WO2010003271A1 - Transmission apparatus, reception apparatus, transmission method, and reception method - Google Patents

Transmission apparatus, reception apparatus, transmission method, and reception method Download PDF

Info

Publication number
WO2010003271A1
WO2010003271A1 PCT/CN2008/001282 CN2008001282W WO2010003271A1 WO 2010003271 A1 WO2010003271 A1 WO 2010003271A1 CN 2008001282 W CN2008001282 W CN 2008001282W WO 2010003271 A1 WO2010003271 A1 WO 2010003271A1
Authority
WO
WIPO (PCT)
Prior art keywords
space
frequency
time
signal
bipolar
Prior art date
Application number
PCT/CN2008/001282
Other languages
French (fr)
Chinese (zh)
Inventor
李栋
朱孝龙
杨红卫
Original Assignee
上海贝尔阿尔卡特股份有限公司
阿尔卡特朗讯
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海贝尔阿尔卡特股份有限公司, 阿尔卡特朗讯 filed Critical 上海贝尔阿尔卡特股份有限公司
Priority to PCT/CN2008/001282 priority Critical patent/WO2010003271A1/en
Priority to CN200880130020.3A priority patent/CN102067476B/en
Publication of WO2010003271A1 publication Critical patent/WO2010003271A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station

Definitions

  • the present invention relates to the field of mobile communication technologies, and in particular, to a transmitting device, a receiving device, and a transmitting and receiving method, which can maintain a communication connection between two communicating parties when the terminal moves at a high speed.
  • the object of the present invention is to provide a transmitting device, a receiving device, and a transmitting and receiving method, which can pass multiple Antenna technology mitigates the effects of ICI and at the same time increases the robustness of the radio link between the transmitting device and the receiving device.
  • QAM modulation unit 311 performs QAM modulation on the input symbols to obtain QAM modulation symbols, such as s Q , Sl , s 2 , ..., s 15 , as inputs to DP-SFBC unit 312.
  • QAM modulation symbols such as s Q , Sl , s 2 , ..., s 15
  • DP-SFBC unit 312 two or more adjacent symbols in the QAM modulation symbols described above are encoded as one set, and DP-SFBC coded symbols for the two transmit antennas are output.
  • the coding result of the DP-SFBC unit 312 of the embodiment of the present invention is expressed as follows:
  • the receiving antenna receives the radio frequency signal, and then performs processing such as low noise amplification, down conversion, synchronization, etc. (not shown), and outputs the received signal as an input signal of the DFT unit 135. Then, the DFT unit 315 performs DFT conversion on the input signal, and shifts to the frequency domain (S20).
  • the channel estimating unit 316 obtains channel estimation information such as a channel matrix (S21) based on the received training sequence, for example.
  • the ICI cancel combining unit 317 performs a cancel combining process on the received data signal and the channel estimation signal (S22).
  • the detection procedures of ICI cancellation combining processing and DP-SFBC encoding described below are mainly performed for four adjacent subcarriers involved in DP-SFBC encoding.
  • the channel is quasi-static in the frequency domain, that is, the channel change is block-based, and the channel remains substantially constant within the blocks of the four subcarriers. This is required for simple ML detection, but it should be noted that the present invention is not limited to quasi-static situations.
  • the solution of the embodiments of the present invention can use MMSE detection instead of ML detection. .
  • the ICI coefficient of the conventional SFBC is as shown in the formula (4), and the power ratio of the signal to the ICI interference can be expressed as follows:

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)

Abstract

A transmission apparatus, reception apparatus, transmission method, and reception method are disclosed. The transmission apparatus includes: a modulation unit for modulating the signal to be transmitted by constellation, an encoding unit for grouping and double polarized space frequency or space time block encoding the symbols of the modulated signal, and the sign of the elements of the odd rows is opposite to the sign of the elements of the even rows in the block which is implemented double polarized space frequency or space time block encoding, and the elements of the first row and the elements of the third row constitute the code block of space frequency or space time block encoding, a frequency to time converting unit for implementing mapping from time to frequency and frequency to time conversion to the signal which is double polarized space frequency or space time block encoded, and transmitting the converted signal by corresponding antenna. The complexity of the scheme in the embodiment of the invention is lower, the scheme can apply to the actual communication system. And the additional spatial diversity gain can be provided; the robustness of the radio link's application in the high mobility is enhanced further.

Description

发送设备、 接收设备以及发送和接收方法 技术领域  Transmitting device, receiving device, and transmitting and receiving method
本发明涉及一种移动通信技术领域, 具体涉及一种发送设备、 接收设备以及发送 和接收方法, 能够在终端高速移动的情况下保持通信双方之间的通信连接。 背景技术  The present invention relates to the field of mobile communication technologies, and in particular, to a transmitting device, a receiving device, and a transmitting and receiving method, which can maintain a communication connection between two communicating parties when the terminal moves at a high speed. Background technique
现代通信系统都要满足高移动性要求, 例如在高速移动的车辆上的用户配备的移 动终端需要时刻保持与基站或者通信对方的连接。 在 IEEE802.16m和 3GPP LTE中, 需要支持大约 120〜350km/h的移动性,甚至未来在某些频段或者布置中要满足髙达 500km/h的移动性。 但是, 在 OFDM通信系统中, 该移动性会带来较大的多普勒频 移, 这将破坏子载波之间的正交性并且导致严重的载波间干扰(ICI) 。 因此, 系统的 性能严重恶化。  Modern communication systems are required to meet high mobility requirements. For example, a mobile terminal equipped by a user on a high-speed mobile vehicle needs to maintain a connection with a base station or a communication partner at all times. In IEEE802.16m and 3GPP LTE, it is necessary to support mobility of about 120 to 350 km/h, and even in the future, in some frequency bands or arrangements, mobility of up to 500 km/h should be satisfied. However, in an OFDM communication system, this mobility introduces a large Doppler shift, which will destroy orthogonality between subcarriers and cause severe inter-carrier interference (ICI). As a result, the performance of the system deteriorates significantly.
在髙移动性应用中, 目前有两种 ICI消除方案。 一种是将复杂的信道均衡技术应 用于接收机侧, 以便消除 ICI的影响,例如在非专利文献 1 (Xiaodong C^ Georgios B. Giannakis, Bounding Performance and Suppressing Intercarrier Interference in Wireless Mobile OFDM, IEEE Transactions on Communications, Vol. 51, No. 12, Dec 2003 )和非专 禾 ϋ文献 2 (Won Gi Jeon, Kyung Hi Chang, An Equalization Technique for Orthogonal Frequency-Division Multiplexing Systems in Time- Variant Multipath Channels, IEEE Transactions on Communications, Vol. 47, No. 1, Jan 1999) 中描述的那样。 但是, 由于 采用了高复杂度的均衡技术, 但是在实际的应用中不灵活(尽管可以在一定程度上降 低复杂度)。  In the 髙 mobility application, there are currently two ICI elimination schemes. One is to apply a complex channel equalization technique to the receiver side in order to eliminate the influence of ICI, for example, in Non-Patent Document 1 (Xiaodong C^ Georgios B. Giannakis, Bounding Performance and Suppressing Intercarrier Interference in Wireless Mobile OFDM, IEEE Transactions on Communications, Vol. 51, No. 12, Dec 2003 ) and Kyung Hi Chang, An Equalization Technique for Orthogonal Frequency-Division Multiplexing Systems in Time- Variant Multipath Channels, IEEE Transactions on Communications , Vol. 47, No. 1, Jan 1999). However, due to the high complexity of the equalization technique, it is not flexible in practical applications (although the complexity can be reduced to some extent).
图 1示出了高复杂度均衡技术在单天线通信系统中的应用。 如图 1所示, 在基站 侧, FEC单元 110例如用 Turbo编码方案之类的信道编码方法对所输入的信息比特序 列进行信道编码, 输出编码比特序列。然后, QAM调制单元 111例如用 16QAM调制 方案对信道编码编码输出的编码比特序列进行星座调制, 输出调制符号序列, 作为编 码数据流。 IDFT单元 112对编码数据流通过 IDFT变换进行 OFDM调制, 产生对应 针对发射天线的时域信号。 该时域信号通过上转换之类的操作通过该发射天线发射出 去。  Figure 1 illustrates the application of high complexity equalization techniques in a single antenna communication system. As shown in Fig. 1, on the base station side, the FEC unit 110 performs channel coding on the input information bit sequence, for example, using a channel coding method such as a turbo coding scheme, and outputs a coded bit sequence. Then, the QAM modulation unit 111 constellates the coded bit sequence outputted by the channel coding, for example, with a 16QAM modulation scheme, and outputs a sequence of modulation symbols as a coded data stream. The IDFT unit 112 performs OFDM modulation on the encoded data stream by IDFT transform to generate a time domain signal corresponding to the transmit antenna. The time domain signal is transmitted through the transmitting antenna by an operation such as up-conversion.
另外, 在移动设备侧, DFT单元 113对输入信号进行 DFT变换, 将信号从时域 转换到频域。 然后, 信道估计单元 114根据接收到的训练序列, 获得信道估计信号, 例如从基站到移动设备的信道矩阵。 如上所述, 在该现有技术中, 信道均衡单元 115 使用高复杂度的信道均衡技术对信号进行均衡, 以便消除 ICI的影响。然后, QAM解 调单元 116对均衡后的符号进行 QAM解调, 输出对应比特的软信息序列。 解码单元 117对于 QAM解调单元 116输出的比特软信息进行信道译码, 输出译码后的信息比 特序列。 In addition, on the mobile device side, the DFT unit 113 performs DFT conversion on the input signal, and takes the signal from the time domain. Convert to the frequency domain. Channel estimation unit 114 then obtains a channel estimate signal, such as a channel matrix from the base station to the mobile device, based on the received training sequence. As described above, in this prior art, the channel equalization unit 115 equalizes the signal using a highly complex channel equalization technique to eliminate the influence of the ICI. Then, the QAM demodulation unit 116 performs QAM demodulation on the equalized symbols, and outputs a soft information sequence of the corresponding bits. The decoding unit 117 performs channel decoding on the bit soft information output from the QAM demodulating unit 116, and outputs the decoded information bit sequence.
第二种是将干扰抵消调制技术应用于发射机侧, 这种调制技术可以使得在接收机 侧以较低的复杂度抵消子载波间干扰, 如非专利文献 3 ( Yuping Zhao, et al, Intercarrier Interference Self-Cancellation Scheme for OFDM Mobile Communication Systems, IEEE Transactions on Communications, Vol. 49, No. 7, July 2001 ) 所述。  The second is to apply the interference cancellation modulation technique to the transmitter side. This modulation technique can cancel the inter-subcarrier interference with low complexity on the receiver side, as in Non-Patent Document 3 (Yuping Zhao, et al, Intercarrier). Interference Self-Cancellation Scheme for OFDM Mobile Communication Systems, IEEE Transactions on Communications, Vol. 49, No. 7, July 2001).
图 2示出了 ICI抵消调制技术在 OFDM系统中的应用。 如图 2所示, 在基站侧, FEC单元 211例如用 Turbo编码方案之类的信道编码方法对所输入的信息比特序列进 行信道编码, 输出编码比特序列。然后, QAM调制单元 212例如用 16QAM调制方案 对信道编码编码输出的编码比特序列进行星座调制, 输出调制符号序列, 作为编码数 据流。 ICI抵消调制单元 213对调制符号流进行 ICI自抵消调制。  Figure 2 shows the application of ICI cancellation modulation techniques in OFDM systems. As shown in Fig. 2, on the base station side, the FEC unit 211 performs channel coding on the input information bit sequence by, for example, a channel coding method such as a turbo coding scheme, and outputs a coded bit sequence. Then, the QAM modulation unit 212 constellates the coded bit sequence outputted by the channel coding and coding, for example, with a 16QAM modulation scheme, and outputs a sequence of modulation symbols as an encoded data stream. The ICI cancellation modulation unit 213 performs ICI self-cancelling modulation on the modulation symbol stream.
IDFT单元 214对编码数据流通过 IDFT变换进行 OFDM调制, 产生对应针对发 射天线的时域信号。 该时域信号通过上转换之类的操作通过该发射天线发射出去。  The IDFT unit 214 OFDM-modulates the encoded data stream by IDFT transform to produce a time domain signal corresponding to the transmit antenna. The time domain signal is transmitted through the transmitting antenna by an operation such as up-conversion.
另外, 在移动设备侧, DFT单元 215对输入信号进行 DFT变换, 将信号从时域 转换到频域。 然后, 信道估计单元 216根据接收到的训练序列, 获得信道估计信号, 例如信道矩阵。 如上所述, 在该现有技术中, ICI抵消合并单元 217对接收到的数据- 信号和信道估计信号进行抵消合并处理, 以便消除 ICI的影响。然后, QAM解调单元 218对均衡后的符号进行 QAM解调, 输出对应比特的软信息序列。 解码单元 219对 于 QAM解调单元 218输出的比特软信息进行信道译码,输出译码后的信息比特序列。  In addition, on the mobile device side, the DFT unit 215 performs DFT conversion on the input signal to convert the signal from the time domain to the frequency domain. Channel estimation unit 216 then obtains a channel estimate signal, such as a channel matrix, based on the received training sequence. As described above, in the prior art, the ICI cancel combining unit 217 performs a cancel combining process on the received data-signal and channel estimation signal to eliminate the influence of the ICI. Then, the QAM demodulating unit 218 performs QAM demodulation on the equalized symbols, and outputs a soft information sequence of the corresponding bits. The decoding unit 219 performs channel decoding on the bit soft information output from the QAM demodulating unit 218, and outputs the decoded information bit sequence.
如上所述, 在单天线 OFDM系统中, 在发射机侧进行 ICI抵消调制, 而在接收机 侧进行 ICI抵消解调操作, 从而以简单的方式实现了高移动性情况下的 ICI消除。 虽 然第二种方案能够消除 ICI, 但是它仅仅能够应用于单发射天线的情况下。 对于多天 线传输而言, 目前还没有有效的消除 ICI的方案。 发明内容  As described above, in the single-antenna OFDM system, ICI cancellation modulation is performed on the transmitter side, and ICI cancellation demodulation operation is performed on the receiver side, thereby realizing ICI cancellation in the case of high mobility in a simple manner. Although the second solution can eliminate ICI, it can only be applied to a single transmit antenna. For multi-antenna transmission, there is currently no effective solution to eliminate ICI. Summary of the invention
本发明的目的是提出一种发送设备、 接收设备以及发送和接收方法, 能够通过多 天线技术减轻 ICI的影响并且同时提高发送设备和接收设备之间的无线电链路的鲁棒 性。 The object of the present invention is to provide a transmitting device, a receiving device, and a transmitting and receiving method, which can pass multiple Antenna technology mitigates the effects of ICI and at the same time increases the robustness of the radio link between the transmitting device and the receiving device.
在本发明的一个方面, 提出了一种具备多根天线的发送设备, 包括: 调制单元, 对要发送的信号进行星座调制; 编码单元, 将调制后的信号中的符号进行分组并进行 双极性空频或空时分块编码, 其中双极性空频或空时分块编码后的码块中的奇数行的 元素的符号与偶数行的元素的符号相反, 并且第一行元素及第三行元素构成空频或空 时分块编码的码块; 以及频时变换单元, 对经过双极性空频或空时分块编码的信号进 行时频映射后进行频时变换, 通过相应的天线发射经过频时变换的信号。  In an aspect of the invention, a transmitting device having a plurality of antennas is provided, comprising: a modulating unit that performs constellation modulation on a signal to be transmitted; and a coding unit that groups symbols in the modulated signal and performs bipolar Space-space or space-time block coding, in which the symbols of the elements of the odd-numbered lines in the bipolar space-frequency or space-time block-coded code block are opposite to the symbols of the elements of the even-numbered lines, and the first line element and the third line The element constitutes a code block of space-frequency or space-time block coding; and a frequency-time transform unit performs time-frequency mapping on the signal encoded by the bipolar space-frequency or space-time block, and performs frequency-time transform, and transmits the frequency through the corresponding antenna. Time transformed signal.
在本发明的另一方面, 提出了一种接收设备, 包括: 时频变换单元, 对来自发送 设备的时域信号进行时频变换, 输出频域信号; 信道估计单元, 估计从发送设备到接 收设备的信道信息; 子载波间干扰抵消合并单元, 对接收到的数据信号和信道信息进 行子载波间干扰抵消合并处理, 其中所述数据信号在发送设备侧被双极性空频或空时 分块编码, 双极性空频或空时分块编码后的码块中的奇数行的元素的符号与偶数行的 元素的符号相反并且第一行元素及第三行元素构成空频分块编码后的码块; 以及检测 单元, 用预定的检测方法对抵消合并处理后的信号进行检测, 以便将与经过了双极性 空频或空时分块编码的符号分开。  In another aspect of the present invention, a receiving apparatus is provided, including: a time-frequency transform unit that performs time-frequency transform on a time domain signal from a transmitting device, and outputs a frequency domain signal; a channel estimating unit that estimates from a transmitting device to receiving Channel information of the device; inter-subcarrier interference cancellation combining unit, performing inter-subcarrier interference cancellation combining processing on the received data signal and channel information, wherein the data signal is divided by bipolar space frequency or space time on the transmitting device side Encoding, the symbol of the element of the odd-numbered row in the bipolar space-frequency or space-time block-coded code block is opposite to the sign of the element of the even-numbered row, and the first row element and the third row element constitute the space-frequency block-encoded code And a detecting unit that detects the canceled combined signal by a predetermined detecting method to separate the symbol encoded by the bipolar space-frequency or space-time block.
在本发明的再一方面, 提出了一种在具备多根天线的设备中的发送方法, 包括: 对要 发送的信号进行星座调制; 将调制后的信号中的符号进行分组并进行双极性空频或空 时分块编码, 其中双极性空频或空时分块编码后的码块中的奇数行的元素的符号与偶 数行的元素的符号相反, 并且第一行元素及第三行元素构成空频或空时分块编码的码 块; 以及对经过双极性空频或空时分块编码的信号进行时频映射后进行频时变换, 通 过相应的天线发射经过频时变换的信号。 In still another aspect of the present invention, a transmission method in a device having a plurality of antennas is provided, comprising: performing constellation modulation on a signal to be transmitted; grouping symbols in the modulated signal and performing bipolarity Space-frequency or space-time block coding, in which the symbols of the elements of the odd-numbered lines in the bipolar space-frequency or space-time block-coded code block are opposite to the symbols of the elements of the even-numbered lines, and the first line element and the third line element a code block constituting a space-frequency or space-time block code; and performing time-frequency mapping on the signal subjected to bipolar space-frequency or space-time block coding, and performing frequency-time transform, and transmitting the frequency-time-converted signal through the corresponding antenna.
在本发明的又一方面, 提出了一种接收来自发送设备的信号的方法, 包括: 对来 自发送设备的时域信号进行时频变换, 输出频域信号; 估计从发送设备到接收设备的 信道信息; 对接收到的数据信号和信道信息进行子载波间干扰抵消合并处理, 其中所 述数据信号在发送设备侧被双极性空频或空时分块编码, 双极性空频或空时分块编码 后的码块中的奇数行的元素的符号与偶数行的元素的符号相反并且第一行元素及第 三行元素构成空频或空时分块编码后的码块; 以及用预定的检测方法对抵消合并处理 后的信号进行检测, 以便将与经过了双极性空频或空时分块编码的符号分开。  In still another aspect of the present invention, a method for receiving a signal from a transmitting device is provided, comprising: performing time-frequency transform on a time domain signal from a transmitting device, outputting a frequency domain signal; estimating a channel from the transmitting device to the receiving device Information; performing inter-subcarrier interference cancellation combining processing on the received data signal and channel information, wherein the data signal is coded by bipolar space frequency or space time block on the transmitting device side, bipolar space frequency or space time block The symbols of the elements of the odd rows in the encoded code block are opposite to the symbols of the elements of the even rows and the first row element and the third row element form a code block of space-frequency or space-time block-coded; and a predetermined detection method The signal after the cancellation combining process is detected to separate the symbols encoded by the bipolar space-frequency or space-time block.
本发明实施例提出的基于 DP-SFBC/DP-STBC的发射和接收方案不仅提供空间分 集增益, 从而提髙发送设备和接收设备之间的链路鲁棒性, 而且以非常低的计算复杂 度降低了 ICI的影响。 因此, 本发明实施例的基于 DP-SFBC/DP-STBC的方案非常适 合于未来移动通信系统的高移动性。 附图说明 The DP-SFBC/DP-STBC-based transmission and reception scheme proposed by the embodiment of the present invention not only provides space division The gain is set to improve the link robustness between the transmitting device and the receiving device, and the impact of ICI is reduced with very low computational complexity. Therefore, the DP-SFBC/DP-STBC-based scheme of the embodiment of the present invention is very suitable for high mobility of future mobile communication systems. DRAWINGS
阅读了下面的详细说明以及附图之后, 本发明的这些以及其它的目的和优点将变 得更加清楚, 在附图中- 图 1示出了一种现有技术的 ICI消除方法的示意图;  These and other objects and advantages of the present invention will become more apparent from the detailed description of the accompanying claims <
图 2示出了另一现有技术的 ICI消除方法的示意图;  Figure 2 shows a schematic diagram of another prior art ICI cancellation method;
图 3是根据本发明实施例的通信系统的示意性结构框图;  3 is a schematic structural block diagram of a communication system according to an embodiment of the present invention;
图 4是说明根据本发明实施例的发送方法的详细流程图;  4 is a detailed flowchart illustrating a transmitting method according to an embodiment of the present invention;
图 5是说明根据本发明实施例的接收方法的详细流程图; 以及  FIG. 5 is a detailed flowchart illustrating a receiving method according to an embodiment of the present invention; and
图 6是根据本发明实施例的通信系统与传统 SFBC OFDM的 SIR比较示例。 具体实施方式  6 is an example of SIR comparison of a communication system with conventional SFBC OFDM according to an embodiment of the present invention. detailed description
下面对照附图来说明根据本发明各个实施例的发送设备、 接收设备及发送和接收 方法。  A transmitting device, a receiving device, and a transmitting and receiving method according to various embodiments of the present invention will be described below with reference to the accompanying drawings.
在高移动性应用中, 最需要考虑的并不是高数据率, 而是要保持通信连接。 为了 增加发送设备和接收设备之间的无线电链路的鲁棒性, 可以考虑传统的 (标准的) 空 间-频率分块编码方案,这样可以引入空间分集, 从而提髙高移动性情况下的无线电链 路的鲁棒性。 这里, 发送设备例如是基站, 而接收设备例如是移动终端。 自然, 发送 设备也可以是移动终端, 此时接收设备是基站。  In high mobility applications, the most important consideration is not the high data rate, but the communication connection. In order to increase the robustness of the radio link between the transmitting device and the receiving device, a conventional (standard) space-frequency block coding scheme can be considered, which can introduce spatial diversity, thereby improving the radio in the case of high mobility. Link robustness. Here, the transmitting device is, for example, a base station, and the receiving device is, for example, a mobile terminal. Naturally, the transmitting device can also be a mobile terminal, in which case the receiving device is a base station.
但是, 在传统的 SFBC方案中, 髙移动性应用中出现的严重子载波干扰同样会大 大降低链路的性能。 为了解决该问题,'提出了一种双极性 SFBC。 该双极性 SFBC的 基本思想是将 ICI抵消调制方案嵌入在 SFBC编码方中。 由于这种方案等同于两个符 号相反的 SFBC编码矩阵的交错布置, 因此将其称为双极性 SFBC。  However, in the traditional SFBC scheme, the severe subcarrier interference that occurs in the mobility application also greatly reduces the performance of the link. To solve this problem, 'a bipolar SFBC was proposed. The basic idea of this bipolar SFBC is to embed the ICI cancellation modulation scheme in the SFBC coding side. Since this scheme is equivalent to the staggered arrangement of two SFBC coding matrices with opposite symbols, it is called bipolar SFBC.
图 3示出了根据本发明实施例的通信系统的示意性结构框图。 在该方案中, 发送 设备侧有两根发射天线,而接收设备侧有一根接收天线。但是这仅仅是示意性的说明, 本领域的普通技术人员很容易将上述的情形扩展到更多发射天线和更多接收天线的 情况。 如图 3所示, 根据本发明实施例的发送设备包括 FEC单元 310、 QAM调制单元 311、 DP-SFBC单元 312、 第一 IDFT单元 313、 第二 IDFT单元 314。 下面对照附图 4 详细说明该发送设备的具体构成和操作过程。 FIG. 3 shows a schematic structural block diagram of a communication system according to an embodiment of the present invention. In this scheme, there are two transmitting antennas on the transmitting device side and one receiving antenna on the receiving device side. However, this is merely a schematic illustration, and one of ordinary skill in the art can easily extend the above situation to more transmit antennas and more receive antennas. As shown in FIG. 3, a transmitting apparatus according to an embodiment of the present invention includes an FEC unit 310, a QAM modulation unit 311, a DP-SFBC unit 312, a first IDFT unit 313, and a second IDFT unit 314. The specific configuration and operation of the transmitting device will be described in detail below with reference to FIG.
FEC单元 310例如用 Turbo编码之类的信道编码方法对所输入的信息比特序列进 行信道编码,输出编码比特序列(S10)。 QAM调制单元 311例如用 16QAM或者 QPSK 等调制方案对编码输出的编码比特序列进行星座调制, 输出调制符号序列 (Sl l )。 DP-SFBC单元 312对调制符号序列分组(分块)并进行双极性空频分块编码(分组编 码), 即 DP-SFBC编码, 输出两个编码数据流分别对应两个发射天线 (S12)。 然后, 第一 IDFT单元 313对上述第一个编码数据流通过 IDFT变换进行 OFDM调制, 产生 对应第一发射天线的时域信号, 第二 IDCT单元 314对上述第二个编码数据流通过 IDFT变换进行 OFDM调制, 产生对应第二发射天线的时域信号。 然后, 两根发射天 线将两个数据流信号在经过数模变换 (ADC), 上变频等 (为清楚描述本发明的目的, ADC, 上变频等模块在框图中已省略) 处理之后发射出去 (S13 )。  The FEC unit 310 performs channel coding on the input information bit sequence using, for example, a channel coding method such as Turbo coding, and outputs a coded bit sequence (S10). The QAM modulation unit 311 constellates the coded bit sequence of the coded output by, for example, a modulation scheme such as 16QAM or QPSK, and outputs a modulation symbol sequence (S1 l ). The DP-SFBC unit 312 groups (blocks) the modulation symbol sequence and performs bipolar space-frequency block coding (packet coding), that is, DP-SFBC coding, and outputs two coded data streams respectively corresponding to two transmit antennas (S12) . Then, the first IDFT unit 313 performs OFDM modulation on the first encoded data stream by IDFT conversion to generate a time domain signal corresponding to the first transmit antenna, and the second IDCT unit 314 performs IDFT conversion on the second encoded data stream. OFDM modulation produces a time domain signal corresponding to the second transmit antenna. Then, the two transmit antennas transmit the two data stream signals after being processed by digital-to-analog conversion (ADC), upconversion, etc. (for the purpose of clearly describing the present invention, the ADC, the up-conversion module, etc. have been omitted in the block diagram). S13).
下面以具体的例子详细说明本发明的发送方法的处理过程。 例如, QAM 调制单 元 311对输入的符号进行 QAM调制, 得到 QAM调制符号, 例如 sQ, Sl, s2, ……, s15, 作为 DP-SFBC单元 312的输入。 在 DP-SFBC单元 312中, 对上述的 QAM调制符号 中两两相邻的符号作为一组, 进行编码, 输出针对两根发射天线的经 DP-SFBC编码 的符号。与传统的 SFBC编码矩阵 (块)不同,对于符号 so, Sl,本发明实施例的 DP-SFBC 单元 312的编码结果表示如下: The processing of the transmission method of the present invention will be described in detail below with specific examples. For example, QAM modulation unit 311 performs QAM modulation on the input symbols to obtain QAM modulation symbols, such as s Q , Sl , s 2 , ..., s 15 , as inputs to DP-SFBC unit 312. In the DP-SFBC unit 312, two or more adjacent symbols in the QAM modulation symbols described above are encoded as one set, and DP-SFBC coded symbols for the two transmit antennas are output. Unlike the conventional SFBC coding matrix (block), for the symbols so, Sl , the coding result of the DP-SFBC unit 312 of the embodiment of the present invention is expressed as follows:
Figure imgf000007_0001
Figure imgf000007_0001
其中, sD'和 S 是 s n s,的共轭,编码矩阵的列对应于两根发射天线,而编码矩阵(块) 的行对应于物理上相邻的四个子载波。 根据该编码矩阵, 我们可以看出, 第一和第三 行构成了传统的 SFBC 编码矩阵 (块), 也就是第一和第三行正好对应于通过标准的 SFBC进行编码后的结果, 而第二和第四行是正好与第一和第三行的符号相反。 自然, 对于其他的符号 s2和 s3, s4和 s5, ……, 514和315,有类似的编码结果。 Where s D ' and S are conjugates of sns, the columns of the coding matrix correspond to two transmit antennas, and the rows of the coding matrix (blocks) correspond to four subcarriers that are physically adjacent. According to the coding matrix, we can see that the first and third lines constitute a conventional SFBC coding matrix (block), that is, the first and third lines correspond exactly to the results encoded by the standard SFBC, and The second and fourth lines are exactly opposite to the symbols of the first and third lines. Naturally, for other symbols s 2 and s 3 , s 4 and s 5 , ..., 5 14 and 3 15 , there are similar coding results.
然后, 在经过时频资源映射之后, 通过分别与发射天线 1和发射天线 2相对应的 第一 IDFT单元 313和第二 IDFT单元 314对上述编码结果进行 IDFT变换,将信号变 换到时域, 再经过数模变换, 上变频等处理 (图中未示出) 之后通过两个天线发射出 去。 Then, after the time-frequency resource mapping, the first IDFT unit 313 and the second IDFT unit 314 corresponding to the transmitting antenna 1 and the transmitting antenna 2 respectively perform IDFT conversion on the above-mentioned encoding result, and the signal is changed. Switch to the time domain, and then through digital-to-analog conversion, up-conversion and other processing (not shown) and then transmit through two antennas.
如图 3所示, 根据本发明实施例的接收设备包括: DFT单元 315、 信道估计单元 316、 ICI抵消合并单元 317、 检测单元 318、 QAM解调单元 319和解码单元 320。 下 面对照附图 5详细说明该接收设备的具体构成和操作过程。  As shown in FIG. 3, a receiving apparatus according to an embodiment of the present invention includes: a DFT unit 315, a channel estimating unit 316, an ICI cancel combining unit 317, a detecting unit 318, a QAM demodulating unit 319, and a decoding unit 320. The specific configuration and operation of the receiving device will be described in detail below with reference to FIG.
首先, 接收天线接收无线射频信号, 再经过低噪放大, 下变频, 同步等处理 (图 中未示出), 输出接收信号, 作为 DFT单元 135的输入信号。 然后, DFT单元 315对 输入信号进行 DFT变换, 转换到频域 (S20)。 信道估计单元 316例如根据接收到的 训练序列, 获得信道估计信息, 诸如信道矩阵 (S21 )。 ICI抵消合并单元 317对接收 到的数据信号和信道估计信号进行抵消合并处理 (S22)。  First, the receiving antenna receives the radio frequency signal, and then performs processing such as low noise amplification, down conversion, synchronization, etc. (not shown), and outputs the received signal as an input signal of the DFT unit 135. Then, the DFT unit 315 performs DFT conversion on the input signal, and shifts to the frequency domain (S20). The channel estimating unit 316 obtains channel estimation information such as a channel matrix (S21) based on the received training sequence, for example. The ICI cancel combining unit 317 performs a cancel combining process on the received data signal and the channel estimation signal (S22).
检测单元 318对于抵消合并后的数据信号和信道估计信号进行 SFBC检测, 输出 检测后的调制符号估计 (S23)。  The detecting unit 318 performs SFBC detection on the canceled combined data signal and the channel estimation signal, and outputs the detected modulation symbol estimate (S23).
QAM解调单元 319对检测单元 318输出的符号进行 QAM解调,输出对应比特的 软信息序列 (S24)。 接下来, 解码单元 320对于 QAM解调单元 318输出的比特软信 息进行新到译码, 输出译码后的信息比特序列 (S25 )。  The QAM demodulating unit 319 performs QAM demodulation on the symbols output from the detecting unit 318, and outputs a soft information sequence of the corresponding bits (S24). Next, the decoding unit 320 performs new decoding on the bit soft information output from the QAM demodulating unit 318, and outputs the decoded information bit sequence (S25).
具体来说,在接收设备侧,在通过 DFT单元 315进行 OFDM解调后,对 DP-SFBC 的检测分两步进行。在第一步, 在 ICI抵消解调单元 317, 进行 ICI抵消合并, 以便消 除 ICI的影响。在第二步,在检测单元 318,进行最大相似度检测, 以便将与 DP-SFBC 编码相关的两个符号分开。  Specifically, on the receiving device side, after OFDM demodulation by the DFT unit 315, the detection of the DP-SFBC is performed in two steps. In the first step, the ICI cancellation demodulation unit 317 performs ICI cancellation combining to eliminate the effects of the ICI. In the second step, at detection unit 318, maximum similarity detection is performed to separate the two symbols associated with DP-SFBC coding.
下面描述的 ICI抵消合并处理和 DP-SFBC编码的检测过程主要是针对 DP-SFBC 编码中涉及的四个相邻子载波而进行的。 另外, 设信道在频域是准静态的, 也就是信 道变化是基于块的, 在四个子载波的块内, 信道基本上保持恒定。 这是针对简单的 ML检测所要求的, 但是需要注意本发明并不局限于准静态的情况, 对于具有较大频 率选择性的无线电信道, 本发明实施例的方案可以使用 MMSE检测来代替 ML检测。  The detection procedures of ICI cancellation combining processing and DP-SFBC encoding described below are mainly performed for four adjacent subcarriers involved in DP-SFBC encoding. In addition, it is assumed that the channel is quasi-static in the frequency domain, that is, the channel change is block-based, and the channel remains substantially constant within the blocks of the four subcarriers. This is required for simple ML detection, but it should be noted that the present invention is not limited to quasi-static situations. For radio channels with greater frequency selectivity, the solution of the embodiments of the present invention can use MMSE detection instead of ML detection. .
例如, 在第一和第二子载波上接收的信号可以表示如下- y0 =∑ H χ (Sll2 χ - p(l + 1)) + s;/2+l x ρ{1 + 3)— p l + 2))) For example, the signals received on the first and second subcarriers can be expressed as follows - y 0 = ∑ H χ (S ll2 χ - p(l + 1)) + s; /2+l x ρ{1 + 3) — pl + 2)))
/=0  /=0
'- k … (2) '- k ... (2)
+∑ i x (5-//2+1 x (p(l) - p{l + 1)) + S;n x {p( + 2) - p{l + 3))) + "0 +∑ i x (5- //2+1 x (p(l) - p{l + 1)) + S; n x {p( + 2) - p{l + 3))) + " 0
/=0  /=0
l=Ak N-l l=Ak Nl
^. =∑ HW4 x (S x (p(l一 1)— p{l)) + 5;/2+1 x {p{l + 2)— p(l + 1))) ^. =∑ H W4 x (S x (p(l_1)— p{l)) + 5; /2+1 x {p{l + 2)— p(l + 1)))
/=0  /=0
N-)  N-)
+∑ H2J,4 x (Sl/2+] x (p(l - 1) _ p(l)) + S;/2 x (p(l + 1) - p(l + 2))) + ", +∑ H 2J , 4 x (S l/2+] x (p(l - 1) _ p(l)) + S; /2 x (p(l + 1) - p(l + 2))) + ",
/=4A 这里, Hm>k 表示第 k个子载波上发射天线 m-1之间的信道系数(注意, 每个块包含 4 个子载波)。 序列 p(l) 被定义为子载波偏移为 /的 ICI系数, 表示如下
Figure imgf000009_0001
/=4A Here, H m>k represents the channel coefficient between the transmitting antennas m-1 on the kth subcarrier (note that each block contains 4 subcarriers). The sequence p(l) is defined as an ICI coefficient with a subcarrier offset of /, expressed as follows
Figure imgf000009_0001
其中 f表示用载波间隔归一化后的频率偏移值 (例如由于移动性引起的多普勒频移)。 Where f denotes the frequency offset value normalized by the carrier spacing (e.g., Doppler shift due to mobility).
对于符号 so和 Sl, 可以利用上式 (2 ) 和 (3 ) 来进行 ICI抵消合并操作, 也就是 将 yo与负的 相加, 具体如下: For the symbols so and S1 , the ICI cancellation combining operation can be performed by using the above equations (2) and (3), that is, adding yo and negative, as follows:
W - 1 W - 1
0 =∑ HW4 x (Sl/2 x (2/7(7) - p(l + 1) - p(l - 1)) + 5;/2+1 x (p(l + 3) + p(l + 1) - 2p(l + 2)))0 =∑ H W4 x (S l/2 x (2/7(7) - p(l + 1) - p(l - 1)) + 5; /2+1 x (p(l + 3) + p(l + 1) - 2p(l + 2)))
/=0 /=0
l=Ak  l=Ak
+∑ HWi x (Sl/2+] x (2p(l)― p{l + 1)— p{l― 1)) + S x (2p(l + 2)— p( + 3) - p{l + 1))) + "。—",+∑ H Wi x (S l/2+] x (2p(l)― p{l + 1)— p{l― 1)) + S x (2p(l + 2)— p( + 3) - p{l + 1))) + ".-",
/=0 /=0
… (5)  ... (5)
由公式 (5 ) 可以看出, 本发明 DP-SFBC的 ICI系数可以表示为- q(l) = 2p{l) - p{l - \) - p{l + \) ... (6) 并且信号与 ICI干扰的功率比可以表示为-
Figure imgf000009_0002
It can be seen from the formula (5) that the ICI coefficient of the DP-SFBC of the present invention can be expressed as -q(l) = 2p{l) - p{l - \) - p{l + \) ... (6) And the power ratio of the signal to the ICI interference can be expressed as -
Figure imgf000009_0002
作为参照, 传统 SFBC的 ICI系数如公式 (4)所示, 并且信号与 ICI干扰的功率比可以 表示如下:
Figure imgf000009_0003
As a reference, the ICI coefficient of the conventional SFBC is as shown in the formula (4), and the power ratio of the signal to the ICI interference can be expressed as follows:
Figure imgf000009_0003
图 6中比较了 DP-SFBC及传统 SFBC的信号与 ICI干扰的功率比,由图 6中可以 看出, 本发明实施例提出的 DP-SFBC比传统 SFBC提高了约 15个 dB的信号与 ICI 干扰的功率比, 因此, 可以大大提高系统性能。 上式 (5) 还可以表示成: FIG. 6 compares the power ratio of the signal of the DP-SFBC and the conventional SFBC to the ICI interference. As can be seen from FIG. 6, the DP-SFBC proposed by the embodiment of the present invention improves the signal and ICI by about 15 dB compared with the conventional SFBC. The power ratio of the interference, therefore, can greatly improve system performance. The above formula (5) can also be expressed as:
yo =¾x Hl0 x (2p(0) - p(l)一 /7(—1)) + 5,x H20 x (2p(0) - p(l) - p(-\)) + w{ Yo =3⁄4x H l0 x (2p(0) - p(l) -/7(-1)) + 5,x H 20 x (2p(0) - p(l) - p(-\)) + w {
= S0 Hl0+SlxH20 + wi = S 0 H l0 +S l xH 20 + w i
'. (9)  '. (9)
其中 wo包含了上式(5)中的噪声和所有的 ICI项. =H,,。x (2/7(0) Where wo contains the noise in equation (5) above and all ICI terms. =H,,. x (2/7(0)
i-1,2, 表示等效信道系数, 它可以通 对信道估计结果进行自抵消合并得到。 I-1, 2, represents the equivalent channel coefficient, which can be obtained by self-cancelling and combining the channel estimation results.
类似地, 在 ICI抵消合并之后的第三载波上的接收符号表示如下  Similarly, the received symbols on the third carrier after the ICI cancellation combining are expressed as follows
yi = S x Hl 0 x (2p(0) - p(\) - p(- 1》 + 5; x Η χ (2 (0) - ρ(\) - ρ(-\)) + w,
Figure imgf000010_0001
Yi = S x H l 0 x (2p(0) - p(\) - p(- 1) + 5; x Η χ (2 (0) - ρ(\) - ρ(-\)) + w ,
Figure imgf000010_0001
… (10)  ... (10)
基于上式 (9) 和 (10), 针对 SQ和 的 ML检测可以基于下面的最大比合并 而进行: Based on the above equations (9) and (10), ML detection for S Q and can be performed based on the following maximum ratio combining:
…(11)...(11)
Figure imgf000010_0003
Figure imgf000010_0003
其中, _y。和 表示自抵消合并之后的结果, 分别如公式 (9) 和公式 (10) 所示。 Where _y. And the results after the self-cancellation merge are shown as equations (9) and (10), respectively.
^,,ο = ^,,ο X (2 (0) - C1) - i"1)) > i=l,2, ……, 表示对信道估计结果进行自抵消合并 得到的等价信道估计。 Δ表示合并增益, 表示如下:
Figure imgf000010_0002
^,, ο = ^,, ο X ( 2 (0) - C 1 ) - i" 1 )) > i = l, 2, ..., represents the equivalent channel estimation obtained by self-cancelling the channel estimation results Δ represents the combined gain, expressed as follows:
Figure imgf000010_0002
相比于基于高复杂度信道均衡的 ICI消除方案, 本发明实施例所提出的方案具有 较低的复杂度, 这是能够灵活应用于实际的通信系统。 与使用 ICI抵消调制技术的方 案相比, 所提出的新方案能够提供附加的空间分集增益, 这更进一步提高了高移动性 应用中无线电链路的鲁棒性。  Compared with the ICI cancellation scheme based on high complexity channel equalization, the solution proposed by the embodiment of the present invention has lower complexity, which can be flexibly applied to an actual communication system. Compared with the scheme using ICI cancellation modulation technology, the proposed new scheme can provide additional spatial diversity gain, which further improves the robustness of the radio link in high mobility applications.
【变体】  【Variants】
虽然以上以两根天线和双极性空频分组编码为例描述了本发明实施例的方法和 设备, 但是本领域的普通技术人员会将其扩展到更多根发射天线的情况以及双极性空 时分组编码 (DP-STBC) 的情况。 例如在双极性空时分组编码的情况下, 每个双极性 空时编码块中的每一行对与相邻的多个时域符号相关联, 而每一行对中的两行与物理 上相邻的两个子载波相关联, 并且公式 (1) 中的第一行和第三行构成了标准的 (传 统的) STBC编码后的码块。  Although the method and apparatus of the embodiments of the present invention have been described above by taking two antennas and bipolar space frequency block coding as an example, those skilled in the art will extend the case to more transmit antennas and bipolar. Space Time Block Coding (DP-STBC) case. For example, in the case of bipolar space-time block coding, each row pair in each bipolar space-time coding block is associated with an adjacent plurality of time domain symbols, and two rows in each row pair are physically Two adjacent subcarriers are associated, and the first and third rows in equation (1) constitute a standard (conventional) STBC encoded code block.
以上所虽然以功能模块的形式描述了本发明实施例的通信系统的构成及其功能, 但是这并不意味着将本发明限定于上述的形式。 本领域的普通技术人员能够将其中的 一个或者多个模块进行组合, 或者将其中的一个模块的功能分别在两个或者更多个模 块中实现。 Although the above describes the configuration and functions of the communication system of the embodiment of the present invention in the form of functional modules, However, this is not meant to limit the invention to the above forms. One of ordinary skill in the art can combine one or more of the modules, or implement the functions of one of the modules in two or more modules.
另外, 上述的通信系统中的功能模块可以由软件来实现, 也可以由硬件来实现, 或者由软件和硬件一起来实现。  In addition, the functional modules in the above communication system may be implemented by software, may be implemented by hardware, or may be implemented by software and hardware.
可以对上述的内容进行各种具体的实施或者改变而不偏离本发明的实质和精髓。 上述的实施例意欲例证本发明, 而非想要限制本发明的范围。 本发明的范围由所附的 权利要求而非实施例来限定。 在权利要求范围内和本发明权利要求的意义和等同范围 内进行的各种修改被视为在本发明的范围之中。  Various specific implementations or changes can be made to the above described without departing from the spirit and essence of the invention. The above-described embodiments are intended to illustrate the invention, and are not intended to limit the scope of the invention. The scope of the invention is defined by the appended claims rather than the embodiments. Various modifications made within the meaning and range of the claims of the invention are considered to be within the scope of the invention.

Claims

1、 一种具备多根天线的发送设备, 包括- 调制单元, 对要发送的信号进行星座调制; 1. A transmitting device having a plurality of antennas, comprising: a modulating unit for performing constellation modulation on a signal to be transmitted;
编码单元, 将调制后的信号中的符号进行分组并进行双极性空频或空时分块编 码, 其中双极性空频或空时分块编码后的码块中的奇数行的元素的符号与偶数行的元 素的符号相反, 并且第一行元素及第三行元素构成空频或空时分块编码的码块; 以及 频时变换单元, 对经过双极性空频或空时分块编码的信号迸行时频映射后进行频 权  a coding unit, which groups the symbols in the modulated signal and performs bipolar space-frequency or space-time block coding, where the symbols of the elements of the odd-numbered lines in the bipolar space-frequency or space-time block-coded code block are The symbols of the elements of the even rows are opposite, and the first row element and the third row element constitute a code block of space frequency or space time block coding; and the frequency time transform unit encodes the signal subjected to bipolar space frequency or space time block coding. Frequency-weighted after time-frequency mapping
时变换, 通过相应的天线发射经过频时变换的信号。 Time-shifting, transmitting a frequency-shifted signal through a corresponding antenna.
2、 如权利要求 1 所述的发送设备, 其中, 每个双极性空频编码块中的行与物理 上相邻的多个子载波相关联。  2. The transmitting device of claim 1, wherein the rows in each bipolar space frequency coding block are associated with a plurality of physically adjacent subcarriers.
3、 如权利要求 1 所述的发送设备, 其中每个双极性空时编码块中的每一行对与 求  3. The transmitting device of claim 1, wherein each row pair and each of the bipolar space time coding blocks
相邻的多个时域符号相关联, 而每一行对中的两行与物理上相邻的两个子载波相关 联。 Adjacent multiple time domain symbols are associated, and two of each row pair are associated with physically adjacent two subcarriers.
4、 如权利要求 1所述的发送设备, 其中所述发送设备是基站或移动终端。  4. The transmitting device according to claim 1, wherein the transmitting device is a base station or a mobile terminal.
5、 一种接收设备, 包括:  5. A receiving device, comprising:
时频变换单元, 对来自发送设备的时域信号进行时频变换, 输出频域信号; 信道估计单元, 估计从发送设备到接收设备的信道信息;  a time-frequency transform unit that performs time-frequency transform on a time domain signal from the transmitting device to output a frequency domain signal; and a channel estimating unit that estimates channel information from the transmitting device to the receiving device;
子载波间干扰抵消合并单元, 对接收到的数据信号和信道信息进行子载波间干扰 抵消合并处理, 其中所述数据信号在发送设备侧被双极性空频或空对分块编码, 双极 性空频或空时分块编码后的码块中的奇数行的元素的符号与偶数行的元素的符号相 反并且第一行元素及第三行元素构成空频或空时分块编码后的码块; 以及  Inter-subcarrier interference cancellation combining unit, performing inter-subcarrier interference cancellation combining processing on the received data signal and channel information, wherein the data signal is encoded by bipolar space frequency or space pair block on the transmitting device side, bipolar The symbols of the elements of the odd-numbered rows in the coded block of the spatial space-time or space-time block are opposite to the symbols of the elements of the even-numbered rows, and the first row element and the third row element form a code block of the space-frequency or space-time block-encoded code block. ; as well as
检测单元, 用预定的检测方法对抵消合并处理后的信号进行检测, 以便将与经过 了双极性空频或空时分块编码的符号分开。  The detecting unit detects the canceled combined signal by a predetermined detecting method to separate the symbols encoded by the bipolar space-frequency or space-time block.
6、 如权利要求 5 所述的接收设备, 其中所述检测算法包括最大相似度检测算法 和最小均方差算法之一。  6. The receiving device according to claim 5, wherein the detection algorithm comprises one of a maximum similarity detection algorithm and a minimum mean square error algorithm.
7、 如权利要求 5 所述的接收设备, 其中所述子载波间干扰抵消合并单元将相邻 子载波上接收的信号相减来消除子载波间干扰。  7. The receiving device according to claim 5, wherein the inter-subcarrier interference cancellation combining unit subtracts signals received on adjacent subcarriers to eliminate inter-subcarrier interference.
8、 如权利要求 5 所述的接收设备, 其中所述子载波间干扰抵消合并单元在与双 极性空频或空时分块编码相关联的多个子载波间进行子载波干扰抵消合并处理。 8. The receiving device according to claim 5, wherein the inter-subcarrier interference cancellation combining unit performs subcarrier interference cancellation combining processing between a plurality of subcarriers associated with bipolar space frequency or space time block coding.
9、 如权利要求 5所述的接收设备, 其中所述接收设备是移动终端或基站。9. The receiving device according to claim 5, wherein the receiving device is a mobile terminal or a base station.
10、 一种在具备多根天线的设备中的发送方法, 包括: 10. A method of transmitting in a device having multiple antennas, comprising:
对要发送的信号进行星座调制;  Constellation modulation of the signal to be transmitted;
将调制后的信号中的符号进行分组并进行双极性空频或空时分块编码, 其中双极 性空频或空时分块编码后的码块中的奇数行的元素的符号与偶数行的元素的符号相 反, 并且第一行元素及第三行元素构成空频或空时分块编码的码块; 以及  The symbols in the modulated signal are grouped and subjected to bipolar space-frequency or space-time block coding, wherein the symbols of the elements of the odd-numbered lines in the bipolar space-frequency or space-time block-coded code block and the even-numbered lines The elements have opposite signs, and the first row element and the third row element form a space-frequency or space-time block coded code block;
对经过双极性空频或空时分块编码的信号进行时频映射后进行频时变换, 通过相 应的天线发射经过频时变换的信号。  The time-frequency mapping of the signals encoded by the bipolar space-frequency or space-time block is subjected to frequency-time transform, and the frequency-transformed signal is transmitted through the corresponding antenna.
11、 如权利要求 10所述的发送方法, 其中, 每个双极性空频或空时编码块中的 行与物理上相邻的多个子载波相关联。  The transmission method according to claim 10, wherein each of the bipolar space-frequency or space-time coding blocks is associated with a plurality of physically adjacent subcarriers.
12、 如权利要求 10所述的发送方法, 其中每个双极性空时编码块中的每一行对 与相邻的多个时域符号相关联, 而每一行对中的两行与物理上相邻的两个子载波相关 联。  12. The transmitting method according to claim 10, wherein each row pair in each bipolar space time coding block is associated with adjacent plurality of time domain symbols, and two rows in each row pair are physically Two adjacent subcarriers are associated.
13、 一种接收来自发送设备的信号的方法, 包括:  13. A method of receiving a signal from a transmitting device, comprising:
对来自发送设备的时域信号进行时频变换, 输出频域信号;  Performing time-frequency transform on the time domain signal from the transmitting device, and outputting the frequency domain signal;
估计从发送设备到接收设备的信道信息;  Estimating channel information from the transmitting device to the receiving device;
对接收到的数据信号和信道信息进行子载波间干扰抵消合并处理, 其中所述数据 信号在发送设备侧被双极性空频或空时分块编码, 双极性空频或空时分块编码后的码 块中的奇数行的元素的符号与偶数行的元素的符号相反并且第一行元素及第三行元 素构成空频或空时分块编码后的码块; 以及  Performing inter-subcarrier interference cancellation combining processing on the received data signal and channel information, wherein the data signal is coded by bipolar space frequency or space time block coding on the transmitting device side, and bipolar space frequency or space time block coding The symbols of the elements of the odd rows in the code block are opposite to the symbols of the elements of the even rows and the first row element and the third row element form a space-frequency or space-time block-coded code block;
用预定的检测方法对抵消合并处理后的信号进行检测, 以便将与经过了双极性空 频或空时分块编码的符号分开。  The canceled merged signal is detected by a predetermined detection method to separate the symbols that have been subjected to bipolar space or space time block coding.
14、 如权利要求 13所述的接收方法, 其中所述检测算法包括最大相似度检测算 法和最小均方差算法之一。  The receiving method according to claim 13, wherein the detecting algorithm comprises one of a maximum similarity detecting algorithm and a minimum mean square error algorithm.
15、 如权利要求 13所述的接收方法, 其中将相邻子载波上接收的信号相减来消 除子载波间干扰。  The receiving method according to claim 13, wherein the signals received on adjacent subcarriers are subtracted to cancel inter-subcarrier interference.
16、 如权利要求 13所述的接收方法, 其中在与双极性空频或空时分块编码相关 联的多个子载波间进行子载波干扰抵消合并处理。  The receiving method according to claim 13, wherein the subcarrier interference cancellation combining processing is performed between a plurality of subcarriers associated with bipolar space frequency or space time block coding.
PCT/CN2008/001282 2008-07-07 2008-07-07 Transmission apparatus, reception apparatus, transmission method, and reception method WO2010003271A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2008/001282 WO2010003271A1 (en) 2008-07-07 2008-07-07 Transmission apparatus, reception apparatus, transmission method, and reception method
CN200880130020.3A CN102067476B (en) 2008-07-07 2008-07-07 Transmission apparatus, reception apparatus, transmission method, and reception method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2008/001282 WO2010003271A1 (en) 2008-07-07 2008-07-07 Transmission apparatus, reception apparatus, transmission method, and reception method

Publications (1)

Publication Number Publication Date
WO2010003271A1 true WO2010003271A1 (en) 2010-01-14

Family

ID=41506641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/001282 WO2010003271A1 (en) 2008-07-07 2008-07-07 Transmission apparatus, reception apparatus, transmission method, and reception method

Country Status (2)

Country Link
CN (1) CN102067476B (en)
WO (1) WO2010003271A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101056132A (en) * 2006-04-13 2007-10-17 上海贝尔阿尔卡特股份有限公司 Method and device for processing the base band of the space-time/space frequency/space diversity transmitter
CN101120529A (en) * 2004-11-12 2008-02-06 美商内数位科技公司 Method and apparatus for combining space-frequency block coding, spatial multiplexing and beamforming in a mimo-ofdm system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5649287A (en) * 1995-03-29 1997-07-15 Telefonaktiebolaget Lm Ericsson Orthogonalizing methods for antenna pattern nullfilling
KR100754795B1 (en) * 2004-06-18 2007-09-03 삼성전자주식회사 Apparatus and method for encoding/decoding space frequency block code for orthogonal frequency division multiplexing system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101120529A (en) * 2004-11-12 2008-02-06 美商内数位科技公司 Method and apparatus for combining space-frequency block coding, spatial multiplexing and beamforming in a mimo-ofdm system
CN101056132A (en) * 2006-04-13 2007-10-17 上海贝尔阿尔卡特股份有限公司 Method and device for processing the base band of the space-time/space frequency/space diversity transmitter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KIM JOONSKU ET AL.: "Optimum 4-transmit-antenna STBC/SFBC with angle feedback and a near-optimum 1-bit feedback scheme", IEEE COMMUNICATIONS LETTERS, November 2007 (2007-11-01) *

Also Published As

Publication number Publication date
CN102067476A (en) 2011-05-18
CN102067476B (en) 2013-06-05

Similar Documents

Publication Publication Date Title
CN106411380B (en) Base station and method
Jiang et al. A novel phase offset SLM scheme for PAPR reduction in Alamouti MIMO-OFDM systems without side information
JP4746809B2 (en) Estimation of two propagation channels in OFDM
KR100911424B1 (en) Method and apparatus for determining the log-likelihood ratio with precoding
EP1608081A2 (en) Apparatus and method for space-frequency block coding/decoding in a communication system
WO2006049443A1 (en) Apparatus and method for transmitting and receiving data using space-time block coding
US20110107174A1 (en) Method and apparatus for interchanging multipath signals in a sc-fdma system
KR20090119962A (en) Method of radio data emission and radio data emitter and radio data receiver
US20050152266A1 (en) Apparatus and method for canceling interference signal in an orthogonal frequency division multiplexing system using multiple antennas
KR101345351B1 (en) Method and apparatus of space-time-frequency coding
US10212019B1 (en) Sub-carrier adaptation in multi-carrier communication systems
TW200947926A (en) HARQ based ICI coding scheme
WO2007111198A1 (en) Transmission method and transmission device
WO2009104515A1 (en) Relay device, communication system, and communication method
Ogale et al. Performance evaluation of MIMO-OFDM system using Matlab® Simulink with real time image input
Divyatha et al. Design and BER performance of MIMO-OFDM for wireless broadband communications
KR20050094816A (en) Transmitter diversity method for ofdm system
Naumenko et al. Signal-code construction based on space-time block coding with dual-mode index modulation aided OFDM
US20110164623A1 (en) Parallel packet transmission
WO2010003271A1 (en) Transmission apparatus, reception apparatus, transmission method, and reception method
CN101115047A (en) OFDM receiving and dispatching system for high speed mobile environment
KR101225649B1 (en) Apparatus and method for channel estimation in multiple antenna communication system
CN113132286B (en) High-diversity and multiplexing-gain multi-carrier power domain non-orthogonal transmission design method
Li et al. Using cyclic prefix to mitigate carrier frequency and timing asynchronism in cooperative OFDM transmissions
Patil et al. Study of PTS based technique to reduce PAPR in SFBC MIMO OFDM system with reduced complexity

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880130020.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08757487

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08757487

Country of ref document: EP

Kind code of ref document: A1