WO2010004753A1 - Film in which refractive index modulation is recorded - Google Patents

Film in which refractive index modulation is recorded Download PDF

Info

Publication number
WO2010004753A1
WO2010004753A1 PCT/JP2009/003205 JP2009003205W WO2010004753A1 WO 2010004753 A1 WO2010004753 A1 WO 2010004753A1 JP 2009003205 W JP2009003205 W JP 2009003205W WO 2010004753 A1 WO2010004753 A1 WO 2010004753A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
refractive index
film
composition
less
Prior art date
Application number
PCT/JP2009/003205
Other languages
French (fr)
Japanese (ja)
Inventor
靖 高松
祐五 山本
祐一 伊東
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to JP2010519651A priority Critical patent/JP5315344B2/en
Priority to KR1020107023451A priority patent/KR101278860B1/en
Publication of WO2010004753A1 publication Critical patent/WO2010004753A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0012Arrays characterised by the manufacturing method
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/4215Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof cycloaliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/686Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0087Simple or compound lenses with index gradient
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers

Definitions

  • the present invention relates to a film on which refractive index modulation is recorded, a method for manufacturing the film, and a light emitting device including the film.
  • Optical elements such as microlenses are widely applied to CCDs, CMOS optical devices, organic ELs, LED light-emitting devices, etc., or applications are being studied.
  • processing such as etching.
  • etching In order to form a convex lens on an optical device or a light emitting device, deep etching must be applied to the part other than the lens part in order to reduce the radius of curvature of spherical processing, and the processed layer is very thick. Must grow.
  • some diffractive optical elements such as planar Fresnel lenses that are not convex lenses are formed on the light emitting surface, but processing by lithography, etching, etc. is required, and very advanced etching techniques are required.
  • Various methods have been proposed to avoid the etching process, but there are still problems in terms of practicality.
  • Patent Document 2 A method of manufacturing a gradient index lens using two types of monomers is disclosed (see Patent Document 2), which is a two-step process using radical polymerization, and the substrate is immersed in styrene in the second step.
  • Patent Document 2 A method of manufacturing a gradient index lens using two types of monomers is disclosed (see Patent Document 2), which is a two-step process using radical polymerization, and the substrate is immersed in styrene in the second step.
  • Patent Document 2 A method of manufacturing a gradient index lens using two types of monomers is disclosed (see Patent Document 2), which is a two-step process using radical polymerization, and the substrate is immersed in styrene in the second step.
  • Patent Document 2 A method of manufacturing a gradient index lens using two types of monomers is disclosed (see Patent Document 2), which is a two-step process using radical polymerization, and the substrate is immersed in styrene in the second step.
  • Patent Document 2 A method of manufacturing a gradient index lens using two
  • Patent Document 3 Although a method for manufacturing a microlens array is disclosed (see Patent Document 3), there are a photoresist process and a process for heating to a thermal deformation temperature. When a normal photoresist material is used, a heating process at 150 ° C. or higher. It cannot be used for heat-sensitive elements.
  • Patent Document 4 Although a method of forming a microlens by spraying a liquid material is disclosed (Patent Document 4), it is necessary to control the hydrophilicity and hydrophobicity of the substrate and the liquid material. Therefore, it is necessary to apply a hydrophobic layer made of a fluorine-based material to the substrate, and the process is complicated and there is a concern of contamination to other members.
  • a method for producing a hologram by exposing and heat-treating a photosensitive recording material comprising a thermosetting epoxy oligomer, a radically polymerizable aliphatic monomer, a photoinitiator, and a sensitizing dye (patent) And a photosensitive composition comprising a radical polymerizable compound, a cationic polymerizable compound, a binder polymer, a photosensitizing dye, and a photo cationic polymerization initiator, and exposure with a first light,
  • Patent Document 6 A method of manufacturing a hologram by performing exposure with second light (see Patent Document 6) has been reported.
  • JP 2005-57239 A JP-A-5-224305 JP-A-6-194502 JP 2006-23683 A JP-A-7-261640 JP 2004-138686 A JP 2000-347043 A JP 2003-177259 A
  • An object of the present invention is to provide a film in which refractive index modulation is recorded, that is, a film having a refractive index distribution, without requiring a complicated processing technique such as etching.
  • the present invention is to provide an optical resin film having a high function such as control of directivity of light.
  • the control of light directivity means the property of controlling the traveling direction of light in a desired direction. If the directivity of light can be controlled, the light extraction efficiency from the light emitting device can be increased.
  • the first of the present invention relates to the following films.
  • the second of the present invention relates to a composition for refractive index modulation recording shown below and a method for producing a film on which refractive index modulation is recorded.
  • a composition comprising:
  • composition according to [8] wherein the acrylic compound has a fluorene skeleton, and the molecular weight of the acrylic compound is 100 or more and 1000 or less.
  • a first step of preparing the composition according to [8], a second step of selectively irradiating the composition with active energy rays, and a composition irradiated with the active energy rays A method for producing a film on which a refractive index modulation is recorded, comprising: The film recording the refractive index modulation is A first region having a first refractive index and a second region having a second refractive index, and the second region is dispersed in the first region; On the film surface of the film, the average value of the equivalent circle diameter of the second region is 5 ⁇ m or more and 500 ⁇ m or less, and the average value of the interval between the second regions is 5 ⁇ m or more and 500 ⁇ m or less, The manufacturing method, wherein a difference in refractive index ( ⁇ n) between the first region and the second region is 0.001 to 2.0.
  • a film on which a refractive index modulation is recorded comprising: a first step of preparing the composition according to [8]; and a second step of selectively irradiating the composition with active energy rays.
  • a manufacturing method comprising: The film recording the refractive index modulation is A first region having a first refractive index and a second region having a second refractive index, and the second region is dispersed in the first region; On the film surface, the average value of the equivalent circle diameter of the second region is 5 ⁇ m or more and 500 ⁇ m or less, and the average value of the interval between the second regions is 5 ⁇ m or more and 500 ⁇ m or less, The manufacturing method, wherein a difference in refractive index ( ⁇ n) between the first region and the second region is 0.001 to 2.0.
  • the third of the present invention relates to a light emitting device and a method for manufacturing the same.
  • a light emitting device comprising:
  • the sealing layer is A first region having a first refractive index and a second region having a second refractive index, and the second region is dispersed in the first region;
  • the average equivalent circle diameter of the second region on the surface of the seal layer is 5 ⁇ m or more and 500 ⁇ m or less, and the average value of the interval between the second regions is 5 ⁇ m or more and 500 ⁇ m or less,
  • the light emitting device wherein a difference in refractive index ( ⁇ n) between the first region and the second region is 0.001 to 2.0.
  • a method for producing the light-emitting device according to [15] comprising the step of adhering the film according to [1
  • the film on which the refractive index modulation of the present invention is recorded can have a function of controlling the directivity of light even though it can be manufactured without requiring a complicated process such as etching. Therefore, the film of the present invention can enhance the light extraction efficiency, for example, and can increase the light extraction efficiency of the device when used as a member of a light emitting device (for example, an organic electroluminescent element).
  • a light emitting device for example, an organic electroluminescent element
  • a desired refractive index distribution can be formed, and for example, a cylindrical, concentric, or lattice-shaped refractive index distribution can be formed.
  • high refractive index regions and low refractive index regions can be alternately formed. Films recorded with such refractive index modulation can achieve the same effect as a light-emitting device equipped with a Fresnel lens, and the light from the light-emitting device is condensed or dispersed and taken out to the outside. You can also.
  • the film on which the refractive index modulation of the present invention is recorded can be manufactured by a simple manufacturing process, a light emitting device including the film can be thinned and miniaturized.
  • the film of the present invention is substantially composed of an organic material, it is less in weight than a film having a skeleton formed of an inorganic material and can be suitably used as a sealing member for a light-emitting device such as an organic EL element. it can.
  • FIG. 3 is a refractive index modulation map of a film on which refractive index modulation obtained in Example 1 is recorded.
  • the film of the present invention is a film-like member made of substantially organic material, and may be a single film or a thin film or layer formed on any substrate (including a light emitting element). “Substantially composed of an organic substance” means that a skeleton is formed by a carbon-carbon bond within a range not reducing the effect of the present invention, and the shape of the member is maintained. Although the refractive index modulation is recorded, the film of the present invention is not a member that forms optical interference fringes such as a hologram, and is a member that does not have wavelength dependency.
  • the film of the present invention has a first region having a first refractive index and a second region having a second refractive index.
  • the first region acts as a base material, and the second region is dispersed in the first region.
  • the difference between the first refractive index and the second refractive index may be 0.001 to 2.0, and is preferably 0.01 to 2.0.
  • the first refractive index and the second refractive index need only be different, and any of them may be large. Further, from the viewpoint of ease of production of the film of the present invention, the difference between the first refractive index and the second refractive index is preferably 0.001 to 1.0, more preferably 0.001 to 0.5. .
  • the difference in refractive index can be the difference between the maximum refractive index in the region with the higher refractive index and the minimum refractive index in the region with the lower refractive index.
  • the refractive index may be measured using an interference microscope. Specifically, it is measured with reference to the measurement principle described in “APPLIED OPTICS, vol.41, No.7, 1308 (2002)” as described in the examples described later.
  • the film of the present invention does not have wavelength dependency (does not form interference fringes or diffraction gratings). Therefore, it is preferable that the second region dispersed in the first region has a certain size.
  • the average value of the equivalent circle diameter of the second region on the surface of the film is preferably 5 ⁇ m or more and 500 ⁇ m or less.
  • regions on the surface of a film is 5 micrometers or more and 500 micrometers or less. If the average value of the equivalent circle diameters of the second regions and the average of the intervals between the second regions are smaller than 5 ⁇ m, interference fringes may be formed.
  • the refractive indexes of the first region and the second region may be modulated in a gradient manner.
  • the boundary between the first region and the second region on the film surface is arbitrarily set to a region where the refractive index is gradient-modulated; on the basis of the set boundary, What is necessary is just to obtain
  • the second region penetrates the first region, that is, the second region penetrates in the thickness direction of the film. If the second region penetrates, the light direction can be controlled in the penetrating direction, and the light directivity can be obtained. If the penetrating second region has a substantially cylindrical shape, the formation of interference fringes is suppressed.
  • the second region is preferably arranged in a matrix (lattice) in the first region.
  • FIG. 1 schematically shows a representative example of the film of the present invention.
  • the first region A having the first refractive index constitutes the base material of the film.
  • the second region B having the second refractive index is arranged in a matrix (lattice) on the film surface.
  • Each second region B has a substantially cylindrical shape and penetrates in the thickness direction of the film.
  • the equivalent circle diameter b on the film surface in the second region B is set to about 5 to 500 ⁇ m.
  • the shortest distance a between the second regions B is also set to about 5 to 500 ⁇ m.
  • the surface of the film of the present invention is preferably flat.
  • the film of this invention may be installed in the panel board
  • the surface roughness Ra of the film is usually 0.01 to 1 ⁇ m, preferably 0.01 to 0.1 ⁇ m. As described later, since the film of the present invention does not need to be processed by etching or the like, the film surface can be made flat.
  • the thickness is preferably 1 to 200 ⁇ m, and preferably 1 to 100 ⁇ m. More preferably.
  • a film in which refractive index modulation is recorded is used as a microlens (refractive index distribution type lens)
  • the lens function can be adjusted by the film thickness. Therefore, what is necessary is just to adjust film thickness according to a desired lens function.
  • any one of the first region and the second region constituting the film of the present invention is preferably a resin containing a fluorene skeleton.
  • the refractive index can be increased. Therefore, if one of the first region and the second region is a resin containing a fluorene skeleton, a difference in refractive index from the other region is likely to occur.
  • either one of the first region and the second region constituting the film of the present invention may contain an epoxy resin.
  • the film of the present invention is obtained by photopolymerizing a composition containing a photopolymerizable resin and a thermosetting resin (epoxy resin), but the thermosetting resin is in an uncured state. (Half-cure film) is also an embodiment of the film of the present invention.
  • the film in which the thermosetting resin is cured is also an embodiment of the film of the present invention.
  • the film on which the refractive index modulation of the present invention is recorded can be used as an optical device for any application.
  • it can be used as a microlens for an optical element.
  • a film on which refractive index modulation is recorded is used as a lens, it is preferable that the refractive index changes in a gradient from the first region to the second region.
  • the lens is a transparent body that shows the refractive action of light, and can control the direction of light passing through it. For example, it can diffuse or focus light.
  • the lens in the present invention is referred to as a gradient index lens.
  • the gradient index lens refers to a transparent member that is gradient-modulated from a certain point toward the periphery. That is, when a film on which refractive index modulation is recorded is used as a gradient index lens, it is preferable that the refractive index of the first region or the second region changes in a gradient manner.
  • the gradient index rod It can be used as a lens.
  • the second region is dispersed in a matrix, it can be used as a gradient index rod lens array (see FIG. 1).
  • the gradient index rod lens (array) can be used as a lens for facsimile, scanner, copying machine, electronic blackboard, LED printer, and optical fiber communication.
  • the film on which the refractive index modulation of the present invention is recorded is used, it is possible to efficiently extract light emitted from the light emitting device. Therefore, the luminous efficiency of the light emitting device can be increased by providing the film on which the refractive index modulation of the present invention is recorded in the passage portion of the light emitted from the light emitting device.
  • the light extraction efficiency of the top emission type organic electroluminescence device is about 20%.
  • One of the causes of the decrease in the light extraction efficiency is reflection at the interface between the organic electroluminescent element and the sealing film that seals it; reflection at the interface between the sealing film and the glass substrate on the outside It is in.
  • the sealing film prevents moisture and oxygen from entering the organic electroluminescent element, and may be made of a resin or the like.
  • the sealing film for sealing the top emission type organic electroluminescent element as a film recording the refractive index modulation of the present invention, it is possible to obtain sealing properties and further increase the light extraction efficiency. . That is, by controlling the traveling direction of light emitted from the light emitting layer of the organic electroluminescent element with the film of the present invention, reflection at the interface with the glass substrate is suppressed, and light extraction efficiency is increased.
  • the organic electroluminescent element disposed on the panel substrate is heated by applying the “half-cure film (a film obtained by photopolymerization)” to form a sealing film of the organic electroluminescent element.
  • a film in which a refractive index modulation is recorded can also be formed.
  • a counter substrate is disposed on the film.
  • the film recording the refractive index modulation according to the present invention includes: 1) a step of preparing a composition (a composition for refractive index modulation recording) containing a photopolymerizable resin and a thermosetting resin; and 2) a composition. Irradiating active energy rays in a position-selective manner, and 3) heating.
  • the photopolymerizable resin contained in the composition for refractive index modulation recording preferably contains an acrylic compound.
  • the acrylic compound is not particularly limited as long as it is a compound containing an acrylic group or a methacryl group, but preferably has a fluorene skeleton.
  • the refractive index can be easily increased by introducing a fluorene skeleton. If the refractive index can be increased, the difference in refractive index from the epoxy compound contained in the thermosetting resin described later can be increased.
  • the refractive index can be increased by introducing sulfur element or halogen element into the resin. In order to maintain transparency, it is preferable to introduce sulfur element.
  • acrylic compounds having a fluorene skeleton examples include 9,9-bis (4- (meth) acryloyloxyphenyl) fluorene; 9,9-bis (4- (meth) acryloyloxymethoxyphenyl) fluorene; Bis [4- (2- (meth) acryloyloxyethoxy) phenyl] fluorene; 9,9-bis [4- (meth) acryloyloxy-3-methylphenyl] fluorene; 9,9-bis [4- (meth) Acryloyloxymethoxy-3-methylphenyl] fluorene; 9,9-bis [4- (2- (meth) acryloyloxyethoxy) -3-methylphenyl] fluorene; 9,9-bis (4- (meth) acryloyloxy -3-ethylphenyl) fluorene; 9,9-bis (4- (meth) acryloyloxymethoxy-3-ethylphenyl
  • the molecular weight of the acrylic compound is preferably 100 or more and 1000 or less. This is for imparting a certain degree of photopolymerization reactivity to the acrylic compound.
  • the photopolymerizable resin preferably contains a photo radical initiator.
  • the type of the photo radical initiator is not particularly limited, and may be appropriately selected according to the type of the acrylic compound.
  • photo radical initiators include benzoin compounds, acetophenones, benzophenones, thioxanthones, ⁇ -acyloxime esters, phenylglyoxylates, benzyls, azo compounds, diphenyl sulfide compounds, acylphosphine oxides Compounds, organic dye compounds, iron-phthalocyanine compounds, benzoins, benzoin ethers, anthraquinones, and the like.
  • the amount of the photo radical initiator contained in the photopolymerizable resin is preferably 0.1 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the acrylic compound.
  • the thermosetting resin contained in the composition for refractive index modulation recording preferably contains an epoxy compound.
  • the epoxy compound is required not to have photoradical polymerizability. Therefore, the epoxy compound preferably does not have a photoradically polymerizable functional group such as a carbon-carbon unsaturated bond (such as an acrylic group).
  • the thermosetting resin preferably contains a thermosetting accelerator.
  • the kind of thermosetting accelerator is not specifically limited, What is necessary is just to select suitably according to the kind of epoxy compound.
  • the thermosetting accelerator include imidazole compounds and amine compounds.
  • Examples of the imidazole compound include 2-ethyl-4-methylimidazole.
  • Examples of the amine compound include trisdimethylaminomethylphenol.
  • the amount of the thermosetting accelerator contained in the thermosetting resin is preferably 0.1 to 100 parts by mass with respect to 100 parts by mass of the epoxy compound.
  • the thermosetting resin may contain an acid anhydride. From the thermosetting resin containing an acid anhydride, a highly transparent resin cured product is obtained. The acid anhydride contained in the thermosetting resin is required not to have photopolymerizability, and therefore does not have a photopolymerizable functional group.
  • the acid anhydride is preferably an aromatic carboxylic acid anhydride, and examples of the acid anhydride include phthalic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, Hydrophthalic anhydride, trimellitic anhydride, hexachloroendomethylenetetrahydrophthalic anhydride, benzophenone tetracarboxylic anhydride and the like are included.
  • the thermosetting resin may contain a thermal radical initiator.
  • the thermal radical initiator prevents the photopolymerizable compound from finally remaining by polymerizing the photopolymerizable compound that is not polymerized by light irradiation, which will be described later, by heating.
  • Examples of the thermal radical initiator include conventionally known organic peroxides and azo compounds. Although it depends on the heating conditions, the thermal radical initiator is preferably a compound having a 10-hour half-life temperature of 120 ° C. or lower.
  • thermal radical initiators include cumyl peroxyneodecanoate, di-n-propyl peroxydicarbonate, di (2-ethylhexyl) peroxydicarbonate, t-butylperoxyneodecanoate, 2, 4-dichlorobenzoyl peroxide, lauroyl peroxide, acetyl peroxide, t-butylperoxy-2-ethylhexanoate, benzoyl peroxide, t-butylperoxyisobutyrate, t-butylperoxylaurate, t -Butylperoxy-3,5,5-trimethylhexanoate, t-butylperoxyisopropyl carbonate, t-butylperoxyacetate, t-butylperoxybenzoate, methyl ethyl ketone peroxide, dicumyl peroxide, t-butyl Such as cumyl peroxide.
  • azo compound examples include azobisisobutyronitrile, 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), azobis (methylbutylnitrile), and the like.
  • thermal radical initiator one type may be used, or two or more types may be used in combination.
  • the composition of the present invention includes a photopolymerizable resin containing an acrylic compound and a thermosetting resin containing an epoxy compound, but the refractive index nD [A] of the acrylic compound and the refractive index nD [B] of the epoxy compound. It is preferable that the difference is 0.001 or more and 2.0 or less.
  • the acrylic compound or the epoxy compound is a mixture of two or more compounds, the refractive index of the mixture is nD [A] or nD [B].
  • nD [A] or nD [B] may be large. However, as described above, when a fluorene skeleton is introduced into the acrylic compound, nD [A] increases, and therefore it is preferable to satisfy nD [A]> nD [B].
  • composition for refractive index modulation recording of the present invention contains a photopolymerizable resin containing an acrylic compound and a thermosetting resin containing an epoxy compound, but the content of the epoxy compound with respect to 100 parts by mass of the acrylic compound is 10 It is preferable that it is not less than 1000 parts by mass.
  • the viscosity of the composition for refractive index modulation recording is not particularly limited, but in the step of irradiating active energy rays, which will be described later, the photopolymerizable resin moves to the irradiation region and polymerizes selectively in the irradiation region. It is preferable to do so. If the viscosity of the composition is too high, the movement of the photopolymerizable resin to the irradiation region is suppressed; if the viscosity is too low, the photopolymerizable resin that has moved to the irradiation region does not stay in the irradiation region, but is position-selective. Not polymerized. Therefore, the viscosity (25 ° C.) measured by an E-type viscometer of the composition is preferably 0.01 to 100 Pa ⁇ s, and more preferably 0.01 to 50 Pa ⁇ s.
  • the method for producing a film on which refractive index modulation is recorded according to the present invention includes a step of selectively irradiating the above-mentioned composition with active energy rays.
  • the active energy ray to be irradiated may be an energy ray capable of polymerizing the photopolymerizable resin. Examples of active energy rays include ultraviolet rays, electron beams, visible rays, infrared rays, and the like.
  • the composition irradiated with the active energy ray is preferably formed into a thin film.
  • the thin film composition is a film composition, a coating film of a composition formed on a substrate, or a thin film composition sandwiched and held between two glass plates. Or When sandwiching and holding between two glass plates, a release film may be disposed between the glass plate and the thin film, whereby the single film can be easily taken out.
  • the thickness of the thin film composition may be adjusted so that the film thickness after irradiation with active energy rays is 1 to 200 ⁇ m. When the thickness of the thin film composition is too thick, light is not sufficiently propagated into the film, and the recording property of the refractive index modulation is lowered.
  • the composition may be irradiated with a mask on which a desired pattern is formed, or may be irradiated by scanning.
  • each irradiation region is arbitrary, it is preferable that the film on which the refractive index modulation of the present invention is recorded does not form an interference fringe and does not have wavelength dependency.
  • the equivalent diameter is preferably 5 ⁇ m or more and 500 ⁇ m or less.
  • the shape of the opening of the mask is preferably circular. If the shape has a vertex (triangle or square), the vertex may form an interference fringe.
  • the photopolymerizable resin When the active energy ray is selectively irradiated to the thin film composition, the photopolymerizable resin is polymerized in the irradiated region. Then, unpolymerized photopolymerizable resin existing around the irradiation region flows into the irradiation region, and thermosetting resin existing in the irradiation region flows out from the irradiation region.
  • the photopolymerizable resin that has flowed into the irradiated region is also polymerized by active energy rays.
  • This film may be referred to as a “half-cure film”, and the half-cure film is also an embodiment of the film of the present invention.
  • the obtained half-cure film mainly contains an uncured thermosetting resin outside the irradiation region. Therefore, the thermosetting resin is cured by heating the half cure film. At this time, if the thermosetting resin contains a thermal radical initiator, a part of the photopolymerizable resin that could not be polymerized by light irradiation can also be thermally polymerized, and the monomer remains in the resulting film. Can also be prevented.
  • thermosetting resin By heating the half-cure film, a film in which the polymer of the photopolymerizable resin is unevenly distributed in the irradiated region and the cured product of the thermosetting resin is unevenly distributed in the other region is obtained.
  • the refractive index of the acrylic compound contained in the photopolymerizable resin since there is a difference between the refractive index of the acrylic compound contained in the photopolymerizable resin and the refractive index of the epoxy compound contained in the thermosetting resin, the refractive index of the photopolymerized resin and the heat The refractive index of the cured resin also has almost the same difference. As a result, a film in which the refractive index modulation is recorded is obtained.
  • Fluorene type acrylate resin 9,9-bis (4- (meth) acryloyloxyphenyl) fluorene (Ogsol EA-0200, manufactured by Osaka Gas Chemical Company) Acrylate resin (without fluorene skeleton): Triethylene glycol dimethacrylate Photoinitiator: Irgacure 651 (Ciba Specialty Chemicals)
  • thermosetting resin Bisphenol F type epoxy resin YL-983U (manufactured by Japan Epoxy Resin Co., Ltd.)
  • Thermosetting accelerator Trisdimethylaminomethylphenol (JER Cure 3010, manufactured by Japan Epoxy Resin Co., Ltd.)
  • Thermal initiator Perbutyl O (manufactured by NOF Corporation)
  • Test piece preparation The composition prepared in each Example or Comparative Example was sandwiched between two glass plates (60 ⁇ 60 ⁇ 1.3 mm) and fixed with Kapton tape to obtain a test piece. By placing an aluminum foil spacer between the two glass plates, the thickness of the test piece was set to 12 ⁇ m.
  • the produced test piece was exposed for 60 seconds at a light intensity of 10 mW / cm 2 using a UV irradiation machine (LIGHTNINGCURE LC8 manufactured by Hamamatsu Photonics) with a photomask (see FIG. 2) interposed.
  • the used photomask is a member in which holes are provided in a matrix shape in a central region (10 ⁇ 10 mm) of 50 mm ⁇ 50 mm.
  • the hole diameter is 30 ⁇ m
  • the distance between the centers of the holes is 37.6 ⁇ m
  • the distance between the holes is 7.6 ⁇ m.
  • test piece was after-cured for 2 hours in an oven at 80 ° C. to obtain a film on which the refractive index modulation was recorded.
  • Refractive index modulation of film recording refractive index modulation Refractive index modulation (refractive index of irradiated region and non-irradiated region) by interference microscope (transmission type phase shift laser microscopic interference measuring device, FK Optical Research Laboratory) (Difference from the refractive index).
  • the incident light was a He—Ne laser (wavelength: 633 nm). The principle of this measurement is described in APPLIED OPTICS, vol.41, No.7, 1308 (2002).
  • the difference ⁇ n in the refractive index is a value of the difference between the maximum refractive index and the minimum refractive index in the film on which the refractive index modulation is recorded.
  • Example 1 50 parts by mass of Ogsol EA-0200, 25 parts by mass of YL-983U, and 25 parts by mass of Rikacid MH-700 were charged into a flask and mixed while heating. Thereafter, the temperature was lowered to room temperature, and 3 parts by mass of Irgacure 651 and 0.5 parts by mass of perbutyl O were added and mixed. Furthermore, 1 part by mass of JER Cure 3010 was added and stirred at room temperature to obtain a composition. A test piece was prepared from the obtained composition, and the refractive index modulation was further recorded to produce a film on which the refractive index modulation was recorded.
  • Examples 2-5 A film in which the refractive index modulation was recorded was obtained in the same manner as in Example 1 except that the blending ratio (part by mass) of each component was as shown in the following table.
  • the following table shows the evaluation results of the compositions prepared in Examples 1 to 5 and the film on which the refractive index modulation was recorded.
  • the surface roughness of the glass plate used for test piece preparation was measured by AFM.
  • the center line average roughness Ra was 0.01 ⁇ m, and the maximum height Rmax was 0.35 ⁇ m.
  • the surface roughness of the glass was transferred to the surface of the produced film, and had the same degree of roughness.
  • FIG. 1 a map of refractive index modulation of the film on which the refractive index modulation obtained in Example 1 is recorded is shown in FIG. It can be seen that the portions having different refractive indexes (high refractive index) are arranged in a matrix.
  • Example 1 Example 1 except that “triethylene glycol dimethacrylate”, which is an acrylate resin having no fluorene structure, was used instead of Ogsol EA-0200, and the blending ratio of each component was as shown in the following table. In the same manner as described above, a film on which refractive index modulation was recorded was obtained.
  • triethylene glycol dimethacrylate which is an acrylate resin having no fluorene structure
  • the refractive index modulation recording film of the present invention can have functions such as controlling the directivity of light. Therefore, the refractive index modulation recording film of the present invention can increase the light extraction efficiency, for example, and can increase the light extraction efficiency of the device when used as a member of a light emitting device (for example, an organic electroluminescent element).
  • a light emitting device for example, an organic electroluminescent element

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Epoxy Resins (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Provided is a film in which refractive index modulation is recorded, namely, a film that has a refractive index distribution. Specifically, the film has a first region having a first refractive index and second regions having a second refractive index, the second regions are dispersed in the first regions in a manner such that on the surface of the film in which refractive index modulation is recorded, the average value of the circle equivalent diameter of the second regions is from 5 μm to 500 μm, the average value of the spacing between the second regions is 5 μm to 500 μm, and the difference (Δn) between the refractive indices of the first regions and the second regions is 0.001 to 2.0. The film can be manufactured without the need for etching or other complicated processing.

Description

屈折率変調を記録したフィルムFilm with recorded refractive index modulation
 本発明は、屈折率変調を記録したフィルム、およびそれを製造する方法、ならびにそれを備える発光装置に関する。 The present invention relates to a film on which refractive index modulation is recorded, a method for manufacturing the film, and a light emitting device including the film.
 マイクロレンズのような光学素子は、CCD、CMOS光学デバイスや有機EL、LED発光デバイスなどに広く応用されているか、または応用が検討されている。通常、光学デバイスや発光デバイス上にレンズを形成するには、エッチング等の加工を行う必要がある。たとえば、光学デバイスや発光デバイス上に凸レンズを形成するには、球面加工の曲率半径を小さくするために、レンズ部以外にディープエッチングを施さなくてはならず、また、その加工層を非常に厚く成長させなければならない。 Optical elements such as microlenses are widely applied to CCDs, CMOS optical devices, organic ELs, LED light-emitting devices, etc., or applications are being studied. Usually, in order to form a lens on an optical device or a light emitting device, it is necessary to perform processing such as etching. For example, in order to form a convex lens on an optical device or a light emitting device, deep etching must be applied to the part other than the lens part in order to reduce the radius of curvature of spherical processing, and the processed layer is very thick. Must grow.
 そのため発光面状に凸レンズではない平面フレネルレンズ等の回折光学素子を形成させたものがあるが、リソグラフィーやエッチング等による加工が必要とされ、非常に高度なエッチング技術を必要とする。エッチング工程を回避するため種々の方法が提案されているが、実用性の点で未だ不具合がある。 Therefore, some diffractive optical elements such as planar Fresnel lenses that are not convex lenses are formed on the light emitting surface, but processing by lithography, etching, etc. is required, and very advanced etching techniques are required. Various methods have been proposed to avoid the etching process, but there are still problems in terms of practicality.
 エッチングを用いることなく屈折率分布を作製する方法が開示されている(特許文献1を参照)が、MSQ(Methyl Silsesquioxane)膜をポリシラザン法で形成させる最終工程で250℃~450℃の熱焼成を必要とし、熱に弱い素子には適用できない。 Although a method for producing a refractive index distribution without using etching is disclosed (see Patent Document 1), thermal baking at 250 ° C. to 450 ° C. is performed in the final step of forming an MSQ (Methyl Silsesquioxane) film by a polysilazane method. Necessary and not applicable to heat-sensitive elements.
 2種類のモノマーによる屈折率分布型レンズを作製する方法が開示されている(特許文献2を参照)が、ラジカル重合を利用した2ステッププロセスであり、また、第2ステップで基板をスチレンに浸しながら重合するという複雑なプロセスが必要である。 A method of manufacturing a gradient index lens using two types of monomers is disclosed (see Patent Document 2), which is a two-step process using radical polymerization, and the substrate is immersed in styrene in the second step. However, a complicated process of polymerization is required.
 マイクロレンズアレイの製造方法が開示されている(特許文献3を参照)が、フォトレジスト工程と熱変形温度まで加熱する工程とがあり、通常のフォトレジスト材料を用いた場合150℃以上の加熱工程を必要とし、熱に弱い素子には使用できない。 Although a method for manufacturing a microlens array is disclosed (see Patent Document 3), there are a photoresist process and a process for heating to a thermal deformation temperature. When a normal photoresist material is used, a heating process at 150 ° C. or higher. It cannot be used for heat-sensitive elements.
 液状材料を噴霧してマイクロレンズを形成させる方法が開示されている(特許文献4)が、基板と液状材料の親水性、疎水性の制御が必要である。そのため、基板にフッ素系材料による疎水性層を塗布したりする必要があり、工程が煩雑であり他部材への汚染の懸念がある。 Although a method of forming a microlens by spraying a liquid material is disclosed (Patent Document 4), it is necessary to control the hydrophilicity and hydrophobicity of the substrate and the liquid material. Therefore, it is necessary to apply a hydrophobic layer made of a fluorine-based material to the substrate, and the process is complicated and there is a concern of contamination to other members.
 一方、熱硬化性のエポキシオリゴマーと、ラジカル重合可能な脂肪族モノマーと、光開始剤と、増感色素からなる感光性記録材料を、露光および加熱処理することにより、ホログラムを製造する方法(特許文献5を参照)や;ラジカル重合性化合物と、カチオン重合性化合物と、バインダーポリマーと、光増感色素と、光カチオン重合開始剤からなる感光性組成物を、第1の光による露光と、第2の光による露光とを行うことにより、ホログラムを製造する方法(特許文献6を参照)が報告されている。 On the other hand, a method for producing a hologram by exposing and heat-treating a photosensitive recording material comprising a thermosetting epoxy oligomer, a radically polymerizable aliphatic monomer, a photoinitiator, and a sensitizing dye (patent) And a photosensitive composition comprising a radical polymerizable compound, a cationic polymerizable compound, a binder polymer, a photosensitizing dye, and a photo cationic polymerization initiator, and exposure with a first light, A method of manufacturing a hologram by performing exposure with second light (see Patent Document 6) has been reported.
 また、硬化可能波長の異なる2種類の光硬化性樹脂を含む組成物を、第1の光で露光することによりコア部を形成し、さらに別の光で露光してクラッド部を形成することにより、光導波路を製造する方法が報告されている(特許文献7および8を参照)。 Further, by exposing a composition containing two types of photocurable resins having different curable wavelengths with the first light to form a core portion, and further exposing with another light to form a cladding portion. A method for manufacturing an optical waveguide has been reported (see Patent Documents 7 and 8).
特開2005-57239号公報JP 2005-57239 A 特開平5-224305号公報JP-A-5-224305 特開平6-194502号公報JP-A-6-194502 特開2006-23683号公報JP 2006-23683 A 特開平7-261640号公報JP-A-7-261640 特開2004-138686号公報JP 2004-138686 A 特開2000-347043号公報JP 2000-347043 A 特開2003-177259号公報JP 2003-177259 A
 本発明は、エッチング加工などの複雑な加工技術を要することなく、屈折率変調を記録したフィルム、つまり屈折率分布を有するフィルムを提供することを目的とする。特に本発明は、光の指向性の制御などの高い機能を有する光学樹脂膜を提供することである。光の指向性の制御とは、光の進行方向を所望の方向へ制御する性質を意味する。光の指向性を制御することができれば、発光デバイスからの光の取り出し効率を高めることができる。 An object of the present invention is to provide a film in which refractive index modulation is recorded, that is, a film having a refractive index distribution, without requiring a complicated processing technique such as etching. In particular, the present invention is to provide an optical resin film having a high function such as control of directivity of light. The control of light directivity means the property of controlling the traveling direction of light in a desired direction. If the directivity of light can be controlled, the light extraction efficiency from the light emitting device can be increased.
 すなわち本発明の第一は、以下に示すフィルムに関する。
 [1]第1の屈折率を有する第1領域と、第2の屈折率を有する第2領域を有し、かつ前記第2領域は、前記第1領域に分散しているフィルムであって、
 前記フィルム表面における、前記第2領域の円相当径の平均値は5μm以上500μm以下であり、かつ前記第2領域同士の間隔の平均値は5μm以上500μm以下であり、
 前記第1領域と前記第2領域の屈折率差(Δn)が0.001~2.0であるフィルム。
That is, the first of the present invention relates to the following films.
[1] A film having a first region having a first refractive index and a second region having a second refractive index, and the second region is dispersed in the first region,
On the film surface, the average value of the equivalent circle diameter of the second region is 5 μm or more and 500 μm or less, and the average value of the interval between the second regions is 5 μm or more and 500 μm or less,
A film in which a difference in refractive index (Δn) between the first region and the second region is 0.001 to 2.0.
 [2]AFM(原子間力顕微鏡)で測定した表面粗度Raが、0.01~1μmである、[1]に記載のフィルム。
 [3]第2領域が略円柱状である、[1]に記載のフィルム。
 [4]第1領域から第2領域にかけて、屈折率が匂配的に変調している、請求項1に記載のフィルム。
 [5]屈折率分布型マイクロレンズである、[1]に記載のフィルム。
 [6]第1領域と第2領域のいずれか一方が、フルオレン骨格を有する樹脂含む、[1]に記載のフィルム。
 [7]第1領域と第2領域の一方が、エポキシ樹脂を含む、[1]に記載のフィルム。
[2] The film according to [1], wherein the surface roughness Ra measured by AFM (atomic force microscope) is 0.01 to 1 μm.
[3] The film according to [1], wherein the second region is substantially cylindrical.
[4] The film according to claim 1, wherein the refractive index is odorally modulated from the first region to the second region.
[5] The film according to [1], which is a gradient index microlens.
[6] The film according to [1], wherein any one of the first region and the second region includes a resin having a fluorene skeleton.
[7] The film according to [1], wherein one of the first region and the second region contains an epoxy resin.
 本発明の第二は、以下に示す屈折率変調記録用の組成物、および屈折率変調を記録したフィルムの製造方法に関する。
 [8]屈折率がnD[A]であるアクリル化合物と;屈折率がnD[B]であり、光ラジカル重合性官能基を有さないエポキシ化合物と;光ラジカル開始剤と;熱硬化性促進剤と、を含んでなる組成物であって、
 |nD[B]-nD[A]| が0.001以上2.0以下であり、
 E型粘度計で測定した25℃での粘度が0.01以上100Pa・s以下である屈折率変調記録用の組成物。
 [9]アクリル化合物がフルオレン骨格を有し、かつ前記アクリル化合物の分子量が、100以上1000以下である、[8]に記載の組成物。
 [10]熱ラジカル開始剤をさらに含む、[8]に記載の組成物。
 [11]フィルム状である、[8]に記載の組成物。
The second of the present invention relates to a composition for refractive index modulation recording shown below and a method for producing a film on which refractive index modulation is recorded.
[8] An acrylic compound having a refractive index of nD [A]; an epoxy compound having a refractive index of nD [B] and having no photo-radically polymerizable functional group; a photo-radical initiator; A composition comprising:
| ND [B] −nD [A] | is 0.001 or more and 2.0 or less,
A composition for refractive index modulation recording, wherein the viscosity at 25 ° C. measured with an E-type viscometer is 0.01 to 100 Pa · s.
[9] The composition according to [8], wherein the acrylic compound has a fluorene skeleton, and the molecular weight of the acrylic compound is 100 or more and 1000 or less.
[10] The composition according to [8], further comprising a thermal radical initiator.
[11] The composition according to [8], which is in a film form.
 [12][8]に記載の組成物を用意する第1の工程と、前記組成物に活性エネルギー線を位置選択的に照射する第2の工程と、前記活性エネルギー線を照射された組成物を加熱する第3の工程と、を含む屈折率変調を記録したフィルムの製造方法であって、
 前記屈折率変調を記録したフィルムは、
   第1の屈折率を有する第1領域と、第2の屈折率を有する第2領域を有し、かつ前記第2領域は、前記第1領域に分散しており、
   前記フィルムの膜表面における、前記第2領域の円相当径の平均値は5μm以上500μm以下であり、かつ前記第2領域同士の間隔の平均値は5μm以上500μm以下であり、
   前記第1領域と前記第2領域の屈折率差(Δn)が0.001~2.0である、製造方法。
 [13]第1の工程において、前記組成物は、有機EL素子上に薄膜状に配置される、[12]に記載の製造方法。
 [14][8]に記載の組成物を用意する第1の工程と、前記組成物に活性エネルギー線を位置選択的に照射する第2の工程と、を含む屈折率変調を記録したフィルムの製造方法であって、
 前記屈折率変調を記録したフィルムは、
   第1の屈折率を有する第1領域と、第2の屈折率を有する第2領域を有し、かつ前記第2領域は、前記第1領域に分散しており、
   前記フィルム表面における、前記第2領域の円相当径の平均値は5μm以上500μm以下であり、かつ前記第2領域同士の間隔の平均値は5μm以上500μm以下であり、
   前記第1領域と前記第2領域の屈折率差(Δn)が0.001~2.0である、製造方法。
[12] A first step of preparing the composition according to [8], a second step of selectively irradiating the composition with active energy rays, and a composition irradiated with the active energy rays A method for producing a film on which a refractive index modulation is recorded, comprising:
The film recording the refractive index modulation is
A first region having a first refractive index and a second region having a second refractive index, and the second region is dispersed in the first region;
On the film surface of the film, the average value of the equivalent circle diameter of the second region is 5 μm or more and 500 μm or less, and the average value of the interval between the second regions is 5 μm or more and 500 μm or less,
The manufacturing method, wherein a difference in refractive index (Δn) between the first region and the second region is 0.001 to 2.0.
[13] The manufacturing method according to [12], wherein in the first step, the composition is disposed in a thin film on the organic EL element.
[14] A film on which a refractive index modulation is recorded, comprising: a first step of preparing the composition according to [8]; and a second step of selectively irradiating the composition with active energy rays. A manufacturing method comprising:
The film recording the refractive index modulation is
A first region having a first refractive index and a second region having a second refractive index, and the second region is dispersed in the first region;
On the film surface, the average value of the equivalent circle diameter of the second region is 5 μm or more and 500 μm or less, and the average value of the interval between the second regions is 5 μm or more and 500 μm or less,
The manufacturing method, wherein a difference in refractive index (Δn) between the first region and the second region is 0.001 to 2.0.
 本発明の第三は、発光装置およびその製造方法に関する。
 [15]有機EL素子が配置されたパネル基板と、前記パネル基板と対になる対向基板と、前記パネル基板と前記対向基板との間に介在し、前記有機EL素子を封止するシール層と、を含む発光装置であって、
 前記シール層は、
   第1の屈折率を有する第1領域と、第2の屈折率を有する第2領域を有し、かつ前記第2領域は、前記第1領域に分散しており、
   前記シール層の表面における、前記第2領域の円相当径の平均値は5μm以上500μm以下であり、かつ前記第2領域同士の間隔の平均値は5μm以上500μm以下であり、
   前記第1領域と前記第2領域の屈折率差(Δn)が0.001~2.0である、発光装置。
 [16][15]に記載の発光装置を製造する方法であって、[1]に記載のフィルムを、有機EL素子に接着させる工程と;前記接着させたフィルムを硬化させる工程と、を含む発光装置の製造方法。
The third of the present invention relates to a light emitting device and a method for manufacturing the same.
[15] A panel substrate on which the organic EL element is disposed, a counter substrate paired with the panel substrate, a seal layer interposed between the panel substrate and the counter substrate, and sealing the organic EL element; A light emitting device comprising:
The sealing layer is
A first region having a first refractive index and a second region having a second refractive index, and the second region is dispersed in the first region;
The average equivalent circle diameter of the second region on the surface of the seal layer is 5 μm or more and 500 μm or less, and the average value of the interval between the second regions is 5 μm or more and 500 μm or less,
The light emitting device, wherein a difference in refractive index (Δn) between the first region and the second region is 0.001 to 2.0.
[16] A method for producing the light-emitting device according to [15], comprising the step of adhering the film according to [1] to an organic EL element; and the step of curing the adhered film. Manufacturing method of light-emitting device.
 本発明の屈折率変調が記録されたフィルムは、エッチングなどの複雑な工程を要することなく製造することができるにも係わらず、光の指向性を制御するなどの機能を有しうる。そのため本発明のフィルムは、例えば光の取り出し効率を高めることができ、発光デバイス(例えば有機電界発光素子)の一部材として用いれば、デバイスの光取り出し効率を高めることができる。 The film on which the refractive index modulation of the present invention is recorded can have a function of controlling the directivity of light even though it can be manufactured without requiring a complicated process such as etching. Therefore, the film of the present invention can enhance the light extraction efficiency, for example, and can increase the light extraction efficiency of the device when used as a member of a light emitting device (for example, an organic electroluminescent element).
 また、本発明のフィルムには、所望の屈折率分布を形成でき、例えばシリンダー状、同心円状、または格子状の屈折率分布を形成することもできる。また、本発明のフィルムには、高屈折率領域と低屈折率領域とが交互に形成されうる。このような屈折率変調を記録したフィルムは、フレネルレンズを装備した発光装置と同様の効果を得ることも可能であり、発光デバイスからの光を集光させるか、または分散させて外部へ取り出すこともできる。 In the film of the present invention, a desired refractive index distribution can be formed, and for example, a cylindrical, concentric, or lattice-shaped refractive index distribution can be formed. In the film of the present invention, high refractive index regions and low refractive index regions can be alternately formed. Films recorded with such refractive index modulation can achieve the same effect as a light-emitting device equipped with a Fresnel lens, and the light from the light-emitting device is condensed or dispersed and taken out to the outside. You can also.
 もちろん本発明の屈折率変調が記録されたフィルムは、簡便な製造プロセスで作製されうるので、それを含む発光デバイスを薄型化、小型化することができる。さらに本発明のフィルムは実質的に有機物から構成されているので、無機物により骨格が形成されているフィルムに比べて重量が少なく、有機EL素子などの発光装置の封止部材として好適に用いることができる。 Of course, since the film on which the refractive index modulation of the present invention is recorded can be manufactured by a simple manufacturing process, a light emitting device including the film can be thinned and miniaturized. Furthermore, since the film of the present invention is substantially composed of an organic material, it is less in weight than a film having a skeleton formed of an inorganic material and can be suitably used as a sealing member for a light-emitting device such as an organic EL element. it can.
屈折率変調が記録されたフィルムの代表例を模式的に示す図である。It is a figure which shows typically the typical example of the film on which refractive index modulation was recorded. 実施例1で用いられたフォトマスクを示す図である。It is a figure which shows the photomask used in Example 1. FIG. 実施例1で得られた屈折率変調が記録されたフィルムの屈折率変調マップである。3 is a refractive index modulation map of a film on which refractive index modulation obtained in Example 1 is recorded.
 本発明のフィルムは膜状の実質的に有機物からなる部材であり、フィルム単体であってもよく、何らかの基体(発光素子などを含む)に形成された薄膜や層であってもよい。「実質的に有機物からなる」とは、本発明の効果を減じない範囲で炭素-炭素結合によって骨格が形成され、上記部材の形状が保持されていることをいう。本発明のフィルムは、屈折率変調が記録されているが、ホログラムのような光干渉縞を形成する部材ではなく、波長依存性を有することのない部材である。 The film of the present invention is a film-like member made of substantially organic material, and may be a single film or a thin film or layer formed on any substrate (including a light emitting element). “Substantially composed of an organic substance” means that a skeleton is formed by a carbon-carbon bond within a range not reducing the effect of the present invention, and the shape of the member is maintained. Although the refractive index modulation is recorded, the film of the present invention is not a member that forms optical interference fringes such as a hologram, and is a member that does not have wavelength dependency.
 本発明のフィルムは、第1の屈折率を有する第1領域と、第2の屈折率を有する第2領域とを有する。第1領域が母材として作用し、第2領域は第1領域中に分散されている。 The film of the present invention has a first region having a first refractive index and a second region having a second refractive index. The first region acts as a base material, and the second region is dispersed in the first region.
 第1の屈折率と、第2の屈折率の差は、0.001~2.0であればよく、0.01~2.0であることが好ましい。第1の屈折率と、第2の屈折率とは、差異があればよく、いずれが大きくてもよい。また本発明のフィルムの製造のしやすさという観点からは、第1の屈折率と第2の屈折率の差は0.001~1.0、より好ましくは0.001~0.5が好ましい。屈折率の差異とは、屈折率が大きいほうの領域における最大の屈折率と、屈折率が小さいほうの領域における最小の屈折率との差異でありうる。屈折率は、干渉顕微鏡を用いて測定すればよい。具体的には、後述の実施例に記載された通り、"APPLIED OPTICS, vol.41, No.7, 1308 (2002)"に記載の測定原理を参照して測定される。 The difference between the first refractive index and the second refractive index may be 0.001 to 2.0, and is preferably 0.01 to 2.0. The first refractive index and the second refractive index need only be different, and any of them may be large. Further, from the viewpoint of ease of production of the film of the present invention, the difference between the first refractive index and the second refractive index is preferably 0.001 to 1.0, more preferably 0.001 to 0.5. . The difference in refractive index can be the difference between the maximum refractive index in the region with the higher refractive index and the minimum refractive index in the region with the lower refractive index. The refractive index may be measured using an interference microscope. Specifically, it is measured with reference to the measurement principle described in “APPLIED OPTICS, vol.41, No.7, 1308 (2002)” as described in the examples described later.
 前記のとおり、本発明のフィルムは、波長依存性を有しない(干渉縞を形成したり、回折格子を形成したりしない)ことが好ましい。したがって、第1領域中に分散された第2領域が、ある程度の大きさを有していることが好ましい。具体的には、フィルムの表面における第2領域の円相当径の平均値が、5μm以上500μm以下であることが好ましい。また、フィルムの表面における第2領域同士の間隔の平均が5μm以上500μm以下であることが好ましい。第2領域の円相当径の平均値や、第2領域同士の間隔の平均が5μmよりも小さいと、干渉縞が形成されることがある。 As described above, it is preferable that the film of the present invention does not have wavelength dependency (does not form interference fringes or diffraction gratings). Therefore, it is preferable that the second region dispersed in the first region has a certain size. Specifically, the average value of the equivalent circle diameter of the second region on the surface of the film is preferably 5 μm or more and 500 μm or less. Moreover, it is preferable that the average of the space | interval of 2nd area | regions on the surface of a film is 5 micrometers or more and 500 micrometers or less. If the average value of the equivalent circle diameters of the second regions and the average of the intervals between the second regions are smaller than 5 μm, interference fringes may be formed.
 後述の通り、第1領域および第2領域の屈折率は、勾配的に変調している場合がある。その場合には、フィルム表面における第1領域と第2領域との境界を、屈折率が勾配的に変調している領域に任意に設定し;設定した境界を基準にして、第2の領域の大きさ(円相当径)、および第2の領域同士の間隔を求めればよい。 As will be described later, the refractive indexes of the first region and the second region may be modulated in a gradient manner. In that case, the boundary between the first region and the second region on the film surface is arbitrarily set to a region where the refractive index is gradient-modulated; on the basis of the set boundary, What is necessary is just to obtain | require the magnitude | size (circle equivalent diameter) and the space | interval of 2nd area | regions.
 本発明のフィルムをマイクロレンズとして用いる場合には、第2領域が、第1領域を貫通していること、つまりフィルムの厚さ方向に第2領域が貫通していることが好ましい。第2領域が貫通していれば、貫通する方向に光の方向を制御することができ、光の指向性を得ることもできる。そして貫通する第2領域が略円柱状であると、干渉縞の形成が抑制される。 When the film of the present invention is used as a microlens, it is preferable that the second region penetrates the first region, that is, the second region penetrates in the thickness direction of the film. If the second region penetrates, the light direction can be controlled in the penetrating direction, and the light directivity can be obtained. If the penetrating second region has a substantially cylindrical shape, the formation of interference fringes is suppressed.
 本発明のフィルムを用いて、光取り出し効率を高めるには、第2領域が、第1領域にマトリックス状(格子状)に配置されていることが好ましい。 In order to increase the light extraction efficiency using the film of the present invention, the second region is preferably arranged in a matrix (lattice) in the first region.
 図1には、本発明のフィルムの代表例が模式的に示される。第1の屈折率を有する第1領域Aがフィルムの母材を構成している。第2の屈折率を有する第2領域Bは、膜表面にマトリックス状(格子状)に配置されている。第2領域Bはそれぞれ、略円柱形状であり、膜の厚さ方向に貫通している。第2領域Bの膜表面における円相当径bは、約5~500μmに設定される。また、第2領域B同士の最短間隔aも、約5~500μmに設定される。 FIG. 1 schematically shows a representative example of the film of the present invention. The first region A having the first refractive index constitutes the base material of the film. The second region B having the second refractive index is arranged in a matrix (lattice) on the film surface. Each second region B has a substantially cylindrical shape and penetrates in the thickness direction of the film. The equivalent circle diameter b on the film surface in the second region B is set to about 5 to 500 μm. The shortest distance a between the second regions B is also set to about 5 to 500 μm.
 また、本発明のフィルムの表面は平坦であることが好ましい。本発明のフィルムは、パネル基板又はパネル基板上の素子に設置されることがあるが、配置を容易にするためである。具体的には、フィルムの表面粗度Raが、通常は0.01~1μmであり、0.01~0.1μmであることが好ましい。後述の通り、本発明のフィルムは、エッチング加工などにより形状加工される必要がないので、フィルム表面を平坦とすることができる。 The surface of the film of the present invention is preferably flat. Although the film of this invention may be installed in the panel board | substrate or the element on a panel board | substrate, it is for making arrangement | positioning easy. Specifically, the surface roughness Ra of the film is usually 0.01 to 1 μm, preferably 0.01 to 0.1 μm. As described later, since the film of the present invention does not need to be processed by etching or the like, the film surface can be made flat.
 本発明のフィルムを、発光装置(例えば有機EL発光素子)の光の透過部に設けて、発光効率を高める場合には、その厚さは1~200μmであることが好ましく、1~100μmであることがさらに好ましい。また、屈折率変調を記録したフィルムを、マイクロレンズ(屈折率分布型レンズ)として用いる場合には、そのレンズ機能はフィルム厚さで調整されうる。よって所望のレンズ機能に応じてフィルム厚さを調整すればよい。 In the case where the film of the present invention is provided in a light transmission portion of a light emitting device (for example, an organic EL light emitting element) to increase luminous efficiency, the thickness is preferably 1 to 200 μm, and preferably 1 to 100 μm. More preferably. Further, when a film in which refractive index modulation is recorded is used as a microlens (refractive index distribution type lens), the lens function can be adjusted by the film thickness. Therefore, what is necessary is just to adjust film thickness according to a desired lens function.
 本発明のフィルムを構成する第1領域と第2領域のいずれか一方は、フルオレン骨格を含む樹脂であることが好ましい。フルオレン骨格を導入することにより、屈折率を高めることができる。よって、第1領域と第2領域のいずれか一方を、フルオレン骨格を含む樹脂とすれば、他方の領域との屈折率差がつきやすい。 Any one of the first region and the second region constituting the film of the present invention is preferably a resin containing a fluorene skeleton. By introducing a fluorene skeleton, the refractive index can be increased. Therefore, if one of the first region and the second region is a resin containing a fluorene skeleton, a difference in refractive index from the other region is likely to occur.
 また、本発明のフィルムを構成する第1領域と第2領域のいずれか一方は、エポキシ樹脂を含んでいてもよい。後述するように、本発明のフィルムは、光重合性樹脂と熱硬化性樹脂(エポキシ樹脂)とを含有する組成物を光重合して得られるが、熱硬化性樹脂が未硬化の状態のフィルム(ハーフキュアフィルム)も、本発明のフィルムの一態様である。もちろん、熱硬化性樹脂が硬化した状態のフィルムも、本発明のフィルムの一態様である。 Also, either one of the first region and the second region constituting the film of the present invention may contain an epoxy resin. As described later, the film of the present invention is obtained by photopolymerizing a composition containing a photopolymerizable resin and a thermosetting resin (epoxy resin), but the thermosetting resin is in an uncured state. (Half-cure film) is also an embodiment of the film of the present invention. Of course, the film in which the thermosetting resin is cured is also an embodiment of the film of the present invention.
 本発明の屈折率変調を記録したフィルムは、光デバイスとして任意の用途に用いることができる。例えば、光学素子のマイクロレンズとして用いることができる。屈折率変調を記録したフィルムをレンズとして用いる場合には、第1領域から第2領域にかけて屈折率は、勾配的に変化していることが好ましい。 The film on which the refractive index modulation of the present invention is recorded can be used as an optical device for any application. For example, it can be used as a microlens for an optical element. When a film on which refractive index modulation is recorded is used as a lens, it is preferable that the refractive index changes in a gradient from the first region to the second region.
 レンズとは、光の屈折作用を示す透明体であり、それを通過する光の方向を制御することができ、例えば光を拡散させたり、集束させたりすることができる。本発明におけるレンズは、球レンズとは異なり、屈折率分布型レンズと称される。屈折率分布型レンズは、屈折率がある点から周囲に向かって勾配的に変調している透明部材をいう。つまり、屈折率変調を記録したフィルムを屈折率分布型レンズとして用いる場合には、第1領域または第2領域の屈折率が勾配的に変化していることが好ましい。 The lens is a transparent body that shows the refractive action of light, and can control the direction of light passing through it. For example, it can diffuse or focus light. Unlike the spherical lens, the lens in the present invention is referred to as a gradient index lens. The gradient index lens refers to a transparent member that is gradient-modulated from a certain point toward the periphery. That is, when a film on which refractive index modulation is recorded is used as a gradient index lens, it is preferable that the refractive index of the first region or the second region changes in a gradient manner.
 特に、円柱状の第2領域が、母材となる第1領域を貫通しているときに、第2領域の屈折率が円半径方向に勾配的に変調していれば、屈折率分布型ロッドレンズとして用いることができる。さらにそのときに、第2領域がマトリックス状に分散していれば、屈折率分布型ロッドレンズアレイとして用いることができる(図1参照)。 In particular, when the cylindrical second region passes through the first region serving as the base material, if the refractive index of the second region is gradiently modulated in the radial direction, the gradient index rod It can be used as a lens. At that time, if the second region is dispersed in a matrix, it can be used as a gradient index rod lens array (see FIG. 1).
 屈折率分布型ロッドレンズのレンズ端面から入射した光は、サインカーブを描きながら進行するので、ロッド長さ(ここでは、膜厚の厚さ)を調整すると、等倍正立像を得ることもできる。そのため、屈折率分布型ロッドレンズ(アレイ)は、ファクシミリ、スキャナ、複写機、電子黒板、並びにLEDプリンタ、光ファイバ通信用のレンズとして活用されうる。 Since the light incident from the lens end face of the gradient index rod lens travels while drawing a sine curve, it is possible to obtain an equal-magnification erect image by adjusting the rod length (here, the thickness of the film thickness). . Therefore, the gradient index rod lens (array) can be used as a lens for facsimile, scanner, copying machine, electronic blackboard, LED printer, and optical fiber communication.
 さらに本発明の屈折率変調を記録したフィルムを用いれば、発光装置から発せられた光を効率よく取り出すことが可能となる。そこで本発明の屈折率変調を記録したフィルムを、発光デバイスが発する光の通過部に設けることにより、発光デバイスの発光効率を高めることができる。 Furthermore, if the film on which the refractive index modulation of the present invention is recorded is used, it is possible to efficiently extract light emitted from the light emitting device. Therefore, the luminous efficiency of the light emitting device can be increased by providing the film on which the refractive index modulation of the present invention is recorded in the passage portion of the light emitted from the light emitting device.
 トップエミッション型の有機電界発光素子の光取り出し効率は約20%であるといわれている。光取り出し効率の低下の原因の一つは、有機電界発光素子と、それを封止する封止膜との界面での反射や;封止膜とさらに外側にあるガラス基板との界面での反射にある。封止膜は、有機電界発光素子内部に水分や酸素が浸入することを防止し、樹脂などで構成されてもよい。 It is said that the light extraction efficiency of the top emission type organic electroluminescence device is about 20%. One of the causes of the decrease in the light extraction efficiency is reflection at the interface between the organic electroluminescent element and the sealing film that seals it; reflection at the interface between the sealing film and the glass substrate on the outside It is in. The sealing film prevents moisture and oxygen from entering the organic electroluminescent element, and may be made of a resin or the like.
 そこで、トップエミッション型の有機電界発光素子を封止する封止膜を、本発明の屈折率変調を記録したフィルムとすることにより、封止性を得るとともに、さらに光取り出し効率を上げることもできる。つまり、有機電界発光素子の発光層から発した光の進行方向を、本発明のフィルムで制御することにより、ガラス基板との界面における反射を抑制して、光取り出し効率を高める。 Therefore, by using the sealing film for sealing the top emission type organic electroluminescent element as a film recording the refractive index modulation of the present invention, it is possible to obtain sealing properties and further increase the light extraction efficiency. . That is, by controlling the traveling direction of light emitted from the light emitting layer of the organic electroluminescent element with the film of the present invention, reflection at the interface with the glass substrate is suppressed, and light extraction efficiency is increased.
 例えば、パネル基板上に配置された有機電界発光素子に、前記「ハーフキュアフィルム(光重合だけをしたフィルム)」を被せて加熱することにより、有機電界発光素子の封止膜を形成するとともに、屈折率変調が記録されたフィルムをも形成することができる。フィルム上には対向基板が配置される。 For example, the organic electroluminescent element disposed on the panel substrate is heated by applying the “half-cure film (a film obtained by photopolymerization)” to form a sealing film of the organic electroluminescent element. A film in which a refractive index modulation is recorded can also be formed. A counter substrate is disposed on the film.
 本発明の屈折率変調を記録したフィルムは、1)光重合性樹脂と、熱硬化性樹脂とを含有する組成物(屈折率変調記録用の組成物)を用意するステップと、2)組成物に活性エネルギー線を位置選択的に照射するステップとを含み、さらに3)加熱するステップを含んでいてもよい。 The film recording the refractive index modulation according to the present invention includes: 1) a step of preparing a composition (a composition for refractive index modulation recording) containing a photopolymerizable resin and a thermosetting resin; and 2) a composition. Irradiating active energy rays in a position-selective manner, and 3) heating.
 屈折率変調記録用の組成物に含まれる光重合性樹脂は、アクリル化合物を含むことが好ましい。アクリル化合物は、アクリル基またはメタクリル基を含む化合物であれば特に限定されないが、フルオレン骨格を有することが好ましい。前記の通り、フルオレン骨格を導入することにより、屈折率を高めやすい。屈折率を高めることができれば、後述の熱硬化性樹脂に含まれるエポキシ化合物との屈折率差を大きくすることができる。また前記樹脂に、硫黄元素やハロゲン元素を導入することにより、屈折率を大きくすることができる。透明性を保持するためには、硫黄元素を導入することが好ましい。 The photopolymerizable resin contained in the composition for refractive index modulation recording preferably contains an acrylic compound. The acrylic compound is not particularly limited as long as it is a compound containing an acrylic group or a methacryl group, but preferably has a fluorene skeleton. As described above, the refractive index can be easily increased by introducing a fluorene skeleton. If the refractive index can be increased, the difference in refractive index from the epoxy compound contained in the thermosetting resin described later can be increased. The refractive index can be increased by introducing sulfur element or halogen element into the resin. In order to maintain transparency, it is preferable to introduce sulfur element.
 フルオレン骨格を有するアクリル化合物の例には、9,9-ビス(4-(メタ)アクリロイルオキシフェニル)フルオレン;9,9-ビス(4-(メタ)アクリロイルオキシメトキシフェニル)フルオレン;9,9-ビス[4-(2-(メタ)アクリロイルオキシエトキシ)フェニル]フルオレン;9,9-ビス[4-(メタ)アクリロイルオキシ-3-メチルフェニル]フルオレン;9,9-ビス[4-(メタ)アクリロイルオキシメトキシ-3-メチルフェニル]フルオレン;9,9-ビス[4-(2-(メタ)アクリロイルオキシエトキシ)-3-メチルフェニル]フルオレン;9,9-ビス(4-(メタ)アクリロイルオキシ-3-エチルフェニル)フルオレン;9,9-ビス(4-(メタ)アクリロイルオキシメトキシ-3-エチルフェニル)フルオレン;9,9-ビス[4-(2-(メタ)アクリロイルオキシエトキシ)-3-エチルフェニル]フルオレン;9,9-ビス[4-(2-(メタ)アクリロイルオキシプロポキシ)-3-エチルフェニル]フルオレン;9,9-ビス[4-(3-(メタ)アクリロイルオキシ-2-ヒドロキシ)プロポキシフェニル]フルオレン;9,9-ビス[4-(3-(メタ)アクリロイルオキシ-2-ヒドロキシ)プロポキシ-3-メチルフェニル]フルオレン;9,9-ビス{4-[2-(3-アクリロイルオキシ-2-ヒドロキシ-プロポキシ)-エトキシ]フェニル}フルオレンなどが含まれる。
 フルオレン骨格を有するアクリル化合物は、上記例示化合物の2量体または3量体程度のオリゴマーであってもよい。
Examples of acrylic compounds having a fluorene skeleton include 9,9-bis (4- (meth) acryloyloxyphenyl) fluorene; 9,9-bis (4- (meth) acryloyloxymethoxyphenyl) fluorene; Bis [4- (2- (meth) acryloyloxyethoxy) phenyl] fluorene; 9,9-bis [4- (meth) acryloyloxy-3-methylphenyl] fluorene; 9,9-bis [4- (meth) Acryloyloxymethoxy-3-methylphenyl] fluorene; 9,9-bis [4- (2- (meth) acryloyloxyethoxy) -3-methylphenyl] fluorene; 9,9-bis (4- (meth) acryloyloxy -3-ethylphenyl) fluorene; 9,9-bis (4- (meth) acryloyloxymethoxy-3-ethylphenyl) fluorene; 9,9-bis [4- (2- (meta ) Acryloyloxyethoxy) -3-ethylphenyl] fluorene; 9,9-bis [4- (2- (meth) acryloyloxypropoxy) -3-ethylphenyl] fluorene; 9,9-bis [4- (3- (Meth) acryloyloxy-2-hydroxy) propoxyphenyl] fluorene; 9,9-bis [4- (3- (meth) acryloyloxy-2-hydroxy) propoxy-3-methylphenyl] fluorene; 9,9-bis {4- [2- (3-acryloyloxy-2-hydroxy-propoxy) -ethoxy] phenyl} fluorene and the like are included.
The acrylic compound having a fluorene skeleton may be a dimer or trimer oligomer of the above exemplary compounds.
 アクリル化合物の分子量は、100以上1000以下であることが好ましい。アクリル化合物に、一定以上の光重合反応性を付与するためである。 The molecular weight of the acrylic compound is preferably 100 or more and 1000 or less. This is for imparting a certain degree of photopolymerization reactivity to the acrylic compound.
 光重合性樹脂は、光ラジカル開始剤を含むことが好ましい。光ラジカル開始剤の種類は特に限定されず、アクリル化合物の種類に応じて適宜選択すればよい。光ラジカル開始剤の例には、ベンゾイン系化合物、アセトフェノン類、ベンゾフェノン類、チオキサトン類、α-アシロキシムエステル類、フェニルグリオキシレート類、ベンジル類、アゾ系化合物、ジフェニルスルフィド系化合物、アシルホスフィンオキシド系化合物、有機色素系化合物、鉄-フタロシアニン系、ベンゾイン類、ベンゾインエーテル類、アントラキノン類などが含まれる。 The photopolymerizable resin preferably contains a photo radical initiator. The type of the photo radical initiator is not particularly limited, and may be appropriately selected according to the type of the acrylic compound. Examples of photo radical initiators include benzoin compounds, acetophenones, benzophenones, thioxanthones, α-acyloxime esters, phenylglyoxylates, benzyls, azo compounds, diphenyl sulfide compounds, acylphosphine oxides Compounds, organic dye compounds, iron-phthalocyanine compounds, benzoins, benzoin ethers, anthraquinones, and the like.
 光重合性樹脂に含まれる光ラジカル開始剤の量は、アクリル化合物100質量部に対して、0.1質量部以上100質量部以下であることが好ましい。 The amount of the photo radical initiator contained in the photopolymerizable resin is preferably 0.1 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the acrylic compound.
 一方、屈折率変調記録用の組成物に含まれる熱硬化性樹脂は、エポキシ化合物を含むことが好ましい。エポキシ化合物は、光ラジカル重合性を有さないことが求められる。したがってエポキシ化合物は、光ラジカル重合性官能基、たとえば炭素-炭素不飽和結合(アクリル基など)などを有さないことが好ましい。 On the other hand, the thermosetting resin contained in the composition for refractive index modulation recording preferably contains an epoxy compound. The epoxy compound is required not to have photoradical polymerizability. Therefore, the epoxy compound preferably does not have a photoradically polymerizable functional group such as a carbon-carbon unsaturated bond (such as an acrylic group).
 熱硬化性樹脂は、熱硬化促進剤を含むことが好ましい。熱硬化促進剤の種類は特に限定されず、エポキシ化合物の種類に応じて適宜選択すればよい。熱硬化促進剤の例には、イミダゾール化合物やアミン化合物が含まれる。イミダゾール化合物の例には、2-エチル-4-メチルイミダゾールが含まれる。アミン化合物の例には、トリスジメチルアミノメチルフェノールなどが含まれる。熱硬化性樹脂に含まれる熱硬化促進剤の量は、エポキシ化合物100質量部に対して、0.1質量部~100質量部であることが好ましい。 The thermosetting resin preferably contains a thermosetting accelerator. The kind of thermosetting accelerator is not specifically limited, What is necessary is just to select suitably according to the kind of epoxy compound. Examples of the thermosetting accelerator include imidazole compounds and amine compounds. Examples of the imidazole compound include 2-ethyl-4-methylimidazole. Examples of the amine compound include trisdimethylaminomethylphenol. The amount of the thermosetting accelerator contained in the thermosetting resin is preferably 0.1 to 100 parts by mass with respect to 100 parts by mass of the epoxy compound.
 熱硬化性樹脂は、酸無水物を含んでいてもよい。酸無水物を含む熱硬化性樹脂からは、透明性の高い樹脂硬化物が得られる。熱硬化性樹脂に含まれる酸無水物は、光重合性を有しないことが求められ、したがって光重合性官能基を有さない。酸無水物は、芳香族系カルボン酸の酸無水物であることが好ましく、酸無水物の例には、無水フタル酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、無水トリメリット酸、無水ヘキサクロロエンドメチレンテトラヒドロフタル酸、無水ベンゾフェノンテトラカルボン酸などが含まれる。 The thermosetting resin may contain an acid anhydride. From the thermosetting resin containing an acid anhydride, a highly transparent resin cured product is obtained. The acid anhydride contained in the thermosetting resin is required not to have photopolymerizability, and therefore does not have a photopolymerizable functional group. The acid anhydride is preferably an aromatic carboxylic acid anhydride, and examples of the acid anhydride include phthalic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, Hydrophthalic anhydride, trimellitic anhydride, hexachloroendomethylenetetrahydrophthalic anhydride, benzophenone tetracarboxylic anhydride and the like are included.
 熱硬化性樹脂は、熱ラジカル開始剤を含有していてもよい。熱ラジカル開始剤は、後述する光照射により重合されずに残存した光重合性化合物を、加熱により重合することにより、最終的に光重合性化合物が残存することを防止する。熱ラジカル開始剤の例には、従来公知の有機過酸化物やアゾ化合物が挙げられる。加熱条件にもよるが通常は、熱ラジカル開始剤は、10時間半減期温度が120℃以下の化合物であることが好ましい。熱ラジカル開始剤の例には、クミルパーオキシネオデカノエート、ジ-n-プロピルパーオキシジカーボネート、ジ(2-エチルヘキシル)パーオキシジカーボネート、t-ブチルパーオキシネオデカノエート、2,4-ジクロロベンゾイルパーオキサイド、ラウロイルパーオキサイド、アセチルパーオキサイド、t-ブチルパーオキシ-2-エチルヘキサノエイト、ベンゾイルパーオキサイド、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシラウレート、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシイソプロピルカーボネート、t-ブチルパーオキシアセテート、t-ブチルパーオキシベンゾエート、メチルエチルケトンパーオキサイド、ジクミルパーオキサイド、t-ブチルクミルパーオキサイドなどである。また、アゾ化合物としては、アゾビスイソブチロニトリル、2,2'-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、アゾビス(メチルブチルニトリル)などが含まれる。本発明においては1種単独の熱ラジカル開始剤を用いてもよいし、2種以上を併用してもよい。 The thermosetting resin may contain a thermal radical initiator. The thermal radical initiator prevents the photopolymerizable compound from finally remaining by polymerizing the photopolymerizable compound that is not polymerized by light irradiation, which will be described later, by heating. Examples of the thermal radical initiator include conventionally known organic peroxides and azo compounds. Although it depends on the heating conditions, the thermal radical initiator is preferably a compound having a 10-hour half-life temperature of 120 ° C. or lower. Examples of thermal radical initiators include cumyl peroxyneodecanoate, di-n-propyl peroxydicarbonate, di (2-ethylhexyl) peroxydicarbonate, t-butylperoxyneodecanoate, 2, 4-dichlorobenzoyl peroxide, lauroyl peroxide, acetyl peroxide, t-butylperoxy-2-ethylhexanoate, benzoyl peroxide, t-butylperoxyisobutyrate, t-butylperoxylaurate, t -Butylperoxy-3,5,5-trimethylhexanoate, t-butylperoxyisopropyl carbonate, t-butylperoxyacetate, t-butylperoxybenzoate, methyl ethyl ketone peroxide, dicumyl peroxide, t-butyl Such as cumyl peroxide. . Examples of the azo compound include azobisisobutyronitrile, 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), azobis (methylbutylnitrile), and the like. In the present invention, one type of thermal radical initiator may be used, or two or more types may be used in combination.
 本発明の組成物は、アクリル化合物を含む光重合性樹脂と、エポキシ化合物を含む熱硬化性樹脂とを含むが、アクリル化合物の屈折率nD[A]と、エポキシ化合物の屈折率nD[B]との差異が、0.001以上2.0以下であることが好ましい。アクリル化合物またはエポキシ化合物が2種以上の化合物の混合物である場合には、その混合物の屈折率をnD[A]またはnD[B]とする。 The composition of the present invention includes a photopolymerizable resin containing an acrylic compound and a thermosetting resin containing an epoxy compound, but the refractive index nD [A] of the acrylic compound and the refractive index nD [B] of the epoxy compound. It is preferable that the difference is 0.001 or more and 2.0 or less. When the acrylic compound or the epoxy compound is a mixture of two or more compounds, the refractive index of the mixture is nD [A] or nD [B].
 nD[A]とnD[B]のいずれが大きくてもよい。ただし前記のとおり、アクリル化合物にフルオレン骨格を導入した場合には、nD[A]が大きくなるので、nD[A]>nD[B]とすることが好ましい。 Either nD [A] or nD [B] may be large. However, as described above, when a fluorene skeleton is introduced into the acrylic compound, nD [A] increases, and therefore it is preferable to satisfy nD [A]> nD [B].
 本発明の屈折率変調記録用の組成物は、アクリル化合物を含む光重合性樹脂と、エポキシ化合物を含む熱硬化性樹脂とを含むが、アクリル化合物100質量部に対するエポキシ化合物の含有量は、10質量部以上1000質量部以下であることが好ましい。 The composition for refractive index modulation recording of the present invention contains a photopolymerizable resin containing an acrylic compound and a thermosetting resin containing an epoxy compound, but the content of the epoxy compound with respect to 100 parts by mass of the acrylic compound is 10 It is preferable that it is not less than 1000 parts by mass.
 屈折率変調記録用の組成物の粘度は、特に限定されないが、後述する活性エネルギー線を照射するステップにおいて、光重合性樹脂が照射領域に移動して、照射領域にて位置選択的に重合するようにすることが好ましい。組成物の粘度が高すぎると、光重合性樹脂の照射領域への移動が抑制され;粘度が低すぎると、照射領域へ移動した光重合性樹脂が照射領域にとどまれずに、位置選択的に重合されない。よって、組成物のE型粘度計で測定される粘度(25℃)は、0.01~100Pa・sであることが好ましく、0.01~50Pa・sであることがさらに好ましい。 The viscosity of the composition for refractive index modulation recording is not particularly limited, but in the step of irradiating active energy rays, which will be described later, the photopolymerizable resin moves to the irradiation region and polymerizes selectively in the irradiation region. It is preferable to do so. If the viscosity of the composition is too high, the movement of the photopolymerizable resin to the irradiation region is suppressed; if the viscosity is too low, the photopolymerizable resin that has moved to the irradiation region does not stay in the irradiation region, but is position-selective. Not polymerized. Therefore, the viscosity (25 ° C.) measured by an E-type viscometer of the composition is preferably 0.01 to 100 Pa · s, and more preferably 0.01 to 50 Pa · s.
 本発明の屈折率変調を記録したフィルムの製造方法は、前述の組成物に活性エネルギー線を位置選択的に照射するステップを含む。照射する活性エネルギー線は、光重合性樹脂を重合可能なエネルギー線とすればよい。活性エネルギー線の例には、紫外線、電子線、可視光線、赤外線などが含まれる。 The method for producing a film on which refractive index modulation is recorded according to the present invention includes a step of selectively irradiating the above-mentioned composition with active energy rays. The active energy ray to be irradiated may be an energy ray capable of polymerizing the photopolymerizable resin. Examples of active energy rays include ultraviolet rays, electron beams, visible rays, infrared rays, and the like.
 活性エネルギー線を照射される組成物は、薄膜状にされていることが好ましい。薄膜状の組成物とは、フィルム状の組成物であったり、基板上に塗布形成された組成物の塗膜であったり、2枚のガラス板に挟み込まれて保持された薄膜状の組成物であったりする。2枚のガラス板に挟み込んで保持する場合には、ガラス板と薄膜との間に離型フィルムを配置してもよく、それにより容易にフィルム単体を取出すことができる。薄膜状の組成物の厚さは、活性エネルギー線の照射後の膜厚さが1~200μmとなるように調整すればよい。薄膜状の組成物の厚さが厚すぎると、膜の内部にまで光が充分に伝播されずに、屈折率変調の記録性が低下する。 The composition irradiated with the active energy ray is preferably formed into a thin film. The thin film composition is a film composition, a coating film of a composition formed on a substrate, or a thin film composition sandwiched and held between two glass plates. Or When sandwiching and holding between two glass plates, a release film may be disposed between the glass plate and the thin film, whereby the single film can be easily taken out. The thickness of the thin film composition may be adjusted so that the film thickness after irradiation with active energy rays is 1 to 200 μm. When the thickness of the thin film composition is too thick, light is not sufficiently propagated into the film, and the recording property of the refractive index modulation is lowered.
 活性エネルギー線を位置選択的に照射するには、組成物に所望のパターンを形成したマスクを被せて照射してもよいし、走査により照射してもよい。 In order to selectively irradiate the active energy rays, the composition may be irradiated with a mask on which a desired pattern is formed, or may be irradiated by scanning.
 照射領域それぞれの面積は任意であるが、本発明の屈折率変調を記録したフィルムは、干渉縞を形成することなく、波長依存性を有さないことが好ましいので、例えばマスクの開口部の円相当径を5μm以上500μm以下とすることが好ましい。また、マスクの開口部の形状(照射領域の形状)は円形であることが好ましい。頂点を有する形状(三角形や四角形)であると、その頂点が干渉縞を形成することがある。 Although the area of each irradiation region is arbitrary, it is preferable that the film on which the refractive index modulation of the present invention is recorded does not form an interference fringe and does not have wavelength dependency. The equivalent diameter is preferably 5 μm or more and 500 μm or less. Further, the shape of the opening of the mask (the shape of the irradiation region) is preferably circular. If the shape has a vertex (triangle or square), the vertex may form an interference fringe.
 薄膜状の組成物に、活性エネルギー線を位置選択的に照射すると、照射領域において光重合性樹脂が重合する。すると、照射領域の周辺に存在する未重合の光重合性樹脂が照射領域に流入し、かつ照射領域に存在する熱硬化性樹脂は照射領域から流出する。照射領域に流入した光重合性樹脂も活性エネルギー線により重合する。 When the active energy ray is selectively irradiated to the thin film composition, the photopolymerizable resin is polymerized in the irradiated region. Then, unpolymerized photopolymerizable resin existing around the irradiation region flows into the irradiation region, and thermosetting resin existing in the irradiation region flows out from the irradiation region. The photopolymerizable resin that has flowed into the irradiated region is also polymerized by active energy rays.
 このようにして、光重合された樹脂が照射領域に選択的に偏在するフィルムが得られる。このフィルムを「ハーフキュアフィルム」と称することがあり、ハーフキュアフィルムも、本発明のフィルムの一態様である。 In this way, a film in which the photopolymerized resin is selectively unevenly distributed in the irradiated region is obtained. This film may be referred to as a “half-cure film”, and the half-cure film is also an embodiment of the film of the present invention.
 得られたハーフキュアフィルムは、主に照射領域外に、未硬化の熱硬化性樹脂を含む。そこで、ハーフキュアフィルムを加熱することにより熱硬化性樹脂を硬化させる。このとき、熱硬化性樹脂に熱ラジカル開始剤が含まれていれば、光照射により重合できなかった光重合性樹脂の一部も熱重合させることができ、得られるフィルムにモノマーが残存することを防止することもできる。 The obtained half-cure film mainly contains an uncured thermosetting resin outside the irradiation region. Therefore, the thermosetting resin is cured by heating the half cure film. At this time, if the thermosetting resin contains a thermal radical initiator, a part of the photopolymerizable resin that could not be polymerized by light irradiation can also be thermally polymerized, and the monomer remains in the resulting film. Can also be prevented.
 ハーフキュアフィルムの加熱により、照射領域には光重合性樹脂の重合体が偏在し、それ以外の領域には熱硬化性樹脂の硬化物が偏在したフィルムが得られる。前記のとおり、光重合性樹脂に含まれるアクリル化合物の屈折率と、熱硬化性樹脂に含まれるエポキシ化合物の屈折率とに、差異を設けてあるので、光重合した樹脂の屈折率と、熱硬化した樹脂の屈折率も、ほぼ同程度の差異を有する。その結果、屈折率変調が記録されたフィルムが得られる。 By heating the half-cure film, a film in which the polymer of the photopolymerizable resin is unevenly distributed in the irradiated region and the cured product of the thermosetting resin is unevenly distributed in the other region is obtained. As described above, since there is a difference between the refractive index of the acrylic compound contained in the photopolymerizable resin and the refractive index of the epoxy compound contained in the thermosetting resin, the refractive index of the photopolymerized resin and the heat The refractive index of the cured resin also has almost the same difference. As a result, a film in which the refractive index modulation is recorded is obtained.
 各実施例および比較例で使用した各成分は以下の通りである。 Each component used in each example and comparative example is as follows.
 光重合性樹脂の成分
 フルオレン型アクリレート樹脂:9,9-ビス(4-(メタ)アクリロイルオキシフェニル)フルオレン(オグソールEA-0200、大阪ガスケミカル社製)
 アクリレート樹脂(フルオレン骨格を有さない):トリエチレングリコール ジメタクリレート
 光開始剤:イルガキュア651(チバスペシャルティケミカルズ社製)
Components of photopolymerizable resin Fluorene type acrylate resin: 9,9-bis (4- (meth) acryloyloxyphenyl) fluorene (Ogsol EA-0200, manufactured by Osaka Gas Chemical Company)
Acrylate resin (without fluorene skeleton): Triethylene glycol dimethacrylate Photoinitiator: Irgacure 651 (Ciba Specialty Chemicals)
 熱硬化性樹脂の成分
 ビスフェノールF型エポキシ樹脂;YL-983U(ジャパンエポキシレジン社製)
 熱硬化促進剤:トリスジメチルアミノメチルフェノール(JERキュア3010、ジャパンエポキシレジン社製)
 酸無水物(硬化剤):ヘキサヒドロ無水フタル酸とメチルヘキサヒドロ無水フタル酸との混合物(リカシッドMH-700、新日本理化社製)
 熱開始剤:パーブチルO(日油社製)
Components of thermosetting resin Bisphenol F type epoxy resin; YL-983U (manufactured by Japan Epoxy Resin Co., Ltd.)
Thermosetting accelerator: Trisdimethylaminomethylphenol (JER Cure 3010, manufactured by Japan Epoxy Resin Co., Ltd.)
Acid anhydride (curing agent): Mixture of hexahydrophthalic anhydride and methylhexahydrophthalic anhydride (Licacid MH-700, manufactured by Shin Nippon Rika Co., Ltd.)
Thermal initiator: Perbutyl O (manufactured by NOF Corporation)
 <試験片作製>
 各実施例または比較例において調製した組成物を、2枚のガラス板(60×60×1.3mm)にはさみ、カプトンテープで固定し試験片とした。2枚のガラス板の間にアルミ箔スペーサーを配置することにより、試験片の厚みを12μmに設定した。
<Test piece preparation>
The composition prepared in each Example or Comparative Example was sandwiched between two glass plates (60 × 60 × 1.3 mm) and fixed with Kapton tape to obtain a test piece. By placing an aluminum foil spacer between the two glass plates, the thickness of the test piece was set to 12 μm.
 <屈折率変調の記録>
 作製した試験片に、フォトマスク(図2参照)を介在させて、UV照射機(浜松ホトニクス社製のLIGHTNINGCURE LC8)を用いて、光強度10mW/cmで60秒間の露光をおこなった。用いたフォトマスクは、図2Aに示されたように50mm×50mmの中心領域(10×10mm)に、マトリックス状に孔を設けた部材である。図2Bに示されたように、孔の孔径は30μmであり、各孔の中心同士の距離は37.6μmであり、各孔同士の間隔は7.6μmである。
<Recording of refractive index modulation>
The produced test piece was exposed for 60 seconds at a light intensity of 10 mW / cm 2 using a UV irradiation machine (LIGHTNINGCURE LC8 manufactured by Hamamatsu Photonics) with a photomask (see FIG. 2) interposed. As shown in FIG. 2A, the used photomask is a member in which holes are provided in a matrix shape in a central region (10 × 10 mm) of 50 mm × 50 mm. As shown in FIG. 2B, the hole diameter is 30 μm, the distance between the centers of the holes is 37.6 μm, and the distance between the holes is 7.6 μm.
 その後、試験片を80℃のオーブンで2時間のアフターキュアをおこない、屈折率変調が記録されたフィルムを得た。 Thereafter, the test piece was after-cured for 2 hours in an oven at 80 ° C. to obtain a film on which the refractive index modulation was recorded.
 <評価>
 各実施例または比較例で得られた組成物、および屈折率変調が記録されたフィルムを、以下の項目について評価した。
<Evaluation>
The composition obtained in each example or comparative example and the film on which the refractive index modulation was recorded were evaluated for the following items.
 (1)透明性
 組成物を目視で観察して、透明で均一な溶液であり、かつ屈折率変調が記録されたフィルムも同様に目視で観察して、透明である場合を○、透明でない(白濁している等)場合を×と評価した。
 (2)粘度
 25℃における組成物の粘度を、E型粘度計(BROOKFIEL社製のデジタルレオメータ型式DII-III ULTRA)を用いて測定した。
 (3)記録性
 光学顕微鏡にて、フィルムにマスクの孔の形が記録されているか観察した。記録されている場合を○、記録されているが、一部わずかに記録されていない場合を○△、わずかに記録されている場合を△、記録されていない場合を×とした。
 (4)屈折率変調を記録したフィルムの屈折率変調
 干渉顕微鏡(透過型位相シフトレーザー顕微干渉計測装置、株式会社エフケー光学研究所)により、屈折率変調(照射領域の屈折率と、非照射領域の屈折率との差異)を測定した。入射光は、He-Neレーザー(波長:633nm)とした。本測定の原理は、APPLIED OPTICS, vol.41, No.7, 1308 (2002)に記載されている。屈折率の差異Δnは、屈折率変調を記録したフィルム中の、最大の屈折率と、最小の屈折率との差の値とした。
(1) Transparency The composition is visually observed to be a transparent and uniform solution, and the film on which the refractive index modulation is recorded is also visually observed. The case of white turbidity was evaluated as x.
(2) Viscosity The viscosity of the composition at 25 ° C. was measured using an E-type viscometer (Digital Rheometer Model DII-III ULTRA manufactured by BROOKFIEL).
(3) Recordability It was observed with an optical microscope whether the shape of the hole of the mask was recorded on the film. The case where it was recorded was marked with ◯, the case where it was recorded but partially recorded was marked with △, the case where it was slightly recorded was marked with △, and the case where it was not recorded was marked with ×.
(4) Refractive index modulation of film recording refractive index modulation Refractive index modulation (refractive index of irradiated region and non-irradiated region) by interference microscope (transmission type phase shift laser microscopic interference measuring device, FK Optical Research Laboratory) (Difference from the refractive index). The incident light was a He—Ne laser (wavelength: 633 nm). The principle of this measurement is described in APPLIED OPTICS, vol.41, No.7, 1308 (2002). The difference Δn in the refractive index is a value of the difference between the maximum refractive index and the minimum refractive index in the film on which the refractive index modulation is recorded.
 実施例1
 50質量部のオグソールEA-0200と、25質量部のYL-983Uと、25質量部のリカシッドMH-700とをフラスコに装入し、加温しながら混合した。その後、室温まで温度を下げて3質量部のイルガキュア651と、0.5質量部のパーブチルOを添加混合した。さらに、1質量部のJERキュア3010を加え、室温で攪拌して組成物を得た。得られた組成物から試験片を作製し、さらに屈折率変調を記録して、屈折率変調を記録したフィルムを作製した。
Example 1
50 parts by mass of Ogsol EA-0200, 25 parts by mass of YL-983U, and 25 parts by mass of Rikacid MH-700 were charged into a flask and mixed while heating. Thereafter, the temperature was lowered to room temperature, and 3 parts by mass of Irgacure 651 and 0.5 parts by mass of perbutyl O were added and mixed. Furthermore, 1 part by mass of JER Cure 3010 was added and stirred at room temperature to obtain a composition. A test piece was prepared from the obtained composition, and the refractive index modulation was further recorded to produce a film on which the refractive index modulation was recorded.
 実施例2~5
 各成分の配合比率(質量部)を、以下の表に示す通りにする以外は、実施例1と同様にして屈折率変調を記録したフィルムを得た。
Examples 2-5
A film in which the refractive index modulation was recorded was obtained in the same manner as in Example 1 except that the blending ratio (part by mass) of each component was as shown in the following table.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1~5で作製した組成物と、屈折率変調を記録したフィルムの評価結果を、以下の表に示す。 The following table shows the evaluation results of the compositions prepared in Examples 1 to 5 and the film on which the refractive index modulation was recorded.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 また、試験片作製に用いたガラス板の表面粗さを、AFMで測定した。中心線平均粗さRaは0.01μm、最大高さRmaxは0.35μmであった。作製されたフィルムの表面には、ガラスの表面の粗さが転写され、同程度の粗さを有していた。 Moreover, the surface roughness of the glass plate used for test piece preparation was measured by AFM. The center line average roughness Ra was 0.01 μm, and the maximum height Rmax was 0.35 μm. The surface roughness of the glass was transferred to the surface of the produced film, and had the same degree of roughness.
 さらに、実施例1で得られた屈折率変調を記録したフィルムの、屈折率変調のマップを図3に示す。屈折率の異なる(屈折率が高い)部位が、マトリックス状に配置されていることがわかる。 Furthermore, a map of refractive index modulation of the film on which the refractive index modulation obtained in Example 1 is recorded is shown in FIG. It can be seen that the portions having different refractive indexes (high refractive index) are arranged in a matrix.
 実施例6~7
 オグソールEA-0200の代わりに、フルオレン構造を有さないアクリレート樹脂である「トリエチレングリコール ジメタクリレート」を用いて、各成分の配合比率を以下の表に示す通りにすること以外は、実施例1と同様にして屈折率変調を記録したフィルムを得た。
Examples 6-7
Example 1 except that “triethylene glycol dimethacrylate”, which is an acrylate resin having no fluorene structure, was used instead of Ogsol EA-0200, and the blending ratio of each component was as shown in the following table. In the same manner as described above, a film on which refractive index modulation was recorded was obtained.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例6および7では、記録性の評価結果は△であった。これは、光重合性樹脂として用いたアクリレート樹脂に、フルオレン骨格が含まれていないため、屈折率の差異が高まらなかったためであると思われる。 In Examples 6 and 7, the evaluation result of the recordability was Δ. This is presumably because the difference in refractive index did not increase because the acrylate resin used as the photopolymerizable resin did not contain a fluorene skeleton.
 本出願は、2008年7月10日出願の出願番号JP2008-180578(特願2008-180578)に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。 This application claims priority based on application number JP2008-180578 (Japanese Patent Application No. 2008-180578) filed on Jul. 10, 2008. The contents described in the application specification and the drawings are all incorporated herein.
 本発明の屈折率変調記録フィルムは、光の指向性を制御するなどの機能を有しうる。そのため本発明の屈折率変調記録フィルムは、例えば光の取り出し効率を高めることができ、発光デバイス(例えば有機電界発光素子)の一部材として用いれば、デバイスの光取り出し効率を高めることができる。
 
The refractive index modulation recording film of the present invention can have functions such as controlling the directivity of light. Therefore, the refractive index modulation recording film of the present invention can increase the light extraction efficiency, for example, and can increase the light extraction efficiency of the device when used as a member of a light emitting device (for example, an organic electroluminescent element).

Claims (16)

  1.  第1の屈折率を有する第1領域と、第2の屈折率を有する第2領域を有し、かつ前記第2領域は、前記第1領域に分散しているフィルムであって、
     前記フィルム表面における、前記第2領域の円相当径の平均値は5μm以上500μm以下であり、かつ前記第2領域同士の間隔の平均値は5μm以上500μm以下であり、
     前記第1領域と前記第2領域の屈折率差(Δn)が0.001~2.0であるフィルム。
    A film having a first region having a first refractive index and a second region having a second refractive index, wherein the second region is dispersed in the first region;
    On the film surface, the average value of the equivalent circle diameter of the second region is 5 μm or more and 500 μm or less, and the average value of the interval between the second regions is 5 μm or more and 500 μm or less,
    A film in which a difference in refractive index (Δn) between the first region and the second region is 0.001 to 2.0.
  2.  AFM(原子間力顕微鏡)で測定した表面粗度Raが、0.01~1μmである、請求項1に記載のフィルム。 2. The film according to claim 1, wherein the surface roughness Ra measured by AFM (atomic force microscope) is 0.01 to 1 μm.
  3.  第2領域が略円柱状である、請求項1に記載のフィルム。 The film according to claim 1, wherein the second region is substantially cylindrical.
  4.  第1領域から第2領域にかけて、屈折率が匂配的に変調している、請求項1に記載のフィルム。 The film according to claim 1, wherein the refractive index is odorically modulated from the first region to the second region.
  5.  屈折率分布型マイクロレンズである、請求項1に記載のフィルム。 The film according to claim 1, which is a refractive index distribution type microlens.
  6.  第1領域と第2領域のいずれか一方が、フルオレン骨格を有する樹脂を含む、請求項1に記載のフィルム。 The film according to claim 1, wherein one of the first region and the second region contains a resin having a fluorene skeleton.
  7.  第1領域と第2領域のいずれか一方が、エポキシ樹脂を含む、請求項1に記載のフィルム。 The film according to claim 1, wherein one of the first region and the second region contains an epoxy resin.
  8.  屈折率がnD[A]であるアクリル化合物と、
     屈折率がnD[B]であり、光ラジカル重合性官能基を有さないエポキシ化合物と、
     光ラジカル開始剤と、
     熱硬化性促進剤と、を含んでなる組成物であって、
     |nD[B]-nD[A]| が0.001以上2.0以下であり、
     E型粘度計で測定した25℃での粘度が0.01以上100Pa・s以下である屈折率変調記録用の組成物。
    An acrylic compound having a refractive index of nD [A];
    An epoxy compound having a refractive index of nD [B] and having no photo-radically polymerizable functional group;
    A photo radical initiator;
    A thermosetting accelerator, comprising:
    | ND [B] −nD [A] | is 0.001 or more and 2.0 or less,
    A composition for refractive index modulation recording, wherein the viscosity at 25 ° C. measured with an E-type viscometer is 0.01 to 100 Pa · s.
  9.  アクリル化合物がフルオレン骨格を有し、かつ前記アクリル化合物の分子量が、100以上1000以下である、請求項8に記載の組成物。 The composition according to claim 8, wherein the acrylic compound has a fluorene skeleton, and the molecular weight of the acrylic compound is from 100 to 1,000.
  10.  熱ラジカル開始剤をさらに含む、請求項8に記載の組成物。 The composition according to claim 8, further comprising a thermal radical initiator.
  11.  フィルム状である、請求項8に記載の組成物。 The composition according to claim 8, which is in the form of a film.
  12.  請求項8に記載の組成物を用意する第1の工程と、前記組成物に活性エネルギー線を位置選択的に照射する第2の工程と、前記活性エネルギー線を照射された組成物を加熱する第3の工程と、を含む屈折率変調を記録したフィルムの製造方法であって、
     前記屈折率変調を記録したフィルムは、
       第1の屈折率を有する第1領域と、第2の屈折率を有する第2領域を有し、かつ前記第2領域は、前記第1領域に分散しており、
       前記フィルム表面における、前記第2領域の円相当径の平均値は5μm以上500μm以下であり、かつ前記第2領域同士の間隔の平均値は5μm以上500μm以下であり、
       前記第1領域と前記第2領域の屈折率差(Δn)が0.001~2.0である、製造方法。
    A first step of preparing the composition according to claim 8, a second step of site-selectively irradiating the composition with active energy rays, and heating the composition irradiated with the active energy rays. A method for producing a film on which a refractive index modulation is recorded, comprising:
    The film recording the refractive index modulation is
    A first region having a first refractive index and a second region having a second refractive index, and the second region is dispersed in the first region;
    On the film surface, the average value of the equivalent circle diameter of the second region is 5 μm or more and 500 μm or less, and the average value of the interval between the second regions is 5 μm or more and 500 μm or less,
    The manufacturing method, wherein a difference in refractive index (Δn) between the first region and the second region is 0.001 to 2.0.
  13.  第1の工程において、前記組成物は、有機EL素子上に薄膜状に配置される、請求項12に記載の製造方法。 The manufacturing method according to claim 12, wherein, in the first step, the composition is disposed in a thin film shape on the organic EL element.
  14.  請求項8に記載の組成物を用意する第1の工程と、前記組成物に活性エネルギー線を位置選択的に照射する第2の工程と、を含む屈折率変調を記録したフィルムの製造方法であって、
     前記屈折率変調を記録したフィルムは、
       第1の屈折率を有する第1領域と、第2の屈折率を有する第2領域を有し、かつ前記第2領域は、前記第1領域に分散しており、
       前記フィルム表面における、前記第2領域の円相当径の平均値は5μm以上500μm以下であり、かつ前記第2領域同士の間隔の平均値は5μm以上500μm以下であり、
       前記第1領域と前記第2領域の屈折率差(Δn)が0.001~2.0である、製造方法。
    A method for producing a film on which refractive index modulation is recorded, comprising: a first step of preparing the composition according to claim 8; and a second step of position-selectively irradiating the composition with active energy rays. There,
    The film recording the refractive index modulation is
    A first region having a first refractive index and a second region having a second refractive index, and the second region is dispersed in the first region;
    On the film surface, the average value of the equivalent circle diameter of the second region is 5 μm or more and 500 μm or less, and the average value of the interval between the second regions is 5 μm or more and 500 μm or less,
    The manufacturing method, wherein a difference in refractive index (Δn) between the first region and the second region is 0.001 to 2.0.
  15.  有機EL素子が配置されたパネル基板と、前記パネル基板と対になる対向基板と、前記パネル基板と前記対向基板との間に介在し、前記有機EL素子を封止するシール層と、を含む発光装置であって、
     前記シール層は、
       第1の屈折率を有する第1領域と、第2の屈折率を有する第2領域を有し、かつ前記第2領域は、前記第1領域に分散しており、
       前記シール層の表面における、前記第2領域の円相当径の平均値は5μm以上500μm以下であり、かつ前記第2領域同士の間隔の平均値は5μm以上500μm以下であり、
       前記第1領域と前記第2領域の屈折率差(Δn)が0.001~2.0である、発光装置。
    A panel substrate on which the organic EL element is disposed, a counter substrate that is paired with the panel substrate, and a seal layer that is interposed between the panel substrate and the counter substrate and seals the organic EL element. A light emitting device,
    The sealing layer is
    A first region having a first refractive index and a second region having a second refractive index, and the second region is dispersed in the first region;
    The average equivalent circle diameter of the second region on the surface of the seal layer is 5 μm or more and 500 μm or less, and the average value of the interval between the second regions is 5 μm or more and 500 μm or less,
    The light emitting device, wherein a difference in refractive index (Δn) between the first region and the second region is 0.001 to 2.0.
  16.  請求項15に記載の発光装置を製造する方法であって、
     請求項1に記載のフィルムを有機EL素子に接着させる工程と、前記接着させたフィルムを硬化させる工程と、を含む発光装置の製造方法。
     
    A method for manufacturing the light emitting device according to claim 15, comprising:
    A method for manufacturing a light emitting device, comprising: a step of adhering the film according to claim 1 to an organic EL element; and a step of curing the adhered film.
PCT/JP2009/003205 2008-07-10 2009-07-09 Film in which refractive index modulation is recorded WO2010004753A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010519651A JP5315344B2 (en) 2008-07-10 2009-07-09 Film with recorded refractive index modulation
KR1020107023451A KR101278860B1 (en) 2008-07-10 2009-07-09 Film in which refractive index modulation is recorded

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008180578 2008-07-10
JP2008-180578 2008-07-10

Publications (1)

Publication Number Publication Date
WO2010004753A1 true WO2010004753A1 (en) 2010-01-14

Family

ID=41506877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003205 WO2010004753A1 (en) 2008-07-10 2009-07-09 Film in which refractive index modulation is recorded

Country Status (4)

Country Link
JP (1) JP5315344B2 (en)
KR (1) KR101278860B1 (en)
TW (1) TWI456785B (en)
WO (1) WO2010004753A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111512192A (en) * 2018-01-03 2020-08-07 株式会社Lg化学 Optical film
WO2022049906A1 (en) * 2020-09-03 2022-03-10 ソニーセミコンダクタソリューションズ株式会社 Image display device and electronic device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06130206A (en) * 1992-10-20 1994-05-13 Nitto Denko Corp Lens, microlens array plate and its production
JPH08160842A (en) * 1994-10-03 1996-06-21 Nippon Paint Co Ltd Photosensitive composition for three-dimensional hologram recording, recording medium using that and forming method of three-dimensional hologram
JP2001281417A (en) * 2000-03-29 2001-10-10 Fuji Photo Film Co Ltd Graded index lens, lens array and optical device
JP2002296402A (en) * 2000-08-29 2002-10-09 Jsr Corp Radiation-sensitive variable refractive index composition and method for varying refractive index
JP2003185820A (en) * 2001-12-21 2003-07-03 Jsr Corp Radiation sensitive refractive index variable composition and method for varying refractive index
JP2004138686A (en) * 2002-10-16 2004-05-13 Daiso Co Ltd Photosensitive composition for volume phase type hologram recording, hologram record medium, its manufacturing method and hologram recording method
JP2005057239A (en) * 2003-03-27 2005-03-03 Nichia Chem Ind Ltd Semiconductor light emitting device and its manufacturing method
JP2007291395A (en) * 2002-01-10 2007-11-08 Tomoegawa Paper Co Ltd Nanocomposite material for manufacturing refractive index gradient-type film

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5702846A (en) * 1994-10-03 1997-12-30 Nippon Paint Co. Ltd. Photosensitive composition for volume hologram recording

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06130206A (en) * 1992-10-20 1994-05-13 Nitto Denko Corp Lens, microlens array plate and its production
JPH08160842A (en) * 1994-10-03 1996-06-21 Nippon Paint Co Ltd Photosensitive composition for three-dimensional hologram recording, recording medium using that and forming method of three-dimensional hologram
JP2001281417A (en) * 2000-03-29 2001-10-10 Fuji Photo Film Co Ltd Graded index lens, lens array and optical device
JP2002296402A (en) * 2000-08-29 2002-10-09 Jsr Corp Radiation-sensitive variable refractive index composition and method for varying refractive index
JP2003185820A (en) * 2001-12-21 2003-07-03 Jsr Corp Radiation sensitive refractive index variable composition and method for varying refractive index
JP2007291395A (en) * 2002-01-10 2007-11-08 Tomoegawa Paper Co Ltd Nanocomposite material for manufacturing refractive index gradient-type film
JP2004138686A (en) * 2002-10-16 2004-05-13 Daiso Co Ltd Photosensitive composition for volume phase type hologram recording, hologram record medium, its manufacturing method and hologram recording method
JP2005057239A (en) * 2003-03-27 2005-03-03 Nichia Chem Ind Ltd Semiconductor light emitting device and its manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111512192A (en) * 2018-01-03 2020-08-07 株式会社Lg化学 Optical film
JP2021505967A (en) * 2018-01-03 2021-02-18 エルジー・ケム・リミテッド Optical film
JP7138897B2 (en) 2018-01-03 2022-09-20 エルジー・ケム・リミテッド optical film
US11903243B2 (en) 2018-01-03 2024-02-13 Lg Chem, Ltd. Optical film
WO2022049906A1 (en) * 2020-09-03 2022-03-10 ソニーセミコンダクタソリューションズ株式会社 Image display device and electronic device

Also Published As

Publication number Publication date
TWI456785B (en) 2014-10-11
KR101278860B1 (en) 2013-07-01
JP5315344B2 (en) 2013-10-16
JPWO2010004753A1 (en) 2011-12-22
KR20100124831A (en) 2010-11-29
TW201004002A (en) 2010-01-16

Similar Documents

Publication Publication Date Title
Yang et al. Fabrication of hexagonal compound eye microlens array using DMD-based lithography with dose modulation
JP5607346B2 (en) Photosensitive resin composition, coating film, pattern and display device
US7026634B2 (en) Method and apparatus for forming optical materials and devices
JP2016029489A (en) Photosensitive resin composition
JP5315344B2 (en) Film with recorded refractive index modulation
JP4641835B2 (en) Method of manufacturing phase shifter optical element and element obtained
US20040101268A1 (en) Optical device structures based on photo-definable polymerizable composites
US20040101782A1 (en) Method for making optical device structures
Cheong et al. High sensitive SiO 2/TiO 2 hybrid sol-gel material for fabrication of 3 dimensional continuous surface relief diffractive optical elements by electron-beam lithography
WO2019093460A1 (en) Optical waveguide and method for manufacturing same
KR100786800B1 (en) Fabrication method of micro-optical elements using photoimageable hybrid materials
Hermans et al. Rapid, direct fabrication of antireflection-coated microlens arrays by photoembossing
JP4282070B2 (en) Optical waveguide and method for manufacturing the same
JP5665351B2 (en) Manufacturing method of optical components
US20050069637A1 (en) Method for manufacturing planar optical waveguide
JP2007137998A (en) Curable composition and optical material obtained by curing the same
WO2023112650A1 (en) Method for manufacturing lens
JP2014199369A (en) Optical waveguide and electronic apparatus
JP4178996B2 (en) Polymer optical waveguide
Pina-Hernandez et al. Ultra-high refractive index materials for patterning diffractive optical elements with nanoimprint lithography
US20240168227A1 (en) High refractive index nanoimprintable resin for optical waveguide applications
KR20090049350A (en) Microlens array and its manufacture method
WO2023136203A1 (en) Resin composition, film, and display device
JP2015138243A (en) Irregular structure, irregular structure manufacturing method, optical component, and optical device
Takei et al. Fabrication of optical film derived from biomass using eco-friendly nanoimprint lithography

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09794200

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010519651

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107023451

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09794200

Country of ref document: EP

Kind code of ref document: A1