WO2010023935A1 - Substrate aligning apparatus, substrate aligning method and method for manufacturing multilayer semiconductor - Google Patents

Substrate aligning apparatus, substrate aligning method and method for manufacturing multilayer semiconductor Download PDF

Info

Publication number
WO2010023935A1
WO2010023935A1 PCT/JP2009/004201 JP2009004201W WO2010023935A1 WO 2010023935 A1 WO2010023935 A1 WO 2010023935A1 JP 2009004201 W JP2009004201 W JP 2009004201W WO 2010023935 A1 WO2010023935 A1 WO 2010023935A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
pair
microscope
alignment
stage
Prior art date
Application number
PCT/JP2009/004201
Other languages
French (fr)
Japanese (ja)
Inventor
岡本和也
崇広 堀越
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Publication of WO2010023935A1 publication Critical patent/WO2010023935A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • H01L21/681Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment using optical controlling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment

Definitions

  • the present invention relates to a substrate alignment apparatus, a substrate alignment method, and a stacked semiconductor manufacturing method.
  • This application is related to the following Japanese application and claims priority from the following Japanese application. For designated countries where incorporation by reference of documents is permitted, the contents described in the following application are incorporated into this application by reference and made a part of this application. 1. Japanese Patent Application No. 2008-212265 Filing Date August 29, 2008 Patent application 2008-256804 Application date October 1, 2008
  • Patent Documents 1 and 2 There are stacked semiconductor devices in which substrates each having an element formed thereon are stacked (see Patent Documents 1 and 2).
  • the manufacturing process of the stacked semiconductor device includes a step of aligning and bonding a pair of substrates held in parallel with each other while individually observing with a plurality of microscopes (see Patent Document 3).
  • Patent Document 4 there is another method and apparatus for aligning a pair of stacked substrates with each other (see Patent Document 4).
  • Alignment in the manufacturing process of a stacked semiconductor device is required to be as accurate as the line width of elements on the substrate. For this reason, in addition to optical resolution, the microscope used for alignment is required to have high accuracy with respect to the position of the microscope itself.
  • the method described in Patent Document 2 aligns a pair of substrates with each other by matching two reference marks formed on each substrate.
  • the positional accuracy of the circuit on the substrate is not always uniform. For this reason, even if alignment is performed with high precision at two specific points on the substrate, alignment accuracy may be deteriorated in other portions of the substrate.
  • an object of one aspect of the present invention is to provide a substrate alignment apparatus, a substrate alignment method, and a stacked semiconductor manufacturing method that can solve the above-described problems. This object is achieved by a combination of features described in the independent claims.
  • the dependent claims define further advantageous specific examples of the present invention.
  • the first stage that moves in the surface direction of the substrate while holding one of the pair of substrates facing each other, the second stage that holds the other of the pair of substrates, and the second A first microscope for observing the alignment mark of the substrate held on the stage, a second microscope for observing the alignment mark of the substrate held on the first stage, and a calibration commonly observed from the first microscope and the second microscope A label, a relative position of the first microscope and the second microscope obtained by observing the calibration marker with the first microscope and the second microscope, first position information indicating a position of the alignment mark observed with the second microscope, and An alignment control unit that aligns a pair of substrates based on second position information indicating the position of the alignment mark observed with the first microscope Substrate alignment apparatus comprising a are provided.
  • a detection unit that detects a plurality of alignment marks formed on two substrates that are aligned with each other, a pair of stages that hold the two substrates, and two stages, respectively A drive unit to be moved, and a control unit for controlling the drive of the drive unit, and based on the position of the alignment mark of the two substrates detected by the detection unit, the displacement of the corresponding alignment mark between the two substrates And a control unit that drives the drive unit to align the two substrates, and the control unit includes three or more alignment marks of the two substrates held on the pair of stages.
  • a substrate alignment apparatus that drives a drive unit to move a pair of stages so that the position is detected by a detection unit.
  • a method for manufacturing a stacked semiconductor device comprising any one of the above-described substrate alignment apparatuses and a bonding apparatus that pressurizes and bonds a pair of substrates aligned in the substrate alignment apparatus.
  • a first holding stage in which one of a pair of substrates facing each other is held on a first stage that moves in the surface direction of the substrate, and the other of the pair of substrates is held on a second stage.
  • a second holding stage a calibration stage for observing with the first microscope and the second microscope to detect a relative position between the first microscope and the second microscope, and a second alignment mark of the substrate held on the first stage.
  • the first detection stage for detecting the first position information indicating the position of the alignment mark observed with a microscope, and the alignment mark of the substrate held on the second stage are observed with the first microscope, and the alignment mark of the alignment mark is detected.
  • a second detection stage for detecting second position information indicating the position, and a position for aligning the pair of substrates according to the difference between the first position information and the second position information; Substrate alignment method comprising the Align step is provided.
  • one of the pair of stages on which each of the pair of substrates is supported is moved, the substrate held on the stage is inserted between the pair of microscopes, and the substrate is paired with the pair of microscopes.
  • the first measurement stage for measuring the relative position of the three or more alignment marks formed on the substrate with respect to the one microscope and the other of the pair of stages are moved and held on the stage.
  • the relative position of the three or more alignment marks formed on the substrate with respect to the other microscope is measured by inserting the formed substrate between the pair of microscopes and observing the substrate with the other of the pair of microscopes.
  • the corresponding alignment mark between the pair of substrates Substrate alignment method and an alignment step of moving the pair of the stage so that the position deviation of a minimum throughout is provided.
  • FIG. 1 is a plan view schematically showing the structure of a multilayer substrate manufacturing system 100.
  • FIG. It is a figure which shows typically the transition of the state of the board
  • FIG. is a figure which shows typically the transition of the state of the board
  • FIG. is a figure which shows typically the transition of the state of the board
  • FIG. is a figure which shows typically the transition of the state of the board
  • FIG. It is a figure which shows the form of the alignment mark 184 typically.
  • 3 is a cross-sectional view schematically showing the structure of the alignment unit 300.
  • FIG. 5 is a flowchart showing an alignment procedure in the alignment unit 300.
  • FIG. 5 is a diagram showing the operation of the alignment unit 300 in contrast to FIG. 4.
  • FIG. 10 is a diagram illustrating the next operation of the alignment unit 300.
  • FIG. It is a figure which shows the next operation
  • FIG. It is a perspective view which shows the structure of the other alignment part 300.
  • FIG. 4 is a plan view of an alignment unit 300.
  • FIG. 6 is a side view showing the operation of the alignment unit 300.
  • FIG. 11 is a side view showing another operation of the alignment unit 300.
  • FIG. 11 is a side view showing still another operation of the alignment unit 300.
  • FIG. 11 is a side view showing still another operation of the alignment unit 300. It is a top view which shows typically the structure of the other laminated substrate manufacturing apparatus 600 whole.
  • 4 is a perspective view showing a structure of an alignment apparatus 700.
  • FIG. 7 is a perspective view showing one operation of the alignment apparatus 700.
  • FIG. FIG. 11 is a perspective view showing another operation of alignment apparatus 700.
  • FIG. 12 is a perspective view showing still another operation of the alignment apparatus 700.
  • FIG. 5 is a flowchart showing a procedure for aligning a substrate 180; It is a figure which shows typically observation of the alignment mark 184.
  • FIG. It is a figure which shows typically observation of the alignment mark 184.
  • FIG. It is a figure which shows typically observation of the alignment mark 184.
  • FIG. It is a figure which shows typically observation of the alignment mark 184.
  • FIG. It is a figure which shows typically observation of the alignment mark 184.
  • FIG. It is a figure which shows typically observation of the alignment mark 184.
  • FIG. It is a figure which shows typically observation of the alignment mark 184.
  • FIG. 1 is a plan view schematically showing the overall structure of the multilayer substrate manufacturing system 100.
  • the multilayer substrate manufacturing system 100 includes a normal temperature part 102 and a high temperature part 202 formed in a common housing 101.
  • the room temperature unit 102 has a plurality of substrate cassettes 111, 112, 113 and a control panel 120 facing the outside of the housing 101.
  • the control panel 120 includes a calibration control unit 122 and an alignment control unit 124. Moreover, the control part which controls operation
  • the substrate cassettes 111, 112, and 113 accommodate the substrates 180 bonded in the multilayer substrate manufacturing system 100 or the substrates 180 bonded in the multilayer substrate manufacturing system 100.
  • the substrate cassettes 111, 112, and 113 are detachably attached to the housing 101. As a result, a plurality of substrates 180 can be loaded into the laminated substrate manufacturing system 100 at once. Further, the substrates 180 bonded in the multilayer substrate manufacturing system 100 can be collected at a time.
  • the room temperature unit 102 includes a pre-aligner 130, an alignment unit 300, a substrate holder rack 160, and a pair of robot arms 171 and 172 inside the housing 101.
  • the inside of the housing 101 is temperature-controlled so that a specific temperature substantially the same as the room temperature of the environment in which the multilayer substrate manufacturing system 100 is installed is maintained.
  • the pre-aligner 130 Since the alignment unit 300 is highly accurate and has a narrow adjustment range, the pre-aligner 130 temporarily aligns the positions of the individual substrates 180 so that the substrates 180 are within the narrow adjustment range. Thereby, the positioning in the alignment part 300 can be ensured.
  • the alignment unit 300 includes an upper stage unit 310 and a lower stage unit 320 that face each other, and a pair of measurement units 330 that are arranged orthogonal to each other.
  • the upper stage unit 310 and the lower stage unit 320 each transport the substrate 180 or the substrate holder 190 that holds the substrate 180.
  • the measuring unit 330 measures the position of the moving upper stage unit 310 or the lower stage unit 320 in the surface direction of the substrate 180.
  • a heat insulating wall 142 and a shutter 144 are provided so as to surround the alignment unit 300.
  • the space surrounded by the heat insulating wall 142 and the shutter 144 is communicated with an air conditioner or the like, and the temperature is managed, and the alignment accuracy in the alignment unit 300 is maintained.
  • the pair of substrates 180 are aligned with each other. The detailed structure and operation of the alignment unit 300 will be described later with reference to FIG.
  • the substrate holder rack 160 accommodates a plurality of substrate holders 190 and stands by.
  • the substrate holder 190 holds the substrates 180 one by one to facilitate handling of the substrates 180.
  • the substrate 180 is held by the substrate holder 190 by, for example, electrostatic adsorption.
  • the substrate holder rack 160 includes a substrate removal unit. The substrate removing unit takes out the substrate 180 sandwiched between the substrate holders 190 from the substrate holder 190 carried out from the pressurizing unit 240 described later.
  • the substrate 180 loaded in the multilayer substrate manufacturing system 100 may be a single silicon wafer, compound semiconductor wafer, glass substrate, or the like, in which elements, circuits, terminals, and the like are formed.
  • the loaded substrate 180 may be a laminated substrate that is already formed by laminating a plurality of wafers.
  • the robot arm 171 disposed on the side closer to the substrate cassettes 111, 112, 113 transports the substrate 180 between the substrate cassettes 111, 112, 113, the pre-aligner 130, and the alignment unit 300. To do.
  • the robot arm 171 also has a function of turning over one of the substrates 180 to be joined. Accordingly, the surfaces of the substrate 180 on which circuits, elements, terminals, and the like are formed can be opposed to each other.
  • the robot arm 172 arranged on the side far from the substrate cassettes 111, 112, 113 carries the substrate 180 and the substrate holder 190 between the alignment unit 300, the substrate holder rack 160 and the air lock 220.
  • the robot arm 172 is also responsible for loading and unloading the substrate holder 190 with respect to the substrate holder rack 160.
  • the high temperature unit 202 includes a heat insulating wall 210, an air lock 220, a robot arm 230, and a plurality of pressure units 240.
  • the heat insulating wall 210 surrounds the high temperature part 202 to maintain a high internal temperature of the high temperature part 202 and to block heat radiation to the outside of the high temperature part 202. Thereby, the influence which the heat of the high temperature part 202 has on the normal temperature part 102 can be suppressed.
  • the robot arm 230 conveys the substrate 180 and the substrate holder 190 between one of the pressurizing units 240 and the air lock 220.
  • the air lock 220 includes shutters 222 and 224 that open and close alternately on the normal temperature part 102 side and the high temperature part 202 side.
  • the shutter 222 on the normal temperature unit 102 side is opened, and the robot arm 172 carries the substrate 180 and the substrate holder 190 into the air lock 220. .
  • the shutter 222 on the normal temperature part 102 side is closed, and the shutter 224 on the high temperature part 202 side is opened.
  • the robot arm 230 unloads the substrate 180 and the substrate holder 190 from the air lock 220 and inserts them into one of the pressurizing units 240.
  • the pressurizing unit 240 presses the substrate 180 carried into the pressurizing unit 240 while being sandwiched between the substrate holders 190 with heat. Thereby, the substrate 180 is permanently bonded.
  • the above series of operations are executed in reverse order. Through a series of these operations, the substrate 180 and the substrate holder 190 can be carried into or out of the high temperature part 202 without leaking the internal atmosphere of the high temperature part 202 to the normal temperature part 102 side.
  • the substrate holder 190 is transferred to the robot arms 172, 230, the upper stage unit 310, and the lower stage unit 320 while holding the substrate 180.
  • the robot arms 172 and 230 attract and hold the substrate holder 190 by vacuum suction, electrostatic suction or the like.
  • FIG. 2a, 2b, 2c, 2d, and 2e are diagrams schematically showing the transition of the state of the substrate 180 in the multilayer substrate manufacturing system 100.
  • FIG. 2a As shown in FIG. 2a, at the beginning of the operation of the multilayer substrate manufacturing system 100, each of the substrates 180 is individually accommodated in one of the substrate cassettes 111 and 112, for example.
  • the substrate holder 190 is also individually accommodated in the substrate holder rack 160.
  • the substrate 180 is loaded one by one by the robot arm 171, pre-aligned by the pre-aligner 130, and then mounted on the substrate holder 190.
  • the substrates 180 are each held by the substrate holder 190.
  • a pair of substrate holders 190 each holding the substrate 180 is prepared, and as shown in FIG. 2c, the substrate 180 is loaded into the alignment unit 300 so as to face each other.
  • the substrate 180 and the substrate holder 190 aligned in the alignment unit 300 are connected and positioned by a plurality of fasteners 192 fitted in grooves 191 formed on the side surface of the substrate holder 190. Hold the state.
  • the connected substrate 180 and substrate holder 190 are transported integrally and inserted into the pressure unit 240.
  • the substrates 180 When heated and pressurized in the pressurizing unit 240, the substrates 180 are permanently bonded to each other to form a laminated substrate. Thereafter, the substrate 180 and the substrate holder 190 are unloaded from the pressure unit 240 and separated at the substrate removal unit of the substrate holder rack 160.
  • the substrate 180 taken out from the substrate holder 190 is accommodated in, for example, the substrate cassette 113 by the robot arms 172 and 171 and the upper stage unit 310 and the lower stage unit 320.
  • the substrate holder 190 from which the substrate 180 has been taken out is returned to the substrate holder rack 160 and stands by.
  • FIG. 3 is a plan view schematically showing the form of the substrate 180 as a material of the laminated substrate. As illustrated, a plurality of element regions 186 are formed on the substrate 180, and alignment marks 184 are disposed in the vicinity of each of the element regions 186. Further, the substrate 180 has a notch 182 formed at a specific portion of the edge. The notches 182 are arranged corresponding to the crystal orientation of the substrate 180 and the like, and show the physical properties and the anisotropy of the arrangement in the substrate 180 having a substantially circular shape as a whole.
  • the alignment mark 184 is used as an index when the element region 186 is formed on the substrate 180. For this reason, the position of the alignment mark 184 is closely related to the position of the element region 186 displaced by the deformation of the substrate 180 or the like. Therefore, when the substrates 180 are stacked, the distortion generated in each substrate 180 can be effectively compensated by using the alignment mark 184 as an alignment index.
  • the element regions 186 and the alignment marks 184 are drawn large, but the number of element regions 186 formed on a large substrate 180 such as 300 mm ⁇ is several hundred or more. Accordingly, the number of alignment marks 184 arranged on the substrate 180 also increases. Furthermore, the alignment mark 184 can be substituted by wiring, bumps, scribe lines, etc. formed on the substrate 180.
  • FIG. 4 is a cross-sectional view schematically showing the structure of the alignment unit 300.
  • the alignment unit 300 includes an upper stage unit 310 and a lower stage unit 320 disposed inside the frame body 301. Also, in FIG. 4, one measurement unit 330 is also visible.
  • the measurement unit 330 includes interferometers 332 and 334 having different heights.
  • the frame body 301 includes a top plate 302 and a bottom plate 306 that are parallel to each other and a plurality of columns 304 that couple the top plate 302 and the bottom plate 306 together.
  • the top plate 302, the support column 304, and the bottom plate 306 are each formed of a highly rigid material, and are not deformed even when a reaction force related to the operation of the internal mechanism is applied.
  • the upper stage unit 310 includes a drive unit 350, a substage 314, a spacer 311 and a main stage 312 that are sequentially suspended on the lower surface of the top plate 302.
  • the substage 314 suspends the upper reflecting mirror 316 and the upper microscope 318.
  • the main stage 312 sucks and holds the substrate holder 190 that holds the substrate 180.
  • the driving unit 350 includes an X driving unit 351 and a Y driving unit 352 that move the substage 314 in the X direction and the Y direction indicated by arrows in the drawing. Further, the substage 314 is integrally coupled to the main stage 312 via the spacer 311. Accordingly, the upper reflecting mirror 316 and the upper microscope 318 move in the X direction and the Y direction together with the substrate 180 while maintaining a certain relative position with respect to the substrate 180 held on the main stage 312.
  • the lower stage unit 320 includes a drive unit 340, a substage 324, and a main stage 322 mounted on the upper surface of the bottom plate 306.
  • the substage 324 includes a lower reflecting mirror 326 and a lower microscope 328.
  • the main stage 322 sucks and holds the substrate holder 190 that holds the substrate 180.
  • the lower microscope 328 is mounted on the substage 324 via the vertical actuator 329. As a result, the lower microscope 328 moves up and down with respect to the substage 324 only in the vertical direction.
  • a reference mark 321 is also mounted on the main stage 322.
  • the drive unit 340 includes an X drive unit 341, a Y drive unit 342, and a Z drive unit 348 that move the substage 324 in the X direction, the Y direction, and the Z direction indicated by arrows in the drawing. Further, a ⁇ drive unit 344 that rotates the substage 324 in a horizontal plane and a ⁇ drive unit 346 that swings the substage 324 are included. Note that the Z drive unit 348 is disposed between the substage 324 and the main stage 322, and also has a function corresponding to the spacer 311 in the upper stage unit 310.
  • the sub-stage 324 is integrally coupled with the main stage 322 by the Z driving unit 348. Accordingly, the lower reflecting mirror 326 and the lower microscope 328 rotate and swing together with the substrate 180 while maintaining a certain relative position with respect to the substrate 180 held on the main stage 322, and in the X direction and Y direction. Move in the direction and Z direction.
  • Measure unit 330 includes a pair of interferometers 332 and 334.
  • One interferometer 332 is disposed at the same height as the reflecting mirror 316 of the upper stage unit 310. Thereby, the interferometer 332 uses the reflecting mirror 316 to accurately measure the position of the substage 314 in the X direction. Note that the measurement unit 330 that does not appear in this figure has the same structure, and measures the position of the substage 314 in the Y direction.
  • the other interferometer 334 is arranged at the same height as the reflecting mirror 326 of the lower stage unit 320. Thereby, the interferometer 334 accurately measures the position of the substage 324 in the X direction using the reflecting mirror 326.
  • the measurement unit 330 that does not appear in this figure also has the same structure, and measures the position of the substage 324 in the Y direction.
  • FIG. 5 is an enlarged view showing the vicinity of the reference sign 321 in a state where the upper stage part 310 and the lower stage part are moved to a position where the reference sign 321 can be observed from the upper microscope 318.
  • the reference marker 321 can be put into the field of view from the upper microscope 318 by appropriately moving the upper stage portion 310 and the lower stage portion 320 as shown in the drawing.
  • the reference mark 321 is disposed on the through hole 323 formed in the main stage 322 immediately above the lower microscope 328. As a result, the reference mark 321 also enters the field of view of the lower microscope 328.
  • the height of the reference mark 321 is adjusted to be the same height as the surface of the substrate 180 mounted on the main stage 322 of the lower stage unit 320.
  • the lower microscope 328 is lowered by the vertical actuator 329 and focuses on the reference mark 321.
  • the upper microscope 318 observes the substrate 180 mounted on the lower stage unit 320, as will be described later. Therefore, in the above state, both the upper microscope 318 and the lower microscope 328 are in a state of focusing on the same reference mark 321.
  • FIG. 6 is a cross-sectional view showing the structure of the reference mark 321 described above.
  • the reference mark 321 includes a support frame 421, a transparent substrate 422, and an opaque thin film 423.
  • the transparent substrate 422 can be formed using a glass substrate or the like.
  • An example of the opaque thin film 423 is a metal film.
  • the observed position does not shift both when observed from the upper microscope 318 and when observed from the lower microscope 328.
  • the effective height of the reference mark 321 can be finely adjusted by adopting a structure in which the transparent substrate 422 is mounted on the main stage 322 via the support frame 421.
  • the reference mark 321 has a transparent area where the transparent substrate 422 is exposed.
  • the alignment mark 184 and the like positioned therethrough can be observed through the reference mark 321, which will be described later with reference to FIG.
  • FIG. 7 is a cross-sectional view showing another structure of the reference mark 321.
  • This reference mark 321 is formed by an opaque substrate 425 having a knife edge 427.
  • the knife edge 427 is formed by a pair of surfaces intersecting with a line connecting the upper microscope 318 and the lower microscope 328.
  • Such an opaque substrate 425 can be manufactured, for example, by processing a silicon wafer by dry etching. Since the tip of the knife edge 427 is very thin, the observed position does not shift both when observed from the upper microscope 318 and when observed from the lower microscope 328. Further, since the inside of the knife edge 427 penetrates, the lower microscope 328 can also observe the other side of the reference mark 321.
  • FIG. 8 is a flowchart showing a procedure in the case of aligning the substrate 180 using the alignment unit 300 as described above.
  • the upper stage unit 310 and the lower stage unit 320 are opened so that the lower side of the main stage 312 of the upper stage unit 310 and the upper side of the main stage 322 of the lower stage unit 320 are opened. Shifting to different positions, the substrate 180 held by the substrate holder 190 is loaded on each of the main stages 312, 322 (step S101).
  • the ⁇ driving unit 346 of the lower stage unit 320 is operated to make the pair of substrates 180 parallel (step S102).
  • the substrate 180 is aligned exclusively in the X direction and the Y direction.
  • the reference marker 321 is simultaneously observed by the lower microscope 328 and the upper microscope 318, thereby specifying the relative positions of the lower microscope 328 and the upper microscope 318 (step S103).
  • the calibration control unit 122 measures the positions of the upper stage unit 310 and the lower stage unit 320, and initializes the interferometers 332 and 334 using the measured values as initial values (step S104).
  • step S105 the upper stage unit 310 and the lower stage unit are operated, and the alignment mark 184 of the substrate 180 held on the lower stage unit 320 is aligned with the alignment mark 184 of the substrate 180 held on the lower stage unit 320 by the upper microscope 318. Are detected three or more by the lower microscope 328 (step S105).
  • FIG. 9 is a diagram showing the state of the alignment unit 300 that executes step S105 in contrast to FIG.
  • the surface of the substrate 180 held by the lower stage unit 320 is brought into the field of view of the upper microscope 318 by operating the driving unit 350 of the upper stage unit 310 and the driving unit 340 of the lower stage unit 320, respectively.
  • the surface of the substrate 180 held on the upper stage unit 310 can be put into the field of view of the lower microscope 328, respectively.
  • FIG. 10 is an enlarged view showing the vicinity of the lower microscope 328 in the state shown in FIG.
  • the focus of the lower microscope 328 is moved to the surface of the substrate 180 held by the upper stage unit 310 by operating the vertical actuator 329. Accordingly, the lower microscope 328 can accurately observe the surface of the substrate 180 held on the upper stage unit 310 through the reference mark 321.
  • the alignment unit 300 includes a low-power microscope that observes a wide range of the surface of the substrate 180 separately from the upper microscope 318 and the lower microscope 328.
  • the resolution of the low-magnification microscope is less than the alignment accuracy of the substrate 180, but the approximate positions of the alignment mark 184 and the element region 186 on the substrate 180 can be recognized.
  • the upper microscope 318 and the lower microscope 328 can efficiently detect the alignment mark 184.
  • the positions of the main stages 312 and 322 at that time are interferometers 332 and 334, respectively.
  • the relative position of the alignment mark 184 with respect to the initial value can be determined by measuring at The relative position of the detected alignment mark 184 is stored by the alignment control unit 124 (step S106).
  • the alignment control unit 124 acquires the position information of the three or more alignment marks 184 for each of the pair of substrates 180, the drive unit required when aligning the substrate 180 based on the position information.
  • the movement amounts of 340 and 350 can be calculated (step S107).
  • the substrate 180 used for bonding is formed with elements and the like through a lot of processing and processing. For this reason, various distortions are generated in the substrate 180. Further, the strain distribution on one substrate 180 is not uniform. For this reason, when aligning the substrates 180, even if the positions of the specific alignment marks 184 corresponding to the pair of substrates 180 are matched, misalignment may increase in other portions of the substrate 180.
  • a translation amount (T x , T y ) that one of the wafers should translate relative to the other and a rotation amount ⁇ that should be rotated are calculated as follows.
  • I indicates the number of the alignment mark.
  • the position coordinate of one substrate 180 with respect to the reference coordinate system is (D xi , D yi )
  • the movement amount (T x , T y ) of the other substrate 180 and the following function F are minimized.
  • the rotation amount ⁇ is determined.
  • FIG. 11 is a diagram illustrating the next operation of the alignment unit 300.
  • the alignment control unit 124 uses the initial values based on the relative positions of the upper microscope 318 and the lower microscope 328 as a reference, and the driving unit 340 according to the calculated movement amount (T x , T y ) and rotation amount ⁇ . , 350 can be operated to align the pair of substrates 180 (step S108).
  • a plurality of reference markers 321 may be provided and the step of calibrating the relative positions of the upper microscopes 318 and 328 (step S104) may be executed several times.
  • the step S104 may be executed several times.
  • the procedure from the stage 104 may be repeated.
  • FIG. 12 is a diagram showing the alignment unit 300 and the next operation.
  • the Z driving unit 348 can be operated to bond the substrates 180 that are aligned in the X direction and the Y direction and face each other. That is, the substrate 180 can be temporarily joined by raising the main stage 322 of the lower stage unit 320 to contact the pair of substrates 180 and further increasing the driving force of the Z driving unit 348 (step S109). .
  • the pair of substrates 180 bonded after being aligned in this way are carried out of the alignment unit 300 (step S110) and transferred to the pressurizing unit 240. While being conveyed from the alignment unit 300 to the pressurizing unit 240, as described with reference to FIG. 2b, the aligned state is held by the substrate holder 190 and the fastener 192.
  • the upper stage unit 310 and the lower stage unit 320 both have the driving units 350 and 340 to move the main stages 312 and 322.
  • the wear of the members can be made uniform, and the life of the device can be extended.
  • the substrate 180 can be aligned even in a state where the main stage 312 is fixed by omitting the driving unit 350 of the upper stage unit 310, for example, the upper stage unit 310, or the upper stage unit 310.
  • the Y drive unit 352 of the upper stage unit 310 may be omitted, and the upper stage unit 310 may be aligned exclusively in the X direction, and the lower stage unit 320 may be aligned exclusively in the Y direction.
  • the time required to move the required amount of movement can be reduced by half. Therefore, by providing the drive units 350 and 340 in both the upper stage unit 310 and the lower stage unit 320, the throughput in the alignment unit 300 can be improved.
  • the reference mark 321 is fixed and the lower microscope 328 is moved up and down.
  • various modifications can be made such as a structure in which the reference marker is advanced and retracted from the field of view of the upper microscope 318 or the lower microscope 328.
  • FIG. 13 is a perspective view showing an alignment unit 300 having another structure.
  • the alignment unit 300 includes a measurement unit 360, a pair of microscope units 370, and a joint unit 380 mounted on the bottom plate 303. Further, although not shown in FIG. 13 for the purpose of avoiding complicated drawing, a robot arm 390 is disposed between the measurement unit 360 and the joint unit 380 (see FIG. 14).
  • the measurement unit 360 is formed inside a rectangular frame formed by a pair of support columns 361 standing upright from the bottom plate 303 and a pair of horizontal guide units 363 that respectively connect the upper end and the lower end of the support column 361.
  • Each of the guide units 363 suspends or supports the X drive unit 362, the Z drive unit 364, and the main stages 312, 322, respectively.
  • the X drive unit 362 individually connects the Z drive unit 364 and the main stages 312 and 322, and the substrate holder 190 and the substrate 180 mounted on the main stages 312 and 322 along the guide unit 363. Move.
  • the Z driving unit 364 vertically moves the main stages 312 and 322 and the substrate holder 190 and the substrate 180 mounted on the main stages 312 and 322 up and down.
  • a substrate holder 190 holding the substrate 180 is mounted on each of the main stages 312, 322.
  • Each of the substrates 180 has a pair of alignment marks 184.
  • a reference sign 321 is also mounted on one main stage 322.
  • the reference mark 321 is fixed at the same height as the surface of the substrate 180 held by the substrate holder 190. Since the main stage 322 has a through hole penetrating in the thickness direction under the reference mark 321, the reference mark 321 can be observed from above and below the main stage 322. Note that the reference mark 321 may adopt any of the structures shown in FIGS.
  • the pair of microscope units 370 are arranged with the measurement unit 360 interposed therebetween.
  • Each of the microscope units 370 includes a Y driving unit 372, a support column 374, and microscopes 376 and 378.
  • the Y drive unit 372 moves the support column 374 in a direction intersecting with the extending direction of the guide unit 363 of the measurement unit 360.
  • the support columns 374 support a pair of microscopes 376 and 378, respectively.
  • the pair of microscopes 376 and 378 are fixed so as to face each other vertically inside the notch formed in the middle of the support column 374.
  • the focal points F of the microscopes 376 and 378 are connected to a common point located in the middle of the microscopes 376 and 378.
  • the joint portion 380 includes an X drive portion 381, a Y drive portion 382, a ⁇ drive portion 384, a Z drive portion 388, a pair of flat plates 389, and a pair of main stages, which are arranged in the stacking direction inside the frame 383. 312 and 322.
  • Each of the main stages 312 and 322 carries a substrate holder 190 that holds a substrate 180.
  • the X drive unit 381 and the Y drive unit 382 drive the main stages 312 and 322 in the X direction or the Y direction indicated by arrows in the drawing.
  • the Z drive unit 388 can move the main stage 312 in the Z-axis direction, and can also swing the main stage 322 by individually operating.
  • the bonding unit 380 is mounted on the main stage 312 by moving the substrate 180 mounted on the main stage 322 in an arbitrary direction by operating the X driving unit 381, the Y driving unit 382, and the ⁇ driving unit 384. Alignment with respect to the substrate 180 is possible. Further, by operating the Z driving unit 388, the pair of substrates 180 aligned with each other can be brought into contact with each other and bonded.
  • FIG. 14 is a plan view of the alignment unit 300 shown in FIG. As illustrated, the alignment unit 300 further includes a robot arm 390 between the measurement unit 360 and the joint unit 380.
  • the robot arm 390 has a fork part 392 and an arm part 394.
  • the fork unit 392 sucks and holds the substrate holder 190 that holds the substrate 180.
  • the arm part 394 moves the fork part 392 holding the substrate holder 190 in an arbitrary direction.
  • the robot arm 390 transports the substrate 180 and the substrate holder 190, which have been measured later in the measurement unit 360, from the main stages 312 and 322 of the measurement unit 360 to the main stages 312 and 322 of the joint unit 380. Can be transferred.
  • a robot arm 172 that carries the substrate 180 and the substrate holder 190 into and out of the alignment unit 300 may be used.
  • the robot arm 390 of the alignment unit 300 can be omitted.
  • 15a, 15b, 15c, and 15d are diagrams for explaining the operation of the measurement unit 360 in the alignment unit 300 having the above-described structure.
  • the alignment unit 300 is arranged on the side surfaces of the main stages 312 and 322 facing the interferometers 366 and 368 and the interferometers 366 and 368 which are hidden in the support column 361 in FIGS. It further includes a pair of reflecting mirrors 367 mounted. The operation of these interferometers 366 and 368 and the reflecting mirror 367 will be described later.
  • the X driving unit 362 is operated, and the main stages 312 and 322 are moved to positions close to different columns 361. Thereby, the lower surface of the main stage 312 and the upper surface of the main stage 322 are opened. In this state, a substrate holder 190 holding the substrate 180 is mounted on each of the main stages 312 and 322.
  • the Z drive unit 364 of the lower main stage 322 is operated to raise the main stage 322.
  • the reference mark mounted on the main stage 322 becomes the same height as the focal point F of the microscopes 376 and 378.
  • the X drive unit 362 is operated to move the main stage 322 to a position where the reference mark 321 enters the field of view of the microscopes 376 and 378.
  • the calibration control unit 122 can accurately detect the positions of the pair of microscopes 376 and 378.
  • microscopes 376 and 378 are fixed to the column 374, respectively, but their positions may change depending on environmental conditions such as temperature, inclination of the column 374 due to tolerance of the Y drive unit 372, and the like. However, as described above, the positional relationship between the microscopes 376 and 378 can be grasped by observing the common reference mark 321 prior to measuring the position of the alignment mark 184.
  • the X drive unit 362 is further operated to move the main stage 322, and the alignment mark 184 of the substrate 180 is placed in the field of view of the upper microscope 376. Since the reference mark 321 and the surface of the substrate 180 are located at the same height, the surface of the substrate 180 passes through the focal plane of the upper microscope 376.
  • the alignment control unit 124 stores the alignment control unit 124.
  • the lower main stage 322 is returned to the original position while the upper main stage 312 is moved. That is, first, the Z driving unit 364 is operated to move the surface of the substrate 180 to the same height as the focal point F of the microscopes 376 and 378. Subsequently, the X driving unit 362 is operated to move the substrate 180 between the pair of microscopes 376 and 378.
  • the amount of movement of the main stage 312 can be accurately measured using the reflecting mirror 367 and the interferometer 366 provided on the upper main stage 312 side. Therefore, the position of the alignment mark 184 on the substrate 180 can be accurately detected by observing with the lower microscope 378.
  • the measured position information of the alignment mark 184 is stored in the alignment control unit 124.
  • the alignment control unit 124 acquires the position information of the alignment mark 184 for each of the pair of substrates 180, the substrate holder 190 that holds the substrate 180 is moved by the robot arm 390 to the main stages 312 and 322 of the bonding unit 380. Respectively.
  • the alignment control unit 124 calculates an operation amount of the bonding unit 380 obtained when the substrate 180 is aligned based on the position information.
  • the bonding unit 380 in which the substrate holder 190 holding the substrate 180 is inserted operates the Z driving unit 388 individually to make the pair of substrates 180 parallel to each other.
  • the X driving unit 381, the Y driving unit 382, and the ⁇ driving unit 384 are operated based on an instruction from the alignment control unit 124, and the pair of substrates 180 are moved so that the positions of the corresponding alignment marks 184 coincide with each other. Align.
  • the Z driving unit 388 is operated simultaneously to bring the pair of substrates 180 into contact with each other, and by applying a higher pressure, the pair of substrates 180 is joined.
  • the alignment unit 300 in this aspect includes a measurement unit 360 and a bonding unit 380, and individually performs the position measurement of the alignment mark 184 and the bonding of the substrate 180.
  • the measurement unit 360 the X drive unit 362 and the Z drive unit 364 can be downsized, and the movement range of the microscopes 376 and 378 can be expanded.
  • the bonding portion 380 it is possible to execute accurate alignment and bonding of the substrates 180 with high pressure using a large member having high strength. However, if the strength of the member can be ensured, it is possible to add the Y drive unit 382, the ⁇ drive unit 384, and the like to the structure of the measurement unit 360 and execute the alignment and joining.
  • FIG. 16 is a plan view schematically showing the overall structure of another multilayer substrate manufacturing apparatus 600.
  • the multilayer substrate manufacturing apparatus 600 includes a wafer stocker 610, a wafer pre-alignment apparatus 622, a wafer holder pre-alignment apparatus 624, a main controller 630, a wafer holder stocker 640, a pressure apparatus 650, a separation cooling apparatus 660, a wafer loader 672, and a wafer holder loader. 676 and an alignment device 700.
  • a wafer stocker 610 includes a wafer stocker 610, a wafer pre-alignment apparatus 622, a wafer holder pre-alignment apparatus 624, a main controller 630, a wafer holder stocker 640, a pressure apparatus 650, a separation cooling apparatus 660, a wafer loader 672, and a wafer holder loader. 676 and an alignment device 700.
  • a wafer stocker 610 includes a wafer pre
  • the wafer stocker 610 includes wafer stockers 614 and 616 for accommodating a plurality of substrates 180 to be bonded, and a stacked substrate stocker 612 for storing a plurality of bonded substrates 180.
  • Each of the multilayer substrate stocker 612 and the wafer stockers 614 and 616 is detachably mounted facing the outside of the multilayer substrate manufacturing apparatus 600.
  • the substrate 180 can be loaded into the laminated substrate manufacturing apparatus 600 and the bonded substrates 180 can be collected.
  • the wafer stockers 614 and 616 may be loaded with the same type of substrate 180 or may contain different types of substrates 180.
  • the wafer pre-alignment apparatus 622 performs quick pre-alignment on the substrate 180 taken out from the wafer stockers 614 and 616, although the accuracy is relatively low. Thereby, when the substrate 180 is loaded in the alignment apparatus 700 described later, the position of the substrate 180 can be avoided from being greatly shifted. Further, the work time in the alignment apparatus 700 can be shortened.
  • the wafer holder stocker 640 is arranged inside the multilayer substrate manufacturing apparatus 600 and accommodates a plurality of substrate holders 190.
  • the substrate holder 190 sucks and supports the substrate 180. Further, the substrate holder 190 is repeatedly used inside the multilayer substrate manufacturing apparatus 600 except for a maintenance period that is carried out at a constant cycle. It should be noted that the substrate holder 190 may be used for all the substrates 180 with a single specification, or may have a different specification depending on the type of the substrate 180.
  • the wafer holder pre-alignment device 624 is disposed in the vicinity of the wafer holder stocker 640.
  • the wafer holder pre-alignment apparatus 624 makes the mounting position of the substrate 180 relative to the substrate holder 190 substantially constant by placing the substrate holder 190 at a predetermined position. Thereby, the working time in the alignment apparatus 700 can be shortened.
  • the alignment apparatus 700 aligns the pair of substrates 180 held by the substrate holder 190 with each other with high accuracy, and then bonds them together.
  • the high accuracy referred to here is an accuracy that secures the performance required when the elements formed on the substrate 180 are stacked, and may be on the order of submicrons.
  • the alignment means that when a pair of substrates 180 are bonded together, an effective electrical connection is established between the connection terminal of the element formed on one substrate 180 and the connection terminal of the other substrate 180. This means that the positions of the two coincide with each other.
  • the structure and operation of the alignment apparatus 700 will be described later with reference to FIG.
  • the pressing device 650 is disposed in the vicinity of the alignment device 700, pressurizes the substrate 180 that has been aligned and bonded by the alignment device 700, and permanently bonds the substrate 180 to form a laminated substrate. For this reason, the bonded substrate 180 may be pressurized while being heated.
  • the separation cooling device 660 is disposed adjacent to the pressurizing device 650.
  • the separation cooling device 660 cools the substrate holder 190 and the bonded substrate 180 and removes the substrate holder 190 from the bonded substrate 180.
  • the bonded substrate 180 is accommodated in a stacked substrate stocker 612 as a stacked substrate.
  • the cooled substrate holder 190 is returned to the wafer holder stocker 640 and used for alignment and bonding of the next substrate 180.
  • the wafer loader 672 is an articulated robot and may have an arm having six degrees of freedom (X, Y, Z, ⁇ X, ⁇ Y, ⁇ Z). Wafer loader 672 moves along rail 674 in the direction indicated by arrow X in the drawing.
  • the wafer loader 672 can be mounted and moved with the substrate 180 or the substrate 180 which is bonded to be a laminated substrate.
  • the substrate holder 190 having a mass significantly larger than that of the substrate 180 or the laminated substrate cannot be transported. Accordingly, the wafer loader 672 transports the substrate 180 mainly between the wafer stocker 610 and the wafer pre-alignment apparatus 622.
  • the wafer holder loader 676 is also an articulated robot, and may have arms with six degrees of freedom (X, Y, Z, ⁇ X, ⁇ Y, ⁇ Z). Wafer holder loader 676 moves along rail 678 in the direction indicated by arrow Y in the drawing.
  • the wafer holder loader 676 can withstand the transfer load of the substrate holder 190 and can also transfer the substrate 180 alone. Accordingly, the substrate holder 190 is transported between the wafer holder stocker 640 and the wafer holder pre-alignment device 624 or between the separation cooling device 660 and the wafer holder stocker 640. Further, between the wafer holder pre-alignment apparatus 624 and the alignment apparatus 700, between the alignment apparatus 700 and the pressurization apparatus 650, or between the pressurization apparatus 650 and the separation cooling apparatus 660, the substrate holder 190 and The substrate 180 is also transferred. Further, there is a case where the laminated wafer is transported in at least a partial section from the separation cooling device 660 to the laminated substrate stocker 612.
  • the main controller 630 controls the overall operation of the multilayer substrate manufacturing apparatus 600 as described above. That is, the main controller 630 provides signals to individual control devices such as the wafer loader 672, the wafer holder loader 676, the wafer pre-alignment device 622, and the wafer holder pre-alignment device 624 to cover the entire multilayer substrate manufacturing apparatus 600. Control. It also accepts external operations such as power on and off. Further, main controller 630 includes an alignment control unit that controls an alignment operation performed by alignment apparatus 700.
  • FIG. 17 is a perspective view showing the structure of the alignment apparatus 700.
  • the alignment apparatus 700 includes a base 710, in-plane driving units 720 and 760, a tilt driving unit 730, a lower stage 740, an upper stage 750 and a frame 770, and a pair of microscope units 810 and 820.
  • the base 710 is fixed horizontally inside the multilayer substrate manufacturing apparatus 600.
  • An in-plane driving unit 720, a tilt driving unit 730, and a lower stage 740 are sequentially stacked on the base 710.
  • the in-plane driving unit 720 includes a rotation driving unit 722, an X direction driving unit 724, and a Y direction driving unit 726 that are stacked on each other. Accordingly, the in-plane driving unit 720 can rotate the mounted tilt driving unit 730 in a horizontal plane parallel to the base 710 and move it two-dimensionally in the horizontal direction.
  • the tilt drive unit 730 includes a pair of flat plates 732 and 736 and three vertical actuators 734 sandwiched between the flat plates 732 and 736. Accordingly, the inclination of the upper flat plate 736 with respect to the horizontal plane is compensated on the in-plane driving unit 720.
  • the lower stage 740 has a horizontal actuator and a vertical actuator not shown. Accordingly, the lower stage 740 is displaced in the vertical direction (Z direction) with respect to the tilt driving unit 730 and is also advanced and retracted in the horizontal direction (X direction).
  • the lower stage 740 holds the substrate 180 held by the substrate holder 190 on the upper surface. As a result, the lower stage 740 can put the mounted substrate 180 under the microscopes 818 and 828 described later.
  • the frame 770 has a horizontal portion that is separated from the base 710. As a result, the frame 770 suspends the in-plane driving unit 760 and the upper stage 750 sequentially on the lower surface of the horizontal part.
  • the in-plane drive unit 760 includes a rotation drive unit 762, an X direction drive unit 764, and a Y direction drive unit 766 that are sequentially suspended from each other. As a result, the in-plane driving unit 760 rotates and horizontally moves the upper stage 750 in a horizontal plane parallel to the base 710.
  • the upper stage 750 has a horizontal actuator and a vertical actuator not shown.
  • the upper stage 750 advances and retreats in the vertical direction (Z direction) and the horizontal direction (X direction) with respect to the in-plane drive unit 760.
  • the upper stage 750 holds the substrate 180 held by the substrate holder 190 on the lower surface. Accordingly, the upper stage 750 can put the mounted substrate 180 above the microscopes 816 and 826 described later.
  • the microscope unit 810 includes a linear drive unit 812, a support column 814, and a pair of microscopes 816 and 818.
  • the linear drive unit 812 moves the support column 814 in the horizontal direction (Y direction) on the base 710 and moves it back and forth.
  • the advancing / retreating direction of the lower stage 740 and the upper stage 750 intersects the advancing / retreating direction of the support column 814. Accordingly, the support column 814 moves back and forth in the forward and backward direction with respect to the extended lower stage 740 and upper stage 750.
  • the support column 814 has a notch 811 in the middle of the height direction.
  • the notch 811 has a rectangular shape, and a pair of microscopes 816 and 818 facing each other are fixed to the upper and lower surfaces on the inside. Accordingly, when the lower stage 740 or the upper stage 750 is extended, the substrate 180 mounted on the lower stage 740 or the upper stage 750 can be observed by one of the pair of microscopes 816 and 818.
  • the alignment apparatus 700 includes a microscope unit 820 including another set of microscopes 826 and 828.
  • the microscope unit 820 includes a linear drive unit 822, a support column 824, and a pair of microscopes 826 and 828.
  • the linear drive unit 822 moves the support column 824 in the horizontal direction (Y direction) on the base 710 and moves it back and forth.
  • the advance / retreat direction of the microscope units 810, 820 intersects the advance / retreat direction of the lower stage 740 and the upper stage 750.
  • the pair of microscopes 816 and 818 and the microscopes 826 and 828 are provided with an observation position where the alignment mark 184 of the substrate 180 put out by the lower stage 740 or the upper stage 750 enters the field of view, and the lower stage 740 or the upper stage 750.
  • the alignment mark 184 of the substrate 180 thus moved moves between the retracted position where it is out of the field of view.
  • the support column 824 has a notch 821 in the middle of the height direction.
  • the notch 821 has a rectangular shape, and a pair of microscopes 826 and 828 facing each other are fixed to an upper surface and a lower surface on the inside. Accordingly, when the lower stage 740 or the upper stage 750 is extended, the substrate 180 mounted on the lower stage 740 or the upper stage 750 can be observed by one of the pair of microscopes 816 and 818.
  • the pair of microscopes 816, 818, 826, and 828 in each of the microscope units 810 and 820 are focused on a common position. Therefore, when observing the surface of the substrate 180 with the microscopes 816 and 818, the lower stage 740 or the upper stage 750 is displaced in the Z direction so that the surface of the substrate 180 is positioned at a common focal position.
  • the alignment apparatus 700 is additionally provided with a low-magnification microscope that observes the entire surface of the substrate 180 that is directed toward the microscope units 810 and 820.
  • the resolution of the low-magnification microscope is less than the alignment accuracy of the substrate 180, but the approximate positions of the alignment mark 184 and the element region 186 on the substrate 180 can be recognized.
  • each microscope unit 810, 820 a pair of opposed microscopes 816, 818 (microscopes 826, 828) measure and record the relative positional deviation in advance. Therefore, the relationship between the position of the object observed by the lower microscopes 816 and 826 and the position of the object observed by the upper microscopes 826 and 826 is based on the positional relationship of the microscopes 816, 818, 826, and 828. Know exactly.
  • FIG. 18 is a perspective view showing one operation of the alignment apparatus 700.
  • the pair of microscope units 810 and 820 are driven by the linear drive units 812 and 822 and move symmetrically with each other.
  • region observed with the microscopes 816, 818, 826, and 828 can be changed by changing the space
  • FIG. 19 is a perspective view showing another operation of the alignment apparatus 700.
  • FIG. As shown in the figure, by inserting the lower stage 740 from the in-plane driving unit 720 and the tilt driving unit 730 in the X direction, between the microscopes 816 and 818 in the microscope unit 810 and between the microscopes 826 and 828 in the microscope unit 820, The lower stage 740 can be presented.
  • the substrate 180 held on the upper surface of the lower stage 740 via the substrate holder 190 can be observed by the microscopes 818 and 828 having a downward visual field in each of the microscope units 810 and 820.
  • the lower stage 740 is supported by the in-plane drive unit 720 via the tilt drive unit 730. Accordingly, the lower stage 740 can be rotated or horizontally moved while observing the substrate 180 with the microscopes 818 and 828.
  • FIG. 20 is a perspective view showing still another operation of the alignment apparatus 700.
  • the lower stage 740 is retracted above the tilt drive unit 730 and the upper stage 750 is extended from the in-plane drive unit 760 in the X direction.
  • the upper stage 750 is provided between the microscopes 816 and 818 in the microscope unit 810 and between the microscopes 826 and 828 in the microscope unit 820.
  • the substrate 180 held on the lower surface of the upper stage 750 via the substrate holder 190 can be observed by the microscopes 816 and 826 having an upward visual field in each of the microscope units 810 and 820.
  • the upper stage 750 is supported by an in-plane drive unit 760 suspended from the frame 770. Thereby, the upper stage can be rotated or horizontally moved while observing the substrate 180 with the microscopes 816 and 826.
  • FIG. 21 is a flowchart showing a procedure for aligning the substrate 180 in the alignment apparatus 700.
  • the substrate 180 held by the substrate holder 190 in the wafer holder pre-alignment apparatus 624 is first loaded on the upper stage 750 in the alignment apparatus 700 (step S201).
  • the substrate 180 held by the substrate holder 190 next in the wafer holder pre-alignment apparatus 624 is loaded on the lower stage 740 in the alignment apparatus 700 (step S202).
  • the substrate 180 is held by the substrate holder 190 by, for example, electrostatic adsorption. Further, the substrate holder 190 is held by the upper stage 750 and the lower stage 740 by, for example, vacuum suction.
  • the present invention is not limited to these methods, and the substrate 180, the substrate holder 190, and the upper stage 750 or the lower stage 740 are integrated with each other, and can be fixed by any method that does not cause misalignment in the following alignment operation.
  • step S203 using the tilt driving unit 730, the substrate 180 held on the upper stage 750 and the substrate 180 held on the lower stage are made parallel to each other (step S203). Accordingly, the alignment of the pair of substrates 180 can be limited to the horizontal plane by the in-plane driving units 720 and 760 below.
  • the microscope units 810 and 820 are fixed (step S204). At this time, the distance between the support columns 814 and 824 is adjusted by the linear drive unit 812, and the microscope units 810 and 820 are fixed at positions where three or more alignment marks 184 can be observed for each of the substrates 180. Thereafter, the microscope units 810 and 820 are fixed and are not moved until the bonding of the pair of substrates 180 is completed.
  • the lower stage 740 is inserted between the microscopes 816 and 818 and between the microscopes 826 and 828, and the substrate 180 mounted on the lower stage 740 is placed by the downward microscopes 818 and 828.
  • the alignment mark 184 is observed (step S205). At this time, a specific alignment mark 184 to be observed can be easily selected from a plurality of alignment marks 184 formed on the substrate 180 by referring to the image of the substrate 180 obtained by the low-power microscope described above.
  • FIG. 22 to 27 are diagrams schematically showing a state in which the alignment mark 184 is observed with the microscopes 818 and 828.
  • FIG. 22 As shown in FIG. 22, if the positions of the microscope units 810 and 820 are appropriate, the alignment mark 184 is observed by the microscopes 818 and 828 when the lower stage 740 is extended in the X direction. Thereby, the position of the alignment mark 184 with respect to the fixed microscopes 818 and 828 is determined. Accordingly, relative position information of the alignment mark 184 with respect to the microscopes 818 and 828 is calculated and recorded from the driving amount of the in-plane driving unit 720 at this time (step S106).
  • the driving amount of the in-plane driving unit 720 can be known based on the operation amount of the in-plane driving unit 720 itself. The same drive amount can also be measured with reference to a linear encoder or the like provided for the purpose of controlling the operation of the in-plane drive unit 720. Further, the amount of movement of the lower stage 740 may be measured by an interferometer or the like provided independently of the in-plane drive unit 720.
  • the lower stage 740 is moved to a position where the other alignment mark 184 of the substrate 180 can be observed by the microscopes 818 and 828, and the microscope 818, The relative position information of the next alignment mark 184 with respect to 828 is recorded.
  • the substrate 180 may be rotated at a rotation angle ⁇ in the plane including the substrate 180.
  • the lower stage 740 is rotated ( ⁇ ) by the in-plane driving unit 720 so that the set of alignment marks 184 can be observed with the microscopes 818 and 828.
  • the rotation angle ⁇ of the substrate 180 can be recorded based on the driving amount of the in-plane driving unit 720.
  • the lower stage 740 is removed from the field of view of the microscopes 818 and 828 and retracted to above the tilt drive unit 730, and as shown in FIG. 20, the upper stage is placed between the microscopes 816 and 818 and between the microscopes 826 and 828.
  • the stage 750 is inserted, and the alignment marks 184 of the substrate 180 held on the lower surface of the upper stage 750 are observed with the upward microscopes 816 and 826 (step S107).
  • relative position information is recorded for the plurality of alignment marks 184 (step S108).
  • the relative position information of the substrate 180 mounted on the lower stage 740 and the relative position information of the substrate 180 held on the upper stage 750 are each three or more.
  • the alignment mark 184 is recorded. Based on the relative position information, alignment information that means a deviation to be compensated when the pair of substrates 180 are aligned is calculated (step S109).
  • the substrate 180 used for bonding is formed with elements and the like through a lot of processing and processing. For this reason, various distortions are generated in the substrate 180. Further, the strain distribution on one substrate 180 is not uniform. For this reason, when aligning the substrate 180, even if the positions of the specific alignment marks 184 corresponding to the pair of substrates 180 are matched, the positional deviation may be increased in a part of the substrate 180.
  • the displacement of the alignment marks 184 corresponding to each other on the pair of substrates 180 is minimized as a whole. Can be aligned. Therefore, in a state where the substrate 180 is aligned, for example, the lower stage 740 is raised toward the upper stage 750 to bond the pair of substrates 180 (step S610).
  • the substrate holder 190 is coupled by the fastener 192 as shown in FIG. 2d (step S111). Since the substrate holder 190 and the substrate 180 in which the aligned state is ensured can be easily transported while maintaining the state, they are unloaded from the aligning device 700 and transported to the pressurizing device (step S612). As described above, the effective alignment accuracy of the substrate 180 to be stacked can be improved.
  • the alignment mark 184 formed on the surface of the substrate 180 may not be observed. Therefore, in the substrate holder 190, the lower stage 740, the upper stage 750, or the like that moves integrally with the substrate 180, a reference mark is provided in an area that can be easily observed even when the substrate 180 is facing, while observing the reference mark. By operating the lower stage 740 or the upper stage 750, it is possible to maintain the same accuracy as when operating while observing the alignment mark 184. In this case, it is required to measure in advance the relative positions of the alignment mark 184 and the reference mark.
  • the lower stage 740 and the upper stage 750 move in two directions XY, but the moving method is not limited to this.
  • the alignment mark 184 when the alignment mark 184 is arranged on a straight line along the radial direction of the substrate 180, the lower stage 740 and the upper stage 750 may be moved linearly along the alignment mark 184. .
  • the substrate 180 on the lower stage 740 and the upper stage 750 so that the alignment direction of the alignment marks 184 is the same as the moving direction of the lower stage 740 and the upper stage 750 toward the microscope, The alignment mark 184 can be detected simultaneously with the movement of the lower stage 740 and the upper stage 750.
  • the laminated substrate manufacturing apparatus 600 is exemplified.
  • the alignment apparatus 700 and the method of the present invention are used in an exposure apparatus used for photolithography in the process of manufacturing a semiconductor device, such as a substrate to be exposed and a reticle. It can also be used for positioning the pattern forming substrate.
  • a microscope for observing the substrate 180 held on the upper stage unit 310 or the like is disposed on the lower stage unit 320 or the like facing the substrate 180 and the substrate 180 held on the lower stage unit 320 or the like.
  • the microscope to be observed is disposed on the upper stage unit 310 or the like facing the microscope.
  • the arrangement of the microscope is not limited to this.
  • a microscope for observing the substrate 180 held on the upper stage unit 310 or the like is arranged on the same upper stage unit 310 or the like, and a microscope for observing the substrate 180 held on the lower stage unit 320 or the like is arranged on the same lower stage unit 320 or the like May be.
  • the microscope lens arranged on the upper stage unit 310 is arranged to face upward
  • the microscope lens arranged on the lower stage unit 320 is arranged to face downward.
  • 100 laminated substrate manufacturing system 101 housing, 102 room temperature section, 111, 112, 113 substrate cassette, 120 control panel, 122 calibration control section, 124 alignment control section, 130 pre-aligner, 142, 210 heat insulation wall, 144, 222, 224 shutter, 160 substrate holder rack, 171, 172, 230, 390 robot arm, 180 substrate, 182 notch, 184 alignment mark, 186 element area, 190 substrate holder, 191 groove, 192 fastener, 202 high temperature part, 220 air lock , 240 Pressurization part, 300 Alignment part, 301 Frame, 302 Top plate, 303 Bottom plate, 304, 374 Column, 306 Bottom plate, 310 Upper stage part, 311 Spacer, 312, 322 Main stay 314, 324 Substage, 316, 326, 367 Reflector, 318, 328, 376, 378 Microscope, 320 Lower stage part, 321 Reference mark, 323 Through hole, 329 Vertical actuator, 330 Measuring part, 332, 334,

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

A substrate aligning apparatus is provided with: a first stage which shifts in the surface direction of a substrate while holding one of a pair of substrates facing each other; a second stage which holds the other substrate of the pair of substrates; a first microscope which observes an alignment mark of the substrate held by the second stage; a second microscope which observes an alignment mark of the substrate held by the first stage; a calibration indicator observed from both the first microscope and the second microscope; and an alignment control section which aligns the pair of substrates, based on the relative positions of the first microscope and the second microscope obtained by observing the calibration indicator by the first microscope and the second microscope, first positional information which indicates the position of the alignment mark observed by the second microscope, and second positional information which indicates the position of the alignment mark observed by the first microscope.

Description

基板位置合わせ装置、基板位置合わせ方法および積層型半導体の製造方法Substrate alignment apparatus, substrate alignment method, and laminated semiconductor manufacturing method
 本発明は、基板位置合わせ装置、基板位置合わせ方法および積層型半導体の製造方法に関する。本出願は、下記の日本出願に関連し、下記の日本出願からの優先権を主張する出願である。文献の参照による組み込みが認められる指定国については、下記の出願に記載された内容を参照により本出願に組み込み、本出願の一部とする。
 1.特願2008-221265  出願日 2008年8月29日
 2.特願2008-256804  出願日 2008年10月1日
The present invention relates to a substrate alignment apparatus, a substrate alignment method, and a stacked semiconductor manufacturing method. This application is related to the following Japanese application and claims priority from the following Japanese application. For designated countries where incorporation by reference of documents is permitted, the contents described in the following application are incorporated into this application by reference and made a part of this application.
1. Japanese Patent Application No. 2008-212265 Filing Date August 29, 2008 Patent application 2008-256804 Application date October 1, 2008
 各々に素子が形成された基板を積層した積層型半導体装置がある(特許文献1、2参照)。積層型半導体装置の製造過程には、互いに平行に保持された一対の基板を、複数の顕微鏡により個々に観察しつつ位置合わせして貼り合わせる段階がある(特許文献3参照)。また、積層する一対の基板を相互に位置合わせする他の方法および装置がある(特許文献4参照)。 There are stacked semiconductor devices in which substrates each having an element formed thereon are stacked (see Patent Documents 1 and 2). The manufacturing process of the stacked semiconductor device includes a step of aligning and bonding a pair of substrates held in parallel with each other while individually observing with a plurality of microscopes (see Patent Document 3). In addition, there is another method and apparatus for aligning a pair of stacked substrates with each other (see Patent Document 4).
特開平11-261000号公報JP-A-11-261000 特開2007-103225号公報JP 2007-103225 A 特開2005-251972号公報JP 2005-251972 A 米国特許第6214692号明細書US Pat. No. 6,214,692
 積層型半導体装置の製造過程における位置合わせは、基板上の素子の線幅と同程度に高い精度が求められる。このため、位置合わせに用いる顕微鏡には、光学解像度に加えて、顕微鏡自体の位置についても高い精度が要求される。ここで、特許文献2に記載された方法は、基板各々に形成された2点の基準マークを一致させることにより一対の基板を相互に位置合わせしている。しかしながら、熱処理等を経て回路を形成された基板では、基板上の回路の位置精度が均一であるとは限らない。このため、基板上の特定の2点で高精度に位置合わせしても、基板の他の部分では位置合わせ精度が低下する場合があった。 Alignment in the manufacturing process of a stacked semiconductor device is required to be as accurate as the line width of elements on the substrate. For this reason, in addition to optical resolution, the microscope used for alignment is required to have high accuracy with respect to the position of the microscope itself. Here, the method described in Patent Document 2 aligns a pair of substrates with each other by matching two reference marks formed on each substrate. However, in a substrate on which a circuit is formed through heat treatment or the like, the positional accuracy of the circuit on the substrate is not always uniform. For this reason, even if alignment is performed with high precision at two specific points on the substrate, alignment accuracy may be deteriorated in other portions of the substrate.
 そこで本発明の1つの側面においては、上記の課題を解決することのできる基板位置合わせ装置、基板位置合わせ方法および積層型半導体の製造方法を提供することを目的とする。この目的は請求の範囲における独立項に記載の特徴の組み合わせにより達成される。また従属項は本発明の更なる有利な具体例を規定する。 Therefore, an object of one aspect of the present invention is to provide a substrate alignment apparatus, a substrate alignment method, and a stacked semiconductor manufacturing method that can solve the above-described problems. This object is achieved by a combination of features described in the independent claims. The dependent claims define further advantageous specific examples of the present invention.
 本発明の第1の態様によると、互いに対向する一対の基板の一方を保持しつつ当該基板の面方向に移動する第1ステージと、一対の基板の他方を保持する第2ステージと、第2ステージに保持された基板のアラインメントマークを観察する第1顕微鏡と、第1ステージに保持された基板のアラインメントマークを観察する第2顕微鏡と、第1顕微鏡および第2顕微鏡から共通に観察される較正標識と、第1顕微鏡および第2顕微鏡により較正標識を観察することにより取得した第1顕微鏡および第2顕微鏡の相対位置、第2顕微鏡により観察したアラインメントマークの位置を示す第1位置情報、および、第1顕微鏡により観察したアラインメントマークの位置を示す第2位置情報に基づいて一対の基板を位置合わせする位置合わせ制御部とを備える基板位置合わせ装置が提供される。 According to the first aspect of the present invention, the first stage that moves in the surface direction of the substrate while holding one of the pair of substrates facing each other, the second stage that holds the other of the pair of substrates, and the second A first microscope for observing the alignment mark of the substrate held on the stage, a second microscope for observing the alignment mark of the substrate held on the first stage, and a calibration commonly observed from the first microscope and the second microscope A label, a relative position of the first microscope and the second microscope obtained by observing the calibration marker with the first microscope and the second microscope, first position information indicating a position of the alignment mark observed with the second microscope, and An alignment control unit that aligns a pair of substrates based on second position information indicating the position of the alignment mark observed with the first microscope Substrate alignment apparatus comprising a are provided.
 本発明の他の側面においては、互いに位置合わせされる二つの基板に形成された複数のアラインメントマークを検出する検出部と、二つの基板のそれぞれを保持する一対のステージと、二つのステージをそれぞれ移動させる駆動部と、駆動部の駆動を制御する制御部であって、検出部で検出された二つの基板のアラインメントマークの位置に基づいて、二つの基板の間で対応するアラインメントマークの位置ずれが全体で最小となるように、二つの基板を位置合わせすべく駆動部を駆動させる制御部とを備え、制御部は、一対のステージに保持された二つの基板の三つ以上のアラインメントマークの位置が検出部で検出されるように一対のステージを移動させるべく駆動部を駆動させる基板位置合わせ装置が提供される。 In another aspect of the present invention, a detection unit that detects a plurality of alignment marks formed on two substrates that are aligned with each other, a pair of stages that hold the two substrates, and two stages, respectively A drive unit to be moved, and a control unit for controlling the drive of the drive unit, and based on the position of the alignment mark of the two substrates detected by the detection unit, the displacement of the corresponding alignment mark between the two substrates And a control unit that drives the drive unit to align the two substrates, and the control unit includes three or more alignment marks of the two substrates held on the pair of stages. There is provided a substrate alignment apparatus that drives a drive unit to move a pair of stages so that the position is detected by a detection unit.
 本発明の他の側面においては、上記いずれかの基板位置合わせ装置と、基板位置合わせ装置において位置合わせされた一対の基板を加圧して接合する接合装置とを備える積層型半導体装置の製造方法が提供される。 In another aspect of the present invention, there is provided a method for manufacturing a stacked semiconductor device comprising any one of the above-described substrate alignment apparatuses and a bonding apparatus that pressurizes and bonds a pair of substrates aligned in the substrate alignment apparatus. Provided.
 本発明の他の側面においては、互いに対向する一対の基板の一方を、当該基板の面方向に移動する第1ステージに保持させる第1保持段階と、一対の基板の他方を第2ステージに保持させる第2保持段階と、第1顕微鏡および第2顕微鏡により観察して、第1顕微鏡および第2顕微鏡の相対位置を検出する較正段階と、第1ステージに保持された基板のアラインメントマークを第2顕微鏡により観察して、当該アラインメントマークの位置を示す第1位置情報を検出する第1検出段階と、第2ステージに保持された基板のアラインメントマークを第1顕微鏡により観察して、当該アラインメントマークの位置を示す第2位置情報を検出する第2検出段階と、第1位置情報および第2位置情報の差分に応じて一対の基板を位置合わせする位置合わせ段階とを含む基板位置合わせ方法が提供される。 In another aspect of the present invention, a first holding stage in which one of a pair of substrates facing each other is held on a first stage that moves in the surface direction of the substrate, and the other of the pair of substrates is held on a second stage. A second holding stage, a calibration stage for observing with the first microscope and the second microscope to detect a relative position between the first microscope and the second microscope, and a second alignment mark of the substrate held on the first stage. The first detection stage for detecting the first position information indicating the position of the alignment mark observed with a microscope, and the alignment mark of the substrate held on the second stage are observed with the first microscope, and the alignment mark of the alignment mark is detected. A second detection stage for detecting second position information indicating the position, and a position for aligning the pair of substrates according to the difference between the first position information and the second position information; Substrate alignment method comprising the Align step is provided.
 本発明の他の側面においては、一対の基板のそれぞれが支持された一対のステージの一方を移動させて、当該ステージに保持された基板を一対の顕微鏡の間に差し出し、当該基板を一対の顕微鏡の一方で観察することにより、当該基板に形成された3以上のアラインメントマークの当該一方の顕微鏡に対する相対位置を計測する第1計測段階と、一対のステージの他方を移動させて、当該ステージに保持された基板を一対の顕微鏡の間に差し出し、当該基板を一対の顕微鏡の他方で観察することにより、当該基板に形成された3以上のアラインメントマークの当該他方の顕微鏡に対する相対位置を計測する第2計測段階と、一対の顕微鏡に対するアラインメントマークの相対位置に基づいて、一対の基板の間で対応するアラインメントマークの位置ずれが全体で最小になるように一対のステージを移動させる位置合わせ段階とを備える基板位置合わせ方法が提供される。 In another aspect of the present invention, one of the pair of stages on which each of the pair of substrates is supported is moved, the substrate held on the stage is inserted between the pair of microscopes, and the substrate is paired with the pair of microscopes. The first measurement stage for measuring the relative position of the three or more alignment marks formed on the substrate with respect to the one microscope and the other of the pair of stages are moved and held on the stage. Secondly, the relative position of the three or more alignment marks formed on the substrate with respect to the other microscope is measured by inserting the formed substrate between the pair of microscopes and observing the substrate with the other of the pair of microscopes. Based on the measurement stage and the relative position of the alignment mark relative to the pair of microscopes, the corresponding alignment mark between the pair of substrates Substrate alignment method and an alignment step of moving the pair of the stage so that the position deviation of a minimum throughout is provided.
 なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではなく、これらの特徴群のサブコンビネーションもまた、発明となりうる。 Note that the above summary of the invention does not enumerate all the necessary features of the present invention, and sub-combinations of these feature groups can also be the invention.
積層基板製造システム100の構造を模式的に示す平面図である。1 is a plan view schematically showing the structure of a multilayer substrate manufacturing system 100. FIG. 基板180の状態の変遷を模式的に示す図である。It is a figure which shows typically the transition of the state of the board | substrate 180. FIG. 基板180の状態の変遷を模式的に示す図である。It is a figure which shows typically the transition of the state of the board | substrate 180. FIG. 基板180の状態の変遷を模式的に示す図である。It is a figure which shows typically the transition of the state of the board | substrate 180. FIG. 基板180の状態の変遷を模式的に示す図である。It is a figure which shows typically the transition of the state of the board | substrate 180. FIG. 基板180の状態の変遷を模式的に示す図である。It is a figure which shows typically the transition of the state of the board | substrate 180. FIG. アラインメントマーク184の形態を模式的に示す図である。It is a figure which shows the form of the alignment mark 184 typically. アラインメント部300の構造を模式的に示す断面図である。3 is a cross-sectional view schematically showing the structure of the alignment unit 300. FIG. 図4に示すアラインメント部300の一部を拡大して示す図である。It is a figure which expands and shows a part of alignment part 300 shown in FIG. 基準標識321の構造を示す断面図である。It is sectional drawing which shows the structure of the reference | standard label | marker 321. FIG. 基準標識321の他の構造を示す断面図である。It is sectional drawing which shows the other structure of the reference | standard label | marker 321. FIG. アラインメント部300におけるアラインメントの手順を示す流れ図である。5 is a flowchart showing an alignment procedure in the alignment unit 300. アラインメント部300の動作を、図4に対照して示す図である。FIG. 5 is a diagram showing the operation of the alignment unit 300 in contrast to FIG. 4. 図9に示す状態のアラインメント部300の一部を拡大して示す図である。It is a figure which expands and shows a part of alignment part 300 of the state shown in FIG. アラインメント部300の次の動作を示す図である。FIG. 10 is a diagram illustrating the next operation of the alignment unit 300. アラインメント部300のまた次の動作を示す図である。It is a figure which shows the next operation | movement of the alignment part 300. FIG. 他のアラインメント部300の構造を示す斜視図である。It is a perspective view which shows the structure of the other alignment part 300. FIG. アラインメント部300の平面図である。4 is a plan view of an alignment unit 300. FIG. アラインメント部300の動作を示す側面図である。6 is a side view showing the operation of the alignment unit 300. FIG. アラインメント部300の他の動作を示す側面図である。FIG. 11 is a side view showing another operation of the alignment unit 300. アラインメント部300のまた他の動作を示す側面図である。FIG. 11 is a side view showing still another operation of the alignment unit 300. アラインメント部300の更に他の動作を示す側面図である。FIG. 11 is a side view showing still another operation of the alignment unit 300. 他の積層基板製造装置600全体の構造を模式的に示す平面図である。It is a top view which shows typically the structure of the other laminated substrate manufacturing apparatus 600 whole. 位置合わせ装置700の構造を示す斜視図である。4 is a perspective view showing a structure of an alignment apparatus 700. FIG. 位置合わせ装置700の動作のひとつを示す斜視図である。7 is a perspective view showing one operation of the alignment apparatus 700. FIG. 位置合わせ装置700の他の動作を示す斜視図である。FIG. 11 is a perspective view showing another operation of alignment apparatus 700. 位置合わせ装置700のまた他の動作を示す斜視図である。FIG. 12 is a perspective view showing still another operation of the alignment apparatus 700. 基板180の位置合わせの手順を示す流れ図である。5 is a flowchart showing a procedure for aligning a substrate 180; アラインメントマーク184の観察を模式的に示す図である。It is a figure which shows typically observation of the alignment mark 184. FIG. アラインメントマーク184の観察を模式的に示す図である。It is a figure which shows typically observation of the alignment mark 184. FIG. アラインメントマーク184の観察を模式的に示す図である。It is a figure which shows typically observation of the alignment mark 184. FIG. アラインメントマーク184の観察を模式的に示す図である。It is a figure which shows typically observation of the alignment mark 184. FIG. アラインメントマーク184の観察を模式的に示す図である。It is a figure which shows typically observation of the alignment mark 184. FIG. アラインメントマーク184の観察を模式的に示す図である。It is a figure which shows typically observation of the alignment mark 184. FIG.
 以下、発明の実施の形態を通じて本発明の(一)側面を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではなく、また実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 Hereinafter, the (1) aspect of the present invention will be described through embodiments of the invention. However, the following embodiments do not limit the invention according to the scope of claims, and the features described in the embodiments are as follows. Not all combinations are essential for the solution of the invention.
 図1は、積層基板製造システム100の全体構造を模式的に示す平面図である。積層基板製造システム100は、共通の筐体101の内部に形成された常温部102および高温部202を含む。 FIG. 1 is a plan view schematically showing the overall structure of the multilayer substrate manufacturing system 100. The multilayer substrate manufacturing system 100 includes a normal temperature part 102 and a high temperature part 202 formed in a common housing 101.
 常温部102は、筐体101の外部に面して、複数の基板カセット111、112、113と、制御盤120とを有する。制御盤120は、較正制御部122および位置合わせ制御部124を含む。また、積層基板製造システム100全体の動作を制御する制御部も含む。更に、制御盤120は、積層基板製造システム100の電源投入、各種設定等をする場合にユーザが外部から操作する操作部を有する。 The room temperature unit 102 has a plurality of substrate cassettes 111, 112, 113 and a control panel 120 facing the outside of the housing 101. The control panel 120 includes a calibration control unit 122 and an alignment control unit 124. Moreover, the control part which controls operation | movement of the multilayer substrate manufacturing system 100 whole is also included. Furthermore, the control panel 120 has an operation unit that is operated by the user from the outside when the multilayer substrate manufacturing system 100 is turned on, various settings, and the like are performed.
 基板カセット111、112、113は、積層基板製造システム100において接合される基板180、あるいは、積層基板製造システム100において接合された基板180を収容する。また、基板カセット111、112、113は、筐体101に対して脱着自在に装着される。これにより、複数の基板180を一括して積層基板製造システム100に装填できる。また、積層基板製造システム100において接合された基板180を一括して回収できる。 The substrate cassettes 111, 112, and 113 accommodate the substrates 180 bonded in the multilayer substrate manufacturing system 100 or the substrates 180 bonded in the multilayer substrate manufacturing system 100. The substrate cassettes 111, 112, and 113 are detachably attached to the housing 101. As a result, a plurality of substrates 180 can be loaded into the laminated substrate manufacturing system 100 at once. Further, the substrates 180 bonded in the multilayer substrate manufacturing system 100 can be collected at a time.
 常温部102において、筐体101の内側には、プリアライナ130、アラインメント部300、基板ホルダラック160と、一対のロボットアーム171、172とを備える。筐体101の内部は、積層基板製造システム100が設置された環境の室温と略同じ特定の温度が維持されるように温度管理される。 The room temperature unit 102 includes a pre-aligner 130, an alignment unit 300, a substrate holder rack 160, and a pair of robot arms 171 and 172 inside the housing 101. The inside of the housing 101 is temperature-controlled so that a specific temperature substantially the same as the room temperature of the environment in which the multilayer substrate manufacturing system 100 is installed is maintained.
 アラインメント部300は高精度であるが故に調整範囲が狭いので、プリアライナ130は、その狭い調整範囲に基板180が収まるように、個々の基板180の位置を仮合わせする。これにより、アラインメント部300における位置決めを確実にすることができる。 Since the alignment unit 300 is highly accurate and has a narrow adjustment range, the pre-aligner 130 temporarily aligns the positions of the individual substrates 180 so that the substrates 180 are within the narrow adjustment range. Thereby, the positioning in the alignment part 300 can be ensured.
 アラインメント部300は、互いに対向する上ステージ部310および下ステージ部320と、互いに直交して配置された一対の計測部330とを含む。アラインメント部300において、上ステージ部310および下ステージ部320は、各々基板180または基板180を保持した基板ホルダ190を搬送する。計測部330は、移動する上ステージ部310または下ステージ部320の位置を基板180の面方向について計測する。 The alignment unit 300 includes an upper stage unit 310 and a lower stage unit 320 that face each other, and a pair of measurement units 330 that are arranged orthogonal to each other. In the alignment unit 300, the upper stage unit 310 and the lower stage unit 320 each transport the substrate 180 or the substrate holder 190 that holds the substrate 180. The measuring unit 330 measures the position of the moving upper stage unit 310 or the lower stage unit 320 in the surface direction of the substrate 180.
 また、アラインメント部300を包囲して断熱壁142およびシャッタ144が設けられる。断熱壁142およびシャッタ144に包囲された空間は空調機等に連通して温度管理され、アラインメント部300における位置合わせ精度を維持する。アラインメント部300においては、一対の基板180が相互に位置合わせされる。アラインメント部300の詳細な構造と動作については、図4以下を参照して後述する。 Further, a heat insulating wall 142 and a shutter 144 are provided so as to surround the alignment unit 300. The space surrounded by the heat insulating wall 142 and the shutter 144 is communicated with an air conditioner or the like, and the temperature is managed, and the alignment accuracy in the alignment unit 300 is maintained. In the alignment unit 300, the pair of substrates 180 are aligned with each other. The detailed structure and operation of the alignment unit 300 will be described later with reference to FIG.
 基板ホルダラック160は、複数の基板ホルダ190を収容して待機させる。基板ホルダ190は、基板180を一枚ずつ保持して、基板180の取り扱いを容易にする。基板ホルダ190による基板180の保持は、例えば静電吸着による。また、基板ホルダラック160は、基板取り外し部を含む。基板取り外し部は、後述する加圧部240から搬出された基板ホルダ190から、当該基板ホルダ190に挟まれた基板180を取り出す。 The substrate holder rack 160 accommodates a plurality of substrate holders 190 and stands by. The substrate holder 190 holds the substrates 180 one by one to facilitate handling of the substrates 180. The substrate 180 is held by the substrate holder 190 by, for example, electrostatic adsorption. Further, the substrate holder rack 160 includes a substrate removal unit. The substrate removing unit takes out the substrate 180 sandwiched between the substrate holders 190 from the substrate holder 190 carried out from the pressurizing unit 240 described later.
 なお、積層基板製造システム100に装填される基板180は、単体のシリコンウエハ、化合物半導体ウエハ、ガラス基板等の他、それらに素子、回路、端子等が形成されたものでもよい。また、装填された基板180が、既に複数のウエハを積層して形成された積層基板である場合もある。 The substrate 180 loaded in the multilayer substrate manufacturing system 100 may be a single silicon wafer, compound semiconductor wafer, glass substrate, or the like, in which elements, circuits, terminals, and the like are formed. In addition, the loaded substrate 180 may be a laminated substrate that is already formed by laminating a plurality of wafers.
 一対のロボットアーム171、172のうち、基板カセット111、112、113に近い側に配置されたロボットアーム171は、基板カセット111、112、113、プリアライナ130およびアラインメント部300の間で基板180を搬送する。また、ロボットアーム171は、接合する基板180の一方を裏返す機能も有する。これにより、基板180において回路、素子、端子等が形成された面を対向させて接合することができる。 Of the pair of robot arms 171, 172, the robot arm 171 disposed on the side closer to the substrate cassettes 111, 112, 113 transports the substrate 180 between the substrate cassettes 111, 112, 113, the pre-aligner 130, and the alignment unit 300. To do. The robot arm 171 also has a function of turning over one of the substrates 180 to be joined. Accordingly, the surfaces of the substrate 180 on which circuits, elements, terminals, and the like are formed can be opposed to each other.
 基板カセット111、112、113から遠い側に配置されたロボットアーム172は、アラインメント部300、基板ホルダラック160およびエアロック220の間で基板180および基板ホルダ190を搬送する。また、ロボットアーム172は、基板ホルダラック160に対する基板ホルダ190の搬入および搬出も担う。 The robot arm 172 arranged on the side far from the substrate cassettes 111, 112, 113 carries the substrate 180 and the substrate holder 190 between the alignment unit 300, the substrate holder rack 160 and the air lock 220. The robot arm 172 is also responsible for loading and unloading the substrate holder 190 with respect to the substrate holder rack 160.
 高温部202は、断熱壁210、エアロック220、ロボットアーム230および複数の加圧部240を有する。断熱壁210は、高温部202を包囲して、高温部202の高い内部温度を維持すると共に、高温部202の外部への熱輻射を遮断する。これにより、高温部202の熱が常温部102に及ぼす影響を抑制できる。 The high temperature unit 202 includes a heat insulating wall 210, an air lock 220, a robot arm 230, and a plurality of pressure units 240. The heat insulating wall 210 surrounds the high temperature part 202 to maintain a high internal temperature of the high temperature part 202 and to block heat radiation to the outside of the high temperature part 202. Thereby, the influence which the heat of the high temperature part 202 has on the normal temperature part 102 can be suppressed.
 ロボットアーム230は、加圧部240のいずれかとエアロック220との間で基板180および基板ホルダ190を搬送する。エアロック220は、常温部102側と高温部202側とに、交互に開閉するシャッタ222、224を有する。 The robot arm 230 conveys the substrate 180 and the substrate holder 190 between one of the pressurizing units 240 and the air lock 220. The air lock 220 includes shutters 222 and 224 that open and close alternately on the normal temperature part 102 side and the high temperature part 202 side.
 基板180および基板ホルダ190が常温部102から高温部202に搬入される場合、まず、常温部102側のシャッタ222が開かれ、ロボットアーム172が基板180および基板ホルダ190をエアロック220に搬入する。次に、常温部102側のシャッタ222が閉じられ、高温部202側のシャッタ224が開かれる。 When the substrate 180 and the substrate holder 190 are carried into the high temperature unit 202 from the normal temperature unit 102, first, the shutter 222 on the normal temperature unit 102 side is opened, and the robot arm 172 carries the substrate 180 and the substrate holder 190 into the air lock 220. . Next, the shutter 222 on the normal temperature part 102 side is closed, and the shutter 224 on the high temperature part 202 side is opened.
 続いて、ロボットアーム230が、エアロック220から基板180および基板ホルダ190を搬出して、加圧部240のいずれかに装入する。加圧部240は、基板ホルダ190に挟まれた状態で加圧部240に搬入された基板180を熱間で加圧する。これにより基板180は恒久的に接合される。 Subsequently, the robot arm 230 unloads the substrate 180 and the substrate holder 190 from the air lock 220 and inserts them into one of the pressurizing units 240. The pressurizing unit 240 presses the substrate 180 carried into the pressurizing unit 240 while being sandwiched between the substrate holders 190 with heat. Thereby, the substrate 180 is permanently bonded.
 高温部202から常温部102に基板180および基板ホルダ190を搬出する場合は、上記の一連の動作を逆順で実行する。これらの一連の動作により、高温部202の内部雰囲気を常温部102側に漏らすことなく、基板180および基板ホルダ190を高温部202に搬入または搬出できる。 When carrying out the substrate 180 and the substrate holder 190 from the high temperature part 202 to the normal temperature part 102, the above series of operations are executed in reverse order. Through a series of these operations, the substrate 180 and the substrate holder 190 can be carried into or out of the high temperature part 202 without leaking the internal atmosphere of the high temperature part 202 to the normal temperature part 102 side.
 このように、積層基板製造システム100内の多くの領域において、基板ホルダ190は、基板180を保持した状態でロボットアーム172、230、上ステージ部310および下ステージ部320に搬送される。基板180を保持した基板ホルダ190が搬送される場合、ロボットアーム172、230は、真空吸着、静電吸着等により基板ホルダ190を吸着して保持する。 Thus, in many areas in the multilayer substrate manufacturing system 100, the substrate holder 190 is transferred to the robot arms 172, 230, the upper stage unit 310, and the lower stage unit 320 while holding the substrate 180. When the substrate holder 190 holding the substrate 180 is transported, the robot arms 172 and 230 attract and hold the substrate holder 190 by vacuum suction, electrostatic suction or the like.
 図2a、図2b、図2c、図2dおよび図2eは、積層基板製造システム100における基板180の状態の変遷を模式的に示す図である。図2aに示すように、積層基板製造システム100が稼動を開始した当初、基板180の各々は、例えば基板カセット111、112のいずれかに個別に収容される。また、基板ホルダ190も、基板ホルダラック160に個別に収容されている。 2a, 2b, 2c, 2d, and 2e are diagrams schematically showing the transition of the state of the substrate 180 in the multilayer substrate manufacturing system 100. FIG. As shown in FIG. 2a, at the beginning of the operation of the multilayer substrate manufacturing system 100, each of the substrates 180 is individually accommodated in one of the substrate cassettes 111 and 112, for example. The substrate holder 190 is also individually accommodated in the substrate holder rack 160.
 積層基板製造システム100が稼動を開始すると、ロボットアーム171により基板180が一枚ずつ搬入され、プリアライナ130においてプリアラインメントされた後に、基板ホルダ190に搭載される。こうして、基板180は、それぞれ基板ホルダ190により保持される。 When the multilayer substrate manufacturing system 100 starts operation, the substrate 180 is loaded one by one by the robot arm 171, pre-aligned by the pre-aligner 130, and then mounted on the substrate holder 190. Thus, the substrates 180 are each held by the substrate holder 190.
 次に、図2bに示すように、それぞれが基板180を保持した一対の基板ホルダ190が用意され、図2cに示すように、基板180が対向するようにアラインメント部300に装填される。アラインメント部300において位置合わせされた基板180および基板ホルダ190は、図2dに示すように、基板ホルダ190の側面に形成された溝191に嵌められた複数の留め具192により連結されて、位置決めされた状態を保持する。連結された基板180および基板ホルダ190は、一体的に搬送されて加圧部240に装入される。 Next, as shown in FIG. 2b, a pair of substrate holders 190 each holding the substrate 180 is prepared, and as shown in FIG. 2c, the substrate 180 is loaded into the alignment unit 300 so as to face each other. As shown in FIG. 2d, the substrate 180 and the substrate holder 190 aligned in the alignment unit 300 are connected and positioned by a plurality of fasteners 192 fitted in grooves 191 formed on the side surface of the substrate holder 190. Hold the state. The connected substrate 180 and substrate holder 190 are transported integrally and inserted into the pressure unit 240.
 加圧部240において加熱および加圧されることにより、基板180は互いに恒久的に接合されて積層基板となる。その後、基板180および基板ホルダ190は、加圧部240から搬出されて、基板ホルダラック160の基板取り外し部において分離される。 When heated and pressurized in the pressurizing unit 240, the substrates 180 are permanently bonded to each other to form a laminated substrate. Thereafter, the substrate 180 and the substrate holder 190 are unloaded from the pressure unit 240 and separated at the substrate removal unit of the substrate holder rack 160.
 基板ホルダ190から取り出された基板180は、ロボットアーム172、171並びに上ステージ部310および下ステージ部320により、例えば基板カセット113に収容される。基板180を取り出された基板ホルダ190は、基板ホルダラック160に戻されて待機する。 The substrate 180 taken out from the substrate holder 190 is accommodated in, for example, the substrate cassette 113 by the robot arms 172 and 171 and the upper stage unit 310 and the lower stage unit 320. The substrate holder 190 from which the substrate 180 has been taken out is returned to the substrate holder rack 160 and stands by.
 図3は、積層基板の材料としての基板180の形態を模式的に示す平面図である。図示のように、基板180には、複数の素子領域186が形成されると共に、素子領域186の各々の近傍にアラインメントマーク184が配される。また、基板180は、縁部の特定箇所に形成されたノッチ182を有する。ノッチ182は、基板180の結晶配向性等に対応して配されており、全体として略円形をなす基板180における物性および配置の異方性を示す。 FIG. 3 is a plan view schematically showing the form of the substrate 180 as a material of the laminated substrate. As illustrated, a plurality of element regions 186 are formed on the substrate 180, and alignment marks 184 are disposed in the vicinity of each of the element regions 186. Further, the substrate 180 has a notch 182 formed at a specific portion of the edge. The notches 182 are arranged corresponding to the crystal orientation of the substrate 180 and the like, and show the physical properties and the anisotropy of the arrangement in the substrate 180 having a substantially circular shape as a whole.
 アラインメントマーク184は、基板180に素子領域186を形成する場合に指標として用いられる。このため、アラインメントマーク184の位置は、基板180の変形等により変位した素子領域186の位置等に密接に関連する。従って、基板180を積層する場合に、アラインメントマーク184を位置合わせの指標として用いることにより、個々の基板180に生じている歪みを効果的に補償できる。 The alignment mark 184 is used as an index when the element region 186 is formed on the substrate 180. For this reason, the position of the alignment mark 184 is closely related to the position of the element region 186 displaced by the deformation of the substrate 180 or the like. Therefore, when the substrates 180 are stacked, the distortion generated in each substrate 180 can be effectively compensated by using the alignment mark 184 as an alignment index.
 なお、図中では素子領域186およびアラインメントマーク184を大きく描いているが、300mmφ等の大型の基板180に形成される素子領域186の数は数百以上にも及ぶ。また、それに応じて、基板180に配されるアラインメントマーク184の数も多くなる。更に、アラインメントマーク184は、基板180に形成された配線、バンプ、スクライブライン等で代用することもできる。 In the drawing, the element regions 186 and the alignment marks 184 are drawn large, but the number of element regions 186 formed on a large substrate 180 such as 300 mmφ is several hundred or more. Accordingly, the number of alignment marks 184 arranged on the substrate 180 also increases. Furthermore, the alignment mark 184 can be substituted by wiring, bumps, scribe lines, etc. formed on the substrate 180.
 図4は、アラインメント部300の構造を模式的に示す断面図である。アラインメント部300は、枠体301の内側に配された上ステージ部310および下ステージ部320を含む。また、図4では、一方の計測部330も見えている。計測部330は、互いに高さが異なる干渉計332、334を含む。 FIG. 4 is a cross-sectional view schematically showing the structure of the alignment unit 300. The alignment unit 300 includes an upper stage unit 310 and a lower stage unit 320 disposed inside the frame body 301. Also, in FIG. 4, one measurement unit 330 is also visible. The measurement unit 330 includes interferometers 332 and 334 having different heights.
 枠体301は、互いに平行で水平な天板302および底板306と、天板302および底板306を結合する複数の支柱304とを備える。天板302、支柱304および底板306は、それぞれ高剛性な材料により形成され、内部機構の動作に係る反力が作用した場合も変形を生じない。 The frame body 301 includes a top plate 302 and a bottom plate 306 that are parallel to each other and a plurality of columns 304 that couple the top plate 302 and the bottom plate 306 together. The top plate 302, the support column 304, and the bottom plate 306 are each formed of a highly rigid material, and are not deformed even when a reaction force related to the operation of the internal mechanism is applied.
 上ステージ部310は、天板302の下面に順次懸架された、駆動部350、サブステージ314、スペーサ311およびメインステージ312を含む。サブステージ314は、上反射鏡316および上顕微鏡318を懸架する。メインステージ312は、基板180を保持した基板ホルダ190を吸着して保持する。 The upper stage unit 310 includes a drive unit 350, a substage 314, a spacer 311 and a main stage 312 that are sequentially suspended on the lower surface of the top plate 302. The substage 314 suspends the upper reflecting mirror 316 and the upper microscope 318. The main stage 312 sucks and holds the substrate holder 190 that holds the substrate 180.
 駆動部350は、サブステージ314を、図中に矢印で示すX方向およびY方向にそれぞれ移動させるX駆動部351およびY駆動部352を含む。また、サブステージ314は、スペーサ311を介してメインステージ312と一体的に結合されている。これにより、上反射鏡316および上顕微鏡318は、メインステージ312に保持された基板180に対して一定の相対位置を維持しつつ、基板180と共にX方向およびY方向に移動する。 The driving unit 350 includes an X driving unit 351 and a Y driving unit 352 that move the substage 314 in the X direction and the Y direction indicated by arrows in the drawing. Further, the substage 314 is integrally coupled to the main stage 312 via the spacer 311. Accordingly, the upper reflecting mirror 316 and the upper microscope 318 move in the X direction and the Y direction together with the substrate 180 while maintaining a certain relative position with respect to the substrate 180 held on the main stage 312.
 下ステージ部320は、底板306の上面に搭載された、駆動部340、サブステージ324およびメインステージ322を含む。サブステージ324は、下反射鏡326および下顕微鏡328を搭載する。メインステージ322は、基板180を保持した基板ホルダ190を吸着して保持する。 The lower stage unit 320 includes a drive unit 340, a substage 324, and a main stage 322 mounted on the upper surface of the bottom plate 306. The substage 324 includes a lower reflecting mirror 326 and a lower microscope 328. The main stage 322 sucks and holds the substrate holder 190 that holds the substrate 180.
 また、下ステージ部320において、下顕微鏡328は、垂直アクチュエータ329を介してサブステージ324に搭載される。これにより、下顕微鏡328は、垂直方向に限ってサブステージ324に対して昇降する。また、メインステージ322には基準標識321も搭載される。 In the lower stage unit 320, the lower microscope 328 is mounted on the substage 324 via the vertical actuator 329. As a result, the lower microscope 328 moves up and down with respect to the substage 324 only in the vertical direction. A reference mark 321 is also mounted on the main stage 322.
 駆動部340は、サブステージ324を、図中に矢印で示すX方向、Y方向およびZ方向にそれぞれ移動させるX駆動部341、Y駆動部342およびZ駆動部348を含む。また、サブステージ324を水平面内で回転させるθ駆動部344と、サブステージ324を揺動させるφ駆動部346とを含む。なお、Z駆動部348は、サブステージ324およびメインステージ322の間に配され、上ステージ部310におけるスペーサ311に相当する機能を兼ねる。 The drive unit 340 includes an X drive unit 341, a Y drive unit 342, and a Z drive unit 348 that move the substage 324 in the X direction, the Y direction, and the Z direction indicated by arrows in the drawing. Further, a θ drive unit 344 that rotates the substage 324 in a horizontal plane and a φ drive unit 346 that swings the substage 324 are included. Note that the Z drive unit 348 is disposed between the substage 324 and the main stage 322, and also has a function corresponding to the spacer 311 in the upper stage unit 310.
 サブステージ324は、Z駆動部348によりメインステージ322と一体的に結合される。これにより、下反射鏡326および下顕微鏡328は、メインステージ322に保持された基板180に対して一定の相対位置を維持しつつ、基板180と共に回転し、揺動し、且つ、X方向、Y方向およびZ方向に移動する。 The sub-stage 324 is integrally coupled with the main stage 322 by the Z driving unit 348. Accordingly, the lower reflecting mirror 326 and the lower microscope 328 rotate and swing together with the substrate 180 while maintaining a certain relative position with respect to the substrate 180 held on the main stage 322, and in the X direction and Y direction. Move in the direction and Z direction.
 計測部330は、一対の干渉計332、334を含む。一方の干渉計332は、上ステージ部310の反射鏡316と同じ高さに配される。これにより、干渉計332は、反射鏡316を用いて、サブステージ314のX方向の位置を正確に計測する。なお、この図には現れない計測部330も同様の構造を有し、サブステージ314のY方向の位置を計測する。 Measure unit 330 includes a pair of interferometers 332 and 334. One interferometer 332 is disposed at the same height as the reflecting mirror 316 of the upper stage unit 310. Thereby, the interferometer 332 uses the reflecting mirror 316 to accurately measure the position of the substage 314 in the X direction. Note that the measurement unit 330 that does not appear in this figure has the same structure, and measures the position of the substage 314 in the Y direction.
 また、他方の干渉計334は、下ステージ部320の反射鏡326と同じ高さに配される。これにより、干渉計334は、反射鏡326を用いて、サブステージ324のX方向の位置を正確に計測する。この図には現れない計測部330も同様の構造を有し、サブステージ324のY方向の位置を計測する。 The other interferometer 334 is arranged at the same height as the reflecting mirror 326 of the lower stage unit 320. Thereby, the interferometer 334 accurately measures the position of the substage 324 in the X direction using the reflecting mirror 326. The measurement unit 330 that does not appear in this figure also has the same structure, and measures the position of the substage 324 in the Y direction.
 図5は、基準標識321を上顕微鏡318から観察できる位置に上ステージ部310および下ステージ部を移動させた状態で、基準標識321近傍を拡大して示す図である。図示のように、図示のように上ステージ部310および下ステージ部320を適切に移動させることにより、上顕微鏡318からも基準標識321を視野に入れることができる。 FIG. 5 is an enlarged view showing the vicinity of the reference sign 321 in a state where the upper stage part 310 and the lower stage part are moved to a position where the reference sign 321 can be observed from the upper microscope 318. As shown in the drawing, the reference marker 321 can be put into the field of view from the upper microscope 318 by appropriately moving the upper stage portion 310 and the lower stage portion 320 as shown in the drawing.
 また、基準標識321は、下顕微鏡328の直上においてメインステージ322に形成された貫通穴323の上に配される。これにより、基準標識321は、下顕微鏡328の視野にも入る。 Further, the reference mark 321 is disposed on the through hole 323 formed in the main stage 322 immediately above the lower microscope 328. As a result, the reference mark 321 also enters the field of view of the lower microscope 328.
 更に、基準標識321の高さは、下ステージ部320のメインステージ322に搭載された基板180の表面と同じ高さになるように調整される。また、図5に示す状態では、下顕微鏡328は垂直アクチュエータ329により降下させられ、基準標識321に焦点を合わせている。上顕微鏡318は、後述するように、下ステージ部320に搭載された基板180を観察する。従って、上記の状態では、上顕微鏡318および下顕微鏡328が、共に、同じ基準標識321に焦点を合わせた状態となる。 Further, the height of the reference mark 321 is adjusted to be the same height as the surface of the substrate 180 mounted on the main stage 322 of the lower stage unit 320. In the state shown in FIG. 5, the lower microscope 328 is lowered by the vertical actuator 329 and focuses on the reference mark 321. The upper microscope 318 observes the substrate 180 mounted on the lower stage unit 320, as will be described later. Therefore, in the above state, both the upper microscope 318 and the lower microscope 328 are in a state of focusing on the same reference mark 321.
 図6は、上記の基準標識321の構造を示す断面図である。基準標識321は、支持枠421、透明基板422および不透明薄膜423を含む。 FIG. 6 is a cross-sectional view showing the structure of the reference mark 321 described above. The reference mark 321 includes a support frame 421, a transparent substrate 422, and an opaque thin film 423.
 より具体的には、透明基板422としてガラス基板等を用いて形成できる。不透明薄膜423としては、金属膜等を例示できる。不透明薄膜423を薄くすることにより、上顕微鏡318から観察された場合も、下顕微鏡328から観察された場合も、観察される位置がずれない。なお、透明基板422を支持枠421を介してメインステージ322に搭載する構造とすることにより、基準標識321の実効的な高さを微妙に調節することができる。 More specifically, the transparent substrate 422 can be formed using a glass substrate or the like. An example of the opaque thin film 423 is a metal film. By thinning the opaque thin film 423, the observed position does not shift both when observed from the upper microscope 318 and when observed from the lower microscope 328. Note that the effective height of the reference mark 321 can be finely adjusted by adopting a structure in which the transparent substrate 422 is mounted on the main stage 322 via the support frame 421.
 また、基準標識321は透明基板422が露出した透明な領域を有する。これにより、基準標識321を透過して、その向こうに位置するアラインメントマーク184等を観察できるが、これについては図10を参照して後述する。 Also, the reference mark 321 has a transparent area where the transparent substrate 422 is exposed. Thus, the alignment mark 184 and the like positioned therethrough can be observed through the reference mark 321, which will be described later with reference to FIG.
 図7は、基準標識321の他の構造を示す断面図である。この基準標識321は、ナイフエッジ427を有する不透明基板425により形成される。ナイフエッジ427は、上顕微鏡318および下顕微鏡328を結ぶ線に対して交差する一対の面により形成される。 FIG. 7 is a cross-sectional view showing another structure of the reference mark 321. This reference mark 321 is formed by an opaque substrate 425 having a knife edge 427. The knife edge 427 is formed by a pair of surfaces intersecting with a line connecting the upper microscope 318 and the lower microscope 328.
 このような不透明基板425は、例えば、シリコンウエハをドライエッチングで加工することにより製造できる。ナイフエッジ427の先端は非常に薄いので、上顕微鏡318から観察された場合も、下顕微鏡328から観察された場合も、観察される位置がずれることがない。また、ナイフエッジ427の内側は貫通しているので、下顕微鏡328が、基準標識321の向こう側を観察することもできる。 Such an opaque substrate 425 can be manufactured, for example, by processing a silicon wafer by dry etching. Since the tip of the knife edge 427 is very thin, the observed position does not shift both when observed from the upper microscope 318 and when observed from the lower microscope 328. Further, since the inside of the knife edge 427 penetrates, the lower microscope 328 can also observe the other side of the reference mark 321.
 図8は、上記のようなアラインメント部300を用いて基板180をアラインメントする場合の手順を示す流れ図である。まず、図4に示すように、上ステージ部310のメインステージ312の下方と、下ステージ部320のメインステージ322の上方とがそれぞれ開放されるように、上ステージ部310および下ステージ部320を異なる位置にずらして、メインステージ312、322の各々に、基板ホルダ190に保持された基板180を装填する(ステップS101)。 FIG. 8 is a flowchart showing a procedure in the case of aligning the substrate 180 using the alignment unit 300 as described above. First, as shown in FIG. 4, the upper stage unit 310 and the lower stage unit 320 are opened so that the lower side of the main stage 312 of the upper stage unit 310 and the upper side of the main stage 322 of the lower stage unit 320 are opened. Shifting to different positions, the substrate 180 held by the substrate holder 190 is loaded on each of the main stages 312, 322 (step S101).
 次に、図示されていない顕微鏡等により基板180を観察しつつ、下ステージ部320のφ駆動部346を動作させて、一対の基板180を平行にする(ステップS102)。以下、基板180は、専らX方向およびY方向について位置合わせされる。 Next, while observing the substrate 180 with a microscope (not shown) or the like, the φ driving unit 346 of the lower stage unit 320 is operated to make the pair of substrates 180 parallel (step S102). Hereinafter, the substrate 180 is aligned exclusively in the X direction and the Y direction.
 続いて、図4および図5に示すように、基準標識321を、下顕微鏡328および上顕微鏡318により同時に観察させることにより、下顕微鏡328および上顕微鏡318の相対位置を特定させる(ステップS103)。この状態で、較正制御部122は、上ステージ部310および下ステージ部320の位置を計測して、計測値を初期値として干渉計332、334を初期化する(ステップS104)。 Subsequently, as shown in FIGS. 4 and 5, the reference marker 321 is simultaneously observed by the lower microscope 328 and the upper microscope 318, thereby specifying the relative positions of the lower microscope 328 and the upper microscope 318 (step S103). In this state, the calibration control unit 122 measures the positions of the upper stage unit 310 and the lower stage unit 320, and initializes the interferometers 332 and 334 using the measured values as initial values (step S104).
 続いて、上ステージ部310および下ステージ部を動作させて、下ステージ部320に保持された基板180のアラインメントマーク184を上顕微鏡318により、下ステージ部320に保持された基板180のアラインメントマーク184を下顕微鏡328により、各々3つ以上検出させる(ステップS105)。 Subsequently, the upper stage unit 310 and the lower stage unit are operated, and the alignment mark 184 of the substrate 180 held on the lower stage unit 320 is aligned with the alignment mark 184 of the substrate 180 held on the lower stage unit 320 by the upper microscope 318. Are detected three or more by the lower microscope 328 (step S105).
 図9は、ステップS105を実行するアラインメント部300の状態を、図4に対照して示す図である。図示のように、上ステージ部310の駆動部350と、下ステージ部320の駆動部340をそれぞれ動作させることにより、下ステージ部320に保持された基板180の表面が上顕微鏡318の視野に、上ステージ部310に保持された基板180の表面が下顕微鏡328の視野に、それぞれ入れることができる。 FIG. 9 is a diagram showing the state of the alignment unit 300 that executes step S105 in contrast to FIG. As illustrated, the surface of the substrate 180 held by the lower stage unit 320 is brought into the field of view of the upper microscope 318 by operating the driving unit 350 of the upper stage unit 310 and the driving unit 340 of the lower stage unit 320, respectively. The surface of the substrate 180 held on the upper stage unit 310 can be put into the field of view of the lower microscope 328, respectively.
 図10は、図9に示した状態における下顕微鏡328近傍を拡大して示す図である。図示のように、垂直アクチュエータ329を動作させることにより、下顕微鏡328の焦点を、上ステージ部310に保持された基板180の表面に移動させている。これにより、下顕微鏡328は、基準標識321を通じて、上ステージ部310に保持された基板180の表面を精密に観察できる。 FIG. 10 is an enlarged view showing the vicinity of the lower microscope 328 in the state shown in FIG. As shown in the drawing, the focus of the lower microscope 328 is moved to the surface of the substrate 180 held by the upper stage unit 310 by operating the vertical actuator 329. Accordingly, the lower microscope 328 can accurately observe the surface of the substrate 180 held on the upper stage unit 310 through the reference mark 321.
 なお、図示は省いたが、アラインメント部300は、上顕微鏡318および下顕微鏡328とは別に、基板180の表面の広い範囲を観察する低倍率顕微鏡を別途備える。低倍率顕微鏡の解像度は、基板180の位置合わせ精度には満たないが、基板180上のアラインメントマーク184および素子領域186の大凡の位置を認識することができる。このような低倍率顕微鏡を併用することにより、上顕微鏡318および下顕微鏡328は、効率よくアラインメントマーク184を検出できる。 Although not shown, the alignment unit 300 includes a low-power microscope that observes a wide range of the surface of the substrate 180 separately from the upper microscope 318 and the lower microscope 328. The resolution of the low-magnification microscope is less than the alignment accuracy of the substrate 180, but the approximate positions of the alignment mark 184 and the element region 186 on the substrate 180 can be recognized. By using such a low-magnification microscope in combination, the upper microscope 318 and the lower microscope 328 can efficiently detect the alignment mark 184.
 再び、図8に示した手順に戻ると、上顕微鏡318および下顕微鏡328が、対向する基板180のアラインメントマーク184を検出した場合、そのときのメインステージ312、322の位置を干渉計332、334で計測することにより、前記初期値に対するアラインメントマーク184の相対位置が判る。検出されたアラインメントマーク184の相対位置は、位置合わせ制御部124により格納される(ステップS106)。 Returning to the procedure shown in FIG. 8 again, when the upper microscope 318 and the lower microscope 328 detect the alignment mark 184 of the opposing substrate 180, the positions of the main stages 312 and 322 at that time are interferometers 332 and 334, respectively. The relative position of the alignment mark 184 with respect to the initial value can be determined by measuring at The relative position of the detected alignment mark 184 is stored by the alignment control unit 124 (step S106).
 こうして、位置合わせ制御部124が、一対の基板180の各々について3つ以上のアラインメントマーク184の位置情報を獲得すると、当該位置情報に基づいて、基板180を位置合わせする場合に求められる、駆動部340、350の動作量を算出できる(ステップS107)。 Thus, when the alignment control unit 124 acquires the position information of the three or more alignment marks 184 for each of the pair of substrates 180, the drive unit required when aligning the substrate 180 based on the position information. The movement amounts of 340 and 350 can be calculated (step S107).
 即ち、貼り合わせに供する基板180は、多くの処理、加工を経て素子等を形成されている。このため、基板180には様々な歪が生じている。また、ひとつの基板180における歪の分布は均一ではない。このため、基板180を位置合わせする場合に、一対の基板180で対応する特定のアラインメントマーク184の位置を一致させても、基板180の他の部分では位置ずれが大きくなる場合がある。 That is, the substrate 180 used for bonding is formed with elements and the like through a lot of processing and processing. For this reason, various distortions are generated in the substrate 180. Further, the strain distribution on one substrate 180 is not uniform. For this reason, when aligning the substrates 180, even if the positions of the specific alignment marks 184 corresponding to the pair of substrates 180 are matched, misalignment may increase in other portions of the substrate 180.
 しかしながら、一対の基板180相互の間で対応する3以上のアラインメントマーク184の各々の相対位置情報について以下のような処理を実行することにより、基板180全体で生じるアラインメントマーク184の位置ずれを最小にとどめることができる。 However, by performing the following processing on the relative position information of each of the three or more alignment marks 184 corresponding to each other between the pair of substrates 180, the positional deviation of the alignment marks 184 generated in the entire substrate 180 is minimized. You can stay.
 以下、そのアラインメント方式を説明する。一対のウエハにおいて、一方が他方に対して平行移動すべき平行移動量(T,T)および回転させるべき回転量θは下記のように算出される。基準座標系に対する測定されたアラインメントマークの位置座標(Axi,Ayi)と変換された位置座標(Mxi,Myi)との間には次の関係がある。なお、「i」はアラインメントマークの番号を示す。
Figure JPOXMLDOC01-appb-M000001
Hereinafter, the alignment method will be described. In a pair of wafers, a translation amount (T x , T y ) that one of the wafers should translate relative to the other and a rotation amount θ that should be rotated are calculated as follows. The following relationship exists between the position coordinates (A xi , A yi ) of the measured alignment mark with respect to the reference coordinate system and the converted position coordinates (M xi , M yi ). “I” indicates the number of the alignment mark.
Figure JPOXMLDOC01-appb-M000001
 次に、一方の基板180の基準座標系に対する位置座標を(Dxi,Dyi)として、下記の関数Fが最も小さくなるように、他方の基板180の移動量(T,T)および回転量θを決定する。
Figure JPOXMLDOC01-appb-M000002
Next, assuming that the position coordinate of one substrate 180 with respect to the reference coordinate system is (D xi , D yi ), the movement amount (T x , T y ) of the other substrate 180 and the following function F are minimized. The rotation amount θ is determined.
Figure JPOXMLDOC01-appb-M000002
 図11は、アラインメント部300の次の動作を示す図である。図示のように、位置合わせ制御部124が、上顕微鏡318および下顕微鏡328の相対位置に基づく初期値を基準として、算出された移動量(T,T)および回転量θに従って駆動部340、350を動作させることにより、一対の基板180を位置合わせすることができる(ステップS108)。 FIG. 11 is a diagram illustrating the next operation of the alignment unit 300. As illustrated, the alignment control unit 124 uses the initial values based on the relative positions of the upper microscope 318 and the lower microscope 328 as a reference, and the driving unit 340 according to the calculated movement amount (T x , T y ) and rotation amount θ. , 350 can be operated to align the pair of substrates 180 (step S108).
 なお、位置合わせ精度を更に向上させる目的で、基準標識321を複数設けて、上顕微鏡318、328の相対位置を較正する段階(ステップS104)を何度か実行してもよい。特に、上ステージ部310または下ステージ部320が大きく動作した場合、X方向またはY方向に動作方向を切り換えた場合には、改めてステージ104からの手順を繰り返してもよい。 For the purpose of further improving the alignment accuracy, a plurality of reference markers 321 may be provided and the step of calibrating the relative positions of the upper microscopes 318 and 328 (step S104) may be executed several times. In particular, when the upper stage unit 310 or the lower stage unit 320 moves greatly, when the operation direction is switched to the X direction or the Y direction, the procedure from the stage 104 may be repeated.
 図12は、アラインメント部300また次の動作を示す図である。図示のように、Z駆動部348を動作させて、X方向およびY方向について位置合わせされて対向する基板180を相互に接合することができる。即ち、下ステージ部320のメインステージ322を上昇させて一対の基板180を当接させ、更に、Z駆動部348の駆動力を増すことにより、基板180を仮接合させることができる(ステップS109)。 FIG. 12 is a diagram showing the alignment unit 300 and the next operation. As illustrated, the Z driving unit 348 can be operated to bond the substrates 180 that are aligned in the X direction and the Y direction and face each other. That is, the substrate 180 can be temporarily joined by raising the main stage 322 of the lower stage unit 320 to contact the pair of substrates 180 and further increasing the driving force of the Z driving unit 348 (step S109). .
 こうして位置合わせした上で接合された一対の基板180は、既に説明した通り、アラインメント部300から搬出され(ステップS110)、加圧部240に搬送される。アラインメント部300から加圧部240に搬送される間は、図2bを参照して説明したように、基板ホルダ190および留め具192により位置合わせした状態が保持される。 As described above, the pair of substrates 180 bonded after being aligned in this way are carried out of the alignment unit 300 (step S110) and transferred to the pressurizing unit 240. While being conveyed from the alignment unit 300 to the pressurizing unit 240, as described with reference to FIG. 2b, the aligned state is held by the substrate holder 190 and the fastener 192.
 なお、上記の例では、上ステージ部310および下ステージ部320が、いずれも駆動部350、340を有してメインステージ312、322を移動させる構造とした。この場合、上ステージ部310および下ステージ部320双方の移動量が等しくなるように、駆動部350、340の動作量を分配することも好ましい。これにより、部材の消耗を均等にして、機器の寿命を延ばすことができる。 In the above example, the upper stage unit 310 and the lower stage unit 320 both have the driving units 350 and 340 to move the main stages 312 and 322. In this case, it is also preferable to distribute the operation amounts of the drive units 350 and 340 so that the movement amounts of both the upper stage unit 310 and the lower stage unit 320 are equal. As a result, the wear of the members can be made uniform, and the life of the device can be extended.
 また、上ステージ部310および下ステージ部320のいずれか一方、例えば上ステージ部310の駆動部350を省略して、メインステージ312を固定した状態でも基板180の位置合わせは実施できる。また、例えば、上ステージ部310のY駆動部352を省略して、上ステージ部310では専らX方向を、下ステージ部320では専らY方向を位置合わせする構造としてもよい。 Further, the substrate 180 can be aligned even in a state where the main stage 312 is fixed by omitting the driving unit 350 of the upper stage unit 310, for example, the upper stage unit 310, or the upper stage unit 310. Further, for example, the Y drive unit 352 of the upper stage unit 310 may be omitted, and the upper stage unit 310 may be aligned exclusively in the X direction, and the lower stage unit 320 may be aligned exclusively in the Y direction.
 しかしながら、双方のメインステージ312、322を移動させることにより、所要の移動量を移動する時間を半分に減らすことができる。従って、上ステージ部310および下ステージ部320の双方に駆動部350、340を設けることにより、アラインメント部300におけるスループットを向上させることができる。 However, by moving both main stages 312, 322, the time required to move the required amount of movement can be reduced by half. Therefore, by providing the drive units 350 and 340 in both the upper stage unit 310 and the lower stage unit 320, the throughput in the alignment unit 300 can be improved.
 また、上記の例では、基準標識321を固定して、下顕微鏡328を昇降させる構造とした。しかしながら、下顕微鏡328を固定して、光学的に焦点距離を変化させる構造の他、基準標識を上顕微鏡318または下顕微鏡328の視野から進退させる構造等、さまざまに変形させることができる。更に、基板180の各々のアラインメントマーク184を計測することと、一対の基板180を位置合わせすることとを、別の設備で各々実行する構造とすることもできる。 In the above example, the reference mark 321 is fixed and the lower microscope 328 is moved up and down. However, in addition to a structure in which the lower microscope 328 is fixed and the focal length is optically changed, various modifications can be made such as a structure in which the reference marker is advanced and retracted from the field of view of the upper microscope 318 or the lower microscope 328. Furthermore, it is also possible to employ a structure in which the measurement of each alignment mark 184 of the substrate 180 and the alignment of the pair of substrates 180 are performed by separate facilities.
 図13は、他の構造を有するアラインメント部300を示す斜視図である。このアラインメント部300は、底盤303に搭載された、測定部360、一対の顕微鏡ユニット370および接合部380を有する。また、図面が煩雑になることを避ける目的で図13では図示を省いたが、測定部360および接合部380の間には、ロボットアーム390が配される(図14参照)。 FIG. 13 is a perspective view showing an alignment unit 300 having another structure. The alignment unit 300 includes a measurement unit 360, a pair of microscope units 370, and a joint unit 380 mounted on the bottom plate 303. Further, although not shown in FIG. 13 for the purpose of avoiding complicated drawing, a robot arm 390 is disposed between the measurement unit 360 and the joint unit 380 (see FIG. 14).
 測定部360は、底盤303から直立する一対の支柱361と、支柱361の上端および下端をそれぞれ結合する一対の水平な案内部363とにより形成された矩形のフレームの内側に形成される。案内部363の各々は、X駆動部362、Z駆動部364およびメインステージ312、322を、それぞれ懸架または支持する。 The measurement unit 360 is formed inside a rectangular frame formed by a pair of support columns 361 standing upright from the bottom plate 303 and a pair of horizontal guide units 363 that respectively connect the upper end and the lower end of the support column 361. Each of the guide units 363 suspends or supports the X drive unit 362, the Z drive unit 364, and the main stages 312, 322, respectively.
 測定部360において、X駆動部362は、Z駆動部364およびメインステージ312、322と、メインステージ312、322に搭載された基板ホルダ190および基板180とを、案内部363に沿ってそれぞれ個別に移動させる。また、Z駆動部364は、メインステージ312、322と、メインステージ312、322に搭載された基板ホルダ190および基板180とを、垂直に昇降させる。 In the measurement unit 360, the X drive unit 362 individually connects the Z drive unit 364 and the main stages 312 and 322, and the substrate holder 190 and the substrate 180 mounted on the main stages 312 and 322 along the guide unit 363. Move. The Z driving unit 364 vertically moves the main stages 312 and 322 and the substrate holder 190 and the substrate 180 mounted on the main stages 312 and 322 up and down.
 メインステージ312、322には、それぞれ、基板180を保持した基板ホルダ190が搭載される。基板180の各々は、一対のアラインメントマーク184を有する。 A substrate holder 190 holding the substrate 180 is mounted on each of the main stages 312, 322. Each of the substrates 180 has a pair of alignment marks 184.
 更に、一方のメインステージ322には、基準標識321も搭載される。基準標識321は、基板ホルダ190に保持された基板180の表面と同じ高さに固定される。メインステージ322は、基準標識321の下に、厚さ方向に貫通する貫通穴を有するので、基準標識321は、メインステージ322の上方からも、下方からも観察できる。なお、基準標識321は、図6、図7に示した構造をいずれも採り得る。 Furthermore, a reference sign 321 is also mounted on one main stage 322. The reference mark 321 is fixed at the same height as the surface of the substrate 180 held by the substrate holder 190. Since the main stage 322 has a through hole penetrating in the thickness direction under the reference mark 321, the reference mark 321 can be observed from above and below the main stage 322. Note that the reference mark 321 may adopt any of the structures shown in FIGS.
 一対の顕微鏡ユニット370は、測定部360を挟んで配される。顕微鏡ユニット370の各々は、Y駆動部372、支柱374および顕微鏡376、378を有する。Y駆動部372は、測定部360の案内部363の延在方向と交差する方向に支柱374を移動させる。支柱374は、各々一対の顕微鏡376、378を支持する。 The pair of microscope units 370 are arranged with the measurement unit 360 interposed therebetween. Each of the microscope units 370 includes a Y driving unit 372, a support column 374, and microscopes 376 and 378. The Y drive unit 372 moves the support column 374 in a direction intersecting with the extending direction of the guide unit 363 of the measurement unit 360. The support columns 374 support a pair of microscopes 376 and 378, respectively.
 即ち、一対の顕微鏡376、378は、支柱374の中程に形成された切欠き部の内側に、互いに上下に対向して固定される。顕微鏡376、378の焦点Fは、顕微鏡376、378の中間に位置する共通の一点に結ばれる。 That is, the pair of microscopes 376 and 378 are fixed so as to face each other vertically inside the notch formed in the middle of the support column 374. The focal points F of the microscopes 376 and 378 are connected to a common point located in the middle of the microscopes 376 and 378.
 一方、接合部380は、フレーム383の内側で互いに積層方向に配された、X駆動部381、Y駆動部382、θ駆動部384、Z駆動部388と、一対の平板389および一対のメインステージ312、322とを備える。メインステージ312、322は、それぞれが基板180を保持した基板ホルダ190を搭載する。 On the other hand, the joint portion 380 includes an X drive portion 381, a Y drive portion 382, a θ drive portion 384, a Z drive portion 388, a pair of flat plates 389, and a pair of main stages, which are arranged in the stacking direction inside the frame 383. 312 and 322. Each of the main stages 312 and 322 carries a substrate holder 190 that holds a substrate 180.
 X駆動部381およびY駆動部382は、図中に矢印で示すX方向またはY方向に、メインステージ312、322を駆動する。Z駆動部388は、メインステージ312をZ軸方向に移動することができる他、個別に動作させることによりメインステージ322を揺動させることもできる。 The X drive unit 381 and the Y drive unit 382 drive the main stages 312 and 322 in the X direction or the Y direction indicated by arrows in the drawing. The Z drive unit 388 can move the main stage 312 in the Z-axis direction, and can also swing the main stage 322 by individually operating.
 接合部380は、X駆動部381、Y駆動部382およびθ駆動部384を動作させることにより、メインステージ322に搭載された基板180を任意の方向に移動させて、メインステージ312に搭載された基板180に対して位置合わせできる。また、Z駆動部388を動作させることにより、互いに位置合わせした一対の基板180を互いに当接させて接合することもできる。 The bonding unit 380 is mounted on the main stage 312 by moving the substrate 180 mounted on the main stage 322 in an arbitrary direction by operating the X driving unit 381, the Y driving unit 382, and the θ driving unit 384. Alignment with respect to the substrate 180 is possible. Further, by operating the Z driving unit 388, the pair of substrates 180 aligned with each other can be brought into contact with each other and bonded.
 図14は、図13に示したアラインメント部300の平面図である。図示のように、アラインメント部300は、測定部360および接合部380の間にロボットアーム390を更に備える。 FIG. 14 is a plan view of the alignment unit 300 shown in FIG. As illustrated, the alignment unit 300 further includes a robot arm 390 between the measurement unit 360 and the joint unit 380.
 ロボットアーム390は、フォーク部392およびアーム部394を有する。フォーク部392は、基板180を保持した基板ホルダ190を吸着して保持する。アーム部394は、基板ホルダ190を保持したフォーク部392を任意の方向に移動させる。これにより、ロボットアーム390は、測定部360において後述する測定を終えた基板180および基板ホルダ190を、測定部360のメインステージ312、322から、接合部380のメインステージ312、322まで搬送して移し換えることができる。 The robot arm 390 has a fork part 392 and an arm part 394. The fork unit 392 sucks and holds the substrate holder 190 that holds the substrate 180. The arm part 394 moves the fork part 392 holding the substrate holder 190 in an arbitrary direction. Thus, the robot arm 390 transports the substrate 180 and the substrate holder 190, which have been measured later in the measurement unit 360, from the main stages 312 and 322 of the measurement unit 360 to the main stages 312 and 322 of the joint unit 380. Can be transferred.
 なお、積層基板製造システム100のレイアウトによっては、アラインメント部300に基板180および基板ホルダ190を搬入または搬出するロボットアーム172を用いてもよい。この場合は、アラインメント部300のロボットアーム390は省略できる。 Depending on the layout of the multilayer substrate manufacturing system 100, a robot arm 172 that carries the substrate 180 and the substrate holder 190 into and out of the alignment unit 300 may be used. In this case, the robot arm 390 of the alignment unit 300 can be omitted.
 図15a、図15b、図15cおよび図15dは、上記のような構造を有するアラインメント部300における測定部360の動作を説明する図である。なお、図示のように、アラインメント部300は、図13および図14では支柱361に隠れていた一対の干渉計366、368と、干渉計366、368に対向してメインステージ312、322の側面に装着された一対の反射鏡367とを更に備える。これら干渉計366、368および反射鏡367の作用については後述する。 15a, 15b, 15c, and 15d are diagrams for explaining the operation of the measurement unit 360 in the alignment unit 300 having the above-described structure. As shown in the figure, the alignment unit 300 is arranged on the side surfaces of the main stages 312 and 322 facing the interferometers 366 and 368 and the interferometers 366 and 368 which are hidden in the support column 361 in FIGS. It further includes a pair of reflecting mirrors 367 mounted. The operation of these interferometers 366 and 368 and the reflecting mirror 367 will be described later.
 まず、図15aに示すように、X駆動部362をそれぞれ動作させて、メインステージ312、322は、互いに異なる支柱361に接近した位置に移動される。これにより、メインステージ312の下面とメインステージ322の上面とが開放される。この状態で、メインステージ312、322の各々には、基板180を保持した基板ホルダ190が搭載される。 First, as shown in FIG. 15a, the X driving unit 362 is operated, and the main stages 312 and 322 are moved to positions close to different columns 361. Thereby, the lower surface of the main stage 312 and the upper surface of the main stage 322 are opened. In this state, a substrate holder 190 holding the substrate 180 is mounted on each of the main stages 312 and 322.
 次に、図15bに示すように、較正制御部122の制御の下に、下側のメインステージ322のZ駆動部364を動作させてメインステージ322を上昇させる。これにより、メインステージ322に搭載された基準標識は、顕微鏡376、378の焦点Fと同じ高さになる。 Next, as shown in FIG. 15B, under the control of the calibration control unit 122, the Z drive unit 364 of the lower main stage 322 is operated to raise the main stage 322. Thereby, the reference mark mounted on the main stage 322 becomes the same height as the focal point F of the microscopes 376 and 378.
 続いて、X駆動部362を動作させて、基準標識321が顕微鏡376、378の視野に入る位置に、メインステージ322を移動させる。この状態で、共通の基準標識321を一対の顕微鏡376、378で観察することにより、較正制御部122は、一対の顕微鏡376、378の位置を精密に検知することができる。 Subsequently, the X drive unit 362 is operated to move the main stage 322 to a position where the reference mark 321 enters the field of view of the microscopes 376 and 378. In this state, by observing the common reference mark 321 with the pair of microscopes 376 and 378, the calibration control unit 122 can accurately detect the positions of the pair of microscopes 376 and 378.
 なお、顕微鏡376、378は、それぞれ支柱374に固定されているが、温度等の環境条件、Y駆動部372のトレランスによる支柱374の傾き等により、その位置が変化する場合がある。しかしながら、上記のようにして、アラインメントマーク184の位置測定に先立って共通の基準標識321を観察することにより、顕微鏡376、378の位置関係を把握できる。 Note that the microscopes 376 and 378 are fixed to the column 374, respectively, but their positions may change depending on environmental conditions such as temperature, inclination of the column 374 due to tolerance of the Y drive unit 372, and the like. However, as described above, the positional relationship between the microscopes 376 and 378 can be grasped by observing the common reference mark 321 prior to measuring the position of the alignment mark 184.
 次に、図15cに示すように、X駆動部362を更に動作させてメインステージ322を移動させ、基板180のアラインメントマーク184を、上側の顕微鏡376の視野に入れさせる。なお、基準標識321と基板180の表面とは同じ高さに位置するので、基板180の表面は、上側の顕微鏡376の焦点面を通過する。 Next, as shown in FIG. 15 c, the X drive unit 362 is further operated to move the main stage 322, and the alignment mark 184 of the substrate 180 is placed in the field of view of the upper microscope 376. Since the reference mark 321 and the surface of the substrate 180 are located at the same height, the surface of the substrate 180 passes through the focal plane of the upper microscope 376.
 また、メインステージ322が移動する間は、反射鏡367および一方の干渉計368を用いて、メインステージ322の移動量を正確に計測する。これにより、基準標識321において構成した顕微鏡378の位置を基準にして、基板180のアラインメントマーク184の位置を測定できる。測定されたアラインメントマーク184の位置情報は、位置合わせ制御部124に格納される。 Also, while the main stage 322 moves, the amount of movement of the main stage 322 is accurately measured using the reflecting mirror 367 and one interferometer 368. Thereby, the position of the alignment mark 184 on the substrate 180 can be measured with reference to the position of the microscope 378 configured in the reference mark 321. The measured position information of the alignment mark 184 is stored in the alignment control unit 124.
 続いて、図15dに示すように、下側のメインステージ322を当初の位置に戻す一方で、上側のメインステージ312を移動させる。即ち、まず、Z駆動部364を動作させて、基板180の表面を、顕微鏡376、378の焦点Fと同じ高さに移動させる。続いて、X駆動部362を動作させて、基板180を一対の顕微鏡376、378の間に移動させる。 Subsequently, as shown in FIG. 15d, the lower main stage 322 is returned to the original position while the upper main stage 312 is moved. That is, first, the Z driving unit 364 is operated to move the surface of the substrate 180 to the same height as the focal point F of the microscopes 376 and 378. Subsequently, the X driving unit 362 is operated to move the substrate 180 between the pair of microscopes 376 and 378.
 このとき、上側のメインステージ312の側に設けられた反射鏡367と干渉計366を用いて、メインステージ312の移動量を正確に測定できる。従って、下側の顕微鏡378で観察することにより、基板180のアラインメントマーク184の位置を正確に検知できる。測定されたアラインメントマーク184の位置情報は、位置合わせ制御部124に格納される。 At this time, the amount of movement of the main stage 312 can be accurately measured using the reflecting mirror 367 and the interferometer 366 provided on the upper main stage 312 side. Therefore, the position of the alignment mark 184 on the substrate 180 can be accurately detected by observing with the lower microscope 378. The measured position information of the alignment mark 184 is stored in the alignment control unit 124.
 こうして、位置合わせ制御部124が、一対の基板180の各々についてアラインメントマーク184の位置情報を獲得すると、基板180を保持した基板ホルダ190は、ロボットアーム390により、接合部380のメインステージ312、322に各々移し換えられる。一方、位置合わせ制御部124は、当該位置情報に基づいて、基板180を位置合わせする場合に求められる、接合部380の動作量を算出する。 Thus, when the alignment control unit 124 acquires the position information of the alignment mark 184 for each of the pair of substrates 180, the substrate holder 190 that holds the substrate 180 is moved by the robot arm 390 to the main stages 312 and 322 of the bonding unit 380. Respectively. On the other hand, the alignment control unit 124 calculates an operation amount of the bonding unit 380 obtained when the substrate 180 is aligned based on the position information.
 基板180を保持した基板ホルダ190を装入された接合部380は、まず、Z駆動部388を個別に動作させて、一対の基板180を平行にする。続いて、位置合わせ制御部124からの指示に基づいてX駆動部381、Y駆動部382およびθ駆動部384を動作させて、対応するアラインメントマーク184の位置が一致するように一対の基板180を位置合わせする。更に、Z駆動部388を同時に動作させて、一対の基板180を当接させ、更に高い圧力を印加することにより、一対の基板180を接合する。 First, the bonding unit 380 in which the substrate holder 190 holding the substrate 180 is inserted operates the Z driving unit 388 individually to make the pair of substrates 180 parallel to each other. Subsequently, the X driving unit 381, the Y driving unit 382, and the θ driving unit 384 are operated based on an instruction from the alignment control unit 124, and the pair of substrates 180 are moved so that the positions of the corresponding alignment marks 184 coincide with each other. Align. Further, the Z driving unit 388 is operated simultaneously to bring the pair of substrates 180 into contact with each other, and by applying a higher pressure, the pair of substrates 180 is joined.
 なお、この態様におけるアラインメント部300は、測定部360および接合部380をそれぞれ備えて、アラインメントマーク184の位置測定と、基板180の接合とを各々個別に実行する。このような構造により、測定部360においては、X駆動部362およびZ駆動部364を小型化する一方、顕微鏡376、378の移動範囲を拡大することができる。また、接合部380においては、強度の高い大型部材を用いて、正確な位置合わせと高い圧力による基板180の接合を実行できる。しかしながら、部材の強度を確保できれば、測定部360の構造に、Y駆動部382、θ駆動部384等を加えて位置合わせおよび接合まで実行させることもできる。 Note that the alignment unit 300 in this aspect includes a measurement unit 360 and a bonding unit 380, and individually performs the position measurement of the alignment mark 184 and the bonding of the substrate 180. With such a structure, in the measurement unit 360, the X drive unit 362 and the Z drive unit 364 can be downsized, and the movement range of the microscopes 376 and 378 can be expanded. In addition, in the bonding portion 380, it is possible to execute accurate alignment and bonding of the substrates 180 with high pressure using a large member having high strength. However, if the strength of the member can be ensured, it is possible to add the Y drive unit 382, the θ drive unit 384, and the like to the structure of the measurement unit 360 and execute the alignment and joining.
 図16は、他の積層基板製造装置600全体の構造を模式的に示す平面図である。積層基板製造装置600は、ウエハストッカ610、ウエハプリアライメント装置622、ウエハホルダプリアライメント装置624、主制御装置630、ウエハホルダストッカ640、加圧装置650、分離冷却装置660、ウエハローダ672、ウエハホルダローダ676および位置合わせ装置700を備える。以下、各要素について個別に説明する。 FIG. 16 is a plan view schematically showing the overall structure of another multilayer substrate manufacturing apparatus 600. FIG. The multilayer substrate manufacturing apparatus 600 includes a wafer stocker 610, a wafer pre-alignment apparatus 622, a wafer holder pre-alignment apparatus 624, a main controller 630, a wafer holder stocker 640, a pressure apparatus 650, a separation cooling apparatus 660, a wafer loader 672, and a wafer holder loader. 676 and an alignment device 700. Hereinafter, each element will be described individually.
 ウエハストッカ610は、貼り合わせの対象となる基板180を複数収容するウエハストッカ614、616と、貼り合わされた基板180を複数収容する積層基板用ストッカ612とを含む。積層基板用ストッカ612およびウエハストッカ614、616の各々は、積層基板製造装置600の外部に面して着脱可能に装着される。これにより、積層基板製造装置600に基板180を装填できると共に、貼り合わされた基板180を回収できる。ウエハストッカ614、616には、同じ種類の基板180を装填される場合も、互いに異なる種類の基板180が収容される場合もある。 The wafer stocker 610 includes wafer stockers 614 and 616 for accommodating a plurality of substrates 180 to be bonded, and a stacked substrate stocker 612 for storing a plurality of bonded substrates 180. Each of the multilayer substrate stocker 612 and the wafer stockers 614 and 616 is detachably mounted facing the outside of the multilayer substrate manufacturing apparatus 600. As a result, the substrate 180 can be loaded into the laminated substrate manufacturing apparatus 600 and the bonded substrates 180 can be collected. The wafer stockers 614 and 616 may be loaded with the same type of substrate 180 or may contain different types of substrates 180.
 ウエハプリアライメント装置622は、ウエハストッカ614、616から取り出された基板180に対して、精度は比較的低いが迅速なプリアライメントを実行する。これにより、後述する位置合わせ装置700に基板180を装填した場合に、基板180の位置が極端に大きくずれることが避けられる。また、位置合わせ装置700における作業時間を短縮できる。 The wafer pre-alignment apparatus 622 performs quick pre-alignment on the substrate 180 taken out from the wafer stockers 614 and 616, although the accuracy is relatively low. Thereby, when the substrate 180 is loaded in the alignment apparatus 700 described later, the position of the substrate 180 can be avoided from being greatly shifted. Further, the work time in the alignment apparatus 700 can be shortened.
 ウエハホルダストッカ640は積層基板製造装置600の内部に配され、複数の基板ホルダ190を収容する。基板ホルダ190は、基板180を吸着して支持する。また、基板ホルダ190は、一定周期で実施される保守期間以外は、積層基板製造装置600の内部で繰り返し使用される。なお、基板ホルダ190は、単一仕様のものが全ての基板180に使用される場合も、基板180の種類に応じて異なる仕様のものが使い分けられる場合もある。 The wafer holder stocker 640 is arranged inside the multilayer substrate manufacturing apparatus 600 and accommodates a plurality of substrate holders 190. The substrate holder 190 sucks and supports the substrate 180. Further, the substrate holder 190 is repeatedly used inside the multilayer substrate manufacturing apparatus 600 except for a maintenance period that is carried out at a constant cycle. It should be noted that the substrate holder 190 may be used for all the substrates 180 with a single specification, or may have a different specification depending on the type of the substrate 180.
 ウエハホルダプリアライメント装置624は、ウエハホルダストッカ640の近傍に配される。ウエハホルダプリアライメント装置624は、基板ホルダ190を所定の位置に載置することにより、基板ホルダ190に対する基板180の搭載位置を概ね一定にする。これにより、位置合わせ装置700における作業時間を短縮できる。 The wafer holder pre-alignment device 624 is disposed in the vicinity of the wafer holder stocker 640. The wafer holder pre-alignment apparatus 624 makes the mounting position of the substrate 180 relative to the substrate holder 190 substantially constant by placing the substrate holder 190 at a predetermined position. Thereby, the working time in the alignment apparatus 700 can be shortened.
 位置合わせ装置700は、それぞれが基板ホルダ190に保持された一対の基板180を相互に高精度に位置合わせした後、両者を貼り合わせる。ここでいう高精度とは、基板180に形成された素子を積層する場合に必要とされる性能を確保する精度であり、サブミクロンオーダになる場合もある。 The alignment apparatus 700 aligns the pair of substrates 180 held by the substrate holder 190 with each other with high accuracy, and then bonds them together. The high accuracy referred to here is an accuracy that secures the performance required when the elements formed on the substrate 180 are stacked, and may be on the order of submicrons.
  また、ここでいう位置合わせとは、一対の基板180を貼り合わせる場合に、一方の基板180に形成された素子の接続端子が、他方の基板180の接続端子に対して有効な電気的接続が得られるように、両者の位置を一致させることを意味する。位置合わせ装置700の構造および動作については図17以降を参照して後述する。 Further, the alignment here means that when a pair of substrates 180 are bonded together, an effective electrical connection is established between the connection terminal of the element formed on one substrate 180 and the connection terminal of the other substrate 180. This means that the positions of the two coincide with each other. The structure and operation of the alignment apparatus 700 will be described later with reference to FIG.
 加圧装置650は、位置合わせ装置700の近傍に配置され、位置合わせ装置700で位置合わせして貼り合わされた基板180を加圧して、基板180を恒久的に接合して積層基板とする。このため、貼り合わされた基板180を、加熱しながら加圧する場合もある。 The pressing device 650 is disposed in the vicinity of the alignment device 700, pressurizes the substrate 180 that has been aligned and bonded by the alignment device 700, and permanently bonds the substrate 180 to form a laminated substrate. For this reason, the bonded substrate 180 may be pressurized while being heated.
 分離冷却装置660は、加圧装置650に隣接して配される。分離冷却装置660は、基板ホルダ190および接合された基板180を冷却すると共に、接合された基板180から基板ホルダ190を取り外す。接合された基板180は、積層基板として積層基板用ストッカ612に収容される。冷却された基板ホルダ190は、ウエハホルダストッカ640に戻され、次の基板180の位置合わせおよび接合に使用される。 The separation cooling device 660 is disposed adjacent to the pressurizing device 650. The separation cooling device 660 cools the substrate holder 190 and the bonded substrate 180 and removes the substrate holder 190 from the bonded substrate 180. The bonded substrate 180 is accommodated in a stacked substrate stocker 612 as a stacked substrate. The cooled substrate holder 190 is returned to the wafer holder stocker 640 and used for alignment and bonding of the next substrate 180.
 ウエハローダ672は多関節ロボットであり、六自由度(X、Y、Z、θX、θY、θZ)のアームを有してもよい。また、ウエハローダ672は、レール674に沿って、図中に矢印Xにより示す方向に移動する。 The wafer loader 672 is an articulated robot and may have an arm having six degrees of freedom (X, Y, Z, θX, θY, θZ). Wafer loader 672 moves along rail 674 in the direction indicated by arrow X in the drawing.
 ウエハローダ672は、基板180または貼り合わされて積層基板となった基板180を搭載して移動させることができる。ただし、基板180または積層基板よりも大幅に大きな質量を有する基板ホルダ190を搬送することはできない。従って、ウエハローダ672は、主にウエハストッカ610およびウエハプリアライメント装置622の間で基板180を搬送する。 The wafer loader 672 can be mounted and moved with the substrate 180 or the substrate 180 which is bonded to be a laminated substrate. However, the substrate holder 190 having a mass significantly larger than that of the substrate 180 or the laminated substrate cannot be transported. Accordingly, the wafer loader 672 transports the substrate 180 mainly between the wafer stocker 610 and the wafer pre-alignment apparatus 622.
 ウエハホルダローダ676も多関節ロボットであり、六自由度方向(X、Y、Z、θX、θY、θZ)のアームを有してもよい。また、ウエハホルダローダ676は、レール678に沿って、図中に矢印Yにより示す方向に大きく移動する。 The wafer holder loader 676 is also an articulated robot, and may have arms with six degrees of freedom (X, Y, Z, θX, θY, θZ). Wafer holder loader 676 moves along rail 678 in the direction indicated by arrow Y in the drawing.
 ウエハホルダローダ676は、基板ホルダ190の搬送負荷に耐え得ると共に、基板180を単独で搬送することもできる。従って、ウエハホルダストッカ640からウエハホルダプリアライメント装置624までの間、または、分離冷却装置660からウエハホルダストッカ640までの間で基板ホルダ190を搬送する。また、ウエハホルダプリアライメント装置624から位置合わせ装置700までの間、位置合わせ装置700から加圧装置650までの間、または、加圧装置650から分離冷却装置660までの間において、基板ホルダ190および基板180を併せて搬送する。更に、分離冷却装置660から積層基板用ストッカ612までの少なくとも一部区間については、積層ウエハを搬送する場合もある。 The wafer holder loader 676 can withstand the transfer load of the substrate holder 190 and can also transfer the substrate 180 alone. Accordingly, the substrate holder 190 is transported between the wafer holder stocker 640 and the wafer holder pre-alignment device 624 or between the separation cooling device 660 and the wafer holder stocker 640. Further, between the wafer holder pre-alignment apparatus 624 and the alignment apparatus 700, between the alignment apparatus 700 and the pressurization apparatus 650, or between the pressurization apparatus 650 and the separation cooling apparatus 660, the substrate holder 190 and The substrate 180 is also transferred. Further, there is a case where the laminated wafer is transported in at least a partial section from the separation cooling device 660 to the laminated substrate stocker 612.
 主制御装置630は、上記のような積層基板製造装置600全体の動作を制御する。即ち、主制御装置630は、ウエハローダ672、ウエハホルダローダ676、ウエハプリアライメント装置622、およびウエハホルダプリアライメント装置624などの個別の制御装置と信号の受け渡しをして積層基板製造装置600全体を包括的に制御する。また、電源の投入、遮断等の、外部からの操作も受け付ける。更に、主制御装置630は、位置合わせ装置700が実行する位置合わせ動作を制御する位置合わせ制御部も含む。 The main controller 630 controls the overall operation of the multilayer substrate manufacturing apparatus 600 as described above. That is, the main controller 630 provides signals to individual control devices such as the wafer loader 672, the wafer holder loader 676, the wafer pre-alignment device 622, and the wafer holder pre-alignment device 624 to cover the entire multilayer substrate manufacturing apparatus 600. Control. It also accepts external operations such as power on and off. Further, main controller 630 includes an alignment control unit that controls an alignment operation performed by alignment apparatus 700.
 図17は、位置合わせ装置700の構造を示す斜視図である。位置合わせ装置700は、基盤710、面内駆動部720、760、チルト駆動部730、下ステージ740、上ステージ750およびフレーム770と、一対の顕微鏡ユニット810、820とを備える。 FIG. 17 is a perspective view showing the structure of the alignment apparatus 700. FIG. The alignment apparatus 700 includes a base 710, in- plane driving units 720 and 760, a tilt driving unit 730, a lower stage 740, an upper stage 750 and a frame 770, and a pair of microscope units 810 and 820.
 基盤710は、積層基板製造装置600の内部に水平に固定される。基盤710上には、面内駆動部720、チルト駆動部730および下ステージ740が順次積層される。 The base 710 is fixed horizontally inside the multilayer substrate manufacturing apparatus 600. An in-plane driving unit 720, a tilt driving unit 730, and a lower stage 740 are sequentially stacked on the base 710.
 面内駆動部720は、互いに積層された回転駆動部722、X方向駆動部724およびY方向駆動部726を含む。これにより、面内駆動部720は、基盤710と平行な水平面内で、搭載されたチルト駆動部730を、回転させ、且つ、水平方向に二次元的に移動させることができる。 The in-plane driving unit 720 includes a rotation driving unit 722, an X direction driving unit 724, and a Y direction driving unit 726 that are stacked on each other. Accordingly, the in-plane driving unit 720 can rotate the mounted tilt driving unit 730 in a horizontal plane parallel to the base 710 and move it two-dimensionally in the horizontal direction.
 チルト駆動部730は、一対の平板732、736と、平板732、736に挟まれた3つの垂直アクチュエータ734とを含む。これにより、面内駆動部720の上で、上側の平板736の水平面に対する傾斜を補償する。 The tilt drive unit 730 includes a pair of flat plates 732 and 736 and three vertical actuators 734 sandwiched between the flat plates 732 and 736. Accordingly, the inclination of the upper flat plate 736 with respect to the horizontal plane is compensated on the in-plane driving unit 720.
 下ステージ740は、図示されていない水平アクチュエータおよび垂直アクチュエータを有する。これにより、下ステージ740は、チルト駆動部730に対して垂直方向(Z方向)に変位させると共に、水平方向(X方向)にも進退させる。また、下ステージ740は、基板ホルダ190に保持された基板180を上面に保持する。これにより、下ステージ740は、搭載した基板180を、後述する顕微鏡818、828の下方に差し出すことができる。 The lower stage 740 has a horizontal actuator and a vertical actuator not shown. Accordingly, the lower stage 740 is displaced in the vertical direction (Z direction) with respect to the tilt driving unit 730 and is also advanced and retracted in the horizontal direction (X direction). The lower stage 740 holds the substrate 180 held by the substrate holder 190 on the upper surface. As a result, the lower stage 740 can put the mounted substrate 180 under the microscopes 818 and 828 described later.
 フレーム770は、基盤710から離間した水平部を有する。これにより、フレーム770は、水平部の下面に、面内駆動部760および上ステージ750を順次懸架する。面内駆動部760は、互いに順次懸架された回転駆動部762、X方向駆動部764およびY方向駆動部766を含む。これにより、面内駆動部760は、基盤710と平行な水平面内で、上ステージ750を、回転させ、且つ、水平移動させる。 The frame 770 has a horizontal portion that is separated from the base 710. As a result, the frame 770 suspends the in-plane driving unit 760 and the upper stage 750 sequentially on the lower surface of the horizontal part. The in-plane drive unit 760 includes a rotation drive unit 762, an X direction drive unit 764, and a Y direction drive unit 766 that are sequentially suspended from each other. As a result, the in-plane driving unit 760 rotates and horizontally moves the upper stage 750 in a horizontal plane parallel to the base 710.
 上ステージ750は、図示されていない水平アクチュエータおよび垂直アクチュエータを有する。上ステージ750は、面内駆動部760に対して垂直方向(Z方向)および水平方向(X方向)に進退する。また、上ステージ750は、基板ホルダ190に保持された基板180を下面に保持する。これにより、上ステージ750は、搭載した基板180を、後述する顕微鏡816、826の上方に差し出すことができる。 The upper stage 750 has a horizontal actuator and a vertical actuator not shown. The upper stage 750 advances and retreats in the vertical direction (Z direction) and the horizontal direction (X direction) with respect to the in-plane drive unit 760. The upper stage 750 holds the substrate 180 held by the substrate holder 190 on the lower surface. Accordingly, the upper stage 750 can put the mounted substrate 180 above the microscopes 816 and 826 described later.
 顕微鏡ユニット810は、直線駆動部812、支柱814および一対の顕微鏡816、818を有する。直線駆動部812は、基盤710上で、支柱814を水平方向(Y方向)に搬送して進退させる。ここで、下ステージ740および上ステージ750の進退方向と、支柱814の進退方向とは交差している。従って、支柱814は、差し出された下ステージ740および上ステージ750に対して、その進退方向について側方に進退する。 The microscope unit 810 includes a linear drive unit 812, a support column 814, and a pair of microscopes 816 and 818. The linear drive unit 812 moves the support column 814 in the horizontal direction (Y direction) on the base 710 and moves it back and forth. Here, the advancing / retreating direction of the lower stage 740 and the upper stage 750 intersects the advancing / retreating direction of the support column 814. Accordingly, the support column 814 moves back and forth in the forward and backward direction with respect to the extended lower stage 740 and upper stage 750.
 支柱814は、高さ方向の中程に切欠き部811を有する。切欠き部811は矩形をなして、その内側の上面および下面に、互いに対向する一対の顕微鏡816、818が固定される。これにより、下ステージ740または上ステージ750が差し出された場合に、一対の顕微鏡816、818のいずれかにより、下ステージ740または上ステージ750に搭載された基板180を観察できる。 The support column 814 has a notch 811 in the middle of the height direction. The notch 811 has a rectangular shape, and a pair of microscopes 816 and 818 facing each other are fixed to the upper and lower surfaces on the inside. Accordingly, when the lower stage 740 or the upper stage 750 is extended, the substrate 180 mounted on the lower stage 740 or the upper stage 750 can be observed by one of the pair of microscopes 816 and 818.
 また、位置合わせ装置700は、もう一組の顕微鏡826、828を含む顕微鏡ユニット820を備える。顕微鏡ユニット820は、直線駆動部822、支柱824および一対の顕微鏡826、828を有する。直線駆動部822は、基盤710上で、支柱824を水平方向(Y方向)に搬送して進退させる。 Also, the alignment apparatus 700 includes a microscope unit 820 including another set of microscopes 826 and 828. The microscope unit 820 includes a linear drive unit 822, a support column 824, and a pair of microscopes 826 and 828. The linear drive unit 822 moves the support column 824 in the horizontal direction (Y direction) on the base 710 and moves it back and forth.
 この顕微鏡ユニット810、820の進退方向は、下ステージ740および上ステージ750の進退方向と交差する。これにより、一対の顕微鏡816、818および顕微鏡826、828は、下ステージ740または上ステージ750により差し出された基板180のアラインメントマーク184が視野に入る観察位置と、下ステージ740または上ステージ750により差し出された基板180のアラインメントマーク184が視野からはずれる退避位置との間を移動する。 The advance / retreat direction of the microscope units 810, 820 intersects the advance / retreat direction of the lower stage 740 and the upper stage 750. As a result, the pair of microscopes 816 and 818 and the microscopes 826 and 828 are provided with an observation position where the alignment mark 184 of the substrate 180 put out by the lower stage 740 or the upper stage 750 enters the field of view, and the lower stage 740 or the upper stage 750. The alignment mark 184 of the substrate 180 thus moved moves between the retracted position where it is out of the field of view.
 支柱824は、高さ方向の中程に切欠き部821を有する。切欠き部821は矩形をなして、その内側の上面および下面に、互いに対向する一対の顕微鏡826、828が固定される。これにより、下ステージ740または上ステージ750が差し出された場合に、一対の顕微鏡816、818のいずれかにより、下ステージ740または上ステージ750に搭載された基板180を観察できる。 The support column 824 has a notch 821 in the middle of the height direction. The notch 821 has a rectangular shape, and a pair of microscopes 826 and 828 facing each other are fixed to an upper surface and a lower surface on the inside. Accordingly, when the lower stage 740 or the upper stage 750 is extended, the substrate 180 mounted on the lower stage 740 or the upper stage 750 can be observed by one of the pair of microscopes 816 and 818.
 なお、顕微鏡ユニット810、820のそれぞれにおける一対の顕微鏡816、818、826、828は、互いに共通の位置に焦点を結んでいる。従って、顕微鏡816、818により基板180の表面を観察する場合は、下ステージ740または上ステージ750をZ方向に変位させて、基板180の表面が共通の焦点位置に位置するように調節する。 Note that the pair of microscopes 816, 818, 826, and 828 in each of the microscope units 810 and 820 are focused on a common position. Therefore, when observing the surface of the substrate 180 with the microscopes 816 and 818, the lower stage 740 or the upper stage 750 is displaced in the Z direction so that the surface of the substrate 180 is positioned at a common focal position.
 なお、図示は省いたが、位置合わせ装置700は、顕微鏡ユニット810、820に向かって差し出された基板180の表面全体を観察する低倍率顕微鏡を別途備える。低倍率顕微鏡の解像度は、基板180の位置合わせ精度には満たないが、基板180上のアラインメントマーク184および素子領域186の大凡の位置を認識することはできる。このような低倍率顕微鏡を併用することにより、顕微鏡816、818、826、828の視野から観察すべきアラインメントマーク184がはずれたような場合に、基板180の位置修正を容易に把握できる。 Although not shown in the figure, the alignment apparatus 700 is additionally provided with a low-magnification microscope that observes the entire surface of the substrate 180 that is directed toward the microscope units 810 and 820. The resolution of the low-magnification microscope is less than the alignment accuracy of the substrate 180, but the approximate positions of the alignment mark 184 and the element region 186 on the substrate 180 can be recognized. By using such a low-magnification microscope together, when the alignment mark 184 to be observed deviates from the field of view of the microscopes 816, 818, 826, and 828, the position correction of the substrate 180 can be easily grasped.
 また、各顕微鏡ユニット810、820において、対向する一対の顕微鏡816、818(顕微鏡826、828)は、互いの相対位置のずれを予め計測して記録されている。従って、下側の顕微鏡816、826により観察された対象物の位置と、上側の顕微鏡826、826により観察された対象物の位置との関係は、顕微鏡816、818、826、828の位置関係から正確に知ることができる。 Also, in each microscope unit 810, 820, a pair of opposed microscopes 816, 818 (microscopes 826, 828) measure and record the relative positional deviation in advance. Therefore, the relationship between the position of the object observed by the lower microscopes 816 and 826 and the position of the object observed by the upper microscopes 826 and 826 is based on the positional relationship of the microscopes 816, 818, 826, and 828. Know exactly.
 図18は、位置合わせ装置700の動作のひとつを示す斜視図である。図示のように、一対の顕微鏡ユニット810、820は、直線駆動部812、822により駆動されて、互いに対称的に移動する。これにより、支柱814、824の間隔を変化させて、顕微鏡816、818、826、828により観察する領域を変化させることができる。 FIG. 18 is a perspective view showing one operation of the alignment apparatus 700. FIG. As shown in the figure, the pair of microscope units 810 and 820 are driven by the linear drive units 812 and 822 and move symmetrically with each other. Thereby, the area | region observed with the microscopes 816, 818, 826, and 828 can be changed by changing the space | interval of the support | pillars 814 and 824. FIG.
 図19は、位置合わせ装置700の他の動作を示す斜視図である。図示のように、下ステージ740を面内駆動部720およびチルト駆動部730からX方向に差し出すことにより、顕微鏡ユニット810における顕微鏡816、818の間および顕微鏡ユニット820における顕微鏡826、828の間に、下ステージ740を差し出すことができる。これにより、基板ホルダ190を介して下ステージ740の上面に保持された基板180を、各顕微鏡ユニット810、820において下向きの視野を有する顕微鏡818、828により観察できる。 FIG. 19 is a perspective view showing another operation of the alignment apparatus 700. FIG. As shown in the figure, by inserting the lower stage 740 from the in-plane driving unit 720 and the tilt driving unit 730 in the X direction, between the microscopes 816 and 818 in the microscope unit 810 and between the microscopes 826 and 828 in the microscope unit 820, The lower stage 740 can be presented. Thus, the substrate 180 held on the upper surface of the lower stage 740 via the substrate holder 190 can be observed by the microscopes 818 and 828 having a downward visual field in each of the microscope units 810 and 820.
 また、下ステージ740は、チルト駆動部730を介して面内駆動部720により支持されている。これにより、顕微鏡818、828により基板180を観察しつつ、下ステージ740を回転または水平移動させることができる。 Further, the lower stage 740 is supported by the in-plane drive unit 720 via the tilt drive unit 730. Accordingly, the lower stage 740 can be rotated or horizontally moved while observing the substrate 180 with the microscopes 818 and 828.
 図20は、位置合わせ装置700のまた他の動作を示す斜視図である。図示のように、下ステージ740はチルト駆動部730の上方に退避して、上ステージ750が面内駆動部760からX方向に差し出されている。これにより、顕微鏡ユニット810における顕微鏡816、818の間および顕微鏡ユニット820における顕微鏡826、828の間に、上ステージ750を差し出される。従って、基板ホルダ190を介して上ステージ750の下面に保持された基板180を、各顕微鏡ユニット810、820において上向きの視野を有する顕微鏡816、826により観察できる。 FIG. 20 is a perspective view showing still another operation of the alignment apparatus 700. As illustrated, the lower stage 740 is retracted above the tilt drive unit 730 and the upper stage 750 is extended from the in-plane drive unit 760 in the X direction. Accordingly, the upper stage 750 is provided between the microscopes 816 and 818 in the microscope unit 810 and between the microscopes 826 and 828 in the microscope unit 820. Accordingly, the substrate 180 held on the lower surface of the upper stage 750 via the substrate holder 190 can be observed by the microscopes 816 and 826 having an upward visual field in each of the microscope units 810 and 820.
 また、上ステージ750は、フレーム770から懸架された面内駆動部760により支持されている。これにより、顕微鏡816、826により基板180を観察しつつ、上ステージを回転または水平移動させることができる。 The upper stage 750 is supported by an in-plane drive unit 760 suspended from the frame 770. Thereby, the upper stage can be rotated or horizontally moved while observing the substrate 180 with the microscopes 816 and 826.
 図21は、位置合わせ装置700における基板180の位置合わせの手順を示す流れ図である。ウエハホルダプリアライメント装置624において基板ホルダ190に保持された基板180は、位置合わせ装置700において、まず、上ステージ750に装填される(ステップS201)。また、ウエハホルダプリアライメント装置624において次に基板ホルダ190に保持された基板180は、位置合わせ装置700において下ステージ740に装填される(ステップS202)。 FIG. 21 is a flowchart showing a procedure for aligning the substrate 180 in the alignment apparatus 700. The substrate 180 held by the substrate holder 190 in the wafer holder pre-alignment apparatus 624 is first loaded on the upper stage 750 in the alignment apparatus 700 (step S201). The substrate 180 held by the substrate holder 190 next in the wafer holder pre-alignment apparatus 624 is loaded on the lower stage 740 in the alignment apparatus 700 (step S202).
 基板ホルダ190による基板180の保持は、例えば静電吸着による。また、上ステージ750および下ステージ740による基板ホルダ190の保持は、例えば真空吸着による。しかしながら、これらの方法に限定されるわけではなく、基板180および基板ホルダ190並びに上ステージ750または下ステージ740が互いに一体となり、以下の位置合わせ作業において位置ずれを生じない任意の方法で固定できる。 The substrate 180 is held by the substrate holder 190 by, for example, electrostatic adsorption. Further, the substrate holder 190 is held by the upper stage 750 and the lower stage 740 by, for example, vacuum suction. However, the present invention is not limited to these methods, and the substrate 180, the substrate holder 190, and the upper stage 750 or the lower stage 740 are integrated with each other, and can be fixed by any method that does not cause misalignment in the following alignment operation.
 次に、チルト駆動部730を用いて、上ステージ750に保持された基板180と下ステージに保持された基板180とを互いに平行にする(ステップS203)。これにより、一対の基板180の位置合わせは、以下、面内駆動部720、760による水平面内に限ることができる。 Next, using the tilt driving unit 730, the substrate 180 held on the upper stage 750 and the substrate 180 held on the lower stage are made parallel to each other (step S203). Accordingly, the alignment of the pair of substrates 180 can be limited to the horizontal plane by the in- plane driving units 720 and 760 below.
 続いて、顕微鏡ユニット810、820を固定する(ステップS204)。このとき、直線駆動部812により支柱814、824の間隔を調節して、基板180の各々について、3以上のアラインメントマーク184を観察できる位置に顕微鏡ユニット810、820を固定する。以後、一対の基板180の貼り合わせが完了するまで、顕微鏡ユニット810、820は固定して移動させない。 Subsequently, the microscope units 810 and 820 are fixed (step S204). At this time, the distance between the support columns 814 and 824 is adjusted by the linear drive unit 812, and the microscope units 810 and 820 are fixed at positions where three or more alignment marks 184 can be observed for each of the substrates 180. Thereafter, the microscope units 810 and 820 are fixed and are not moved until the bonding of the pair of substrates 180 is completed.
 次に、図19に示したように、顕微鏡816、818の間および顕微鏡826、828の間に下ステージ740を差し出して、下向きの顕微鏡818、828により、下ステージ740に搭載された基板180のアラインメントマーク184を観察する(ステップS205)。このとき前記した低倍率顕微鏡による基板180の画像を参照することにより、基板180に形成された複数のアラインメントマーク184から、観察すべき特定のアラインメントマーク184を容易に選択できる。 Next, as shown in FIG. 19, the lower stage 740 is inserted between the microscopes 816 and 818 and between the microscopes 826 and 828, and the substrate 180 mounted on the lower stage 740 is placed by the downward microscopes 818 and 828. The alignment mark 184 is observed (step S205). At this time, a specific alignment mark 184 to be observed can be easily selected from a plurality of alignment marks 184 formed on the substrate 180 by referring to the image of the substrate 180 obtained by the low-power microscope described above.
 図22から図27は、顕微鏡818、828によりアラインメントマーク184を観察する様子を模式的に示す図である。図22に示すように、顕微鏡ユニット810、820の位置が適切であれば、下ステージ740がX方向に差し出された場合に、顕微鏡818、828によりアラインメントマーク184が観察される。これにより、固定された顕微鏡818、828に対するアラインメントマーク184の位置が確定される。そこで、このときの面内駆動部720の駆動量から、顕微鏡818、828に対するアラインメントマーク184の相対位置情報が算出されて記録する(ステップS106)。 22 to 27 are diagrams schematically showing a state in which the alignment mark 184 is observed with the microscopes 818 and 828. FIG. As shown in FIG. 22, if the positions of the microscope units 810 and 820 are appropriate, the alignment mark 184 is observed by the microscopes 818 and 828 when the lower stage 740 is extended in the X direction. Thereby, the position of the alignment mark 184 with respect to the fixed microscopes 818 and 828 is determined. Accordingly, relative position information of the alignment mark 184 with respect to the microscopes 818 and 828 is calculated and recorded from the driving amount of the in-plane driving unit 720 at this time (step S106).
 なお、面内駆動部720の駆動量は、面内駆動部720自体の動作量に基づいて知ることができる。また、同駆動量は、面内駆動部720の動作を制御する目的で設けられたリニアエンコーダ等を参照して計測することもできる。更に、面内駆動部720とは独立して設けた干渉計等により、下ステージ740の移動量を計測してもよい。 The driving amount of the in-plane driving unit 720 can be known based on the operation amount of the in-plane driving unit 720 itself. The same drive amount can also be measured with reference to a linear encoder or the like provided for the purpose of controlling the operation of the in-plane drive unit 720. Further, the amount of movement of the lower stage 740 may be measured by an interferometer or the like provided independently of the in-plane drive unit 720.
 次に、図23に示すように、基板180の他のアラインメントマーク184が顕微鏡818、828により観察できる位置に下ステージ740を移動させ、面内駆動部720の駆動量に基づいて、顕微鏡818、828に対する次のアラインメントマーク184の相対位置情報を記録する。 Next, as shown in FIG. 23, the lower stage 740 is moved to a position where the other alignment mark 184 of the substrate 180 can be observed by the microscopes 818 and 828, and the microscope 818, The relative position information of the next alignment mark 184 with respect to 828 is recorded.
 また、図24に示すように、基板180を含む面内において基板180が回転角度αで回転している場合がある。このような場合は、図25に示すように、顕微鏡818、828により一組のアラインメントマーク184を観察できるように、面内駆動部720により下ステージ740を(-α)回転させる。この場合も、面内駆動部720の駆動量に基づいて、基板180の回転角度αを記録することができる。 Further, as shown in FIG. 24, the substrate 180 may be rotated at a rotation angle α in the plane including the substrate 180. In such a case, as shown in FIG. 25, the lower stage 740 is rotated (−α) by the in-plane driving unit 720 so that the set of alignment marks 184 can be observed with the microscopes 818 and 828. Also in this case, the rotation angle α of the substrate 180 can be recorded based on the driving amount of the in-plane driving unit 720.
 更に、図26および図27に示すように、一方の顕微鏡818を用いて3以上のアラインメントマーク184を観察することにより、当該顕微鏡818の位置を基準として、下ステージ740が保持する基板180の相対位置情報が記録される。 Further, as shown in FIGS. 26 and 27, by observing three or more alignment marks 184 using one microscope 818, relative to the substrate 180 held by the lower stage 740 with reference to the position of the microscope 818. Location information is recorded.
 次に、下ステージ740を顕微鏡818、828の視野からはずして、チルト駆動部730の上方まで退避させ、図20に示したように、顕微鏡816、818の間および顕微鏡826、828の間に上ステージ750を差し出して、上向きの顕微鏡816、826により、上ステージ750の下面に保持された基板180のアラインメントマーク184を観察する(ステップS107)。続いて、下ステージ740に保持された基板180の場合と同様に、複数のアラインメントマーク184について、相対位置情報を記録する(ステップS108)。 Next, the lower stage 740 is removed from the field of view of the microscopes 818 and 828 and retracted to above the tilt drive unit 730, and as shown in FIG. 20, the upper stage is placed between the microscopes 816 and 818 and between the microscopes 826 and 828. The stage 750 is inserted, and the alignment marks 184 of the substrate 180 held on the lower surface of the upper stage 750 are observed with the upward microscopes 816 and 826 (step S107). Subsequently, as in the case of the substrate 180 held on the lower stage 740, relative position information is recorded for the plurality of alignment marks 184 (step S108).
 このようにして、固定された顕微鏡818の位置を基準として、下ステージ740に搭載された基板180の相対位置情報と、上ステージ750に保持された基板180の相対位置情報とが、各々3以上のアラインメントマーク184について記録される。この相対位置情報に基づいて、一対の基板180を位置合わせする場合に補償すべきズレを意味する位置合わせ情報を算出する(ステップS109)。 In this way, using the position of the fixed microscope 818 as a reference, the relative position information of the substrate 180 mounted on the lower stage 740 and the relative position information of the substrate 180 held on the upper stage 750 are each three or more. The alignment mark 184 is recorded. Based on the relative position information, alignment information that means a deviation to be compensated when the pair of substrates 180 are aligned is calculated (step S109).
 即ち、既に説明した通り、貼り合わせに供する基板180は、多くの処理、加工を経て素子等を形成されている。このため、基板180には様々な歪が生じている。また、ひとつの基板180における歪の分布は均一ではない。このため、基板180を位置合わせする場合に、一対の基板180で対応する特定のアラインメントマーク184の位置を一致させても、基板180の一部では位置ずれが大きくなる場合がある。 That is, as already described, the substrate 180 used for bonding is formed with elements and the like through a lot of processing and processing. For this reason, various distortions are generated in the substrate 180. Further, the strain distribution on one substrate 180 is not uniform. For this reason, when aligning the substrate 180, even if the positions of the specific alignment marks 184 corresponding to the pair of substrates 180 are matched, the positional deviation may be increased in a part of the substrate 180.
 しかしながら、一対の基板180相互の間で対応する3以上のアラインメントマーク184の各々の相対位置情報について以下のような処理を実行することにより、基板180全体で生じるアラインメントマーク184の位置ずれを最小にとどめることができる。 However, by performing the following processing on the relative position information of each of the three or more alignment marks 184 corresponding to each other between the pair of substrates 180, the positional deviation of the alignment marks 184 generated in the entire substrate 180 is minimized. You can stay.
 こうして、一対の基板180を位置合わせする場合に、ひとつの顕微鏡ユニット810の位置を基準として3以上のアラインメントマーク184の各々について、基板180の面内の位置および同面内の回転に関する相対位置情報を計測して、それら相対位置情報から、基板180の間で対応するアラインメントマーク184の位置ずれが全体で最小となる位置合わせ情報を算出する。その位置合わせ情報に従って下ステージ740および上ステージ750の間で位置合わせをすることにより、一対の基板180を精度よく位置合わせできる。 Thus, when aligning the pair of substrates 180, relative position information regarding the position in the plane of the substrate 180 and the rotation in the same plane for each of the three or more alignment marks 184 with reference to the position of one microscope unit 810. Then, from the relative position information, alignment information that minimizes the positional deviation of the corresponding alignment marks 184 between the substrates 180 as a whole is calculated. By aligning the lower stage 740 and the upper stage 750 according to the alignment information, the pair of substrates 180 can be aligned with high accuracy.
 上記のようにして算出された位置合わせ情報に基づいて、下ステージ740および上ステージ750の一方を他方に対して合わせることにより、一対の基板180において互いに対応するアラインメントマーク184のずれが全体で最小となるように位置合わせをすることができる。そこで、基板180が位置合わせされた状態で、例えば、下ステージ740を上ステージ750に向かって上昇させることにより、一対の基板180を貼り合わせる(ステップS610)。 By aligning one of the lower stage 740 and the upper stage 750 with respect to the other based on the alignment information calculated as described above, the displacement of the alignment marks 184 corresponding to each other on the pair of substrates 180 is minimized as a whole. Can be aligned. Therefore, in a state where the substrate 180 is aligned, for example, the lower stage 740 is raised toward the upper stage 750 to bond the pair of substrates 180 (step S610).
 更に、基板180が位置合わせされた状態を保持する目的で、図2dに示したように、基板ホルダ190を留め具192により結合する(ステップS111)。こうして位置合わせした状態が確保された基板ホルダ190および基板180は、その状態を保持したまま容易に搬送できるので、位置合わせ装置700から搬出して、加圧装置に搬送する(ステップS612)。以上のようにして、積層する基板180の実行的な位置合わせ精度を向上させることができる。 Further, for the purpose of maintaining the aligned state of the substrate 180, the substrate holder 190 is coupled by the fastener 192 as shown in FIG. 2d (step S111). Since the substrate holder 190 and the substrate 180 in which the aligned state is ensured can be easily transported while maintaining the state, they are unloaded from the aligning device 700 and transported to the pressurizing device (step S612). As described above, the effective alignment accuracy of the substrate 180 to be stacked can be improved.
 なお、一対の基板180が対向して接近している場合は、基板180表面に形成されたアラインメントマーク184が観察できなくなる場合がある。そこで、基板180と一体的に移動する基板ホルダ190、下ステージ740または上ステージ750等において、基板180が対向している状態でも観察しやすい領域に基準マークを設け、この基準マークを観察しつつ下ステージ740または上ステージ750を操作することにより、アラインメントマーク184を観察しつつ操作する場合と同等の精度を維持することができる。この場合、アラインメントマーク184および基準マークの相対位置を予め測定しておくことが求められる。 Note that when the pair of substrates 180 are facing each other, the alignment mark 184 formed on the surface of the substrate 180 may not be observed. Therefore, in the substrate holder 190, the lower stage 740, the upper stage 750, or the like that moves integrally with the substrate 180, a reference mark is provided in an area that can be easily observed even when the substrate 180 is facing, while observing the reference mark. By operating the lower stage 740 or the upper stage 750, it is possible to maintain the same accuracy as when operating while observing the alignment mark 184. In this case, it is required to measure in advance the relative positions of the alignment mark 184 and the reference mark.
 図16から図27の実施形態において、下ステージ740および上ステージ750は、XYの二方向に移動するが、移動方法はこれに限られない。他の例として、アラインメントマーク184が基板180の径方向に沿って直線上に配置されている場合は、そのアラインメントマーク184に沿って下ステージ740および上ステージ750を直線的に移動させてもよい。特に、アラインメントマーク184の配列方向が、顕微鏡に向けての下ステージ740および上ステージ750の移動方向と同一となるように基板180を下ステージ740および上ステージ750に配置することにより、顕微鏡へ向けての下ステージ740および上ステージ750の移動と同時にアラインメントマーク184を検出することができる。 16 to 27, the lower stage 740 and the upper stage 750 move in two directions XY, but the moving method is not limited to this. As another example, when the alignment mark 184 is arranged on a straight line along the radial direction of the substrate 180, the lower stage 740 and the upper stage 750 may be moved linearly along the alignment mark 184. . In particular, by arranging the substrate 180 on the lower stage 740 and the upper stage 750 so that the alignment direction of the alignment marks 184 is the same as the moving direction of the lower stage 740 and the upper stage 750 toward the microscope, The alignment mark 184 can be detected simultaneously with the movement of the lower stage 740 and the upper stage 750.
 また、上記の説明では、積層基板製造装置600を例示したが、この発明の位置合わせ装置700および方法は、半導体装置の製造過程においてフォトリソグラフィに用いられる露光装置において、被露光基板およびレチクル等のパターン形成基板の位置決めに利用することもできる。 In the above description, the laminated substrate manufacturing apparatus 600 is exemplified. However, the alignment apparatus 700 and the method of the present invention are used in an exposure apparatus used for photolithography in the process of manufacturing a semiconductor device, such as a substrate to be exposed and a reticle. It can also be used for positioning the pattern forming substrate.
 図1から図27に示す実施形態において、上ステージ部310等に保持される基板180を観察する顕微鏡が対向する下ステージ部320等に配置され、下ステージ部320等に保持される基板180を観察する顕微鏡が対向する上ステージ部310等に配置される。しかしながら、顕微鏡の配置はこれに限られない。上ステージ部310等に保持される基板180を観察する顕微鏡が同じ上ステージ部310等に配置され、下ステージ部320等に保持される基板180を観察する顕微鏡が同じ下ステージ部320等に配置されてもよい。この場合には、上ステージ部310に配される顕微鏡のレンズが上方を向くように配されるとともに、下ステージ部320に配される顕微鏡のレンズが下方を向くように配される。 In the embodiment shown in FIG. 1 to FIG. 27, a microscope for observing the substrate 180 held on the upper stage unit 310 or the like is disposed on the lower stage unit 320 or the like facing the substrate 180 and the substrate 180 held on the lower stage unit 320 or the like. The microscope to be observed is disposed on the upper stage unit 310 or the like facing the microscope. However, the arrangement of the microscope is not limited to this. A microscope for observing the substrate 180 held on the upper stage unit 310 or the like is arranged on the same upper stage unit 310 or the like, and a microscope for observing the substrate 180 held on the lower stage unit 320 or the like is arranged on the same lower stage unit 320 or the like May be. In this case, the microscope lens arranged on the upper stage unit 310 is arranged to face upward, and the microscope lens arranged on the lower stage unit 320 is arranged to face downward.
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。 As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above-described embodiment. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。 The execution order of each process such as operations, procedures, steps, and stages in the apparatus, system, program, and method shown in the claims, the description, and the drawings is particularly “before” or “prior”. It should be noted that they can be implemented in any order unless the output of the previous process is used in the subsequent process. Regarding the operation flow in the claims, the description, and the drawings, even if it is described using “first”, “next”, etc. for the sake of convenience, it means that it is essential to carry out in this order. is not.
 100 積層基板製造システム、101 筐体、102 常温部、111、112、113 基板カセット、120 制御盤、122 較正制御部、124 位置合わせ制御部、130 プリアライナ、142、210 断熱壁、144、222、224 シャッタ、160 基板ホルダラック、171、172、230、390 ロボットアーム、180 基板、182 ノッチ、184 アラインメントマーク、186 素子領域、190 基板ホルダ、191 溝、192 留め具、202 高温部、220 エアロック、240 加圧部、300 アラインメント部、301 枠体、302 天板、303 底盤、304、374 支柱、306 底板、310 上ステージ部、311 スペーサ、312、322 メインステージ、314、324 サブステージ、316、326、367 反射鏡、318、328、376、378 顕微鏡、320 下ステージ部、321 基準標識、323 貫通穴、329 垂直アクチュエータ、330 計測部、332、334、366、368 干渉計、340、350 駆動部、341、351、362、381 X駆動部、342、352、372、382 Y駆動部、344、384 θ駆動部、346 φ駆動部、348、364、388 Z駆動部、360 測定部、361 支柱、363 案内部、370 顕微鏡ユニット、380 接合部、383 フレーム、389 平板、392 フォーク部、394 アーム部、421 支持枠、422 透明基板、423 不透明薄膜、425 不透明基板、427 ナイフエッジ、600 積層基板製造装置、610 ウエハストッカ、614 ウエハストッカ、616 ウエハストッカ、612 積層基板用ストッカ、622 ウエハプリアライメント装置、624 ウエハホルダプリアライメント装置、630 主制御装置、640 ウエハホルダストッカ、650 加圧装置、660 分離冷却装置、672 ウエハローダ、674 レール、678 レール、676 ウエハホルダローダ、700 位置合わせ装置、710 基盤、720 面内駆動部、760 面内駆動部、722 回転駆動部、762 回転駆動部、724 X方向駆動部、764 X方向駆動部、726 Y方向駆動部、766 Y方向駆動部、730 チルト駆動部、732、736 平板、734 垂直アクチュエータ、740 下ステージ、750 上ステージ、770 フレーム、810 顕微鏡ユニット、820 顕微鏡ユニット、811 切欠き部、821 切欠き部、812 直線駆動部、822 直線駆動部、814 支柱、824 支柱、816 顕微鏡、818 顕微鏡、826 顕微鏡、828 顕微鏡 100 laminated substrate manufacturing system, 101 housing, 102 room temperature section, 111, 112, 113 substrate cassette, 120 control panel, 122 calibration control section, 124 alignment control section, 130 pre-aligner, 142, 210 heat insulation wall, 144, 222, 224 shutter, 160 substrate holder rack, 171, 172, 230, 390 robot arm, 180 substrate, 182 notch, 184 alignment mark, 186 element area, 190 substrate holder, 191 groove, 192 fastener, 202 high temperature part, 220 air lock , 240 Pressurization part, 300 Alignment part, 301 Frame, 302 Top plate, 303 Bottom plate, 304, 374 Column, 306 Bottom plate, 310 Upper stage part, 311 Spacer, 312, 322 Main stay 314, 324 Substage, 316, 326, 367 Reflector, 318, 328, 376, 378 Microscope, 320 Lower stage part, 321 Reference mark, 323 Through hole, 329 Vertical actuator, 330 Measuring part, 332, 334, 366 368 interferometer, 340, 350 drive unit, 341, 351, 362, 381 X drive unit, 342, 352, 372, 382 Y drive unit, 344, 384 θ drive unit, 346 φ drive unit, 348, 364, 388 Z drive unit, 360 measurement unit, 361 support column, 363 guide unit, 370 microscope unit, 380 joint unit, 383 frame, 389 flat plate, 392 fork unit, 394 arm unit, 421 support frame, 422 transparent substrate, 423 opaque thin film, 425 Opaque substrate, 427 Knife edge, 600 Laminated substrate manufacturing device, 610 Wafer stocker, 614 Wafer stocker, 616 Wafer stocker, 612 Laminated substrate stocker, 622 Wafer pre-alignment device, 624 Wafer holder pre-alignment device, 630 Main controller, 640 Wafer holder stocker, 650 pressure device, 660 separation cooling device, 672 wafer loader, 674 rail, 678 rail, 676 wafer holder loader, 700 alignment device, 710 base, 720 in-plane drive unit, 760 in-plane drive unit, 722 rotation drive unit, 762 Rotation drive unit, 724 X direction drive unit, 764 X direction drive unit, 726 Y direction drive unit, 766 Y direction drive unit, 730 tilt drive unit, 732, 736 flat plate, 734 vertical actuator , 740 lower stage, 750 upper stage, 770 frame, 810 microscope unit, 820 microscope unit, 811 notch, 821 notch, 812 linear drive, 822 linear drive, 814 support, 824 support, 816 microscope, 818 Microscope, 826 microscope, 828 microscope

Claims (25)

  1.  互いに対向する一対の基板の一方を保持しつつ当該基板の面方向に移動する第1ステージと、
     前記一対の基板の他方を保持する第2ステージと、
     前記第2ステージに保持された基板のアラインメントマークを観察する第1顕微鏡と、
     前記第1ステージに保持された基板のアラインメントマークを観察する第2顕微鏡と、
     前記第1顕微鏡および前記第2顕微鏡から共通に観察される較正標識と、
     前記第1顕微鏡および前記第2顕微鏡により前記較正標識を観察することにより取得した前記第1顕微鏡および前記第2顕微鏡の相対位置、前記第2顕微鏡により観察したアラインメントマークの位置を示す第1位置情報、および、前記第1顕微鏡により観察したアラインメントマークの位置を示す第2位置情報に基づいて前記一対の基板を位置合わせする位置合わせ制御部と
     を備える基板位置合わせ装置。
    A first stage that moves in the surface direction of the substrate while holding one of the pair of substrates facing each other;
    A second stage for holding the other of the pair of substrates;
    A first microscope for observing an alignment mark of the substrate held on the second stage;
    A second microscope for observing an alignment mark of the substrate held on the first stage;
    A calibration marker commonly observed from the first microscope and the second microscope;
    1st position information which shows the position of the alignment mark observed with the relative position of the 1st microscope and the 2nd microscope acquired by observing the calibration mark with the 1st microscope and the 2nd microscope, and the 2nd microscope And an alignment control unit that aligns the pair of substrates based on second position information indicating the position of the alignment mark observed with the first microscope.
  2.  前記第1顕微鏡および前記第2顕微鏡により前記較正標識を観察することにより前記第1顕微鏡および前記第2顕微鏡の相対位置を較正する較正制御部をさらに備え、
     前記較正制御部による校正結果と、前記位置合わせ制御部が前記第2顕微鏡により観察したアラインメントマークの位置を示す第1位置情報、および、前記第1顕微鏡により観察したアラインメントマークの位置を示す第2位置情報の差分とに基づいて前記一対の基板を位置合わせする請求項1に記載の基板位置合わせ装置。
    A calibration control unit that calibrates the relative positions of the first microscope and the second microscope by observing the calibration mark with the first microscope and the second microscope;
    The calibration result by the calibration control unit, the first position information indicating the position of the alignment mark observed by the alignment control unit with the second microscope, and the second indicating the position of the alignment mark observed with the first microscope. The substrate alignment apparatus according to claim 1, wherein the pair of substrates is aligned based on a difference in position information.
  3.  前記較正標識は、前記第1ステージと共に移動し、
     前記較正制御部は、前記第1ステージが停止した状態で、前記第1顕微鏡および前記第2顕微鏡により前記較正標識を観察することにより前記第1顕微鏡および前記第2顕微鏡の相対位置を較正する請求項2に記載の基板位置合わせ装置。
    The calibration marker moves with the first stage;
    The calibration control unit calibrates the relative positions of the first microscope and the second microscope by observing the calibration mark with the first microscope and the second microscope in a state where the first stage is stopped. Item 3. The substrate alignment apparatus according to Item 2.
  4.  前記第1顕微鏡は、前記第1ステージと共に移動する請求項3に記載の基板位置合わせ装置。 The substrate alignment apparatus according to claim 3, wherein the first microscope moves together with the first stage.
  5.  前記位置合わせ制御部は、前記一対の基板の一方を保持した前記第1ステージを移動させて、当該基板を前記第2ステージに保持された前記一対の基板の他方に位置合わせする請求項3または4に記載の基板位置合わせ装置。 The alignment control unit moves the first stage holding one of the pair of substrates to align the substrate with the other of the pair of substrates held by the second stage. 5. The substrate alignment apparatus according to 4.
  6.  前記較正制御部は、前記第1顕微鏡および前記第2顕微鏡のいずれかが移動した後に、前記相対位置を較正する請求項2から5のいずれかに記載の基板位置合わせ装置。 6. The substrate alignment apparatus according to claim 2, wherein the calibration control unit calibrates the relative position after any of the first microscope and the second microscope moves.
  7.  前記較正制御部は、前記第1顕微鏡および前記第2顕微鏡のいずれかが移動方向を変えた後に、前記相対位置を較正する請求項2から6のいずれかに記載の基板位置合わせ装置。 7. The substrate alignment apparatus according to claim 2, wherein the calibration control unit calibrates the relative position after any of the first microscope and the second microscope changes a moving direction.
  8.  前記較正標識は、透明基板と、前記透明基板に被着させた不透明薄膜とを含む請求項1から7のいずれかに記載の基板位置合わせ装置。 8. The substrate alignment apparatus according to claim 1, wherein the calibration mark includes a transparent substrate and an opaque thin film attached to the transparent substrate.
  9.  前記較正標識は、前記第1顕微鏡および前記第2顕微鏡を結ぶ線に対してそれぞれ交差し、互いに異なる傾斜を有する一対の面の交線に形成される請求項1から8のいずれかに記載の基板位置合わせ装置。 9. The calibration mark according to claim 1, wherein the calibration mark is formed at a line of intersection of a pair of surfaces that intersect each line connecting the first microscope and the second microscope and have different inclinations. 10. Substrate alignment device.
  10.  前記第1ステージおよび前記第2ステージの位置を各々検出する干渉計を更に備える請求項1から9のいずれかに記載の基板位置合わせ装置。 10. The substrate alignment apparatus according to claim 1, further comprising an interferometer that detects positions of the first stage and the second stage.
  11.  前記第1ステージおよび前記第2ステージのいずれかを、前記第1ステージおよび前記第2ステージに保持された一対の基板を当接または離間させる方向に移動させる垂直駆動部を更に備える請求項1から10のいずれかに記載の基板位置合わせ装置。 2. The apparatus according to claim 1, further comprising a vertical drive unit that moves either the first stage or the second stage in a direction in which a pair of substrates held on the first stage and the second stage are brought into contact with or separated from each other. The substrate alignment apparatus according to any one of 10.
  12.  前記第1顕微鏡および前記第2顕微鏡は、相互に固定されている請求項1から11のいずれかに記載の基板位置合わせ装置。 The substrate alignment apparatus according to any one of claims 1 to 11, wherein the first microscope and the second microscope are fixed to each other.
  13.  前記位置合わせ制御部は、前記一対の基板の一方を前記第1ステージから第3ステージに載せ換え、且つ、前記一対の基板の他方を前記第2ステージから第4ステージに載せ換えた後に、前記第3ステージおよび前記第4ステージのいずれかを移動させて前記一対の基板を位置合わせする請求項1から12のいずれかに記載の基板位置合わせ装置。 The alignment control unit replaces one of the pair of substrates from the first stage to the third stage, and after replacing the other of the pair of substrates from the second stage to the fourth stage, The substrate alignment apparatus according to claim 1, wherein either the third stage or the fourth stage is moved to align the pair of substrates.
  14.  前記第1顕微鏡および前記第2顕微鏡は、前記第1ステージおよび前記第2ステージに保持された一対の基板のそれぞれについて、3以上のアラインメントマークを観察する請求項1から13のいずれかに記載の基板位置合わせ装置。 The first microscope and the second microscope each observe three or more alignment marks on each of a pair of substrates held on the first stage and the second stage. Substrate alignment device.
  15.  互いに位置合わせされる二つの基板に形成された複数のアラインメントマークを検出する検出部と、
     二つの前記基板のそれぞれを保持する一対のステージと、
     前記二つのステージをそれぞれ移動させる駆動部と、
     前記駆動部の駆動を制御する制御部であって、前記検出部で検出された前記二つの基板の前記アラインメントマークの前記位置に基づいて、前記二つの基板の間で対応する前記アラインメントマークの位置ずれが全体で最小となるように、前記二つの基板を位置合わせすべく前記駆動部を駆動させる制御部と
    を備え、
     前記制御部は、前記一対のステージに保持された前記二つの基板の三つ以上の前記アラインメントマークの位置が前記検出部で検出されるように前記一対のステージを移動させるべく前記駆動部を駆動させる基板位置合わせ装置。
    A detection unit for detecting a plurality of alignment marks formed on the two substrates aligned with each other;
    A pair of stages holding each of the two substrates;
    A drive unit for moving each of the two stages;
    A control unit for controlling the driving of the driving unit, the position of the alignment mark corresponding between the two substrates based on the position of the alignment mark of the two substrates detected by the detection unit; A controller that drives the drive unit to align the two substrates so that the displacement is minimized as a whole,
    The control unit drives the driving unit to move the pair of stages so that the detection unit detects the positions of three or more alignment marks of the two substrates held on the pair of stages. Substrate alignment device.
  16.  前記検出部は、互いに対向した状態で相対位置が固定された一対の顕微鏡を有し、
     前記一対のステージは、互いに対向する一対の基板を個別に保持し、前記一対の顕微鏡のいずれかの視野に当該基板を差し出しつつ、保持した基板の面方向に個別に移動する請求項15に記載の基板位置合わせ装置。
    The detection unit has a pair of microscopes whose relative positions are fixed in a state of facing each other,
    The pair of stages individually hold a pair of substrates facing each other, and individually move in the surface direction of the held substrate while inserting the substrate into any field of view of the pair of microscopes. Substrate alignment device.
  17.  前記制御部は、
     前記一対のステージの一方を移動させて前記一対の顕微鏡の間に位置した前記一対の基板の一方を前記一対の顕微鏡の一方で観察することにより、当該一方の基板に形成された3以上のアラインメントマークの当該一方の顕微鏡に対する相対位置を計測し、
     前記一対のステージの他方を移動させて前記一対の顕微鏡の間に位置した前記一対の基板の他方を前記一対の顕微鏡の他方で観察することにより、当該他方の基板に形成された3以上のアラインメントマークの当該他方の顕微鏡に対する相対位置を計測し、
     前記一対の基板の各々のアラインメントマークの前記一対の顕微鏡に対する相対位置に基づいて、当該一対の基板の間で対応する前記アラインメントマークの位置ずれが全体で最小となるように前記一対のステージを移動させる請求項16に記載の基板位置合わせ装置。
    The controller is
    Three or more alignments formed on the one substrate by moving one of the pair of stages and observing one of the pair of substrates positioned between the pair of microscopes with one of the pair of microscopes Measure the relative position of the mark to the one microscope,
    Three or more alignments formed on the other substrate by moving the other of the pair of stages and observing the other of the pair of substrates positioned between the pair of microscopes with the other of the pair of microscopes Measure the relative position of the mark to the other microscope,
    Based on the relative position of each alignment mark of the pair of substrates with respect to the pair of microscopes, the pair of stages is moved so that the positional deviation of the corresponding alignment mark between the pair of substrates is minimized as a whole. The substrate alignment apparatus according to claim 16.
  18.  前記一対の顕微鏡を2組以上備える請求項16または17に記載の基板位置合わせ装置。 The substrate alignment apparatus according to claim 16 or 17, comprising two or more pairs of the pair of microscopes.
  19.  前記一対の顕微鏡は、
     前記一対のステージにより差し出された基板の前記アラインメントマークが視野に入る観察位置と、
     前記一対のステージにより差し出された基板の前記アラインメントマークが視野からはずれる退避位置と
     の間を移動する請求項16から18のいずれかに記載の基板位置合わせ装置。
    The pair of microscopes are:
    An observation position where the alignment mark of the substrate presented by the pair of stages enters a visual field; and
    The substrate alignment apparatus according to any one of claims 16 to 18, wherein the alignment mark of the substrate extended by the pair of stages moves between a retraction position where the alignment mark deviates from the field of view.
  20.  前記一対のステージの各々は、当該ステージに保持された前記一対の基板のいずれかに形成されたアラインメントマークのうちの3つ以上を、位置を固定された前記一対の顕微鏡のいずれかに観察させるように移動する請求項16から18のいずれかに記載の基板位置合わせ装置。 Each of the pair of stages causes any one of the pair of microscopes fixed in position to observe three or more of the alignment marks formed on any of the pair of substrates held on the stage. The substrate alignment apparatus according to any one of claims 16 to 18, which moves as described above.
  21.  前記制御部は、前記一対のステージに保持された一対の基板のいずれかと一体的に移動する基準マークを観察しつつ、前記一対のステージの各々を移動させる請求項16から18のいずれかに記載の基板位置合わせ装置。 The control unit moves each of the pair of stages while observing a reference mark that moves integrally with one of the pair of substrates held on the pair of stages. Substrate alignment device.
  22.  前記一対のステージは、当該ステージに保持された基板を含む面内でそれぞれ回転する請求項16から21のいずれかに記載の基板位置合わせ装置。 The substrate alignment apparatus according to any one of claims 16 to 21, wherein the pair of stages rotate in a plane including the substrate held on the stage.
  23.  請求項1から請求項22までのいずれかに記載の基板位置合わせ装置と、
     前記基板位置合わせ装置において位置合わせされた前記一対の基板を加圧して接合する接合装置と
     を備える積層型半導体装置の製造方法。
    A substrate alignment apparatus according to any one of claims 1 to 22,
    And a bonding apparatus that pressurizes and bonds the pair of substrates aligned in the substrate alignment apparatus.
  24.  互いに対向する一対の基板の一方を、当該基板の面方向に移動する第1ステージに保持させる第1保持段階と、
     前記一対の基板の他方を第2ステージに保持させる第2保持段階と、
     第1顕微鏡および第2顕微鏡により観察して、前記第1顕微鏡および前記第2顕微鏡の相対位置を検出する較正段階と、
     前記第1ステージに保持された基板のアラインメントマークを前記第2顕微鏡により観察して、当該アラインメントマークの位置を示す第1位置情報を検出する第1検出段階と、
     前記第2ステージに保持された基板のアラインメントマークを前記第1顕微鏡により観察して、当該アラインメントマークの位置を示す第2位置情報を検出する第2検出段階と、
     前記第1位置情報および第2位置情報の差分に応じて前記一対の基板を位置合わせする位置合わせ段階と
     を含む基板位置合わせ方法。
    A first holding step of holding one of a pair of substrates facing each other on a first stage that moves in the surface direction of the substrate;
    A second holding stage for holding the other of the pair of substrates on a second stage;
    A calibration step of observing with a first microscope and a second microscope to detect a relative position of the first microscope and the second microscope;
    A first detection step of observing an alignment mark of the substrate held on the first stage with the second microscope and detecting first position information indicating a position of the alignment mark;
    A second detection step of observing an alignment mark of the substrate held on the second stage with the first microscope and detecting second position information indicating a position of the alignment mark;
    And a positioning step of aligning the pair of substrates according to a difference between the first position information and the second position information.
  25.  一対の基板のそれぞれが支持された一対のステージの一方を移動させて、当該ステージに保持された基板を前記一対の顕微鏡の間に差し出し、当該基板を前記一対の顕微鏡の一方で観察することにより、当該基板に形成された3以上のアラインメントマークの当該一方の顕微鏡に対する相対位置を計測する第1計測段階と、
     前記一対のステージの他方を移動させて、当該ステージに保持された基板を前記一対の顕微鏡の間に差し出し、当該基板を前記一対の顕微鏡の他方で観察することにより、当該基板に形成された3以上のアラインメントマークの当該他方の顕微鏡に対する相対位置を計測する第2計測段階と、
     前記一対の顕微鏡に対する前記アラインメントマークの前記相対位置に基づいて、前記一対の基板の間で対応する前記アラインメントマークの位置ずれが全体で最小になるように前記一対のステージを移動させる位置合わせ段階と
     を備える基板位置合わせ方法。
    By moving one of the pair of stages on which each of the pair of substrates is supported, inserting the substrate held on the stage between the pair of microscopes, and observing the substrate on one of the pair of microscopes Measuring a relative position of the three or more alignment marks formed on the substrate with respect to the one microscope;
    3 formed on the substrate by moving the other of the pair of stages, inserting the substrate held on the stage between the pair of microscopes, and observing the substrate with the other of the pair of microscopes. A second measurement stage for measuring the relative position of the alignment mark with respect to the other microscope;
    An alignment step of moving the pair of stages based on the relative position of the alignment mark with respect to the pair of microscopes so that the positional deviation of the corresponding alignment mark between the pair of substrates is minimized as a whole; A substrate alignment method comprising:
PCT/JP2009/004201 2008-08-29 2009-08-28 Substrate aligning apparatus, substrate aligning method and method for manufacturing multilayer semiconductor WO2010023935A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-221265 2008-08-29
JP2008221265 2008-08-29
JP2008-256804 2008-10-01
JP2008256804 2008-10-01

Publications (1)

Publication Number Publication Date
WO2010023935A1 true WO2010023935A1 (en) 2010-03-04

Family

ID=41721116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004201 WO2010023935A1 (en) 2008-08-29 2009-08-28 Substrate aligning apparatus, substrate aligning method and method for manufacturing multilayer semiconductor

Country Status (2)

Country Link
TW (1) TWI517290B (en)
WO (1) WO2010023935A1 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011216788A (en) * 2010-04-01 2011-10-27 Nikon Corp Substrate bonding apparatus and method of bonding substrate
JP2011222659A (en) * 2010-04-07 2011-11-04 Nikon Corp Substrate observation apparatus and method of manufacturing device
JP2011222855A (en) * 2010-04-13 2011-11-04 Nikon Corp Substrate alignment device, substrate laminating device, method of manufacturing laminate semiconductor device, and laminate semiconductor device
JP2012038860A (en) * 2010-08-05 2012-02-23 Nikon Corp Lamination method of semiconductor substrate, lamination device of semiconductor substrate and manufacturing method of device
CN103154806A (en) * 2010-09-20 2013-06-12 韩东熙 Apparatus for adjusting the positioning of a panel, and panel-bonding apparatus having same
WO2014064944A1 (en) * 2012-10-26 2014-05-01 株式会社ニコン Substrate bonding apparatus, aligning apparatus, substrate bonding method, aligning method, and laminated semiconductor device manufacturing method
JP2014229787A (en) * 2013-05-23 2014-12-08 東京エレクトロン株式会社 Bonding device, bonding system, bonding method, program, and computer storage medium
JP2015018920A (en) * 2013-07-10 2015-01-29 東京エレクトロン株式会社 Joining device, joining system, joining method, program and computer storage medium
WO2015082020A1 (en) * 2013-12-06 2015-06-11 Ev Group E. Thallner Gmbh Device and method for aligning substrates
JP2015535940A (en) * 2012-08-13 2015-12-17 ヒ ハン、ドン Panel mounting device
FR3033932A1 (en) * 2015-03-16 2016-09-23 Micro-Controle-Spectra Physics SYSTEM FOR RELATIVE MOVEMENT BETWEEN TWO PLATES AND POSITIONING DEVICE COMPRISING SUCH A DISPLACEMENT SYSTEM.
WO2018041326A1 (en) * 2016-08-29 2018-03-08 Ev Group E. Thallner Gmbh Method and device for bonding substrates
EP3373328A1 (en) * 2012-06-06 2018-09-12 EV Group E. Thallner GmbH Method and device for identifying alignment errors
WO2018171861A1 (en) * 2017-03-20 2018-09-27 Ev Group E. Thallner Gmbh Method for aligning two substrates
WO2021115574A1 (en) * 2019-12-10 2021-06-17 Ev Group E. Thallner Gmbh Method and device for aligning substrates
US20210296152A1 (en) * 2020-03-17 2021-09-23 Kioxia Corporation Semiconductor manufacturing apparatus and method of manufacturing semiconductor device
EP3967438A4 (en) * 2019-05-08 2023-02-08 Tokyo Electron Limited Joining device, joining system, and joining method
CN115799140A (en) * 2022-07-20 2023-03-14 拓荆键科(海宁)半导体设备有限公司 Calibration method and device, combined microscope and wafer bonding method
TWI796793B (en) * 2020-09-18 2023-03-21 日商日機裝股份有限公司 Vacuum-laminating device and method of manufacturing laminated body
WO2023116160A1 (en) * 2021-12-22 2023-06-29 拓荆键科(海宁)半导体设备有限公司 Method and system for calibrating wafer alignment
TWI834891B (en) 2014-12-10 2024-03-11 日商尼康股份有限公司 Substrate overlay method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI418810B (en) * 2010-03-26 2013-12-11 Hon Tech Inc Testing machine for multi-layer electronic elements
EP2523208B1 (en) * 2010-04-23 2013-06-12 EV Group GmbH Device and method for releasing a product substrate from a holder substrate
KR101371370B1 (en) * 2013-12-13 2014-03-07 한동희 Panel bonding unit, panel bonding apparatus having the same and panel bonding method
JP6307730B1 (en) * 2016-09-29 2018-04-11 株式会社新川 Semiconductor device manufacturing method and mounting apparatus
JP7175735B2 (en) * 2018-12-11 2022-11-21 平田機工株式会社 Substrate carrier
US11209373B2 (en) * 2019-06-21 2021-12-28 Kla Corporation Six degree of freedom workpiece stage

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6214692B1 (en) * 1998-01-13 2001-04-10 Erich Thallner Method and apparatus for the aligned joining of disk-shaped semiconductor substrates
JP2005251972A (en) * 2004-03-04 2005-09-15 Nikon Corp Method and apparatus for superimposing wafers
JP2005311298A (en) * 2004-01-22 2005-11-04 Bondotekku:Kk Joining method, and device and apparatus formed by method
WO2009022457A1 (en) * 2007-08-10 2009-02-19 Nikon Corporation Substrate bonding apparatus and substrate bonding method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6214692B1 (en) * 1998-01-13 2001-04-10 Erich Thallner Method and apparatus for the aligned joining of disk-shaped semiconductor substrates
JP2005311298A (en) * 2004-01-22 2005-11-04 Bondotekku:Kk Joining method, and device and apparatus formed by method
JP2005251972A (en) * 2004-03-04 2005-09-15 Nikon Corp Method and apparatus for superimposing wafers
WO2009022457A1 (en) * 2007-08-10 2009-02-19 Nikon Corporation Substrate bonding apparatus and substrate bonding method

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011216788A (en) * 2010-04-01 2011-10-27 Nikon Corp Substrate bonding apparatus and method of bonding substrate
JP2011222659A (en) * 2010-04-07 2011-11-04 Nikon Corp Substrate observation apparatus and method of manufacturing device
JP2011222855A (en) * 2010-04-13 2011-11-04 Nikon Corp Substrate alignment device, substrate laminating device, method of manufacturing laminate semiconductor device, and laminate semiconductor device
JP2012038860A (en) * 2010-08-05 2012-02-23 Nikon Corp Lamination method of semiconductor substrate, lamination device of semiconductor substrate and manufacturing method of device
CN103154806A (en) * 2010-09-20 2013-06-12 韩东熙 Apparatus for adjusting the positioning of a panel, and panel-bonding apparatus having same
JP2013545264A (en) * 2010-09-20 2013-12-19 ヒ ハン、ドン Panel posture adjusting device and panel mounting device having the same
US10410896B2 (en) 2012-06-06 2019-09-10 Ev Group E. Thallner Gmbh Apparatus and method for ascertaining orientation errors
US10134622B2 (en) 2012-06-06 2018-11-20 Ev Group E. Thallner Gmbh Apparatus and method for ascertaining orientation errors
EP3373328A1 (en) * 2012-06-06 2018-09-12 EV Group E. Thallner GmbH Method and device for identifying alignment errors
JP2015535940A (en) * 2012-08-13 2015-12-17 ヒ ハン、ドン Panel mounting device
WO2014064944A1 (en) * 2012-10-26 2014-05-01 株式会社ニコン Substrate bonding apparatus, aligning apparatus, substrate bonding method, aligning method, and laminated semiconductor device manufacturing method
KR102191735B1 (en) * 2012-10-26 2020-12-16 가부시키가이샤 니콘 Substrate aligning apparatus, substrate bonding apparatus, substrate aligning method, laminated semiconductor device manufacturing method, and substrate bonding method
KR20150074084A (en) * 2012-10-26 2015-07-01 가부시키가이샤 니콘 Substrate bonding apparatus, aligning apparatus, substrate bonding method, aligning method, and laminated semiconductor device manufacturing method
US9919508B2 (en) 2012-10-26 2018-03-20 Nikon Corporation Substrate aligning apparatus, substrate bonding apparatus, substrate aligning method and substrate bonding method
JPWO2014064944A1 (en) * 2012-10-26 2016-09-08 株式会社ニコン Substrate alignment apparatus, substrate bonding apparatus, substrate alignment method, manufacturing method of laminated semiconductor device, and substrate bonding method
JP2014229787A (en) * 2013-05-23 2014-12-08 東京エレクトロン株式会社 Bonding device, bonding system, bonding method, program, and computer storage medium
JP2015018920A (en) * 2013-07-10 2015-01-29 東京エレクトロン株式会社 Joining device, joining system, joining method, program and computer storage medium
JP2016503589A (en) * 2013-12-06 2016-02-04 エーファウ・グループ・エー・タルナー・ゲーエムベーハー Apparatus and method for aligning substrates
US9851645B2 (en) 2013-12-06 2017-12-26 Ev Group E. Thallner Gmbh Device and method for aligning substrates
KR101741384B1 (en) * 2013-12-06 2017-05-29 에베 그룹 에. 탈너 게엠베하 Device and method for aligning substrates
WO2015082020A1 (en) * 2013-12-06 2015-06-11 Ev Group E. Thallner Gmbh Device and method for aligning substrates
TWI834891B (en) 2014-12-10 2024-03-11 日商尼康股份有限公司 Substrate overlay method
FR3033932A1 (en) * 2015-03-16 2016-09-23 Micro-Controle-Spectra Physics SYSTEM FOR RELATIVE MOVEMENT BETWEEN TWO PLATES AND POSITIONING DEVICE COMPRISING SUCH A DISPLACEMENT SYSTEM.
KR102221965B1 (en) 2016-08-29 2021-03-03 에베 그룹 에. 탈너 게엠베하 Method and apparatus for aligning substrates
US10943807B2 (en) 2016-08-29 2021-03-09 Ev Group E. Thallner Gmbh Method and device for alignment of substrates
JP2019530206A (en) * 2016-08-29 2019-10-17 エーファウ・グループ・エー・タルナー・ゲーエムベーハー Method and apparatus for aligning substrates
EP3734650B1 (en) * 2016-08-29 2023-09-27 EV Group E. Thallner GmbH Device and method for aligning substrates
US11488851B2 (en) 2016-08-29 2022-11-01 Ev Group E. Thallner Gmbh Method and device for alignment of substrates
KR102386005B1 (en) 2016-08-29 2022-04-12 에베 그룹 에. 탈너 게엠베하 Method and device for aligning substrates
KR20190042561A (en) * 2016-08-29 2019-04-24 에베 그룹 에. 탈너 게엠베하 Method and apparatus for aligning substrates
US10692747B2 (en) 2016-08-29 2020-06-23 Ev Group E. Thallner Gmbh Method and device for alignment of substrates
CN109643674A (en) * 2016-08-29 2019-04-16 Ev 集团 E·索尔纳有限责任公司 Method and apparatus for aligning substrate
WO2018041326A1 (en) * 2016-08-29 2018-03-08 Ev Group E. Thallner Gmbh Method and device for bonding substrates
KR20210024662A (en) * 2016-08-29 2021-03-05 에베 그룹 에. 탈너 게엠베하 Method and device for aligning substrates
US11121091B2 (en) 2017-03-20 2021-09-14 Ev Group E. Thallner Gmbh Method for arranging two substrates
CN110352488A (en) * 2017-03-20 2019-10-18 Ev 集团 E·索尔纳有限责任公司 Method for being directed at two substrates
JP2020511787A (en) * 2017-03-20 2020-04-16 エーファウ・グループ・エー・タルナー・ゲーエムベーハー How to align two substrates
WO2018171861A1 (en) * 2017-03-20 2018-09-27 Ev Group E. Thallner Gmbh Method for aligning two substrates
KR102365283B1 (en) * 2017-03-20 2022-02-18 에베 그룹 에. 탈너 게엠베하 How to align two substrates
TWI679722B (en) * 2017-03-20 2019-12-11 奧地利商Ev集團E塔那有限公司 Method for the alignment of two substrates
KR20190125972A (en) * 2017-03-20 2019-11-07 에베 그룹 에. 탈너 게엠베하 How to align two substrates
EP3967438A4 (en) * 2019-05-08 2023-02-08 Tokyo Electron Limited Joining device, joining system, and joining method
WO2021115574A1 (en) * 2019-12-10 2021-06-17 Ev Group E. Thallner Gmbh Method and device for aligning substrates
US20210296152A1 (en) * 2020-03-17 2021-09-23 Kioxia Corporation Semiconductor manufacturing apparatus and method of manufacturing semiconductor device
US11935775B2 (en) * 2020-03-17 2024-03-19 Kioxia Corporation Semiconductor manufacturing apparatus and method of manufacturing semiconductor device
TWI796793B (en) * 2020-09-18 2023-03-21 日商日機裝股份有限公司 Vacuum-laminating device and method of manufacturing laminated body
WO2023116160A1 (en) * 2021-12-22 2023-06-29 拓荆键科(海宁)半导体设备有限公司 Method and system for calibrating wafer alignment
CN115799140A (en) * 2022-07-20 2023-03-14 拓荆键科(海宁)半导体设备有限公司 Calibration method and device, combined microscope and wafer bonding method
CN115799140B (en) * 2022-07-20 2023-12-01 拓荆键科(海宁)半导体设备有限公司 Calibration method and device, combined microscope and wafer bonding method

Also Published As

Publication number Publication date
TW201009994A (en) 2010-03-01
TWI517290B (en) 2016-01-11

Similar Documents

Publication Publication Date Title
WO2010023935A1 (en) Substrate aligning apparatus, substrate aligning method and method for manufacturing multilayer semiconductor
JP5353892B2 (en) Alignment apparatus and alignment method
US8964190B2 (en) Alignment apparatus, substrates stacking apparatus, stacked substrates manufacturing apparatus, exposure apparatus and alignment method
JP5549339B2 (en) Substrate relative position detection method, laminated device manufacturing method, and detection apparatus
JP5454310B2 (en) Substrate bonding apparatus and substrate bonding method
JP4247296B1 (en) Lamination bonding apparatus and lamination bonding method
JP4209456B1 (en) Lamination bonding equipment jig
JP5600952B2 (en) Position detection apparatus, substrate bonding apparatus, position detection method, substrate bonding method, and device manufacturing method
JP5707950B2 (en) Substrate overlay apparatus and substrate overlay method
JP5798721B2 (en) Substrate alignment apparatus, substrate bonding apparatus, substrate alignment method, and laminated semiconductor manufacturing method
JP5549335B2 (en) Substrate observation apparatus and device manufacturing method
JP5614081B2 (en) Substrate alignment device, substrate alignment method, substrate bonding device, laminated semiconductor device manufacturing method, and laminated semiconductor device
JP2009194264A (en) Substrate bonding apparatus
JP5454239B2 (en) Substrate bonding apparatus, substrate bonding method, laminated semiconductor device manufacturing method, and laminated semiconductor device
JP5454252B2 (en) Substrate bonding apparatus, substrate bonding method, laminated semiconductor device manufacturing method, and laminated semiconductor device
JP5481950B2 (en) Superposition method, superposition apparatus, alignment apparatus, and bonding apparatus
JP2010093203A (en) Reference mark moving apparatus and substrate alignment apparatus
JP5487740B2 (en) Overlay apparatus, alignment apparatus, substrate bonding apparatus, and overlay method
JP2011170297A (en) Microscope, substrate sticking device, method for manufacturing laminated semiconductor device, and the laminated semiconductor device
JP2012124323A (en) Substrate holder, bonding system, method of manufacturing stacked semiconductor device and stacked semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09809590

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09809590

Country of ref document: EP

Kind code of ref document: A1