WO2010025997A1 - Systèmes et procédé pour fournir des services de communication mobile à large bande en vol - Google Patents

Systèmes et procédé pour fournir des services de communication mobile à large bande en vol Download PDF

Info

Publication number
WO2010025997A1
WO2010025997A1 PCT/EP2009/059465 EP2009059465W WO2010025997A1 WO 2010025997 A1 WO2010025997 A1 WO 2010025997A1 EP 2009059465 W EP2009059465 W EP 2009059465W WO 2010025997 A1 WO2010025997 A1 WO 2010025997A1
Authority
WO
WIPO (PCT)
Prior art keywords
airplane
ground
communication system
antenna
base station
Prior art date
Application number
PCT/EP2009/059465
Other languages
English (en)
Inventor
Michael Ohm
Thorsten Wild
Michael Schmidt
Original Assignee
Alcatel Lucent
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel Lucent filed Critical Alcatel Lucent
Priority to US13/002,185 priority Critical patent/US8848605B2/en
Priority to JP2011525484A priority patent/JP2012502527A/ja
Priority to BRPI0913905A priority patent/BRPI0913905A2/pt
Priority to CN200980125521.7A priority patent/CN102077490B/zh
Publication of WO2010025997A1 publication Critical patent/WO2010025997A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18506Communications with or from aircraft, i.e. aeronautical mobile service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • the invention relates to a ground-based wireless cellular communication system, to an airplane equipment being adapted to provide in-flight broadband mobile communication services, as well as to a corresponding method.
  • the invention also relates to a communication system comprising such a ground- based wireless cellular communication system and at least one such airplane equipment.
  • spectrum efficiency in the ground-to-air and air-to-ground communication should be high to offer real broadband services and to keep the number of ground-based base stations and/or required transmission resources (e.g. licensed spectrum) low while serving a large number of airplanes at the same time.
  • airplane passengers should be enabled to use their own regular communication devices (phones, laptop cards, etc.) for performing the broadband communication.
  • a satellite-based system may be used, relying on communication with satellites in geostationary orbits.
  • a system is expensive and typically has very high latency, thus having a negative impact on service quality.
  • existing L- band solutions do not offer the capacity required for upcoming air traffic demands.
  • a better solution would be a ground-based cellular system that uses base station antennas with broad main lobes in the antenna characteristics to cover large portions of the sky.
  • the multiple-access scheme for serving a number of airplanes would be a time-division multiple-access (TDMA) scheme, or a frequency-division multiple-access (FDMA) scheme, or a combination of both.
  • TDMA time-division multiple-access
  • FDMA frequency-division multiple-access
  • these multiple-access schemes do not account for the spatial separation of the served airplanes within one cell. Thus, these schemes do not reach the theoretically possible spectrum efficiency.
  • ground-based wireless cellular communication system for providing in-flight broadband mobile communication services, comprising: at least one ground-based base station adapted for generating at least one cell defining a solid angle of the space surrounding the base station, the ground-based base station further comprising at least one antenna array using two-dimensional-beamforming for generating at least one beam for serving at least one airplane in the space covered by the at least one cell using spatial-division multiple access, SDMA.
  • the inventive ground-based communication system makes use of the spatial separation of the served airplanes by using two-dimensional beamforming at the ground-based base stations.
  • the term "two-dimensional beamforming” refers to beamforming in two out of the three spherical coordinates, i.e. in the azimuth and elevation direction, whereas conventional (one-dimensional) beamforming is restricted to only one spherical coordinate (azimuth).
  • two-dimensional beamforming enables spatial-division multiple-access (SDMA), i.e. spatial reuse of the available transmission resources within one cell, improving the average as well as the peak data throughput per cell.
  • SDMA spatial-division multiple-access
  • the two-dimensional beamforming leads to a beamforming gain for the receiver signal-to-noise-and- interference ratio (SINR) in both the ground-to-air and air-to-ground direction, and the data throughputs of the individual links are also improved.
  • SINR receiver signal-to-noise-and- interference ratio
  • the basis of the ground-based mobile communication system is given by a set of base stations of the type described above spread over the service area. Each base station may serve several sectors (cells) of the space above and around it defined by some solid angle. Such an arrangement is very similar to common cellular mobile communication systems (e.g. GSM, UMTS, LTE), where however the mobile users are more or less distributed on a surface compared to the mobile users (airplanes) of the present communication system which are distributed in three-dimensional space.
  • GSM Global System for Mobile Communications
  • the ground-based base station is adapted to form beams, in particular adaptive beams, for tracking the current position of the airplanes.
  • beams in particular adaptive beams
  • airplane-specific adaptive beams are the preferred beamforming technique.
  • a two-dimensional grid-of-beams technique where one momentarily preferred beam out of a predefined set of available beams is repeatedly selected is also possible for tracking the airplane's current position. In any case, it can be assured that each beam is directed only to the airplane which has to be served.
  • the system comprises a gateway for connection to a core (computer) network, such as the internet.
  • the base stations are connected to each other or to controllers for backhauling of data and signaling.
  • the base stations or the controllers should further be connected to the core network by some gateway for providing broadband access. Again, this is very similar to common cellular mobile communication systems.
  • the ground-based wireless cellular communication system may be a network using a dedicated infrastructure, or may be an overlay network of an existing ground-based cellular network, in the latter case not all of the ground-based base stations of the system being necessarily adapted to perform two-dimensional beamforming.
  • a conventional cellular network technology such as WiMAX or LTE may be provided with a number of base stations / antenna arrays having two-dimensional beamforming capability, the base stations being arranged e.g. only at specific locations of the network, each of these "enabled" base stations covering a large radius (cell size) of e.g. 150 km, the other base stations having a cell size of e.g. 1 to 5 km.
  • a further aspect is implemented in an airplane equipment for providing in-flight broadband mobile communication services, comprising: at least one antenna for exchange of user data with a ground-based wireless cellular communication system, in particular of the type described above, a transceiver unit connected to the at least one antenna for handling the air-to-ground and ground-to-air communication with the ground-based wireless cellular communication system, an inside-airplane communication system, in particular of a wireless type, for distributing the user data to and from terminals within the airplane, and an inter-communication unit for communication between the transceiver unit and the inside-airplane communication system.
  • Such an airplane equipment may be used for performing the task of distributing the user data of the ground-to-air and air-to-ground communication to the terminals (used e.g. by passengers) within the airplane.
  • an inside-airplane wireless communication system is of advantage, but not required.
  • a wire-line communication system may be sufficient.
  • the type of in- cabin distribution system does not have an influence on the communication with the ground-based communication system.
  • the antenna for handling the communication with the ground- based wireless cellular communication system is typically adapted to both transm it and receive data over the air-to-ground and ground-to-air link, respectively.
  • the wireless communication system with which the airplane equipment, respectively the antenna, is adapted to communicate need not necessarily be adapted for performing two-dimensional beamforming; in fact, the ground-based wireless communication system may not be adapted for performing beamforming at all .
  • the ground-based communication system with which the airplane equipment communicates may be based on a conventional cellular network technology such as WiMAX or LTE, preferably being adapted for performing one-dimensional beamforming.
  • the at least one antenna is arranged outside of a (typically conductive) h u l l of t h e a i rp l a n e , a n d th e i n s i d e-airplane wireless communication system is arranged inside the hull of the airplane.
  • a communication system inside the aircraft may comprise at least one further antenna being arranged inside of the hull of the aircraft.
  • the antenna for the exchange of user data with the ground-based wireless cellular system is a mechanically steered directive anten na or a two-dimensional beamforming antenna array adapted for automatic tracking of the ground-based base stations.
  • the antenna may be implemented as a mechanically steered directive antenna with high antenna gain, providing automatic tracking of the serving ground-based base stations, or as a two-dimensional beamforming antenna array providing beamforming gain and automatic tracking of the ground base stations. The latter approach may be preferred if more than one ground-based base station shall be monitored for e.g. handover measurements.
  • a first mechanically steered directive antenna with high antenna gain and with automatic tracking of the serving grou nd base station may be complemented by a second mechanically steered directive antenna with high antenna gain and with automatic tracking of the ground base station selected for a handover.
  • the antenna may alternatively be implemented as a simple non-directive antenna with only low antenna gain, as the two-dimensional beamforming at the ground-based base station antenna array provides enough gain. The latter approach may be preferred if more than one ground-based base station shall be monitored for e.g. handover measurements.
  • the inside-airplane communication system is a cellular system which comprises at least one airborne base station for generating a (pico) cell inside the airplane.
  • the data exchanged between the ground-based base stations and the mobile airplane transceiver unit may consist of multiplexed data for the terminals inside the airplane and of signaling both related to the terminals and to the airplane transceiver units.
  • the key point is that the data carried on the ground-to-air and air-to-ground links is a multiplex of the data for the individual users (passengers, crew, etc.) inside the airplane, i.e., inside the airplane, the user data has to be de-multiplexed and distributed to the terminals using the inside-airplane communication system.
  • the inside-airplane cellular wireless communication system is compatible with at least one communication standard of the (mobile) passenger, crew and/or airline operational terminals, in particular selected from the group consisting of: GSM, UMTS, and LTE.
  • GSM Global System for Mobile communications
  • UMTS Universal Mobile Telecommunications
  • LTE Long Term Evolution
  • the inside-airplane wireless communication system is a non-cellular wireless communication system, in particular a WLAN system.
  • the data is distributed to and from the terminals in a potentially unlicensed spectrum such as the WLAN spectrum.
  • the inside-airplane wireless communication system comprises a plurality of airplane operator-owned terminals being installed inside the airplane.
  • broadband services can be offered to the pas- sengers or the crew by means of the airplane operator-owned terminals installed inside the airplane.
  • Such terminals may for example be integrated into the airplane seats as part of the airplane entertainment system.
  • the inside-airplane wireless communication system comprises a relay station
  • the (mobile) passenger terminals are directly connected to the ground-based base station-based macro cell via a relay station, with one hop going from the ground-based base station to a relay antenna outside of the conductive hull of the airplane, a wired connection into the (conductive) hull and another hop from an antenna inside the conductive hull to the terminals and vice versa.
  • This relay may also use signal-processing techniques in order to improve the signal quality, as standard terminals may not be able to cope with high Doppler frequencies, stemming from velocities of e.g. 900 km/h.
  • the airplane equipment is adapted for performing Doppler compensation and/or frequency translation of the signals received and transmitted by the at least one antenna, preferably using airplane movement data, in particular provided by a GPS receiver or a navigation system of the airplane.
  • the airplane equipment receives the data and has two options: a) Receiving, Doppler estimation, Doppler compensation, potentially frequency translation, amplifying and forwarding to the relay-to-terminal hop, or b) receiving, complete decoding, including the above-mentioned Doppler estimation and Doppler compensation plus re-encoding, potentially frequency translation, amplifying, and forwarding to the relay-to-terminal hop.
  • the relay again has two options: a) Receiving, Doppler Pre-compensation (e.g.
  • a frequency translation may be required if the ground-to-air / air-to-ground link and the in-cabin link use two different center frequencies (which may be the case in some actual implementations). However, frequency translation is not required if the air-to-ground / ground-to-air link and the in-cabin link use the same center frequencies.
  • the inside-airplane wireless communication system may be adapted to use airplane movement data, preferably provided by a GPS receiver or by a navigation system of the airplane.
  • the airplane equipment is adapted to retrieve airplane movement data such as course, speed, etc. from devices storing this information inside the airplane.
  • the airplane movement data may also be of interest for the ground-based wireless communication system and thus may be transmitted from the airborne wireless communication system to the ground-based wireless communication system using the air-to-ground link.
  • the airplane movement data thus provided may be very interesting at least for the following tasks: signal processing, e.g. Doppler compensation either at the transmitter or receiver (both in the ground-to-air and in the air-to-ground link, Doppler compensation is either pre-compensation or post compensation); two- dimensional beamforming and tracking of the ground-based base stations (air- to-ground link) or the airplanes (ground-to-air link), and, last but not least, for implementing handover mechanisms.
  • signal processing e.g. Doppler compensation either at the transmitter or receiver (both in the ground-to-air and in the air-to-ground link, Doppler compensation is either pre-compensation or post compensation
  • two- dimensional beamforming and tracking of the ground-based base stations air- to-ground link
  • the airplanes ground-to-air link
  • a further aspect of the invention relates to a communication system comprising a combination of a ground-based wireless cellular communication system as described above and at least one airplane equipment as described above.
  • a communication system allows to provide in-flight broadband mobile communication services to airplanes in a cost-effective way.
  • the ground-based base stations and the transceiver units are adapted to exchange multiplexed user data.
  • the inside- airplane wireless communication system is adapted for distributing the user data to the individual terminals by using appropriate signaling and de- multiplexing of the user data.
  • a further aspect of the invention is implemented in a method for providing inflight broadband mobile communication services, comprising: using two-dimen- sional-beamforming in an antenna element array of a ground-based base station to generate at least one beam for serving at least one airplane in the space covered by at least one cell of the base station using spatial-division multiple access, SDMA.
  • the two-dimensional beamforming of the inventive method leads to a beamforming gain for the receiver signal-to-noise-and- interference ratio (SINR) in both the ground-to-air and air-to-ground direction, and the data throughputs of the individual links are also improved.
  • SINR receiver signal-to-noise-and- interference ratio
  • inventive method of providing the two-dimensional beamforming may be implemented in a computer program product, the latter being a suitable software or hardware, in particular a field programmable gate array (FPGA) or an application-specific integrated circuit (ASIC) or a digital signal processor (DSP).
  • FPGA field programmable gate array
  • ASIC application-specific integrated circuit
  • DSP digital signal processor
  • Fig. 1 shows a schematic diagram of an embodiment of a ground-based communication system using two-dimensional beamforming
  • Fig. 2 shows an embodiment of an airplane equipment for broadband communication between a ground-based base station and an inside-airplane distribution system.
  • Fig. 1 shows a ground-based base station 2 of a ground-based wireless cellular communication system 1 a.
  • the ground-based base station 2 may be con nected to further base stations (not shown ) of the g round-based communication system 1 a which spread over the service area of the ground- based communication system 1 a.
  • the base stations are interconnected or connected to controllers for backhauling of data and signaling.
  • the ground-based base station 2 is connected to a core (computer) network 3 by a gateway 4.
  • the ground-based communication system 1 a is very similar to common cellular mobile communication systems.
  • a voice network for voice traffic may be provided instead of a computer network for data traffic.
  • voice communications may be treated as data, for example when using Voice over IP.
  • the ground-based wireless communication system 1 a differs from conventional cellular mobile communication systems in that the base station 2 comprises two antenna element arrays 5a, 5b which are capable of two- dimensional beamfornning.
  • the antenna element arrays 5a, 5b are arranged both vertically and horizontally, whereas conventional antenna element arrays are typically vertically stacked, such that complex antenna weights can only be applied to a complete vertical antenna element stack, allowing beamforming only in the azimuth direction.
  • the antenna element arrays 5a, 5b allow for two-dimensional beamforming both in the azimuth and elevation direction of a spherical coordinate system.
  • Each antenna array 5a, 5b serves a cell C1 , C2 (i.e. a sector) of the base station 2, the cells C1 , C2 defining non-overlapping solid angles of the space surrounding the base station 2.
  • the cell size i.e. the radius of the cells C1 , C2 may be of the order of 50 km or more.
  • the base station 2 is adapted to perform signal processing algorithms using antenna weights in order to form beams 6a-c, 7a-c which are directed into the azimuth and elevation directions of served airplanes 8a-e, the base station 2 being further adapted to perform SDMA scheduling algorithms in order to take advantage of the spatial separation of the airplanes 8a-e.
  • the airplanes 8a-c are all served in cell C1 on the same time/frequency resources, but on different non-interfering airplane specific beams 6a-c (space resources).
  • the airplanes 8c-d are served on the same time/frequency resources but again on different non- interfering airplane-specific beams 7a-7c.
  • the third airplane 8c is served by both cells C1 and C2, as it is in a handover state between both cells C1 , C2.
  • the scheduling algorithm of the base station 2 may also use conventional Time Division Multiple Access or Frequency Division Multiple Access for an optimal resource usage.
  • the beams 6a-c, 7a-c are formed in such a way that they track the current positions of the airplanes 8a-c.
  • the tracking may be performed by generating airplane-specific adaptive beams 6a-c, 7a-c using (complex) antenna weights which are dynamically adapted to the position of the airplanes 8a-e.
  • a two-dimensional grid-of-beams technique where one momentarily preferred beam out of a pre-defined set of available (fixed) beams is selected in dependence of the position of the served airplane 8a-e may also be applied.
  • the airplane 8a comprises an airplane equipment 1 b having a transmit and receive antenna 9 which is implemented as a mechanically steered directive antenna adapted for generating a directed beam 10 which automatically tracks the ground-based base station C1.
  • a transmit and receive antenna 9 which is implemented as a mechanically steered directive antenna adapted for generating a directed beam 10 which automatically tracks the ground-based base station C1.
  • two mechanically steered antennas or another two-dimensional beamforming antenna array may be used, which is particularly useful when a handover between two base stations has to be performed.
  • a simple non-directive transmit and receive antenna 9 with only low antenna gain may be used, in case that the two-dimensional transmit and receive beamforming of the antenna array 5a of the ground-based base station 2 provides sufficient gain.
  • the airplane equipment 1 b further comprises a transceiver unit 11 connected to the transmit and receive antenna 9 for handling the air-to-ground and ground-to-air communication with the base station 2 of the ground-based wireless cellular communication system 1 a of Fig. 1 .
  • the airplane equipment 1 b comprises an inside-airplane communication system 12 for distributing the user data to and from passenger terminals 13a-c within the airplane 8a, as well as an inter-communication unit 14 for communication between the transceiver unit 1 1 and an airborne base station 15 of the inside- airplane wireless communication system 12.
  • the airborne base station 15 is connected to a inside-airplane antenna 16 for transmission of user and signaling data to and from the mobile passenger terminals 13a-c.
  • wire-line distribution may also be used, e.g. for terminals used by the crew or by operational services.
  • the receive and transmit antenna 9 and the transceiver unit 1 1 are arranged outside of a hull 17 of the airplane 8a, whereas the base station 15 an the further antenna 16 of the inside-airplane distribution system 12 are arranged inside the (possibly not fully conductive) hull 17 of the airplane 8a.
  • both wireless systems may be separated by using two different frequency ranges for the inside-airplane communication system 12 and the Air-to-
  • the airplane equipment 1 b in particular the inter-communication unit 14, may be adapted for performing a frequency translation between the center frequencies of the different systems.
  • the transceiver unit 1 1 , the airborne base station 15 and the inter-communication unit 14 are co-located within one common box, forming the airplane equipment 1 b together with the antennas 9, 16.
  • the person skilled in the art will appreciate that the actual configuration of the airplane equipment 1 b depends on installation restrictions given by the airplane construction.
  • the data exchanged between the ground-based base station 2 and the mobile airplane transceiver unit 11 consists of multiplexed data for the passenger terminals 13a-c inside the airplane 8a and of signaling both related to the passenger terminals 13a-c and to the airplane transceiver unit 11.
  • the key point here is that the data carried on the ground-to-air and air-to-ground links is a multiplex of the data for the individual users (passengers) inside the airplane 8a, i.e. inside the airplane 8a, the data has to be distributed to the passenger terminals 13a-c.
  • the wireless distribution system 12 inside the airplane 8a should be compatible to at least one commonly used wireless system standard such as GSM, UMTS or LTE.
  • GSM Global System for Mobile communications
  • UMTS Universal Mobile Subscriber Identity
  • LTE Long Term Evolution
  • the service provisioning inside the airplane 8a is thus achieved by the use of the airborne base station 15 creating a pico cell C3 inside the aircraft 8a.
  • the inside- airplane wireless communication system 12 may be devised as a non-cellular wireless communication system transmitting and receiving in a potentially unlicensed spectrum, in particular a WLAN system.
  • broadband services may be offered to the passengers by means of airplane-operator owned terminals installed inside the airplane 8a. Such terminals may for example be integrated into the airplane seats as part of the airplane entertainment system.
  • the mobile terminals instead of using a pico-cell airborne base station 15 in the airplane 8a and performing multiplexing / demultiplexing of user data, the mobile terminals
  • 13a-c may be directly connected to the ground-based base station-based macro cell C1 via a relay station 15, being used instead of the base station of the airplane equipment 1 b shown in Fig. 2.
  • a relay station 15 is used instead of the base station of the airplane equipment 1 b shown in Fig. 2.
  • one hop is going from the ground-based base station 2 to the relay antenna 9 outside of the conductive hull 17, a wired connection being provided for transmitting the data into the conductive hull 17, another hop being provided by the antenna 16 inside the conductive hull 17 to the terminals 13a-c and vice versa.
  • the relay station 15 also uses signal-processing techniques in order to improve the signal quality, as standard terminals might not be able to cope with high Doppler frequencies, stemming from velocities of e.g. 900 km/h.
  • the inside-airplane wireless communication system 12 may be adapted to use airplane movement data, preferably provided by a GPS receiver 18 or by a navigation system of the airplane 8a.
  • the airplane equipment 1 b may be adapted to use the airplane movement data such as course, speed, etc., e.g. in order to calculate the Doppler frequency.
  • the airplane movement data may also transmitted to the ground-based wireless communication system 1 a using the air-to-ground link.
  • the airplane movement data thus provided may also be used for the following tasks: signal processing, e.g. Doppler compensation either at the transmitter or receiver (both in the ground-to-air and in the air-to-ground link); two- dimensional beamforming and tracking of the ground base stations (air-to- ground link) or the airplanes (ground-to-air link), and also for implementing handover mechanisms.
  • signal processing e.g. Doppler compensation either at the transmitter or receiver (both in the ground-to-air and in the air-to-ground link); two- dimensional beamforming and tracking of the ground base stations (air-to- ground link) or the airplanes (ground-to-air link), and also for implementing handover mechanisms.
  • the in-flight broadband mobile communication services as described herein are not limited to high-speed internet access, voice and messaging, but may also encompass security applications, such as cabin video surveillance, real-time exchange of flight and airplane data, e.g. for forming a ground-based "black box", and logistic applications, e.g. monitoring of freight, monitoring of passenger luggage ("lost luggage tracking").
  • security applications such as cabin video surveillance, real-time exchange of flight and airplane data, e.g. for forming a ground-based "black box”, and logistic applications, e.g. monitoring of freight, monitoring of passenger luggage ("lost luggage tracking").
  • airplanes equipped with the broadband link to the ground-based network may also be used as a sensor network, e.g. providing metrological data to the ground-based wireless cellular communication system 1 a.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Meter Arrangements (AREA)

Abstract

L'invention porte sur un système de communication cellulaire sans fil au sol (1a) pour fournir des services de communication mobile à large bande en vol, comprenant : au moins une station de base au sol (2) conçue pour générer au moins une cellule (C1, C2) définissant un angle solide de l'espace entourant la station de base (2), la station de base au sol (2) comprenant en outre au moins un réseau d'antennes (5a, 5a) utilisant une formation de faisceau bidimensionnelle pour générer au moins un faisceau (6a-c, 7a-c) afin de desservir au moins un avion (8a-c, 8c-e) dans l'espace couvert par la ou les cellules (C1, C2) en utilisant un accès multiple par répartition spatiale (SDMA). L'invention porte également sur un équipement d'avion permettant de fournir des services de communication mobile à large bande en vol, comprenant : au moins une antenne pour un échange de données d'utilisateur avec le système de communication cellulaire sans fil au sol (1a), une unité d'émission-réception connectée à la ou aux antennes pour gérer la communication air-sol et sol-air avec le système de communication cellulaire sans fil au sol (1a), et un système de communication intérieur à l'avion pour distribuer les données d'utilisateur vers et depuis des terminaux à l'intérieur de l'avion.
PCT/EP2009/059465 2008-09-04 2009-07-23 Systèmes et procédé pour fournir des services de communication mobile à large bande en vol WO2010025997A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/002,185 US8848605B2 (en) 2008-09-04 2009-07-23 Systems and method for providing in-flight broadband mobile communication services
JP2011525484A JP2012502527A (ja) 2008-09-04 2009-07-23 機内ブロードバンド移動体通信サービスを提供するためのシステムおよび方法
BRPI0913905A BRPI0913905A2 (pt) 2008-09-04 2009-07-23 sistema e método para fornecer serviços de comunicação móvel de banda larga em voo
CN200980125521.7A CN102077490B (zh) 2008-09-04 2009-07-23 用于提供飞行中宽带移动通信服务的系统和方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
EP08290831.0 2008-09-04
EP08290831 2008-09-04
EP08291050.6 2008-11-10
EP08291050 2008-11-10
EP09290443.2 2009-06-12
EP09290443A EP2161855B1 (fr) 2008-09-04 2009-06-12 Systèmes et procédé pour fournir en vol des services de communication mobiles à large bande

Publications (1)

Publication Number Publication Date
WO2010025997A1 true WO2010025997A1 (fr) 2010-03-11

Family

ID=40902149

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/EP2009/059463 WO2010025996A1 (fr) 2008-09-04 2009-07-23 Architecture de système pour fournir des communications dans un réseau de communication sans fil
PCT/EP2009/059465 WO2010025997A1 (fr) 2008-09-04 2009-07-23 Systèmes et procédé pour fournir des services de communication mobile à large bande en vol

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/059463 WO2010025996A1 (fr) 2008-09-04 2009-07-23 Architecture de système pour fournir des communications dans un réseau de communication sans fil

Country Status (9)

Country Link
US (2) US9350442B2 (fr)
EP (2) EP2161855B1 (fr)
JP (2) JP2012502527A (fr)
KR (2) KR101263223B1 (fr)
CN (2) CN102077490B (fr)
AT (2) ATE494674T1 (fr)
BR (1) BRPI0913905A2 (fr)
DE (2) DE602009000566D1 (fr)
WO (2) WO2010025996A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014509497A (ja) * 2011-02-09 2014-04-17 クゥアルコム・インコーポレイテッド 空対地通信システムのリアルタイム較正
JP2014512141A (ja) * 2011-04-07 2014-05-19 ブルー ダニューブ ラブズ インク 無線システムにおける高平均スペクトル効率の達成方法
US20160099769A1 (en) * 2014-10-06 2016-04-07 Harris Corporation Terrestrial based air-to-ground communications system and related methods
US9319172B2 (en) 2011-10-14 2016-04-19 Qualcomm Incorporated Interference mitigation techniques for air to ground systems
US10297908B2 (en) 2013-02-11 2019-05-21 Gogo Llc Multiple antenna system and method for mobile platforms
US10897304B2 (en) 2015-09-03 2021-01-19 Rhombus Systems Group, Inc. System for employing cellular telephone networks to operate, control and communicate with unmannded aerial vehicles and remote piloted vehicles
US11137753B2 (en) 2016-04-18 2021-10-05 Rhombus Systems Group, Inc. System for communications with unmanned aerial vehicles using two frequency bands
US11190952B2 (en) 2017-08-31 2021-11-30 Mitsubishi Electric Corporation Setting beam direction for a mobile terminal and a flying object

Families Citing this family (166)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080035721A (ko) * 2006-10-20 2008-04-24 알레니아 아르마치 에스.피.에이. 지상 스텝과의 핫 마이크로폰 온-보드 통신을 위한 전자장치
US8873585B2 (en) 2006-12-19 2014-10-28 Corning Optical Communications Wireless Ltd Distributed antenna system for MIMO technologies
WO2008103374A2 (fr) 2007-02-19 2008-08-28 Mobile Access Networks Ltd. Procédé et système pour améliorer l'efficacité d'une liaison montante
US20100054746A1 (en) 2007-07-24 2010-03-04 Eric Raymond Logan Multi-port accumulator for radio-over-fiber (RoF) wireless picocellular systems
US8175459B2 (en) 2007-10-12 2012-05-08 Corning Cable Systems Llc Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same
WO2009053910A2 (fr) 2007-10-22 2009-04-30 Mobileaccess Networks Ltd. Système de communication utilisant des fils à faible bande passante
US8175649B2 (en) 2008-06-20 2012-05-08 Corning Mobileaccess Ltd Method and system for real time control of an active antenna over a distributed antenna system
US8644844B2 (en) 2007-12-20 2014-02-04 Corning Mobileaccess Ltd. Extending outdoor location based services and applications into enclosed areas
EP2394378A1 (fr) 2009-02-03 2011-12-14 Corning Cable Systems LLC Systèmes d'antennes réparties basés sur les fibres optiques, composants et procédés associés destinés à leur surveillance et à leur configuration
EP2394379B1 (fr) 2009-02-03 2016-12-28 Corning Optical Communications LLC Systèmes et composants d'antennes distribuées à base de fibres optiques, et procédés de calibrage associés
US9673904B2 (en) 2009-02-03 2017-06-06 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
WO2010089719A1 (fr) 2009-02-08 2010-08-12 Mobileaccess Networks Ltd. Système de communication utilisant des câbles transportant des signaux ethernet
US9276663B2 (en) 2009-04-17 2016-03-01 Viasat, Inc. Layer-2 connectivity from switch to access node/gateway
US8457035B2 (en) 2009-04-17 2013-06-04 Viasat, Inc. Mobility across satellite beams using L2 connectivity
WO2010121214A1 (fr) 2009-04-17 2010-10-21 Viasat, Inc. Connectivité de couche 2 depuis un commutateur vers un noeud/passerelle d'accès
US8155665B2 (en) 2009-05-13 2012-04-10 Sony Ericsson Mobile Communications Ab Adaptive receiver based on mobility information of user device
US9590733B2 (en) 2009-07-24 2017-03-07 Corning Optical Communications LLC Location tracking using fiber optic array cables and related systems and methods
US8548330B2 (en) 2009-07-31 2013-10-01 Corning Cable Systems Llc Sectorization in distributed antenna systems, and related components and methods
US8923189B2 (en) * 2009-08-06 2014-12-30 Truepath Technologies, Llc System and methods for scalable processing of received radio frequency beamform signal
US8280259B2 (en) 2009-11-13 2012-10-02 Corning Cable Systems Llc Radio-over-fiber (RoF) system for protocol-independent wired and/or wireless communication
KR101269551B1 (ko) * 2009-12-16 2013-06-04 한국전자통신연구원 이동위성업무용 위성 시스템 및 그 통신링크 설정 방법
US8275265B2 (en) 2010-02-15 2012-09-25 Corning Cable Systems Llc Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
WO2011123336A1 (fr) 2010-03-31 2011-10-06 Corning Cable Systems Llc Services de localisation dans des composants et systèmes de communications distribués à base de fibres optiques et procédés connexes
US20110268446A1 (en) 2010-05-02 2011-11-03 Cune William P Providing digital data services in optical fiber-based distributed radio frequency (rf) communications systems, and related components and methods
US9525488B2 (en) 2010-05-02 2016-12-20 Corning Optical Communications LLC Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods
CN101945453A (zh) * 2010-08-09 2011-01-12 中国电子科技集团公司第五十四研究所 一种基于轨道信息预测的移动IPv6接入方法
US8570914B2 (en) 2010-08-09 2013-10-29 Corning Cable Systems Llc Apparatuses, systems, and methods for determining location of a mobile device(s) in a distributed antenna system(s)
CN103119865A (zh) 2010-08-16 2013-05-22 康宁光缆系统有限责任公司 支持远程天线单元之间的数字数据信号传播的远程天线集群和相关系统、组件和方法
US9252874B2 (en) 2010-10-13 2016-02-02 Ccs Technology, Inc Power management for remote antenna units in distributed antenna systems
US9160449B2 (en) 2010-10-13 2015-10-13 Ccs Technology, Inc. Local power management for remote antenna units in distributed antenna systems
CN103314556B (zh) 2010-11-24 2017-09-08 康宁光缆系统有限责任公司 用于分布式天线系统的能够带电连接和/或断开连接的配电模块及相关电力单元、组件与方法
US11296504B2 (en) 2010-11-24 2022-04-05 Corning Optical Communications LLC Power distribution module(s) capable of hot connection and/or disconnection for wireless communication systems, and related power units, components, and methods
KR101595525B1 (ko) 2010-12-21 2016-02-26 한국전자통신연구원 위성 통신 시스템에서의 주파수 선택성 구현을 위한 송신 장치 및 방법
EP2678972B1 (fr) 2011-02-21 2018-09-05 Corning Optical Communications LLC Fourniture de services de données numériques comme signaux électriques et télécommunications radiofréquence (rf) sur une fibre optique dans des systèmes de télécommunications répartis, et composants et procédés associés
EP2702710A4 (fr) 2011-04-29 2014-10-29 Corning Cable Sys Llc Détermination de temps de propagation de communications dans systèmes d'antennes distribuées, et composants, systèmes et procédés associés
EP2702780A4 (fr) 2011-04-29 2014-11-12 Corning Cable Sys Llc Systèmes, procédés et dispositifs pour augmenter la puissance radiofréquence (rf) dans systèmes d'antennes distribuées
CN102868714A (zh) * 2011-07-08 2013-01-09 中国商用飞机有限责任公司 一种用于大型飞机的无线宽带通信系统
CN102938670B (zh) * 2011-08-15 2015-02-11 航通互联网信息服务有限责任公司 用于飞机的地空宽带无线通信系统及方法
US9882630B2 (en) * 2011-08-16 2018-01-30 Qualcomm Incorporated Overlaying an air to ground communication system on spectrum assigned to satellite systems
CN102970067B (zh) * 2011-09-01 2016-01-20 上海贝尔股份有限公司 一种用于实现连续的宽带通信的方法
CN103002497A (zh) * 2011-09-08 2013-03-27 华为技术有限公司 基于aas的信息交互方法、系统、ue及基站
CN102412886A (zh) * 2011-09-20 2012-04-11 清华大学 通用航空通信系统及方法
KR101472796B1 (ko) 2011-09-29 2014-12-15 한국외국어대학교 연구산학협력단 무선 통신을 위한 빔포밍
CN103975539A (zh) * 2011-12-06 2014-08-06 爱立信(中国)通信有限公司 多普勒频移补偿装置和方法
CN103188600B (zh) * 2011-12-29 2015-12-02 航通互联网信息服务有限责任公司 一种适应于dme系统工作频率的地空通信方法及系统
EP2632060A1 (fr) * 2012-02-24 2013-08-28 Airbus Operations GmbH Système cellulaire utilisable à bord d'un véhicule
WO2013142662A2 (fr) 2012-03-23 2013-09-26 Corning Mobile Access Ltd. Puce(s) de circuit intégré à radiofréquence (rfic) servant à fournir des fonctionnalités de système d'antenne à répartition, et composants, systèmes, et procédés connexes
WO2013148986A1 (fr) 2012-03-30 2013-10-03 Corning Cable Systems Llc Réduction d'un brouillage lié à la position dans des systèmes d'antennes distribuées fonctionnant selon une configuration à entrées multiples et à sorties multiples (mimo), et composants, systèmes et procédés associés
CN103379512A (zh) * 2012-04-20 2013-10-30 中兴通讯股份有限公司 Wlan网络用户策略分发装置及方法
US9781553B2 (en) 2012-04-24 2017-10-03 Corning Optical Communications LLC Location based services in a distributed communication system, and related components and methods
WO2013162988A1 (fr) 2012-04-25 2013-10-31 Corning Cable Systems Llc Architectures de système d'antenne distribué
WO2013181247A1 (fr) 2012-05-29 2013-12-05 Corning Cable Systems Llc Localisation au moyen d'ultrasons de dispositifs clients à complément de navigation par inertie dans des systèmes de communication distribués et dispositifs et procédés associés
CN104380782B (zh) * 2012-07-02 2018-06-29 罗克韦尔柯林斯公司 适用于提供空对地连接的地面通信网络
EP3840478B1 (fr) 2012-07-06 2023-11-01 Telefonaktiebolaget LM Ericsson (publ) Émetteur, récepteur et procédés associés
US9154222B2 (en) 2012-07-31 2015-10-06 Corning Optical Communications LLC Cooling system control in distributed antenna systems
EP2880929B1 (fr) * 2012-08-03 2018-07-25 Telefonaktiebolaget LM Ericsson (publ) Procédé et agencement dans un réseau de télécommunication
WO2014024192A1 (fr) 2012-08-07 2014-02-13 Corning Mobile Access Ltd. Distribution de services de gestion multiplexés par répartition dans le temps (tdm) dans un système d'antennes distribuées, et composants, systèmes et procédés associés
CN102832985B (zh) * 2012-08-27 2015-10-14 大唐移动通信设备有限公司 波束赋形传输方法和设备
US9455784B2 (en) 2012-10-31 2016-09-27 Corning Optical Communications Wireless Ltd Deployable wireless infrastructures and methods of deploying wireless infrastructures
US10257056B2 (en) 2012-11-28 2019-04-09 Corning Optical Communications LLC Power management for distributed communication systems, and related components, systems, and methods
CN105308876B (zh) 2012-11-29 2018-06-22 康宁光电通信有限责任公司 分布式天线系统中的远程单元天线结合
US9647758B2 (en) 2012-11-30 2017-05-09 Corning Optical Communications Wireless Ltd Cabling connectivity monitoring and verification
US9158864B2 (en) 2012-12-21 2015-10-13 Corning Optical Communications Wireless Ltd Systems, methods, and devices for documenting a location of installed equipment
WO2014107882A1 (fr) 2013-01-11 2014-07-17 Empire Technology Development Llc Antenne répartie pour la communication sans fil à grande vitesse
US9042323B1 (en) 2013-01-18 2015-05-26 Sprint Spectrum L.P. Method and system of activating a global beam in a coverage area
US9516563B2 (en) * 2013-01-21 2016-12-06 Intel Corporation Apparatus, system and method of handover of a beamformed link
US9497706B2 (en) 2013-02-20 2016-11-15 Corning Optical Communications Wireless Ltd Power management in distributed antenna systems (DASs), and related components, systems, and methods
CN107276656B (zh) 2013-02-22 2021-04-13 欧希亚有限公司 无通信系统和方法
US9998202B2 (en) 2013-03-15 2018-06-12 Smartsky Networks LLC Position information assisted beamforming
US9008669B2 (en) * 2013-03-15 2015-04-14 Smartsky Networks LLC Wedge shaped cells in a wireless communication system
US9014704B2 (en) 2013-03-15 2015-04-21 Smartsky Networks LLC Concentric cells in a wireless communication system
EP3008828B1 (fr) 2013-06-12 2017-08-09 Corning Optical Communications Wireless Ltd. Duplexage par répartition temporelle (tdd) dans des systèmes de communication répartis, comprenant des systèmes d'antenne répartis (das)
WO2014199384A1 (fr) 2013-06-12 2014-12-18 Corning Optical Communications Wireless, Ltd. Coupleur directif optique a commande en tension
US9247543B2 (en) 2013-07-23 2016-01-26 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9661781B2 (en) 2013-07-31 2017-05-23 Corning Optical Communications Wireless Ltd Remote units for distributed communication systems and related installation methods and apparatuses
WO2015029028A1 (fr) 2013-08-28 2015-03-05 Corning Optical Communications Wireless Ltd. Gestion de énergie pour des systèmes de communication distribués, et composants, systèmes et procédés associés
US9026151B2 (en) 2013-09-30 2015-05-05 Qualcomm Incorporated Base station positioning using Doppler observables, position, and velocity
US9385810B2 (en) 2013-09-30 2016-07-05 Corning Optical Communications Wireless Ltd Connection mapping in distributed communication systems
JP6243181B2 (ja) 2013-10-09 2017-12-06 株式会社Nttドコモ 無線通信システム、無線移動局、及び無線基地局
EP3064032A1 (fr) 2013-10-28 2016-09-07 Corning Optical Communications Wireless Ltd Systèmes d'antennes distribuées (das) unifiés à base de fibres optiques pour la prise en charge du déploiement de communications par petites cellules depuis de multiples fournisseurs de services par petites cellules, et dispositifs et procédés associés
US9326217B2 (en) * 2013-11-08 2016-04-26 Gogo Llc Optimizing usage of modems for data delivery to devices on vehicles
WO2015079435A1 (fr) 2013-11-26 2015-06-04 Corning Optical Communications Wireless Ltd. Activation sélective des services de communication lors de la mise sous tension d'une ou plusieurs unités distantes dans un système d'antennes distribuées (das) basé sur la consommation d'énergie
US9178635B2 (en) 2014-01-03 2015-11-03 Corning Optical Communications Wireless Ltd Separation of communication signal sub-bands in distributed antenna systems (DASs) to reduce interference
US9859972B2 (en) 2014-02-17 2018-01-02 Ubiqomm Llc Broadband access to mobile platforms using drone/UAV background
US9775123B2 (en) 2014-03-28 2017-09-26 Corning Optical Communications Wireless Ltd. Individualized gain control of uplink paths in remote units in a distributed antenna system (DAS) based on individual remote unit contribution to combined uplink power
US9385803B2 (en) * 2014-03-28 2016-07-05 UBiQOMM, INC. Provision of broadband access to airborne platforms
US9479964B2 (en) 2014-04-17 2016-10-25 Ubiqomm Llc Methods and apparatus for mitigating fading in a broadband access system using drone/UAV platforms
US9258432B2 (en) * 2014-05-30 2016-02-09 Gogo Llc Dynamic time based products
US9357551B2 (en) 2014-05-30 2016-05-31 Corning Optical Communications Wireless Ltd Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCS), including in distributed antenna systems
CN104065860A (zh) * 2014-06-17 2014-09-24 国家电网公司 一种机载超轻量级一体化高清视频成像及高带宽传输装置
US9509133B2 (en) 2014-06-27 2016-11-29 Corning Optical Communications Wireless Ltd Protection of distributed antenna systems
US9614608B2 (en) * 2014-07-14 2017-04-04 Ubiqomm Llc Antenna beam management and gateway design for broadband access using unmanned aerial vehicle (UAV) platforms
CN104125000A (zh) * 2014-07-24 2014-10-29 中国商用飞机有限责任公司北京民用飞机技术研究中心 航空多天线无线电装置和航空通信系统
US9525472B2 (en) 2014-07-30 2016-12-20 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9730228B2 (en) 2014-08-29 2017-08-08 Corning Optical Communications Wireless Ltd Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
US9653861B2 (en) 2014-09-17 2017-05-16 Corning Optical Communications Wireless Ltd Interconnection of hardware components
US9602210B2 (en) 2014-09-24 2017-03-21 Corning Optical Communications Wireless Ltd Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS)
US9184960B1 (en) 2014-09-25 2015-11-10 Corning Optical Communications Wireless Ltd Frequency shifting a communications signal(s) in a multi-frequency distributed antenna system (DAS) to avoid or reduce frequency interference
US10659163B2 (en) 2014-09-25 2020-05-19 Corning Optical Communications LLC Supporting analog remote antenna units (RAUs) in digital distributed antenna systems (DASs) using analog RAU digital adaptors
US9420542B2 (en) 2014-09-25 2016-08-16 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per band gain control of remote uplink paths in remote units
US9571180B2 (en) 2014-10-16 2017-02-14 Ubiqomm Llc Unmanned aerial vehicle (UAV) beam forming and pointing toward ground coverage area cells for broadband access
US9667338B2 (en) 2014-10-17 2017-05-30 The Boeing Company Multiband wireless data transmission between aircraft and ground systems
US9847796B2 (en) 2014-10-17 2017-12-19 The Boeing Company Multiband wireless data transmission between aircraft and ground systems based on availability of the ground systems
WO2016071902A1 (fr) 2014-11-03 2016-05-12 Corning Optical Communications Wireless Ltd. Antennes planes monopôles multibandes configurées pour faciliter une isolation radiofréquence (rf) améliorée dans un système d'antennes entrée multiple sortie multiple (mimo)
US9712228B2 (en) 2014-11-06 2017-07-18 Ubiqomm Llc Beam forming and pointing in a network of unmanned aerial vehicles (UAVs) for broadband access
WO2016075696A1 (fr) 2014-11-13 2016-05-19 Corning Optical Communications Wireless Ltd. Systèmes d'antennes distribuées (das) analogiques prenant en charge une distribution de signaux de communications numériques interfacés provenant d'une source de signaux numériques et de signaux de communications radiofréquences (rf) analogiques
US9729267B2 (en) 2014-12-11 2017-08-08 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
EP3235336A1 (fr) 2014-12-18 2017-10-25 Corning Optical Communications Wireless Ltd. Modules d'interface numérique (dim) pour une distribution flexible de signaux de communication numériques et/ou analogiques dans des réseaux d'antennes distribuées (das) analogiques étendus
WO2016098111A1 (fr) 2014-12-18 2016-06-23 Corning Optical Communications Wireless Ltd. Modules d'interface numérique-analogique (daim) pour une distribution flexible de signaux de communications numériques et/ou analogiques dans des systèmes étendus d'antennes distribuées analogiques (das)
US20160249365A1 (en) 2015-02-19 2016-08-25 Corning Optical Communications Wireless Ltd. Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (das)
JP6533983B2 (ja) * 2015-03-12 2019-06-26 株式会社国際電気通信基礎技術研究所 追尾アンテナシステムおよび追尾アンテナ装置
JP2016174318A (ja) * 2015-03-18 2016-09-29 株式会社国際電気通信基礎技術研究所 デジタル無線送信装置およびデジタル無線通信システム
US9785175B2 (en) 2015-03-27 2017-10-10 Corning Optical Communications Wireless, Ltd. Combining power from electrically isolated power paths for powering remote units in a distributed antenna system(s) (DASs)
KR102289946B1 (ko) * 2015-04-10 2021-08-13 한국전자통신연구원 편파 빔형성 통신 방법 및 장치
US9681313B2 (en) 2015-04-15 2017-06-13 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
CN107580757B (zh) 2015-05-13 2020-12-01 瑞典爱立信有限公司 在多个波束成形方向上执行传输的设备、方法和计算机可读存储介质
US9590720B2 (en) 2015-05-13 2017-03-07 Ubiqomm Llc Ground terminal and gateway beam pointing toward an unmanned aerial vehicle (UAV) for network access
US9660718B2 (en) 2015-05-13 2017-05-23 Ubiqomm, LLC Ground terminal and UAV beam pointing in an unmanned aerial vehicle (UAV) for network access
EP3098711B1 (fr) * 2015-05-29 2019-11-27 Amadeus S.A.S. Communication aéronef-sol
US9622277B1 (en) 2015-06-22 2017-04-11 X Development Llc Coordinating backhaul links between ground stations and airborne backhaul network
US10667143B2 (en) * 2015-07-13 2020-05-26 Qualcomm Incorporated Air-to-ground (ATG) uplink subband beamformer with combinable subbands
US9948349B2 (en) 2015-07-17 2018-04-17 Corning Optical Communications Wireless Ltd IOT automation and data collection system
US10560214B2 (en) 2015-09-28 2020-02-11 Corning Optical Communications LLC Downlink and uplink communication path switching in a time-division duplex (TDD) distributed antenna system (DAS)
US10103824B2 (en) * 2015-10-14 2018-10-16 Telefonaktiebolaget L M Ericsson (Publ) Antenna alignment using unmanned aerial vehicle
US9813969B2 (en) * 2015-11-03 2017-11-07 Telefonaktiebolaget Lm Ericsson (Publ) In-flight cellular communications system coverage of mobile communications equipment located in aircraft
US9954598B2 (en) * 2015-11-03 2018-04-24 Telefonaktiebolaget Lm Ericsson (Publ) High capacity cellular communications system coverage of airborne mobile communications equipment
CN105511489B (zh) * 2015-12-07 2018-05-22 中国电子科技集团公司第十研究所 快速接入北斗星座相控阵星间链路的多飞行器配置终端
US10111152B2 (en) * 2015-12-09 2018-10-23 Telefonaktiebolaget Lm Ericsson (Publ) Cell selection for airborne mobile cellular communications equipment
US10433114B2 (en) * 2015-12-23 2019-10-01 Koninklijke Kpn N.V. System, device and methods for transmitting and receiving location dependent data
US9648580B1 (en) 2016-03-23 2017-05-09 Corning Optical Communications Wireless Ltd Identifying remote units in a wireless distribution system (WDS) based on assigned unique temporal delay patterns
US10236924B2 (en) 2016-03-31 2019-03-19 Corning Optical Communications Wireless Ltd Reducing out-of-channel noise in a wireless distribution system (WDS)
US20170302368A1 (en) * 2016-04-13 2017-10-19 Google Inc. Predicting Signal Quality in a Rotating Beam Platform
US9853713B2 (en) 2016-05-06 2017-12-26 Ubiqomm Llc Unmanned aerial vehicle (UAV) beam pointing and data rate optimization for high throughput broadband access
US9942813B2 (en) * 2016-06-20 2018-04-10 The Boeing Company Coordinating inter-satellite handoff in a telecommunications system
US10159050B2 (en) 2016-07-05 2018-12-18 Gogo Llc Multi-carrier power pooling
US9954600B2 (en) 2016-07-05 2018-04-24 Gogo Llc Servicing cell selection in air to ground communication systems
US10313686B2 (en) 2016-09-20 2019-06-04 Gopro, Inc. Apparatus and methods for compressing video content using adaptive projection selection
EP3533157B1 (fr) 2016-10-28 2021-05-05 Telefonaktiebolaget LM Ericsson (publ) Liaisons de communications sans fil entre un équipement de communications aéroporté et un équipement de communications terrestre
KR102437149B1 (ko) 2016-11-30 2022-08-26 한국전자통신연구원 밀리미터파 기반의 무선망 기술을 무인 비행체에 적용하는 방법 및 장치, 이를 이용한 무인 비행체의 작동 방법, 그리고 이를 이용한 통신 방법
CN106658711A (zh) * 2016-12-29 2017-05-10 上海华为技术有限公司 一种目标终端定位方法以及设备
CN108271118B (zh) 2016-12-30 2020-09-25 华为技术有限公司 高空通信系统、方法及装置
EP3616372B1 (fr) * 2017-04-28 2022-08-31 Telefonaktiebolaget LM Ericsson (Publ) Annulation d'interférence par station de base émetteur-récepteur pour la réutilisation de porteuse terrestre dans communication air-sol
US10455431B2 (en) 2017-05-23 2019-10-22 Ge Aviation Systems Llc Line of sight aircraft data transfer system
CN107231185B (zh) * 2017-06-06 2020-06-02 北京邮电大学 一种基于ads-b信号的机地无线通信装置与方法
US10447374B2 (en) 2017-06-28 2019-10-15 Telefonaktiebolaget Lm Ericsson (Publ) Beam sweep or scan in a wireless communication system
US11297623B2 (en) * 2017-09-08 2022-04-05 Panasonic Intellectual Property Management Co., Ltd. System and method for air-to-ground communication involving an aircraft
US11212719B2 (en) 2017-09-21 2021-12-28 Smartsky Networks, Llc Architecture for integration of multiple networks in an air-to-ground context
JP7282081B2 (ja) 2017-09-21 2023-05-26 スマートスカイ ネットワークス エルエルシー ネットワーク計画及び制御の為の空対地ネットワークパラメータの受動収集
CN109561474A (zh) * 2017-09-26 2019-04-02 株式会社Ntt都科摩 小区选择或接入方法、用户终端、维护方法和基站
JP7122566B2 (ja) * 2017-10-04 2022-08-22 パナソニックIpマネジメント株式会社 空対地通信用の端末装置およびその通信制御方法ならびに空対地通信システム
CN108111215A (zh) * 2017-11-29 2018-06-01 广东省林业科学研究院 一种基于无人机的森林火灾应急通信方法和无人机
US10567071B1 (en) * 2018-09-07 2020-02-18 The Boeing Company Ground-based antenna for concurrent communications with multiple spacecraft
EP4075685B1 (fr) 2018-10-12 2024-04-03 OQ Technology S.à r.l. Procédé et système pour réseaux de communication sans fil cellulaires non terrestres
US20220028090A1 (en) * 2018-10-24 2022-01-27 Nokia Technologies Oy Adaptation of the radio connection between a mobile device and a base station
US10700768B1 (en) 2019-12-31 2020-06-30 Holloway H. Frost Reconfigurable wireless radio system for providing massive bandwidth to the sky using a limited number of frequencies and limited hardware
US11076372B1 (en) * 2020-02-24 2021-07-27 Gogo Business Aviation Llc Systems and methods for accessing an air-to-ground network
US11239903B2 (en) 2020-04-08 2022-02-01 Sprint Communications Company L.P. Uplink beamforming between an airborne transceiver and a terrestrial transceiver
US11799710B2 (en) * 2020-12-10 2023-10-24 Qualcomm Incorporated Techniques for signaling a source of dominant noise at a user equipment
CN113573318B (zh) * 2020-12-31 2023-12-01 中兴通讯股份有限公司 频谱使用方法、系统、天线和网络设备
US11616565B2 (en) 2021-06-30 2023-03-28 Gogo Business Aviation Llc Beam pointing fine tuning for vehicle-based antennas
CN114513249B (zh) * 2022-04-21 2022-07-05 成都富凯飞机工程服务有限公司 一种机载地空宽带通信系统
KR20240021570A (ko) 2022-08-10 2024-02-19 에스케이텔레콤 주식회사 상공망용 기지국과 그 빔포밍 방법
KR20240022851A (ko) 2022-08-12 2024-02-20 에스케이텔레콤 주식회사 상공망용 기지국과 그 통신 방법
KR20240053274A (ko) 2022-10-17 2024-04-24 에스케이텔레콤 주식회사 상공망용 기지국 및 이의 상공을 커버하는 셀 영역을 결정하는 방법
KR20240054509A (ko) 2022-10-19 2024-04-26 에스케이텔레콤 주식회사 상공망용 기지국과 그 빔포밍 방법
KR20240059087A (ko) 2022-10-27 2024-05-07 에스케이텔레콤 주식회사 비행체의 비행 경로를 결정하는 방법 및 이를 위한 컴퓨터 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999045609A1 (fr) * 1998-03-03 1999-09-10 General Electric Company Systeme permettant de diriger un reseau d'antennes adaptatives et methode afferente
US6377802B1 (en) * 1992-03-06 2002-04-23 Aircell, Inc. Doppler insensitive non-terrestrial digital cellular communications network
WO2007011978A1 (fr) * 2005-07-19 2007-01-25 The Boeing Company Procede et appareil de transfert intercellulaire sans coupure pour vehicules mobiles faisant appel a des antennes directives

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8707032D0 (en) * 1987-03-24 1987-04-29 Kodak Ltd Photographic material
GB8817811D0 (en) * 1988-07-26 1988-09-01 Kodak Ltd Hydrophilic colloid compositions for photographic materials
US5515378A (en) * 1991-12-12 1996-05-07 Arraycomm, Inc. Spatial division multiple access wireless communication systems
US7113780B2 (en) * 1992-03-06 2006-09-26 Aircell, Inc. System for integrating an airborne wireless cellular network with terrestrial wireless cellular networks and the public switched telephone network
US6788935B1 (en) * 1992-03-06 2004-09-07 Aircell, Inc. Aircraft-based network for wireless subscriber stations
US5300394A (en) * 1992-12-16 1994-04-05 Eastman Kodak Company Dispersions for imaging systems
US6512481B1 (en) * 1996-10-10 2003-01-28 Teratech Corporation Communication system using geographic position data
AU1157999A (en) * 1998-11-04 2000-05-22 Nokia Networks Oy Method and apparatus for directional radio communication
CN100423601C (zh) * 1999-07-30 2008-10-01 伊奥斯潘无线公司 蜂窝网络中的空间复用
US6757265B1 (en) * 1999-07-30 2004-06-29 Iospan Wireless, Inc. Subscriber unit in a hybrid link incorporating spatial multiplexing
US6067290A (en) * 1999-07-30 2000-05-23 Gigabit Wireless, Inc. Spatial multiplexing in a cellular network
US6721567B1 (en) * 2000-03-30 2004-04-13 Nokia Corporation Apparatus, and an associated method, for selecting a likely target cell in a cellular communication system
US7248841B2 (en) * 2000-06-13 2007-07-24 Agee Brian G Method and apparatus for optimization of wireless multipoint electromagnetic communication networks
US20020049878A1 (en) * 2000-10-23 2002-04-25 Giora Biran Data communications interfaces
JP2002255921A (ja) * 2001-02-26 2002-09-11 Fuji Photo Film Co Ltd フッ素化合物、界面活性剤、それを用いた水性塗布組成物およびハロゲン化銀写真感光材料
JP2005500722A (ja) * 2001-06-29 2005-01-06 モトローラ・インコーポレイテッド 空中セルラーシステム用のハンドオフ先候補リスト
US6890608B2 (en) * 2002-03-29 2005-05-10 Fuji Photo Film Co., Ltd. Optical compensatory sheet, liquid-crystal display and elliptical polarizing plate employing same
US6999724B2 (en) * 2002-06-20 2006-02-14 Lucent Technologies Inc. Slowing the observed rate of channel fluctuations in a multiple antenna system
GB0214380D0 (en) * 2002-06-21 2002-07-31 Nokia Corp Providing location information of a user equipment
EP1537687B1 (fr) * 2002-09-06 2011-08-24 The Boeing Company Systeme et procede de gestion de communications avec des plateformes mobiles fonctionnant a l'interieur d'une zone geographique predefinie
JP2004201001A (ja) * 2002-12-18 2004-07-15 Matsushita Electric Ind Co Ltd 移動通信システムおよび移動通信制御方法
US7558575B2 (en) * 2003-07-24 2009-07-07 Motorola Inc. Method and apparatus for wireless communication in a high velocity environment
US20050070285A1 (en) * 2003-09-29 2005-03-31 Telefonaktiebolaget Lm Ericsson (Publ) Handover for use with adaptive antennas
JP2005159448A (ja) * 2003-11-20 2005-06-16 National Institute Of Information & Communication Technology 広帯域無線通信システム
US7522995B2 (en) * 2004-02-05 2009-04-21 Nortrup Edward H Method and system for providing travel time information
JP4280657B2 (ja) * 2004-03-01 2009-06-17 富士通株式会社 アレーアンテナのビーム形成方法及びその装置
EP1735956B8 (fr) * 2004-04-06 2012-03-28 Koninklijke Philips Electronics N.V. Transfert basé sur la position pour dispositifs mobiles
DE102004028703A1 (de) * 2004-06-14 2005-12-29 Siemens Ag Verfahren zur Zuweisung von Übertragungskapazitäten bei einer Signalübertragung, Basisstation und mobiles Endgerät
US8116762B2 (en) * 2005-03-01 2012-02-14 Qualcomm Incorporated Method and system for providing aeronautical communication services
WO2006105316A2 (fr) * 2005-03-29 2006-10-05 Qualcomm Incorporated Techniques servant a faciliter les transferts de communication
EP1729531A1 (fr) * 2005-06-02 2006-12-06 Alcatel Procédé et dispositif pour fournir une formation statique de faisceau
US7460866B2 (en) * 2005-08-18 2008-12-02 Tecore, Inc. Position location for airborne networks
US7221318B2 (en) * 2005-09-13 2007-05-22 Kyocera Wireless Corp. System and method for controlling antenna pattern
JP4745772B2 (ja) * 2005-09-16 2011-08-10 株式会社日立国際電気 無線通信システム
US8160613B2 (en) * 2005-12-19 2012-04-17 Rockstar Bidco, LP Method and system for handover in cellular wireless using route programming and training processes
KR100716181B1 (ko) * 2006-01-11 2007-05-10 삼성전자주식회사 휴대 인터넷 시스템 및 그 시스템에서 단말의 핸드오프방법
US7593722B2 (en) * 2006-03-28 2009-09-22 Cisco Technology, Inc. Processing location information among multiple networks
US8036669B2 (en) * 2006-04-20 2011-10-11 Qualcomm Incorporated Orthogonal resource reuse with SDMA beams
US8244209B2 (en) * 2006-10-05 2012-08-14 Cellco Partnership Airborne pico cell security system
US8121094B2 (en) * 2006-12-04 2012-02-21 Electronics And Telecommunications Research Institute Method for managing cross-layer handover
US8537659B2 (en) * 2006-12-20 2013-09-17 Apple Inc. Method and system for reducing service interruptions to mobile communication devices
US20080181180A1 (en) * 2007-01-31 2008-07-31 Jeyhan Karaoguz Efficient network hand-off utilizing stored beam-forming information
US8169946B2 (en) * 2007-03-30 2012-05-01 Livetv, Llc Aircraft communications system with hard handoff and associated methods
CA2712551A1 (fr) * 2008-01-18 2009-08-06 Telefonaktiebolaget L M Ericsson (Publ) Procede et appareil de reprise apres defaillance de liaison radio dans un systeme de telecommunication
US8249596B2 (en) * 2008-02-12 2012-08-21 Cisco Technology, Inc. Location based handoff
US8140074B2 (en) * 2008-08-28 2012-03-20 Motorola Solutions, Inc. Mobile communication network
US8391429B2 (en) * 2009-08-26 2013-03-05 Qualcomm Incorporated Methods for determining reconstruction weights in a MIMO system with successive interference cancellation
EP2403290B1 (fr) * 2010-07-02 2013-09-11 Vodafone IP Licensing limited Gestion des ressources radio basée sur la prédiction d'emplacement

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6377802B1 (en) * 1992-03-06 2002-04-23 Aircell, Inc. Doppler insensitive non-terrestrial digital cellular communications network
WO1999045609A1 (fr) * 1998-03-03 1999-09-10 General Electric Company Systeme permettant de diriger un reseau d'antennes adaptatives et methode afferente
WO2007011978A1 (fr) * 2005-07-19 2007-01-25 The Boeing Company Procede et appareil de transfert intercellulaire sans coupure pour vehicules mobiles faisant appel a des antennes directives

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9848391B2 (en) 2011-02-09 2017-12-19 Qualcomm Incorporated High data rate aircraft to ground communication antenna system
US9295006B2 (en) 2011-02-09 2016-03-22 Qualcomm Incorporated Real-time calibration of an air to ground communication system
JP2014509497A (ja) * 2011-02-09 2014-04-17 クゥアルコム・インコーポレイテッド 空対地通信システムのリアルタイム較正
JP2014512141A (ja) * 2011-04-07 2014-05-19 ブルー ダニューブ ラブズ インク 無線システムにおける高平均スペクトル効率の達成方法
US9319172B2 (en) 2011-10-14 2016-04-19 Qualcomm Incorporated Interference mitigation techniques for air to ground systems
US10297908B2 (en) 2013-02-11 2019-05-21 Gogo Llc Multiple antenna system and method for mobile platforms
US10680315B2 (en) 2013-02-11 2020-06-09 Gogo Llc Multiple antenna system and method for mobile platforms
US11075448B2 (en) 2013-02-11 2021-07-27 Gogo Business Aviation Llc Multiple antenna system and method for mobile platforms
US11545737B2 (en) 2013-02-11 2023-01-03 Gogo Business Aviation Llc Multiple antenna system and method for mobile platforms
US9692499B2 (en) 2014-10-06 2017-06-27 Harris Corporation Terrestrial based air-to-ground communications system and related methods
US10230452B2 (en) 2014-10-06 2019-03-12 Smartsky Networks LLC Terrestrial based air-to-ground communications system and related methods
US20160099769A1 (en) * 2014-10-06 2016-04-07 Harris Corporation Terrestrial based air-to-ground communications system and related methods
US10461843B2 (en) 2014-10-06 2019-10-29 Smartsky Networks LLC Terrestrial based air-to-ground communications system and related methods
US11233560B2 (en) 2014-10-06 2022-01-25 Smartsky Networks, Llc Terrestrial based air-to-ground communications system and related methods
US10897304B2 (en) 2015-09-03 2021-01-19 Rhombus Systems Group, Inc. System for employing cellular telephone networks to operate, control and communicate with unmannded aerial vehicles and remote piloted vehicles
US11569901B2 (en) 2015-09-03 2023-01-31 Rhombus Systems Group, Inc. System for employing cellular telephone networks to operate, control and communicate with unmannded aerial vehicles and remote piloted vehicles
US11137753B2 (en) 2016-04-18 2021-10-05 Rhombus Systems Group, Inc. System for communications with unmanned aerial vehicles using two frequency bands
US11190952B2 (en) 2017-08-31 2021-11-30 Mitsubishi Electric Corporation Setting beam direction for a mobile terminal and a flying object

Also Published As

Publication number Publication date
US9350442B2 (en) 2016-05-24
EP2161855A1 (fr) 2010-03-10
EP2161854A2 (fr) 2010-03-10
ATE495590T1 (de) 2011-01-15
WO2010025996A1 (fr) 2010-03-11
US20110182230A1 (en) 2011-07-28
CN102077490B (zh) 2017-02-22
DE602009000566D1 (de) 2011-02-24
EP2161854B1 (fr) 2011-01-12
BRPI0913905A2 (pt) 2015-10-13
ATE494674T1 (de) 2011-01-15
KR101263223B1 (ko) 2013-05-10
US20120281672A1 (en) 2012-11-08
CN102204120A (zh) 2011-09-28
KR20110014239A (ko) 2011-02-10
JP2014075834A (ja) 2014-04-24
JP2012502527A (ja) 2012-01-26
CN102204120B (zh) 2014-07-02
DE602009000531D1 (de) 2011-02-17
EP2161854A3 (fr) 2010-06-16
US8848605B2 (en) 2014-09-30
EP2161855B1 (fr) 2011-01-05
KR20110050559A (ko) 2011-05-13
KR101174727B1 (ko) 2012-08-17
CN102077490A (zh) 2011-05-25

Similar Documents

Publication Publication Date Title
US8848605B2 (en) Systems and method for providing in-flight broadband mobile communication services
CA2958491C (fr) Systeme de communication radio integre employant une couverture cellulaire ordonnee de maniere hierarchique
CN107070532B (zh) 用于在机载无线蜂窝网络中提供高速通信服务的系统
JP5671535B2 (ja) 無線ブロードバンドデータ配信システムおよび方法
US20090186611A1 (en) Aircraft broadband wireless system and methods
Dinc et al. Multi-user beamforming and ground station deployment for 5G direct air-to-ground communication
JP2005159448A (ja) 広帯域無線通信システム
Dinc et al. Total cost of ownership optimization for direct air-to-ground communication networks
EP3114777B1 (fr) Système combiné de communication satellitaire et terrestre pour des terminaux situés sur un véhicule tel qu'un avion utilisant un ensemble commun de fréquences.
JP2017092814A (ja) アンテナ・アレイ、基地局、無線通信システム及び通信装置
ES2356283T3 (es) Sistemas y método para proporcionar en vuelo servicios de comunicaciones móviles de banda ancha.
Asai Research on NTN Technology for 5G evolution & 6G
Boumard Dynamic spectrum sharing in hybrid satellite-terrestrial systems

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980125521.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09780960

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 8497/CHENP/2010

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20107029492

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2011525484

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13002185

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09780960

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: PI0913905

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20101230