WO2010007938A1 - Ultraviolet laser device - Google Patents

Ultraviolet laser device Download PDF

Info

Publication number
WO2010007938A1
WO2010007938A1 PCT/JP2009/062524 JP2009062524W WO2010007938A1 WO 2010007938 A1 WO2010007938 A1 WO 2010007938A1 JP 2009062524 W JP2009062524 W JP 2009062524W WO 2010007938 A1 WO2010007938 A1 WO 2010007938A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
wavelength
light
output
ultraviolet
Prior art date
Application number
PCT/JP2009/062524
Other languages
French (fr)
Japanese (ja)
Inventor
能徳 久保田
英之 岡本
健 春日
育成 原
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Publication of WO2010007938A1 publication Critical patent/WO2010007938A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3534Three-wave interaction, e.g. sum-difference frequency generation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/3551Crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/365Non-linear optics in an optical waveguide structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0092Nonlinear frequency conversion, e.g. second harmonic generation [SHG] or sum- or difference-frequency generation outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1613Solid materials characterised by an active (lasing) ion rare earth praseodymium

Definitions

  • the present invention relates to an ultraviolet laser device.
  • an excimer laser such as a KrF laser, an ArF laser, or an F 2 laser
  • these ultraviolet lasers are gas lasers and have low repetition pulse laser oscillation, and it is difficult to maintain power stability and beam quality in continuous operation.
  • the excimer laser is dangerous because it uses fluorine, and maintenance is troublesome. For this reason, the apparatus is expensive and large.
  • the excimer laser is a low repetition pulse laser, it is difficult to develop it for uses other than exposure. For example, in direct drawing microfabrication, it is desired to scan at a high speed in order to improve the processing efficiency, but in an excimer laser, scanning is difficult because repetition is slow. For this reason, although the ultraviolet light processing is applied to resin material processing and the like which are effective, the range is limited at present.
  • continuous wave is useful for inspection and development of optical components used in equipment using excimer laser, because pulsed light reduces work efficiency. For this reason, light having the same wavelength as the excimer laser wavelength is cut out from the bright line of a high-pressure mercury lamp or white lamp light and used, but there is a problem in the light condensing property because it is not a laser. Concentration when using an excimer laser is often not sufficient even if advanced optical simulation is used, and it tends to be a trial-and-error development. For these reasons, development of a high-accuracy ultraviolet optical system requires a lot of time and money, and a large excimer laser optical system is very expensive. For efficient development, there is a need for continuous wave lasers at excimer laser wavelengths.
  • Nd-doped YAG crystal Nd: YAG
  • Yb-doped fiber YDF
  • the lasing wavelength of these lasers is almost 1064 nm for Nd: YAG and 1000 to 1100 nm for YDF.
  • These lasers are wavelength-converted by nonlinear crystals such as LiNbO 3 (LN), LiTaO 3 (LT), KNbO 3 (KN), BaB 2 O 4 ( ⁇ -BBO).
  • Infrared lasers having a fundamental wavelength of 1 ⁇ m band can obtain ultraviolet light at the 2nd harmonic in the green region and 3-5 harmonics. Often used is the fourth harmonic of Nd: YAG, which generates 266 nm.
  • a bulk type and a quasi phase matching (QPM) type are known.
  • the QPM type is capable of highly efficient wavelength conversion by a periodic polarization inversion technique.
  • a plate-type bulk type and a waveguide type are known as the QPM element, and the waveguide type is considered to have high efficiency among the QPM elements because the optical confinement effect can be used.
  • the most well-known waveguide-type QPM element is a periodically poled LN crystal (PPLN), which is being widely used as a wavelength conversion element.
  • PPLN periodically poled LN crystal
  • ferroelectric crystals having no central symmetry and refractive index anisotropy are useful.
  • the search for materials having a high figure of merit for d33 and d32 has been continued. Yes.
  • Patent Document 1 a QPM element and a periodically poled device using a ferroelectric fluoride crystal
  • Patent Document 2 Non-Patent Document 2
  • the wavelength range that can be oscillated by the original solid-state crystal laser is as narrow as several nanometers or less, so the wavelength is close to a fixed state and a desired wavelength can be obtained. It is difficult.
  • the original laser serving as a fundamental wave is required to have variability in a wavelength (frequency) range as wide as possible.
  • an Er-doped fiber (EDF) laser has progressed, and high output has been achieved.
  • the fundamental wave of the 1550 nm band can be tunable over a wide range from 1500 nm to 1600 nm, and there is a possibility that ultraviolet light having a desired wavelength can be obtained.
  • the EDF laser has a laser oscillation wavelength as long as the 1550 nm band, in order to obtain ultraviolet light, multistage high-order wavelength conversion of 5th harmonic or higher is required. Furthermore, if the fundamental wave is adjusted to a wavelength of 1546.4 nm to obtain an 8th harmonic wave, 193.3 nm of the ArF excimer laser wavelength may be obtained. In the conversion, the conversion efficiency with respect to the fundamental wave is as low as 1% or less, so that the power density in the wavelength conversion crystal is lowered during the conversion, making it difficult to obtain an ultraviolet continuous wave laser.
  • a Ti: sapphire laser is well known, and can oscillate in a very wide wavelength range from 650 nm to 1100 nm.
  • the Ti: sapphire laser requires a high-power laser in the 500 nm band as an excitation source, which not only increases the size of the apparatus but also consumes a large amount of power because of its low electro-optical conversion efficiency.
  • This technique uses a sum frequency generation (SFG) technique that adds the frequencies of lasers of different wavelengths, and achieves practical conversion efficiency using a waveguide wavelength conversion element such as PPLN.
  • FSG sum frequency generation
  • fluorescent dye excitation light sources for biological observation have been put into practical use by SFG technology.
  • the laser output obtained by sum frequency generation using a semiconductor laser as a fundamental wave is only tens to hundreds mW in the blue to red visible light region. Even if the wavelength of a laser having such an output is further converted to obtain ultraviolet light, the output is about several mW or less, which is not practical.
  • the semiconductor laser has a problem that the beam quality is easily deteriorated due to the high output, and the light condensing property is remarkably lowered. For this reason, even if a high-power semiconductor laser is used, the wavelength conversion efficiency is lowered, and as a result, it becomes difficult to obtain ultraviolet light with sufficient power after wavelength conversion.
  • a fiber laser capable of obtaining a high-quality laser output even at high output is considered useful as a fundamental wave
  • an ultraviolet continuous wave laser light source using sum frequency generation using at least one fiber laser has been proposed (Patent Document 4).
  • Patent Document 4 a method is disclosed in which two wavelengths are selected from three discrete wavelengths between 950 nm and 1580 nm, and one of them is used as a high-order harmonic to finally obtain ultraviolet light.
  • CsLiB 6 O 10 (CLBO) crystal or BBO crystal is used as the nonlinear optical crystal for generating the sum frequency, transparency is not always sufficient due to the problem of the ultraviolet absorption edge of the oxide crystal. It cannot be said that the wavelength conversion efficiency is high in the region.
  • CLBO is a high-performance crystal as a known ultraviolet wavelength conversion crystal
  • existing fiber lasers are lasers in the infrared wavelength region, the second harmonic is not sufficient for the generation of ultraviolet light, and the higher harmonics such as the third and fourth harmonics. Therefore, there is a problem that the efficiency is remarkably lowered.
  • an object of the present invention is to provide a continuous wave ultraviolet laser that can be tuned to a specific wavelength in the ultraviolet wavelength region or can be tunable within a certain wavelength range.
  • the inventors of the present invention have developed a fundamental wave in an ultraviolet laser device using a sum frequency generation technology that continuously oscillates a laser beam that can be tuned to an existing excimer laser wavelength.
  • a laser light source with a short wavelength as much as possible is used as a fundamental wave.
  • the present inventors have found that the above object can be achieved by using a nonlinear optical crystal that maintains sufficient transparency even in the light wavelength region, and have reached the present invention.
  • a visible laser oscillation unit (laser 1) having a variable wavelength, a laser (laser 2) that generates laser light having a constant wavelength, an output light (output light a1), and a laser of laser 1
  • the laser 1 contains at least Pr as a laser medium in the core
  • An optical waveguide and a semiconductor laser that generates excitation light having a wavelength of 400 nm or more and 480 nm or less as an excitation light source, and using a ferroelectric fluoride crystal for the conversion unit 1, ultraviolet light having a wavelength of 250 nm or less (output light)
  • An ultraviolet laser device (first device) is provided that continuously outputs c).
  • the first apparatus uses an ultraviolet laser in which the laser oscillation wavelength of the laser 1 is in the range of 700 nm to 715 nm and the laser 2 has a wavelength in the range of more than 250 nm to 300 nm. It may be a device (second device).
  • the first apparatus uses a laser having a laser oscillation wavelength of 598 nm or more and 715 nm or less and a wavelength of 400 nm or more and 550 nm or less as the laser 2, and further, the laser 1 and the conversion
  • a wavelength conversion unit (conversion unit 2) for converting the wavelength of the output light a1 is provided between the units 1, and the ultraviolet light is generated by the sum frequency generation based on the output light (output light a2) whose wavelength is converted and the output light b.
  • It may be an ultraviolet laser device (third device) characterized by being generated.
  • any one of the first to fourth devices has a composition in which the ferroelectric fluoride crystal is represented by XMgF 4 , XZnF 4 , XAlF 5 , Na 2 MgAlF 7 , or Na 2 ZnAlF 7 (where X is , One element selected from any one of Ca, Sr, and Ba).
  • a continuous wave ultraviolet laser that can be tuned to a specific wavelength in the ultraviolet wavelength region or can be tunable within a certain wavelength range. Further, an ultraviolet CW laser whose wavelength is tuned to an existing excimer laser can be provided.
  • the present invention includes a visible laser oscillation unit (laser 1) having a variable wavelength, a laser (laser 2) that generates laser light having a constant wavelength, an output light (output light a1) of laser 1, and an output of laser 2
  • An ultraviolet laser device including a wavelength conversion unit (conversion unit 1) that generates ultraviolet light by sum frequency generation based on light (output light b), and the laser 1 includes at least Pr as a laser medium in a core
  • a semiconductor laser that generates excitation light having a wavelength of 400 nm or more and 480 nm or less as an excitation light source, and a ferroelectric fluoride crystal is used for the conversion unit 1, whereby ultraviolet light (output light c) having a wavelength of 250 nm or less is used.
  • the 400 nm-band blue semiconductor laser as the excitation light source has been developed mainly for GaN-based semiconductor lasers such as for blue DVD heads and blue laser projections, and can be obtained by appropriately selecting the wavelength and output.
  • a TO-CAN-shaped semiconductor laser or laser chip is used as the excitation light source, the shape of the emitted beam from the semiconductor laser is elliptical and the divergence angle varies depending on the direction. Therefore, the prism or anamorphic lens is used upstream of the optical coupling system. It is preferable to perform beam shaping.
  • the optimum wavelength and optimum power of the excitation laser of the laser 1 cannot be determined uniquely because it varies depending on the Pr ion concentration and the resonator configuration.
  • the absorption cross section of Pr ions the concentration limit that does not quench the concentration, and are readily available
  • the range of 100 mW to 10 W is most suitable in the wavelength range of 420 to 470 nm.
  • levels having a higher energy level such as 3 P 2 , 1 I 6 , 3 P 1 , 3 P 0
  • the excitation efficiency is high, and high emission intensity can be obtained.
  • Fluoride glass is suitable.
  • As a kind of fluoride glass Zr glass, Al glass, In glass, Ga glass, or the like can be used.
  • Pr-doped fluoride optical waveguide obtained by adding Pr to the fluoride glass as the core of the laser medium of the laser 1, visible light laser oscillation can be performed with high efficiency.
  • the cladding portion may be fluoride glass, or a material other than fluoride glass may be used.
  • a resin clad optical waveguide which is a resin of the system can be used.
  • the Pr-doped optical waveguide an optical waveguide having a Pr-doped concentration and a waveguide parameter according to the purpose is prepared. If the Pr concentration is too high, the concentration is quenched, so a concentration of 2 ⁇ 10 20 particles / cm 3 or less is preferable. For high-efficiency operation, the concentration should be adjusted to 1 ⁇ 10 20 particles / cm 3 or less. Is more preferable. On the other hand, if the Pr concentration is less than 1 ⁇ 10 17 atoms / cm 3 , the length necessary for absorption of the excitation light becomes long, which is not preferable. In order to reduce the required optical waveguide length to about 10 m or less, it is more preferable to set the Pr concentration to 1 ⁇ 10 18 pieces / cm 3 or more.
  • the refractive index distribution in the cross section may be a stepped refractive index distribution, or a distributed refractive index type optical waveguide in which the refractive index changes gently.
  • a so-called double clad structure having a plurality of clad layers may also be used.
  • the cross-sectional shape of the clad (first clad) adjacent to the core is preferably non-circular.
  • the cross-sectional shape of the first clad for example, a D shape, a rectangle, a star shape, a petal shape, and the like are known.
  • the excitation light is first coupled to the first clad, and gradually propagates through the first clad and gradually enters the core.
  • a Pr-doped optical waveguide a Pr-doped fiber is preferable in terms of optical coupling and manufacturing efficiency.
  • the light is condensed and coupled to the end of the optical waveguide with a lens, or when the Pr-doped optical waveguide is a Pr-doped optical fiber, it is coupled through the fiber. it can.
  • the excitation light source is equipped with a fiber pigtail, a fiber-type optical coupler or multiplexer / demultiplexer whose wavelength is dependent on the transmission characteristics can be used for the excitation light coupling, which is particularly preferable because the excitation light coupling loss can be reduced.
  • non-Pr-doped optical waveguide or a non-Pr-doped glass block having a high photodestructive threshold at the condensing end for condensing at least the high-power excitation laser.
  • a non-Pr-doped portion having a high photodestructive threshold at the condensing end for condensing at least the high-power excitation laser.
  • These non-Pr-added portions can be attached only to the excitation light incident end or can be attached to both ends, but it is particularly preferable to attach to both ends from the viewpoint of preventing end face destruction.
  • the non-Pr-added portion to be attached is preferably a silica-based optical waveguide, a silica-based optical fiber, a silica-based glass block, a dielectric multilayer film using a silica-based glass substrate, a dielectric multilayer film using a quartz-based crystallized glass substrate, or the like.
  • the silica fibers it is particularly preferable to use a silica fiber having a pure silica core in which Ge is not added to the core.
  • These non-Pr doped portions and the Pr doped optical waveguide as a gain medium are preferably connected by a connection method that does not use an adhesive.
  • the connection method between the two is fusion splicing.
  • the Pr-doped fiber thus connected to the quartz fiber is particularly preferably used by being sealed in a moisture and weather resistant package such as a metal package (hereinafter referred to as “Pr fiber module”).
  • the resonator configuration of the laser 1 may be any type, such as a Fabry-Perot resonator, a ring resonator, a multistage cascade connection, a parallel connection using a multiplexing / demultiplexing coupler, and an amplifier connection type, as long as the laser can be oscillated.
  • the laser 1 needs to have a wavelength adjusting function for adjusting the laser wavelength inside or outside the resonator so that an output can be obtained in a desired laser wavelength tuning range.
  • Wavelength adjustment function includes diffraction grating angle adjustment, folding mirror angle adjustment, etalon adjustment, sub-resonator adjustment, injection laser wavelength adjustment, laser loss adjustment by resonator loss adjustment, fiber grating temperature adjustment, Laser oscillation wavelength adjustment by tension adjustment is known, and any method capable of changing the wavelength may be used.
  • the oscillation wavelength of an ArF laser that is particularly important for use as an excimer laser is around 193.3 nm, and a CW laser tuned to this wavelength is particularly important in practice, and has a wavelength tunable characteristic in this wavelength region. If obtained, it can be used for optical component inspection and stepper performance tests, which is very important.
  • the oscillation wavelength of the laser 1 is 700 nm to 715 nm and the oscillation wavelength of the laser 2 is a fixed wavelength in the range of more than 250 nm to 300 nm
  • the ultraviolet light output is selected from a wavelength range of 184.2 nm to 211.3 nm. Ultraviolet light can be obtained. This configuration has an advantage that the output can be increased because the fundamental wavelength output of the wavelength tunable laser is used as it is.
  • the laser 2 is a solid-state laser having a laser wavelength in the range of more than 250 nm and not more than 300 nm.
  • the laser 2 can be a direct fourth harmonic of a semiconductor laser or a fourth harmonic of a solid-state laser.
  • a high-power laser having a wavelength of about 266 nm or about 257 nm is commercially available at a relatively low price due to the fourth harmonic of an Nd: YAG laser or a Yb: fiber laser, which is preferable.
  • the laser 1 has a laser oscillation wavelength in the range of 598 nm or more and 715 nm or less, a laser having a wavelength in the range of 400 nm or more and 550 nm or less is used as the laser 2, and the output light is further transmitted between the laser 1 and the conversion unit 1.
  • the wavelength conversion unit conversion unit 2 that converts the wavelength of a1
  • ultraviolet light is generated by sum frequency generation based on the output light (output light a2) whose wavelength is converted and the output light b
  • the output light a2 A laser having a wavelength of 299 nm or more and 357.5 nm or less is obtained.
  • ultraviolet light having a wavelength in the range of 171.1 nm to 216.7 nm can be obtained.
  • the oscillation wavelength of the laser 1 is particularly preferably in the wavelength range of 598 to 645 nm and 700 to 715 nm because laser oscillation is easy. High power operation is possible in these wavelength ranges, and it is suitable for improving the ultraviolet output.
  • the laser 1 in this range is used, in combination with the laser 2, an ultraviolet light wavelength range of 171.1 nm or more and 203.3 nm or less and an ultraviolet wavelength range selected from two ranges of wavelengths of 186.7 nm or more and 216.7 nm or less. Light can be obtained.
  • Laser 2 is a solid-state laser having a laser wavelength in the range of oscillation wavelength of 400 nm or more and 550 nm or less.
  • the laser 2 can be a direct second harmonic of a semiconductor laser or a second harmonic of a solid-state laser.
  • lasers such as 407.5, 480, and 488 nm are commercially available with second harmonics of high-power semiconductor lasers such as 915, 960, and 976 nm.
  • lasers of 532 nm and 515 nm can be obtained by the second harmonic of Nd: YAG laser and Yb: fiber laser, and high power and relatively inexpensive lasers are commercially available. Use these lasers. Is preferred.
  • the wavelength of the laser 1 is adjusted to 607.2 nm ⁇ 0.5 nm, thereby outputting an ultraviolet light with a wavelength of 193.3 nm.
  • the second harmonic of a semiconductor laser having a wavelength of 488 nm is used for the laser 2
  • an ultraviolet light output of a wavelength of 193.3 nm band is obtained by adjusting the wavelength of the laser 1 to 640.2 nm ⁇ 0.5 nm. be able to.
  • a laser of a laser power amplifier (MOPA) type using a combination of a low-power and high-quality seed light and an amplifier can be used for the laser 2.
  • MOPA laser power amplifier
  • a laser having excellent mode controllability such as a Yb-doped YVO4 microchip laser or a DFB semiconductor laser is used, and a rare-earth doped fiber such as a Yb-doped fiber or a Yb-doped crystal or a rare earth doped
  • a crystal it is possible to obtain a laser beam having a single mode and a high light collecting property even at a high output.
  • non-reciprocal means such as an optical isolator between the low-power seed light and the amplifying unit so that strong light amplified by the seed light generating unit does not return.
  • the conversion unit 2 may be any nonlinear optical crystal that generates a second harmonic with respect to a fundamental wavelength of 598 nm or more and 715 nm or less and can output in a wavelength range of 299 nm or more and 357.5 nm or less.
  • many crystals such as LiNbO 3 (LN), LiTaO 3 (LT), and ⁇ -BaB 2 O 4 ( ⁇ -BBO) are known. These crystals may be used as a bulk shape with a specific orientation, or may be processed into a polarization inversion element capable of quasi phase matching (QPM).
  • QPM quasi phase matching
  • waveguide-type elements are also commercially available as QPM elements, and are particularly preferable for applications where importance is placed on efficiency.
  • the conversion unit 2 is particularly preferably a fiber device connected by a fiber pigtail. Since the conversion wavelength of the conversion unit 2 changes according to the wavelength adjustment of the laser 1, it is preferable to follow the laser 1 by changing the crystal angle, the crystal temperature, and the like. It is particularly preferable that the adjustment function is linked.
  • the composition in which the ferroelectric fluoride crystal of the converter 1 is represented by XMgF 4 , XZnF 4 , XAlF 5 , Na 2 MgAlF 7 , or Na 2 ZnAlF 7 (where X is Ca, Sr, 1 represents an element selected from any one of Ba.), An ultraviolet laser device.
  • the converter 1 generates a sum frequency based on the output light (output light a2) from the converter 2 or the output light (output light a1) of the laser 1 and the purple to green output light (output light b) of the laser 2.
  • a ferroelectric fluoride optical crystal that can output ultraviolet light having a wavelength of 171.3 nm to 216.7 nm and has high transparency in the ultraviolet region is suitable.
  • the oxide crystal has a large loss at a wavelength of 300 nm or less and is opaque at a wavelength of 200 nm or less, and thus is easily damaged by high-power ultraviolet light.
  • fluoride crystals are highly transparent even at 200 nm or less and are not easily damaged by light.
  • the crystal has no central symmetry, there is no central symmetry, and a fluorine compound that can ensure the necessary transparency in the required wavelength range.
  • Any crystal can be used.
  • the absorption in the ultraviolet wavelength region is an electron transition, so that the absorption is specific to the element or ion. For this reason, compounds containing some elements of transition metals and lanthanides are not suitable.
  • fluorine compound crystals containing Fe, Ni, Co, Cu, Cr, Mn, Ce, Pr, Nd, Er, Tm, etc. are not suitable.
  • fluorine compounds such as Rb, Cs, Sr, Ba, Zn, Pb, Ga, Zr, Hf, Nb, Ta, Y, La, Gd, and Lu are highly transparent and have a high electron density even in the ultraviolet wavelength region. Therefore, the non-linear optical characteristics of the fluorine compound crystal containing these improve.
  • An example of a suitable fluorine compound crystal for the converter 1 is ABF 4 (A: at least one element selected from A, Ca, Sr, Ba, B: Mg, Zn, Sn belonging to the crystal point group “mm2” ⁇ . At least one element selected) and C 2 BDF 7 (C: at least one element selected from Na, K, Rb, Cs, B: the same as above, D: at least one element selected from Al, Ga) ADF 5 whose crystal point group belongs to “4” (both A and D are described above), CLnF 4 whose crystal point group belongs to “32” (C is the above, Ln is selected from Y, La, Gd, Lu) One kind of element).
  • ABF 4 A: at least one element selected from A, Ca, Sr, Ba, B: Mg, Zn, Sn belonging to the crystal point group “mm2” ⁇ . At least one element selected
  • C 2 BDF 7 C: at least one element selected from Na, K, Rb, Cs, B: the same as above,
  • compositions represented by XMgF 4, XZnF 4 or XAlF 5 (where X is at least one element selected from Ca, Sr, Ba), Na 2 MgAlF 7 or Na 2 ZnAlF 7, etc.
  • X is at least one element selected from Ca, Sr, Ba
  • the fluorine compound crystal BaMgF4, BaZnF4, and SrAlF5 having a relatively high refractive index and high transparency up to the ultraviolet wavelength region are particularly suitable.
  • BaMgF4 can be processed by a QPM element and is suitable for high-efficiency conversion.
  • Na 2 MgAlF 7 and Na 2 ZnAlF 7 can form a waveguide relatively easily in addition to QPM processing, and are suitable for wavelength conversion using optical confinement.
  • the ultraviolet laser device of the present invention can output by adjusting the crystal orientation of the converter 1 and the crystal orientation of the converter 2 when the converter 2 is present.
  • the wavelength of the light c can be adjusted in the range of 171.3 nm to 216.7 nm.
  • the resonator is a ring resonator and a Pr-doped fluoride fiber is used as a laser medium
  • this example shows a case where the wavelength is changed from 620 to 640 nm
  • the same configuration is preferable as the configuration, except that the optical characteristics of the components used are different in other wavelength bands.
  • a single mode Pr-doped fluoride fiber 1 having a core of ZBLAN fluoride glass containing 3000 ppm by mass of Pr was used as the laser medium.
  • the core diameter of the fiber is 3.4 ⁇ m
  • the numerical aperture is 0.13
  • the cutoff wavelength is 570 nm
  • the fiber length is 25 cm.
  • Silica fibers (quartz fiber 3 and quartz fiber 4) having similar fiber parameters are fused and connected to both ends of the fiber, and sealed in a weatherproof package 2 made of stainless steel to form a fiber module (module 1). . From the module 1, the quartz fiber 3 and the quartz fiber 4 are projected. Since fiber parameters such as Pr concentration, fiber length, and core diameter vary depending on pumping laser characteristics, target laser oscillation wavelength, optical characteristics of optical components such as resonators, etc., this example is always optimal. Is not limited.
  • excitation light source a product in which the output light of the semiconductor laser 5 having a wavelength of 440 nm was coupled to a quartz fiber having a core diameter of 2.2 ⁇ m, a numerical aperture of 0.13, and a cutoff wavelength of 375 nm was prepared.
  • the fiber end output of this excitation light source is a maximum of 150 mW.
  • a melt-stretching coupler As the multiplexing / demultiplexing element 11 for introducing the excitation light into the module 1, a melt-stretching coupler can be used.
  • a melt-drawn coupler has a signal light introduction port (quartz fiber 6) in the 635 nm band and an excitation light introduction port (quartz fiber 8) having a wavelength of 440 nm, and the other side is combined with the excitation light and the signal light to be emitted. It consists of a port (quartz fiber 7) and a blank port (quartz fiber 9) with almost no light output.
  • the propagation loss from the pumping light introduction port having a wavelength of 440 nm to the common port is 1.2 dB, and the propagation loss from the signal light introduction port in the 635 nm band to the common port is 1.3 dB. It is.
  • the excitation light source quartz fiber is fused and connected to the excitation light introduction port (quartz fiber 8) of the multiplexing / demultiplexing element 11.
  • the quartz fiber 3 coming out of the fiber module is fusion-connected to the common port (quartz fiber 7).
  • the tip of the blank port (quartz fiber 9) is cut obliquely at an angle of 8 ° so that Fresnel reflection with air does not return, and silicone with an adhesive having a refractive index of 1.45, which is substantially the same as the core refractive index of the fiber 3. It is fixed in the tube (beam damper 10).
  • a part of the excitation light is absorbed in the Pr-doped fluoride fiber 1 and emits fluorescence.
  • the generated fluorescence is amplified while propagating through the Pr-doped fluoride fiber 1 and is emitted from the quartz fiber 4 side as enhanced light.
  • This radiation finally oscillates by passing through the ring-shaped resonator.
  • the fluorescence is also emitted from the quartz fiber 3 in the reverse direction, which will be described later.
  • a decoupler (multiplexing / demultiplexing element 11 ') having the same configuration as that of the multiplexing / demultiplexing element 11 is prepared, and the common port (quartz fiber 7') and the silica fiber 4 of the fiber module are fusion-connected.
  • the light in the 620 nm to 640 nm band which is the laser oscillation wavelength is directed to the signal light port (quartz fiber 6 '), and the excitation light having a wavelength of 440 nm is separated into the drop port (quartz fiber 8').
  • the tip of the drop port is cleaved at an angle of 8 ° and is fixed in the silicone tube with an adhesive having a refractive index of 1.45, which is almost the same as the core refractive index of the fiber 3 (beam damper 10 ′′).
  • the tip of the blank port (quartz fiber 9 ') is similarly cleaved and fixed in the silicone tube with the same adhesive (beam damper 10').
  • the signal light port (quartz fiber 6 ′) of the decoupler (multiplexing / demultiplexing element 11 ′) is fused and connected to a fiber-type polarization controller (polarization controller 12) made of fiber to adjust the polarization state.
  • the polarization controller 12 is also used for adjusting the output coupling ratio, as will be described later.
  • the input / output end 13 of the polarization controller 12 was fixed to a zirconia ferrule and polished flat, and a non-reflective coating of a dielectric multilayer film was applied.
  • the reflectance of the input / output end 13 at a wavelength of 620 to 640 nm is 0.5% or less.
  • the radiation from the input / output end 13 is collimated by the collimating lens 14 and polarized by the polarization beam splitter 15.
  • One separated output light 23 is taken out as output light of the laser 1.
  • the ratio of the output light 23 to the optical power in the resonator can be adjusted depending on the polarization state, and is used for fine adjustment of the output by controlling the polarization controller 12 to change the output ratio.
  • the light transmitted through the polarization beam splitter 15 is rotated by 45 ° by the Faraday rotator 16.
  • the polarization-rotated light is introduced into the dispersion prism 17 at a Brewster angle and dispersed with low loss.
  • the dispersion prism 17 converts the wavelength difference into the angle difference.
  • the dispersed light is folded back by the wavelength selection broadband mirror 18.
  • the reflectance of the broadband mirror 18 at a wavelength of 620 to 640 nm is 99% or more, and the angle dependency of the reflectance at an incident angle of 0 ° ⁇ 10 ° is 0.5% or less.
  • the broadband mirror 18 is rotated, the loss increases except for the light in the direction in which the resonator can be configured. Therefore, by combining with the function of the dispersion prism 17, it operates as a wavelength selection element.
  • the light reflected by the broadband mirror 18 passes through the dispersion prism 17 again, passes through the Faraday rotator 16, and rotates by 45 °. Further, the light bent by the polarization beam splitter 15 passes through the optical isolator 19 for visible light, and is collected by the condenser lens 20 onto the incident / exit end 21 of the quartz fiber 6.
  • the reflection mirror 22 is illustrated as an example of the bending optical system in FIG. 1, it is not always necessary.
  • the entrance / exit end 21 is polished and coated with non-reflective coating similarly to the entrance / exit end 13. Only light of a specific incident angle that is favorably collected at the input / output end 21, that is, light of a specific wavelength selected by the dispersion prism 17 and the broadband mirror 18 within the specific angle is coupled to the core of the fiber. A selection is made.
  • the light of a specific wavelength coupled to the input / output end 21 returns to the Pr-doped fluoride fiber 1 through the coupler (multiplexing / demultiplexing element 11) and is amplified.
  • the amplification factor exceeds the total loss of the optical system, laser oscillation is started, and output light 23 is extracted as output light of the laser 1 having a predetermined wavelength.
  • the fluorescence from the quartz fiber 3 side of the fiber module will be described.
  • the fluorescence from the quartz fiber 3 is transmitted to the signal light port (quartz fiber 6) of the coupler (multiplexing / demultiplexing element 11) and radiated in the reverse direction from the incident / exit end 21.
  • the emitted light is collimated by the condenser lens 20, blocked or angularly deflected by the optical isolator 19 for visible light, and excluded from the resonator system.
  • the Faraday rotator 16 and the optical isolator 19 are transparent to visible light and require nonreciprocal operation. For this reason, lead flint glass has been known as a material for a long time, but recently, rare earth-doped glass such as high-concentration Tb-doped glass, Tb 3 Ga 5 O 12 (TGG) crystal has been used. Wavelength variable characteristics are realized.
  • the polarization controller 12, the Faraday rotator 16, and the optical isolator 19 measure in advance the wavelength, the magnetic field applied to the Faraday rotator and the visible light isolator, the target output, and the optimum state of the polarization controller, and store them in the memory. And is automatically driven by the program. All optical systems are controlled at a constant temperature in a temperature-controlled heat bath. All fibers and parts are fixed in a case with a seismic isolation function.
  • FIG. 2 shows an optimum configuration example of a laser 1 in which the resonator is a Fabry-Perot resonator, Pr 1 -added fluoride glass is used as a gain medium, and a conversion unit 2 is installed in the resonator. explain.
  • a single-mode Pr-doped fluoride fiber 34 having an Al-based fluoride glass containing 3000 ppm by weight of Pr as a core is used as the laser medium.
  • the core diameter of the Pr-doped fluoride fiber 34 is 2.4 ⁇ m, the numerical aperture is 0.16, the cutoff wavelength is 500 nm, and the fiber length is 40 cm.
  • Quartz fibers (quartz fiber 35, quartz fiber 35 ') having similar fiber parameters were fused and connected to both ends of this fiber, and sealed in a weatherproof package 36 made of stainless steel.
  • the tip (input / output end 37) of the quartz fiber 35 is polished to a flat surface, and an AR coating that is non-reflective in the excitation light wavelength and the laser oscillation wavelength band is applied to introduce the excitation light.
  • the end face (input / output end 39) of the quartz fiber 35 ' is polished into a flat surface, and AR coating is applied which is non-reflective in the laser oscillation wavelength band.
  • the excitation GaN-based semiconductor laser (semiconductor laser 31) has an oscillation wavelength of 450 nm, and is fixed to a heat radiating stand held at a constant temperature by a Peltier element.
  • the excitation light emitted from the semiconductor laser 31 is shaped into a perfect circle by the anamorphic prism pair 32, and then passes through the condensing lens 33 and the concave dichroic reflector (the dichroic concave mirror 38 for laser resonators) to the end of the quartz fiber ( The light is condensed at the input / output end 37) and coupled to the core of the quartz fiber 35.
  • the concave dichroic reflector (laser resonator dichroic concave mirror 38) has a characteristic of transmitting excitation light and totally reflecting the laser oscillation wavelength of the laser 1, and constitutes one end of the resonator.
  • the concave dichroic reflecting mirror is a spherical mirror, and is adjusted to a position where the laser beam of the laser 1 emitted from the input / output end 37 is reflected and turned back to the core of the input / output end 37.
  • the coupled excitation light is absorbed by the Pr-doped fluoride fiber 34 and emits fluorescence.
  • the generated fluorescence is amplified while propagating through the Pr-added fluoride fiber 34 and is emitted from the input / output end 39 as enhanced light.
  • the fluorescent light traveling in the reverse direction is radiated from the input / output end 37, folded back by the concave dichroic reflecting mirror (laser resonator dichroic concave mirror 38), amplified again when passing through the Pr-doped fluoride fiber 34, and input / output end 39. Radiated from.
  • Fluorescence emitted from the input / output end 39 is collimated by the collimating lens 40 and decomposed into orthogonal polarization components by the polarization beam splitter 41.
  • One polarized light (polarization power component 43) is incident on the dispersion prism 45 at an angle near the minimum deflection angle, and only the fluorescence in the direction of a specific dispersion angle is folded by the wavelength selection mirror (broadband mirror 46).
  • the light that has been selected and turned back is condensed at the input / output end 39 through the polarization beam splitter 41 and the collimating lens 40, and the resonator is completed.
  • the component (polarization power component 42) orthogonal to the polarization component (polarization power component 43) passes through the condensing lens 47 and the dichroic concave mirror 51, and is the core of the waveguide-type periodically poled LN crystal (PPLN) (nonlinear crystal 48).
  • PPLN waveguide-type periodically poled LN crystal
  • the light is condensed and wavelength-converted.
  • PPLN nononlinear crystal 48
  • the wavelength-converted light is output as output light a2 through the dichroic concave mirror 50 (laser output light 49).
  • the dichroic concave mirror 50 transmits the output light (output light a2) wavelength-converted by PPLN (nonlinear crystal 48), and totally reflects the wavelength of the laser 1.
  • the dichroic concave mirror 51 totally reflects the wavelength-converted output (output light a2) and transmits the wavelength of the laser 1.
  • the wavelength of the laser 1 reflected by the dichroic concave mirror 50 passes through the PPLN (nonlinear crystal 48) again, passes through the condenser lens 47, the polarization beam splitter 41, and the collimator lens 40, and is condensed at the input / output end 39. It constitutes a part of the resonator of the laser 1.
  • the output light a2 reflected by the dichroic concave mirror 51 passes through the PPLN element, passes through the dichroic concave mirror 50, and is output (laser output light 49).
  • a resonator formed by two dichroic concave mirrors (a dichroic concave mirror 38 for laser resonators and a dichroic concave mirror 50), and a resonator composed of a dichroic concave mirror (dichroic concave mirror 38 for laser resonators) and a wavelength selection mirror 46.
  • the polarization state must be controlled by the polarization controller 44 so that the latter is dominant.
  • the overall configuration is shown in FIG.
  • the laser 64 laser 1
  • a laser having a configuration based on the configuration example shown in FIG. 1 is used.
  • a fiber-coupled wavelength variable shortcut wavelength selection filter is further provided between the input / output end 21 and the signal light port (quartz fiber 6) of the multiplexing / demultiplexing element 11, and the wavelength variable shortcut filter.
  • a wavelength variable long cut wavelength selection filter is inserted between the signal light port (quartz fiber 6) of the multiplexer / demultiplexer 11 to limit the pass wavelength band of the ring resonator, and the transmission center wavelength is the wavelength selection mirror ( It is tuned to the selected wavelength of the broadband mirror 18).
  • the laser medium used has a glass composition of 32.8AlF 3 -15YF 3 -4.7LaF 3 -9.4MgF 2 -7.4CaF 2 -5.4SrF 2 -20BaF. represented by 2 -5BaCl 2 -0.3PrF 3, the cladding is represented by 32.8AlF 3 -15YF 3 -5LaF 3 -9.4MgF 2 -8.4CaF 2 -7.4SrF 2 -17BaF 2 -5BaCl 2 Al-based fluoride fiber is used.
  • the core diameter is 4 ⁇ m and the fiber diameter is 125 ⁇ m.
  • the numerical aperture of this fiber was 0.1.
  • the fiber length is 10 cm. Both end surfaces were polished at an angle of 8 °, and a broadband non-reflective coating in the visible light range was applied. The reflectance is 2% or less over the entire visible light wavelength range.
  • This output light (output light a 1) was focused by the condenser lens 52 and input to the LiNbO 3 nonlinear optical crystal 53.
  • the wavelength-converted light and the fundamental wave are emitted from the opposite side of the LN crystal.
  • the output from the LiNbO 3 nonlinear optical crystal 53 is collimated by the collimating lens 54 and irradiated to the dichroic mirror 55.
  • the dichroic mirror 55 reflects the fundamental wave in the 600 nm band and transmits the double wave (output light a2) in the 300 nm band.
  • an Nd: YAG laser double wave (output light b) having a wavelength of 532 nm is used as the laser 56 (laser 2).
  • the magnification of the output light of the laser 2 was adjusted by the concave lens 57 and the convex lens 58 in order to match the laser beam diameter of the laser 1.
  • the light is reflected by a 90-degree folding mirror (right angle mirror 59), is further bent and reflected by 90 degrees on the dichroic mirror 55, and is combined with the output light of the laser 1.
  • the synthesized laser light is incident on the BaMgF 4 pseudo phase matching element 61 (QPMC) by the achromatic condenser lens 60.
  • the achromatic condenser lens 60 By the achromatic condenser lens 60, the output light a2 and the output light b having different wavelengths are condensed on the BaMgF 4 pseudo phase matching element 61 at the same focal length, and the sum frequency conversion efficiency can be kept at the maximum.
  • the sum frequency of the output light of the laser 1 and the laser 2 is generated.
  • the ultraviolet light emitted from the QPMC is collimated by the collimating lens 62, the dichroic mirror 63 cuts the second harmonic wave of the laser 1 and the output of the laser 2, and only the ultraviolet light (output light c) passes and is output. .
  • FIG. 4 shows the relationship between the ultraviolet light output wavelength and the laser 1 output wavelength when the wavelength of the laser 1 is changed from 602 nm to 612 nm and from 630 nm to 638 nm. It can be seen that the ultraviolet light output changes linearly according to the wavelength of the laser 1.
  • An example of the output spectrum obtained by measuring the ultraviolet light output with a spectroscope and a photomultiplier for ultraviolet light is shown in FIG. The resolution is 0.02 nm.
  • the full width at half maximum of the laser oscillation line is about 0.05 nm, indicating that it is a narrow band.
  • the state of continuous output of ultraviolet light is shown in FIG. 6 as the change with time of the relative intensity of the ultraviolet light output. It can be seen that a continuous stable output is obtained.
  • the ultraviolet light output was 100 mW, which was a practical efficiency.
  • a Fabry-Perot wavelength tunable filter with a fiber is provided between the polarization controller 44 and the input / output end 39, and the Fabry-Perot wavelength tunable filter is further input / output.
  • a narrow band tunable filter with a fiber is attached between the ends 39. The tuning range of these filters is 580 nm to 680 nm, the finesse of the Fabry-Perot tunable filter is 2000, and the band interval of the narrow-band tunable filter is 200 GHz.
  • the glass composition of the core portion is 53ZrF 4 -18.5BaF 2 -2.7LaF 3 -4YF 3 -3AlF 3 -18.5NaF-0.
  • a fluoride fiber made of Zr-based fluoride glass (3000 ppm) represented by 3PrF 3 and having a clad of 26ZrF 4 -24HfF 4 -21BaF 2 -3LaF 3 -2YF 3 -4AlF 3 -20NaF is used.
  • the core diameter is 3 ⁇ m and the fiber diameter is 125 ⁇ m.
  • the numerical aperture of this fiber was 0.16.
  • the fiber length is 25 cm.
  • Pigtail quartz fibers (quartz fiber 35, quartz fiber 35 ') were selected by fusion splicing with fibers having the same core diameter and numerical aperture. Both end faces (input / output end 37, input / output end 39) of these quartz fibers were obliquely polished by 8 °, and a broadband non-reflective coating in the visible light region was applied. The reflectance is 2% or less over the entire visible light wavelength range.
  • the fundamental wave in the 600 nm band is confined in the resonator, converted to the 300 nm band by the bulk LN nonlinear crystal (nonlinear crystal 48) of the converter 2 installed in the resonator, and output from the output mirror (dichroic concave mirror 50). Radiated as light a2 (laser output 49).
  • the LN crystal is controlled so that the crystal orientation is automatically adjusted in conjunction with the wavelength variable mirror (broadband mirror 46), and the power of the output light a2 is maximized.
  • the output light (output light a2) of the laser having a wavelength of 300 nm (laser 65) passes through the dichroic mirror 66 and is combined with the output light (output light b) of the laser 67 (laser 2) whose mode diameter is adjusted.
  • the output of the laser 2 (laser 67) is adjusted by the concave lens 68 and the convex lens 69 so as to coincide with the mode diameter of the 300 nm band laser (laser 65), folded back by the right angle mirror 70, and 300 nm band laser (laser) by the dichroic mirror 66. 65).
  • the dichroic mirror 66 is coated with a non-reflective broadband in the 300 nm band and a total reflection in the 450 to 500 nm band.
  • the combined laser light passes through the dichroic mirror 71 and is focused and incident on the QPM-SrAlF 5 crystal (fluorine compound crystal 73) by the achromatic condenser lens 72.
  • the QPM-SrAlF 5 crystal (fluorine compound crystal 73) is attached to a temperature control bench capable of controlling the crystal temperature, and the optimum conversion wavelength is controlled by temperature control.
  • the dichroic mirror 71 is coated with no reflection in the 300 nm to 500 nm band and total reflection in the 190 nm band.
  • the ultraviolet light generated by the sum frequency in the QPM-SrAlF 5 crystal (fluorine compound crystal 73) and the original output light a2 and output light b are collimated by the achromatic collimating lens 74 and enter the dichroic mirror 75.
  • the ultraviolet light output passes through the dichroic mirror 75 and is extracted as a laser output.
  • the output light a2 and the output light b which are the sources of the sum frequency, are reflected and condensed again in the QPM-SrAlF 5 crystal (fluorine compound crystal 73) by the achromatic collimating lens 74 and reused for generating the sum frequency. Is done.
  • the ultraviolet light generated at this time is collimated by the achromatic condenser lens 72, reflected by the dichroic mirror 71, achromatic condenser lens 72, a QPM-SrAlF 5 crystal (fluorine compound crystal 73), an achromatic collimator lens 74, The light is output through the dichroic mirror 75.
  • the wavelength of the output ultraviolet light (output light c) was 193.3 nm.
  • the output of laser 1 (laser 65) was 500 W and the output of laser 2 (laser 67) was 600 mW
  • the output of ultraviolet light (output light c) was 40 mW at the maximum.
  • the overall structure is shown in FIG.
  • the laser 65 a laser having a configuration based on the configuration example shown in FIG. 1 is used.
  • the laser 65 includes a fiber-coupled wavelength variable shortcut wavelength selection filter between the input / output end 21 and the signal light port (quartz fiber 6) of FIG.
  • a wavelength variable long cut wavelength selection filter is inserted between the signal light ports (quartz fiber 6) of the multiplexing / demultiplexing element 11 to limit the pass wavelength band of the ring resonator, and the transmission center wavelength is the wavelength selection mirror ( It is tuned to a wavelength range of 700 nm to 715 nm, which is a selected wavelength of the broadband mirror 18).
  • the gain medium (Pr-doped fluoride fiber 1) used has a glass composition of 32.8AlF 3 -15YF 3 -4.7LaF 3 -9.4MgF 2 -7.4CaF 2 -5.4SrF 2 -20BaF. represented by 2 -5BaCl 2 -0.3PrF 3, the cladding is represented by 32.8AlF 3 -15YF 3 -5LaF 3 -9.4MgF 2 -8.4CaF 2 -7.4SrF 2 -17BaF 2 -5BaCl 2 Al-based fluoride fiber is used.
  • the core diameter is 4 ⁇ m and the fiber diameter is 125 ⁇ m.
  • the numerical aperture of this fiber was 0.1.
  • the fiber length is 20 cm. Both end surfaces were polished at an angle of 8 °, and a broadband non-reflective coating in the visible light range was applied. The reflectance is 2% or less over the entire visible light wavelength range.
  • the output light (output light a1) of the laser 1 (laser 65) passes through the dichroic mirror 66 and is combined with the output light (output light b) of the laser 2 (laser 67) whose mode diameter is adjusted.
  • a fourth harmonic wave of a high output Nd: YAG laser having a wavelength of 1064 nm was used as the laser 2 (laser 67).
  • the laser wavelength is 266 nm and the output is 400 mW.
  • the output of the laser 2 (laser 67) is adjusted by the concave lens 68 and the convex lens 69 so as to coincide with the mode diameter of the laser 1 (laser 65), folded back by the right angle mirror 70, and laser 1 (laser 65) by the dichroic mirror 66. Is combined with the output of.
  • the dichroic mirror 66 is coated with a broadband non-reflection in the 700 to 715 nm band and total reflection in the 266 nm band.
  • the combined laser light passes through the dichroic mirror 71 and is focused and incident on the QPM-BaMgF 4 crystal (fluorine compound crystal 73) by the achromatic condenser lens 72.
  • the QPM-BaMgF 4 crystal (fluorine compound crystal 73) is attached to a temperature control bench capable of controlling the crystal temperature, and the optimum conversion wavelength is controlled by temperature control.
  • the dichroic mirror 71 is provided with a non-reflective broadband non-reflective in the 250 nm to 750 nm band and a total reflection ultraviolet reflective dichroic coating in the 190 nm band.
  • the ultraviolet light generated by the sum frequency in the QPM-BaMgF 4 crystal (fluorine compound crystal 73) and the original output light a1 and output light b are collimated by the collimator lens 74 and enter the dichroic mirror 75.
  • the ultraviolet light output passes through the dichroic mirror 75 and is extracted as a laser output.
  • the output light a1 and the output light b which are the sources of the sum frequency, are reflected and condensed again in the QPM-BaMgF 4 crystal (fluorine compound crystal 73) by the collimating lens 74 and reused for generating the sum frequency.
  • the ultraviolet light generated at this time is collimated by the achromatic condenser lens 72, reflected by the dichroic mirror 71, and achromatic condenser lens 72, the QPM-BaMgF 4 crystal (fluorine compound crystal 73), the collimator lens 74, and the dichroic mirror. 75 is output.
  • the output ultraviolet light (output light c) wavelength was 193.3 nm.
  • the output of laser 1 (laser 65) was 500 W and the output of laser 2 (laser 67) was 400 mW
  • the output of ultraviolet light (output light c) was 25 mW at the maximum.
  • the ultraviolet laser device of the present invention can be used for optical design, inspection, verification, assembly process, etc. of equipment using an existing excimer laser, and the measurement result is more accurate and simple than conventional non-laser inspection light sources. It can be expected to be obtained. Further, since the wavelength of the ultraviolet laser device of the present invention is variable, it can be used for inspection of wavelength response and dispersion of optical components in the ultraviolet region, selection of the optimum wavelength for a processing target, selective molecular reaction, and the like.

Abstract

An ultraviolet laser device includes a visible laser oscillating section (laser 1) for generating a visible laser of a variable wavelength, a laser (laser 2) for generating a laser beam of a constant wavelength, and a wavelength converting section (conversion section 1) for generating a sum-frequency wave from the output light (output light a1) of the laser 1 and the output light (output light b) of the laser 2 and thereby producing an ultraviolet light.  The laser device is characterized in that the laser 1 includes an optical waveguide which has a core containing at least Pr as a laser medium and a semiconductor laser generating an excited light having a wavelength of larger than 400 nm and shorter than 480 nm as a pumping light source and ultraviolet light (output light c) having a wavelength of shorter than 250 nm is continuously outputted by using a ferroelectric fluoride crystal in the conversion section (1).

Description

紫外レーザ装置UV laser equipment
 本発明は、紫外レーザ装置に関する。 The present invention relates to an ultraviolet laser device.
発明の背景Background of the Invention
 従来、紫外レーザとしてはKrFレーザ、ArFレーザ、F2レーザなどのエキシマレーザを中心に開発が進んでおり、半導体露光用のステッパ装置に広く応用されている。これらの紫外レーザはガスレーザであり、低繰り返しのパルスレーザ発振となっており、連続運転でのパワー安定性やビーム品質の維持が難しい。また、エキシマレーザはフッ素を使用するために危険であり、メンテナンスも手間がかかる。このため、装置は高価で大型な物となっている。さらに、エキシマレーザは低繰り返しパルスレーザであるため、露光以外の用途への展開が困難である。たとえば、直接描画微細加工では加工効率向上のために高速で走査したいが、エキシマレーザでは繰り返しが遅いため走査は困難である。このため、紫外光加工が有効な樹脂材料加工などに応用されてはいるものの、その範囲は限定的となっているのが現状である。 Conventionally, as an ultraviolet laser, an excimer laser such as a KrF laser, an ArF laser, or an F 2 laser has been developed, and is widely applied to a stepper apparatus for semiconductor exposure. These ultraviolet lasers are gas lasers and have low repetition pulse laser oscillation, and it is difficult to maintain power stability and beam quality in continuous operation. In addition, the excimer laser is dangerous because it uses fluorine, and maintenance is troublesome. For this reason, the apparatus is expensive and large. Furthermore, since the excimer laser is a low repetition pulse laser, it is difficult to develop it for uses other than exposure. For example, in direct drawing microfabrication, it is desired to scan at a high speed in order to improve the processing efficiency, but in an excimer laser, scanning is difficult because repetition is slow. For this reason, although the ultraviolet light processing is applied to resin material processing and the like which are effective, the range is limited at present.
 また、エキシマレーザを用いた装置類に使用する光学部品の検査や開発には、パルス光では作業効率が低下するため、連続波が有用である。このため、高圧水銀ランプの輝線や、白色ランプ光からエキシマレーザ波長と同じ波長の光を切り出して使用しているが、レーザではないため集光性などに問題がある。エキシマレーザを使用した場合の集光性などは、高度な光学シミュレーションを活用しても十分ではない場合が多く、試行錯誤的な開発となりやすい。このような理由から高精度な紫外光学系開発には多大な時間と費用が必要であり、大型のエキシマレーザ光学系は非常に高価である。効率的な開発のために、エキシマレーザ波長で連続波のレーザが求められている。 Also, continuous wave is useful for inspection and development of optical components used in equipment using excimer laser, because pulsed light reduces work efficiency. For this reason, light having the same wavelength as the excimer laser wavelength is cut out from the bright line of a high-pressure mercury lamp or white lamp light and used, but there is a problem in the light condensing property because it is not a laser. Concentration when using an excimer laser is often not sufficient even if advanced optical simulation is used, and it tends to be a trial-and-error development. For these reasons, development of a high-accuracy ultraviolet optical system requires a lot of time and money, and a large excimer laser optical system is very expensive. For efficient development, there is a need for continuous wave lasers at excimer laser wavelengths.
 これに対し、ガスの取り扱いが不要な固体レーザの開発が進んでいる。例えば、赤外固体レーザの波長変換技術が進み、全固体の紫外レーザが発表されている。これらのレーザは連続発振または高繰り返し発振が可能であり、エキシマレーザよりも安定に駆動可能である。連続発振または高繰り返しの基本波を発生するレーザとしてはNd添加YAG結晶(Nd:YAG)やYb添加ファイバ(YDF)が用いられている。これらのレーザのレーザ発振波長はNd:YAGが1064nm、YDFは1000~1100nmがほとんどである。これらのレーザをLiNbO3(LN)やLiTaO3(LT)やKNbO3(KN)やBaB24(β-BBO)などの非線形結晶で波長変換する。 In contrast, solid-state lasers that do not require gas handling are being developed. For example, the wavelength conversion technology of an infrared solid-state laser has advanced, and an all-solid-state ultraviolet laser has been announced. These lasers can oscillate continuously or with high repetition and can be driven more stably than excimer lasers. Nd-doped YAG crystal (Nd: YAG) or Yb-doped fiber (YDF) is used as a laser that generates a continuous wave or a high repetition fundamental wave. The lasing wavelength of these lasers is almost 1064 nm for Nd: YAG and 1000 to 1100 nm for YDF. These lasers are wavelength-converted by nonlinear crystals such as LiNbO 3 (LN), LiTaO 3 (LT), KNbO 3 (KN), BaB 2 O 4 (β-BBO).
基本波波長が1μm帯の赤外レーザでは、2倍波で緑色の領域、3~5倍波で紫外光が得られる。よく利用されているのはNd:YAGの4倍波であり、266nmを発生する。波長変換用の非線形光学結晶はバルク型と疑似位相整合(QPM)型が知られている。QPM型は、周期分極反転技術によって高効率波長変換が可能となっている。QPM素子には板状のバルクタイプと導波路タイプが知られており、導波路タイプは光閉じこめ効果が利用できるためにQPM素子の中でも高効率とされている。 Infrared lasers having a fundamental wavelength of 1 μm band can obtain ultraviolet light at the 2nd harmonic in the green region and 3-5 harmonics. Often used is the fourth harmonic of Nd: YAG, which generates 266 nm. As the nonlinear optical crystal for wavelength conversion, a bulk type and a quasi phase matching (QPM) type are known. The QPM type is capable of highly efficient wavelength conversion by a periodic polarization inversion technique. A plate-type bulk type and a waveguide type are known as the QPM element, and the waveguide type is considered to have high efficiency among the QPM elements because the optical confinement effect can be used.
導波路型のQPM素子で最もよく知られているのは、周期分極反転LN結晶(PPLN)であり、波長変換素子として広く使われつつある。波長変換には中心対称性がなく、屈折率異方性のある強誘電性結晶が有用であることが古くから知られており、特にd33やd32の性能指数が高い材料の探索が続けられている。また、最近では可視~紫外など短波長発生用に、古くから知られている強誘電性フッ化物結晶(特許文献1)を利用したQPM素子や周期分極反転デバイスが研究されている(非特許文献1,非特許文献2、特許文献2)。 The most well-known waveguide-type QPM element is a periodically poled LN crystal (PPLN), which is being widely used as a wavelength conversion element. For wavelength conversion, it has long been known that ferroelectric crystals having no central symmetry and refractive index anisotropy are useful. In particular, the search for materials having a high figure of merit for d33 and d32 has been continued. Yes. Recently, a QPM element and a periodically poled device using a ferroelectric fluoride crystal (Patent Document 1) that has been known for a short wavelength generation such as visible to ultraviolet have been studied (Non-Patent Document). 1, Non-Patent Document 2, Patent Document 2).
 しかし、レーザ媒質に結晶を用いた全固体レーザの波長変換では、元になる固体結晶レーザの発振可能な波長範囲が数nm以下と狭いため、波長は固定状態に近く、所望の波長を得ることは困難である。所望の波長を得るために、基本波となる元のレーザにはなるべく広い波長(周波数)範囲の可変性が求められる。広帯域波長可変な赤外固体レーザ゛の中ではEr添加ファイバ(EDF)レーザが進歩しており、高出力化も果たされている。1550nm帯の基本波は1500nmから1600nmまで広い範囲で波長可変可能であり、所望の波長の紫外光を得られる可能性がある。 However, in the wavelength conversion of an all-solid-state laser using a crystal as the laser medium, the wavelength range that can be oscillated by the original solid-state crystal laser is as narrow as several nanometers or less, so the wavelength is close to a fixed state and a desired wavelength can be obtained. It is difficult. In order to obtain a desired wavelength, the original laser serving as a fundamental wave is required to have variability in a wavelength (frequency) range as wide as possible. Among infrared solid-state lasers having a wide wavelength tunable, an Er-doped fiber (EDF) laser has progressed, and high output has been achieved. The fundamental wave of the 1550 nm band can be tunable over a wide range from 1500 nm to 1600 nm, and there is a possibility that ultraviolet light having a desired wavelength can be obtained.
しかし、EDFレーザはレーザ発振波長が1550nm帯と長波長であることから、紫外光を得るためには5倍波以上の多段の高次波長変換が必要となる。さらには、波長1546.4nmに基本波の波長を調整して8倍波を得れば、ArFエキシマレーザ波長の193.3nmが得られる可能性があるが、8倍波のような高次波長変換では、基本波に対する変換効率が1%以下と非常に低いため、変換途中で波長変換結晶中のパワー密度が低下し、紫外連続発振レーザを得ることは困難となる。別の広帯域波長可変な固体レーザとしてはTi:サファイアレーザがよく知られており、650nmから1100nmまでの非常に広い波長範囲でレーザ発振可能である。このため、広帯域波長可変光源としては最もよく使用されている(特許文献3)。しかし、Ti:サファイアレーザは励起源に500nm帯の高出力レーザが必要であり、装置が大型化するだけでなく、電気-光変換効率が低いため消費電力が大きい。 However, since the EDF laser has a laser oscillation wavelength as long as the 1550 nm band, in order to obtain ultraviolet light, multistage high-order wavelength conversion of 5th harmonic or higher is required. Furthermore, if the fundamental wave is adjusted to a wavelength of 1546.4 nm to obtain an 8th harmonic wave, 193.3 nm of the ArF excimer laser wavelength may be obtained. In the conversion, the conversion efficiency with respect to the fundamental wave is as low as 1% or less, so that the power density in the wavelength conversion crystal is lowered during the conversion, making it difficult to obtain an ultraviolet continuous wave laser. As another broadband wavelength tunable solid-state laser, a Ti: sapphire laser is well known, and can oscillate in a very wide wavelength range from 650 nm to 1100 nm. For this reason, it is most often used as a broadband wavelength variable light source (Patent Document 3). However, the Ti: sapphire laser requires a high-power laser in the 500 nm band as an excitation source, which not only increases the size of the apparatus but also consumes a large amount of power because of its low electro-optical conversion efficiency.
 最近では半導体レーザ技術が進歩してきたため、所定の波長に調整された半導体レーザを用いて、固定波長であるが望む波長にレーザ波長を調整する技術が進んできた。この技術には異なる波長のレーザの周波数を加算する和周波発生(SFG)技術が使われており、PPLNなどの導波路型波長変換素子を使用して実用的な変換効率を達成している。例えば、SFG技術により生物観察用の蛍光色素励起光源が実用化されている。しかし、半導体レーザを基本波に用いる和周波発生により得られるレーザ出力は、青~赤の可視光の領域で高々数十~百mWにとどまっている。この程度の出力のレーザをさらに波長変換して紫外光を得たとしても、数mW程度以下の出力となり実用的でない。高出力化には特定波長に調整したカスタムメイドの半導体レーザの高出力化や、特定波長に調整したファイバグレーティングなどによる波長固定が必要であり、特殊化が避けられない。また、半導体レーザは高出力化によってビーム品質が劣化しやすく、集光性が著しく低下する問題がある。このため、高出力半導体レーザを用いても波長変換効率が低くなり、結果として波長変換後に十分なパワーの紫外光を得ることは困難となる。 Recently, since the semiconductor laser technology has advanced, a technique for adjusting the laser wavelength to a desired wavelength although using a semiconductor laser adjusted to a predetermined wavelength has been advanced. This technique uses a sum frequency generation (SFG) technique that adds the frequencies of lasers of different wavelengths, and achieves practical conversion efficiency using a waveguide wavelength conversion element such as PPLN. For example, fluorescent dye excitation light sources for biological observation have been put into practical use by SFG technology. However, the laser output obtained by sum frequency generation using a semiconductor laser as a fundamental wave is only tens to hundreds mW in the blue to red visible light region. Even if the wavelength of a laser having such an output is further converted to obtain ultraviolet light, the output is about several mW or less, which is not practical. To increase output, it is necessary to increase the output of a custom-made semiconductor laser adjusted to a specific wavelength and to fix the wavelength by using a fiber grating adjusted to a specific wavelength, and specialization is inevitable. Further, the semiconductor laser has a problem that the beam quality is easily deteriorated due to the high output, and the light condensing property is remarkably lowered. For this reason, even if a high-power semiconductor laser is used, the wavelength conversion efficiency is lowered, and as a result, it becomes difficult to obtain ultraviolet light with sufficient power after wavelength conversion.
 一方、高出力でも高品位なレーザ出力が得られるファイバレーザが基本波として有用と考えられ、少なくともファイバレーザを1台使用した和周波発生による紫外連続波レーザ光源が提案されている(特許文献4)。ここでは、950nm~1580nmの間の離散的な3波長の中から2波長を選び、そのうち一方を高次高調波として利用して、最終的に紫外光を得る方法が開示されている。しかし、和周波発生用の非線形光学結晶として、CsLiB610(CLBO)結晶またはBBO結晶を用いていることから、酸化物結晶の紫外吸収端の問題から必ずしも透明性は十分でなく、紫外波長域で波長変換効率が高いとは言えない。さらに、CLBOは既知の紫外波長変換結晶としては高性能な結晶であるが、潮解性があって取り扱いが困難なだけでなく、結晶表面に直接誘電体多層膜が成膜できないため、入射角度の制限や使用環境の制限が非常に厳しい。また、既存のファイバレーザは赤外波長域のレーザであることから、紫外光発生のためには第二高調波では不十分であって、第三次高調波や第四次高調波など高次の波長変換が必要となり、効率が著しく低下する問題がある。 On the other hand, a fiber laser capable of obtaining a high-quality laser output even at high output is considered useful as a fundamental wave, and an ultraviolet continuous wave laser light source using sum frequency generation using at least one fiber laser has been proposed (Patent Document 4). ). Here, a method is disclosed in which two wavelengths are selected from three discrete wavelengths between 950 nm and 1580 nm, and one of them is used as a high-order harmonic to finally obtain ultraviolet light. However, since CsLiB 6 O 10 (CLBO) crystal or BBO crystal is used as the nonlinear optical crystal for generating the sum frequency, transparency is not always sufficient due to the problem of the ultraviolet absorption edge of the oxide crystal. It cannot be said that the wavelength conversion efficiency is high in the region. Furthermore, although CLBO is a high-performance crystal as a known ultraviolet wavelength conversion crystal, it is not only difficult to handle because of deliquescence, but also because a dielectric multilayer film cannot be formed directly on the crystal surface, Restrictions and restrictions on the usage environment are very strict. In addition, since existing fiber lasers are lasers in the infrared wavelength region, the second harmonic is not sufficient for the generation of ultraviolet light, and the higher harmonics such as the third and fourth harmonics. Therefore, there is a problem that the efficiency is remarkably lowered.
米国特許第3982136号明細書US Pat. No. 3,982,136 国際公開第2001/090812号International Publication No. 2001/090812 特開平10-341054号公報Japanese Patent Laid-Open No. 10-341054 特開2006-73970号公報JP 2006-73970 A
 上記のとおり、連続発振の固体紫外レーザでレーザ発振波長が従来のエキシマレーザに十分に近く、コンパクトで高効率なレーザは実現が困難である。このため、レーザ描画による紫外レーザ加工、エキシマレーザ装置類の設計および部品検査などに利用可能な、エキシマレーザ波長に調整できる連続発振の全固体紫外レーザが望まれている。また、分光計測用途では紫外波長域で波長可変な連続発振の全固体紫外レーザが望まれている。 As described above, it is difficult to realize a compact and highly efficient laser with a continuous wave solid-state ultraviolet laser whose laser oscillation wavelength is sufficiently close to that of a conventional excimer laser. For this reason, there is a demand for a continuous-wave all-solid-state ultraviolet laser that can be adjusted to an excimer laser wavelength and that can be used for ultraviolet laser processing by laser drawing, design of excimer laser devices, component inspection, and the like. Further, for spectroscopic measurement applications, a continuous wave all solid-state ultraviolet laser whose wavelength is variable in the ultraviolet wavelength region is desired.
 そこで本発明は、紫外光波長域で特定の波長に同調または、一定の波長範囲を波長可変可能な連続発振紫外レーザ、を提供することを目的としている。 Therefore, an object of the present invention is to provide a continuous wave ultraviolet laser that can be tuned to a specific wavelength in the ultraviolet wavelength region or can be tunable within a certain wavelength range.
 本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、既存のエキシマレーザ波長に同調可能なレーザ光を連続発振する、和周波発生技術を用いた紫外レーザ装置において、基本波の光源に波長可変のレーザ光源を用い、また、高次の波長変換による効率低下を避けるためには、基本波としてなるべく短波長のレーザ光源を用い、さらに、最終段の和周波発生に、紫外光波長域でも十分な透明性を保った非線形光学結晶を用いることにより上記目的を達成できることを見出し、本発明に至ったものである。 As a result of intensive studies to achieve the above object, the inventors of the present invention have developed a fundamental wave in an ultraviolet laser device using a sum frequency generation technology that continuously oscillates a laser beam that can be tuned to an existing excimer laser wavelength. In order to avoid efficiency degradation due to higher-order wavelength conversion, a laser light source with a short wavelength as much as possible is used as a fundamental wave. The present inventors have found that the above object can be achieved by using a nonlinear optical crystal that maintains sufficient transparency even in the light wavelength region, and have reached the present invention.
 本発明に依れば、波長が可変である可視レーザ発振部(レーザ1)と、波長が一定のレーザ光を発生するレーザ(レーザ2)と、レーザ1の出力光(出力光a1)とレーザ2の出力光(出力光b)に基づく和周波発生により紫外光を発生させる波長変換部(変換部1)を備えたレーザ装置において、該レーザ1が、レーザ媒質として少なくともPrをコアに含有する光導波路と、励起光源として波長400nm以上480nm以下の励起光を発生する半導体レーザを備え、且つ、該変換部1に強誘電性フッ化物結晶を用いることにより、波長250nm以下の紫外光(出力光c)を連続的に出力することを特徴とする紫外レーザ装置(第1装置)が提供される。 According to the present invention, a visible laser oscillation unit (laser 1) having a variable wavelength, a laser (laser 2) that generates laser light having a constant wavelength, an output light (output light a1), and a laser of laser 1 In a laser device including a wavelength conversion unit (conversion unit 1) that generates ultraviolet light by generating a sum frequency based on output light (output light b), the laser 1 contains at least Pr as a laser medium in the core An optical waveguide and a semiconductor laser that generates excitation light having a wavelength of 400 nm or more and 480 nm or less as an excitation light source, and using a ferroelectric fluoride crystal for the conversion unit 1, ultraviolet light having a wavelength of 250 nm or less (output light) An ultraviolet laser device (first device) is provided that continuously outputs c).
第1装置は、該レーザ1のレーザ発振波長が700nm以上715nm以下の範囲内であり、且つ、該レーザ2として波長が250nm超300nm以下の範囲内であるレーザを用いることを特徴とする紫外レーザ装置(第2装置)であってもよい。 The first apparatus uses an ultraviolet laser in which the laser oscillation wavelength of the laser 1 is in the range of 700 nm to 715 nm and the laser 2 has a wavelength in the range of more than 250 nm to 300 nm. It may be a device (second device).
第1装置は、該レーザ1のレーザ発振波長が598nm以上715nm以下の範囲内であり、該レーザ2として波長が400nm以上550nm以下の範囲内であるレーザを用い、さらに、該レーザ1と該変換部1の間に出力光a1の波長を変換する波長変換部(変換部2)を備え、波長を変換された出力光(出力光a2)と該出力光bに基づく和周波発生により紫外光を発生させることを特徴とする紫外レーザ装置(第3装置)であってもよい。 The first apparatus uses a laser having a laser oscillation wavelength of 598 nm or more and 715 nm or less and a wavelength of 400 nm or more and 550 nm or less as the laser 2, and further, the laser 1 and the conversion A wavelength conversion unit (conversion unit 2) for converting the wavelength of the output light a1 is provided between the units 1, and the ultraviolet light is generated by the sum frequency generation based on the output light (output light a2) whose wavelength is converted and the output light b. It may be an ultraviolet laser device (third device) characterized by being generated.
第1乃至第4装置のいずれか1つは、該強誘電性フッ化物結晶が、XMgF4、XZnF4、XAlF5、Na2MgAlF7、またはNa2ZnAlF7で表される組成(ただしXは、Ca,Sr,Baのいずれかから選ばれる1つの元素を示す。)であることを特徴とする紫外レーザ装置であってもよい。 Any one of the first to fourth devices has a composition in which the ferroelectric fluoride crystal is represented by XMgF 4 , XZnF 4 , XAlF 5 , Na 2 MgAlF 7 , or Na 2 ZnAlF 7 (where X is , One element selected from any one of Ca, Sr, and Ba).
本発明のレーザ1の構成例を示す図である。It is a figure which shows the structural example of the laser 1 of this invention. 本発明のレーザ1の別の構成例を示す図である。It is a figure which shows another structural example of the laser 1 of this invention. 本発明のレーザの構成例を示す図である。It is a figure which shows the structural example of the laser of this invention. 本発明のレーザ1の波長と紫外光波長の関係を示す図である。It is a figure which shows the relationship between the wavelength of the laser 1 of this invention, and an ultraviolet light wavelength. 本発明の紫外光出力スペクトルを示す図である。It is a figure which shows the ultraviolet light output spectrum of this invention. 本発明の紫外光出力安定性を示す図である。It is a figure which shows the ultraviolet light output stability of this invention. 本発明のレーザの構成例を示す図である。It is a figure which shows the structural example of the laser of this invention.
詳細な説明Detailed description
 本発明により、紫外光波長域で特定の波長に同調または、一定の波長範囲を波長可変可能な連続発振紫外レーザを提供することができる。また、波長が既存エキシマレーザに同調された紫外CWレーザを提供することができる。 According to the present invention, it is possible to provide a continuous wave ultraviolet laser that can be tuned to a specific wavelength in the ultraviolet wavelength region or can be tunable within a certain wavelength range. Further, an ultraviolet CW laser whose wavelength is tuned to an existing excimer laser can be provided.
 本発明は、波長が可変である可視レーザ発振部(レーザ1)と、波長が一定のレーザ光を発生するレーザ(レーザ2)と、レーザ1の出力光(出力光a1)とレーザ2の出力光(出力光b)に基づく和周波発生により紫外光を発生させる波長変換部(変換部1)を備えた紫外レーザ装置であり、レーザ1が、レーザ媒質として少なくともPrをコアに含有する光導波路と、励起光源として波長400nm以上480nm以下の励起光を発生する半導体レーザを備え、且つ、該変換部1に強誘電性フッ化物結晶を用いることにより、波長250nm以下の紫外光(出力光c)を連続的に出力することを特徴とする紫外レーザ装置である。 The present invention includes a visible laser oscillation unit (laser 1) having a variable wavelength, a laser (laser 2) that generates laser light having a constant wavelength, an output light (output light a1) of laser 1, and an output of laser 2 An ultraviolet laser device including a wavelength conversion unit (conversion unit 1) that generates ultraviolet light by sum frequency generation based on light (output light b), and the laser 1 includes at least Pr as a laser medium in a core And a semiconductor laser that generates excitation light having a wavelength of 400 nm or more and 480 nm or less as an excitation light source, and a ferroelectric fluoride crystal is used for the conversion unit 1, whereby ultraviolet light (output light c) having a wavelength of 250 nm or less is used. Is an ultraviolet laser device characterized by continuously outputting.
 励起光源としての400nm帯青色半導体レーザは、青色DVDヘッド用や青色レーザプロジェクション用などGaN系半導体レーザを中心に開発が進んでおり、適宜波長と出力を選択して入手することができる。励起光源にT-O CAN形状の半導体レーザやレーザチップを使用する場合、半導体レーザからの出射ビーム形状は楕円かつ発散角が方向によって異なるので、光学結合系の上流でプリズムやアナモルフィックレンズによるビーム成形を行うことが好ましい。レーザ1の励起レーザの最適波長や最適パワーは、Prイオン濃度と共振器構成で変化するので一義的に決められないが、Prイオンの吸収断面積、濃度消光しない濃度限界、容易に入手可能な励起レーザ波長を勘案すると、波長420~470nmの範囲で100mW~10Wの範囲が最も適している。この波長帯域で励起する場合、Prの発光上準位よりもエネルギーレベルの高い準位(32163130など)を直接励起していることから、従来のアップコンバージョンレーザと比較して励起効率が高く、高い発光強度が得られる。 The 400 nm-band blue semiconductor laser as the excitation light source has been developed mainly for GaN-based semiconductor lasers such as for blue DVD heads and blue laser projections, and can be obtained by appropriately selecting the wavelength and output. When a TO-CAN-shaped semiconductor laser or laser chip is used as the excitation light source, the shape of the emitted beam from the semiconductor laser is elliptical and the divergence angle varies depending on the direction. Therefore, the prism or anamorphic lens is used upstream of the optical coupling system. It is preferable to perform beam shaping. The optimum wavelength and optimum power of the excitation laser of the laser 1 cannot be determined uniquely because it varies depending on the Pr ion concentration and the resonator configuration. However, the absorption cross section of Pr ions, the concentration limit that does not quench the concentration, and are readily available Considering the excitation laser wavelength, the range of 100 mW to 10 W is most suitable in the wavelength range of 420 to 470 nm. In the case of excitation in this wavelength band, levels having a higher energy level (such as 3 P 2 , 1 I 6 , 3 P 1 , 3 P 0 ) than the emission upper level of Pr are directly excited. Compared with the up-conversion laser, the excitation efficiency is high, and high emission intensity can be obtained.
 レーザ1は可視光領域で直接レーザ発振する必要がある。このような材料としてはフッ化物ガラスが好適である。フッ化物ガラスの種類としては、Zr系ガラス、Al系ガラス、In系ガラス、Ga系ガラスなどを用いることができる。レーザ1のレーザ媒質のコア部として、これらフッ化物ガラスにPrを添加したPr添加フッ化物光導波路を用いることで、高効率で可視光レーザ発振が可能となる。コア部にフッ化物ガラスが使用されていれば、クラッド部はフッ化物ガラスでも良いし、フッ化物ガラス以外の材料を用いることもできる。例えば、コア部がPr添加Al系フッ化物ガラスであり、クラッド部がフツリン酸塩ガラスの異種ガラスで構成された光導波路や、コア部がPr添加Zr系フッ化物ガラスであり、クラッド部がアクリル系の樹脂である樹脂クラッド光導波路などを用いることができる。 Laser 1 needs to oscillate directly in the visible light region. As such a material, fluoride glass is suitable. As a kind of fluoride glass, Zr glass, Al glass, In glass, Ga glass, or the like can be used. By using a Pr-doped fluoride optical waveguide obtained by adding Pr to the fluoride glass as the core of the laser medium of the laser 1, visible light laser oscillation can be performed with high efficiency. If fluoride glass is used for the core portion, the cladding portion may be fluoride glass, or a material other than fluoride glass may be used. For example, an optical waveguide in which the core part is Pr-added Al-based fluoride glass and the clad part is made of different glass such as fluorophosphate glass, or the core part is Pr-added Zr-based fluoride glass and the cladding part is acrylic. A resin clad optical waveguide which is a resin of the system can be used.
 Pr添加光導波路には、目的に応じたPr添加濃度と導波路パラメータを持った光導波路を用意する。Pr濃度は濃すぎると濃度消光するため、2×1020個/cm3以下の濃度が好ましく、高効率動作のためには1×1020個/cm3以下の濃度となるように調整することがより好ましい。一方、Pr濃度が1×1017個/cm3未満の濃度では、励起光の吸収に必要な長さが長くなるため好ましくない。必要な光導波路長を10m程度以下にするためには、Pr濃度を1×1018個/cm3以上の濃度にすることがより好ましい。 As the Pr-doped optical waveguide, an optical waveguide having a Pr-doped concentration and a waveguide parameter according to the purpose is prepared. If the Pr concentration is too high, the concentration is quenched, so a concentration of 2 × 10 20 particles / cm 3 or less is preferable. For high-efficiency operation, the concentration should be adjusted to 1 × 10 20 particles / cm 3 or less. Is more preferable. On the other hand, if the Pr concentration is less than 1 × 10 17 atoms / cm 3 , the length necessary for absorption of the excitation light becomes long, which is not preferable. In order to reduce the required optical waveguide length to about 10 m or less, it is more preferable to set the Pr concentration to 1 × 10 18 pieces / cm 3 or more.
 光導波路の構造としては、断面内の屈折率分布が階段状の屈折率分布でも良いし、なだらかに屈折率が変化する分布屈折率型の光導波路でも良い。また、クラッド層が複数層ある、いわゆるダブルクラッド構造でも良い。ダブルクラッド構造の場合は、コアに近接するクラッド(第一クラッド)の断面形状は非円形が好ましい。第一クラッドの断面形状としては、たとえばD形状、長方形、星形、花びら型などが知られており、励起光は第一クラッドにひとまず結合され、第一クラッド内を伝搬しながら徐々にコアに結合される。Pr添加光導波路としては、Pr添加ファイバが光結合や製造効率の面から好ましい。 As the structure of the optical waveguide, the refractive index distribution in the cross section may be a stepped refractive index distribution, or a distributed refractive index type optical waveguide in which the refractive index changes gently. A so-called double clad structure having a plurality of clad layers may also be used. In the case of a double clad structure, the cross-sectional shape of the clad (first clad) adjacent to the core is preferably non-circular. As the cross-sectional shape of the first clad, for example, a D shape, a rectangle, a star shape, a petal shape, and the like are known. The excitation light is first coupled to the first clad, and gradually propagates through the first clad and gradually enters the core. Combined. As the Pr-doped optical waveguide, a Pr-doped fiber is preferable in terms of optical coupling and manufacturing efficiency.
 Pr添加光導波路への励起光の光学的結合方法としては、レンズで光導波路端に集光して結合させる方法または、Pr添加光導波路がPr添加光ファイバである場合はファイバを通して結合させることができる。励起光源がファイバピグテール付きの場合は、透過特性に波長依存性のあるファイバ型光結合器や合分波器が励起光結合に使用できるため、励起光結合損失の低減が可能であるため特に好ましい。 As an optical coupling method of the excitation light to the Pr-doped optical waveguide, the light is condensed and coupled to the end of the optical waveguide with a lens, or when the Pr-doped optical waveguide is a Pr-doped optical fiber, it is coupled through the fiber. it can. When the excitation light source is equipped with a fiber pigtail, a fiber-type optical coupler or multiplexer / demultiplexer whose wavelength is dependent on the transmission characteristics can be used for the excitation light coupling, which is particularly preferable because the excitation light coupling loss can be reduced. .
 このとき、少なくとも高出力の励起レーザを集光させる集光端には、光破壊閾値の高い非Pr添加光導波路または非Pr添加ガラスブロックなど(以降、非Pr添加部)を用いることが好ましい。これらの非Pr添加部は、励起光入射端のみ取り付けることもできるし、両端に取り付けることもできるが、端面破壊防止の観点からは両端に取り付けることが特に好ましい。とりつける非Pr添加部は、石英系光導波路、石英系光ファイバ、石英系ガラスブロック、石英系ガラス基板を用いた誘電体多層膜、石英系結晶化ガラス基板を用いた誘電体多層膜などが好ましい。石英ファイバの中では、Geをコアに添加していない純石英コアの石英ファイバを用いることが特に好ましい。これらの非Pr添加部と利得媒質であるPr添加光導波路は、接着剤を用いない接続方法で接続されていることが好ましい。Pr添加光導波路がPr添加ファイバであり、前述の非Pr添加部が石英ファイバである場合、両者の接続方法は融着接続であることが特に好ましい。このように石英ファイバと接続したPr添加ファイバは、金属パッケージなど耐湿耐候性のパッケージに封入して(以下、「Prファイバモジュール」と言う)使用することが特に好ましい。 At this time, it is preferable to use a non-Pr-doped optical waveguide or a non-Pr-doped glass block (hereinafter referred to as a non-Pr-doped portion) having a high photodestructive threshold at the condensing end for condensing at least the high-power excitation laser. These non-Pr-added portions can be attached only to the excitation light incident end or can be attached to both ends, but it is particularly preferable to attach to both ends from the viewpoint of preventing end face destruction. The non-Pr-added portion to be attached is preferably a silica-based optical waveguide, a silica-based optical fiber, a silica-based glass block, a dielectric multilayer film using a silica-based glass substrate, a dielectric multilayer film using a quartz-based crystallized glass substrate, or the like. . Among the silica fibers, it is particularly preferable to use a silica fiber having a pure silica core in which Ge is not added to the core. These non-Pr doped portions and the Pr doped optical waveguide as a gain medium are preferably connected by a connection method that does not use an adhesive. When the Pr-doped optical waveguide is a Pr-doped fiber and the aforementioned non-Pr-doped portion is a quartz fiber, it is particularly preferable that the connection method between the two is fusion splicing. The Pr-doped fiber thus connected to the quartz fiber is particularly preferably used by being sealed in a moisture and weather resistant package such as a metal package (hereinafter referred to as “Pr fiber module”).
 レーザ1の共振器構成は、レーザ発振できる形式であれば、ファブリペロー共振器,リング共振器,多段縦列接続,合分波カプラによる並列接続,アンプ接続形式など、どのような形式でもかまわない。レーザ1は、所望のレーザ波長同調範囲で出力が得られるように、共振器内または共振器外にレーザ波長を調整する波長調整機能を備える必要がある。波長調整機能は、回折格子の角度調整,折り返しミラーの角度調整,エタロンによる調整,副共振器による調整,注入レーザ波長による調整,共振器損失の調整によるレーザ発振波長調整,ファイバグレーティングの温度調節や張力調整によるレーザ発振波長調整などが知られており、波長変化させることができる方法であれば何でも良い。 The resonator configuration of the laser 1 may be any type, such as a Fabry-Perot resonator, a ring resonator, a multistage cascade connection, a parallel connection using a multiplexing / demultiplexing coupler, and an amplifier connection type, as long as the laser can be oscillated. The laser 1 needs to have a wavelength adjusting function for adjusting the laser wavelength inside or outside the resonator so that an output can be obtained in a desired laser wavelength tuning range. Wavelength adjustment function includes diffraction grating angle adjustment, folding mirror angle adjustment, etalon adjustment, sub-resonator adjustment, injection laser wavelength adjustment, laser loss adjustment by resonator loss adjustment, fiber grating temperature adjustment, Laser oscillation wavelength adjustment by tension adjustment is known, and any method capable of changing the wavelength may be used.
 また、エキシマレーザとして露光用途などに特に重要なArFレーザの発振波長は193.3nm付近であり、この波長に同調されたCWレーザは実用上特に重要であり、この波長域での波長可変特性が得られれば光学部品検査やステッパの性能試験に使用できるため、非常に重要である。レーザ1の発振波長が700nm以上715nm以下であり、レーザ2の発振波長が250nm超300nm以下の範囲の固定波長である場合、紫外光出力として184.2nm以上211.3nm以下の波長範囲から選ばれる紫外光を得ることができる。この構成では、波長可変レーザの基本波長出力をそのまま使用するため高出力化が可能である利点がある。 In addition, the oscillation wavelength of an ArF laser that is particularly important for use as an excimer laser is around 193.3 nm, and a CW laser tuned to this wavelength is particularly important in practice, and has a wavelength tunable characteristic in this wavelength region. If obtained, it can be used for optical component inspection and stepper performance tests, which is very important. When the oscillation wavelength of the laser 1 is 700 nm to 715 nm and the oscillation wavelength of the laser 2 is a fixed wavelength in the range of more than 250 nm to 300 nm, the ultraviolet light output is selected from a wavelength range of 184.2 nm to 211.3 nm. Ultraviolet light can be obtained. This configuration has an advantage that the output can be increased because the fundamental wavelength output of the wavelength tunable laser is used as it is.
レーザ2は、発振波長250nm超300nm以下の範囲のレーザ波長をもつ固体レーザである。レーザ2には半導体レーザの直接第四次高調波や、固体レーザの第四次高調波を用いることができる。例えば、Nd:YAGレーザやYb:ファイバレーザの第四次高調波により、波長266nmや257nm付近の高出力のレーザが比較的安価で市販されているので好ましい。レーザ2に波長266nmのNd:YAGレーザの第四次高調波を用いる場合、レーザ1の波長を707.3nm±0.5nmに調整することにより、和周波によって193.3nm帯の紫外光出力が得られる。 The laser 2 is a solid-state laser having a laser wavelength in the range of more than 250 nm and not more than 300 nm. The laser 2 can be a direct fourth harmonic of a semiconductor laser or a fourth harmonic of a solid-state laser. For example, a high-power laser having a wavelength of about 266 nm or about 257 nm is commercially available at a relatively low price due to the fourth harmonic of an Nd: YAG laser or a Yb: fiber laser, which is preferable. When the fourth harmonic of an Nd: YAG laser having a wavelength of 266 nm is used for the laser 2, by adjusting the wavelength of the laser 1 to 707.3 nm ± 0.5 nm, an ultraviolet light output in the 193.3 nm band can be obtained by the sum frequency. can get.
 また、レーザ1のレーザ発振波長が598nm以上715nm以下の範囲内であり、レーザ2として波長が400nm以上550nm以下の範囲内であるレーザを用い、さらに、レーザ1と変換部1の間に出力光a1の波長を変換する波長変換部(変換部2)を備え、波長を変換された出力光(出力光a2)と出力光bに基づく和周波発生により紫外光を発生させる場合、出力光a2として波長299nm以上357.5nm以下の波長のレーザが得られる。この出力光a2とレーザ2からの出力光bを変換部1で和周波発生すると、波長171.1nm以上216.7nm以下の範囲の紫外光を得ることができる。 Further, the laser 1 has a laser oscillation wavelength in the range of 598 nm or more and 715 nm or less, a laser having a wavelength in the range of 400 nm or more and 550 nm or less is used as the laser 2, and the output light is further transmitted between the laser 1 and the conversion unit 1. In the case where the wavelength conversion unit (conversion unit 2) that converts the wavelength of a1 is provided and ultraviolet light is generated by sum frequency generation based on the output light (output light a2) whose wavelength is converted and the output light b, the output light a2 A laser having a wavelength of 299 nm or more and 357.5 nm or less is obtained. When the output light a2 and the output light b from the laser 2 are sum-frequency generated in the converter 1, ultraviolet light having a wavelength in the range of 171.1 nm to 216.7 nm can be obtained.
 レーザ1の発振波長としては、特に波長598~645nm、700~715nmの範囲がレーザ発振しやすく、好適である。これらの波長域では高出力動作が可能であり、紫外出力の向上に適している。この範囲のレーザ1を用いると、レーザ2との組み合わせで、波長171.1nm以上203.3nm以下の紫外光波長範囲と、波長186.7nm以上216.7nm以下の二種類の範囲から選ばれる紫外光を得ることができる。 The oscillation wavelength of the laser 1 is particularly preferably in the wavelength range of 598 to 645 nm and 700 to 715 nm because laser oscillation is easy. High power operation is possible in these wavelength ranges, and it is suitable for improving the ultraviolet output. When the laser 1 in this range is used, in combination with the laser 2, an ultraviolet light wavelength range of 171.1 nm or more and 203.3 nm or less and an ultraviolet wavelength range selected from two ranges of wavelengths of 186.7 nm or more and 216.7 nm or less. Light can be obtained.
 レーザ2は、発振波長400nm以上550nm以下の範囲のレーザ波長をもつ固体レーザである。レーザ2には半導体レーザの直接第二次高調波や、固体レーザの第二次高調波を用いることができる。例えば、915,960,976nmなどの高出力半導体レーザの第二次高調波によって、407.5,480,488nmなどのレーザが市販されている。また、Nd:YAGレーザやYb:ファイバレーザの第二次高調波により、532nmや515nmのレーザが得られ、高出力で比較的安価なレーザが市販されていることから、これらのレーザを用いることが好ましい。または、レーザ2に波長532nmのNd:YAGレーザの第二次高調波を用いた場合、レーザ1の波長を607.2nm±0.5nmに調整することで、波長193.3nm帯の紫外光出力を得ることができる。または、レーザ2に波長488nmの半導体レーザの第二次高調波を用いた場合、レーザ1の波長を640.2nm±0.5nmに調整することで、波長193.3nm帯の紫外光出力を得ることができる。 Laser 2 is a solid-state laser having a laser wavelength in the range of oscillation wavelength of 400 nm or more and 550 nm or less. The laser 2 can be a direct second harmonic of a semiconductor laser or a second harmonic of a solid-state laser. For example, lasers such as 407.5, 480, and 488 nm are commercially available with second harmonics of high-power semiconductor lasers such as 915, 960, and 976 nm. Also, lasers of 532 nm and 515 nm can be obtained by the second harmonic of Nd: YAG laser and Yb: fiber laser, and high power and relatively inexpensive lasers are commercially available. Use these lasers. Is preferred. Alternatively, when the second harmonic of an Nd: YAG laser with a wavelength of 532 nm is used for the laser 2, the wavelength of the laser 1 is adjusted to 607.2 nm ± 0.5 nm, thereby outputting an ultraviolet light with a wavelength of 193.3 nm. Can be obtained. Alternatively, when the second harmonic of a semiconductor laser having a wavelength of 488 nm is used for the laser 2, an ultraviolet light output of a wavelength of 193.3 nm band is obtained by adjusting the wavelength of the laser 1 to 640.2 nm ± 0.5 nm. be able to.
 これ以外にも、レーザ2には低出力で高品質なシード光と増幅器の組み合わせを用いる、Muster Laser Power Amplifier(MOPA)形式のレーザを用いることができる。低出力のシードには、Yb添加YVO4などのマイクロチップレーザやDFB半導体レーザのようなモード制御性に優れたレーザを用い、増幅部にYb添加ファイバまたはYb添加結晶などの希土類添加ファイバや希土類添加結晶を用いることで、高出力であってもシングルモードかつ集光性のよいレーザビームを得ることができる。低出力のシード光と増幅部の間には、シード光発生部に増幅された強い光が戻らないように、光アイソレータなどの非相反手段を挿入することが望ましい。 In addition to this, a laser of a laser power amplifier (MOPA) type using a combination of a low-power and high-quality seed light and an amplifier can be used for the laser 2. For the low-power seed, a laser having excellent mode controllability such as a Yb-doped YVO4 microchip laser or a DFB semiconductor laser is used, and a rare-earth doped fiber such as a Yb-doped fiber or a Yb-doped crystal or a rare earth doped By using a crystal, it is possible to obtain a laser beam having a single mode and a high light collecting property even at a high output. It is desirable to insert non-reciprocal means such as an optical isolator between the low-power seed light and the amplifying unit so that strong light amplified by the seed light generating unit does not return.
 変換部2は、基本波長598nm以上715nm以下の波長に対して第二次高調波を発生し、波長299nm以上357.5nm以下の範囲で出力可能な非線形光学結晶であればどのような物でも良い。このような結晶としては、LiNbO3(LN)、LiTaO3(LT)、β-BaB24(β-BBO)など、多くの結晶が知られている。これらの結晶は特定方位のバルク形状として使用しても良いし、疑似位相整合(QPM)可能な分極反転素子に加工して用いても良い。また、QPM素子としては導波路型の素子も市販されており、効率を重視する用途では特に好ましい。レーザ1はファイバ出力なので、変換部2はファイバピグテール接続されたファイバデバイスであることが特に好ましい。変換部2は、レーザ1の波長調整に応じて変換波長が変化するため、結晶角度や結晶温度などを変化させてレーザ1に追従することが好ましく、レーザ1の波長調整機構と変換部2の調整機能が連動している事が特に好ましい。 The conversion unit 2 may be any nonlinear optical crystal that generates a second harmonic with respect to a fundamental wavelength of 598 nm or more and 715 nm or less and can output in a wavelength range of 299 nm or more and 357.5 nm or less. . As such crystals, many crystals such as LiNbO 3 (LN), LiTaO 3 (LT), and β-BaB 2 O 4 (β-BBO) are known. These crystals may be used as a bulk shape with a specific orientation, or may be processed into a polarization inversion element capable of quasi phase matching (QPM). In addition, waveguide-type elements are also commercially available as QPM elements, and are particularly preferable for applications where importance is placed on efficiency. Since the laser 1 is a fiber output, the conversion unit 2 is particularly preferably a fiber device connected by a fiber pigtail. Since the conversion wavelength of the conversion unit 2 changes according to the wavelength adjustment of the laser 1, it is preferable to follow the laser 1 by changing the crystal angle, the crystal temperature, and the like. It is particularly preferable that the adjustment function is linked.
 また、本発明は変換部1の強誘電性フッ化物結晶が、XMgF4、XZnF4、XAlF5、Na2MgAlF7、またはNa2ZnAlF7で表される組成(ただしXは、Ca,Sr,Baのいずれかから選ばれる1つの元素を示す。)であることを特徴とする、紫外レーザ装置である。 Further, in the present invention, the composition in which the ferroelectric fluoride crystal of the converter 1 is represented by XMgF 4 , XZnF 4 , XAlF 5 , Na 2 MgAlF 7 , or Na 2 ZnAlF 7 (where X is Ca, Sr, 1 represents an element selected from any one of Ba.), An ultraviolet laser device.
 変換部1は、変換部2からの出力光(出力光a2)またはレーザ1の出力光(出力光a1)とレーザ2の紫~緑色出力光(出力光b)をもとに和周波発生させ、波長171.3nmから216.7nmの紫外光を出力でき、紫外域で透明性の高い強誘電性フッ化物光学結晶が適している。酸化物結晶は、300nm以下の波長で損失が大きく、200nm以下の波長で不透明であることから、高出力の紫外光で光損傷を受けやすい。これに対してフッ化物結晶は200nm以下でも透明性が高く、光損傷も受けにくい。よく知られているように、中心対称性のない結晶であれば二次の非線形光学効果を得ることができることから、中心対称性がなく、必要な波長域で必要な透明性が確保できるフッ素化合物結晶なら何でも良い。結晶組成としては、紫外波長域での吸収は電子遷移なので、元素またはイオン固有の吸収となる。このため、遷移金属やランタニドの一部の元素を含む化合物は適さない。具体的には、Fe、Ni、Co、Cu、Cr、Mn、Ce、Pr、Nd、Er、Tmなどを含有するフッ素化合物結晶は適さない。一方、Rb、Cs、Sr、Ba、Zn、Pb、Ga、Zr、Hf、Nb、Ta、Y、La、Gd、Luなどのフッ素化合物は紫外波長域でも透明性が高く、しかも電子密度が高いため、これらを含有するフッ素化合物結晶は非線形光学特性が向上する。 The converter 1 generates a sum frequency based on the output light (output light a2) from the converter 2 or the output light (output light a1) of the laser 1 and the purple to green output light (output light b) of the laser 2. A ferroelectric fluoride optical crystal that can output ultraviolet light having a wavelength of 171.3 nm to 216.7 nm and has high transparency in the ultraviolet region is suitable. The oxide crystal has a large loss at a wavelength of 300 nm or less and is opaque at a wavelength of 200 nm or less, and thus is easily damaged by high-power ultraviolet light. In contrast, fluoride crystals are highly transparent even at 200 nm or less and are not easily damaged by light. As is well known, since a second-order nonlinear optical effect can be obtained if the crystal has no central symmetry, there is no central symmetry, and a fluorine compound that can ensure the necessary transparency in the required wavelength range. Any crystal can be used. As the crystal composition, the absorption in the ultraviolet wavelength region is an electron transition, so that the absorption is specific to the element or ion. For this reason, compounds containing some elements of transition metals and lanthanides are not suitable. Specifically, fluorine compound crystals containing Fe, Ni, Co, Cu, Cr, Mn, Ce, Pr, Nd, Er, Tm, etc. are not suitable. On the other hand, fluorine compounds such as Rb, Cs, Sr, Ba, Zn, Pb, Ga, Zr, Hf, Nb, Ta, Y, La, Gd, and Lu are highly transparent and have a high electron density even in the ultraviolet wavelength region. Therefore, the non-linear optical characteristics of the fluorine compound crystal containing these improve.
 変換部1に好適なフッ素化合物結晶を例示すると、結晶点群が「mm2」-に属するABF4(A:Ca,Sr,Baから選ばれる少なくとも1種類の元素、B:Mg,Zn,Snから選ばれる少なくとも1種類の元素)およびC2BDF7(C:Na,K,Rb,Csから選ばれる少なくとも1種類の元素、B:同上、D:Al,Gaから選ばれる少なくとも1種類の元素)、結晶点群が「4」に属するADF5、(A,D共に前述)、結晶点群が「32」に属するCLnF4(Cは前述、LnはY,La,Gd,Luから選ばれる少なくとも1種類の元素)などが挙げられる。 An example of a suitable fluorine compound crystal for the converter 1 is ABF 4 (A: at least one element selected from A, Ca, Sr, Ba, B: Mg, Zn, Sn belonging to the crystal point group “mm2” −. At least one element selected) and C 2 BDF 7 (C: at least one element selected from Na, K, Rb, Cs, B: the same as above, D: at least one element selected from Al, Ga) ADF 5 whose crystal point group belongs to “4” (both A and D are described above), CLnF 4 whose crystal point group belongs to “32” (C is the above, Ln is selected from Y, La, Gd, Lu) One kind of element).
 中でも、XMgF4またはXZnF4またはXAlF5(ただしXはCa,Sr,Baから選ばれる少なくとも一種類の元素)で表される一連の組成や、Na2MgAlF7またはNa2ZnAlF7などが、結晶作製が比較的容易で実用的である。フッ素化合物結晶としては比較的高屈折率で紫外波長域まで透明性が高いBaMgF4,BaZnF4,SrAlF5は特に好適である。特にBaMgF4はQPM素子加工が可能であり、高効率変換に適している。また、Na2MgAlF7、Na2ZnAlF7は、QPM加工に加えて比較的容易に導波路を形成することが可能であり、光閉じこめを利用した波長変換に適している。 Among them, a series of compositions represented by XMgF 4, XZnF 4 or XAlF 5 (where X is at least one element selected from Ca, Sr, Ba), Na 2 MgAlF 7 or Na 2 ZnAlF 7, etc. Manufacture is relatively easy and practical. As the fluorine compound crystal, BaMgF4, BaZnF4, and SrAlF5 having a relatively high refractive index and high transparency up to the ultraviolet wavelength region are particularly suitable. In particular, BaMgF4 can be processed by a QPM element and is suitable for high-efficiency conversion. Further, Na 2 MgAlF 7 and Na 2 ZnAlF 7 can form a waveguide relatively easily in addition to QPM processing, and are suitable for wavelength conversion using optical confinement.
 また、本発明の紫外レーザ装置は、出力光a1の波長が可変であることから、変換部1の結晶方位および変換部2がある場合は変換部2の結晶方位をも調整することで、出力光cの波長を171.3nm以上216.7nm以下の範囲で調整する事ができる。 Further, since the wavelength of the output light a1 is variable, the ultraviolet laser device of the present invention can output by adjusting the crystal orientation of the converter 1 and the crystal orientation of the converter 2 when the converter 2 is present. The wavelength of the light c can be adjusted in the range of 171.3 nm to 216.7 nm.
 次に、共振器がリング共振器であり、レーザ媒質にPr添加フッ化物ファイバを用いたレーザ1の最適な構成例を、図1で説明する。この例は波長620~640nmを可変する場合を示しているが、他の波長帯域でも使用部品の光学特性が異なるだけで、構成としては同様の構成が好ましい。 Next, an optimal configuration example of the laser 1 in which the resonator is a ring resonator and a Pr-doped fluoride fiber is used as a laser medium will be described with reference to FIG. Although this example shows a case where the wavelength is changed from 620 to 640 nm, the same configuration is preferable as the configuration, except that the optical characteristics of the components used are different in other wavelength bands.
 レーザ媒質としては、Prを3000質量ppm含有するZBLANフッ化物ガラスをコアとするシングルモードのPr添加フッ化物ファイバ1を用いた。ファイバのコア径は3.4μm、開口数は0.13、カットオフ波長は570nm、ファイバ長は25cmである。このファイバの両端に、同様のファイバパラメータをもつ石英ファイバ(石英ファイバ3、石英ファイバ4)を融着接続し、ステンレス製の耐候性パッケージ2内に封止してファイバモジュール(モジュール1)とした。モジュール1からは、石英ファイバ3と石英ファイバ4が出ている。なお、Pr添加濃度、ファイバ長、コア径などのファイバパラメータは、励起レーザ特性,目的とするレーザ発振波長,共振器などの光学部品類の光学特性などで変化するので、常にこの例が最適とは限らない。 As the laser medium, a single mode Pr-doped fluoride fiber 1 having a core of ZBLAN fluoride glass containing 3000 ppm by mass of Pr was used. The core diameter of the fiber is 3.4 μm, the numerical aperture is 0.13, the cutoff wavelength is 570 nm, and the fiber length is 25 cm. Silica fibers (quartz fiber 3 and quartz fiber 4) having similar fiber parameters are fused and connected to both ends of the fiber, and sealed in a weatherproof package 2 made of stainless steel to form a fiber module (module 1). . From the module 1, the quartz fiber 3 and the quartz fiber 4 are projected. Since fiber parameters such as Pr concentration, fiber length, and core diameter vary depending on pumping laser characteristics, target laser oscillation wavelength, optical characteristics of optical components such as resonators, etc., this example is always optimal. Is not limited.
 励起光源として、波長440nmの半導体レーザ5の出力光を、コア径2.2μm、開口数0.13、カットオフ波長375nmの石英ファイバに結合した物を用意した。この励起光源のファイバ端出力は最大150mWである。 As an excitation light source, a product in which the output light of the semiconductor laser 5 having a wavelength of 440 nm was coupled to a quartz fiber having a core diameter of 2.2 μm, a numerical aperture of 0.13, and a cutoff wavelength of 375 nm was prepared. The fiber end output of this excitation light source is a maximum of 150 mW.
 励起光をモジュール1に導入するための合分波素子11としては、溶融延伸カプラを用いることができる。例えば、溶融延伸カプラは、635nm帯の信号光導入ポート(石英ファイバ6)と波長440nmの励起光導入ポート(石英ファイバ8)、その反対側に励起光と信号光が合波されて出射する共通ポート(石英ファイバ7)と光出力がほとんど無いブランクポート(石英ファイバ9)からなっている。溶融延伸カプラの光の伝播損失については、例えば、波長440nmの励起光導入ポートから共通ポートへの伝搬損失は1.2dB、635nm帯の信号光導入ポートから共通ポートへの伝搬損失は1.3dBである。合分波素子11の励起光導入ポート(石英ファイバ8)に、励起光源の石英ファイバが融着接続されている。共通ポート(石英ファイバ7)には、ファイバモジュールから出ている石英ファイバ3が融着接続されている。ブランクポート(石英ファイバ9)の先端は、空気とのフレネル反射が戻らないように、角度8°で斜め切断し、ファイバ3のコア屈折率とほぼ同じ、屈折率1.45の接着剤でシリコーンチューブ内に固定してある(ビームダンパ10)。 As the multiplexing / demultiplexing element 11 for introducing the excitation light into the module 1, a melt-stretching coupler can be used. For example, a melt-drawn coupler has a signal light introduction port (quartz fiber 6) in the 635 nm band and an excitation light introduction port (quartz fiber 8) having a wavelength of 440 nm, and the other side is combined with the excitation light and the signal light to be emitted. It consists of a port (quartz fiber 7) and a blank port (quartz fiber 9) with almost no light output. Regarding the propagation loss of light of the melt-drawn coupler, for example, the propagation loss from the pumping light introduction port having a wavelength of 440 nm to the common port is 1.2 dB, and the propagation loss from the signal light introduction port in the 635 nm band to the common port is 1.3 dB. It is. The excitation light source quartz fiber is fused and connected to the excitation light introduction port (quartz fiber 8) of the multiplexing / demultiplexing element 11. The quartz fiber 3 coming out of the fiber module is fusion-connected to the common port (quartz fiber 7). The tip of the blank port (quartz fiber 9) is cut obliquely at an angle of 8 ° so that Fresnel reflection with air does not return, and silicone with an adhesive having a refractive index of 1.45, which is substantially the same as the core refractive index of the fiber 3. It is fixed in the tube (beam damper 10).
 励起光の一部は、Pr添加フッ化物ファイバ1内で吸収され、蛍光を発する。発生した蛍光はPr添加フッ化物ファイバ1を伝搬中に増幅され、増強された光となって石英ファイバ4側から放射される。この放射がリング構成の共振器内を通過することで、最終的にレーザ発振する。一方、逆方向の石英ファイバ3からも蛍光が放射されるが、これについては後述する。 A part of the excitation light is absorbed in the Pr-doped fluoride fiber 1 and emits fluorescence. The generated fluorescence is amplified while propagating through the Pr-doped fluoride fiber 1 and is emitted from the quartz fiber 4 side as enhanced light. This radiation finally oscillates by passing through the ring-shaped resonator. On the other hand, the fluorescence is also emitted from the quartz fiber 3 in the reverse direction, which will be described later.
 合分波素子11と同様の構成のデカプラ(合分波素子11’)を用意し、共通ポート(石英ファイバ7’)とファイバモジュールの石英ファイバ4が融着接続されている。レーザ発振波長である620nm~640nm帯の光は信号光ポート(石英ファイバ6’)に向かい、波長440nmの励起光はドロップポート(石英ファイバ8’)に分離される。ドロップポートの先端は斜め8°にクリーブし、ファイバ3のコア屈折率とほぼ同じ、屈折率1.45の接着剤でシリコーンチューブ内に固定してある(ビームダンパ10’’)。ブランクポート(石英ファイバ9’)の先端も同様にクリーブし、同じ接着剤でシリコーンチューブ内に固定してある(ビームダンパ10’)。 A decoupler (multiplexing / demultiplexing element 11 ') having the same configuration as that of the multiplexing / demultiplexing element 11 is prepared, and the common port (quartz fiber 7') and the silica fiber 4 of the fiber module are fusion-connected. The light in the 620 nm to 640 nm band which is the laser oscillation wavelength is directed to the signal light port (quartz fiber 6 '), and the excitation light having a wavelength of 440 nm is separated into the drop port (quartz fiber 8'). The tip of the drop port is cleaved at an angle of 8 ° and is fixed in the silicone tube with an adhesive having a refractive index of 1.45, which is almost the same as the core refractive index of the fiber 3 (beam damper 10 ″). The tip of the blank port (quartz fiber 9 ') is similarly cleaved and fixed in the silicone tube with the same adhesive (beam damper 10').
 デカプラ(合分波素子11’)の信号光ポート(石英ファイバ6’)は、ファイバで作製されているファイバ型偏波コントローラ(偏波コントローラ12)に融着接続し、偏波状態を整える。なお、この偏波コントローラ12は、後述するように出力カップリング比の調整にも使用する。
 偏波コントローラ12の入出力端13は、ジルコニア・フェルールに固定,平面研磨し、誘電体多層膜の無反射コーティングを施した。入出力端13の波長620~640nmでの反射率は0.5%以下である。
The signal light port (quartz fiber 6 ′) of the decoupler (multiplexing / demultiplexing element 11 ′) is fused and connected to a fiber-type polarization controller (polarization controller 12) made of fiber to adjust the polarization state. The polarization controller 12 is also used for adjusting the output coupling ratio, as will be described later.
The input / output end 13 of the polarization controller 12 was fixed to a zirconia ferrule and polished flat, and a non-reflective coating of a dielectric multilayer film was applied. The reflectance of the input / output end 13 at a wavelength of 620 to 640 nm is 0.5% or less.
 入出力端13からの放射はコリメートレンズ14でコリメートされ、偏光ビームスプリッタ15で偏波分離する。分離された一方の出力光23は、レーザ1の出力光として取り出される。共振器内の光パワーに対する出力光23の割合は、偏光状態によって調整可能であり、前述の偏波コントローラ12を制御することで出力比を変化させて出力の微調整に使用する。 The radiation from the input / output end 13 is collimated by the collimating lens 14 and polarized by the polarization beam splitter 15. One separated output light 23 is taken out as output light of the laser 1. The ratio of the output light 23 to the optical power in the resonator can be adjusted depending on the polarization state, and is used for fine adjustment of the output by controlling the polarization controller 12 to change the output ratio.
 偏光ビームスプリッタ15を透過した光は、ファラデー回転子16で45°偏波回転される。偏波回転された光は分散プリズム17にブリュースター角で導入され、低損失で分散される。この分散プリズム17によって、波長の違いは角度の違いに変換される。分散後の光は波長選択用の広帯域ミラー18で折り返される。広帯域ミラー18の、波長620~640nmでの反射率は99%以上であり、入射角0°±10°での反射率の角度依存性は0.5%以下である。広帯域ミラー18を回転させると、共振器を構成可能な方向の光以外は損失が大きくなるため、分散プリズム17の機能と合わせることで、波長選択素子として動作する。 The light transmitted through the polarization beam splitter 15 is rotated by 45 ° by the Faraday rotator 16. The polarization-rotated light is introduced into the dispersion prism 17 at a Brewster angle and dispersed with low loss. The dispersion prism 17 converts the wavelength difference into the angle difference. The dispersed light is folded back by the wavelength selection broadband mirror 18. The reflectance of the broadband mirror 18 at a wavelength of 620 to 640 nm is 99% or more, and the angle dependency of the reflectance at an incident angle of 0 ° ± 10 ° is 0.5% or less. When the broadband mirror 18 is rotated, the loss increases except for the light in the direction in which the resonator can be configured. Therefore, by combining with the function of the dispersion prism 17, it operates as a wavelength selection element.
 広帯域ミラー18で折り返された光は、再度分散プリズム17を通ってファラデー回転子16を通り、45°偏波回転する。さらに、偏光ビームスプリッタ15で折り曲げられた光は、可視光用の光アイソレータ19を通過し、集光レンズ20で石英ファイバ6の入出射端21に集光される。図1では折り曲げ光学系の例として反射ミラー22が例示してあるが、必ずしも必要ではない。入出射端21は、入出射端13と同様に研磨、無反射コーティングが施されている。入出射端21への集光が良好に行われる特定入射角度の光、すなわち、特定角度内に分散プリズム17と広帯域ミラー18で選択された特定波長の光だけがファイバのコアに結合し、波長選択が行われる。 The light reflected by the broadband mirror 18 passes through the dispersion prism 17 again, passes through the Faraday rotator 16, and rotates by 45 °. Further, the light bent by the polarization beam splitter 15 passes through the optical isolator 19 for visible light, and is collected by the condenser lens 20 onto the incident / exit end 21 of the quartz fiber 6. Although the reflection mirror 22 is illustrated as an example of the bending optical system in FIG. 1, it is not always necessary. The entrance / exit end 21 is polished and coated with non-reflective coating similarly to the entrance / exit end 13. Only light of a specific incident angle that is favorably collected at the input / output end 21, that is, light of a specific wavelength selected by the dispersion prism 17 and the broadband mirror 18 within the specific angle is coupled to the core of the fiber. A selection is made.
 入出射端21に結合した特定波長の光は、カプラ(合分波素子11)を通ってPr添加フッ化物ファイバ1に戻り、増幅される。増幅率が光学系の全損失を上回るとレーザ発振が開始され、所定波長のレーザ1の出力光として出力光23が取り出される。 The light of a specific wavelength coupled to the input / output end 21 returns to the Pr-doped fluoride fiber 1 through the coupler (multiplexing / demultiplexing element 11) and is amplified. When the amplification factor exceeds the total loss of the optical system, laser oscillation is started, and output light 23 is extracted as output light of the laser 1 having a predetermined wavelength.
 ここで、ファイバモジュールの石英ファイバ3側からの蛍光について説明する。石英ファイバ3からの蛍光は、カプラ(合分波素子11)の信号光ポート(石英ファイバ6)へ透過し、入出射端21から逆方向に放射される。放射された光は集光レンズ20でコリメートされ、可視光用の光アイソレータ19でブロックまたは角度偏向され、共振器系外に排除される。 Here, the fluorescence from the quartz fiber 3 side of the fiber module will be described. The fluorescence from the quartz fiber 3 is transmitted to the signal light port (quartz fiber 6) of the coupler (multiplexing / demultiplexing element 11) and radiated in the reverse direction from the incident / exit end 21. The emitted light is collimated by the condenser lens 20, blocked or angularly deflected by the optical isolator 19 for visible light, and excluded from the resonator system.
 ファラデー回転子16と光アイソレータ19は、可視光で透明かつ非相反動作が必要である。このため、材料としては古くから鉛フリントガラスが知られているが、最近では高濃度Tb添加ガラスなどの希土類添加ガラス、Tb3Ga512(TGG)結晶が用いられており、磁界調整による波長可変特性が実現されている。 The Faraday rotator 16 and the optical isolator 19 are transparent to visible light and require nonreciprocal operation. For this reason, lead flint glass has been known as a material for a long time, but recently, rare earth-doped glass such as high-concentration Tb-doped glass, Tb 3 Ga 5 O 12 (TGG) crystal has been used. Wavelength variable characteristics are realized.
 偏波コントローラ12、ファラデー回転子16、光アイソレータ19は、波長とファラデー回転子や可視光用アイソレータに加える磁界、目標出力と偏波コントローラの最適状態をあらかじめ計測してメモリに記憶し、フィードバック回路とプログラムで自動的に駆動されている。また、すべての光学系は温度制御された熱浴内で一定温度に制御されている。また、すべてのファイバや部品は除震機能のある筐体に固定してある。 The polarization controller 12, the Faraday rotator 16, and the optical isolator 19 measure in advance the wavelength, the magnetic field applied to the Faraday rotator and the visible light isolator, the target output, and the optimum state of the polarization controller, and store them in the memory. And is automatically driven by the program. All optical systems are controlled at a constant temperature in a temperature-controlled heat bath. All fibers and parts are fixed in a case with a seismic isolation function.
 また、共振器がファブリペロー共振器であり、利得媒質にPr添加フッ化物ガラスを用いたレーザ1に、変換部2を共振器内に設置した形式のレーザ1の最適な構成例を図2で説明する。 FIG. 2 shows an optimum configuration example of a laser 1 in which the resonator is a Fabry-Perot resonator, Pr 1 -added fluoride glass is used as a gain medium, and a conversion unit 2 is installed in the resonator. explain.
 レーザ媒質はPrを3000重量ppm含有するAl系フッ化物ガラスをコアとするシングルモードのPr添加フッ化物ファイバ34を用いる。Pr添加フッ化物ファイバ34のコア径は2.4μm、開口数は0.16、カットオフ波長は500nm、ファイバ長は40cmである。このファイバの両端に、同様のファイバパラメータを持つ石英ファイバ(石英ファイバ35,石英ファイバ35’)を融着接続し、ステンレス製の耐候性パッケージ36に封入した。石英ファイバ35の先端(入出力端37)は平面に研磨し、励起光を導入するために励起光波長とレーザ発振波長帯で無反射となるARコーティングが施されている。石英ファイバ35’の端面(入出力端39)は平面に研磨し、レーザ発振波長帯域で無反射となるARコーティングが施されている。 As the laser medium, a single-mode Pr-doped fluoride fiber 34 having an Al-based fluoride glass containing 3000 ppm by weight of Pr as a core is used. The core diameter of the Pr-doped fluoride fiber 34 is 2.4 μm, the numerical aperture is 0.16, the cutoff wavelength is 500 nm, and the fiber length is 40 cm. Quartz fibers (quartz fiber 35, quartz fiber 35 ') having similar fiber parameters were fused and connected to both ends of this fiber, and sealed in a weatherproof package 36 made of stainless steel. The tip (input / output end 37) of the quartz fiber 35 is polished to a flat surface, and an AR coating that is non-reflective in the excitation light wavelength and the laser oscillation wavelength band is applied to introduce the excitation light. The end face (input / output end 39) of the quartz fiber 35 'is polished into a flat surface, and AR coating is applied which is non-reflective in the laser oscillation wavelength band.
励起用GaN系半導体レーザ(起半導体レーザ31)は、発振波長450nmであり、ペルチェ素子で一定温度に保持された放熱台に固定されている。半導体レーザ31から放射された励起光はアナモルフィックプリズム対32でビームを真円に整形後、集光レンズ33と凹面ダイクロイック反射鏡(レーザ共振器用ダイクロイック凹面鏡38)を透過して石英ファイバ端(入出力端37)に集光されて、石英ファイバ35のコアに結合する。凹面ダイクロイック反射鏡(レーザ共振器用ダイクロイック凹面鏡38)は、励起光を透過しレーザ1のレーザ発振波長を全反射する特性となっており、共振器の一方の端を構成している。また、凹面ダイクロイック反射鏡は球面鏡であり、入出力端37から放射されるレーザ1のレーザ光を反射して、入出力端37のコアに折り返す位置に調整されている。 The excitation GaN-based semiconductor laser (semiconductor laser 31) has an oscillation wavelength of 450 nm, and is fixed to a heat radiating stand held at a constant temperature by a Peltier element. The excitation light emitted from the semiconductor laser 31 is shaped into a perfect circle by the anamorphic prism pair 32, and then passes through the condensing lens 33 and the concave dichroic reflector (the dichroic concave mirror 38 for laser resonators) to the end of the quartz fiber ( The light is condensed at the input / output end 37) and coupled to the core of the quartz fiber 35. The concave dichroic reflector (laser resonator dichroic concave mirror 38) has a characteristic of transmitting excitation light and totally reflecting the laser oscillation wavelength of the laser 1, and constitutes one end of the resonator. The concave dichroic reflecting mirror is a spherical mirror, and is adjusted to a position where the laser beam of the laser 1 emitted from the input / output end 37 is reflected and turned back to the core of the input / output end 37.
 結合された励起光はPr添加フッ化物ファイバ34に吸収されて蛍光を発する。発生した蛍光はPr添加フッ化物ファイバ34を伝搬中に増幅され、増強された光となって入出力端39から放射される。一方、逆方向に進行する蛍光は入出力端37から放射され、凹面ダイクロイック反射鏡(レーザ共振器用ダイクロイック凹面鏡38)で折り返され、再度Pr添加フッ化物ファイバ34を通過時に増幅され、入出力端39から放射される。入出力端39から放射された蛍光はコリメートレンズ40でコリメートされ、偏光ビームスプリッタ41で直交する偏光成分に分解される。一方の偏光(偏光パワー成分43)は分散プリズム45に最小偏角付近の角度で入射し、波長選択ミラー(広帯域ミラー46)で特定の分散角度の方向の蛍光だけが折り返される。波長選択されて折り返された光は、偏光ビームスプリッタ41とコリメートレンズ40を通って入出力端39に集光され、共振器が完成する。 The coupled excitation light is absorbed by the Pr-doped fluoride fiber 34 and emits fluorescence. The generated fluorescence is amplified while propagating through the Pr-added fluoride fiber 34 and is emitted from the input / output end 39 as enhanced light. On the other hand, the fluorescent light traveling in the reverse direction is radiated from the input / output end 37, folded back by the concave dichroic reflecting mirror (laser resonator dichroic concave mirror 38), amplified again when passing through the Pr-doped fluoride fiber 34, and input / output end 39. Radiated from. Fluorescence emitted from the input / output end 39 is collimated by the collimating lens 40 and decomposed into orthogonal polarization components by the polarization beam splitter 41. One polarized light (polarization power component 43) is incident on the dispersion prism 45 at an angle near the minimum deflection angle, and only the fluorescence in the direction of a specific dispersion angle is folded by the wavelength selection mirror (broadband mirror 46). The light that has been selected and turned back is condensed at the input / output end 39 through the polarization beam splitter 41 and the collimating lens 40, and the resonator is completed.
一方、偏光成分(偏光パワー成分43)と直交する成分(偏光パワー成分42)は集光レンズ47とダイクロイック凹面鏡51を通って導波路型周期分極反転LN結晶(PPLN)(非線形結晶48)のコアに集光され、波長変換される。PPLN(非線形結晶48)は、レーザ1(基本波)の波長を変えた場合に最適変換波長を追従させられるように、ペルチェ素子を取り付けた温度調整ベンチに搭載されている。波長変換された光は出力光a2として、ダイクロイック凹面鏡50を通って出力される(レーザ出力光49)。ダイクロイック凹面鏡50は、PPLN(非線形結晶48)で波長変換された出力光(出力光a2)を透過し、レーザ1の波長は全反射する。 On the other hand, the component (polarization power component 42) orthogonal to the polarization component (polarization power component 43) passes through the condensing lens 47 and the dichroic concave mirror 51, and is the core of the waveguide-type periodically poled LN crystal (PPLN) (nonlinear crystal 48). The light is condensed and wavelength-converted. PPLN (nonlinear crystal 48) is mounted on a temperature adjustment bench with a Peltier element attached so that the optimum conversion wavelength can be tracked when the wavelength of laser 1 (fundamental wave) is changed. The wavelength-converted light is output as output light a2 through the dichroic concave mirror 50 (laser output light 49). The dichroic concave mirror 50 transmits the output light (output light a2) wavelength-converted by PPLN (nonlinear crystal 48), and totally reflects the wavelength of the laser 1.
逆に、ダイクロイック凹面鏡51は波長変換された出力(出力光a2)を全反射し、レーザ1の波長は透過する。ダイクロイック凹面鏡50で反射されたレーザ1の波長は再度PPLN(非線形結晶48)中を通り、集光レンズ47、偏光ビームスプリッタ41、コリメートレンズ40を通過して、入出力端39に集光され、レーザ1の共振器の一部を構成している。ダイクロイック凹面鏡51で反射された出力光a2は、PPLN素子中を通過してダイクロイック凹面鏡50を透過して出力される(レーザ出力光49)。この構成では、ダイクロイック凹面鏡2枚(レーザ共振器用ダイクロイック凹面鏡38,ダイクロイック凹面鏡50)で作られる共振器と、ダイクロイック凹面鏡(レーザ共振器用ダイクロイック凹面鏡38)と波長選択ミラー46で構成される共振器があり、後者が優勢となるように偏波コントローラ44で偏光状態を制御する必要がある。 On the contrary, the dichroic concave mirror 51 totally reflects the wavelength-converted output (output light a2) and transmits the wavelength of the laser 1. The wavelength of the laser 1 reflected by the dichroic concave mirror 50 passes through the PPLN (nonlinear crystal 48) again, passes through the condenser lens 47, the polarization beam splitter 41, and the collimator lens 40, and is condensed at the input / output end 39. It constitutes a part of the resonator of the laser 1. The output light a2 reflected by the dichroic concave mirror 51 passes through the PPLN element, passes through the dichroic concave mirror 50, and is output (laser output light 49). In this configuration, there are a resonator formed by two dichroic concave mirrors (a dichroic concave mirror 38 for laser resonators and a dichroic concave mirror 50), and a resonator composed of a dichroic concave mirror (dichroic concave mirror 38 for laser resonators) and a wavelength selection mirror 46. The polarization state must be controlled by the polarization controller 44 so that the latter is dominant.
 この構成では、波長変換に使用されなかった残りの基本波が共振器内で回収できるため、見かけ上の波長変換効率を高めることが可能である。また、アイソレータが必要ないため、波長依存性が大きい部材が少なく、広帯域波長可変に適している。5nmを超える広帯域波長可変特性を持たせる場合は、波長変換結晶に導波路タイプのPPLNを用いるのではなく、バルク形状や平板QPM素子を用い、結晶方位を調整した方がよい。 In this configuration, since the remaining fundamental wave that has not been used for wavelength conversion can be collected in the resonator, it is possible to increase the apparent wavelength conversion efficiency. In addition, since no isolator is required, there are few members having large wavelength dependence, and it is suitable for broadband wavelength tuning. In order to provide a broadband wavelength variable characteristic exceeding 5 nm, it is better not to use a waveguide type PPLN for the wavelength conversion crystal, but to adjust the crystal orientation by using a bulk shape or a flat plate QPM element.
 以下に、本発明を以下の具体的な実施例によって詳述する。ただし、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail by the following specific examples. However, the present invention is not limited to these examples.
 全体の構成を図3に示す。レーザ64(レーザ1)には、図1に示した構成例を基本とする構成のレーザを使用する。ただし、図1のリングレーザ内において、入出射端21と合分波素子11の信号光ポート(石英ファイバ6)の間にファイバ結合型の波長可変ショートカット波長選択フィルタを、さらに該波長可変ショートカットフィルタと合分波素子11の信号光ポート(石英ファイバ6)の間に波長可変ロングカット波長選択フィルタを挿入し、リング共振器の通過波長帯域を制限しており、透過中心波長は波長選択ミラー(広帯域ミラー18)の選択波長に同調している。 The overall configuration is shown in FIG. As the laser 64 (laser 1), a laser having a configuration based on the configuration example shown in FIG. 1 is used. However, in the ring laser of FIG. 1, a fiber-coupled wavelength variable shortcut wavelength selection filter is further provided between the input / output end 21 and the signal light port (quartz fiber 6) of the multiplexing / demultiplexing element 11, and the wavelength variable shortcut filter. And a wavelength variable long cut wavelength selection filter is inserted between the signal light port (quartz fiber 6) of the multiplexer / demultiplexer 11 to limit the pass wavelength band of the ring resonator, and the transmission center wavelength is the wavelength selection mirror ( It is tuned to the selected wavelength of the broadband mirror 18).
また、使用するレーザ媒質(Pr添加フッ化物ファイバ1)はコア部のガラス組成が32.8AlF3-15YF3-4.7LaF3-9.4MgF2-7.4CaF2-5.4SrF2-20BaF2-5BaCl2-0.3PrF3で表され、クラッドが32.8AlF3-15YF3-5LaF3-9.4MgF2-8.4CaF2-7.4SrF2-17BaF2-5BaCl2で表される、Al系フッ化物ファイバを用いる。コアの直径は4μm、ファイバの直径は125μmである。このファイバの開口数は0.1であった。また、ファイバ長は10cmである。両端面は8°斜め研磨し、可視光域の広帯域無反射コーティングを施した。反射率は可視光波長域全域で2%以下である。 The laser medium used (Pr-doped fluoride fiber 1) has a glass composition of 32.8AlF 3 -15YF 3 -4.7LaF 3 -9.4MgF 2 -7.4CaF 2 -5.4SrF 2 -20BaF. represented by 2 -5BaCl 2 -0.3PrF 3, the cladding is represented by 32.8AlF 3 -15YF 3 -5LaF 3 -9.4MgF 2 -8.4CaF 2 -7.4SrF 2 -17BaF 2 -5BaCl 2 Al-based fluoride fiber is used. The core diameter is 4 μm and the fiber diameter is 125 μm. The numerical aperture of this fiber was 0.1. The fiber length is 10 cm. Both end surfaces were polished at an angle of 8 °, and a broadband non-reflective coating in the visible light range was applied. The reflectance is 2% or less over the entire visible light wavelength range.
 この出力光(出力光a1)を集光レンズ52で絞ってLiNbO3非線形光学結晶53に入力した。波長変換された光と基本波は、LN結晶の反対側から放射される。LiNbO3非線形光学結晶53からの出力は、コリメートレンズ54でコリメートし、ダイクロイックミラー55に照射される。ダイクロイックミラー55は、600nm帯の基本波を反射し、300nm帯の二倍波(出力光a2)を透過する。 This output light (output light a 1) was focused by the condenser lens 52 and input to the LiNbO 3 nonlinear optical crystal 53. The wavelength-converted light and the fundamental wave are emitted from the opposite side of the LN crystal. The output from the LiNbO 3 nonlinear optical crystal 53 is collimated by the collimating lens 54 and irradiated to the dichroic mirror 55. The dichroic mirror 55 reflects the fundamental wave in the 600 nm band and transmits the double wave (output light a2) in the 300 nm band.
 レーザ56(レーザ2)には、波長532nmのNd:YAGレーザの二倍波(出力光b)を用いる。レーザ2の出力光は、レーザ1のレーザビーム径と一致させるために、凹レンズ57と凸レンズ58で倍率調整した。ビーム径を制御した後、90度折り曲げミラー(直角ミラー59)で反射し、ダイクロイックミラー55上でさらに90度折り曲げ反射され、レーザ1の出力光と合成する。 As the laser 56 (laser 2), an Nd: YAG laser double wave (output light b) having a wavelength of 532 nm is used. The magnification of the output light of the laser 2 was adjusted by the concave lens 57 and the convex lens 58 in order to match the laser beam diameter of the laser 1. After controlling the beam diameter, the light is reflected by a 90-degree folding mirror (right angle mirror 59), is further bent and reflected by 90 degrees on the dichroic mirror 55, and is combined with the output light of the laser 1.
 合成されたレーザ光は、色消し集光レンズ60でBaMgF4疑似位相整合素子61(QPMC)に入射される。色消し集光レンズ60によって、波長の異なる出力光a2と出力光bは同一の焦点距離でBaMgF4疑似位相整合素子61に集光され、和周波変換効率を最大に保つことができる。BaMgF4疑似位相整合素子61内では、レーザ1とレーザ2の出力光の和周波が発生する。QPMCから出射された紫外光は、コリメートレンズ62でコリメートされ、ダイクロイックミラー63でレーザ1の二倍波とレーザ2の出力をカットし、紫外光(出力光c)だけが通過して出力される。 The synthesized laser light is incident on the BaMgF 4 pseudo phase matching element 61 (QPMC) by the achromatic condenser lens 60. By the achromatic condenser lens 60, the output light a2 and the output light b having different wavelengths are condensed on the BaMgF 4 pseudo phase matching element 61 at the same focal length, and the sum frequency conversion efficiency can be kept at the maximum. In the BaMgF 4 pseudo phase matching element 61, the sum frequency of the output light of the laser 1 and the laser 2 is generated. The ultraviolet light emitted from the QPMC is collimated by the collimating lens 62, the dichroic mirror 63 cuts the second harmonic wave of the laser 1 and the output of the laser 2, and only the ultraviolet light (output light c) passes and is output. .
 レーザ1の波長を602nmから612nmまでと、630nmから638nmまで変化させたときの、紫外光出力波長とレーザ1の出力波長の関係を図4に示す。レーザ1の波長に応じて紫外光出力が線形に変化することが判る。紫外光出力を分光器と紫外光用フォトマルチプライヤで計測して得られた、出力スペクトルの一例を図5に示す。分解能は0.02nmである。図5から判るとおり、レーザ発振線の半値全幅は0.05nm程度であり、狭帯域である事が判る。紫外光の連続出力の様子を、紫外光出力の相対強度の経時変化で図6に示す。連続した安定出力が得られている事が判る。また、冷却系を含む全投入電力が合計で500Wの時、紫外光出力は100mWであり、実用的な効率であった。 FIG. 4 shows the relationship between the ultraviolet light output wavelength and the laser 1 output wavelength when the wavelength of the laser 1 is changed from 602 nm to 612 nm and from 630 nm to 638 nm. It can be seen that the ultraviolet light output changes linearly according to the wavelength of the laser 1. An example of the output spectrum obtained by measuring the ultraviolet light output with a spectroscope and a photomultiplier for ultraviolet light is shown in FIG. The resolution is 0.02 nm. As can be seen from FIG. 5, the full width at half maximum of the laser oscillation line is about 0.05 nm, indicating that it is a narrow band. The state of continuous output of ultraviolet light is shown in FIG. 6 as the change with time of the relative intensity of the ultraviolet light output. It can be seen that a continuous stable output is obtained. When the total input power including the cooling system was 500 W in total, the ultraviolet light output was 100 mW, which was a practical efficiency.
 実施例1と同様だが、図7の構成で、レーザ1と変換部2を合わせた300nm帯レーザ(レーザ65)には図2の構成例を基本とする構成のレーザを用いた。ただし、多波長でレーザ発振する事を防止するため、図2において、偏波コントローラ44と入出力端39の間にファイバ付きのファブリペロー波長可変フィルタを、さらに該ファブリペロー波長可変フィルタと入出力端39の間にファイバ付きの狭帯域波長可変フィルタを取り付けてある。このフィルタ類の同調範囲は580nmから680nm、ファブリペロー波長可変フィルタのフィネスは2000、狭帯域波長可変フィルタの帯域間隔は200GHzである。 7 is the same as in the first embodiment, but in the configuration of FIG. 7, a laser having a configuration based on the configuration example of FIG. However, in order to prevent laser oscillation at multiple wavelengths, in FIG. 2, a Fabry-Perot wavelength tunable filter with a fiber is provided between the polarization controller 44 and the input / output end 39, and the Fabry-Perot wavelength tunable filter is further input / output. A narrow band tunable filter with a fiber is attached between the ends 39. The tuning range of these filters is 580 nm to 680 nm, the finesse of the Fabry-Perot tunable filter is 2000, and the band interval of the narrow-band tunable filter is 200 GHz.
また、使用するレーザ65の利得媒質(Pr添加フッ化物ファイバ34)として、コア部のガラス組成が53ZrF4-18.5BaF2-2.7LaF3-4YF3-3AlF3-18.5NaF―0.3PrF3で表されるZr系フッ化物ガラス(3000ppm)であり、クラッドが26ZrF4-24HfF4-21BaF2-3LaF3-2YF3-4AlF3-20NaFからなるフッ化物ファイバを用いる。コアの直径は3μm、ファイバの直径は125μmである。このファイバの開口数は0.16であった。また、ファイバ長は25cmである。 Further, as a gain medium (Pr-added fluoride fiber 34) of the laser 65 to be used, the glass composition of the core portion is 53ZrF 4 -18.5BaF 2 -2.7LaF 3 -4YF 3 -3AlF 3 -18.5NaF-0. A fluoride fiber made of Zr-based fluoride glass (3000 ppm) represented by 3PrF 3 and having a clad of 26ZrF 4 -24HfF 4 -21BaF 2 -3LaF 3 -2YF 3 -4AlF 3 -20NaF is used. The core diameter is 3 μm and the fiber diameter is 125 μm. The numerical aperture of this fiber was 0.16. The fiber length is 25 cm.
ピグテール石英ファイバ(石英ファイバ35,石英ファイバ35’)は、コア径と開口数が同程度のファイバを選定して融着接続した。これらの石英ファイバの両端面(入出力端37,入出力端39)は8°斜め研磨し、可視光域の広帯域無反射コーティングを施した。反射率は可視光波長域全域で2%以下である。600nm帯の基本波は共振器内に閉じこめられ、共振器内に設置した変換部2のバルク型LN非線形結晶(非線形結晶48)で300nm帯に変換されて、出力ミラー(ダイクロイック凹面鏡50)から出力光a2(レーザ出力49)として放射される。LN結晶は、波長可変ミラー(広帯域ミラー46)と連動して結晶方位を自動的に調整し、出力光a2のパワーが最大となるように制御されている。 Pigtail quartz fibers (quartz fiber 35, quartz fiber 35 ') were selected by fusion splicing with fibers having the same core diameter and numerical aperture. Both end faces (input / output end 37, input / output end 39) of these quartz fibers were obliquely polished by 8 °, and a broadband non-reflective coating in the visible light region was applied. The reflectance is 2% or less over the entire visible light wavelength range. The fundamental wave in the 600 nm band is confined in the resonator, converted to the 300 nm band by the bulk LN nonlinear crystal (nonlinear crystal 48) of the converter 2 installed in the resonator, and output from the output mirror (dichroic concave mirror 50). Radiated as light a2 (laser output 49). The LN crystal is controlled so that the crystal orientation is automatically adjusted in conjunction with the wavelength variable mirror (broadband mirror 46), and the power of the output light a2 is maximized.
 波長300nm帯のレーザ(レーザ65)の出力光(出力光a2)は、ダイクロイックミラー66を透過し、モード直径を調整されたレーザ67(レーザ2)の出力光(出力光b)と合波される。レーザ2には、波長980nmの高出力半導体レーザの2倍波を用いた。レーザ波長は490nm、出力は600mWである。レーザ2(レーザ67)の出力は、凹レンズ68と凸レンズ69で300nm帯レーザ(レーザ65)のモード径と一致するように調整され、直角ミラー70で折り返され、ダイクロイックミラー66で300nm帯レーザ(レーザ65)と合波される。ダイクロイックミラー66は、300nm帯で広帯域無反射であり、450~500nm帯で全反射するコーティングが施されている。 The output light (output light a2) of the laser having a wavelength of 300 nm (laser 65) passes through the dichroic mirror 66 and is combined with the output light (output light b) of the laser 67 (laser 2) whose mode diameter is adjusted. The As the laser 2, a second harmonic wave of a high-power semiconductor laser having a wavelength of 980 nm was used. The laser wavelength is 490 nm and the output is 600 mW. The output of the laser 2 (laser 67) is adjusted by the concave lens 68 and the convex lens 69 so as to coincide with the mode diameter of the 300 nm band laser (laser 65), folded back by the right angle mirror 70, and 300 nm band laser (laser) by the dichroic mirror 66. 65). The dichroic mirror 66 is coated with a non-reflective broadband in the 300 nm band and a total reflection in the 450 to 500 nm band.
合波されたレーザ光は、ダイクロイックミラー71を透過し、色消し集光レンズ72でQPM-SrAlF5結晶(フッ素化合物結晶73)に集光入射される。QPM-SrAlF5結晶(フッ素化合物結晶73)は、結晶温度が制御できる温度制御ベンチに取り付けられており、温度制御で最適変換波長を制御している。ダイクロイックミラー71は、300nm~500nm帯で無反射かつ190nm帯で全反射のコーティングを施してある。QPM-SrAlF5結晶(フッ素化合物結晶73)中で和周波によって発生した紫外光および元となった出力光a2と出力光bは、色消しコリメートレンズ74でコリメートされ、ダイクロイックミラー75に入射する。紫外光出力は、ダイクロイックミラー75を透過してレーザ出力として取り出される。 The combined laser light passes through the dichroic mirror 71 and is focused and incident on the QPM-SrAlF 5 crystal (fluorine compound crystal 73) by the achromatic condenser lens 72. The QPM-SrAlF 5 crystal (fluorine compound crystal 73) is attached to a temperature control bench capable of controlling the crystal temperature, and the optimum conversion wavelength is controlled by temperature control. The dichroic mirror 71 is coated with no reflection in the 300 nm to 500 nm band and total reflection in the 190 nm band. The ultraviolet light generated by the sum frequency in the QPM-SrAlF 5 crystal (fluorine compound crystal 73) and the original output light a2 and output light b are collimated by the achromatic collimating lens 74 and enter the dichroic mirror 75. The ultraviolet light output passes through the dichroic mirror 75 and is extracted as a laser output.
一方、和周波の元となった出力光a2と出力光bは反射され、色消しコリメートレンズ74によって再びQPM-SrAlF5結晶(フッ素化合物結晶73)中に集光され、和周波発生に再利用される。このとき発生した紫外光は、色消し集光レンズ72でコリメートされ、ダイクロイックミラー71で反射され、色消し集光レンズ72、QPM-SrAlF5結晶(フッ素化合物結晶73)、色消しコリメートレンズ74、ダイクロイックミラー75を通って出力される。 On the other hand, the output light a2 and the output light b, which are the sources of the sum frequency, are reflected and condensed again in the QPM-SrAlF 5 crystal (fluorine compound crystal 73) by the achromatic collimating lens 74 and reused for generating the sum frequency. Is done. The ultraviolet light generated at this time is collimated by the achromatic condenser lens 72, reflected by the dichroic mirror 71, achromatic condenser lens 72, a QPM-SrAlF 5 crystal (fluorine compound crystal 73), an achromatic collimator lens 74, The light is output through the dichroic mirror 75.
 レーザ1の発振波長を638.5nmに調整すると、出力される紫外光(出力光c)の波長は193.3nmとなった。また、レーザ1(レーザ65)の出力が500W、レーザ2(レーザ67)の出力が600mWの時、紫外光(出力光c)の出力は最大で40mWであった。 When the oscillation wavelength of the laser 1 was adjusted to 638.5 nm, the wavelength of the output ultraviolet light (output light c) was 193.3 nm. When the output of laser 1 (laser 65) was 500 W and the output of laser 2 (laser 67) was 600 mW, the output of ultraviolet light (output light c) was 40 mW at the maximum.
 全体の構成を図7に示す。レーザ65には、図1に示した構成例を基本とする構成のレーザを使用する。ただし、レーザ65は、図1において入出射端21と合分波素子11の信号光ポート(石英ファイバ6)の間にファイバ結合型の波長可変ショートカット波長選択フィルタを、さらに該波長可変ショートカットフィルタと合分波素子11の信号光ポート(石英ファイバ6)の間に波長可変ロングカット波長選択フィルタを挿入して、リング共振器の通過波長帯域を制限しており、透過中心波長は波長選択ミラー(広帯域ミラー18)の選択波長である、波長700nm~715nmの範囲に同調している。 The overall structure is shown in FIG. As the laser 65, a laser having a configuration based on the configuration example shown in FIG. 1 is used. However, the laser 65 includes a fiber-coupled wavelength variable shortcut wavelength selection filter between the input / output end 21 and the signal light port (quartz fiber 6) of FIG. A wavelength variable long cut wavelength selection filter is inserted between the signal light ports (quartz fiber 6) of the multiplexing / demultiplexing element 11 to limit the pass wavelength band of the ring resonator, and the transmission center wavelength is the wavelength selection mirror ( It is tuned to a wavelength range of 700 nm to 715 nm, which is a selected wavelength of the broadband mirror 18).
また、使用する利得媒質(Pr添加フッ化物ファイバ1)はコア部のガラス組成が32.8AlF3-15YF3-4.7LaF3-9.4MgF2-7.4CaF2-5.4SrF2-20BaF2-5BaCl2-0.3PrF3で表され、クラッドが32.8AlF3-15YF3-5LaF3-9.4MgF2-8.4CaF2-7.4SrF2-17BaF2-5BaCl2で表される、Al系フッ化物ファイバを用いる。コアの直径は4μm、ファイバの直径は125μmである。このファイバの開口数は0.1であった。また、ファイバ長は20cmである。両端面は8°斜め研磨し、可視光域の広帯域無反射コーティングを施した。反射率は可視光波長域全域で2%以下である。 The gain medium (Pr-doped fluoride fiber 1) used has a glass composition of 32.8AlF 3 -15YF 3 -4.7LaF 3 -9.4MgF 2 -7.4CaF 2 -5.4SrF 2 -20BaF. represented by 2 -5BaCl 2 -0.3PrF 3, the cladding is represented by 32.8AlF 3 -15YF 3 -5LaF 3 -9.4MgF 2 -8.4CaF 2 -7.4SrF 2 -17BaF 2 -5BaCl 2 Al-based fluoride fiber is used. The core diameter is 4 μm and the fiber diameter is 125 μm. The numerical aperture of this fiber was 0.1. The fiber length is 20 cm. Both end surfaces were polished at an angle of 8 °, and a broadband non-reflective coating in the visible light range was applied. The reflectance is 2% or less over the entire visible light wavelength range.
 レーザ1(レーザ65)の出力光(出力光a1)は、ダイクロイックミラー66を透過し、モード直径を調整されたレーザ2(レーザ67)の出力光(出力光b)と合波される。レーザ2(レーザ67)には、波長1064nmの高出力Nd:YAGレーザの4倍波を用いた。レーザ波長は266nm、出力は400mWである。レーザ2(レーザ67)の出力は、凹レンズ68と凸レンズ69でレーザ1(レーザ65)のモード径と一致するように調整され、直角ミラー70で折り返され、ダイクロイックミラー66でレーザ1(レーザ65)の出力と合波される。ダイクロイックミラー66は、700~715nm帯で広帯域無反射であり、266nm帯で全反射するコーティングが施されている。 The output light (output light a1) of the laser 1 (laser 65) passes through the dichroic mirror 66 and is combined with the output light (output light b) of the laser 2 (laser 67) whose mode diameter is adjusted. As the laser 2 (laser 67), a fourth harmonic wave of a high output Nd: YAG laser having a wavelength of 1064 nm was used. The laser wavelength is 266 nm and the output is 400 mW. The output of the laser 2 (laser 67) is adjusted by the concave lens 68 and the convex lens 69 so as to coincide with the mode diameter of the laser 1 (laser 65), folded back by the right angle mirror 70, and laser 1 (laser 65) by the dichroic mirror 66. Is combined with the output of. The dichroic mirror 66 is coated with a broadband non-reflection in the 700 to 715 nm band and total reflection in the 266 nm band.
合波されたレーザ光は、ダイクロイックミラー71を透過し、色消し集光レンズ72でQPM-BaMgF4結晶(フッ素化合物結晶73)に集光入射される。QPM-BaMgF4結晶(フッ素化合物結晶73)は、結晶温度が制御できる温度制御ベンチに取り付けられており、温度制御で最適変換波長を制御している。ダイクロイックミラー71は、250nm~750nm帯で無反射の広帯域無反射かつ190nm帯で全反射の紫外反射ダイクロイックコーティングを施してある。QPM-BaMgF4結晶(フッ素化合物結晶73)中で和周波によって発生した紫外光および元となった出力光a1と出力光bは、コリメートレンズ74でコリメートされ、ダイクロイックミラー75に入射する。紫外光出力は、ダイクロイックミラー75を透過してレーザ出力として取り出される。 The combined laser light passes through the dichroic mirror 71 and is focused and incident on the QPM-BaMgF 4 crystal (fluorine compound crystal 73) by the achromatic condenser lens 72. The QPM-BaMgF 4 crystal (fluorine compound crystal 73) is attached to a temperature control bench capable of controlling the crystal temperature, and the optimum conversion wavelength is controlled by temperature control. The dichroic mirror 71 is provided with a non-reflective broadband non-reflective in the 250 nm to 750 nm band and a total reflection ultraviolet reflective dichroic coating in the 190 nm band. The ultraviolet light generated by the sum frequency in the QPM-BaMgF 4 crystal (fluorine compound crystal 73) and the original output light a1 and output light b are collimated by the collimator lens 74 and enter the dichroic mirror 75. The ultraviolet light output passes through the dichroic mirror 75 and is extracted as a laser output.
一方、和周波の元となった出力光a1と出力光bは反射され、コリメートレンズ74によって再びQPM-BaMgF4結晶(フッ素化合物結晶73)中に集光され、和周波発生に再利用される。このとき発生した紫外光は、色消し集光レンズ72でコリメートされ、ダイクロイックミラー71で反射され、色消し集光レンズ72、QPM-BaMgF4結晶(フッ素化合物結晶73)、コリメートレンズ74、ダイクロイックミラー75を通って出力される。 On the other hand, the output light a1 and the output light b, which are the sources of the sum frequency, are reflected and condensed again in the QPM-BaMgF 4 crystal (fluorine compound crystal 73) by the collimating lens 74 and reused for generating the sum frequency. . The ultraviolet light generated at this time is collimated by the achromatic condenser lens 72, reflected by the dichroic mirror 71, and achromatic condenser lens 72, the QPM-BaMgF 4 crystal (fluorine compound crystal 73), the collimator lens 74, and the dichroic mirror. 75 is output.
 レーザ1の発振波長を707.3nmに調整すると、出力される紫外光(出力光c)波長は193.3nmとなった。また、レーザ1(レーザ65)の出力が500W、レーザ2(レーザ67)の出力が400mWの時、紫外光(出力光c)の出力は最大で25mWであった。 When the oscillation wavelength of laser 1 was adjusted to 707.3 nm, the output ultraviolet light (output light c) wavelength was 193.3 nm. When the output of laser 1 (laser 65) was 500 W and the output of laser 2 (laser 67) was 400 mW, the output of ultraviolet light (output light c) was 25 mW at the maximum.
 本発明の紫外レーザ装置は、既存のエキシマレーザを使用する機器の光学設計、検査、検証、組み立て工程などに利用可能であり、これまでの非レーザ検査光源よりも高精度かつ簡便に測定結果が得られることが期待できる。また、本発明の紫外レーザ装置は波長可変であることから、紫外域での光学部品の波長応答や分散の検査、加工対象に対する最適波長の選択、選択的分子反応などに利用が可能である。 The ultraviolet laser device of the present invention can be used for optical design, inspection, verification, assembly process, etc. of equipment using an existing excimer laser, and the measurement result is more accurate and simple than conventional non-laser inspection light sources. It can be expected to be obtained. Further, since the wavelength of the ultraviolet laser device of the present invention is variable, it can be used for inspection of wavelength response and dispersion of optical components in the ultraviolet region, selection of the optimum wavelength for a processing target, selective molecular reaction, and the like.
 さらには、半導体製造装置、半導体製造装置や光学系の設計、検査および組み立て、表面形状計測、干渉計測、金属、セラミックス、ガラス、結晶、ポリマーなどの加工やマーキング、有機化合物の分解や合成、選択的分子切断や選択的分子結合、化学薬品や中間体を含む医薬合成への応用、DNAなど特定分子の改変など、幅広い分野への応用も可能である。 Furthermore, design, inspection and assembly of semiconductor manufacturing equipment, semiconductor manufacturing equipment and optical systems, surface shape measurement, interference measurement, processing and marking of metals, ceramics, glass, crystals, polymers, etc., decomposition and synthesis of organic compounds, selection It can also be applied to a wide range of fields such as chemical molecular cleavage, selective molecular bonding, application to pharmaceutical synthesis including chemicals and intermediates, and modification of specific molecules such as DNA.
 1  Pr添加フッ化物ファイバ
 2,36 耐候性パッケージ
 3,4  石英ファイバ
 5  半導体レーザ
 6,7,8,9  石英ファイバ
 10,10’,10’’  ビームダンパ
 11,11’  合分波素子
 12  偏波コントローラ
 13  入出射端
 14  コリメートレンズ
 15  偏光ビームスプリッタ
 16  ファラデー回転子
 17  分散プリズム
 18  広帯域ミラー
 19  光アイソレータ
 20  集光レンズ
 21  入出射端
 22  偏光ビームスプリッタ
 23  出力光(出力光a1)
 31  起半導体レーザ
 32  アナモルフィックプリズム対
 33  集光レンズ
 34  Pr添加フッ化物ファイバ
 35,35’ 石英ファイバ
 37,39 入出力端
 38 レーザ共振器用ダイクロイック凹面鏡
 40  コリメートレンズ
 41  偏光ビームスプリッタ
 42,43  偏光パワー成分
 44  偏波コントローラ
 45  分散プリズム
 46  広帯域ミラー
 47  集光レンズ
 48  非線形結晶
 49  レーザ出光力(出力光a2)
 50,51  ダイクロイック凹面鏡
 52 集光レンズ
 53 LiNbO3非線形光学結晶
 54 コリメートレンズ
 55 ダイクロイックミラー
 56 レーザ(レーザ2)
 57 凹レンズ
 58 凸レンズ
 59 直角ミラー
 60 色消し集光レンズ
 61 BaMgF4疑似位相整合素子(QPMC)
 62 コリメートレンズ
 63 ダイクロイックミラー
 64 レーザ(レーザ1)
 65 レーザ
 66 ダイクロイックミラー
 67 レーザ(レーザ2)
 68 凹レンズ
 69 凸レンズ
 70 直角ミラー
 71,75 ダイクロイックミラー
 72 色消し集光レンズ
 73 フッ素化合物結晶
 74 色消しコリメートレンズ
DESCRIPTION OF SYMBOLS 1 Pr addition fluoride fiber 2,36 Weatherproof package 3,4 Quartz fiber 5 Semiconductor laser 6,7,8,9 Quartz fiber 10,10 ', 10''Beam damper 11,11' Multiplexing / demultiplexing element 12 Polarization controller DESCRIPTION OF SYMBOLS 13 Input / output end 14 Collimate lens 15 Polarization beam splitter 16 Faraday rotator 17 Dispersion prism 18 Broadband mirror 19 Optical isolator 20 Condensing lens 21 Input / output end 22 Polarization beam splitter 23 Output light (output light a1)
31 Laser Diode 32 Anamorphic Prism Pair 33 Condensing Lens 34 Pr- Doped Fluoride Fiber 35, 35 ′ Quartz Fiber 37, 39 Input / Output End 38 Dichroic Concave Mirror for Laser Resonator 40 Collimating Lens 41 Polarizing Beam Splitter 42, 43 Polarizing Power Component 44 Polarization controller 45 Dispersion prism 46 Broadband mirror 47 Condensing lens 48 Nonlinear crystal 49 Laser output power (output light a2)
50, 51 Dichroic concave mirror 52 Condensing lens 53 LiNbO 3 nonlinear optical crystal 54 Collimating lens 55 Dichroic mirror 56 Laser (Laser 2)
57 Concave lens 58 Convex lens 59 Right angle mirror 60 Achromatic condenser lens 61 BaMgF 4 quasi phase matching element (QPMC)
62 Collimating lens 63 Dichroic mirror 64 Laser (Laser 1)
65 Laser 66 Dichroic mirror 67 Laser (Laser 2)
68 Concave lens 69 Convex lens 70 Right angle mirror 71,75 Dichroic mirror 72 Achromatic condenser lens 73 Fluorine compound crystal 74 Achromatic collimating lens

Claims (4)

  1. 波長が可変である可視レーザ発振部(レーザ1)と、波長が一定のレーザ光を発生するレーザ(レーザ2)と、レーザ1の出力光(出力光a1)とレーザ2の出力光(出力光b)に基づく和周波発生により紫外光を発生させる波長変換部(変換部1)を備えたレーザ装置において、該レーザ1が、レーザ媒質として少なくともPrをコアに含有する光導波路と、励起光源として波長400nm以上480nm以下の励起光を発生する半導体レーザを備え、且つ、該変換部1に強誘電性フッ化物結晶を用いることにより、波長250nm以下の紫外光(出力光c)を連続的に出力することを特徴とする紫外レーザ装置。 A visible laser oscillation unit (laser 1) having a variable wavelength, a laser (laser 2) that generates laser light having a constant wavelength, an output light (output light a1) of laser 1, and an output light (output light) of laser 2 In a laser apparatus including a wavelength converter (converter 1) that generates ultraviolet light by sum frequency generation based on b), the laser 1 includes an optical waveguide containing at least Pr as a laser medium in the core, and an excitation light source By providing a semiconductor laser that generates excitation light having a wavelength of 400 nm or more and 480 nm or less, and using a ferroelectric fluoride crystal for the conversion unit 1, ultraviolet light (output light c) having a wavelength of 250 nm or less is continuously output. An ultraviolet laser device.
  2. 該レーザ1のレーザ発振波長が700nm以上715nm以下の範囲内であり、且つ、該レーザ2として波長が250nm超300nm以下の範囲内であるレーザを用いることを特徴とする、請求項1に記載の紫外レーザ装置。 The laser oscillation wavelength of the laser 1 is in a range of 700 nm or more and 715 nm or less, and a laser having a wavelength in the range of more than 250 nm and 300 nm or less is used as the laser 2. Ultraviolet laser device.
  3. 該レーザ1のレーザ発振波長が598nm以上715nm以下の範囲内であり、該レーザ2として波長が400nm以上550nm以下の範囲内であるレーザを用い、さらに、該レーザ1と該変換部1の間に出力光a1の波長を変換する波長変換部(変換部2)を備え、波長を変換された出力光(出力光a2)と該出力光bに基づく和周波発生により紫外光を発生させることを特徴とする、請求項1に記載の紫外レーザ装置。 A laser oscillation wavelength of the laser 1 is in a range of 598 nm or more and 715 nm or less, a laser having a wavelength in a range of 400 nm or more and 550 nm or less is used as the laser 2, and further, between the laser 1 and the conversion unit 1 A wavelength conversion unit (conversion unit 2) for converting the wavelength of the output light a1 is provided, and ultraviolet light is generated by sum frequency generation based on the output light (output light a2) whose wavelength is converted and the output light b. The ultraviolet laser device according to claim 1.
  4. 該強誘電性フッ化物結晶が、XMgF4、XZnF4、XAlF5、Na2MgAlF7、またはNa2ZnAlF7で表される組成(ただしXは、Ca,Sr,Baのいずれかから選ばれる1つの元素を示す。)であることを特徴とする、請求項1乃至請求項3のいずれか1つに記載の紫外レーザ装置。 The ferroelectric fluoride crystal is a composition represented by XMgF 4 , XZnF 4 , XAlF 5 , Na 2 MgAlF 7 , or Na 2 ZnAlF 7 (where X is one selected from Ca, Sr, and Ba) The ultraviolet laser device according to any one of claims 1 to 3, wherein two elements are represented.).
PCT/JP2009/062524 2008-07-16 2009-07-09 Ultraviolet laser device WO2010007938A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008184528A JP2010026027A (en) 2008-07-16 2008-07-16 Ultraviolet laser device
JP2008-184528 2008-07-16

Publications (1)

Publication Number Publication Date
WO2010007938A1 true WO2010007938A1 (en) 2010-01-21

Family

ID=41550341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062524 WO2010007938A1 (en) 2008-07-16 2009-07-09 Ultraviolet laser device

Country Status (2)

Country Link
JP (1) JP2010026027A (en)
WO (1) WO2010007938A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014146650A1 (en) * 2013-03-21 2014-09-25 Laserline Gesellschaft für Entwicklung und Vertrieb von Diodenlasern mbH Laser assembly
WO2014146649A1 (en) * 2013-03-21 2014-09-25 Laserline Gesellschaft für Entwicklung und Vertrieb von Diodenlasern mbH Laser assembly
CN108598864A (en) * 2018-01-21 2018-09-28 重庆师范大学 Utilize the tunable mid-infrared laser device of the broadband of surface-emitting laser difference frequency
CN111048982A (en) * 2019-11-28 2020-04-21 北京科益虹源光电技术有限公司 355nm ultraviolet light output method and system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8415587B2 (en) * 2010-12-03 2013-04-09 Uvtech Systems, Inc. Fiber-optic beam delivery system for wafer edge processing
CN102135668B (en) * 2011-03-17 2013-07-31 广州中国科学院工业技术研究院 Optical fiber laser and collimator thereof
CN102570311A (en) * 2012-02-24 2012-07-11 哈尔滨工业大学 Tunable narrow-band UV laser generating device and generating method therefor
CN102590097B (en) * 2012-03-05 2013-09-25 哈尔滨工业大学 Mercury vapor continuous monitoring method based on diode laser
JP2015018984A (en) * 2013-07-12 2015-01-29 ウシオ電機株式会社 Fiber laser light source device
IT201700051935A1 (en) * 2017-05-12 2018-11-12 Cambridge Entpr Ltd LASER DEVICE

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11204862A (en) * 1998-01-16 1999-07-30 Fuji Photo Film Co Ltd Fiber laser and fiber amplifier
JP2001036175A (en) * 1999-07-21 2001-02-09 Fuji Photo Film Co Ltd Laser-diode pumped solid-state laser
JP2001036168A (en) * 1999-07-21 2001-02-09 Fuji Photo Film Co Ltd Fiber laser and fiber amplifier
JP2005275095A (en) * 2004-03-25 2005-10-06 Nikon Corp Light source unit, semiconductor exposure device, laser medical treatment device, laser interferometer device, and laser microscope device
JP2006073970A (en) * 2004-09-06 2006-03-16 Cyber Laser Kk Cw deep ultraviolet ray source
JP2007308344A (en) * 2006-05-19 2007-11-29 National Institute For Materials Science Method for etching area having negatively polarized face in fluoride ferroelectric single crystal, and method for judging polarized state of fluoride ferroelectric single crystal using it
JP2008028380A (en) * 2006-06-22 2008-02-07 Matsushita Electric Ind Co Ltd Laser beam source equipment and image display device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11204862A (en) * 1998-01-16 1999-07-30 Fuji Photo Film Co Ltd Fiber laser and fiber amplifier
JP2001036175A (en) * 1999-07-21 2001-02-09 Fuji Photo Film Co Ltd Laser-diode pumped solid-state laser
JP2001036168A (en) * 1999-07-21 2001-02-09 Fuji Photo Film Co Ltd Fiber laser and fiber amplifier
JP2005275095A (en) * 2004-03-25 2005-10-06 Nikon Corp Light source unit, semiconductor exposure device, laser medical treatment device, laser interferometer device, and laser microscope device
JP2006073970A (en) * 2004-09-06 2006-03-16 Cyber Laser Kk Cw deep ultraviolet ray source
JP2007308344A (en) * 2006-05-19 2007-11-29 National Institute For Materials Science Method for etching area having negatively polarized face in fluoride ferroelectric single crystal, and method for judging polarized state of fluoride ferroelectric single crystal using it
JP2008028380A (en) * 2006-06-22 2008-02-07 Matsushita Electric Ind Co Ltd Laser beam source equipment and image display device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014146650A1 (en) * 2013-03-21 2014-09-25 Laserline Gesellschaft für Entwicklung und Vertrieb von Diodenlasern mbH Laser assembly
WO2014146649A1 (en) * 2013-03-21 2014-09-25 Laserline Gesellschaft für Entwicklung und Vertrieb von Diodenlasern mbH Laser assembly
US9640937B2 (en) 2013-03-21 2017-05-02 Laserline Gesellschaft Fur Entwicklung Und Vertrieb Von Diodenlasern Mbh Laser arrangement
US9685752B2 (en) 2013-03-21 2017-06-20 Laserline Gesellschaft Fur Entwicklung Und Vertrieb Von Diodenlasern Mbh Laser assembly
CN108598864A (en) * 2018-01-21 2018-09-28 重庆师范大学 Utilize the tunable mid-infrared laser device of the broadband of surface-emitting laser difference frequency
CN111048982A (en) * 2019-11-28 2020-04-21 北京科益虹源光电技术有限公司 355nm ultraviolet light output method and system

Also Published As

Publication number Publication date
JP2010026027A (en) 2010-02-04

Similar Documents

Publication Publication Date Title
WO2010007938A1 (en) Ultraviolet laser device
AU2011220332B2 (en) Mid to far infrared diamond Raman laser systems and methods
JP3997450B2 (en) Wavelength converter
US7764719B2 (en) Pulsed fiber laser
Lallier et al. Nd: MgO: LiNbO/sub 3/channel waveguide laser devices
US7443903B2 (en) Laser apparatus having multiple synchronous amplifiers tied to one master oscillator
KR101111432B1 (en) Fiber lasers
WO2010004882A1 (en) Wide-band wavelength-variable laser device
JP2009535666A (en) Pulsed UV and visible Raman laser system
JP5096171B2 (en) Laser light source device, image display device, and illumination device
Jheng et al. Broadly tunable and low-threshold Cr 4+: YAG crystal fiber laser
US8194310B1 (en) All fiber pulse generator for pumping a non-linear converter
RU2328064C2 (en) Fiber intracavity-doubled laser (variants)
JP3211770B2 (en) Solid-state laser device and solid-state laser amplifier having the same
JP2010080928A (en) Laser device
JP2008511182A (en) Injection-locked high power laser system
Zou et al. Tunable, continuous-wave, deep-ultraviolet laser generation by intracavity frequency doubling of visible fiber lasers
WO2005031927A2 (en) High power 938 nanometer fiber laser and amplifier
JP2010080927A (en) Laser device
TW200917600A (en) Device for producing a laser beam second harmonic wave
Wetter et al. Quasi-three level Nd: YLF fundamental and Raman laser operating under 872-nm and 880-nm direct diode pumping
McComb Power scaling of large mode area thulium fiber lasers in various spectral and temporal regimes
WO2007116563A1 (en) Light source
WO2010050341A1 (en) Ultraviolet light source device
US20220407281A1 (en) Efficient energy transfer from er3+ to ho3+ and dy3+ in mid-infrared materials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09797863

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09797863

Country of ref document: EP

Kind code of ref document: A1