロッキング指令を送信しない。したがって、搬送車3は第2合流部41の手前の停止位置61に停止する。
 図4は、直線部45を走行中の5台の搬送車A1,A2,A3,A4,A5が連続して第2合流部41を通過しようとしており、出口側連結路39では2台の搬送車B1,B2が停止位置61,63でそれぞれ待機している状態を示している。なお、2台目の搬送車B2は1台目の搬送車B1との衝突を避けるために自ら停止位置63に停止している(以下も同じである)。
On the other hand, during the main route priority mode, the transport vehicle 3 traveling on the outlet side connection path 39 approaches the second junction 41 and enters a predetermined area, and the transport vehicle 3 blocks the transport vehicle controller 27. Even if requested, the transport vehicle controller 27 does not transmit a blocking command to the transport vehicle 3. Accordingly, the transport vehicle 3 stops at the stop position 61 in front of the second junction 41.
In FIG. 4, five transport vehicles A1, A2, A3, A4, and A5 traveling along the straight portion 45 are going to pass through the second junction 41 in succession, and two transport vehicles are transported on the outlet side connection path 39. A state in which the cars B1 and B2 are waiting at the stop positions 61 and 63, respectively, is shown. The second transport vehicle B2 itself stops at the stop position 63 in order to avoid a collision with the first transport vehicle B1 (the same applies to the following).
 ステップS2では、所定時間が経過していなければステップS3に移行し、所定時間が経過していればステップS3をパスしてステップS4に移行する。なお、この所定時間は、待機側の1台目の搬送車3(図4では搬送車B1)がブロッキング要求を送信した時点から搬送車コントローラ27のタイマが計測を開始する。 In step S2, if the predetermined time has not elapsed, the process proceeds to step S3. If the predetermined time has elapsed, step S3 is passed and the process proceeds to step S4. Note that the timer of the transport vehicle controller 27 starts measuring the predetermined time from the time when the first transport vehicle 3 on the standby side (the transport vehicle B1 in FIG. 4) transmits a blocking request.
 ステップS3では、出口側連結路39に3台の搬送車3が停車し、さらに第2分岐部49より搬送方向上流にある停止位置75に出口側連結路39側に走行しようとする搬送車3が停止するのを待つ。上記の一定数の搬送車3が待機状態になっていなければステップS2に戻り、待機状態になっていればステップS4に移行する。
 図5は、搬送車B1,B2,B3が出口側連結路39の停止位置61,63,65に停止しており、さらに4台目の搬送車B4が第2分岐部49より上流側の停止位置75に停止している状態を示している。なお、搬送車コントローラ27は、第2合流部41から見て出口側連結路39側に何台までの搬送車3を停止可能とするか(待機部に待機可能な台数)を予め記憶しており、その台数を実現するために、第2合流部41からの停止可能限界距離(それ以上離れた位置に搬送車3が停止すると優先モードを切り換える基準となる距離)を用いて、一定数の搬送車3が待機状態になったか否かを判断する。待機部における待機台数の判断については、他の場合も同様である。
In step S3, the three transport vehicles 3 stop on the exit side connection path 39, and further the transport vehicle 3 that tries to travel to the exit side connection path 39 side at a stop position 75 upstream of the second branch portion 49 in the transport direction. Wait for it to stop. If the fixed number of transporting vehicles 3 are not in the standby state, the process returns to step S2, and if in the standby state, the process proceeds to step S4.
In FIG. 5, the transport vehicles B 1, B 2, B 3 are stopped at the stop positions 61, 63, 65 of the outlet side connection path 39, and the fourth transport vehicle B 4 is stopped upstream of the second branch portion 49. A state of stopping at a position 75 is shown. In addition, the conveyance vehicle controller 27 stores in advance how many conveyance vehicles 3 can be stopped on the exit side connection path 39 side as viewed from the second junction 41 (the number of units that can stand by in the standby unit). In order to realize the number of vehicles, a certain number of stoppage distances from the second merging portion 41 (a reference distance for switching the priority mode when the transport vehicle 3 stops at a further distance) is used. It is determined whether the transport vehicle 3 is in a standby state. The determination of the number of standby units in the standby unit is the same in other cases.
 ステップS4では、主経路優先モードから副経路優先モードに切り換えられる。副経路優先モード中は、搬送車コントローラ27は、出口側連結路39を走行する搬送車3のブロッキング要求を許可するが、直線部45を走行する搬送車3のブロッキング要求を許可しない。したがって、直線部45を走行する搬送車3が第2合流部41に接近して所定のエリアに入って搬送車コントローラ27に対してブロッキングを要求しても、搬送車コントローラ27は、当該搬送車3に対してブロッキング指令を送信しない。その結果、搬送車3は停止位置51に停止する。以上の動作が繰り返されることで、直線部45には搬送車3が順番に停止していく。図5には、直線部45には3台の搬送車A8,A9,A10が停止している状態を示している。一方、待機中の搬送車B1,B2,B3,B4は、順番に、搬送車コントローラ27からブロッキング許可の送信を受け、次に第2合流部41を通過した後に搬送車コントローラ27に対してのブロッキング解除を要求する。その結果、待機中の搬送車B1,B2,B3,B4が連続して第2合流部41を通過していく。 In step S4, the main route priority mode is switched to the sub route priority mode. During the sub route priority mode, the transport vehicle controller 27 permits a blocking request for the transport vehicle 3 traveling on the outlet side connection path 39, but does not permit a blocking request for the transport vehicle 3 traveling on the straight portion 45. Therefore, even if the transport vehicle 3 traveling along the straight portion 45 approaches the second junction 41 and enters a predetermined area and requests blocking from the transport vehicle controller 27, the transport vehicle controller 27 No blocking command is sent to 3. As a result, the transport vehicle 3 stops at the stop position 51. By repeating the above operation, the transport vehicle 3 stops in order in the straight line portion 45. FIG. 5 shows a state in which the three conveyance vehicles A8, A9, and A10 are stopped at the linear portion 45. On the other hand, the waiting transport vehicles B1, B2, B3, B4 in turn receive transmission of blocking permission from the transport vehicle controller 27, and then pass through the second junction 41 and then to the transport vehicle controller 27. Request unblocking. As a result, the waiting transport vehicles B1, B2, B3, and B4 continuously pass through the second junction 41.
 ステップS5では、副経路優先モードに切り換えられた時点で副経路に待機していた搬送車(搬送車B1~B4)の一部または全てが第2合流部41を通過すれば、ステップS1に戻って、副経路優先モードを主経路優先モードに切り換える。所定台数が第2合流部41を通過していないとステップS6に移行する。 In step S5, if a part or all of the transport vehicles (transport vehicles B1 to B4) waiting on the sub route at the time of switching to the sub route priority mode pass through the second junction 41, the process returns to step S1. Thus, the sub route priority mode is switched to the main route priority mode. If the predetermined number has not passed the 2nd junction part 41, it will transfer to Step S6.
 ステップS6では、出口側連結路39に5台の搬送車3が停車し、さらに第1分岐部47より搬送方向上流にある停止位置79に直線部45側に走行しようとする搬送車3が停止するのを待つ。上記の一定数の搬送車3が待機状態になっていなければステップS5に戻り、待機状態になっていればステップS1に移行して、副経路優先モードを主経路優先モードに切り換える。 In step S6, the five transport vehicles 3 stop on the exit side connection path 39, and the transport vehicle 3 that tries to travel to the linear portion 45 side stops at a stop position 79 that is upstream of the first branch portion 47 in the transport direction. Wait to do. If the fixed number of transport vehicles 3 is not in the standby state, the process returns to step S5, and if in the standby state, the process proceeds to step S1 to switch the sub route priority mode to the main route priority mode.
 以上の制御動作では、第2合流部41の両側の経路において優先モードが切り換えられ、そのたびに一方の経路のみから搬送車3が第2合流部41を通過する。このため、搬送車システム1の搬送効率が向上する。
 なお、優先モードの切り換えは、搬送車3の待機による不具合が生じないように工夫されている。具体的には、待機側の搬送車3が第1分岐部47および第2分岐部49より搬送方向上流側の位置に停止しないようにしており、そのため第1分岐部47および第2分岐部49において別の側(問題にしている合流部ではない側)に走行しようとする搬送車3の走行を妨げることがない。また、待機している搬送車3の待機時間もチェックしているため、長期間にわたって搬送車3が待機位置に待機してしまう事態も防止している。
In the above control operation, the priority mode is switched in the paths on both sides of the second junction unit 41, and the conveyance vehicle 3 passes through the second junction unit 41 only from one path each time. For this reason, the conveyance efficiency of the conveyance vehicle system 1 improves.
Note that the priority mode switching is devised so as not to cause problems due to standby of the transport vehicle 3. Specifically, the transport vehicle 3 on the standby side is prevented from stopping at a position upstream of the first branching portion 47 and the second branching portion 49 in the transporting direction. Therefore, the first branching portion 47 and the second branching portion 49 are prevented. In this case, it is possible to prevent the transport vehicle 3 from traveling on the other side (the side that is not the confluence portion in question) from traveling. Further, since the waiting time of the waiting transport vehicle 3 is also checked, it is possible to prevent the transport vehicle 3 from waiting at the standby position for a long period of time.
(2)第1合流部35
 次に、第1合流部35におけるブロッキング制御について説明する。図3のステップS1では、主経路優先モードが採用される。ここでの「主経路」とは、第1合流部35の搬送方向下流側の直線部37に対して直線状に連絡している入口側連結路33であり、連結路31は副経路である。主経路優先モード中は、搬送車コントローラ27は、入口側連結路33を走行する搬送車3のブロッキング要求を許可するが、連結路31を走行する搬送車3のブロッキング要求を許可しない。具体的には、入口側連結路33を走行する搬送車3が第1合流部35に接近して所定のエリアに入ると、搬送車コントローラ27に対してブロッキングを要求する。すると、搬送車コントローラ27は、当該搬送車3に対してブロッキング指令を送信して、当該搬送車3が第1合流部35を通過すること許可する。第1合流部35を通過した搬送車3は、搬送車コントローラ27に対してブロッキング解除を要求する。この結果、搬送車コントローラ27はブロッキングを解除する。以上の動作が繰り返し実行される結果、複数の搬送車3が連続して第1合流部35を通過していく。
(2) 1st junction part 35
Next, the blocking control in the 1st junction part 35 is demonstrated. In step S1 of FIG. 3, the main route priority mode is adopted. Here, the “main path” is the inlet-side connecting path 33 that communicates linearly with the linear section 37 on the downstream side in the transport direction of the first merging section 35, and the connecting path 31 is a sub-path. . During the main route priority mode, the transport vehicle controller 27 permits a blocking request for the transport vehicle 3 traveling on the entrance side connection path 33, but does not permit a blocking request for the transport vehicle 3 traveling on the connection path 31. Specifically, when the transport vehicle 3 traveling on the inlet side connecting path 33 approaches the first junction 35 and enters a predetermined area, the transport vehicle controller 27 is requested to block. Then, the transport vehicle controller 27 transmits a blocking command to the transport vehicle 3 and permits the transport vehicle 3 to pass through the first junction 35. The transport vehicle 3 that has passed through the first junction 35 requests the transport controller 27 to cancel blocking. As a result, the transport vehicle controller 27 cancels blocking. As a result of the above operations being repeatedly executed, the plurality of transport vehicles 3 continuously pass through the first junction portion 35.
 一方、主経路優先モード中に、連結路31を走行する搬送車3が第1合流部35に接近して所定のエリアに入って搬送車コントローラ27に対してブロッキングを要求しても、搬送車コントローラ27は、当該搬送車3に対してブロッキング指令を送信しない。したがって、搬送車3は、第1合流部35の手前の停止位置71に停止する。
 図6は、入口側連結路33を走行中の2台の搬送車C1,C2が連続して第1合流部35を通過しようとしており、連結路31では1台の搬送車D1が停止位置71に待機している状態を示している。
On the other hand, even if the transport vehicle 3 traveling on the connection path 31 approaches the first junction 35 and enters a predetermined area and requests blocking from the transport vehicle controller 27 during the main route priority mode, the transport vehicle The controller 27 does not transmit a blocking command to the transport vehicle 3. Accordingly, the transport vehicle 3 stops at the stop position 71 in front of the first junction portion 35.
In FIG. 6, two transport vehicles C <b> 1 and C <b> 2 that are traveling on the entrance-side connection path 33 are going to pass through the first junction 35 in succession. Indicates a waiting state.
 ステップS2では、所定時間が経過していなければステップS3に移行し、所定時間が経過していればステップS3をパスしてステップS4に移行する。なお、この所定時間は、待機側の搬送車3(図6では搬送車D1)がブロッキング要求を送信した時点から、搬送車コントローラ27のタイマが計測を開始する。 In step S2, if the predetermined time has not elapsed, the process proceeds to step S3. If the predetermined time has elapsed, step S3 is passed and the process proceeds to step S4. Note that, during the predetermined time, the timer of the transport vehicle controller 27 starts measurement from the time when the transport vehicle 3 on the standby side (the transport vehicle D1 in FIG. 6) transmits a blocking request.
 ステップS3では、連結路31に1台の搬送車3が停車し、さらに第2分岐部49より搬送方向上流にある停止位置75に連結路31側に走行しようとする搬送車3が停止するのを待つ。上記の一定数の搬送車3が待機状態になっていなければステップS2に戻り、待機状態になっていればステップS4に移行する。
 図7は、搬送車D1が連結路31の停止位置71に停止しており、さらに2台目の搬送車D2が第2分岐部49より搬送方向上流側の停止位置75に停止している状態を示している。
In step S3, one transport vehicle 3 stops on the connection path 31, and the transport vehicle 3 that tries to travel to the connection path 31 side stops at a stop position 75 that is upstream of the second branch portion 49 in the transport direction. Wait for. If the fixed number of transporting vehicles 3 are not in the standby state, the process returns to step S2, and if in the standby state, the process proceeds to step S4.
In FIG. 7, the transport vehicle D1 is stopped at the stop position 71 of the connection path 31, and the second transport vehicle D2 is stopped at the stop position 75 upstream of the second branching portion 49 in the transport direction. Is shown.
 ステップS4では、主経路優先モードから副経路優先モードに切り換えられる。副経路優先モード中は、搬送車コントローラ27は、連結路31を走行する搬送車3のブロッキング要求を許可するが、入口側連結路33を走行する搬送車3のブロッキング要求を許可しない。したがって、入口側連結路33を走行する搬送車3が第1合流部35に接近して所定のエリアに入って搬送車コントローラ27に対してブロッキングを要求しても、搬送車コントローラ27は、当該搬送車3に対してブロッキング指令を送信しない。その結果、搬送車3は停止位置67に停止する。その結果、入口側連結路33には順番に搬送車3が停止していく。
 図7は、入口側連結路33には2台の搬送車C4,C5が停止している状態を示している。一方、待機中の搬送車D1,D2は、順番に、搬送車コントローラ27からブロッキング許可を受信し、第1合流部35を通過した後に搬送車コントローラ27に対してのブロッキング解除要求を送信する。その結果、待機中の搬送車D1,D2が、連続して第2合流部41を通過していく。
In step S4, the main route priority mode is switched to the sub route priority mode. During the sub route priority mode, the transport vehicle controller 27 permits a blocking request for the transport vehicle 3 traveling on the connection path 31, but does not permit a blocking request for the transport vehicle 3 traveling on the entrance side connection path 33. Therefore, even if the transport vehicle 3 traveling on the inlet side connection path 33 approaches the first junction 35 and enters a predetermined area and requests the transport vehicle controller 27 to block, the transport vehicle controller 27 A blocking command is not transmitted to the transport vehicle 3. As a result, the transport vehicle 3 stops at the stop position 67. As a result, the transport vehicle 3 stops in order on the inlet side connection path 33.
FIG. 7 shows a state in which the two transport vehicles C4 and C5 are stopped in the entrance side connecting path 33. On the other hand, the transporting vehicles D1 and D2 that are on standby sequentially receive the blocking permission from the transporting vehicle controller 27, and transmit a blocking release request to the transporting vehicle controller 27 after passing through the first junction 35. As a result, the transporting vehicles D1 and D2 on standby pass through the second junction unit 41 continuously.
 ステップS5では、副経路優先モードに切り換えられた時点で副経路に待機していた搬送車(搬送車D1~D2)の一部または全てが第1合流部35を通過すれば、ステップS1に戻って、副経路優先モードを主経路優先モードに切り換える。所定台数が第1合流部35を通過していないとステップS6に移行する。 In step S5, if a part or all of the transport vehicles (transport vehicles D1 to D2) waiting on the sub route at the time of switching to the sub route priority mode pass through the first junction 35, the process returns to step S1. Thus, the sub route priority mode is switched to the main route priority mode. If the predetermined number has not passed the 1st junction part 35, it will transfer to step S6.
 ステップS6では、入口側連結路33に2台の搬送車3が停車し、さらに第1分岐部47より搬送方向上流にある停止位置79に、入口側連結路33側に走行しようとする搬送車3が停止するのを待つ。上記の一定数の搬送車3が待機状態になっていなければステップS5に戻り、待機状態になっていればステップS1に移行して、副経路優先モードを主経路優先モードに切り換える。 In step S6, the two transport vehicles 3 stop on the entrance-side connection path 33, and further, the transport vehicle intends to travel toward the entrance-side connection path 33 at a stop position 79 upstream of the first branching portion 47 in the transport direction. Wait for 3 to stop. If the fixed number of transport vehicles 3 is not in the standby state, the process returns to step S5, and if in the standby state, the process proceeds to step S1 to switch the sub route priority mode to the main route priority mode.
 以上の制御動作では、第1合流部35の両側の経路において優先モードが切り換えられ、そのたびに一方の経路のみから搬送車3が第1合流部35を通過する。このため、搬送車システム1の搬送効率が向上する。
 なお、優先モードの切り換えは、搬送車3の待機による不具合が生じないように工夫されている。具体的には、待機側の搬送車3が第1分岐部47および第2分岐部49より搬送方向上流側の位置に停止しないようにしており、そのため第1分岐部47および第2分岐部49において別の側(問題にしている合流部ではない側)に走行しようとする搬送車3の走行を妨げることがない。また、待機している搬送車3の待機時間もチェックしているため、長期間にわたって搬送車3が待機場所に待機してしまう事態も防止している。
In the above control operation, the priority mode is switched in the paths on both sides of the first junction 35, and the transport vehicle 3 passes through the first junction 35 only from one path each time. For this reason, the conveyance efficiency of the conveyance vehicle system 1 improves.
Note that switching of the priority mode is devised so as not to cause a problem due to standby of the transport vehicle 3. Specifically, the transport vehicle 3 on the standby side does not stop at a position upstream of the first branching portion 47 and the second branching portion 49 in the transporting direction, so that the first branching portion 47 and the second branching portion 49 are prevented. In this case, it is possible to prevent the transport vehicle 3 from traveling on the other side (the side that is not the confluence portion in question) from traveling. In addition, since the waiting time of the waiting transport vehicle 3 is also checked, it is possible to prevent the transport vehicle 3 from waiting in the standby place for a long period of time.
5.特徴
 以下、第2合流部41における排他制御の動作を一例として、本発明の一実施形態の特徴を説明する。
5). Features Hereinafter, features of one embodiment of the present invention will be described using the operation of exclusive control in the second junction unit 41 as an example.
(1)搬送車システム1は、走行経路と、複数の搬送車3と、搬送車コントローラ27とを備えている。走行経路は、直線部45と、出口側連結路39と、両者が合流する第2合流部41とを有する。複数の搬送車3は、走行経路上を走行する。出口側連結路39は待機部81を有する。搬送車コントローラ27は、複数の搬送車3の走行を制御する。搬送車コントローラ27は、出口側連結路39の待機部81(第2分岐部49より搬送方向上流側の部分を含む)に所定の数の搬送車が停車するまでの間は搬送車3を出口側連結路39の待機部81に待機させつつ、搬送車3を直線部45から第2合流部41に連続して通過させる。
 このシステムでは、搬送車3は直線部45から第2合流部41に連続して通過する。そして、出口側連結路39の待機部81に所定の数の搬送車3が待機すると、直線部45からの搬送車3の連続通過が停止する。このように搬送車3が連続通過するので、搬送車システム1全体の搬送効率が向上する。また、出口側連結路39の待機部81上の待機台数が所定台数になると、出口側連結路39から搬送車3が第2合流部41を通過することが可能になるので、出口側連結路39の搬送方向上流側で搬送車3が停滞するのを防止できる。
(1) The transport vehicle system 1 includes a travel route, a plurality of transport vehicles 3, and a transport vehicle controller 27. The travel route includes a straight portion 45, an outlet side connection passage 39, and a second joining portion 41 where both join. The plurality of transport vehicles 3 travel on the travel route. The outlet side connection path 39 has a standby portion 81. The transport vehicle controller 27 controls the traveling of the plurality of transport vehicles 3. The transport vehicle controller 27 exits the transport vehicle 3 until a predetermined number of transport vehicles stop at the standby portion 81 (including the portion upstream of the second branch portion 49 in the transport direction) of the exit side connection path 39. The carriage 3 is continuously passed from the straight portion 45 to the second junction portion 41 while waiting in the standby portion 81 of the side connection path 39.
In this system, the transport vehicle 3 passes continuously from the straight portion 45 to the second junction portion 41. And when the predetermined number of conveyance vehicles 3 stand by in the standby part 81 of the exit side connection path 39, the continuous passage of the conveyance vehicles 3 from the linear part 45 stops. Thus, since the conveyance vehicle 3 passes continuously, the conveyance efficiency of the conveyance vehicle system 1 whole improves. In addition, when the number of standby units on the standby unit 81 of the exit side connection path 39 reaches a predetermined number, the transport vehicle 3 can pass through the second junction 41 from the exit side connection path 39, so the exit side connection path It is possible to prevent the transport vehicle 3 from stagnating upstream in the transport direction 39.
(2)搬送車コントローラ27は、出口側連結路39の待機部81に所定の数の搬送車3が停車すると、それ以後は出口側連結路39の待機部81上の複数の搬送車を第2合流部41に連続して通過させる。この場合は、出口側連結路39の待機部81上の複数の搬送車3が第2合流部41を連続して通過するので、搬送車システム1全体の搬送効率が高くなる。 (2) When a predetermined number of transport vehicles 3 stop at the standby portion 81 of the exit side connection path 39, the transport vehicle controller 27 thereafter designates a plurality of transport vehicles on the standby portion 81 of the exit side connection path 39. 2 is continuously passed through the junction 41. In this case, since the plurality of transport vehicles 3 on the standby unit 81 of the outlet side connection path 39 passes through the second junction unit 41 continuously, the transport efficiency of the entire transport vehicle system 1 is increased.
(3)直線部45は待機部83を有する。搬送車コントローラ27は、搬送車3が出口側連結路39から第1合流部35を通過中に、直線部45の待機部83に所定の数の搬送車が停車するまでの間は搬送車を直線部45の待機部83に待機させる。つまり、直線部45の待機部83の待機台数が所定台数になると、直線部45から第2合流部41への通過が可能になるので、直線部45の搬送方向上流側での搬送車3が停滞するのを防止できる。 (3) The straight line portion 45 has a standby portion 83. The transport vehicle controller 27 keeps the transport vehicles until a predetermined number of transport vehicles stop at the standby portion 83 of the straight portion 45 while the transport vehicle 3 passes through the first junction 35 from the outlet side connection path 39. The standby part 83 of the straight line part 45 is made to wait. That is, when the number of standby units 83 in the straight line part 45 reaches a predetermined number, the straight line 45 can pass from the second joining part 41, so the transport vehicle 3 on the upstream side in the transport direction of the straight line part 45 It is possible to prevent stagnation.
(4)搬送車コントローラ27は、搬送車3が出口側連結路39に所定時間以上待機した場合には、待機台数にかかわらず、待機していた搬送車3に第2合流部41を通過させる。つまり、出口側連結路39における待機台数が所定台数に達していなくても、所定時間が経過したタイミングで待機していた搬送車3に第2合流部41を通過させる。これにより、搬送車3が出口側連結路39に長時間待機することがない。 (4) When the transport vehicle 3 waits for a predetermined time or more in the exit side connection path 39, the transport vehicle controller 27 passes the second junction 41 to the transport vehicle 3 that has been waiting, regardless of the number of standby vehicles. . That is, even if the number of standby units on the outlet side connection path 39 does not reach the predetermined number, the second junction 41 is passed through the transport vehicle 3 that has been waiting at the timing when the predetermined time has elapsed. Thereby, the conveyance vehicle 3 does not wait in the exit side connection path 39 for a long time.
(5)搬送車システム1は、走行経路と、複数の搬送車3と、搬送車コントローラ27とを備えている。走行経路は、直線部45と、出口側連結路39と、両者が合流する第2合流部41とを有する。複数の搬送車3は、走行経路上を走行する。搬送車コントローラ27は、搬送車3が直線部45のみから第2合流部41を走行することを許容する主経路優先モード(第1モード)と、搬送車3が出口側連結路9のみから第2合流部41を走行することを許容する副経路優先モード(第2モード)とを切り換え可能である。搬送車コントローラ27は、少なくともいずれかのモードにおいて、第2合流部41への走行を許可されていない経路で停止している搬送車3が所定の数に達したら、モードを切り換える。
 この搬送車システム1では、主経路優先モードの時に搬送車は直線部45から第2合流部41を連続して通過して、副経路優先モードの時に搬送車3は出口側連結路39から第2合流部41を連続して通過する。そして、少なくともいずれかのモードにおいて、第2合流部41への走行を許可されていない経路で停止している搬送車3が所定の数に達したら、モードを切り換える。
 このように搬送車3が連続通過するので、システム全体の搬送効率が向上する。また、第2合流部41への走行を許可されていない経路で停止している搬送車3が所定の数に達したら、モードが切り換えられるので、走行を許可されていない経路で搬送車3が停滞しにくい。
(5) The transport vehicle system 1 includes a travel route, a plurality of transport vehicles 3, and a transport vehicle controller 27. The travel route includes a straight portion 45, an outlet side connection passage 39, and a second joining portion 41 where both join. The plurality of transport vehicles 3 travel on the travel route. The transport vehicle controller 27 includes a main route priority mode (first mode) that allows the transport vehicle 3 to travel the second junction 41 from only the straight portion 45, and the transport vehicle 3 from the outlet side connection path 9 only. It is possible to switch between the sub route priority mode (second mode) that allows the vehicle to travel through the two junctions 41. In at least one of the modes, the transport vehicle controller 27 switches the mode when the transport vehicle 3 stopped on the route not allowed to travel to the second junction 41 reaches a predetermined number.
In the transport vehicle system 1, the transport vehicle continuously passes through the second joining portion 41 from the straight portion 45 when in the main route priority mode, and the transport vehicle 3 passes through the outlet side connection path 39 when the sub route priority mode is set. It passes the 2 junction part 41 continuously. In at least one of the modes, the mode is switched when the number of transporting vehicles 3 that have stopped on the route that is not permitted to travel to the second junction 41 reaches a predetermined number.
Thus, since the conveyance vehicle 3 passes continuously, the conveyance efficiency of the whole system improves. Further, when the number of transport vehicles 3 stopped on a route that is not permitted to travel to the second junction 41 reaches a predetermined number, the mode is switched, so that the transport vehicle 3 travels on a route that is not permitted to travel. It is hard to stagnate.
(6)搬送車コントローラ27は、第2合流部41への走行を許可されていない経路で停止している搬送車3が所定の数に達していなくても、第2合流部41への走行を許可されている経路から第2合流部41を走行した搬送車3の数が所定の数に達したら、モードを切り換える。
 この搬送車システムでは、第2合流部41への走行を許可されていない経路で搬送車3が停滞しにくい。
(6) The transport vehicle controller 27 travels to the second junction 41 even if the transport vehicles 3 that have stopped on the route that is not permitted to travel to the second junction 41 have not reached the predetermined number. When the number of transport vehicles 3 that have traveled the second junction 41 from the permitted route reaches a predetermined number, the mode is switched.
In this transport vehicle system, the transport vehicle 3 is unlikely to stagnate on a route that is not permitted to travel to the second junction 41.
(7)搬送車コントローラ27は、第2合流部41への走行を許可されていない経路で停止している搬送車3が所定の数に達していなくても、選択されているモードが所定時間を経過したら、モードを切り換える。
 この搬送車システム1では、第2合流部41への走行を許可されていない経路で搬送車3が停滞しにくい。
(7) The transport vehicle controller 27 determines that the selected mode is the predetermined time even if the transport vehicle 3 stopped on the route not allowed to travel to the second junction 41 has not reached the predetermined number. After elapse, switch the mode.
In the transport vehicle system 1, the transport vehicle 3 is unlikely to stagnate on a route that is not permitted to travel to the second junction 41.
(8)搬送車コントローラ27は、直線部45と出口側連結路39のうち第2合流部41の前後で直線形状である経路のみを走行可能とするモードを優先的に選択する。
 この搬送車システム1では、第2合流部41を直線走行しながら通過する経路が優先的に選択されるので、システム全体の搬送効率が向上する。
(8) The transport vehicle controller 27 preferentially selects a mode in which only the route having a linear shape before and after the second junction 41 in the straight portion 45 and the outlet side connection path 39 can travel.
In this conveyance vehicle system 1, since the path | route which passes along the 2nd junction part 41 running linearly is selected preferentially, the conveyance efficiency of the whole system improves.
(9)直線部45と出口側連結路39の少なくとも一方は、搬送車3が待機可能な待機部(83,81)を有している。
 この搬送車システム1では、第2合流部41への走行を許可されていない経路では搬送車3は待機部(83,81)で待機している。
(9) At least one of the straight line portion 45 and the outlet side connection path 39 has a standby portion (83, 81) in which the transport vehicle 3 can wait.
In this transport vehicle system 1, the transport vehicle 3 stands by at the standby section (83, 81) on a route that is not permitted to travel to the second junction section 41.
(10)待機部(83,81)には複数の搬送車3が待機可能である。
 この搬送車システム1では、待機部(83,81)には複数の搬送車3が待機可能なので、第2合流部41への走行が許可されている経路を搬送車3が走行する時間が長くなる。その結果、システム全体の搬送効率が向上する。
(10) A plurality of transport vehicles 3 can stand by in the standby section (83, 81).
In this transport vehicle system 1, since a plurality of transport vehicles 3 can stand by in the standby section (83, 81), it takes a long time for the transport vehicle 3 to travel on the route permitted to travel to the second junction section 41. Become. As a result, the conveyance efficiency of the entire system is improved.
(11)直線部45と出口側連結路39は、それぞれ、第2合流部41から搬送方向上流側にある最初の分岐部(47,49)までの間である。「第2合流部41への走行を許可されていない経路で停止している搬送車3が所定の数に達したら」とは、搬送車3が第2合流部41への走行を許可されていない経路で停止しているときに最初の分岐部(47,49)において他の搬送車3が別の経路に走行することを邪魔しない最大限の停止可能な数に達することである。
 この搬送車システム1では、搬送車3が第2合流部41への走行を許可されていない経路で停止しているときであっても、最初の分岐部(47,49)において他の搬送車3が別の経路に走行することが邪魔されない。したがって、システム全体の搬送効率が向上する。
(11) The straight line portion 45 and the outlet side connection path 39 are each between the second junction portion 41 and the first branch portion (47, 49) on the upstream side in the transport direction. “When a predetermined number of transport vehicles 3 are stopped on a route that is not permitted to travel to the second junction 41”, the transport vehicle 3 is permitted to travel to the second junction 41. When the vehicle stops on a non-route, the maximum number of stops that does not interfere with the other transport vehicle 3 traveling on another route at the first branch portion (47, 49) is reached.
In this transport vehicle system 1, even when the transport vehicle 3 is stopped on a route that is not permitted to travel to the second junction 41, another transport vehicle is used at the first branch portion (47, 49). It is not disturbed that 3 travels to another route. Therefore, the conveyance efficiency of the entire system is improved.
(12)入口側連結路33または出口側連結路39は、屈曲形状とすることで距離を長くして複数の停車位置を確保している。このように新たに搬送車3の待機箇所を設けることで、他方の経路を優先して走行させている場合の待機台数を多くできる。
 特に、出口側連結路39は、周回走行路5において処理が終了した複数の搬送車3が他の周回走行路に移行する箇所であって搬送車3が停滞しやすいので、出口側連結路39を長く確保して複数台の搬送車3が停止可能とすることは、搬送効率向上に貢献する。
(12) The inlet-side connecting path 33 or the outlet-side connecting path 39 has a bent shape, thereby securing a plurality of stop positions. Thus, by newly providing a standby part of the transport vehicle 3, the number of standby units when the other route is preferentially traveled can be increased.
In particular, the exit-side connection path 39 is a place where a plurality of transport vehicles 3 that have been processed in the circuit travel path 5 are transferred to other circuit travel paths, and the transport vehicle 3 tends to stagnate. It is possible to stop a plurality of transport vehicles 3 by ensuring a long time, which contributes to an improvement in transport efficiency.
(13)いずれの待機部においても2台以上の待機台数が設定されており、待機する搬送車が設定待機台数に達すると、優先モードが切り換えられて、待機している搬送車が合流部を通過することが可能になる。このように待機台数によって、合流部における他の経路の優先度を自由に設定することができる。 (13) Two or more standby units are set in any standby unit, and when the waiting transport vehicle reaches the set standby number, the priority mode is switched, and the standby transport vehicle is set to the junction unit. It is possible to pass through. In this way, the priority of other routes in the junction can be freely set according to the number of standby units.
6.他の実施例
 以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。
6). Other Embodiments Although one embodiment of the present invention has been described above, the present invention is not limited to the above embodiment, and various modifications can be made without departing from the scope of the invention.
(1)前記実施形態では副経路優先モードになると、副経路優先モードに切り換えられた時点で副経路に待機していた搬送車の一部または全てが合流部を通過すれば(ステップS5)、その時点で主経路優先モードに切り換えていたが、本発明はこれに限定されない。
 例えば、副経路優先モードになってから所定時間が経過すると、主経路優先モードに切り換えるようにしてもよい。なお、この所定時間は、待機側の1台目の搬送車3がブロッキング要求を送信した時点から、搬送車コントローラ27のタイマが計測を開始する。
(1) In the embodiment, when the sub route priority mode is entered, if a part or all of the transport vehicles waiting on the sub route at the time of switching to the sub route priority mode pass through the junction (step S5), At that time, the mode has been switched to the main route priority mode, but the present invention is not limited to this.
For example, it may be switched to the main route priority mode when a predetermined time has elapsed since the sub route priority mode was entered. Note that, for the predetermined time, the timer of the transport vehicle controller 27 starts measurement from the time when the first transport vehicle 3 on the standby side transmits a blocking request.
(2)前記実施形態では、図3のステップS2において待機側の1台目の搬送車の待機時間を計測して所定時間を経過すると主経路優先モードから副経路優先モードに切り換えていたが、本発明はこれに限定されない。待機時間に基づいた制御を全く行わなくてもよいし、または待機時間に基づいた制御を主経路優先モードから副経路優先モードへの切り換えと副経路優先モードから主経路優先モードへの切り換えの両方に採用してもよい。 (2) In the above embodiment, the standby time of the first transport vehicle on the standby side is measured in step S2 of FIG. 3 and when the predetermined time has elapsed, the main route priority mode is switched to the sub route priority mode. The present invention is not limited to this. There is no need to perform the control based on the standby time, or the control based on the standby time is both switched from the main route priority mode to the sub route priority mode and from the sub route priority mode to the main route priority mode. May be adopted.
(3)前記実施形態では、図3のステップS3,S6において、各待機側の経路において第1分岐部47および第2分岐部49のさらに搬送方向上流側にある停止位置75,79に搬送車3が到達するのを待って優先モードを切り換えていたが、本発明はこれに限定されない。
 例えば、第1分岐部47および第2分岐部49より搬送方向下流側のいずれかの停止位置に搬送車3が到達した時点で優先モードを切り換えてもよい。
(3) In the above-described embodiment, in steps S3 and S6 in FIG. 3, the transport vehicle is moved to the stop positions 75 and 79 that are further upstream in the transport direction of the first branch portion 47 and the second branch portion 49 in each standby path. The priority mode is switched after waiting for 3 to arrive, but the present invention is not limited to this.
For example, the priority mode may be switched when the transport vehicle 3 arrives at any stop position downstream in the transport direction from the first branch portion 47 and the second branch portion 49.
(4)前記実施形態では、合流部に合流する両側の経路に搬送車待機部を設けていたが、本発明はこれに限定されない。例えば、いずれか一方の経路に待機部が設けられていなくてもよい。 (4) In the said embodiment, although the conveyance vehicle standby part was provided in the path | route of the both sides which join a junction part, this invention is not limited to this. For example, the standby unit may not be provided on any one of the paths.
(5)前記実施形態では主経路を搬送車が分岐部を直進する経路であると規定したが、本発明はこれに限定されない。例えば、曲線部が主経路であってもよい。 (5) In the above-described embodiment, the main route is defined as a route in which the transport vehicle goes straight through the branch portion, but the present invention is not limited to this. For example, the curved portion may be the main route.
(6)搬送車システムのレイアウトおよび制御系は、上記実施形態に限定されない。また、搬送車システムが適用される設備の種類も前記実施形態に限定されない。 (6) The layout and control system of the transport vehicle system are not limited to the above embodiment. Further, the type of equipment to which the transport vehicle system is applied is not limited to the above embodiment.
 本発明は、2つの経路の合流部を有する経路上を複数の搬送車が走行する搬送車システムに有用である。 The present invention is useful for a transport vehicle system in which a plurality of transport vehicles travel on a route having a junction of two routes.
1   搬送車システム
3   搬送車
5   周回走行路
7   基幹走行路
9   処理装置
11  ストッカ
13  入庫ポート
15  出庫ポート
19  制御系
21  製造コントローラ
23  物流コントローラ
25  ストッカコントローラ
27  搬送車コントローラ(コントローラ)
31  連結路
33  入口側連結路
35  第1合流部
37  直線部
39  出口側連結路(第2経路)
41  第2合流部
43  直線部
45  直線部(第1経路)
47  第1分岐部
49  第2分岐部
51,53,55,57,59,61,63,65,67,69,71,75,79  停止位置
73,77 直線部
81,83,85,87  待機部
DESCRIPTION OF SYMBOLS 1 Conveyance vehicle system 3 Conveyance vehicle 5 Circulation traveling path 7 Basic traveling path 9 Processing apparatus 11 Stocker 13 Incoming port 15 Outlet port 19 Control system 21 Manufacturing controller 23 Logistics controller 25 Stocker controller 27 Conveying vehicle controller (controller)
31 connecting path 33 inlet side connecting path 35 first joining part 37 straight line part 39 outlet side connecting path (second path)
41 2nd merge part 43 Straight line part 45 Straight line part (1st path | route)
47 1st branch part 49 2nd branch part 51,53,55,57,59,61,63,65,67,69,71,75,79 Stop position 73,77 Linear part 81,83,85,87 Standby Part

Claims (11)

  1.  第1経路と、待機部を有する第2経路と、前記第1経路と第2経路が合流する合流部とを有する走行経路と、
     前記走行経路上を走行する複数の搬送車と、
     前記複数の搬送車の走行を制御するコントローラとを備え、
     前記コントローラは、
     前記第2経路の前記待機部に所定の数の搬送車が停車するまでの間は前記搬送車を前記第2経路の前記待機部に待機させつつ、前記搬送車を前記第1経路から前記合流部に連続して通過させる、
    搬送車システム。
    A travel route having a first route, a second route having a standby portion, and a merging portion where the first route and the second route merge;
    A plurality of transport vehicles traveling on the travel route;
    A controller for controlling the traveling of the plurality of transport vehicles,
    The controller is
    Until the predetermined number of transport vehicles stop at the standby portion of the second path, the transport vehicles are allowed to wait from the first path while the transport vehicles are waiting at the standby section of the second path. Passing continuously through the part,
    Transport vehicle system.
  2.  前記コントローラは、
     前記第2経路に所定の数の搬送車が停車すると、それ以後は前記第2経路の前記待機部にある複数の搬送車に前記合流部を連続して通過させる、請求項1に記載の搬送車システム。
    The controller is
    2. The conveyance according to claim 1, wherein when a predetermined number of conveyance vehicles stop on the second route, the merging portion is continuously passed through a plurality of conveyance vehicles in the standby portion of the second route. Car system.
  3.  前記第1経路は待機部を有しており、
     前記コントローラは、
     前記搬送車が前記第2経路から前記合流部を通過中に、所定の条件が満たされるまでは前記搬送車を前記第1経路の前記待機部に待機させる、請求項2に記載の搬送車システム。
    The first path has a standby unit,
    The controller is
    3. The transport vehicle system according to claim 2, wherein the transport vehicle waits in the standby unit of the first route until a predetermined condition is satisfied while the transport vehicle passes through the junction from the second route. .
  4.  前記コントローラは、
     前記搬送車が前記第2経路の前記待機部に所定時間以上待機した場合には、待機台数にかかわらず、待機していた搬送車に前記合流部を通過させる、請求項1~3のいずれかに記載の搬送車システム。
    The controller is
    4. When the transport vehicle waits for a predetermined time or more in the standby section of the second path, the transport vehicle that has been waiting passes through the junction section regardless of the number of standby vehicles. The transport vehicle system described in 1.
  5.  第1経路と、第2経路と、前記第1経路と第2経路が合流する合流部とを有する走行経路と、
     前記走行経路上を走行する複数の搬送車と、
     前記複数の搬送車の走行を制御するコントローラとを備え、
     前記コントローラは、前記搬送車が前記第1経路のみから前記合流部を走行することを許容する第1モードと、前記搬送車が前記第2経路のみから前記合流部を走行することを許容する第2モードとを切り換え可能であり、
     前記コントローラは、少なくともいずれかのモードにおいて、前記合流部への走行を許可されていない経路で停止している前記搬送車が所定の数に達したら、モードを切り換える、搬送車システム。
    A travel route having a first route, a second route, and a junction where the first route and the second route merge;
    A plurality of transport vehicles traveling on the travel route;
    A controller for controlling the traveling of the plurality of transport vehicles,
    The controller allows a first mode that allows the transport vehicle to travel along the junction from only the first route, and allows the transport vehicle to travel through the junction from only the second route. 2 modes can be switched,
    In at least one of the modes, the controller switches modes when the number of the transport vehicles stopped on a route that is not permitted to travel to the merging portion reaches a predetermined number.
  6.  前記コントローラは、前記合流部への走行を許可されていない経路で停止している前記搬送車が所定の数に達していなくても、前記合流部への走行を許可されている経路から前記合流部を走行した前記搬送車の数が所定の数に達したら、モードを切り換える、請求項5に記載の搬送車システム。 The controller is configured such that, even if the transport vehicle stopped on a route that is not permitted to travel to the merging portion has not reached a predetermined number, the merging from the route that is permitted to travel to the merging portion. The transport vehicle system according to claim 5, wherein the mode is switched when the number of the transport vehicles traveling the section reaches a predetermined number.
  7.  前記コントローラは、前記合流部への走行を許可されていない経路で停止している前記搬送車が所定の数に達していなくても、選択されているモードが所定時間を経過したら、モードを切り換える、請求項5に記載の搬送車システム。 The controller switches the mode when the selected mode has passed a predetermined time even if the number of transport vehicles stopped on a route that is not permitted to travel to the merging portion has not reached the predetermined number. The carrier vehicle system according to claim 5.
  8.  前記コントローラは、前記第1経路と前記第2経路のうち前記合流部の前後で直線形状である経路のみを走行可能とするモードを優先的に選択する、請求項5~7のいずれかに記載の搬送車システム。 The controller according to any one of claims 5 to 7, wherein the controller preferentially selects a mode in which only a route having a linear shape before and after the merging portion can travel on the first route and the second route. Transport vehicle system.
  9.  前記第1経路と前記第2経路の少なくとも一方は、前記搬送車が待機可能な待機部を有している、請求項5~8のいずれかに記載の搬送車システム。 9. The transport vehicle system according to claim 5, wherein at least one of the first route and the second route includes a standby unit on which the transport vehicle can wait.
  10.  前記待機部には複数の前記搬送車が待機可能である、請求項9に記載の搬送車システム。 10. The transport vehicle system according to claim 9, wherein a plurality of transport vehicles can stand by in the standby unit.
  11.  前記第1経路と前記第2経路は、それぞれ、前記合流部から搬送方向上流側にある最初の分岐部までの間であり、
     前記合流部への走行を許可されていない経路で停止している前記搬送車が所定の数に達するとは、前記搬送車が前記合流部への走行を許可されていない経路で停止しているときに前記最初の分岐部において他の搬送車が別の経路に走行することを邪魔しない最大限の停止可能な数に達することである、請求項9または10に記載の搬送車システム。
    Each of the first route and the second route is between the junction and the first branch on the upstream side in the transport direction,
    When the transport vehicle that has stopped on a route that is not permitted to travel to the junction reaches a predetermined number, the transport vehicle is stopped on a route that is not permitted to travel to the junction. 11. The transport vehicle system according to claim 9 or 10, wherein a maximum stoppable number that does not interfere with another transport vehicle traveling on another route is sometimes reached at the first branch portion.
PCT/JP2009/004368 2008-09-26 2009-09-04 Guided vehicle system WO2010035411A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010530705A JP5088415B2 (en) 2008-09-26 2009-09-04 Transport vehicle system
US13/120,944 US20110178657A1 (en) 2008-09-26 2009-09-04 Guided vehicle system
EP09815833.0A EP2343616A4 (en) 2008-09-26 2009-09-04 Guided vehicle system
CN2009801367848A CN102160007B (en) 2008-09-26 2009-09-04 Guided vehicle system
KR1020117007339A KR101246280B1 (en) 2008-09-26 2009-09-04 Guided vehicle system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-249020 2008-09-26
JP2008249020 2008-09-26

Publications (1)

Publication Number Publication Date
WO2010035411A1 true WO2010035411A1 (en) 2010-04-01

Family

ID=42059425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004368 WO2010035411A1 (en) 2008-09-26 2009-09-04 Guided vehicle system

Country Status (7)

Country Link
US (1) US20110178657A1 (en)
EP (1) EP2343616A4 (en)
JP (1) JP5088415B2 (en)
KR (1) KR101246280B1 (en)
CN (1) CN102160007B (en)
TW (1) TWI456366B (en)
WO (1) WO2010035411A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2375302A3 (en) * 2010-04-07 2012-04-18 Murata Machinery, Ltd. Traveling vehicle system and self-diagnosis method for the traveling vehicle system
WO2013108501A1 (en) * 2012-01-17 2013-07-25 村田機械株式会社 Traveling vehicle system
WO2018037741A1 (en) * 2016-08-22 2018-03-01 村田機械株式会社 Running vehicle system and control method for running vehicle system
JP2020077432A (en) * 2018-05-08 2020-05-21 株式会社東芝 Controller, automatic travel vehicle system, control method and program
WO2023238533A1 (en) * 2022-06-06 2023-12-14 村田機械株式会社 Transport system

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9336684B2 (en) * 2012-05-28 2016-05-10 Murata Machinery, Ltd. Travelling vehicle system and method for controlling travel of travelling vehicle in curved section
JP6338897B2 (en) * 2014-03-13 2018-06-06 株式会社東芝 Automated traveling vehicle system, control method, program, and restricted section controller
US9834238B2 (en) * 2014-06-02 2017-12-05 Murata Machinery, Ltd. Transporting vehicle system, and method of controlling transporting vehicle
US9845192B2 (en) * 2014-06-04 2017-12-19 Murata Machinery, Ltd. Transport vehicle system and transport method
JP6135637B2 (en) * 2014-10-20 2017-05-31 村田機械株式会社 Traveling vehicle system
WO2017090334A1 (en) * 2015-11-27 2017-06-01 村田機械株式会社 Transport system and transport method
DE102016009255B4 (en) * 2016-07-29 2023-01-26 Kuka Roboter Gmbh Coordination of paths of multiple moving machines
CN111742275B (en) * 2018-03-15 2023-07-14 村田机械株式会社 Traveling vehicle controller and traveling vehicle system
WO2019198330A1 (en) * 2018-04-12 2019-10-17 村田機械株式会社 Transport vehicle system and transport vehicle control method
WO2019211933A1 (en) * 2018-05-01 2019-11-07 村田機械株式会社 Carrier system
JP6656296B2 (en) * 2018-05-08 2020-03-04 株式会社東芝 Controller, automatic traveling vehicle system, control method, and program
JP6958534B2 (en) * 2018-11-28 2021-11-02 村田機械株式会社 Transport vehicle system
CN109725616B (en) * 2018-12-29 2020-10-30 广州远联物流服务有限公司 Intelligent warehouse-based unmanned carrier scheduling method and device
JP7228420B2 (en) * 2019-03-13 2023-02-24 株式会社東芝 Information processing device, information processing method, information processing system and computer program
KR102608150B1 (en) * 2019-05-14 2023-11-29 무라다기카이가부시끼가이샤 Conveyance system and conveyance control method
JP2022125369A (en) * 2019-07-04 2022-08-29 村田機械株式会社 Traveling system
US11367637B2 (en) * 2020-02-11 2022-06-21 Taiwan Semiconductor Manufacturing Co., Ltd. Method of operating transport system
US11661060B1 (en) 2022-07-06 2023-05-30 Hyster-Yale Group, Inc. Direction-of-travel-based inhibition of speed control based on truck-to-truck proximity detection

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05165520A (en) * 1991-12-16 1993-07-02 Toyota Motor Corp Turning-out control method for unmanned running car
JPH061240A (en) * 1992-06-18 1994-01-11 Sony Corp Method of preventing automated guided vehicle mutual collision at confluence and device therefor
JP2006195859A (en) * 2005-01-17 2006-07-27 Murata Mach Ltd Guided vehicle system
JP2007141144A (en) * 2005-11-22 2007-06-07 Toyota Motor Corp Intersection control system and device

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3241108A (en) * 1960-09-12 1966-03-15 Lab For Electronics Inc Traffic actuated control system
US3411603A (en) * 1966-07-20 1968-11-19 Webb Co Jervis B Control for self-guided vehicle
JPS5011240B1 (en) * 1967-02-14 1975-04-28
GB1220480A (en) * 1967-04-08 1971-01-27 Tateisi Electronics Company Improvements in or relating to traffic signal control system
EP0330639A3 (en) * 1988-02-25 1990-09-26 Ndc Automation, Inc. Automatic guided vehicle traffic control system and method
US5116002A (en) * 1990-07-05 1992-05-26 Utdc, Inc. Stopping zones in a linear motor in-track transit system
KR960005672B1 (en) * 1990-08-23 1996-04-30 가부시끼가이샤 다이후꾸 Vehicle control system
CA2053028C (en) * 1990-10-23 1996-04-09 Hideichi Tanizawa Carriage running control system
JP3376386B2 (en) * 1995-01-09 2003-02-10 株式会社スギヤス How to pass an unmanned car at an intersection
US6049745A (en) * 1997-02-10 2000-04-11 Fmc Corporation Navigation system for automatic guided vehicle
JP3268353B2 (en) * 1997-02-20 2002-03-25 株式会社アドバンスト・ディスプレイ Control method of automatic guided vehicle using carrier cut-off machine
JPH10275017A (en) * 1997-03-31 1998-10-13 Hitachi Ltd Carrier control method and carrier device
JP2004512587A (en) * 2000-10-16 2004-04-22 松下電器産業株式会社 Automatic guided vehicle, operation control system and method thereof, and self-propelled vehicle
JP2003233422A (en) * 2002-02-06 2003-08-22 Mitsubishi Electric Corp Conveyance system and its control method
AU2003220444A1 (en) * 2002-03-21 2003-10-08 Rapistan System Advertising Corp. Graphical system configuration program for material handling
JP2004227060A (en) * 2003-01-20 2004-08-12 Murata Mach Ltd Automated guided vehicle system
JP3991880B2 (en) 2003-02-10 2007-10-17 村田機械株式会社 Automated guided vehicle system
US6745102B1 (en) * 2003-04-10 2004-06-01 Powerchip Semiconductor Corp. Automatic transporting system and method for operating the same
JP2005092823A (en) * 2003-09-19 2005-04-07 Sharp Corp Method for managing carrying vehicle
JP3874192B2 (en) * 2004-01-09 2007-01-31 村田機械株式会社 Tracked cart system
JP2005225662A (en) * 2004-02-16 2005-08-25 Mitsubishi Heavy Ind Ltd Truck monitoring control device, unmanned truck, transport system, and truck monitoring controlling method
JP2006221309A (en) * 2005-02-09 2006-08-24 Murata Mach Ltd Conveyance carrier system
JP4135721B2 (en) * 2005-03-17 2008-08-20 村田機械株式会社 Transport vehicle system
JP4281067B2 (en) * 2005-04-11 2009-06-17 村田機械株式会社 Transport vehicle system
JP4438095B2 (en) * 2005-05-26 2010-03-24 村田機械株式会社 Transport system
JP4099723B2 (en) * 2005-07-12 2008-06-11 村田機械株式会社 Conveyor cart system
JP4462199B2 (en) * 2006-01-30 2010-05-12 村田機械株式会社 Transport vehicle system
JP2008156128A (en) * 2008-02-15 2008-07-10 Seibu Electric & Mach Co Ltd Method of arranging articles
CN101256716A (en) * 2008-04-11 2008-09-03 张南 Road grade crossing non-conflict traffic mode arrangement and control method
JP5472297B2 (en) * 2009-06-02 2014-04-16 村田機械株式会社 Transport vehicle system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05165520A (en) * 1991-12-16 1993-07-02 Toyota Motor Corp Turning-out control method for unmanned running car
JPH061240A (en) * 1992-06-18 1994-01-11 Sony Corp Method of preventing automated guided vehicle mutual collision at confluence and device therefor
JP2006195859A (en) * 2005-01-17 2006-07-27 Murata Mach Ltd Guided vehicle system
JP2007141144A (en) * 2005-11-22 2007-06-07 Toyota Motor Corp Intersection control system and device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8712600B2 (en) 2010-04-07 2014-04-29 Murata Machinery Ltd. Traveling vehicle system and self-diagnosis method for the traveling vehicle system
EP2375302A3 (en) * 2010-04-07 2012-04-18 Murata Machinery, Ltd. Traveling vehicle system and self-diagnosis method for the traveling vehicle system
CN104067191B (en) * 2012-01-17 2016-04-27 村田机械株式会社 Traveling vehicle system
KR20140088157A (en) 2012-01-17 2014-07-09 무라다기카이가부시끼가이샤 Traveling vehicle system
CN104067191A (en) * 2012-01-17 2014-09-24 村田机械株式会社 Traveling vehicle system
US9285806B2 (en) 2012-01-17 2016-03-15 Murata Machinery, Ltd. Traveling vehicle system
WO2013108501A1 (en) * 2012-01-17 2013-07-25 村田機械株式会社 Traveling vehicle system
WO2018037741A1 (en) * 2016-08-22 2018-03-01 村田機械株式会社 Running vehicle system and control method for running vehicle system
CN109643123A (en) * 2016-08-22 2019-04-16 村田机械株式会社 The control method of vehicle system and vehicle system
JPWO2018037741A1 (en) * 2016-08-22 2019-06-20 村田機械株式会社 Traveling vehicle system and control method of traveling vehicle system
TWI713781B (en) * 2016-08-22 2020-12-21 日商村田機械股份有限公司 Traveling vehicle system and control method of traveling vehicle system
US11226637B2 (en) 2016-08-22 2022-01-18 Murata Machinery, Ltd. Traveling vehicle system, and control method for traveling vehicle system
CN109643123B (en) * 2016-08-22 2022-03-22 村田机械株式会社 Traveling vehicle system and control method for traveling vehicle system
JP2020077432A (en) * 2018-05-08 2020-05-21 株式会社東芝 Controller, automatic travel vehicle system, control method and program
WO2023238533A1 (en) * 2022-06-06 2023-12-14 村田機械株式会社 Transport system

Also Published As

Publication number Publication date
TWI456366B (en) 2014-10-11
EP2343616A4 (en) 2013-05-29
KR20110044805A (en) 2011-04-29
KR101246280B1 (en) 2013-03-22
CN102160007A (en) 2011-08-17
TW201012723A (en) 2010-04-01
JPWO2010035411A1 (en) 2012-02-16
EP2343616A1 (en) 2011-07-13
CN102160007B (en) 2013-07-24
JP5088415B2 (en) 2012-12-05
US20110178657A1 (en) 2011-07-21

Similar Documents

Publication Publication Date Title
JP5088415B2 (en) Transport vehicle system
JP5071695B2 (en) Traveling vehicle system and travel control method in traveling vehicle system
TWI713781B (en) Traveling vehicle system and control method of traveling vehicle system
JP4099723B2 (en) Conveyor cart system
JP5748006B2 (en) Traveling vehicle system
WO2020039699A1 (en) Traveling vehicle control device, traveling vehicle system, and traveling vehicle control method
US20170137219A1 (en) Transport vehicle system and transport method
KR102431740B1 (en) Driving vehicle controller and driving vehicle system
KR20170133970A (en) Method and system for controlling the traffic flow of automated guided vehicles at intersection and traffic controller therefor
JP2006195859A (en) Guided vehicle system
JP2005242489A (en) System and program of operation control for autonomous mobile body
US11053074B2 (en) Transport vehicle system and transport vehicle arrangement method in transport vehicle system
JP5029622B2 (en) Transport vehicle system
JP2005239314A (en) Carrying vehicle monitoring/controlling device, carrying system, and carrying vehicle monitoring/controlling method
JP3714254B2 (en) Automated guided vehicle system
JP2009026265A (en) Automatic guided vehicle device
WO2020049876A1 (en) Traveling vehicle system
TWI839381B (en) Traveling vehicle system
WO2023079797A1 (en) Conveyance system
KR100203499B1 (en) Traffic control method of auto vehicle
JP7435643B2 (en) Goods conveyance equipment
US11217092B2 (en) Transport vehicle system
JP2010282567A (en) Conveyance vehicle system
KR20230038275A (en) driving car system
KR20240009341A (en) Transportation facility

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980136784.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09815833

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010530705

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13120944

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009815833

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117007339

Country of ref document: KR

Kind code of ref document: A