WO2010032415A1 - Refrigerant heating apparatus manufacturing method - Google Patents

Refrigerant heating apparatus manufacturing method Download PDF

Info

Publication number
WO2010032415A1
WO2010032415A1 PCT/JP2009/004556 JP2009004556W WO2010032415A1 WO 2010032415 A1 WO2010032415 A1 WO 2010032415A1 JP 2009004556 W JP2009004556 W JP 2009004556W WO 2010032415 A1 WO2010032415 A1 WO 2010032415A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
outer tube
refrigerant
inner tube
peripheral surface
Prior art date
Application number
PCT/JP2009/004556
Other languages
French (fr)
Japanese (ja)
Inventor
若嶋真博
下田順一
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2010032415A1 publication Critical patent/WO2010032415A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/105Induction heating apparatus, other than furnaces, for specific applications using a susceptor
    • H05B6/108Induction heating apparatus, other than furnaces, for specific applications using a susceptor for heating a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/01Heaters

Definitions

  • the present invention relates to a method for manufacturing a refrigerant heating device that heats a refrigerant flowing through a refrigerant pipe.
  • an induction heater (hereinafter referred to as IH heater) is convenient in that the refrigerant can be rapidly heated using induction heating.
  • IH heater for heating a refrigerant can induce induction heating by exciting a pipe through which the refrigerant flows or a magnetic material inside and outside the pipe by an induction heating coil, thereby heating the refrigerant in the pipe. It is.
  • copper is usually adopted as the material of the piping constituting the refrigerant circuit in consideration of aspects such as thermal conductivity, workability, or material cost.
  • a magnetic material such as stainless steel in order to efficiently perform electromagnetic induction heating. Therefore, like the IH heater described in Patent Document 1 (Japanese Patent Application Laid-Open No. 2001-174054), magnetic coating or powder is coated on the outer periphery of the copper tube so that induction heating can be efficiently performed even for the copper tube. I have to.
  • a stainless steel pipe as a pipe through which the refrigerant flows inside the IH heater.
  • the stainless steel pipe heated by the IH heater and other refrigerant circuits are considered. Since the material is different from that of the copper pipe constituting the wire, it is necessary to braze different pipes, and there is a possibility that defects (such as cracks) occur in the manufacturing cost and the brazed part. It is also possible to insert a copper tube inside the stainless steel tube to make a double tube, but even if a copper tube having the same outer diameter is inserted into the inner diameter of the stainless steel tube, the stainless steel tube and the copper tube are good.
  • the subject of this invention is providing the manufacturing method of the refrigerant
  • the method for manufacturing a refrigerant heating device of the first invention is a method for manufacturing a refrigerant heating device including an inner tube through which a refrigerant flows, an outer tube, and an induction heating coil.
  • the outer tube surrounds the inner tube and is made of a magnetic material.
  • the induction heating coil surrounds the periphery of the outer tube and induction-heats the outer tube.
  • This manufacturing method includes an insertion step and a tube expansion step.
  • an inner tube having an outer diameter smaller than the inner diameter of the outer tube is inserted into the outer tube.
  • the tube expanding step after the inserting step, the inner tube is expanded to bring the outer peripheral surface of the inner tube into close contact with the inner peripheral surface of the outer tube.
  • the inner tube is expanded and the outer peripheral surface of the inner tube and the inner peripheral surface of the outer tube are brought into close contact with each other, so that the adhesion between the inner tube and the outer tube is improved. Further, the expansion of the inner tube can prevent the outer tube and the induction heating coil from falling. Moreover, it is easy to manufacture.
  • the manufacturing method of the refrigerant heating device of the second invention is the manufacturing method of the first invention, wherein the outer peripheral surface of the inner tube is provided with positioning means that protrudes outward of the inner tube.
  • the inner tube is arranged at a predetermined position inside the outer tube by bringing the positioning means into contact with the outer tube.
  • the positioning means is brought into contact with the outer tube to place the inner tube at a predetermined position inside the outer tube, so that the positioning of the inner tube within the outer tube is accurately performed by the positioning means. Is possible.
  • the manufacturing method of the refrigerant heating device of the third invention is the manufacturing method of the first invention or the second invention, wherein irregularities are formed on the outer peripheral surface of the inner tube and / or the inner peripheral surface of the outer tube.
  • the tube expanding step the inner tube is expanded so that the unevenness is filled without any gaps, and the outer peripheral surface of the inner tube and the inner peripheral surface of the outer tube are brought into close contact with each other.
  • the inner tube expanding step the inner tube is expanded so that the irregularities formed on the outer peripheral surface of the inner tube and / or the inner peripheral surface of the outer tube are filled without any gaps, and the outer peripheral surface of the inner tube and the inner periphery of the outer tube.
  • the manufacturing method of the refrigerant heating device of the fourth invention is the manufacturing method of the first invention, wherein the inner tube is made of copper.
  • the inner tube is made of copper, it has good thermal conductivity and is easy to expand.
  • the manufacturing method of the refrigerant heating apparatus of the 5th invention is a manufacturing method of the refrigerant heating apparatus of the 1st invention, Comprising:
  • the outer tube is manufactured with stainless steel.
  • the outer tube is made of stainless steel, induction heating can be performed efficiently, and the inner tube surface is uneven because the outer tube is harder than the inner tube such as copper having good thermal conductivity. Easy to adhere to.
  • the manufacturing method of the refrigerant heating device of the sixth invention is the manufacturing method of the refrigerant heating device of the third invention, wherein the irregularities are formed on either the outer peripheral surface of the inner tube or the inner peripheral surface of the outer tube. And a protrusion formed on the other side.
  • the groove and the ridge extend in a spiral shape.
  • the spirally extending grooves and ridges are formed on the outer peripheral surface of the inner tube and the inner peripheral surface of the outer tube, the contact area between both the tubes increases, and the induction tube is heated from the outer tube to the inner tube. Heat transfer, and thus heat transfer to the refrigerant.
  • the adhesion between the inner tube and the outer tube is improved. Moreover, the outer tube and the induction heating coil can be prevented from falling. Moreover, it is easy to manufacture.
  • the positioning of the inner tube within the outer tube can be accurately performed by the positioning means.
  • the contact area between the inner tube and the outer tube is increased by the unevenness, and the adhesion is improved. As a result, heat transfer from the outer tube to the inner tube, which is heated by induction, and thus heat transfer to the refrigerant is improved.
  • the thermal conductivity is good and the tube is easy to expand.
  • induction heating can be performed efficiently and is harder than the inner tube made of copper or the like having good thermal conductivity, so that the irregularities on the inner peripheral surface of the outer tube are easily adhered to the inner tube surface.
  • the contact area between the inner tube and the outer tube is increased, and the heat transfer from the outer tube to the inner tube that is induction-heated, and thus the heat transfer to the refrigerant is improved.
  • channel or a protrusion can ensure sufficient contact area.
  • the grooves and ridges extend spirally, the contact area is further increased compared to the linear grooves and ridges, so heat transfer from the outer tube to the inner tube that is induction-heated, As a result, the heat transfer performance of heat transfer to the refrigerant is further improved.
  • FIG. 2 is a front view of the IH heater assembly of FIG. 1.
  • FIG. 2 is a cross-sectional view of the IH heater assembly of FIG. 1.
  • Cross-sectional explanatory drawing which shows the insertion process in the manufacturing method of the IH heater assembly of FIG.
  • Cross-sectional explanatory drawing which shows the pipe expansion process in the manufacturing method of the IH heater assembly of FIG.
  • Sectional explanatory drawing which shows the bobbin mounting process in the manufacturing method of the IH heater assembly of FIG. FIG.
  • FIG. 2 is an enlarged perspective view showing linear grooves and ridges formed on a contact surface between an inner tube and an outer tube in FIG. 1.
  • the perspective enlarged view which shows the helical groove
  • the outdoor unit 2 and the indoor unit 4 are connected to the liquid refrigerant communication pipe 6 and the gas refrigerant as shown in FIG.
  • a refrigerant circuit 11 configured to be connected by a communication pipe 7 is provided.
  • Each refrigerant pipe of the refrigerant circuit 11 is usually made of copper.
  • the refrigerant circuit 11 includes, in the outdoor unit 2, a compressor 21, a four-way switching valve 22, an outdoor heat exchanger 23, an expansion valve 24 including an electronic expansion valve with adjustable throttle, An IH heater assembly 30 and an accumulator 25 are provided.
  • the refrigerant circuit 11 includes an indoor heat exchanger 26 and the like inside the indoor unit 4 as shown in FIG.
  • the four-way selector valve 22 has shown the switching connection state in the case of performing heating operation in FIG.
  • the refrigerant flowing in the refrigerant circuit 11 is not particularly limited in the present invention, and is, for example, HFC (R410A or the like), carbon dioxide refrigerant, or the like.
  • the refrigerant circuit 11 includes a discharge pipe A, an indoor gas pipe B, an indoor liquid pipe C, an outdoor liquid pipe D, an outdoor gas pipe E, an accumulator pipe F, and a suction pipe G. ing.
  • the connection state of each refrigerant pipe will be described in the order of the flow path where the refrigerant discharged from the compressor 21 flows out and is sucked into the compressor 21 again.
  • the discharge pipe A connects the discharge side of the compressor 21 and the four-way switching valve 22.
  • the indoor side gas pipe B connects the four-way switching valve 22 and the gas side of the indoor heat exchanger 26.
  • the indoor side liquid pipe C connects the liquid side of the indoor heat exchanger 26 and the expansion valve 24.
  • the indoor side liquid pipe C includes a liquid communication pipe 6 that connects the outdoor unit 2 and the indoor unit 4.
  • the outdoor liquid pipe D connects the expansion valve 24 and the liquid side of the outdoor heat exchanger 23.
  • the outdoor gas pipe E connects the gas side of the outdoor heat exchanger 23 and the four-way switching valve 22.
  • the accumulator pipe F connects the four-way switching valve 22 and the accumulator 25.
  • the suction pipe G connects the accumulator 25 and the suction side of the compressor 21.
  • the IH heater assembly 30 is an IH heater composed of a double tube, and includes an inner tube 31, an outer tube 32, an induction heating coil 33, a bobbin 34, and a pair of lids. 35, a pair of nuts 36, a plurality of ferrite blocks 37, a ferrite holder 38, and a sheet metal cover 39.
  • the inner pipe 31 is made of copper, which is the same material as the refrigerant pipe 5, and the refrigerant flows through the inner pipe 31.
  • a positioning rib 42 is provided on the outer peripheral surface 45 of the inner tube 31 so as to protrude outward from the inner tube 31.
  • the positioning rib 42 contacts the opening edge 32b of the outer tube 32 when the inner tube 31 is inserted into the outer tube 32 when the IH heater assembly 30 is manufactured.
  • the positioning rib 42 is one aspect of the positioning means of the present invention, and may be any protrusion that protrudes outward of the inner tube 31 and can hit the opening edge 32b of the outer tube 32. It is formed by expanding a part of the inner tube 31 outward.
  • the outer tube 32 is made of stainless steel, which is a magnetic material, and is disposed around the inner tube 31. Specifically, by expanding the inner tube 31, the outer peripheral surface of the inner tube 31 and the inner peripheral surface of the outer tube are in close contact with each other.
  • the positioning means of the present invention may be a band-shaped member such as a tie wrap or a rubber band.
  • a plurality of linear grooves 44 are formed at equal intervals along the inner peripheral surface 43 on the inner peripheral surface 43 of the outer tube 32.
  • linear protrusions 46 are formed on the outer peripheral surface 45 of the inner tube 31 so as to fit into the grooves 44 of the outer tube 32, respectively.
  • the protrusion 46 is pressed against the inner peripheral surface 43 of the outer tube 32 in which the groove 44 is formed in the inner peripheral surface 43 in advance. Formed on surface 45. Since the copper inner tube 31 is softer than the stainless steel outer tube 32, the protrusion 46 can be easily and reliably formed on the outer peripheral surface of the inner tube 31.
  • the induction heating coil 33 surrounds the outer tube 32 and induction-heats the outer tube 32.
  • the induction heating coil 33 is arranged so as to surround the outer periphery of the outer tube 32 in a state of being wound around a bobbin 34 which is a separate member from the outer tube 32.
  • the bobbin 34 is a cylindrical member whose both ends are open, and the induction heating coil 33 is wound around the side peripheral surface thereof.
  • the pair of lids 35 has an opening 35 a at the center and is fitted to the outer periphery of the outer tube 32.
  • the pair of lids 35 is fixed from both the upper and lower sides by a C-shaped ferrite holder 38 to be described later while being attached to the bobbin 34.
  • the pair of nuts 36 is a combination of the bobbin 34, the lid 35, the ferrite holder 38, and the nut 36 of the IH heater assembly 30 in advance by being screwed into male screw portions 32a formed on the outer periphery near both ends of the outer tube 32. Is fixed to the outer periphery of the outer tube 32.
  • the plurality of ferrite blocks 37 are mounted side by side on a C-shaped ferrite holder 38 in order to reduce leakage magnetic flux to the outside of the sheet metal cover 39 of the IH heater assembly 30.
  • the ferrite holder 38 is attached from the outside of the induction heating coil 33 from the four sides of the bobbin 34.
  • the sheet metal cover 39 is a cover made of a thin metal plate and is screwed to the outside of the ferrite holder 38.
  • the sheet metal cover 39 has a cylindrical shape or a polygonal shape so as to surround the cylindrical bobbin 34, and has an integrated shape or a shape divided into two or more.
  • the inner pipe 31 is made of the same kind of copper as the other refrigerant pipes F, the inner pipe 31 and the refrigerant pipe F can be easily joined (manufactured easily). Moreover, efficient induction heating is possible by the outer tube 32 made of a magnetic material such as stainless steel.
  • the material of the outer tube 32 covering the periphery of the copper inner tube 31 is not limited to stainless steel, and for example, at least 2 selected from conductors such as iron, copper, aluminum, chromium, nickel, and the like.
  • An alloy containing more than one kind of metal can be used.
  • stainless steel include at least one of ferrite and martensite, or a combination thereof.
  • the IH heater assembly 30 is provided in the middle of the portion of the accumulator pipe F that connects the four-way switching valve 22 and the accumulator 25, so that as shown in FIG.
  • the IH heater assembly 30 that receives the high-frequency alternating current from the high-frequency power source 60 via the intake air, the intake gas refrigerant that is directed from the four-way switching valve 22 to the accumulator 25 can be warmed, and the heating capacity can be improved.
  • the compressor 21 may not be sufficiently warmed.
  • the IH heater assembly 30 generates heat, so that the gas from the four-way switching valve 22 toward the accumulator 25 is generated.
  • the refrigerant can be heated, and the lack of capacity at the start-up can be compensated.
  • the gas refrigerant heated through the IH heater assembly 30 is used.
  • the time required to thaw frost by defrost operation can be shortened.
  • the operation can be returned to the heating operation as soon as possible, and the user's comfort can be improved.
  • the inner tube 31 having an outer diameter smaller than the inner diameter of the outer tube 32 is inserted into the outer tube 32.
  • the copper inner pipe 31 constituting a part of the refrigerant pipe of the refrigerant circuit 11 is inserted into the stainless steel outer pipe 32 made of a magnetic material (insertion step).
  • the inner tube 31 can be disposed at a predetermined position inside the outer tube 32 by bringing the positioning rib 42 protruding outward from the inner tube 31 into contact with the opening edge 32b of the outer tube 32. is there. Then, after the insertion step, the inner tube 31 is expanded to bring the outer peripheral surface 45 of the inner tube 31 and the inner peripheral surface 43 of the outer tube 32 into close contact. Specifically, as shown in FIG. 6, by pressing-in a tube expansion billet 41 having an outer diameter that is slightly larger than the inner diameter of the inner tube 31, the inner tube 31 moves in a direction in which the outer diameter increases. By being enlarged, it fits inside the outer pipe 32 (pipe expansion process).
  • the inner tube 31 when the inner tube 31 is expanded, the inner tube 31 is expanded so that the unevenness is filled without any gaps by being pressed against the inner peripheral surface 43 of the outer tube 32 in which the groove 44 is formed in the inner peripheral surface 43 in advance.
  • the outer peripheral surface 45 of the inner tube 31 and the inner peripheral surface 43 of the outer tube 32 are brought into close contact with each other.
  • the protrusion 46 is formed on the outer peripheral surface 45 of the inner tube 31.
  • a combination of the bobbin 34, the lid 35, the ferrite holder 38 and the nut 36 of the IH heater assembly 30 in advance is inserted into the outer periphery of the outer tube 32 with the nut 36 loosened, After that, the nut 36 is fastened to the outer tube 32 and is pressed against the C-shaped ring 43 in the inner diameter direction, whereby the bobbin 34 and other main parts are mounted (bobbin mounting step). Thereby, the manufacture of the IH heater assembly 30 is completed.
  • the manufacturing method of the IH heater assembly 30 includes an insertion step of inserting the inner tube 31 having an outer diameter smaller than the inner diameter of the outer tube 32 into the outer tube 32, and then expanding the inner tube 31 to expand the inner tube.
  • 31 includes a tube expansion step for bringing the outer peripheral surface 45 of the outer tube 31 and the inner peripheral surface 43 of the outer tube 32 into close contact with each other. Heat transfer to the inner pipe 31 and thus heat transfer to the refrigerant is improved.
  • the components of the IH heater assembly 30 other than the inner tube 31 that is, the outer tube 32 and the induction heating coil 33, other bobbins 34, a pair of lids 35, a pair of nuts 36, a plurality of ferrites
  • the block 37, the ferrite holder 38, and the sheet metal cover 39 can be prevented from falling.
  • the adhesion with the outer tube 32 is improved simply by expanding the inner tube 31, the IH heater assembly 30 can be easily manufactured.
  • the outer peripheral surface 45 of the inner tube 31 is provided with positioning ribs 42 that protrude outward from the inner tube 31.
  • the inner tube 31 Since the inner tube 31 is arranged at a predetermined position inside the outer tube 32 by contacting the tube 32, the inner tube 31 can be easily and accurately positioned inside the outer tube 32.
  • the outer peripheral surface 45 of the inner tube 31 and / or the inner peripheral surface 43 of the outer tube 32 are formed with irregularities such as grooves 44 and ridges 46,
  • the inner tube 31 is expanded so that the unevenness is filled without a gap, and the outer peripheral surface 45 of the inner tube 31 and the inner peripheral surface 43 of the outer tube 32 are brought into close contact with each other.
  • the unevenness increases the contact area between the inner tube 31 and the outer tube 32 and improves the adhesion.
  • the outer tube 32 is made of stainless steel, so that induction heating is performed more efficiently than a tube made of other magnetic material, such as an iron tube. In addition, it has advantages such as high strength and long life.
  • linear grooves 44 and ridges 46 are respectively formed on the contact surfaces of the inner tube 31 and the outer tube 32 as an example of unevenness.
  • the present invention is not limited to this, and other uneven forms, for example, spiral grooves and protrusions, or combinations of scattered protrusions and depressions may be used.
  • the grooves 47 and the protrusions 48 may extend spirally. In this case, the contact area between the inner tube 31 and the outer tube 32 is increased, and heat transfer from the outer tube 32 that is induction-heated to the inner tube 31, and hence heat transfer to the refrigerant, is improved.
  • the length is longer than that of the linear groove 44 and the ridge 46 shown in FIG.
  • the contact area between the outer tube 32 and the outer tube 32 is increased, and heat transfer performance is improved.
  • the spiral protrusion 48 is pressed against the inner peripheral surface 43 of the outer tube 32 in which the spiral groove 47 is formed in the inner peripheral surface 43 in advance. It is formed on the outer peripheral surface 45 of the tube 31.
  • the present invention can be variously applied to the field of manufacturing methods of refrigerant heating devices.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • General Induction Heating (AREA)

Abstract

Disclosed is a refrigerant heating apparatus manufacturing method that makes it possible to improve heat transfer from an outer tube to an inner tube. Said manufacturing method equips a refrigerant heating apparatus (30) with an inner tube (31) through which refrigerant flows, an outer tube (32), and an induction heating coil (33). The outer tube (32) is wrapped around the circumference of the inner tube (31) and made from a magnetic material. The induction heating coil (33) is wrapped around the circumference of the outer tube (32) and inductively heats the outer tube (32). This manufacturing method comprises an insertion step and a tube expansion step. In the insertion step, the inner tube (31), the outside diameter of which is smaller than the inside diameter of the outer tube (32), is inserted into the outer tube (32). In the tube expansion step, after the insertion step, the inner tube (31) is expanded so that the outer circumferential surface of the inner tube (31) is tightly compacted against the inner circumferential surface of the outer tube (32).

Description

冷媒加熱装置の製造方法Method for manufacturing refrigerant heating device
 本発明は、冷媒配管を流れる冷媒を加熱する冷媒加熱装置の製造方法に関する。 The present invention relates to a method for manufacturing a refrigerant heating device that heats a refrigerant flowing through a refrigerant pipe.
 従来より、冷媒回路中の冷媒を加熱するために種々の方法があるが、誘導加熱ヒータ(以下、IHヒータという)は、誘導加熱を利用して冷媒を迅速に加熱できる点で便利である。
 このような冷媒加熱用のIHヒータは、冷媒が流れる配管または配管内外の磁性体を誘導加熱コイルによって励磁することにより、誘導加熱を生じさせ、これにより、配管中の冷媒を加熱することが可能である。
Conventionally, there are various methods for heating the refrigerant in the refrigerant circuit, but an induction heater (hereinafter referred to as IH heater) is convenient in that the refrigerant can be rapidly heated using induction heating.
Such an IH heater for heating a refrigerant can induce induction heating by exciting a pipe through which the refrigerant flows or a magnetic material inside and outside the pipe by an induction heating coil, thereby heating the refrigerant in the pipe. It is.
 ここで、冷媒回路を構成する配管の材質は、通常、熱伝導性、加工性、または材料費等の面を考慮して銅が採用されている。しかし、IHヒータによって加熱される配管の材質としては、電磁誘導加熱を効率的に行うためステンレス鋼などの磁性体を採用するのが好ましい。
 そこで、特許文献1(特開2001―174054号公報)記載のIHヒータのように、銅管外周に磁性体塗料または粉末をコーティングすることにより、銅管であっても誘導加熱を効率よくできるようにしている。
Here, copper is usually adopted as the material of the piping constituting the refrigerant circuit in consideration of aspects such as thermal conductivity, workability, or material cost. However, as the material of the pipe heated by the IH heater, it is preferable to employ a magnetic material such as stainless steel in order to efficiently perform electromagnetic induction heating.
Therefore, like the IH heater described in Patent Document 1 (Japanese Patent Application Laid-Open No. 2001-174054), magnetic coating or powder is coated on the outer periphery of the copper tube so that induction heating can be efficiently performed even for the copper tube. I have to.
 ここで、誘導加熱の効率をさらに向上させるために、IHヒータ内部における冷媒が流れる管としてステンレス管を採用することが考えられるが、この場合、IHヒータによって加熱されるステンレス管とその他の冷媒回路を構成する銅管とでは材質が異なるため、異なる配管同士をろう付けする作業をしなければならず、製造コストやろう付け部分に欠陥(クラックなど)が発生する可能性ある。
 また、ステンレス管内部に銅管を挿入して二重管にすることも考えられるが、ステンレス管の内径にほぼ同じ外径を有する銅管を挿入しても、ステンレス管と銅管との良好な接触状態を得ることが難しいという問題がある。このため、誘導加熱されるステンレス管から銅管への伝熱を向上させることも困難である。
 本発明の課題は、外管から内管への伝熱を向上させることが可能な冷媒加熱装置の製造方法を提供することにある。
Here, in order to further improve the efficiency of induction heating, it is conceivable to employ a stainless steel pipe as a pipe through which the refrigerant flows inside the IH heater. In this case, the stainless steel pipe heated by the IH heater and other refrigerant circuits are considered. Since the material is different from that of the copper pipe constituting the wire, it is necessary to braze different pipes, and there is a possibility that defects (such as cracks) occur in the manufacturing cost and the brazed part.
It is also possible to insert a copper tube inside the stainless steel tube to make a double tube, but even if a copper tube having the same outer diameter is inserted into the inner diameter of the stainless steel tube, the stainless steel tube and the copper tube are good. There is a problem that it is difficult to obtain a proper contact state. For this reason, it is also difficult to improve the heat transfer from the stainless steel tube heated by induction to the copper tube.
The subject of this invention is providing the manufacturing method of the refrigerant | coolant heating apparatus which can improve the heat transfer from an outer tube | pipe to an inner tube | pipe.
 第1発明の冷媒加熱装置の製造方法は、冷媒が流れる内管と、外管と、誘導加熱コイルとを備えた冷媒加熱装置の製造方法である。外管は、内管の周囲を取り巻き、磁性体からなる。誘導加熱コイルは、外管の周囲を取り巻き、外管を誘導加熱する。この製造方法は、挿入工程と、拡管工程とを含む。挿入工程は、外管の内径よりも小さな外径を有する内管を外管に挿入する。拡管工程は、挿入工程の後に、内管を拡管して内管の外周面と外管の内周面とを密着させる。
 ここでは、内管を外管に挿入後、内管を拡管して内管の外周面と外管の内周面とを密着させるので、内管と外管の密着性が良くなる。また、内管の拡管によって、外管および誘導加熱コイルの落下を防止できる。しかも製造が容易である。
The method for manufacturing a refrigerant heating device of the first invention is a method for manufacturing a refrigerant heating device including an inner tube through which a refrigerant flows, an outer tube, and an induction heating coil. The outer tube surrounds the inner tube and is made of a magnetic material. The induction heating coil surrounds the periphery of the outer tube and induction-heats the outer tube. This manufacturing method includes an insertion step and a tube expansion step. In the insertion step, an inner tube having an outer diameter smaller than the inner diameter of the outer tube is inserted into the outer tube. In the tube expanding step, after the inserting step, the inner tube is expanded to bring the outer peripheral surface of the inner tube into close contact with the inner peripheral surface of the outer tube.
Here, after the inner tube is inserted into the outer tube, the inner tube is expanded and the outer peripheral surface of the inner tube and the inner peripheral surface of the outer tube are brought into close contact with each other, so that the adhesion between the inner tube and the outer tube is improved. Further, the expansion of the inner tube can prevent the outer tube and the induction heating coil from falling. Moreover, it is easy to manufacture.
 第2発明の冷媒加熱装置の製造方法は、第1発明の製造方法であって、内管の外周面には、内管の外方へ突出する位置決め手段が設けられている。挿入工程において、位置決め手段を外管に接触させることにより、外管内部における所定の位置に内管を配置させる。
 ここでは、挿入工程において、位置決め手段を外管に接触させることにより、外管内部における所定の位置に内管を配置させるので、位置決め手段によって外管内部における内管の位置合わせを正確に行うことが可能である。
The manufacturing method of the refrigerant heating device of the second invention is the manufacturing method of the first invention, wherein the outer peripheral surface of the inner tube is provided with positioning means that protrudes outward of the inner tube. In the insertion step, the inner tube is arranged at a predetermined position inside the outer tube by bringing the positioning means into contact with the outer tube.
Here, in the insertion step, the positioning means is brought into contact with the outer tube to place the inner tube at a predetermined position inside the outer tube, so that the positioning of the inner tube within the outer tube is accurately performed by the positioning means. Is possible.
 第3発明の冷媒加熱装置の製造方法は、第1発明または第2発明の製造方法であって、内管の外周面および/または外管の内周面には、凹凸が形成されている。拡管工程において、凹凸が隙間なく埋まるように、内管を拡管して内管の外周面と外管の内周面とを密着させる。
 ここでは、拡管工程において、内管の外周面および/または外管の内周面に形成された凹凸が隙間なく埋まるように、内管を拡管して内管の外周面と外管の内周面とを密着させるので、凹凸によって内管と外管との接触面積が拡大し、密着性も向上する。その結果、誘導加熱される外管から内管への伝熱、ひいては冷媒への伝熱が良くなる。
The manufacturing method of the refrigerant heating device of the third invention is the manufacturing method of the first invention or the second invention, wherein irregularities are formed on the outer peripheral surface of the inner tube and / or the inner peripheral surface of the outer tube. In the tube expanding step, the inner tube is expanded so that the unevenness is filled without any gaps, and the outer peripheral surface of the inner tube and the inner peripheral surface of the outer tube are brought into close contact with each other.
Here, in the tube expanding step, the inner tube is expanded so that the irregularities formed on the outer peripheral surface of the inner tube and / or the inner peripheral surface of the outer tube are filled without any gaps, and the outer peripheral surface of the inner tube and the inner periphery of the outer tube. Since the surfaces are brought into close contact with each other, the contact area between the inner tube and the outer tube is increased by the unevenness, and the adhesion is improved. As a result, heat transfer from the outer tube to the inner tube, which is heated by induction, and thus heat transfer to the refrigerant is improved.
 第4発明の冷媒加熱装置の製造方法は、第1発明の製造方法であって、内管は、銅で製造されている。
 ここでは、内管が銅で製造されているので、熱伝導性がよく、しかも拡管しやすい。
The manufacturing method of the refrigerant heating device of the fourth invention is the manufacturing method of the first invention, wherein the inner tube is made of copper.
Here, since the inner tube is made of copper, it has good thermal conductivity and is easy to expand.
 第5発明の冷媒加熱装置の製造方法は、第1発明の冷媒加熱装置の製造方法であって、外管は、ステンレス鋼で製造されている。
 ここでは、外管がステンレス鋼で製造されているので、誘導加熱を効率よく行うことができ、熱伝導性の良い銅などの内管よりも硬いので外管内周面の凹凸などが内管表面に密着しやすい。
The manufacturing method of the refrigerant heating apparatus of the 5th invention is a manufacturing method of the refrigerant heating apparatus of the 1st invention, Comprising: The outer tube is manufactured with stainless steel.
Here, since the outer tube is made of stainless steel, induction heating can be performed efficiently, and the inner tube surface is uneven because the outer tube is harder than the inner tube such as copper having good thermal conductivity. Easy to adhere to.
 第6発明の冷媒加熱装置の製造方法は、第3発明の冷媒加熱装置の製造方法であって、凹凸は、内管の外周面および外管の内周面のうち、いずれか一方に形成された溝と、他方に形成された突条とからなる。溝および突条は、螺旋状に延びている。
 ここでは、内管の外周面および外管の内周面に、螺旋状に延びる溝および突条が形成されているので、両管の接触面積が増え、誘導加熱される外管から内管への伝熱、ひいては冷媒への伝熱が良くなる。
The manufacturing method of the refrigerant heating device of the sixth invention is the manufacturing method of the refrigerant heating device of the third invention, wherein the irregularities are formed on either the outer peripheral surface of the inner tube or the inner peripheral surface of the outer tube. And a protrusion formed on the other side. The groove and the ridge extend in a spiral shape.
Here, since the spirally extending grooves and ridges are formed on the outer peripheral surface of the inner tube and the inner peripheral surface of the outer tube, the contact area between both the tubes increases, and the induction tube is heated from the outer tube to the inner tube. Heat transfer, and thus heat transfer to the refrigerant.
 第1発明によれば、内管と外管の密着性が良くなる。また、外管および誘導加熱コイルの落下を防止できる。しかも製造が容易である。
 第2発明によれば、位置決め手段によって外管内部における内管の位置合わせを正確に行うことができる。
 第3発明によれば、凹凸によって内管と外管との接触面積が拡大し、密着性も向上する。その結果、誘導加熱される外管から内管への伝熱、ひいては冷媒への伝熱が良くなる。
 第4発明によれば、熱伝導性がよく、しかも拡管しやすい。
 第5発明によれば、誘導加熱を効率よく行うことができ、熱伝導性の良い銅などの内管よりも硬いので外管内周面の凹凸などが内管表面に密着しやすい。
 第6発明によれば、内管と外管との接触面積が増え、誘導加熱される外管から内管への伝熱、ひいては冷媒への伝熱が良くなる。また、点状の凸部や凹部等を形成をする場合と比較して、溝や突条の方が接触面積を十分確保できる。しかも、溝や突条が螺旋状に延びているので、直線状の溝や突条と比較しても接触面積がさらに増えているので、誘導加熱される外管から内管への伝熱、ひいては冷媒への伝熱の伝熱性能がさらに向上する。
According to the first invention, the adhesion between the inner tube and the outer tube is improved. Moreover, the outer tube and the induction heating coil can be prevented from falling. Moreover, it is easy to manufacture.
According to the second aspect of the invention, the positioning of the inner tube within the outer tube can be accurately performed by the positioning means.
According to the third aspect of the invention, the contact area between the inner tube and the outer tube is increased by the unevenness, and the adhesion is improved. As a result, heat transfer from the outer tube to the inner tube, which is heated by induction, and thus heat transfer to the refrigerant is improved.
According to the fourth aspect of the invention, the thermal conductivity is good and the tube is easy to expand.
According to the fifth aspect of the invention, induction heating can be performed efficiently and is harder than the inner tube made of copper or the like having good thermal conductivity, so that the irregularities on the inner peripheral surface of the outer tube are easily adhered to the inner tube surface.
According to the sixth aspect of the invention, the contact area between the inner tube and the outer tube is increased, and the heat transfer from the outer tube to the inner tube that is induction-heated, and thus the heat transfer to the refrigerant is improved. Moreover, compared with the case where a point-shaped convex part, a recessed part, etc. are formed, the direction of a groove | channel or a protrusion can ensure sufficient contact area. Moreover, since the grooves and ridges extend spirally, the contact area is further increased compared to the linear grooves and ridges, so heat transfer from the outer tube to the inner tube that is induction-heated, As a result, the heat transfer performance of heat transfer to the refrigerant is further improved.
本発明の実施形態に係わるIHヒータアセンブリが取り付けられた空気調和機の回路図。The circuit diagram of the air conditioner to which the IH heater assembly concerning the embodiment of the present invention was attached. 図1の室外機の機械室部分の拡大斜視図。The expansion perspective view of the machine room part of the outdoor unit of FIG. 図1のIHヒータアセンブリの正面図。FIG. 2 is a front view of the IH heater assembly of FIG. 1. 図1のIHヒータアセンブリの断面図。FIG. 2 is a cross-sectional view of the IH heater assembly of FIG. 1. 図1のIHヒータアセンブリの製造方法における挿入工程を示す断面説明図。Cross-sectional explanatory drawing which shows the insertion process in the manufacturing method of the IH heater assembly of FIG. 図1のIHヒータアセンブリの製造方法における拡管工程を示す断面説明図。Cross-sectional explanatory drawing which shows the pipe expansion process in the manufacturing method of the IH heater assembly of FIG. 図1のIHヒータアセンブリの製造方法におけるボビン装着工程を示す断面説明図。Sectional explanatory drawing which shows the bobbin mounting process in the manufacturing method of the IH heater assembly of FIG. 図1の内管と外管との接触面に形成された直線状の溝と突条を示す斜視拡大図。FIG. 2 is an enlarged perspective view showing linear grooves and ridges formed on a contact surface between an inner tube and an outer tube in FIG. 1. 本発明の変形例に係わる内管と外管との接触面に形成された螺旋状の溝と突条を示す斜視拡大図。The perspective enlarged view which shows the helical groove | channel and protrusion which were formed in the contact surface of the inner tube and outer tube concerning the modification of this invention.
 つぎに本発明の冷媒加熱装置の製造方法の実施形態を図面を参照しながら説明する。
〔実施形態〕
<空気調和機1の基本構成>
 図1に示される冷媒加熱装置30(以下、IHヒータアセンブリ30という)を含む空気調和機1では、図1に示すように、室外機2と室内機4とを液冷媒連絡配管6およびガス冷媒連絡配管7で接続して構成される冷媒回路11を備えている。冷媒回路11の各冷媒配管は、通常、銅によって構成されている。
 冷媒回路11は、図1~2に示されるように、室外機2内部に、圧縮機21、四路切換弁22、室外熱交換器23、絞り調整可能な電子膨張弁からなる膨張弁24、IHヒータアセンブリ30およびアキュームレータ25等を備えている。また、冷媒回路11は、室内機4内部には、図1に示されるように、室内熱交換器26等を備えている。なお、四路切換弁22は、図1では、暖房運転を行う場合の切換接続状態を示している。
Next, an embodiment of a method for manufacturing a refrigerant heating device of the present invention will be described with reference to the drawings.
Embodiment
<Basic configuration of the air conditioner 1>
In the air conditioner 1 including the refrigerant heating device 30 (hereinafter referred to as the IH heater assembly 30) shown in FIG. 1, the outdoor unit 2 and the indoor unit 4 are connected to the liquid refrigerant communication pipe 6 and the gas refrigerant as shown in FIG. A refrigerant circuit 11 configured to be connected by a communication pipe 7 is provided. Each refrigerant pipe of the refrigerant circuit 11 is usually made of copper.
As shown in FIGS. 1 and 2, the refrigerant circuit 11 includes, in the outdoor unit 2, a compressor 21, a four-way switching valve 22, an outdoor heat exchanger 23, an expansion valve 24 including an electronic expansion valve with adjustable throttle, An IH heater assembly 30 and an accumulator 25 are provided. In addition, the refrigerant circuit 11 includes an indoor heat exchanger 26 and the like inside the indoor unit 4 as shown in FIG. In addition, the four-way selector valve 22 has shown the switching connection state in the case of performing heating operation in FIG.
 ここで、冷媒回路11内を流れる冷媒は、本発明ではとくに限定するものではないが、例えば、HFC(R410A等)や二酸化炭素冷媒等である。
 冷媒回路11は、図1に示すように、吐出管A、室内側ガス管B、室内側液管C、室外側液管D、室外側ガス管E、アキューム管Fおよび吸入管Gを有している。
 以下、圧縮機21から吐出された冷媒が流れ出て再び圧縮機21に吸入される流路の順に、各冷媒配管の接続状態を説明する。
 吐出管Aは、圧縮機21の吐出側と四路切換弁22とを接続している。
 室内側ガス管Bは、四路切換弁22と室内熱交換器26のガス側とを接続している。
 室内側液管Cは、室内熱交換器26の液側と膨張弁24とを接続している。ここで、室内側液管Cには、室外機2と室内機4とを連絡する液連絡配管6を含んで構成されている。
Here, the refrigerant flowing in the refrigerant circuit 11 is not particularly limited in the present invention, and is, for example, HFC (R410A or the like), carbon dioxide refrigerant, or the like.
As shown in FIG. 1, the refrigerant circuit 11 includes a discharge pipe A, an indoor gas pipe B, an indoor liquid pipe C, an outdoor liquid pipe D, an outdoor gas pipe E, an accumulator pipe F, and a suction pipe G. ing.
Hereinafter, the connection state of each refrigerant pipe will be described in the order of the flow path where the refrigerant discharged from the compressor 21 flows out and is sucked into the compressor 21 again.
The discharge pipe A connects the discharge side of the compressor 21 and the four-way switching valve 22.
The indoor side gas pipe B connects the four-way switching valve 22 and the gas side of the indoor heat exchanger 26.
The indoor side liquid pipe C connects the liquid side of the indoor heat exchanger 26 and the expansion valve 24. Here, the indoor side liquid pipe C includes a liquid communication pipe 6 that connects the outdoor unit 2 and the indoor unit 4.
 室外側液管Dは、膨張弁24と室外熱交換器23の液側とを接続している。
 室外側ガス管Eは、室外熱交換器23のガス側と四路切換弁22とを接続している。
 アキューム管Fは、四路切換弁22とアキュームレータ25とを接続している。
 吸入管Gは、アキュームレータ25と圧縮機21の吸入側とを接続している。
 このようにして、冷媒回路11は構成されており、上述した向きに冷媒が循環して流れることで、暖房運転を行うことができる。なお、四路切換弁22の接続状態を切り換えることで、冷房運転を行うこともできる。
 アキューム管Fの途中には、後述するIHヒータアセンブリ30がろう付けによって接続されている。
The outdoor liquid pipe D connects the expansion valve 24 and the liquid side of the outdoor heat exchanger 23.
The outdoor gas pipe E connects the gas side of the outdoor heat exchanger 23 and the four-way switching valve 22.
The accumulator pipe F connects the four-way switching valve 22 and the accumulator 25.
The suction pipe G connects the accumulator 25 and the suction side of the compressor 21.
In this way, the refrigerant circuit 11 is configured, and heating operation can be performed by circulating the refrigerant in the above-described direction. The cooling operation can also be performed by switching the connection state of the four-way switching valve 22.
In the middle of the accumulator tube F, an IH heater assembly 30 described later is connected by brazing.
<IHヒータアセンブリ30の構成>
 図3および図4に示されるように、IHヒータアセンブリ30は、二重管からなるIHヒータであり、内管31と、外管32と、誘導加熱コイル33と、ボビン34と、一対の蓋35と、一対のナット36と、複数のフェライトブロック37と、フェライトホルダ38と、板金カバー39とを備えている。
<Configuration of IH heater assembly 30>
As shown in FIGS. 3 and 4, the IH heater assembly 30 is an IH heater composed of a double tube, and includes an inner tube 31, an outer tube 32, an induction heating coil 33, a bobbin 34, and a pair of lids. 35, a pair of nuts 36, a plurality of ferrite blocks 37, a ferrite holder 38, and a sheet metal cover 39.
 内管31は、冷媒配管5と同じ材料である銅で製造されており、その内部を冷媒が流れる。
 また、内管31の外周面45には、内管31の外方へ突出する位置決めリブ42が設けられている。位置決めリブ42は、IHヒータアセンブリ30の製造時において、内管31を外管32に挿入するときに、外管32の開口縁32bに当たることにより、内管31を外管32内部の所定の位置に位置決めする。
 位置決めリブ42は、本発明の位置決め手段の一態様であり、内管31の外方へ突出して外管32の開口縁32bに当たることができる突起であればよく、例えば、金属ろうなどを付着して形成したり、内管31の一部を外方へ膨らませたりすることに形成される。
外管32は、磁性体であるステンレス鋼で製造されており、内管31の周囲に取り巻いて配置されている。具体的には、内管31を拡管することにより、内管31の外周面と外管の内周面とが密着している。また、本発明の位置決め手段としては、タイラップや輪ゴム等の帯状の部材などでもよい。
The inner pipe 31 is made of copper, which is the same material as the refrigerant pipe 5, and the refrigerant flows through the inner pipe 31.
A positioning rib 42 is provided on the outer peripheral surface 45 of the inner tube 31 so as to protrude outward from the inner tube 31. The positioning rib 42 contacts the opening edge 32b of the outer tube 32 when the inner tube 31 is inserted into the outer tube 32 when the IH heater assembly 30 is manufactured. Position to.
The positioning rib 42 is one aspect of the positioning means of the present invention, and may be any protrusion that protrudes outward of the inner tube 31 and can hit the opening edge 32b of the outer tube 32. It is formed by expanding a part of the inner tube 31 outward.
The outer tube 32 is made of stainless steel, which is a magnetic material, and is disposed around the inner tube 31. Specifically, by expanding the inner tube 31, the outer peripheral surface of the inner tube 31 and the inner peripheral surface of the outer tube are in close contact with each other. The positioning means of the present invention may be a band-shaped member such as a tie wrap or a rubber band.
 図8に示されるように、外管32の内周面43には、複数本の直線状の溝44が内周面43に沿って等間隔に形成されている。一方、内管31の外周面45には、外管32の溝44にそれぞれ嵌り合う直線状の突条46が形成されている。
 突条46は、後述するように、内管31を拡管するときに、あらかじめ内周面43に溝44が形成された外管32の内周面43に押しつけられることにより、内管31の外周面45に形成される。銅製の内管31がステンレス鋼製の外管32よりも軟らかいので、容易かつ確実に内管31の外周面に突条46を形成することが可能である。
 このように、外管32内側に形成された溝44と内管31外側に形成された突条46により、内管31の外周面45と外管32の内周面43とが互いに接触する面積が拡大している。
As shown in FIG. 8, a plurality of linear grooves 44 are formed at equal intervals along the inner peripheral surface 43 on the inner peripheral surface 43 of the outer tube 32. On the other hand, linear protrusions 46 are formed on the outer peripheral surface 45 of the inner tube 31 so as to fit into the grooves 44 of the outer tube 32, respectively.
As will be described later, when the inner tube 31 is expanded, the protrusion 46 is pressed against the inner peripheral surface 43 of the outer tube 32 in which the groove 44 is formed in the inner peripheral surface 43 in advance. Formed on surface 45. Since the copper inner tube 31 is softer than the stainless steel outer tube 32, the protrusion 46 can be easily and reliably formed on the outer peripheral surface of the inner tube 31.
Thus, the area where the outer peripheral surface 45 of the inner tube 31 and the inner peripheral surface 43 of the outer tube 32 are in contact with each other by the groove 44 formed inside the outer tube 32 and the protrusion 46 formed outside the inner tube 31. Is expanding.
 誘導加熱コイル33は、外管32の周囲を取り巻き、外管32を誘導加熱する。誘導加熱コイル33は、外管32と別部材のボビン34に巻き付けられた状態で、外管32の外周を取り巻くように配置されている。
 ボビン34は、両端が開放された円筒状の部材であり、その側周面に誘導加熱コイル33が巻き付けられている。
 一対の蓋35は、中央に開口35aが開口され、外管32の外周に嵌合している。また、一対の蓋35は、ボビン34に取り付けられた状態で、後述するC字状のフェライトホルダ38によって上下両側から固定されている。
 一対のナット36は、外管32の両端付近の外周に形成された雄ねじ部32aに螺合することにより、IHヒータアセンブリ30のボビン34、蓋35、フェライトホルダ38およびナット36をあらかじめ組み合わせたものを、外管32の外周に固定している。
The induction heating coil 33 surrounds the outer tube 32 and induction-heats the outer tube 32. The induction heating coil 33 is arranged so as to surround the outer periphery of the outer tube 32 in a state of being wound around a bobbin 34 which is a separate member from the outer tube 32.
The bobbin 34 is a cylindrical member whose both ends are open, and the induction heating coil 33 is wound around the side peripheral surface thereof.
The pair of lids 35 has an opening 35 a at the center and is fitted to the outer periphery of the outer tube 32. In addition, the pair of lids 35 is fixed from both the upper and lower sides by a C-shaped ferrite holder 38 to be described later while being attached to the bobbin 34.
The pair of nuts 36 is a combination of the bobbin 34, the lid 35, the ferrite holder 38, and the nut 36 of the IH heater assembly 30 in advance by being screwed into male screw portions 32a formed on the outer periphery near both ends of the outer tube 32. Is fixed to the outer periphery of the outer tube 32.
 複数のフェライトブロック37は、IHヒータアセンブリ30の板金カバー39の外側への漏れ磁束の低減のために、C字状のフェライトホルダ38に並べて取り付けられている。フェライトホルダ38は、ボビン34の四方から誘導加熱コイル33の外方から取り付けられている。
 板金カバー39は、図2および図4に示されるように、金属薄板からなるカバーであり、フェライトホルダ38の外側にネジ止めされている。板金カバー39は、円筒状のボビン34を取り巻くように、円筒形または多角形状をしており、一体形状であったり、2分割またはそれ以上に分割された形状をしている。
 これにより、内管31が他の冷媒配管Fと同種の銅製なので、内管31と冷媒配管Fとの接合が容易(製造容易)となる。しかも、ステンレス鋼などの磁性体からなる外管32により効率的な誘導加熱が可能である。
The plurality of ferrite blocks 37 are mounted side by side on a C-shaped ferrite holder 38 in order to reduce leakage magnetic flux to the outside of the sheet metal cover 39 of the IH heater assembly 30. The ferrite holder 38 is attached from the outside of the induction heating coil 33 from the four sides of the bobbin 34.
As shown in FIGS. 2 and 4, the sheet metal cover 39 is a cover made of a thin metal plate and is screwed to the outside of the ferrite holder 38. The sheet metal cover 39 has a cylindrical shape or a polygonal shape so as to surround the cylindrical bobbin 34, and has an integrated shape or a shape divided into two or more.
Thereby, since the inner pipe 31 is made of the same kind of copper as the other refrigerant pipes F, the inner pipe 31 and the refrigerant pipe F can be easily joined (manufactured easily). Moreover, efficient induction heating is possible by the outer tube 32 made of a magnetic material such as stainless steel.
 上記銅製の内管31の周囲を覆う外管32の材質は、ステンレス鋼に限定されるものではなく、例えば、鉄、銅、アルミ、クロム、ニッケル等の導体およびこれらの群から選ばれる少なくとも2種以上の金属を含有する合金等とすることができる。また、ステンレス鋼としては、例えば、フェライト系、マルテンサイト系の少なくとも1種またはこれらの組合せが例として挙げられる。
 また、厚みのある外管32に誘導加熱コイル33が巻き付いたボビン34を支持させる構造を採用しているので、IHヒータアセンブリ30の全体の強度が向上する。
 以上のように、IHヒータアセンブリ30が四路切換弁22とアキュームレータ25とを接続しているアキューム管Fの部分の途中に設けられていることにより、図1に示されるように、電源線71を介して高周波電源60から高周波交流電流を受けたIHヒータアセンブリ30によって、四路切換弁22からアキュームレータ25に向かう吸入ガス冷媒を暖めることができ、暖房能力を向上させることができる。
The material of the outer tube 32 covering the periphery of the copper inner tube 31 is not limited to stainless steel, and for example, at least 2 selected from conductors such as iron, copper, aluminum, chromium, nickel, and the like. An alloy containing more than one kind of metal can be used. Examples of stainless steel include at least one of ferrite and martensite, or a combination thereof.
Moreover, since the structure which supports the bobbin 34 with the induction heating coil 33 wound around the thick outer tube 32 is adopted, the overall strength of the IH heater assembly 30 is improved.
As described above, the IH heater assembly 30 is provided in the middle of the portion of the accumulator pipe F that connects the four-way switching valve 22 and the accumulator 25, so that as shown in FIG. By the IH heater assembly 30 that receives the high-frequency alternating current from the high-frequency power source 60 via the intake air, the intake gas refrigerant that is directed from the four-way switching valve 22 to the accumulator 25 can be warmed, and the heating capacity can be improved.
 また、暖房運転の起動時においては、圧縮機21が十分に暖まっていない状態の場合もあるが、ここでは、IHヒータアセンブリ30が発熱することで、四路切換弁22からアキュームレータ25に向かうガス冷媒を加熱することができ、起動時の能力不足を補うことができる。
 さらに、四路切換弁22を冷房運転用の状態に切り換えて、室外熱交換器23に付着した霜を除去するデフロスト運転を行う場合には、IHヒータアセンブリ30を通過して暖められたガス冷媒を圧縮機21でさらに圧縮することができるため、圧縮機21から吐出するホットガスの温度を上げることができる。これにより、デフロスト運転によって霜を解凍させるのに必要とされる時間を短縮化させることができる。これにより、暖房運転中に適時デフロスト運転を行うことが必要となる場合であっても、できるだけ早く暖房運転に復帰させることができ、ユーザの快適性を向上させることができる。
In addition, when the heating operation is started, the compressor 21 may not be sufficiently warmed. Here, the IH heater assembly 30 generates heat, so that the gas from the four-way switching valve 22 toward the accumulator 25 is generated. The refrigerant can be heated, and the lack of capacity at the start-up can be compensated.
Further, when the four-way switching valve 22 is switched to the state for cooling operation and the defrost operation for removing the frost attached to the outdoor heat exchanger 23 is performed, the gas refrigerant heated through the IH heater assembly 30 is used. Can be further compressed by the compressor 21, so that the temperature of the hot gas discharged from the compressor 21 can be increased. Thereby, the time required to thaw frost by defrost operation can be shortened. Thereby, even if it is necessary to perform a defrost operation in a timely manner during the heating operation, the operation can be returned to the heating operation as soon as possible, and the user's comfort can be improved.
<IHヒータアセンブリ30の製造方法>
 本実施形態のIHヒータアセンブリ30を製造する場合、まず、図5に示されるように、外管32の内径よりも小さな外径を有する内管31を外管32に挿入する。具体的には、冷媒回路11の冷媒配管の一部を構成する銅製の内管31が、磁性体からなるステンレス鋼製の外管32の内部に挿入される(挿入工程)。
<Method for Manufacturing IH Heater Assembly 30>
When manufacturing the IH heater assembly 30 of the present embodiment, first, as shown in FIG. 5, the inner tube 31 having an outer diameter smaller than the inner diameter of the outer tube 32 is inserted into the outer tube 32. Specifically, the copper inner pipe 31 constituting a part of the refrigerant pipe of the refrigerant circuit 11 is inserted into the stainless steel outer pipe 32 made of a magnetic material (insertion step).
 この挿入工程において、内管31から外方へ突出する位置決めリブ42を外管32の開口縁32bに接触させることにより、外管32内部における所定の位置に内管31を配置させることが可能である。
 そして、挿入工程の後に、内管31を拡管して内管31の外周面45と外管32の内周面43とを密着させる。具体的には、図6に示されるように、内管31の内部にその内径より少し大きい外径を有する拡管ビレット41を圧入することによって、内管31が、その外径が拡大する方向へ拡大されることにより、外管32の内部に嵌合する(拡管工程)。このとき、内管31を拡管するときに、あらかじめ内周面43に溝44が形成された外管32の内周面43に押しつけられることにより、凹凸が隙間なく埋まるように内管31を拡管して内管31の外周面45と外管32の内周面43とを密着させ、その結果、内管31の外周面45に突条46が形成される。
In this insertion step, the inner tube 31 can be disposed at a predetermined position inside the outer tube 32 by bringing the positioning rib 42 protruding outward from the inner tube 31 into contact with the opening edge 32b of the outer tube 32. is there.
Then, after the insertion step, the inner tube 31 is expanded to bring the outer peripheral surface 45 of the inner tube 31 and the inner peripheral surface 43 of the outer tube 32 into close contact. Specifically, as shown in FIG. 6, by pressing-in a tube expansion billet 41 having an outer diameter that is slightly larger than the inner diameter of the inner tube 31, the inner tube 31 moves in a direction in which the outer diameter increases. By being enlarged, it fits inside the outer pipe 32 (pipe expansion process). At this time, when the inner tube 31 is expanded, the inner tube 31 is expanded so that the unevenness is filled without any gaps by being pressed against the inner peripheral surface 43 of the outer tube 32 in which the groove 44 is formed in the inner peripheral surface 43 in advance. Thus, the outer peripheral surface 45 of the inner tube 31 and the inner peripheral surface 43 of the outer tube 32 are brought into close contact with each other. As a result, the protrusion 46 is formed on the outer peripheral surface 45 of the inner tube 31.
 その後、図7に示されるように、IHヒータアセンブリ30のボビン34、蓋35、フェライトホルダ38およびナット36をあらかじめ組み合わせたものを、ナット36を緩めた状態で外管32の外周に挿入し、その後、ナット36を外管32に締め付けることにより、C字型リング43に内径方向に押し付けられることにより、ボビン34その他の主要部が装着される(ボビン装着工程)。これにより、IHヒータアセンブリ30の製造が完了する。 Thereafter, as shown in FIG. 7, a combination of the bobbin 34, the lid 35, the ferrite holder 38 and the nut 36 of the IH heater assembly 30 in advance is inserted into the outer periphery of the outer tube 32 with the nut 36 loosened, After that, the nut 36 is fastened to the outer tube 32 and is pressed against the C-shaped ring 43 in the inner diameter direction, whereby the bobbin 34 and other main parts are mounted (bobbin mounting step). Thereby, the manufacture of the IH heater assembly 30 is completed.
<実施形態の特徴>
(1)
 実施形態のIHヒータアセンブリ30の製造方法は、外管32の内径よりも小さな外径を有する内管31を外管32に挿入する挿入工程と、その後に、内管31を拡管して内管31の外周面45と外管32の内周面43とを密着させる拡管工程とを含んでいるので、内管31と外管32との密着性が良くなり、誘導加熱される外管32から内管31への伝熱、ひいては冷媒への伝熱が良くなる。
<Features of the embodiment>
(1)
The manufacturing method of the IH heater assembly 30 according to the embodiment includes an insertion step of inserting the inner tube 31 having an outer diameter smaller than the inner diameter of the outer tube 32 into the outer tube 32, and then expanding the inner tube 31 to expand the inner tube. 31 includes a tube expansion step for bringing the outer peripheral surface 45 of the outer tube 31 and the inner peripheral surface 43 of the outer tube 32 into close contact with each other. Heat transfer to the inner pipe 31 and thus heat transfer to the refrigerant is improved.
 また、内管31の拡管によって、内管31以外のIHヒータアセンブリ30の構成部品(すなわち、外管32ならびに誘導加熱コイル33、その他ボビン34、一対の蓋35、一対のナット36、複数のフェライトブロック37、フェライトホルダ38、ならびに板金カバー39)の落下を防止できる。
 しかも、内管31を拡管するだけで外管32との密着性が向上するので、IHヒータアセンブリ30の製造も容易である。
(2)
 実施形態のIHヒータアセンブリ30の製造方法では、内管31の外周面45には、内管31の外方へ突出する位置決めリブ42が設けられており、挿入工程において、位置決めリブ42を外管32に接触させることにより、外管32内部における所定の位置に内管31を配置させるので、外管32内部における内管31の位置合わせを容易かつ正確に行うことが可能である。
(3)
 実施形態のIHヒータアセンブリ30の製造方法では、内管31の外周面45および/または外管32の内周面43には、溝44や突条46などの凹凸が形成され、拡管工程において、凹凸が隙間なく埋まるように、内管31を拡管して内管31の外周面45と外管32の内周面43とを密着させている。この凹凸によって内管31と外管32との接触面積が拡大し、密着性も向上する。その結果、誘導加熱される外管32から内管31への伝熱、ひいては冷媒への伝熱が良くなる。
(4)
 実施形態のIHヒータアセンブリ30の製造方法では、内管31が銅で製造されているので、熱伝導性が良く、しかも拡管しやすい。
(5)
 また、実施形態のIHヒータアセンブリ30の製造方法では、外管32は、ステンレス鋼で製造されているので、他の磁性体材料の管、例えば鉄管などと比較して、誘導加熱を効率よく行うことができ、しかも、強度が高く、寿命も長いなどの利点を有する。
Further, by expanding the inner tube 31, the components of the IH heater assembly 30 other than the inner tube 31 (that is, the outer tube 32 and the induction heating coil 33, other bobbins 34, a pair of lids 35, a pair of nuts 36, a plurality of ferrites) The block 37, the ferrite holder 38, and the sheet metal cover 39) can be prevented from falling.
In addition, since the adhesion with the outer tube 32 is improved simply by expanding the inner tube 31, the IH heater assembly 30 can be easily manufactured.
(2)
In the manufacturing method of the IH heater assembly 30 according to the embodiment, the outer peripheral surface 45 of the inner tube 31 is provided with positioning ribs 42 that protrude outward from the inner tube 31. Since the inner tube 31 is arranged at a predetermined position inside the outer tube 32 by contacting the tube 32, the inner tube 31 can be easily and accurately positioned inside the outer tube 32.
(3)
In the manufacturing method of the IH heater assembly 30 according to the embodiment, the outer peripheral surface 45 of the inner tube 31 and / or the inner peripheral surface 43 of the outer tube 32 are formed with irregularities such as grooves 44 and ridges 46, The inner tube 31 is expanded so that the unevenness is filled without a gap, and the outer peripheral surface 45 of the inner tube 31 and the inner peripheral surface 43 of the outer tube 32 are brought into close contact with each other. The unevenness increases the contact area between the inner tube 31 and the outer tube 32 and improves the adhesion. As a result, heat transfer from the outer tube 32 to the inner tube 31 that is induction-heated, and thus heat transfer to the refrigerant is improved.
(4)
In the manufacturing method of the IH heater assembly 30 of the embodiment, since the inner pipe 31 is made of copper, it has good thermal conductivity and is easy to expand.
(5)
In the method of manufacturing the IH heater assembly 30 according to the embodiment, the outer tube 32 is made of stainless steel, so that induction heating is performed more efficiently than a tube made of other magnetic material, such as an iron tube. In addition, it has advantages such as high strength and long life.
<変形例>
(A)
 上記の実施形態では、図8に示されるように内管31と外管32との接触面に凹凸の一例として、それぞれ直線状の溝44と突条46が形成されているが、本発明はこれに限定されるものではなく、その他の凹凸の態様、例えば、螺旋状の溝と突条、または点在する突起や凹みの組合せであってもよい。
(B)
 例えば、図9に示されるように、溝47および突条48が螺旋状に延びているようにしてもよい。この場合、内管31と外管32との接触面積が拡大し、誘導加熱される外管32から内管31への伝熱、ひいては冷媒への伝熱が良くなる。しかも、図9に示される螺旋状の溝47および突条48の場合、図8に示される直線状の溝44および突条46と比較して長さが長くなるので、その分だけ内管31と外管32との接触面積が拡大し、伝熱性能が向上する。
<Modification>
(A)
In the above-described embodiment, as shown in FIG. 8, linear grooves 44 and ridges 46 are respectively formed on the contact surfaces of the inner tube 31 and the outer tube 32 as an example of unevenness. However, the present invention is not limited to this, and other uneven forms, for example, spiral grooves and protrusions, or combinations of scattered protrusions and depressions may be used.
(B)
For example, as shown in FIG. 9, the grooves 47 and the protrusions 48 may extend spirally. In this case, the contact area between the inner tube 31 and the outer tube 32 is increased, and heat transfer from the outer tube 32 that is induction-heated to the inner tube 31, and hence heat transfer to the refrigerant, is improved. Moreover, in the case of the spiral groove 47 and the ridge 48 shown in FIG. 9, the length is longer than that of the linear groove 44 and the ridge 46 shown in FIG. The contact area between the outer tube 32 and the outer tube 32 is increased, and heat transfer performance is improved.
 このような螺旋状の突条48は、内管31を拡管するときに、あらかじめ内周面43に螺旋状の溝47が形成された外管32の内周面43に押しつけられることにより、内管31の外周面45に形成される。 When the inner tube 31 is expanded, the spiral protrusion 48 is pressed against the inner peripheral surface 43 of the outer tube 32 in which the spiral groove 47 is formed in the inner peripheral surface 43 in advance. It is formed on the outer peripheral surface 45 of the tube 31.
 本発明は、冷媒加熱装置の製造方法の分野に種々適用することが可能である。 The present invention can be variously applied to the field of manufacturing methods of refrigerant heating devices.
1 空気調和機
2 室外機
4 室内機
6 液冷媒連絡配管
7 ガス冷媒連絡配管
11 冷媒回路
21 圧縮機
22 四路切換弁
23 室外熱交換器
24 膨張弁
25 アキュームレータ
26 室内熱交換器
30 IHヒータアセンブリ(冷媒加熱装置)
31 内管
32 外管
33 誘導加熱コイル
34 ボビン
35 蓋
36 ナット
37 フェライトブロック
38 フェライトホルダ
39 板金カバー
41 拡管ビレット
42 位置決めリブ(位置決め手段)
43 (外管32の)内周面
44 (直線状の)溝
45 (内管31の)外周面
46 突条
47 (螺旋状の)溝
48 (螺旋状の)突条
A 吐出管
B 室内側ガス管
C 室内側液管
D 室外側液管
E 室外側ガス管
F アキューム管
G 吸入管
DESCRIPTION OF SYMBOLS 1 Air conditioner 2 Outdoor unit 4 Indoor unit 6 Liquid refrigerant communication piping 7 Gas refrigerant communication piping 11 Refrigerant circuit 21 Compressor 22 Four-way switching valve 23 Outdoor heat exchanger 24 Expansion valve 25 Accumulator 26 Indoor heat exchanger 30 IH heater assembly (Refrigerant heating device)
31 Inner tube 32 Outer tube 33 Induction heating coil 34 Bobbin 35 Lid 36 Nut 37 Ferrite block 38 Ferrite holder 39 Sheet metal cover 41 Expanded billet 42 Positioning rib (positioning means)
43 (outer tube 32) inner peripheral surface 44 (linear) groove 45 (inner tube 31) outer peripheral surface 46 ridge 47 (spiral) groove 48 (spiral) ridge A discharge tube B indoor side Gas pipe C indoor side liquid pipe D outdoor side liquid pipe E outdoor side gas pipe F accumulator pipe G suction pipe
特開2001―174054号公報Japanese Patent Laid-Open No. 2001-174054

Claims (6)

  1.  冷媒が流れる内管(31)と、
     前記内管(31)の周囲を取り巻き、磁性体からなる外管(32)と、
     前記外管(32)の周囲を取り巻き、前記外管(32)を誘導加熱する誘導加熱コイル(33)とを備えている冷媒加熱装置(30)を製造する方法であって、
     前記外管(32)の内径よりも小さな外径を有する前記内管(31)を前記外管(32)に挿入する挿入工程と、
     前記挿入工程の後に、前記内管(31)を拡管して前記内管(31)の外周面と前記外管(32)の内周面とを密着させる拡管工程と
    を含む冷媒加熱装置(30)の製造方法。
    An inner pipe (31) through which the refrigerant flows;
    Surrounding the inner pipe (31), and an outer pipe (32) made of a magnetic material;
    A method of manufacturing a refrigerant heating device (30) including an induction heating coil (33) surrounding the outer tube (32) and induction heating the outer tube (32),
    An insertion step of inserting the inner tube (31) having an outer diameter smaller than the inner diameter of the outer tube (32) into the outer tube (32);
    After the inserting step, the refrigerant heating device (30) includes a tube expanding step of expanding the inner tube (31) and bringing the outer peripheral surface of the inner tube (31) into close contact with the inner peripheral surface of the outer tube (32). ) Manufacturing method.
  2.  前記内管(31)の外周面には、前記内管(31)の外方へ突出する位置決め手段(42)が設けられており、
     前記挿入工程において、前記位置決め手段(42)を前記外管(32)に接触させることにより、前記外管(32)内部における所定の位置に前記内管(31)を配置させる、
    請求項1に記載の冷媒加熱装置(30)の製造方法。
    Positioning means (42) projecting outward of the inner pipe (31) is provided on the outer peripheral surface of the inner pipe (31),
    In the insertion step, the inner pipe (31) is disposed at a predetermined position inside the outer pipe (32) by bringing the positioning means (42) into contact with the outer pipe (32).
    The manufacturing method of the refrigerant | coolant heating apparatus (30) of Claim 1.
  3.  前記内管(31)の外周面および/または前記外管(32)の内周面には、凹凸が形成され、
     前記拡管工程において、前記凹凸(44、46、47、48)が隙間なく埋まるように、前記内管(31)を拡管して前記内管(31)の外周面と前記外管(32)の内周面とを密着させる、
    請求項1または2に記載の冷媒加熱装置(30)の製造方法。
    Concavities and convexities are formed on the outer peripheral surface of the inner tube (31) and / or the inner peripheral surface of the outer tube (32),
    In the tube expanding step, the inner tube (31) is expanded so that the unevenness (44, 46, 47, 48) is filled without a gap, and the outer peripheral surface of the inner tube (31) and the outer tube (32) are expanded. Close contact with the inner surface,
    The manufacturing method of the refrigerant | coolant heating apparatus (30) of Claim 1 or 2.
  4.  前記内管(31)は、銅で製造されている、
    請求項1に記載の冷媒加熱装置(30)の製造方法。
    The inner pipe (31) is made of copper,
    The manufacturing method of the refrigerant | coolant heating apparatus (30) of Claim 1.
  5.  前記外管(32)は、ステンレス鋼で製造されている、
    請求項1に記載の冷媒加熱装置(30)の製造方法。
    The outer tube (32) is made of stainless steel,
    The manufacturing method of the refrigerant | coolant heating apparatus (30) of Claim 1.
  6.  前記凹凸(47、48)は、前記内管(31)の外周面および前記外管(32)の内周面のうち、いずれか一方に形成された溝(47)と、他方に形成された突条(48)とからなり、
     前記溝(47)および突条(48)は、螺旋状に延びている、
    請求項3に記載の冷媒加熱装置(30)の製造方法。
    The irregularities (47, 48) are formed on the groove (47) formed on one of the outer peripheral surface of the inner tube (31) and the inner peripheral surface of the outer tube (32) and on the other. Consists of ridges (48),
    The groove (47) and the ridge (48) extend spirally,
    The manufacturing method of the refrigerant | coolant heating apparatus (30) of Claim 3.
PCT/JP2009/004556 2008-09-17 2009-09-14 Refrigerant heating apparatus manufacturing method WO2010032415A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-238721 2008-09-17
JP2008238721A JP2011247429A (en) 2008-09-17 2008-09-17 Refrigerant heating apparatus manufacturing method

Publications (1)

Publication Number Publication Date
WO2010032415A1 true WO2010032415A1 (en) 2010-03-25

Family

ID=42039265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004556 WO2010032415A1 (en) 2008-09-17 2009-09-14 Refrigerant heating apparatus manufacturing method

Country Status (2)

Country Link
JP (1) JP2011247429A (en)
WO (1) WO2010032415A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10598415B2 (en) * 2013-09-27 2020-03-24 Phc Holdings Corporation Refrigeration apparatus with dry ice occurrence suppression structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013188402A (en) * 2012-03-14 2013-09-26 Dainippon Printing Co Ltd Disinfectant atomizer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62104634A (en) * 1985-10-31 1987-05-15 Kawasaki Heavy Ind Ltd Double pipe production
JP2000082576A (en) * 1998-09-08 2000-03-21 Matsushita Graphic Communication Systems Inc Manufacture of pipe for induction heating
JP2007155259A (en) * 2005-12-07 2007-06-21 Daikin Ind Ltd Refrigerant heating apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62104634A (en) * 1985-10-31 1987-05-15 Kawasaki Heavy Ind Ltd Double pipe production
JP2000082576A (en) * 1998-09-08 2000-03-21 Matsushita Graphic Communication Systems Inc Manufacture of pipe for induction heating
JP2007155259A (en) * 2005-12-07 2007-06-21 Daikin Ind Ltd Refrigerant heating apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10598415B2 (en) * 2013-09-27 2020-03-24 Phc Holdings Corporation Refrigeration apparatus with dry ice occurrence suppression structure

Also Published As

Publication number Publication date
JP2011247429A (en) 2011-12-08

Similar Documents

Publication Publication Date Title
US9648983B2 (en) Helical dynamic flow through heater
JP5408137B2 (en) Air conditioner outdoor unit
EP2184565A1 (en) Heating device for refrigerant
CN102348944B (en) Air conditioner
US20130269914A1 (en) Heat Exchanger for Refrigeration Cycle and Manufacturing Method for Same
US9459025B2 (en) Air conditioning system having an aluminum heat exchanger and an aluminum/copper coupling
JP2016081913A (en) High frequency induction heating coil, and pipe brazing device and method
JP5110167B2 (en) Mounting structure for refrigerant heating device assembly
JP5168357B2 (en) Electromagnetic induction heating unit and air conditioner
WO2010032415A1 (en) Refrigerant heating apparatus manufacturing method
CN103154642A (en) Heat exchange device, evaporator, and refrigeration storage unit
KR20100038548A (en) Suction pipe assembly and method for manufacturing suction pipe assembly
JP2010071529A (en) Refrigerant heater
JP2000220912A (en) Refrigerant heater
WO2010032414A1 (en) Coolant heating device
KR20130084841A (en) A heat exchanger and manufacturing method the same
JP2010210103A (en) Heat exchanger for heat pump and heat pump device using the same
JP2004218945A (en) Heat exchanger and method of manufacturing the same
JP7315864B2 (en) Pressure reducing valve, heat exchanger, air conditioner, and method for manufacturing heat exchanger
JP2010071516A (en) Outdoor unit for air conditioner
JP2010096484A (en) Outdoor unit of air conditioner
CN211625498U (en) Novel refrigerant radiator and air conditioner
JP2014229486A (en) Induction heating apparatus
JP2010145023A (en) Refrigerant heating device
JP2010071537A (en) Electromagnetic induction heating unit and air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09814260

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09814260

Country of ref document: EP

Kind code of ref document: A1