WO2009154250A1 - Communication system, communication device, program, and communication method - Google Patents

Communication system, communication device, program, and communication method Download PDF

Info

Publication number
WO2009154250A1
WO2009154250A1 PCT/JP2009/061095 JP2009061095W WO2009154250A1 WO 2009154250 A1 WO2009154250 A1 WO 2009154250A1 JP 2009061095 W JP2009061095 W JP 2009061095W WO 2009154250 A1 WO2009154250 A1 WO 2009154250A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
transmission device
frequency
signal
unit
Prior art date
Application number
PCT/JP2009/061095
Other languages
French (fr)
Japanese (ja)
Inventor
一成 横枕
泰弘 浜口
晋平 藤
理 中村
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2009154250A1 publication Critical patent/WO2009154250A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0062Avoidance of ingress interference, e.g. ham radio channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to a communication system, a communication device, a program, and a communication method.
  • This application claims priority based on Japanese Patent Application No. 2008-161648 filed in Japan on June 20, 2008, the contents of which are incorporated herein by reference.
  • next-generation mobile communication systems have been studied, and a one-frequency repetitive cellular system has been proposed as a method for increasing the frequency utilization efficiency of the system.
  • this system since each cell uses the same frequency band, each cell can use the entire band allocated to the system.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • the downlink is communication from the base station device to the mobile station device.
  • the OFDMA scheme performs communication by flexibly allocating radio resources among a plurality of mobile station apparatuses using OFDM signals that are subjected to communication by performing different modulations on information data according to reception conditions.
  • 64-QAM 64-ary Quadrature Amplitude Modulation: 64-value quadrature amplitude modulation
  • BPSK Binary Phase Shift Keying: two-phase modulation
  • the radio resource is composed of a time axis and a frequency axis.
  • PAPR Peak to Average Power Ratio
  • high peak power does not pose a major problem in downlink communication where the transmission power amplification function has a relatively large margin.
  • the uplink is communication from the mobile station device to the base station device. Therefore, in the uplink, it is desirable to use a communication method based on a single carrier method with a low PAPR.
  • Non-Patent Document 1 Single Carrier-Adaptive Spectrum Allocation: Single Carrier Adaptive Spectrum Allocation
  • DFT-S-OFDM Discrete Fourier Transform-Spread OFDM: DFT Spread OFDM
  • Non-Patent Document 2 Spectrum overlapping resource management
  • turbo equalization nonlinear iterative equalization having an interference suppression function
  • the signal of each transmitting apparatus is changed to the frequency arrangement of the frequency signals of other transmitting apparatuses. Arrange freely. Then, regarding the overlapping frequency signals, mutual interference is suppressed by the interference suppression function of the receiving apparatus.
  • FIG. 13A is a schematic configuration diagram of a wireless communication system described in Non-Patent Document 2.
  • FIG. 13B is a diagram illustrating a spectrum of a frequency signal transmitted from the first transmission device 100 a to the reception device 101.
  • FIG. 13C is a diagram illustrating a spectrum of a frequency signal transmitted from the second transmitter 100b to the receiver 101.
  • FIG. 13D is a diagram illustrating a spectrum of a frequency signal received by the reception apparatus 101 from the first transmission apparatus 100a and the second transmission apparatus 100b.
  • the horizontal axis indicates the frequency.
  • This wireless communication system includes a first transmission device 100a that is a mobile station device, a second transmission device 100b that is a mobile station device, and a reception device 101 that is a base station device.
  • the wireless communication system of FIG. 13A uses spectrum overlap resource management (SORM).
  • SORM spectrum overlap resource management
  • the reception apparatus 101 uses the interference suppression function to suppress interference, and as a result, performs transmission using a frequency with better reception conditions. More specifically, the first transmission device 100a determines the first, second, fifth, and eighth frequency positions from a lower frequency to a higher frequency position arranged at regular intervals.
  • four frequency signals a11, a12, a13, and a14 are transmitted to the receiving apparatus 101. These frequency signals a11, a12, a13, and a14 change in amplitude and phase based on the propagation path characteristics and reach the receiving apparatus 101.
  • the second transmission device 100b receives a total of four frequency signals a21, a22, a23, and a24 using the first, fifth, sixth, and seventh frequency positions.
  • the receiving apparatus 101 receives a total of six frequency signals a31, a32, a33, a34, a35, a36 at the first, second, fifth, sixth, seventh, and eighth frequency positions.
  • signals a31 and a33 obtained by combining the transmission signals of the first transmission device 100a and the second transmission device 100b in a propagation vector manner are received.
  • the spectra of the signals a31 and a33 are indicated by dotted lines.
  • FIG. 14 is a schematic block diagram showing a configuration of a conventionally known first transmission device 100a (FIG. 13A). Note that the configuration of the second transmission device 100b (FIG. 13A) is the same as that of the first transmission device 100a, and thus the description thereof is omitted.
  • the first transmission device 100a includes a coding unit 1001Z, an interleaving unit 1002Z, a modulation unit 1003Z, an S / P (Serial to Parallel: serial / parallel) conversion unit 1004Z, a DFT (Discrete Fourier Transform) unit 1005Z, a spectrum Mapping unit 1006Z, IDFT (Inverse DFT: Inverse Discrete Fourier Transform) unit 1007Z, P / S (Parallel to Serial) unit 1008Z, Pilot signal generation unit 1009Z, Pilot multiplexing unit 1010Z, CP (Cyclic Prefix) Click prefix) Insertion part 1011Z, D / A (Digital to Analog) conversion 1012Z, and includes a wireless unit 1013Z, the transmit antenna 1014Z.
  • a coding unit 1001Z an interleaving unit 1002Z, a modulation unit 1003Z, an S / P (Serial to Parallel: serial / parallel) conversion unit 1004Z, a DFT (Discrete
  • Transmission data bits input to the first transmission device 100a are subjected to error correction encoding by the encoding unit 1001Z.
  • the code data bits output from the encoding unit 1001Z are rearranged in order (time order) by the interleaving unit 1002Z.
  • the interleaved code bits are mapped to signal points according to the modulation scheme by the modulation unit 1003Z, and a modulation signal is generated.
  • the modulated signal is converted from a serial signal to a parallel signal by the S / P converter 1004Z, and converted from a time signal to a frequency signal by the DFT unit 1005Z.
  • the frequency signal is spectrum-arranged based on spectrum allocation information notified from the receiving apparatus 101 (FIG. 13A) by the spectrum mapping unit 1006Z.
  • the arranged frequency signal is converted from a frequency signal to a time signal by the IDFT unit 1007Z. Then, the P / S converter 1008Z converts the parallel signal into a serial signal.
  • the pilot signal generation unit 1009Z generates a known pilot signal for estimating propagation path characteristics. This pilot signal is multiplexed with the serial signal obtained by P / S conversion section 1008Z and pilot multiplexing section 1010Z.
  • a cyclic prefix (CP) is inserted into the obtained signal by the CP insertion unit 1011Z.
  • the digital signal is converted into an analog signal by a D / A (Digital to Analog) converter 1012Z.
  • D / A Digital to Analog converter 1012Z.
  • it is up-converted to a radio frequency by the radio unit 1013Z and transmitted from the transmission antenna 1014Z to the receiving apparatus 101 (FIG. 13A).
  • FIG. 15 is a schematic block diagram showing a configuration of a conventionally known receiving apparatus 101 (FIG. 13A).
  • Receiving apparatus 101 includes receiving antenna 2001Z, radio section 2002Z, A / D conversion section 2003Z, CP removal section 2004Z, pilot separation section 2005Z, propagation path estimation sections 2006Z-1 and 2006Z-2, scheduling section 2007Z, spectrum allocation information generation Unit 2008Z, buffer 2009Z, first S / P conversion unit 2010Z, first DFT unit 2011Z, spectrum demapping unit 2012Z, soft cancellation units 2013Z-1 and 2013Z-2, equalization units 2014Z-1 and 2014Z-2 , Demodulator 2015Z-1, 2015Z-2, deinterleaver 2016Z-1, 2016Z-2, decoder 2017Z-1, 2017Z-2, interleaver 2018Z-1, 2018Z-2, soft replica generator 2019Z-1, 2019Z- , Second S / P conversion units 2020Z-1 and 2020Z-2, second DFT units 2021Z-1 and 2021Z-2, interference extraction units 2022Z-1 and 2022Z-2, determination units 2024Z-1 and
  • a reception signal received by the reception antenna 2001Z is down-converted to a baseband signal by the radio unit 2002Z. Then, the A / D converter 2003Z converts the analog signal into a digital signal. The cyclic prefix (CP) is removed from the received signal converted into the digital signal by the CP removing unit 2004Z. And the pilot signal of each transmitter 100a, 100b is isolate
  • SNR received signal to noise ratio
  • the estimated propagation path characteristics are input to the soft cancellation units 2012Z-1 and 2013Z-2, the equalization units 2014Z-1 and 2014Z-2, and simultaneously input to the scheduling unit 2007Z. And the scheduling which determines the spectrum allocation which permitted the overlap of a part of spectrum is performed. Then, the determined spectrum allocation information is converted into a signal for feedback in the spectrum allocation information generation unit 2008Z, and transmitted to each of the transmission apparatuses 100a and 100b. At the same time, in the next transmission opportunity, the spectrum demapping unit 2012Z stores the information as mapping information for returning the frequency signal to the buffer 2009Z.
  • the received signal of the data portion separated in pilot separation unit 2005Z is converted from a serial signal to a parallel signal by first S / P conversion unit 2010Z.
  • the first DFT unit 2011Z converts the time signal into a frequency signal.
  • the spectrum demapping unit 2012Z extracts the mapping information obtained at the previous transmission opportunity from the buffer 2009Z, and separates the signals from the transmitting apparatuses 100a and 100b.
  • the frequency signal is simply restored using the mapping information. Therefore, some of the frequency signals that are duplicated at the time of transmission remain as interference with each other.
  • the received signals from the transmitting apparatuses 100a and 100b returned to the original arrangement by the spectrum demapping unit 2012Z are input to the soft cancellation units 2013Z-1 and 2013Z-2.
  • the soft cancellation units 2013Z-1 and 2013Z-2 replicas of the own signals obtained from the second DFT units 2021Z-1 and 2021Z-2 and the interference extraction units 2022Z-2 and 2022Z-1 and other
  • the interference replica from the transmission apparatus is canceled and input to the equalization units 2014Z-1 and 2014Z-2.
  • the equalization units 2014Z-1 and 2014Z-2 perform equalization processing to compensate for signal distortion caused by the radio propagation path.
  • the equalized signals are input to the demodulating units 2015Z-1 and 2015Z-2, and are decomposed into log likelihood ratios (LLRs) representing the reliability in units of code bits.
  • the log likelihood ratio (LLR) is expressed by the natural logarithm (the logarithm of e (Napier number) at the bottom) of the ratio of the probability that the sign bit is 1 and the probability that it is 0.
  • the obtained log likelihood ratio (LLR) is input to the deinterleaving sections 2016Z-1 and 2016Z-2 to restore the original interleaving sequence performed in the transmitting apparatus, and the decoding sections 2017Z-1 and 2017Z- 2 is input.
  • decoding sections 2017Z-1 and 2017Z-2 error correction processing based on maximum a posteriori (MAP) estimation is performed, and an outer LLR of code bits and an a posteriori LLR of information bits with improved likelihood are output.
  • MAP maximum a posteriori
  • the external LLR represents the reliability improved only by the error correction process obtained by subtracting the LLR input from the a posteriori LLR of the sign bit. Since the external LLR is used for repetitive processing, it is input to the interleave units 2018Z-1 and 2018Z-2. Since the posterior LLR is used for determination of the transmission bit, it is input to the determination units 2024Z-1 and 2024-2Z.
  • the external LLR is input to the interleave units 2018Z-1 and 2018Z-2. Then, interleaving is performed in the same order as that of the transmission device, and input to the soft replica generation units 2019Z-1 and 2019Z-2 to generate a soft replica having an amplitude based on the reliability obtained from the external LLR.
  • the obtained soft replicas are input to equalization units 2014Z-1 and 2014Z-2 and also input to second S / P conversion units 2020Z-1 and 2020Z-2 for soft cancellation.
  • the second DFT units 2021Z-1 and 2021Z-2 convert the time signal into a frequency signal.
  • the obtained frequency signal is input to the soft cancellation units 2013Z-1 and 2013Z-2 in order to cancel the own signal. Further, the obtained frequency signal is input to the interference extraction units 2022Z-1 and 2022Z-2 in order to cancel the interference signal between the transmission apparatuses by the soft cancellation unit. Then, it is input to the soft cancel units 2013Z-2 and 2013Z-1, and the same processing is repeated again. This process is repeated an arbitrary number of times or a predetermined number of times. Finally, the a posteriori LLR of the information bits obtained by the decoding units 2017Z-1 and 2017Z-2 is hard-determined by the determination units 2024Z-1 and 2024Z-2 to obtain decoded data.
  • SORM Spectra overlap resource management
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a communication system, a communication device, a program, and a communication method capable of transmitting a signal from a transmission device to a reception device with high frequency utilization efficiency. It is to provide.
  • a communication system is a communication system including a reception device and first to third transmission devices, and the first transmission device and the second transmission device are partially A signal is transmitted to the receiving device by overlapping frequency bands, and the third transmitting device transmits a signal to the receiving device using a frequency band that is not used by the first and second transmitting devices. To do.
  • a communication system is a communication system including a reception device and first to third transmission devices, and the third transmission device uses a predetermined frequency band.
  • the first transmission device and the second transmission device transmit signals to the reception device by overlapping a part of the frequency band other than the predetermined frequency band.
  • the frequency band used by the third transmission device is based on a frequency with a small sum of reception signal noise ratios of the first and second transmission devices. It may be determined.
  • a communication system is a communication system including a receiving device and first to third transmitting devices, and the third transmitting device uses a predetermined subchannel.
  • the first transmitting apparatus and the second transmitting apparatus transmit signals to the receiving apparatus by overlapping a part of subchannels other than the predetermined subchannel.
  • the total transmission bandwidth of the subchannels used by the first transmission device and the second transmission device is the first transmission device and the second transmission. It may be larger than the transmission band to which the device signal can be allocated.
  • the communication device is a communication device that communicates with the first to third transmission devices, and the first transmission device has a frequency band that overlaps a part of the frequency bands. And a first allocating unit that allocates to the second transmitting device, and a second allocating unit that allocates frequency bands not allocated to the first and second transmitting devices to the third transmitting device.
  • the program according to one aspect of the present invention provides a computer of a communication device that communicates with the first to third transmission devices with a frequency band obtained by overlapping a part of the frequency bands, A first allocating unit that allocates to the second transmitting apparatus, and a second allocating unit that allocates a frequency band not allocated to the first and second transmitting apparatuses to the third transmitting apparatus are caused to function.
  • a communication method is a communication using a first transmission device group including a plurality of transmission devices, a second transmission device group including at least one transmission device, and a reception device.
  • each of the transmitting devices configuring the first transmitting device group includes: use Having the steps of transmitting a frequency signal to the reception apparatus using a frequency band not.
  • a communication method is a communication using a first transmission device group including a plurality of transmission devices, a second transmission device group including at least one transmission device, and a reception device.
  • the transmission device constituting the second transmission device group uses the frequency band not used by each of the transmission devices constituting the first transmission device group to transmit the frequency signal to the reception device. And the process of sending A.
  • a communication method is a communication using a first transmission device group including a plurality of transmission devices, a second transmission device group including at least one transmission device, and a reception device.
  • Each of the plurality of transmission devices constituting the first transmission device group includes a process of transmitting a frequency signal in which a part of the frequency bands of the subchannel overlaps to the reception device, and the second transmission device group.
  • the communication system, communication device, program, and communication method of the present invention can transmit a signal from a transmission device to a reception device with high frequency utilization efficiency.
  • FIG. 1 is a schematic configuration diagram of a radio communication system according to a first embodiment of the present invention. It is a schematic block diagram which shows the structure of the 1st transmitter 11a by the 1st Embodiment of this invention. It is a schematic block diagram which shows the structure of the receiver 10 by the 1st Embodiment of this invention. It is a figure which shows frequency arrangement
  • FIG. It is a figure which shows frequency arrangement
  • FIG. It is a figure which shows frequency arrangement
  • FIG. It is a flowchart which shows the process of the receiver 10 by the 1st Embodiment of this invention. It is a figure which shows frequency arrangement
  • FIG. It is a figure which shows the frequency arrangement
  • FIG. It is a figure which shows frequency arrangement
  • FIG. It is a flowchart which shows the process of the receiver 10 by the 2nd Embodiment of this invention. It is a figure which shows the frequency signal arrangement
  • FIG. It is a figure which shows the frequency signal arrangement
  • FIG. It is a figure which shows the frequency signal arrangement
  • FIG. It is a flowchart which shows the process of the receiver 10 by the 3rd Embodiment of this invention.
  • FIG. 4 is a diagram illustrating a spectrum of a frequency signal transmitted from the first transmission device 100a to the reception device 101.
  • FIG. 6 is a diagram illustrating a spectrum of a frequency signal transmitted from the second transmission device 100b to the reception device 101.
  • FIG. It is a figure which shows the spectrum of the frequency signal which the receiver 101 receives from the 1st transmitter 100a and the 2nd transmitter 100b.
  • It is a schematic block diagram which shows the structure of the 1st transmitter 100a (FIG. 13A).
  • FIG. 13A shows the structure of the receiver 101 (FIG. 13A).
  • SC-ASA scheme single carrier adaptive spectrum allocation
  • SORM spectrum duplication resource management
  • frequency allocation by SORM is preferentially performed for the transmission apparatus 11a and the transmission apparatus 11b, and then the frequency allocation of the transmission apparatus 11c is performed in a band vacated by duplication.
  • FIG. 1 is a schematic configuration diagram of a wireless communication system according to a first embodiment of the present invention.
  • the wireless communication system according to the present embodiment includes a first transmission device 11a that is a mobile station device, a second communication device 11b that is a mobile station device, a third communication device 11c that is a mobile station device, and a base station device.
  • a receiving device 10 is provided.
  • N d the number of discrete frequency points in the band that can be received by the receiving apparatus 10, that is, available.
  • N t the number of discrete frequency points used by the third transmitter 11c.
  • the transmission apparatus having the narrowest bandwidth may be used as the third transmission apparatus.
  • communication in the uplink which is communication from the mobile station device to the base station device, will be described, but the present invention is not limited to this, and the base station device to the mobile station device is not limited thereto. You may use for the communication in the downlink which is communication.
  • the present invention is not limited to this.
  • one transmission device may be equipped with three transmission antennas, and separate data may be transmitted to the reception device 10.
  • any one transmitting apparatus may be equipped with two transmitting antennas and transmit different data to the receiving apparatus 10.
  • this embodiment demonstrates the case where the receiving apparatus 10 can grasp
  • the number of points stochastically overlapping discrete frequency by spectrum Overlapped Resource Management is N t sample, assigning a signal of a third transmission device 11c to the band vacated by duplicate.
  • FIG. 2 is a schematic block diagram showing the configuration of the first transmission device 11a according to the first embodiment of the present invention.
  • the first transmission device 11a includes a coding unit 1001, an interleaving unit 1002, a modulation unit 1003, an S / P conversion unit 1004, a DFT unit 1005, a spectrum mapping unit 1006, an IDFT unit 1007, a P / S conversion unit 1008, and a pilot signal generator.
  • the encoding unit 1001 receives transmission data bits. Encoding section 1001 performs error correction encoding on the transmission data bits and outputs the result to interleaving section 1002. Interleaving section 1002 performs interleaving processing for rearranging the bit order (time order) on the signal output from coding section 1001, and outputs the result to modulating section 1003. Modulating section 1003 maps the signal output from interleaving section 1002 to a signal point corresponding to the modulation scheme, and generates a modulated signal. S / P conversion unit 1004, a signal modulation unit 1003 outputs, from the serial signal is converted into parallel signals of N u present, and outputs the DFT unit 1005.
  • the DFT unit 1005 converts the signal output from the S / P conversion unit 1004 from a time signal to a frequency signal and outputs the frequency signal to the spectrum mapping unit 1006.
  • Spectral mapping unit 1006 the signal DFT unit 1005 outputs, based on the spectrum allocation information notified from the receiving apparatus 10 performs the arrangement of the spectrum, as N d of signal, and outputs the IDFT unit 1007.
  • the IDFT unit 1007 converts the signal output from the spectrum mapping unit 1006 from a frequency signal to a time signal and outputs the time signal to the P / S conversion unit 1008.
  • the P / S conversion unit 1008 converts the signal output from the IDFT unit 1007 from a parallel signal to a serial signal.
  • Pilot signal generation section 1009 generates a known pilot signal for estimating propagation path characteristics, and outputs the pilot signal to pilot multiplexing section 1010. Pilot multiplexing section 1010 multiplexes the signal output from P / S conversion section 1008 and the signal output from pilot signal generation section 1009 and outputs the result to CP insertion section 1011.
  • CP insertion section 1011 inserts a cyclic prefix into the signal output from pilot multiplexing section 1010 and outputs the signal to D / A conversion section 1012.
  • the D / A conversion unit 1012 converts the signal output from the CP insertion unit 1011 from a digital signal to an analog signal and outputs the analog signal to the radio unit 1013.
  • the radio unit 1013 up-converts the signal output from the D / A conversion unit 1012 to a radio frequency, and transmits the radio frequency to the reception device 10.
  • FIG. 3 is a schematic block diagram showing the configuration of the receiving device 10 according to the first embodiment of the present invention.
  • the reception apparatus 10 includes a propagation path estimation unit 31, a signal detection unit 32, a reception antenna 2001, a radio unit 2002, an A / D conversion unit 2003, a CP removal unit 2004, a pilot separation unit 2005, and propagation path estimation units 2006-1 and 2006.
  • the reception antenna 2001 receives signals transmitted from the first transmission device 11a, the second transmission device 11b, and the third transmission device 11c, and outputs the signals to the radio unit 2002.
  • Radio section 2002 down-converts the signal output from reception antenna 2001 into a baseband signal and outputs the result to A / D conversion section 2003.
  • the A / D conversion unit 2003 converts the signal output from the wireless unit 2002 from an analog signal to a digital signal and outputs the signal to the CP removal unit 2004.
  • CP removal section 2004 removes a cyclic prefix (CP) from the signal output from A / D conversion section 2003 and outputs the result to pilot separation section 2005.
  • CP cyclic prefix
  • the pilot separation unit 2005 separates the pilot signal of the third transmission device 11 c from the signal output from the CP removal unit 2004 and outputs the pilot signal to the propagation path estimation unit 31.
  • Pilot demultiplexing section 2005 demultiplexes the pilot signal of first transmission device 11a from the signal output from CP removal section 2004, and outputs it to propagation path estimation section 2006-1.
  • pilot demultiplexing section 2005 demultiplexes the pilot signal of second transmission apparatus 11b from the signal output from CP removal section 2004, and outputs it to propagation path estimation section 2006-2.
  • the pilot separation unit 2005 removes the pilot signal of the first transmission device 11a, the pilot signal of the second transmission device 11b, and the pilot signal of the third transmission device 11c from the signal output from the CP removal unit 2004.
  • the signal is output to the first S / P converter 2010.
  • the propagation path estimation unit 31 estimates a propagation path characteristic and an average received signal noise ratio between the third transmission device 11c and the reception device 10 based on the pilot signal output from the pilot separation unit 2005, and performs signal detection. To the unit 32 and the scheduling unit 2007.
  • a propagation path estimation unit 2006-1 estimates a propagation path characteristic and an average received signal noise ratio between the first transmission device 11a and the reception device 10 based on the pilot signal output from the pilot separation unit 2005, The data is output to the soft cancellation unit 2013-1, the equalization unit 2014-1, and the scheduling unit 2007.
  • the propagation path estimation unit 2006-2 estimates the propagation path characteristics and the average received signal noise ratio between the second transmission device 11b and the reception device 10 based on the pilot signal output from the pilot separation unit 2005, The data is output to the soft cancellation unit 2013-2, the equalization unit 2014-2, and the scheduling unit 2007. Note that the propagation path estimators 31, 2006-1, and 2006-2 may estimate the noise variance instead of estimating the average received signal-to-noise ratio.
  • the estimated propagation path characteristics are input to the soft cancellation units 2013-1, 2013-2 and equalization units 2014-1, 2014-2, and simultaneously to the scheduling unit 2007.
  • the scheduling unit 2007 performs scheduling for determining a spectrum allocation that allows some spectra to overlap.
  • the scheduling unit 2007 outputs the determined spectrum allocation information to the spectrum allocation information generation unit 2008.
  • the spectrum allocation information generation unit 2008 converts the spectrum allocation information output from the scheduling unit 2007 into a signal for feedback to the first transmission device 11a, the second transmission device 11b, and the third transmission device 11c. Then, spectrum allocation information of the first transmission device 11a, spectrum allocation information of the second transmission device 11b, and spectrum allocation information of the third transmission device 11c are generated.
  • the spectrum allocation information generation unit 2008 transmits the spectrum allocation information of the first transmission device 11a, the spectrum allocation information of the second transmission device 11b, and the third transmission device 11c via a modulation unit, a radio unit, and a transmission antenna (not shown). Then, the data is transmitted to the first transmission device 11a, the second transmission device 11b, and the third transmission device 11c.
  • the spectrum allocation information generation unit 2008 uses the spectrum allocation information of the first transmission device 11a and the second transmission device 11b as mapping information for returning the frequency signal in the spectrum demapping unit 2012 at the next transmission opportunity.
  • the third transmission device 11c are stored in the buffer 2009.
  • the spectrum allocation information generation unit 2008 of the receiving device 10 (also referred to as a communication device) of the present embodiment includes a first allocation unit 2008-1 and a second allocation unit 2008-2.
  • the first allocation unit 2008-1 allocates a frequency band obtained by overlapping a part of the frequency bands to the first transmission device 11a and the second transmission device 11b.
  • the first allocation unit 2008-1 transmits the allocation information to the first transmission device 11a as spectrum allocation information of the first transmission device 11a and the second as spectrum allocation information of the second transmission device 11b.
  • the second allocation unit 2008-2 allocates a frequency band that is not allocated to the first transmission device 11a and the second transmission device 11b to the third transmission device 11c.
  • the second allocation unit 2008-2 transmits the allocation information to the third transmission device 11c as spectrum allocation information of the third transmission device 11c.
  • the first S / P conversion unit 2010 converts the signal output from the pilot separation unit 2005 from a serial signal to a parallel signal, and outputs the parallel signal to the first DFT unit 2011.
  • the first DFT unit 2011 converts the signal output from the first S / P conversion unit 2010 from a time signal to a frequency signal and outputs the frequency signal to the spectrum demapping unit 2012.
  • the spectrum demapping unit 2012 reads the mapping information obtained at the previous transmission opportunity from the buffer 2009. Based on the read mapping information, the spectrum demapping unit 2012 determines whether the first transmission device 11a, the second transmission device 11b, and the third transmission device 11c are based on the signal output from the first DFT unit 2011.
  • the transmitted signal is returned to the original arrangement and separated and output to the signal detection unit 32 and the soft cancellation units 2013-1 and 2013-2.
  • the frequency signal is simply restored using the mapping information, some of the frequency signals that were duplicated at the time of transmission remain as interference with each other.
  • the soft cancellation unit 2013-1 Cancel the replica of its own signal and the interference replica from other transmitters, and output them to the equalization unit 2014-1.
  • soft cancellation section 2013-2 is based on signals output from propagation path estimation section 2006-2, second DFT section 2021-2, and interference extraction section 2022-1 from signals output from spectrum demapping section 2012.
  • the replica of its own signal and the interference replica from another transmitting apparatus are canceled and output to the equalization unit 2014-2. Since the replica cannot be generated in the first process, the soft cancellation units 2013-1 and 2013-2 do not perform the process of canceling the interference replica.
  • the equalization unit 2014-1 uses the signal output from the soft cancellation unit 2013-1, and based on the signal output from the channel estimation unit 2006-1 and the soft replica generation unit 2019-1, the signal distortion caused by the radio channel Is compensated for and output to the demodulator 2015-1.
  • the equalization unit 2014-2 uses the signal output from the soft cancellation unit 2013-2, based on the signal output from the propagation channel estimation unit 2006-2 and the soft replica generation unit 2019-2, to distort the signal due to the radio channel Is output to the demodulator 2015-2.
  • Demodulation section 2015-1 decomposes the signal output from equalization section 2014-1 into a log likelihood ratio (LLR) that represents the reliability in units of code bits, and outputs the result to deinterleaving section 2016-1.
  • Demodulation section 2015-2 decomposes the signal output from equalization section 2014-2 into a log likelihood ratio (LLR) representing reliability in units of code bits, and outputs the result to deinterleaving section 2016-2.
  • the log likelihood ratio (LLR) is expressed by the natural logarithm of the ratio of the probability that the sign bit is 1 and the probability that it is 0.
  • the deinterleaving unit 2016-1 performs deinterleaving processing for returning the arrangement (in time order) by the interleaving performed in the transmission device to the signal output from the demodulating unit 2015-1, and the decoding unit 2017-1 Output to.
  • the deinterleaving unit 2016-2 performs deinterleaving on the signal output from the demodulating unit 2015-2 to return the arrangement (in time order) due to the interleaving performed by the transmission device to the original, and the decoding unit 2017-2 Output to.
  • the decoding unit 2017-1 performs error correction processing based on the maximum posterior probability estimation for the signal output from the deinterleaving unit 2016-1, and obtains the outer LLR of the code bit and the posterior LLR of the information bit with improved likelihood. calculate.
  • Decoding section 2017-1 outputs the external LLR to interleaving section 2018-1, and outputs the posterior LLR to determination section 2024-1.
  • the decoding unit 2017-2 performs error correction processing based on the maximum posterior probability estimation on the signal output from the deinterleaving unit 2016-2, and obtains the outer LLR of the code bit and the posterior LLR of the information bit with improved likelihood.
  • Decoding section 2017-2 outputs the external LLR to interleaving section 2018-2, and outputs the posterior LLR to determination section 2024-2.
  • the external LLR represents the reliability improved only by the error correction process obtained by subtracting the LLR input from the a posteriori LLR of the sign bit, and is used for the iterative process.
  • the posterior LLR is used for transmission bit determination.
  • the interleaving unit 2018-1 performs the same interleaving process as the transmission apparatus on the external LLR output from the decoding unit 2017-1, and outputs the result to the soft replica generation unit 2019-1.
  • the interleaving unit 2018-2 performs the same interleaving process as the transmission apparatus on the external LLR output from the decoding unit 2017-2, and outputs the result to the soft replica generation unit 2019-2.
  • the soft replica generation unit 2019-1 generates a soft replica having an amplitude based on the reliability obtained from the external LLR based on the signal output from the interleaving unit 2018-1, and the equalization unit 2014-1, To the S / P converter 2020-1.
  • the soft replica generation unit 2019-2 generates a soft replica having an amplitude based on the reliability obtained from the external LLR based on the signal output from the interleaving unit 2018-2, and the equalization unit 2014-2, The data is output to the second S / P converter 2020-2.
  • the second DFT unit 2021-1 converts the signal output from the second S / P conversion unit 2020-1 from a time signal to a frequency signal.
  • the second DFT unit 2021-1 outputs the converted signal to the soft cancel unit 2013-1 for canceling its own signal.
  • the second DFT unit 2021-1 outputs the interference signal between the transmission apparatuses to the interference extraction unit 2022-1 so that the soft cancellation unit 2013-1 can cancel the interference signal.
  • the second DFT unit 2021-2 converts the signal output from the second S / P conversion unit 2020-2 from a time signal to a frequency signal.
  • the second DFT unit 2021-2 outputs the converted signal to the soft cancel unit 2013-2 for canceling its own signal.
  • the second DFT unit 2021-2 outputs the interference signal between the transmission apparatuses to the interference extraction unit 2022-2 so that the soft cancellation unit 2013-2 cancels the interference signal.
  • the soft cancel unit 2013-1 repeats the same process as the process described above.
  • the soft cancel unit 2013-1 repeats this process an arbitrary number of times or a predetermined number of times.
  • the determination unit 2024-1 generates decoded data by performing a hard determination on the a posteriori LLR of the information bits obtained by the decoding unit 2017-1.
  • the soft cancel unit 2013-2 repeats the same process as described above.
  • the soft cancel unit 2013-2 repeats this process an arbitrary number of times or a predetermined number of times.
  • the determination unit 2024-2 generates decoded data by performing a hard determination on the a posteriori LLR of the information bits obtained by the decoding unit 2017-2.
  • the propagation path estimation unit 31 estimates a propagation constant of a propagation path between the reception device 10 and the third transmission device 11c, and outputs the propagation constant to the signal detection unit 32 and the scheduling unit 2007.
  • the signal detection unit 32 detects the signal transmitted by the third transmission device 11c from the signal output by the spectrum demapping unit 2012. The signal transmitted from the first transmission device 11a and the second transmission device 11b is not superimposed on the signal transmitted by the third transmission device 11c. Therefore, it is completely separated by the spectrum demapping unit 2012 and output to the signal detection unit 32.
  • FIG. 4A is a diagram illustrating a frequency arrangement of signals transmitted from the first transmission device 11a to the reception device 10 according to the first embodiment of the present invention.
  • FIG. 4B is a diagram illustrating a frequency arrangement of signals transmitted from the second transmission device 11b to the reception device 10 according to the first embodiment of the present invention.
  • FIG. 4C is a diagram illustrating a frequency arrangement of signals transmitted from the third transmission device 11c to the reception device 10 according to the first embodiment of the present invention. 4A to 4C, the horizontal axis represents the frequency.
  • the first transmitter 11a determines the first, second, fifth, sixth, eighth, ninth, tenth, and fourteenth frequency positions.
  • eight frequency signals b11, b12, b13, b14, b15, b16, b17, and b18 are transmitted to the receiving apparatus 10.
  • the second transmitter 11b has the first, fifth, sixth, seventh, ninth, tenth, eleventh, and twelfth frequencies.
  • a total of eight frequency signals b21, b22, b23, b24, b25, b26, b27, b28 are transmitted to the receiving apparatus 10 using the position.
  • the third transmission device 11c uses the third, fourth, and thirteenth frequency positions to receive a total of three frequency signals b31, b32, and b33. Is sending to.
  • applying the first transmission device 11a and the spectral overlap Resource Management over N d samples is bandwidth capable of transmitting signals of a second transmission device 11b (SORM).
  • the receiving apparatus 10 uses the remaining free band for the third transmitting apparatus 11c after the allocation of the discrete frequencies for the signals of the first transmitting apparatus 11a and the second transmitting apparatus 11b. Assign as bandwidth.
  • the number of samples N t allocated to the signal of the third transmission device 11c depends on the frequency allocation for the signals of the first transmission device 11a and the second transmission device 11b, and thus changes for each transmission opportunity. There is no deterioration of characteristics.
  • FIG. 5 is a flowchart showing processing of the receiving device 10 according to the first embodiment of the present invention.
  • the first allocation unit 2008-1 of the reception device 10 allocates discrete frequencies to the first transmission device 11a and the second transmission device 11b by using spectrum overlapping resource management (SORM) (step S1). S1).
  • the second assigning unit 2008-2 of the receiving device 10 uses the discrete frequency that has not been assigned to either the first transmitting device 11a or the second transmitting device 11b as the frequency of the third transmitting device 11c. The assignment is determined (step S2).
  • SORM spectrum overlapping resource management
  • the frequency band is not overlapped in each of the transmission devices of the first transmission device group including the reception device 10 and the plurality of transmission devices 11a and 11b. Allocation and change so that part of the frequency band overlaps (corresponding to step S1 in FIG. 5). Then, a non-overlapping frequency band including a frequency band that has been vacated as a result of being changed so as to overlap is allocated to the transmitting apparatuses of the second transmitting apparatus group including at least one transmitting apparatus 11c (corresponding to step S2 in FIG. 5) . Then, each of the plurality of transmission devices 11 a and 11 b configuring the first transmission device group transmits a frequency signal having a partial frequency band overlapping to the reception device 10. In addition, the transmission device 11c configuring the second transmission device group transmits a frequency signal to the reception device 10 using a frequency band that is not used by each of the transmission devices 11a and 11b configuring the first transmission device group. Send.
  • the first transmission device 11a and the second transmission device 11b transmit signals to the reception device 10 by overlapping some frequency bands.
  • the third transmission device 11c transmits a signal to the reception device 10 using a frequency band that is not used by the first transmission device 11a and the second transmission device 11b.
  • the first transmission device 11a and the second transmission device 11b are preferentially assigned, transmission from the transmission device to the reception device can be performed while maximizing the transmission characteristics of spectrum overlap resource management (SORM). The amount of information can be increased.
  • SORM spectrum overlap resource management
  • 6A to 6C are diagrams illustrating frequency arrangements of signals transmitted from the transmission apparatuses 11a to 11c to the reception apparatus 10 according to the second embodiment of the present invention.
  • the horizontal axis represents the frequency.
  • the number of points of the overlapping spectrum in the spectrum overlapping resource management (SORM) is 5, but this figure shows only the concept.
  • FIG. 6A shows the frequency allocation assigned by spectrum overlap resource management (SORM) in the first transmission device 11a.
  • FIG. 6B shows the frequency allocation assigned by spectrum overlap resource management (SORM) in the second transmitter 11b.
  • FIG. 6C shows a frequency arrangement of the third transmission device 11c that is allocated while securing a frequency of N t samples including a band vacated by spectrum overlap resource management (SORM).
  • SORM spectrum overlap resource management
  • the first transmission device 11a has the first, second, fifth, sixth, first, and lower frequency frequencies arranged at regular intervals from the lower frequency to the higher frequency.
  • a total of eight frequency signals c11, c12, c13, c14, c15, c16, c17, and c18 are transmitted to the receiving apparatus 10 using the eighth, ninth, tenth, and fourteenth frequency positions. .
  • These frequency signals c11 to c18 reach the receiving apparatus 10 with the amplitude and phase changed based on the propagation path characteristics.
  • the second transmission device 11b has the first, second, fifth, sixth, seventh from the lower frequency to the higher frequency positions arranged at regular intervals.
  • a total of eight frequency signals c21, c22, c23, c24, c25, c26, c27, c28 are transmitted using the ninth, tenth, and eleventh frequency positions. These frequency signals c21 to c28 reach the receiving apparatus 10 with the amplitude and phase changed based on the propagation path characteristics.
  • the third transmission device 11c changes the third, fourth, twelfth, and thirteenth frequency positions from the lower frequency to the higher frequency positions arranged at regular intervals.
  • four frequency signals c31, c32, c33, c34 are transmitted. These frequency signals c31 to c34 reach the receiving apparatus 10 with the amplitude and phase changed based on the propagation path characteristics.
  • the N t samples required by the third transmitter 11c could not be secured, including the band vacated by the spectrum overlap resource management (SORM) for the first transmitter 11a and the second transmitter 11b.
  • SORM spectrum overlap resource management
  • the third transmitter 11c wants to use the twelfth frequency position having good propagation path characteristics for the transmitter, but the frequency position is already used by the second transmitter 11b. If it can be ensured, it can be left as it is, but this embodiment performs the following processing when it cannot be ensured considering that the proportion of the overlapping spectrum is probabilistic. That is, processing is performed to ensure that degradation of reception quality of signals from the first transmitter 11a and the second transmitter 11b in spectrum overlap resource management (SORM) is minimized.
  • SORM spectrum overlap resource management
  • the second transmission device 11b does not use the discrete spectrum of the frequency signal c20 (the 12th frequency position), and uses the discrete spectrum that is not used by the other third transmission device 11c. Use.
  • the second transmitter 11b uses the frequency signal c21 (second frequency position).
  • the signal N t sample from the third transmission device 11c can be secured without significantly degrading the transmission characteristics of the signals from the first transmission device 11a and the second transmission device 11b.
  • a throughput of 1 + N t / N d times the available frequency can be obtained.
  • the scheduling unit 2007 (FIG. 3) of the receiving apparatus 10 grasps the band N t samples.
  • the receiving device 10 calculates the sum of received SNR expressed in decibels for each discrete frequency.
  • the receiving device 10 sorts (reorders) the received SNR of the transmitting device in ascending order.
  • the received SNRs from the transmitters 11a and 11b at the k-th discrete frequency are S 1 (k) and S 2 (k), respectively.
  • Equation (1) the total received SNR of each discrete frequency is calculated.
  • S (k) is the average received signal-to-noise ratio (SNR) of the sum of the discrete frequencies.
  • SNR average received signal-to-noise ratio
  • the present invention is not limited to this. Since it is only necessary to know the magnitude relationship of the overall discrete frequencies of the first transmission device 11a and the second transmission device 11b at each discrete frequency, the same processing can be performed even with a true value. In addition, since the determination is made as to whether or not the reception status is inferior, it is possible to use an index and an operation such that the other reception indexes are sorted in the order of overall poor reception status.
  • the discrete frequency of N t samples in order from the worst in Equation (1) is removed from the selectable frequencies by spectrum overlap resource management (SORM).
  • SORM spectrum overlap resource management
  • Discrete frequencies for transmitting the signals of the first transmission device 11a and the second transmission device 11b are set for the selectable discrete frequencies thus obtained based on spectrum overlap resource management (SORM).
  • the receiver 10 sets so that the signal of the 3rd transmitter 11c may be arrange
  • the discrete frequencies with which the signals of the first transmitter 11a and the second transmitter 11b overlap the discrete frequencies used autonomously by the first transmitter 11a and the second transmitter 11b are set. This is set probabilistically.
  • Each transmitting apparatus does not grasp that it overlaps with other transmitting apparatuses, but only the receiving apparatus grasps and is separated by turbo equalization technology.
  • an unreasonably low received SNR is assigned so as not to be selected, the signal arrangement of the third transmitter 11c is unreasonably low when assigning to the first transmitter 11a and the second transmitter 11b.
  • the received SNR is allocated to the discrete frequency.
  • FIG. 7 is a flowchart showing processing of the receiving device 10 according to the second embodiment of the present invention.
  • the first allocation unit 2008-1 of the reception device 10 determines the discrete frequencies used for transmission by the first transmission device 11a and the second transmission device 11b using spectrum overlap resource management (SORM). To do.
  • the first allocation unit 2008-1 measures the reception SNR of the signals from the first transmission device 11a and the second transmission device 11b for each discrete frequency, and calculates the sum for each discrete frequency ( Step S11).
  • the first assigning unit 2008-1 of the receiving apparatus 10 sorts the sums of received SNRs in ascending order (step S12). Then, the first assigning unit 2008-1 removes the upper N t samples from the candidates for discrete frequencies that can be selected by spectrum overlapping resource management (SORM) (step S13).
  • the first allocation unit 2008-1 of the reception device 10 determines the frequency arrangement of the signal of the first transmission device 11a and the signal of the second transmission device 11b using the selectable discrete frequencies ( Step S14). Then, the second allocation unit 2008-2 of the reception apparatus 10 arranges the discrete frequency that is out of the selectable discrete frequencies in the spectrum overlap resource management (SORM) in the signal of the third transmission apparatus 11c (step S15).
  • a frequency band is assigned to a transmission device of the second transmission device group including at least one transmission device 11c (corresponding to step S15 in FIG. 7). Further, a frequency band that is not used by the transmission device 11c of the second transmission device group is assigned to each of the transmission devices of the first transmission device group including the plurality of transmission devices 11a and 11b so as to partially overlap ( Equivalent to step S14 in FIG. 7). Then, each of the plurality of transmission devices 11 a and 11 b configuring the first transmission device group transmits a frequency signal having a partial frequency band overlapping to the reception device 10. Then, the transmission device 11c constituting the second transmission device group sends a frequency signal to the reception device 10 using the frequency band not used by each of the transmission devices 11a and 11b constituting the first transmission device group. Send.
  • the third transmission device 11c transmits a signal to the reception device 10 using a predetermined frequency band.
  • the first transmission device 11a and the second transmission device 11b transmit signals to the reception device 10 by overlapping a part of frequency bands other than the predetermined frequency band used by the third transmission device 11c.
  • scheduling of spectrum overlap resource management (SORM) in the first transmission device 11a and the second transmission device 11b is limited. Thereby, more data can be multiplexed without expanding the frequency band.
  • SORM spectrum overlap resource management
  • the signals of the first transmission device 11a and the second transmission device 11b are prioritized, but this is not limitative. Is not to be done.
  • N t samples are selected in order from the signal reception status of the third transmission device 11c in the order of good reception, and the rest is spectrum overlap resource management ( A discrete frequency selectable in (SORM) may be used.
  • FIG. 8A to 8C are diagrams illustrating frequency arrangements of signals transmitted from the transmission apparatuses 11a to 11c to the reception apparatus 10 according to the third embodiment of the present invention.
  • FIG. 8A is a diagram showing a frequency signal arrangement of signals transmitted from the first transmission device 11a to the reception device 10 according to the third embodiment of the present invention.
  • FIG. 8B is a diagram showing a frequency signal arrangement of signals transmitted from the second transmission device 11b to the reception device 10 according to the third embodiment of the present invention.
  • FIG. 8C is a diagram showing a frequency signal arrangement of signals transmitted from the third transmission device 11c to the reception device 10 according to the third embodiment of the present invention. That is, in FIG. 8A to FIG.
  • the first transmission device 11a uses the signals d11 and d12 at the first and second frequency positions from the lower frequency to the higher frequency in the subchannel Sc1, and uses the subchannel Sc2 .
  • the signals d13, d14 and d15 at the first, second and third frequency positions are used, and the signals d16, d17 at the first, third and fourth frequency positions in the subchannel Sc3.
  • a total of eight frequency signals are transmitted to the receiving apparatus 10 using d18. These frequency signals d11 to d18 change their amplitude and phase based on the propagation path characteristics and reach the receiving apparatus 10.
  • the second transmitter 11b uses the signals d21, d22, d23, and d24 at the first, second, third, and fourth frequency positions in the subchannel Sc1, In subchannel Sc2, signals d25 and d26 of the third and fourth frequency positions are used, and in subchannel Sc3, a total of eight signals are used using signals d27 and d28 of the second and third frequency positions.
  • the frequency signal is transmitted to the receiving device 10.
  • These frequency signals d21 to d28 change their amplitude and phase based on the propagation path characteristics and reach the receiving apparatus 10. That is, the transmission signals transmitted by the first transmitter 11a and the second transmitter 11b are the first and second frequency positions of the subchannel Sc1, the third frequency position of the subchannel Sc2, and the subchannel.
  • the third transmission device 11c transmits a total of four frequency signals using the signals d31, d32, d33, and d34 at all frequency positions in the subchannel Sc4. These frequency signals d31 to d34 reach the receiving apparatus 10 with the amplitude and phase changed based on the propagation path characteristics.
  • subchannels Sc1 to Sc4 exist, and the total number of samples of the signal of the first transmission device 11a and the frequency signal of the second transmission device 11b is the sum of all of the subchannels Sc1 to Sc4. Equal to the total number of frequency points. Then, spectrum overlap resource management (SORM) is applied across the subchannels Sc1 to Sc3. The signal used by the third transmission device 11c is arranged in the subchannel Sc4.
  • SORM spectrum overlap resource management
  • the first transmission device 11a and the second transmission device 11b select subchannels for applying spectrum overlap resource management (SORM) so that a total of N t samples of discrete frequencies remain in the best order.
  • SORM spectrum overlap resource management
  • m is the number of subchannels for spectrum overlap resource management (SORM).
  • SORM spectrum overlap resource management
  • FIG. 9 is a flowchart showing processing of the receiving device 10 according to the third embodiment of the present invention.
  • the first allocation unit 2008-1 of the receiving device 10 calculates the sum of the received SNRs for each subchannel of the first transmitting device 11a and the second transmitting device 11b (step S21).
  • the sum of received SNRs is calculated for each discrete frequency.
  • the sum of received SNRs of discrete frequencies included in the same subchannel is calculated. .
  • the first allocation unit 2008-1 of the receiving apparatus 10 sorts the received SNR in descending order (step S22). Then, first allocation section 2008-1 sets subchannels having higher received SNRs as subchannels to which spectrum overlapping resource management (SORM) is applied, for the maximum number of subchannels remaining for N t samples or more (Ste S23). Then, the first allocation unit 2008-1 applies spectrum overlap resource management (SORM) with the discrete frequencies included in the selected subchannel as selectable frequencies, and the first transmitter 11a and the second transmitter The frequency arrangement of the signal of the transmission device 11b is set (step S24).
  • SORM spectrum overlapping resource management
  • the second allocation unit 2008-2 of the reception device 10 allocates the signal of the third transmission device 11c to the subchannel not selected in Step S23 (Step S25).
  • a method such as dynamic spectrum control that allocates a discrete frequency with a good reception condition may be used as long as it is greater than the discrete frequency of N t samples. May be assigned continuously.
  • the frequency band is divided into sub-channels for each frequency band of a predetermined width, and one or more sub-channels are assigned to the second transmitting device group including at least one transmitting device 11c. Assign (corresponding to step S25 in FIG. 9). Further, one or a plurality of subchannels that are not used by the transmission device 11c of the second transmission device group are used for each of the transmission devices of the first transmission device group including the plurality of transmission devices 11a and 11b, and a part thereof Are assigned so as to overlap (corresponding to step S24 in FIG. 9). Then, each of the plurality of transmission devices 11a and 11b configuring the first transmission device group transmits to the reception device 10 a frequency signal in which some frequency bands of the subchannel overlap. Then, the transmission device 11c constituting the second transmission device group uses the frequency band of the subchannel not used by each of the transmission devices 11a and 11b constituting the first transmission device group as the reception device 10. Send a frequency signal.
  • the third transmission device 11c transmits a signal to the reception device 10 using a predetermined subchannel.
  • the first transmission device 11a and the second transmission device 11b transmit signals to the reception device 10 by overlapping a part of subchannels other than the predetermined subchannel used by the third transmission device 11c.
  • the signal of the third transmission device 11c can be arranged in the subchannel determined at the system level. That is, in this embodiment, communication with a larger amount of information can be performed without affecting the system.
  • a further signal is multiplexed in a frequency band that is vacated by spectrum overlap resource management (SORM) or vacated by a predetermined bandwidth.
  • SORM spectrum overlap resource management
  • more information can be transmitted from the transmission devices 11a to 11c to the reception device 10 without changing the transmission rate by spectrum overlap resource management (SORM) and without expanding the bandwidth.
  • high frequency utilization efficiency that is, throughput can be achieved.
  • the first or second embodiment described above is used when there are a plurality of transmission apparatuses that ensure orthogonal discrete frequencies that do not use the same discrete frequency as other transmission apparatuses, such as the third transmission apparatus 11c. It may be applied.
  • the base station apparatus which becomes a receiving apparatus designates the subcarrier which each user uses.
  • FIG. 10 is a table showing an example of logical subcarrier numbers designated by the base station apparatus according to the fourth embodiment of the present invention.
  • the base station apparatus specifies a logical subcarrier number used by each user.
  • logical subcarrier numbers 1, 2, 3, 4, 5, 6, 7, and 8 are assigned to user U1.
  • logical subcarrier numbers 6, 7, 8, 9, 10, 11, 12, and 13 are assigned to the user U2.
  • logical subcarrier numbers 14, 15, and 16 are assigned to the user U3.
  • three logical subcarrier numbers 6, 7, and 8 are redundantly used by the user U1 and the user U2.
  • FIG. 11 is a diagram illustrating an example of mapping between logical subcarrier numbers and physical subcarrier numbers according to the fourth embodiment of the present invention.
  • the horizontal axis is frequency (subcarrier number), and the vertical axis is time.
  • the numbers in the 16 squares in the top row in FIG. 11 indicate physical subcarrier numbers. Further, the numbers in the squares of 4 rows ⁇ 16 columns of time T1, T2, T3, and T4 indicate the logical subcarrier numbers assigned to the physical subcarrier numbers.
  • Logical subcarrier numbers indicated by 1, 2, 3, 4, and 5 at times T1 to T4 are subcarriers used by the user U1. Further, logical subcarrier numbers indicated by 9, 10, 11, 12, and 13 at times T1 to T4 are subcarriers used by the user U2. The logical subcarrier numbers indicated by 6, 7, and 8 at times T1 to T4 are subcarriers used by the user U3. Further, logical subcarrier numbers indicated by 14, 15, and 16 at times T1 to T4 are subcarriers used by the user U4.
  • mapping changes with time (T1 to T4), but this change is an example, and the mapping does not have to change with time.
  • This mapping is notified to each user from the base station apparatus before communication.
  • Each user determines a logical subcarrier number assigned in advance and a subcarrier to be used using mapping.
  • FIG. 12 is a table showing an example of physical subcarrier numbers used by each user at time T3 in the fourth embodiment of the present invention.
  • User U1 uses the subcarrier numbers 1, 2, 5, 6, 9, 10, 13, and 14 at time T3.
  • the user U2 uses the subcarrier numbers of 3, 4, 6, 7, 10, 11, 14, 15 at time T3.
  • the user U3 uses the 8, 12, and 16 subcarrier numbers at time T3.
  • the same method can be used even when subcarriers are grouped. In this way, by using the subcarriers in duplicate, it is possible to multiplex other users and improve the throughput.
  • the transmission device and the reception device used in the present embodiment the same configuration as that of the transmission device (FIG. 2) and the reception device (FIG. 3) according to the first embodiment can be used.
  • the base station apparatus determines and notifies physical subcarrier allocation.
  • physical subcarriers determined using pseudo-random numbers that can be generated deterministically and information (user ID, etc.) required for communication used when establishing a communication line, physical subcarrier allocation No designation or notification is required. Even in this case, this embodiment is essentially the same.
  • a computer-readable program for realizing the functions of the respective units of the first to third transmitting apparatuses 11a to 11c (FIG. 2) and the respective units of the receiving apparatus 10 (FIG. 3) is possible.
  • the programs recorded on the recording medium are read into a computer system (not shown) incorporated in the transmission devices 11a to 11c and the reception device 10 and executed, thereby executing the first to third transmission devices 11a to 11c.
  • the receiving device 10 may be controlled.
  • the “computer system” here includes an OS and hardware such as peripheral devices.
  • the “computer-readable recording medium” means a storage device such as a flexible disk, a magneto-optical disk, a portable medium such as a ROM and a CD-ROM, and a hard disk incorporated in a computer system.
  • the “computer-readable recording medium” is a medium that dynamically holds a program for a short time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line, In this case, it includes a program that holds a program for a certain time, such as a volatile memory inside a computer system that serves as a server or a client.
  • the program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
  • the present invention can be applied to a wireless communication system, a communication device, a program, a wireless communication method, and the like that can transmit a signal from a transmission device to a reception device with high frequency utilization efficiency.
  • DESCRIPTION OF SYMBOLS 10 ... Reception apparatus, 11a ... 1st transmission apparatus, 11b ... 2nd transmission apparatus, 11c ... 3rd transmission apparatus, 31 ... Propagation path estimation part, 32 ... Signal detection unit, 1001... Encoding unit, 1002... Interleaving unit, 1003... Modulation unit, 1004... S / P conversion unit, 1005.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Provided is a communication system including a reception device and a first to a third transmission device.  The first transmission device and the second transmission device transmit a signal to the reception device while partially overlapping the frequency bands.  The third transmission device transmits a signal to the reception device by using a frequency band not used by the first or the second transmission device.

Description

通信システム、通信装置、プログラム及び通信方法COMMUNICATION SYSTEM, COMMUNICATION DEVICE, PROGRAM, AND COMMUNICATION METHOD
 本発明は、通信システム、通信装置、プログラム及び通信方法に関する。
 本願は、2008年6月20日に、日本に出願された特願2008-161648号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a communication system, a communication device, a program, and a communication method.
This application claims priority based on Japanese Patent Application No. 2008-161648 filed in Japan on June 20, 2008, the contents of which are incorporated herein by reference.
 近年、次世代移動体通信システムの研究が行われており、システムの周波数利用効率を高めるための方式として、1周波数繰り返しセルラシステムが提案されている。このシステムでは、各セルが同じ周波数帯域を使用することで、各セルがシステムに割り当てられた帯域全体を利用可能である。
 下りリンクでは、OFDMA(Orthogonal Frequency Division Multiple Access:直交周波数分割多元接続)方式が採用される可能性が高い。なお、下りリンクは、基地局装置から移動局装置への通信である。
In recent years, next-generation mobile communication systems have been studied, and a one-frequency repetitive cellular system has been proposed as a method for increasing the frequency utilization efficiency of the system. In this system, since each cell uses the same frequency band, each cell can use the entire band allocated to the system.
In the downlink, there is a high possibility that an OFDMA (Orthogonal Frequency Division Multiple Access) system will be adopted. The downlink is communication from the base station device to the mobile station device.
 OFDMA方式は、情報データに対して、受信状況に応じて異なる変調をかけて通信を行うOFDM信号を用いて、無線リソースを複数の移動局装置で柔軟に割り当てて通信を行う。変調には、64QAM(64-ary Quadrature Amplitude Modulation:64値直交振幅変調)やBPSK(Binary Phase Shift Keying:2相位相変調)などが用いられる。無線リソースは、時間軸と周波数軸で構成される。 The OFDMA scheme performs communication by flexibly allocating radio resources among a plurality of mobile station apparatuses using OFDM signals that are subjected to communication by performing different modulations on information data according to reception conditions. For the modulation, 64-QAM (64-ary Quadrature Amplitude Modulation: 64-value quadrature amplitude modulation), BPSK (Binary Phase Shift Keying: two-phase modulation), or the like is used. The radio resource is composed of a time axis and a frequency axis.
 この場合、OFDM信号を使用するため、PAPR(Peak to Average Power Ratio:ピーク対平均電力比)が非常に高くなることがある。この場合、高いピーク電力が、送信電力増幅機能に比較的余裕のある下りリンクの通信においては大きな問題とはならない。しかし、送信電力増幅機能に余裕のない上りリンクでは致命的な問題となる。上りリンクは、移動局装置から基地局装置への通信である。
 そのため、上りリンクでは、PAPRの低いシングルキャリア方式を基にした通信方式を用いることが望ましい。
In this case, since an OFDM signal is used, PAPR (Peak to Average Power Ratio) may be very high. In this case, high peak power does not pose a major problem in downlink communication where the transmission power amplification function has a relatively large margin. However, it becomes a fatal problem in the uplink where the transmission power amplification function has no margin. The uplink is communication from the mobile station device to the base station device.
Therefore, in the uplink, it is desirable to use a communication method based on a single carrier method with a low PAPR.
 しかしながら、シングルキャリア方式を用いると、OFDM方式のような時間軸と周波数軸を使った柔軟なリソースの割り当てが行えないという問題がある。これを解決する通信方式として、SC-ASA(Single Carrier - Adaptive Spectrum Allocation:シングルキャリア適応スペクトル割当)や、DFT-S-OFDM(Discrete Fourier Transform - Spread OFDM:DFT拡散OFDM)が提案されている(例えば、非特許文献1)。 However, when the single carrier method is used, there is a problem that flexible resource allocation using the time axis and the frequency axis as in the OFDM method cannot be performed. SC-ASA (Single Carrier-Adaptive Spectrum Allocation: Single Carrier Adaptive Spectrum Allocation) and DFT-S-OFDM (Discrete Fourier Transform-Spread OFDM: DFT Spread OFDM) have been proposed as communication methods to solve this. For example, Non-Patent Document 1).
 このような通信方式は、シングルキャリア通信方式と同様の手法を用いているため、ピーク対平均電力比(PAPR)は低くなる。また、OFDM信号のように、サイクリックプレフィックスを挿入することでブロック間干渉なくデータを処理することが可能となる。以下、サイクリックプレフィックスを挿入する間隔、即ち、離散フーリエ変換(DFT:Discrete Fourier Transform)を行うデータ処理単位を「DFT-S-OFDMシンボル」という。
 さらに、離散フーリエ変換(DFT)により周波数波形を一旦作っているため、サブキャリア単位でのリソース制御が容易にできるといった利点がある。
Since such a communication method uses the same method as the single carrier communication method, the peak-to-average power ratio (PAPR) is low. Moreover, it becomes possible to process data without inter-block interference by inserting a cyclic prefix like an OFDM signal. Hereinafter, an interval for inserting a cyclic prefix, that is, a data processing unit for performing Discrete Fourier Transform (DFT) is referred to as a “DFT-S-OFDM symbol”.
Furthermore, since the frequency waveform is once created by discrete Fourier transform (DFT), there is an advantage that resource control in units of subcarriers can be easily performed.
 さらに、このSC-ASA方式を複数の送信装置で使用する場合には、周波数軸で信号が重複しないように配置される。同じ無線リソースの量で、より伝送特性を向上できるスペクトル重複リソースマネジメント(SORM:Spectrum-Overlapped Resource Management)が提案されている(例えば、非特許文献2)。この技術は、干渉抑圧機能を有する非線形繰り返し等化(以降、ターボ等化と称する)を受信装置で適用することを前提に、各送信装置の信号を他の送信装置の周波数信号の周波数配置に関係なく自由に配置する。そして、重複した周波数信号に関しては受信装置の干渉抑圧機能により相互の干渉を抑圧する。 Furthermore, when this SC-ASA system is used in a plurality of transmission apparatuses, signals are arranged so as not to overlap on the frequency axis. Spectrum overlapping resource management (SORM: Spectrum-Overlapped Resource Management) that can improve transmission characteristics with the same amount of radio resources has been proposed (for example, Non-Patent Document 2). This technique is based on the assumption that nonlinear iterative equalization (hereinafter referred to as turbo equalization) having an interference suppression function is applied to a receiving apparatus, and the signal of each transmitting apparatus is changed to the frequency arrangement of the frequency signals of other transmitting apparatuses. Arrange freely. Then, regarding the overlapping frequency signals, mutual interference is suppressed by the interference suppression function of the receiving apparatus.
 図13Aは、非特許文献2に記載の無線通信システムの概略構成図である。図13Bは、第1の送信装置100aが受信装置101に送信する周波数信号のスペクトルを示す図である。図13Cは、第2の送信装置100bが受信装置101に送信する周波数信号のスペクトルを示す図である。図13Dは、受信装置101が、第1の送信装置100a及び第2の送信装置100bから受信する周波数信号のスペクトルを示す図である。図13B~図13Dにおいて、横軸は、周波数を示している。
 この無線通信システムは、移動局装置である第1の送信装置100aと、移動局装置である第2の送信装置100bと、基地局装置である受信装置101とを備えている。
FIG. 13A is a schematic configuration diagram of a wireless communication system described in Non-Patent Document 2. FIG. 13B is a diagram illustrating a spectrum of a frequency signal transmitted from the first transmission device 100 a to the reception device 101. FIG. 13C is a diagram illustrating a spectrum of a frequency signal transmitted from the second transmitter 100b to the receiver 101. FIG. 13D is a diagram illustrating a spectrum of a frequency signal received by the reception apparatus 101 from the first transmission apparatus 100a and the second transmission apparatus 100b. In FIG. 13B to FIG. 13D, the horizontal axis indicates the frequency.
This wireless communication system includes a first transmission device 100a that is a mobile station device, a second transmission device 100b that is a mobile station device, and a reception device 101 that is a base station device.
 図13Aの無線通信システムでは、スペクトル重複リソースマネジメント(SORM)を使用している。第1の送信装置100aと第2の送信装置100bが、受信装置101に対して信号を送信する際に、一部の周波数信号を重複させて信号を送信する。受信装置101は、干渉抑圧機能を用いて、干渉を抑圧することで、結果的により受信状況の良好な周波数を使用して伝送を行う。
 詳述すると、第1の送信装置100aは、一定間隔に配置された周波数位置において、周波数の低い方から高い方へと第1番目、第2番目、第5番目、第8番目の周波数位置を用いて、合計4個の周波数信号a11、a12、a13、a14を受信装置101に送信する。それらの周波数信号a11、a12、a13、a14は、伝搬路特性に基づいて振幅および位相が変化して受信装置101に到達する。
The wireless communication system of FIG. 13A uses spectrum overlap resource management (SORM). When the first transmission device 100a and the second transmission device 100b transmit signals to the reception device 101, they are transmitted by overlapping some frequency signals. The reception apparatus 101 uses the interference suppression function to suppress interference, and as a result, performs transmission using a frequency with better reception conditions.
More specifically, the first transmission device 100a determines the first, second, fifth, and eighth frequency positions from a lower frequency to a higher frequency position arranged at regular intervals. In total, four frequency signals a11, a12, a13, and a14 are transmitted to the receiving apparatus 101. These frequency signals a11, a12, a13, and a14 change in amplitude and phase based on the propagation path characteristics and reach the receiving apparatus 101.
 同様に、第2の送信装置100bは、第1番目、第5番目、第6番目、第7番目の周波数位置を用いて、合計4個の周波数信号a21、a22、a23、a24を、受信装置101に送信する。
 受信装置101は、第1番目、第2番目、第5番目、第6番目、第7番目、第8番目の周波数位置において合計6個の周波数信号a31、a32、a33、a34、a35、a36を受信する。
 ただし、第1番目と第5番目の周波数位置においては、第1の送信装置100aと第2の送信装置100bの送信信号が伝搬路ベクトル的に合成された信号a31、a33を受信する。図13Dでは、信号a31、a33のスペクトルを点線で示している。
Similarly, the second transmission device 100b receives a total of four frequency signals a21, a22, a23, and a24 using the first, fifth, sixth, and seventh frequency positions. 101.
The receiving apparatus 101 receives a total of six frequency signals a31, a32, a33, a34, a35, a36 at the first, second, fifth, sixth, seventh, and eighth frequency positions. Receive.
However, at the first and fifth frequency positions, signals a31 and a33 obtained by combining the transmission signals of the first transmission device 100a and the second transmission device 100b in a propagation vector manner are received. In FIG. 13D, the spectra of the signals a31 and a33 are indicated by dotted lines.
 図14は、従来から知られている第1の送信装置100a(図13A)の構成を示す概略ブロック図である。なお、第2の送信装置100b(図13A)の構成は、第1の送信装置100aと同様であるので、その説明を省略する。 FIG. 14 is a schematic block diagram showing a configuration of a conventionally known first transmission device 100a (FIG. 13A). Note that the configuration of the second transmission device 100b (FIG. 13A) is the same as that of the first transmission device 100a, and thus the description thereof is omitted.
 第1の送信装置100aは、符号部1001Z、インターリーブ部1002Z、変調部1003Z、S/P(Serial to Parallel:シリアル/パラレル)変換部1004Z、DFT(Discrete Fourier Transform:離散フーリエ変換)部1005Z、スペクトルマッピング部1006Z、IDFT(Inverse DFT:逆離散フーリエ変換)部1007Z、P/S(Parallel to Serial:パラレル/シリアル)変換部1008Z、パイロット信号生成部1009Z、パイロット多重部1010Z、CP(Cyclic Prefix:サイクリックプレフィックス)挿入部1011Z、D/A(Digital to Analog:ディジタル/アナログ)変換部1012Z、無線部1013Z、送信アンテナ1014Zを備えている。 The first transmission device 100a includes a coding unit 1001Z, an interleaving unit 1002Z, a modulation unit 1003Z, an S / P (Serial to Parallel: serial / parallel) conversion unit 1004Z, a DFT (Discrete Fourier Transform) unit 1005Z, a spectrum Mapping unit 1006Z, IDFT (Inverse DFT: Inverse Discrete Fourier Transform) unit 1007Z, P / S (Parallel to Serial) unit 1008Z, Pilot signal generation unit 1009Z, Pilot multiplexing unit 1010Z, CP (Cyclic Prefix) Click prefix) Insertion part 1011Z, D / A (Digital to Analog) conversion 1012Z, and includes a wireless unit 1013Z, the transmit antenna 1014Z.
 第1の送信装置100aに入力された送信データビットは、符号部1001Zにより誤り訂正符号化が行われる。符号部1001Zが出力する符号データビットは、インターリーブ部1002Zによりビットの順番(時間順)が並び変えられる。インターリーブが施された符号ビットは、変調部1003Zにより変調方式に応じた信号点に符号ビットがマッピングされ、変調信号が生成される。
 変調信号は、S/P変換部1004Zにより直列な信号から並列な信号に変換され、DFT部1005Zにより時間信号から周波数信号に変換される。次に、周波数信号は、スペクトルマッピング部1006Zにより受信装置101(図13A)から通知されるスペクトル割当情報に基づいて、スペクトルの配置が行われる。
Transmission data bits input to the first transmission device 100a are subjected to error correction encoding by the encoding unit 1001Z. The code data bits output from the encoding unit 1001Z are rearranged in order (time order) by the interleaving unit 1002Z. The interleaved code bits are mapped to signal points according to the modulation scheme by the modulation unit 1003Z, and a modulation signal is generated.
The modulated signal is converted from a serial signal to a parallel signal by the S / P converter 1004Z, and converted from a time signal to a frequency signal by the DFT unit 1005Z. Next, the frequency signal is spectrum-arranged based on spectrum allocation information notified from the receiving apparatus 101 (FIG. 13A) by the spectrum mapping unit 1006Z.
 配置された周波数信号は、IDFT部1007Zにより周波数信号から時間信号に変換される。そして、P/S変換部1008Zにより並列信号から直列信号に変換される。
 パイロット信号生成部1009Zは、伝搬路特性を推定するための既知のパイロット信号を生成する。このパイロット信号は、P/S変換部1008Zにより得られた直列信号と、パイロット多重部1010Zにより多重される。
The arranged frequency signal is converted from a frequency signal to a time signal by the IDFT unit 1007Z. Then, the P / S converter 1008Z converts the parallel signal into a serial signal.
The pilot signal generation unit 1009Z generates a known pilot signal for estimating propagation path characteristics. This pilot signal is multiplexed with the serial signal obtained by P / S conversion section 1008Z and pilot multiplexing section 1010Z.
 その後、得られた信号は、CP挿入部1011Zによりサイクリックプレフィックス(CP)を挿入される。そして、D/A(Digital to Analog:ディジタル/アナログ)変換部1012Zによりディジタル信号からアナログ信号に変換される。そして、無線部1013Zにより無線周波数にアップコンバートされ、送信アンテナ1014Zから受信装置101(図13A)に送信される。 Thereafter, a cyclic prefix (CP) is inserted into the obtained signal by the CP insertion unit 1011Z. Then, the digital signal is converted into an analog signal by a D / A (Digital to Analog) converter 1012Z. Then, it is up-converted to a radio frequency by the radio unit 1013Z and transmitted from the transmission antenna 1014Z to the receiving apparatus 101 (FIG. 13A).
 図15は、従来から知られている受信装置101(図13A)の構成を示す概略ブロック図である。
 受信装置101は、受信アンテナ2001Z、無線部2002Z、A/D変換部2003Z、CP除去部2004Z、パイロット分離部2005Z、伝搬路推定部2006Z-1、2006Z-2、スケジューリング部2007Z、スペクトル割当情報生成部2008Z、バッファ2009Z、第1のS/P変換部2010Z、第1のDFT部2011Z、スペクトルデマッピング部2012Z、ソフトキャンセル部2013Z-1、2013Z-2、等化部2014Z-1、2014Z-2、復調部2015Z-1、2015Z-2、デインターリーブ部2016Z-1、2016Z-2、復号部2017Z-1、2017Z-2、インターリーブ部2018Z-1、2018Z-2、ソフトレプリカ生成部2019Z-1、2019Z-2、第2のS/P変換部2020Z-1、2020Z-2、第2のDFT部2021Z-1、2021Z-2、干渉抽出部2022Z-1、2022Z-2、判定部2024Z-1、2024Z-2を備えている。
FIG. 15 is a schematic block diagram showing a configuration of a conventionally known receiving apparatus 101 (FIG. 13A).
Receiving apparatus 101 includes receiving antenna 2001Z, radio section 2002Z, A / D conversion section 2003Z, CP removal section 2004Z, pilot separation section 2005Z, propagation path estimation sections 2006Z-1 and 2006Z-2, scheduling section 2007Z, spectrum allocation information generation Unit 2008Z, buffer 2009Z, first S / P conversion unit 2010Z, first DFT unit 2011Z, spectrum demapping unit 2012Z, soft cancellation units 2013Z-1 and 2013Z-2, equalization units 2014Z-1 and 2014Z-2 , Demodulator 2015Z-1, 2015Z-2, deinterleaver 2016Z-1, 2016Z-2, decoder 2017Z-1, 2017Z-2, interleaver 2018Z-1, 2018Z-2, soft replica generator 2019Z-1, 2019Z- , Second S / P conversion units 2020Z-1 and 2020Z-2, second DFT units 2021Z-1 and 2021Z-2, interference extraction units 2022Z-1 and 2022Z-2, determination units 2024Z-1 and 2024Z-2 It has.
 受信アンテナ2001Zで受信された受信信号は、無線部2002Zによりベースバンド信号にダウンコンバートされる。そして、A/D変換部2003Zによりアナログ信号からディジタル信号に変換される。
 ディジタル信号に変換された受信信号は、CP除去部2004Zによりサイクリックプレフィックス(CP)を除去される。そして、パイロット分離部2005Zにより各送信装置100a、100bのパイロット信号が分離される。
 分離された各送信装置100a、100bからのパイロット信号は、伝搬路推定部2006Z-1、2006Z-2において、それぞれ伝搬路特性と平均受信信号雑音比(SNR:Signal to Noise power Ratio)が推定される。
A reception signal received by the reception antenna 2001Z is down-converted to a baseband signal by the radio unit 2002Z. Then, the A / D converter 2003Z converts the analog signal into a digital signal.
The cyclic prefix (CP) is removed from the received signal converted into the digital signal by the CP removing unit 2004Z. And the pilot signal of each transmitter 100a, 100b is isolate | separated by the pilot separation part 2005Z.
With respect to the pilot signals from the separated transmission apparatuses 100a and 100b, the propagation path estimators 2006Z-1 and 2006Z-2 estimate the propagation path characteristics and the average received signal to noise ratio (SNR), respectively. The
 推定された伝搬路特性は、ソフトキャンセル部2012Z-1、2013Z-2、等化部2014Z-1、2014Z-2に入力されると同時に、スケジューリング部2007Zに入力される。そして、一部のスペクトルの重複を許容したスペクトル割当を決定するスケジューリングが行われる。そして、決定されたスペクトル割当情報は、スペクトル割当情報生成部2008Zにおいてフィードバックするための信号に変換され、各送信装置100a、100bに送信される。
 同時に次の伝送機会においてスペクトルデマッピング部2012Zにおいて周波数信号を元に戻すためのマッピング情報として、バッファ2009Zに保存される。
The estimated propagation path characteristics are input to the soft cancellation units 2012Z-1 and 2013Z-2, the equalization units 2014Z-1 and 2014Z-2, and simultaneously input to the scheduling unit 2007Z. And the scheduling which determines the spectrum allocation which permitted the overlap of a part of spectrum is performed. Then, the determined spectrum allocation information is converted into a signal for feedback in the spectrum allocation information generation unit 2008Z, and transmitted to each of the transmission apparatuses 100a and 100b.
At the same time, in the next transmission opportunity, the spectrum demapping unit 2012Z stores the information as mapping information for returning the frequency signal to the buffer 2009Z.
 一方、パイロット分離部2005Zにおいて分離されたデータ部分の受信信号は、第1のS/P変換部2010Zにより直列信号から並列信号に変換される。そして、第1のDFT部2011Zにより時間信号から周波数信号に変換される。
 得られた周波数信号は、スペクトルデマッピング部2012Zにおいて、前の伝送機会の際に得られていたマッピング情報をバッファ2009Zから取り出し、各送信装置100a、100bからの信号を分離する。
On the other hand, the received signal of the data portion separated in pilot separation unit 2005Z is converted from a serial signal to a parallel signal by first S / P conversion unit 2010Z. Then, the first DFT unit 2011Z converts the time signal into a frequency signal.
For the obtained frequency signal, the spectrum demapping unit 2012Z extracts the mapping information obtained at the previous transmission opportunity from the buffer 2009Z, and separates the signals from the transmitting apparatuses 100a and 100b.
 ここで、この段階では単にマッピング情報を用いて周波数信号を元に戻すだけであるから、送信時に重複していた一部の周波数信号に関しては互いに干渉として残っている。
 次に、スペクトルデマッピング部2012Zにより元の配置に戻された各送信装置100a、100bからの受信信号は、ソフトキャンセル部2013Z-1、2013Z-2に入力される。そして、ソフトキャンセル部2013Z-1、2013Z-2では、第2のDFT部2021Z-1、2021Z-2、および干渉抽出部2022Z-2、2022Z-1より得られた自身の信号のレプリカおよび他の送信装置からの干渉レプリカをキャンセルされ、等化部2014Z-1、2014Z-2に入力される。
Here, at this stage, the frequency signal is simply restored using the mapping information. Therefore, some of the frequency signals that are duplicated at the time of transmission remain as interference with each other.
Next, the received signals from the transmitting apparatuses 100a and 100b returned to the original arrangement by the spectrum demapping unit 2012Z are input to the soft cancellation units 2013Z-1 and 2013Z-2. Then, in the soft cancellation units 2013Z-1 and 2013Z-2, replicas of the own signals obtained from the second DFT units 2021Z-1 and 2021Z-2 and the interference extraction units 2022Z-2 and 2022Z-1 and other The interference replica from the transmission apparatus is canceled and input to the equalization units 2014Z-1 and 2014Z-2.
 なお、1回目はレプリカを生成できないので、何もキャンセルしない。等化部2014Z-1、2014Z-2では、無線伝搬路による信号の歪みを補償する等化処理が行われる。そして、等化後の信号は、復調部2015Z-1、2015Z-2に入力され、符号ビット単位の信頼性を表す対数尤度比(LLR:Log Likelihood Ratio)に分解される。
 対数尤度比(LLR)は、符号ビットが1である確率と0である確率の比の自然対数(底がe(ネピア数)の対数)で表現される。
Since the replica cannot be generated for the first time, nothing is canceled. The equalization units 2014Z-1 and 2014Z-2 perform equalization processing to compensate for signal distortion caused by the radio propagation path. The equalized signals are input to the demodulating units 2015Z-1 and 2015Z-2, and are decomposed into log likelihood ratios (LLRs) representing the reliability in units of code bits.
The log likelihood ratio (LLR) is expressed by the natural logarithm (the logarithm of e (Napier number) at the bottom) of the ratio of the probability that the sign bit is 1 and the probability that it is 0.
 得られた対数尤度比(LLR)は、送信装置で行われたインターリーブによる並びを元に戻すために、デインターリーブ部2016Z-1、2016Z-2に入力され、復号部2017Z-1、2017Z-2に入力される。
 復号部2017Z-1、2017Z-2では、最大事後確率(MAP:Maximum A Posteriori)推定に基づく誤り訂正処理が行われ、尤度の向上した符号ビットの外部LLRと情報ビットの事後LLRが出力される。
The obtained log likelihood ratio (LLR) is input to the deinterleaving sections 2016Z-1 and 2016Z-2 to restore the original interleaving sequence performed in the transmitting apparatus, and the decoding sections 2017Z-1 and 2017Z- 2 is input.
In decoding sections 2017Z-1 and 2017Z-2, error correction processing based on maximum a posteriori (MAP) estimation is performed, and an outer LLR of code bits and an a posteriori LLR of information bits with improved likelihood are output. The
 ここで、外部LLRは、符号ビットの事後LLRから入力したLLRを減算した誤り訂正処理のみで向上した信頼性を表している。外部LLRは、繰り返し処理に利用されるため、インターリーブ部2018Z-1、2018Z-2に入力される。事後LLRは、送信ビットの判定に使用されるため、判定部2024Z-1、2024-2Zに入力される。 Here, the external LLR represents the reliability improved only by the error correction process obtained by subtracting the LLR input from the a posteriori LLR of the sign bit. Since the external LLR is used for repetitive processing, it is input to the interleave units 2018Z-1 and 2018Z-2. Since the posterior LLR is used for determination of the transmission bit, it is input to the determination units 2024Z-1 and 2024-2Z.
 まず、外部LLRは、インターリーブ部2018Z-1、2018Z-2に入力される。そして、送信装置と同じ並びに並び変えるインターリーブが行われ、ソフトレプリカ生成部2019Z-1、2019Z-2に入力され、外部LLRから得られる信頼性に基づいた振幅を有するソフトレプリカが生成される。
 得られたソフトレプリカは、等化部2014Z-1、2014Z-2に入力されるとともに、ソフトキャンセルのために第2のS/P変換部2020Z-1、2020Z-2に入力される。そして、第2のDFT部2021Z-1、2021Z-2により時間信号から周波数信号に変換される。
First, the external LLR is input to the interleave units 2018Z-1 and 2018Z-2. Then, interleaving is performed in the same order as that of the transmission device, and input to the soft replica generation units 2019Z-1 and 2019Z-2 to generate a soft replica having an amplitude based on the reliability obtained from the external LLR.
The obtained soft replicas are input to equalization units 2014Z-1 and 2014Z-2 and also input to second S / P conversion units 2020Z-1 and 2020Z-2 for soft cancellation. Then, the second DFT units 2021Z-1 and 2021Z-2 convert the time signal into a frequency signal.
 得られた周波数信号は、自身の信号のキャンセルのために、ソフトキャンセル部2013Z-1、2013Z-2に入力される。また、得られた周波数信号は、送信装置間の干渉信号をソフトキャンセル部によりキャンセルするために干渉抽出部2022Z-1、2022Z-2に入力される。そして、ソフトキャンセル部2013Z-2、2013Z-1に入力され、再び同様の処理が繰り返される。
 この処理を任意の回数もしくは所定の回数繰り返す。そして、最後に復号部2017Z-1、2017Z-2により得られた情報ビットの事後LLRを、判定部2024Z-1、2024Z-2により硬判定することで復号データを得る。
The obtained frequency signal is input to the soft cancellation units 2013Z-1 and 2013Z-2 in order to cancel the own signal. Further, the obtained frequency signal is input to the interference extraction units 2022Z-1 and 2022Z-2 in order to cancel the interference signal between the transmission apparatuses by the soft cancellation unit. Then, it is input to the soft cancel units 2013Z-2 and 2013Z-1, and the same processing is repeated again.
This process is repeated an arbitrary number of times or a predetermined number of times. Finally, the a posteriori LLR of the information bits obtained by the decoding units 2017Z-1 and 2017Z-2 is hard-determined by the determination units 2024Z-1 and 2024Z-2 to obtain decoded data.
 スペクトル重複リソースマネジメント(SORM)では、異なる送信装置からの周波数信号の一部が重複することを許容している。そのため、重複した帯域分を空き帯域として残したままにすると、伝送特性は改善する。しかし、送信装置から受信装置に信号を送信する際に周波数利用効率は向上しないという問題があった。 Spectra overlap resource management (SORM) allows part of frequency signals from different transmitters to overlap. For this reason, the transmission characteristics are improved by leaving the overlapped band as a free band. However, there is a problem in that frequency utilization efficiency is not improved when a signal is transmitted from the transmission device to the reception device.
 本発明は、このような事情を鑑みてなされたもので、その目的は、高い周波数利用効率で、送信装置から受信装置に信号を送信することができる通信システム、通信装置、プログラム及び通信方法を提供することにある。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a communication system, a communication device, a program, and a communication method capable of transmitting a signal from a transmission device to a reception device with high frequency utilization efficiency. It is to provide.
(1) 本発明の一態様による通信システムは、受信装置と第1~第3の送信装置とを備える通信システムであって、前記第1の送信装置および第2の送信装置は、一部の周波数帯域を重複させて前記受信装置に信号を送信し、前記第3の送信装置は、前記第1および第2の送信装置が使用していない周波数帯域を使用して前記受信装置に信号を送信する。 (1) A communication system according to an aspect of the present invention is a communication system including a reception device and first to third transmission devices, and the first transmission device and the second transmission device are partially A signal is transmitted to the receiving device by overlapping frequency bands, and the third transmitting device transmits a signal to the receiving device using a frequency band that is not used by the first and second transmitting devices. To do.
(2) また、本発明の一態様による通信システムは、受信装置と第1~第3の送信装置とを備える通信システムであって、前記第3の送信装置は、所定の周波数帯域を使用して前記受信装置に信号を送信し、前記第1の送信装置および第2の送信装置は、前記所定の周波数帯域以外の周波数帯域の一部を重複させて前記受信装置に信号を送信する。 (2) A communication system according to an aspect of the present invention is a communication system including a reception device and first to third transmission devices, and the third transmission device uses a predetermined frequency band. The first transmission device and the second transmission device transmit signals to the reception device by overlapping a part of the frequency band other than the predetermined frequency band.
(3) また、本発明の一態様による通信システムでは、前記第3の送信装置が使用する周波数帯域は、前記第1および第2の送信装置の受信信号雑音比の和の小さい周波数に基づいて決定されても良い。 (3) Further, in the communication system according to one aspect of the present invention, the frequency band used by the third transmission device is based on a frequency with a small sum of reception signal noise ratios of the first and second transmission devices. It may be determined.
(4) また、本発明の一態様による通信システムは、受信装置と第1~第3の送信装置とを備える通信システムであって、前記第3の送信装置は、所定のサブチャネルを使用して前記受信装置に信号を送信し、前記第1の送信装置および第2の送信装置は、前記所定のサブチャネル以外のサブチャネルの一部を重複させて前記受信装置に信号を送信する。 (4) A communication system according to an aspect of the present invention is a communication system including a receiving device and first to third transmitting devices, and the third transmitting device uses a predetermined subchannel. The first transmitting apparatus and the second transmitting apparatus transmit signals to the receiving apparatus by overlapping a part of subchannels other than the predetermined subchannel.
(5) また、本発明の一態様による通信システムでは、前記第1の送信装置および第2の送信装置が使用するサブチャネルの伝送帯域の合計は、前記第1の送信装置と第2の送信装置の信号を割当可能な伝送帯域よりも大きくても良い。 (5) In the communication system according to the aspect of the present invention, the total transmission bandwidth of the subchannels used by the first transmission device and the second transmission device is the first transmission device and the second transmission. It may be larger than the transmission band to which the device signal can be allocated.
(6) また、本発明の一態様による通信装置は、第1~第3の送信装置と通信する通信装置であって、一部の周波数帯域を重複させた周波数帯域を前記第1の送信装置および第2の送信装置に割り当てる第1の割当部と、前記第1および第2の送信装置に割り当てていない周波数帯域を前記第3の送信装置に割り当てる第2の割当部と、を備える。 (6) In addition, the communication device according to one aspect of the present invention is a communication device that communicates with the first to third transmission devices, and the first transmission device has a frequency band that overlaps a part of the frequency bands. And a first allocating unit that allocates to the second transmitting device, and a second allocating unit that allocates frequency bands not allocated to the first and second transmitting devices to the third transmitting device.
(7) また、本発明の一態様によるプログラムは、第1~第3の送信装置と通信する通信装置のコンピュータを、一部の周波数帯域を重複させた周波数帯域を前記第1の送信装置および第2の送信装置に割り当てる第1の割当手段と、前記第1および第2の送信装置に割り当てていない周波数帯域を前記第3の送信装置に割り当てる第2の割当手段として機能させる。 (7) In addition, the program according to one aspect of the present invention provides a computer of a communication device that communicates with the first to third transmission devices with a frequency band obtained by overlapping a part of the frequency bands, A first allocating unit that allocates to the second transmitting apparatus, and a second allocating unit that allocates a frequency band not allocated to the first and second transmitting apparatuses to the third transmitting apparatus are caused to function.
(8) また、本発明の一態様による通信方法は、複数の送信装置を備える第1の送信装置群と、少なくとも1つの送信装置からなる第2の送信装置群と、受信装置とを用いる通信方法であって、前記第1の送信装置群の送信装置の各々に、周波数帯域を重複しないように割り当てる過程と、前記周波数帯域の一部を重複するように変更する過程と、前記第2の送信装置群の送信装置に、前記重複するように変更したことによって空いた周波数帯域を含む重複しない周波数帯域を割り当てる過程と、前記第1の送信装置群を構成する複数の送信装置の各々は、前記一部の周波数帯域が重複した周波数信号を前記受信装置に送信する過程と、前記第2の送信装置群を構成する送信装置は、前記第1の送信装置群を構成する送信装置の各々が使用していない周波数帯域を使用して前記受信装置に周波数信号を送信する過程と、を有する。 (8) In addition, a communication method according to an aspect of the present invention is a communication using a first transmission device group including a plurality of transmission devices, a second transmission device group including at least one transmission device, and a reception device. A method of assigning a frequency band to each of the transmission devices of the first transmission device group so as not to overlap; a step of changing a part of the frequency band so as to overlap; A process of assigning non-overlapping frequency bands including a frequency band vacated by changing the overlapping to the transmitting apparatuses of the transmitting apparatus group, and each of the plurality of transmitting apparatuses constituting the first transmitting apparatus group, In the process of transmitting the frequency signal having the overlapped part of the frequency bands to the receiving device and the transmitting device configuring the second transmitting device group, each of the transmitting devices configuring the first transmitting device group includes: use Having the steps of transmitting a frequency signal to the reception apparatus using a frequency band not.
(9) また、本発明の一態様による通信方法は、複数の送信装置を備える第1の送信装置群と、少なくとも1つの送信装置からなる第2の送信装置群と、受信装置とを用いる通信方法であって、前記第2の送信装置群の送信装置に、周波数帯域を割り当てる過程と、前記第1の送信装置群の送信装置の各々に、前記第2の送信装置群の送信装置が使用しない周波数帯域をその一部が重複するように割り当てる過程と、前記第1の送信装置群を構成する複数の送信装置の各々は、前記一部の周波数帯域が重複した周波数信号を前記受信装置に送信する過程と、前記第2の送信装置群を構成する送信装置は、前記第1の送信装置群を構成する送信装置の各々が使用していない周波数帯域を使用して前記受信装置に周波数信号を送信する過程と、を有する。 (9) In addition, a communication method according to an aspect of the present invention is a communication using a first transmission device group including a plurality of transmission devices, a second transmission device group including at least one transmission device, and a reception device. A method of assigning a frequency band to a transmission device of the second transmission device group, and a transmission device of the second transmission device group used for each of the transmission devices of the first transmission device group. And assigning the frequency band not to be partially overlapped to each other, and each of the plurality of transmitting apparatuses constituting the first transmitting apparatus group to the receiving apparatus In the transmission process, the transmission device constituting the second transmission device group uses the frequency band not used by each of the transmission devices constituting the first transmission device group to transmit the frequency signal to the reception device. And the process of sending A.
(10) また、本発明の一態様による通信方法は、複数の送信装置からなる第1の送信装置群と、少なくとも1つの送信装置からなる第2の送信装置群と、受信装置とを用いる通信方法であって、周波数帯域を所定幅の周波数帯域ごとにサブチャネルに分割する過程と、前記第2の送信装置群の送信装置に、1つまたは複数のサブチャネルを割り当てる過程と、前記第1の送信装置群の送信装置の各々に、前記第2の送信装置群の送信装置が使用しない1つまたは複数のサブチャネルを用い、その一部の周波数帯域が重複するように割り当てる過程と、前記第1の送信装置群を構成する複数の送信装置の各々は、そのサブチャネルの一部の周波数帯域が重複した周波数信号を前記受信装置に送信する過程と、前記第2の送信装置群を構成する送信装置は、前記第1の送信装置群を構成する送信装置の各々が使用していないサブチャネルの周波数帯域を使用して前記受信装置に周波数信号を送信する過程と、を有する。 (10) In addition, a communication method according to an aspect of the present invention is a communication using a first transmission device group including a plurality of transmission devices, a second transmission device group including at least one transmission device, and a reception device. A method of dividing a frequency band into sub-channels for each frequency band of a predetermined width, a step of assigning one or a plurality of sub-channels to transmitting devices of the second transmitting device group, and the first Assigning to each of the transmission devices of the transmission device group one or more subchannels that are not used by the transmission device of the second transmission device group, so that some of the frequency bands overlap, Each of the plurality of transmission devices constituting the first transmission device group includes a process of transmitting a frequency signal in which a part of the frequency bands of the subchannel overlaps to the reception device, and the second transmission device group. You Transmitting device; and a process of transmitting a frequency signal to the reception apparatus using a frequency band of a sub-channel, each of the transmitting device is not used for forming the first transmission unit group.
 本発明の通信システム、通信装置、プログラム及び通信方法は、高い周波数利用効率で、送信装置から受信装置に信号を送信することができる。 The communication system, communication device, program, and communication method of the present invention can transmit a signal from a transmission device to a reception device with high frequency utilization efficiency.
本発明の第1の実施形態による無線通信システムの概略構成図である。1 is a schematic configuration diagram of a radio communication system according to a first embodiment of the present invention. 本発明の第1の実施形態による第1の送信装置11aの構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the 1st transmitter 11a by the 1st Embodiment of this invention. 本発明の第1の実施形態による受信装置10の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the receiver 10 by the 1st Embodiment of this invention. 本発明の第1の実施形態による第1の送信装置11aが受信装置10に送信する信号の周波数配置を示す図である。It is a figure which shows frequency arrangement | positioning of the signal which the 1st transmitter 11a by the 1st Embodiment of this invention transmits to the receiver 10. FIG. 本発明の第1の実施形態による第2の送信装置11bが受信装置10に送信する信号の周波数配置を示す図である。It is a figure which shows frequency arrangement | positioning of the signal which the 2nd transmitter 11b by the 1st Embodiment of this invention transmits to the receiver 10. FIG. 本発明の第1の実施形態による第3の送信装置11cが受信装置10に送信する信号の周波数配置を示す図である。It is a figure which shows frequency arrangement | positioning of the signal which the 3rd transmitter 11c by the 1st Embodiment of this invention transmits to the receiver 10. FIG. 本発明の第1の実施形態による受信装置10の処理を示すフローチャートである。It is a flowchart which shows the process of the receiver 10 by the 1st Embodiment of this invention. 本発明の第2の実施形態による第1の送信装置11aが受信装置10に送信する信号の周波数配置を示す図である。It is a figure which shows frequency arrangement | positioning of the signal which the 1st transmitter 11a by the 2nd Embodiment of this invention transmits to the receiver 10. FIG. 本発明の第2の実施形態による第2の送信装置11bが受信装置10に送信する信号の周波数配置を示す図である。It is a figure which shows the frequency arrangement | positioning of the signal which the 2nd transmitter 11b by the 2nd Embodiment of this invention transmits to the receiver 10. FIG. 本発明の第2の実施形態による第3の送信装置11cが受信装置10に送信する信号の周波数配置を示す図である。It is a figure which shows frequency arrangement | positioning of the signal which the 3rd transmitter 11c by the 2nd Embodiment of this invention transmits to the receiver 10. FIG. 本発明の第2の実施形態による受信装置10の処理を示すフローチャートである。It is a flowchart which shows the process of the receiver 10 by the 2nd Embodiment of this invention. 本発明の第3の実施形態による第1の送信装置11aが受信装置10に送信する信号の周波数信号配置を示す図である。It is a figure which shows the frequency signal arrangement | positioning of the signal which the 1st transmitter 11a by the 3rd Embodiment of this invention transmits to the receiver 10. FIG. 本発明の第3の実施形態による第2の送信装置11bが受信装置10に送信する信号の周波数信号配置を示す図である。It is a figure which shows the frequency signal arrangement | positioning of the signal which the 2nd transmitter 11b by the 3rd Embodiment of this invention transmits to the receiver 10. FIG. 本発明の第3の実施形態による第3の送信装置11cが受信装置10に送信する信号の周波数信号配置を示す図である。It is a figure which shows the frequency signal arrangement | positioning of the signal which the 3rd transmitter 11c by the 3rd Embodiment of this invention transmits to the receiver 10. FIG. 本発明の第3の実施形態による受信装置10の処理を示すフローチャートである。It is a flowchart which shows the process of the receiver 10 by the 3rd Embodiment of this invention. 本発明の第4の実施形態による基地局装置が指定する論理サブキャリア番号の一例を示す表である。It is a table | surface which shows an example of the logical subcarrier number which the base station apparatus by the 4th Embodiment of this invention designates. 本発明の第4の実施形態による論理サブキャリア番号と物理サブキャリア番号のマッピングの一例を示す図である。It is a figure which shows an example of the mapping of the logical subcarrier number and physical subcarrier number by the 4th Embodiment of this invention. 本発明の第4の実施形態において、時間T3で各ユーザが使用する物理サブキャリア番号の一例を示す表である。In the 4th Embodiment of this invention, it is a table | surface which shows an example of the physical subcarrier number which each user uses at time T3. 非特許文献2に記載の無線通信システムの概略構成図である。2 is a schematic configuration diagram of a wireless communication system described in Non-Patent Document 2. FIG. 第1の送信装置100aが受信装置101に送信する周波数信号のスペクトルを示す図である。FIG. 4 is a diagram illustrating a spectrum of a frequency signal transmitted from the first transmission device 100a to the reception device 101. 第2の送信装置100bが受信装置101に送信する周波数信号のスペクトルを示す図である。6 is a diagram illustrating a spectrum of a frequency signal transmitted from the second transmission device 100b to the reception device 101. FIG. 受信装置101が、第1の送信装置100a及び第2の送信装置100bから受信する周波数信号のスペクトルを示す図である。It is a figure which shows the spectrum of the frequency signal which the receiver 101 receives from the 1st transmitter 100a and the 2nd transmitter 100b. 第1の送信装置100a(図13A)の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the 1st transmitter 100a (FIG. 13A). 受信装置101(図13A)の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the receiver 101 (FIG. 13A).
 以下、図面を参照し、本発明の第1~第3の実施形態について説明する。第1~第3の実施形態では、シングルキャリア適応スペクトル割当(SC-ASA方式)を使用する場合について説明する。そして、第1の送信装置と第2の送信装置とが、スペクトル重複リソースマネジメント(SORM)を用いて、受信装置に信号を送信する場合について説明する。また、第3の送信装置の信号を多重するために、周波数帯域を確保する場合について説明する。 Hereinafter, first to third embodiments of the present invention will be described with reference to the drawings. In the first to third embodiments, a case where single carrier adaptive spectrum allocation (SC-ASA scheme) is used will be described. And the case where a 1st transmitter and a 2nd transmitter transmit a signal to a receiver using spectrum duplication resource management (SORM) is demonstrated. A case will be described in which a frequency band is secured in order to multiplex signals from the third transmission apparatus.
[第1の実施形態]
 始めに、本発明の第1の実施形態について説明する。本実施形態では、送信装置11aと送信装置11bに対して優先的にSORMによる周波数割当を行った後、重複により空いた帯域に送信装置11cの周波数割当を行う。
[First Embodiment]
First, a first embodiment of the present invention will be described. In the present embodiment, frequency allocation by SORM is preferentially performed for the transmission apparatus 11a and the transmission apparatus 11b, and then the frequency allocation of the transmission apparatus 11c is performed in a band vacated by duplication.
 図1は、本発明の第1の実施形態による無線通信システムの概略構成図である。本実施形態による無線通信システムは、移動局装置である第1の送信装置11a、移動局装置である第2の通信装置11b、移動局装置である第3の通信装置11c、基地局装置である受信装置10を備えている。 FIG. 1 is a schematic configuration diagram of a wireless communication system according to a first embodiment of the present invention. The wireless communication system according to the present embodiment includes a first transmission device 11a that is a mobile station device, a second communication device 11b that is a mobile station device, a third communication device 11c that is a mobile station device, and a base station device. A receiving device 10 is provided.
 図1において、スペクトル重複リソースマネジメント(SORM)を用いた通信を行う第1の送信装置11aと、第2の送信装置11bが使用する離散周波数のポイント数をNとする。また、受信装置10で受信可能、即ち利用可能な帯域の離散周波数のポイント数をNとする。また、第3の送信装置11cが使用する離散周波数のポイント数をNとする。
 なお、ここでは、N=2Nであり、重複させることにより確保する帯域がNである場合について説明するが、これに限定されるものではない。例えば、スペクトル重複リソースマネジメント(SORM)を用いて、最大で2N=Nとなった場合には、ポイント数Nに相当する帯域の4分の1の帯域を新たに第3の送信装置11cに割り当てることができる。これにより、周波数利用効率が大幅に改善される。
 また、ここでは第1の送信装置11aと第2の送信装置11bが使用する帯域幅が同じ場合について説明するが、使用する帯域幅は異なっていても良い。
In FIG. 1, a first transmission device 11a for performing communication using the spectrum overlapping resource management (SORM), the number of points of a discrete frequency which the second transmission device 11b is used as the N u. Also, let N d be the number of discrete frequency points in the band that can be received by the receiving apparatus 10, that is, available. Also, let N t be the number of discrete frequency points used by the third transmitter 11c.
Here, a case will be described in which N d = 2N u and the band secured by overlapping is N t , but is not limited thereto. For example, when the spectrum overlap resource management (SORM) is used and 2N t = N u at the maximum, a quarter of the band corresponding to the number of points N d is newly added to the third transmission device. 11c. Thereby, frequency utilization efficiency is greatly improved.
Further, here, a case where the bandwidths used by the first transmission device 11a and the second transmission device 11b are the same will be described, but the bandwidths used may be different.
 また、使用する帯域幅が異なる3つの送信装置が同時に通信を行う場合に、最も帯域幅の狭い送信装置を第3の送信装置としても良い。
 また、以下に示す実施形態においては、移動局装置から基地局装置への通信である上りリンクでの通信について説明するが、これに限定されるものではなく、基地局装置から移動局装置への通信である下りリンクでの通信に用いても良い。
In addition, when three transmission apparatuses having different bandwidths perform communication at the same time, the transmission apparatus having the narrowest bandwidth may be used as the third transmission apparatus.
In the embodiment described below, communication in the uplink, which is communication from the mobile station device to the base station device, will be described, but the present invention is not limited to this, and the base station device to the mobile station device is not limited thereto. You may use for the communication in the downlink which is communication.
 また、本実施形態では、異なる3つの送信装置11a~11cが別々の信号を受信装置10に送信する場合について説明するが、これに限定されるものではない。例えば、1つの送信装置が3本の送信アンテナを装備し、別々のデータを受信装置10に送信しても良い。また、2つの送信装置が同時に通信を行う場合に、いずれか1つの送信装置が2本の送信アンテナを装備し、別々のデータを受信装置10に送信しても良い。
 さらに、本実施形態では、受信装置10が、全ての送信装置からの受信状況を把握でき、受信装置10で周波数配置を決定する場合について説明するが、これに限定されるものではない。例えば、受信装置10が受信状況の把握さえできれば、通信を行っている他の送信装置や受信装置で周波数配置の決定をしても良い。
In this embodiment, the case where three different transmission apparatuses 11a to 11c transmit different signals to the reception apparatus 10 will be described, but the present invention is not limited to this. For example, one transmission device may be equipped with three transmission antennas, and separate data may be transmitted to the reception device 10. Further, when two transmitting apparatuses communicate simultaneously, any one transmitting apparatus may be equipped with two transmitting antennas and transmit different data to the receiving apparatus 10.
Furthermore, although this embodiment demonstrates the case where the receiving apparatus 10 can grasp | ascertain the reception condition from all the transmission apparatuses, and determines the frequency arrangement | positioning in the receiving apparatus 10, it is not limited to this. For example, as long as the receiving device 10 can grasp the reception status, the frequency arrangement may be determined by another transmitting device or receiving device that is performing communication.
 第1の実施形態では、スペクトル重複リソースマネジメント(SORM)により確率的に重複する離散周波数のポイント数がNサンプルであり、重複により空いた帯域に第3の送信装置11cの信号を割り当てる。 In the first embodiment, the number of points stochastically overlapping discrete frequency by spectrum Overlapped Resource Management (SORM) is N t sample, assigning a signal of a third transmission device 11c to the band vacated by duplicate.
 図2は、本発明の第1の実施形態による第1の送信装置11aの構成を示す概略ブロック図である。なお、第2の送信装置11bと第3の送信装置11cの構成は、第1の送信装置11aと同様であるため、それらの説明を省略する。
 第1の送信装置11aは、符号部1001、インターリーブ部1002、変調部1003、S/P変換部1004、DFT部1005、スペクトルマッピング部1006、IDFT部1007、P/S変換部1008、パイロット信号生成部1009、パイロット多重部1010、CP挿入部1011、D/A変換部1012、無線部1013、送信アンテナ1014を備えている。
FIG. 2 is a schematic block diagram showing the configuration of the first transmission device 11a according to the first embodiment of the present invention. In addition, since the structure of the 2nd transmission apparatus 11b and the 3rd transmission apparatus 11c is the same as that of the 1st transmission apparatus 11a, those description is abbreviate | omitted.
The first transmission device 11a includes a coding unit 1001, an interleaving unit 1002, a modulation unit 1003, an S / P conversion unit 1004, a DFT unit 1005, a spectrum mapping unit 1006, an IDFT unit 1007, a P / S conversion unit 1008, and a pilot signal generator. Unit 1009, pilot multiplexing unit 1010, CP insertion unit 1011, D / A conversion unit 1012, radio unit 1013, and transmission antenna 1014.
 符号部1001には、送信データビットが入力される。
 符号部1001は、送信データビットに対して、誤り訂正符号化を行い、インターリーブ部1002に出力する。
 インターリーブ部1002は、符号部1001が出力した信号に対して、ビットの順番(時間順)を並び変えるインターリーブの処理を行い、変調部1003に出力する。
 変調部1003は、インターリーブ部1002が出力する信号を、変調方式に応じた信号点にマッピングし、変調信号を生成する。
 S/P変換部1004は、変調部1003が出力する信号を、直列信号から、N本の並列信号に変換し、DFT部1005に出力する。
 DFT部1005は、S/P変換部1004が出力する信号を、時間信号から周波数信号に変換し、スペクトルマッピング部1006に出力する。
 スペクトルマッピング部1006は、DFT部1005が出力する信号について、受信装置10から通知されるスペクトル割当情報に基づいて、スペクトルの配置を行い、N本の信号として、IDFT部1007に出力する。
The encoding unit 1001 receives transmission data bits.
Encoding section 1001 performs error correction encoding on the transmission data bits and outputs the result to interleaving section 1002.
Interleaving section 1002 performs interleaving processing for rearranging the bit order (time order) on the signal output from coding section 1001, and outputs the result to modulating section 1003.
Modulating section 1003 maps the signal output from interleaving section 1002 to a signal point corresponding to the modulation scheme, and generates a modulated signal.
S / P conversion unit 1004, a signal modulation unit 1003 outputs, from the serial signal is converted into parallel signals of N u present, and outputs the DFT unit 1005.
The DFT unit 1005 converts the signal output from the S / P conversion unit 1004 from a time signal to a frequency signal and outputs the frequency signal to the spectrum mapping unit 1006.
Spectral mapping unit 1006, the signal DFT unit 1005 outputs, based on the spectrum allocation information notified from the receiving apparatus 10 performs the arrangement of the spectrum, as N d of signal, and outputs the IDFT unit 1007.
 IDFT部1007は、スペクトルマッピング部1006が出力した信号を、周波数信号から時間信号に変換し、P/S変換部1008に出力する。
 P/S変換部1008は、IDFT部1007が出力した信号を、並列信号から直列信号に変換する。
 パイロット信号生成部1009は、伝搬路特性を推定するための既知のパイロット信号を生成し、パイロット多重部1010に出力する。
 パイロット多重部1010は、P/S変換部1008が出力する信号と、パイロット信号生成部1009が出力する信号とを多重し、CP挿入部1011に出力する。
 CP挿入部1011は、パイロット多重部1010が出力した信号に対して、サイクリックプレフィックスを挿入し、D/A変換部1012に出力する。
 D/A変換部1012は、CP挿入部1011が出力した信号を、ディジタル信号からアナログ信号に変換し、無線部1013に出力する。
 無線部1013は、D/A変換部1012が出力した信号を、無線周波数にアップコンバートし、送信アンテナ1014から受信装置10に送信する。
The IDFT unit 1007 converts the signal output from the spectrum mapping unit 1006 from a frequency signal to a time signal and outputs the time signal to the P / S conversion unit 1008.
The P / S conversion unit 1008 converts the signal output from the IDFT unit 1007 from a parallel signal to a serial signal.
Pilot signal generation section 1009 generates a known pilot signal for estimating propagation path characteristics, and outputs the pilot signal to pilot multiplexing section 1010.
Pilot multiplexing section 1010 multiplexes the signal output from P / S conversion section 1008 and the signal output from pilot signal generation section 1009 and outputs the result to CP insertion section 1011.
CP insertion section 1011 inserts a cyclic prefix into the signal output from pilot multiplexing section 1010 and outputs the signal to D / A conversion section 1012.
The D / A conversion unit 1012 converts the signal output from the CP insertion unit 1011 from a digital signal to an analog signal and outputs the analog signal to the radio unit 1013.
The radio unit 1013 up-converts the signal output from the D / A conversion unit 1012 to a radio frequency, and transmits the radio frequency to the reception device 10.
 図3は、本発明の第1の実施形態による受信装置10の構成を示す概略ブロック図である。受信装置10は、伝搬路推定部31、信号検出部32、受信アンテナ2001、無線部2002、A/D変換部2003、CP除去部2004、パイロット分離部2005、伝搬路推定部2006-1、2006-2、スケジューリング部2007、スペクトル割当情報生成部2008、バッファ2009、第1のS/P変換部2010、第1のDFT部2011、スペクトルデマッピング部2012、ソフトキャンセル部2013-1、2013-2、等化部2014-1、2014-2、復調部2015-1、2015-2、デインターリーブ部2016-1、2016-2、復号部2017-1、2017-2、インターリーブ部2018-1、2018-2、ソフトレプリカ生成部2019-1、2019-2、第2のS/P変換部2020-1、2020-2、第2のDFT部2021-1、2021-2、干渉抽出部2022-1、2022-2、判定部2024-1、2024-2を備えている。 FIG. 3 is a schematic block diagram showing the configuration of the receiving device 10 according to the first embodiment of the present invention. The reception apparatus 10 includes a propagation path estimation unit 31, a signal detection unit 32, a reception antenna 2001, a radio unit 2002, an A / D conversion unit 2003, a CP removal unit 2004, a pilot separation unit 2005, and propagation path estimation units 2006-1 and 2006. -2, scheduling unit 2007, spectrum allocation information generation unit 2008, buffer 2009, first S / P conversion unit 2010, first DFT unit 2011, spectrum demapping unit 2012, soft cancellation units 2013-1, 2013-2 , Equalization units 2014-1, 2014-2, demodulation units 2015-1, 2015-2, deinterleaving units 2016-1, 2016-2, decoding units 2017-1, 2017-2, interleaving units 2018-1, 2018 -2, soft replica generation unit 2019-1, 2019-2, second S / P conversion unit 020-1,2020-2, second DFT unit 2021-1,2021-2, interference extractor 2022-1,2022-2, and a determination unit 2024-1,2024-2.
 受信アンテナ2001は、第1の送信装置11a、第2の送信装置11b、第3の送信装置11cが送信する信号を受信し、無線部2002に出力する。
 無線部2002は、受信アンテナ2001が出力した信号を、ベースバンド信号にダウンコンバートし、A/D変換部2003に出力する。
 A/D変換部2003は、無線部2002が出力した信号を、アナログ信号からディジタル信号に変換し、CP除去部2004に出力する。
 CP除去部2004は、A/D変換部2003が出力した信号から、サイクリックプレフィックス(CP)を除去し、パイロット分離部2005に出力する。
The reception antenna 2001 receives signals transmitted from the first transmission device 11a, the second transmission device 11b, and the third transmission device 11c, and outputs the signals to the radio unit 2002.
Radio section 2002 down-converts the signal output from reception antenna 2001 into a baseband signal and outputs the result to A / D conversion section 2003.
The A / D conversion unit 2003 converts the signal output from the wireless unit 2002 from an analog signal to a digital signal and outputs the signal to the CP removal unit 2004.
CP removal section 2004 removes a cyclic prefix (CP) from the signal output from A / D conversion section 2003 and outputs the result to pilot separation section 2005.
 パイロット分離部2005は、CP除去部2004が出力した信号から、第3の送信装置11cのパイロット信号を分離し、伝搬路推定部31に出力する。
 また、パイロット分離部2005は、CP除去部2004が出力した信号から、第1の送信装置11aのパイロット信号を分離し、伝搬路推定部2006-1に出力する。
 また、パイロット分離部2005は、CP除去部2004が出力した信号から、第2の送信装置11bのパイロット信号を分離し、伝搬路推定部2006-2に出力する。
 また、パイロット分離部2005は、CP除去部2004が出力した信号から、第1の送信装置11aのパイロット信号、第2の送信装置11bのパイロット信号、第3の送信装置11cのパイロット信号を除去した信号を、第1のS/P変換部2010に出力する。
The pilot separation unit 2005 separates the pilot signal of the third transmission device 11 c from the signal output from the CP removal unit 2004 and outputs the pilot signal to the propagation path estimation unit 31.
Pilot demultiplexing section 2005 demultiplexes the pilot signal of first transmission device 11a from the signal output from CP removal section 2004, and outputs it to propagation path estimation section 2006-1.
Further, pilot demultiplexing section 2005 demultiplexes the pilot signal of second transmission apparatus 11b from the signal output from CP removal section 2004, and outputs it to propagation path estimation section 2006-2.
Further, the pilot separation unit 2005 removes the pilot signal of the first transmission device 11a, the pilot signal of the second transmission device 11b, and the pilot signal of the third transmission device 11c from the signal output from the CP removal unit 2004. The signal is output to the first S / P converter 2010.
 伝搬路推定部31は、パイロット分離部2005が出力したパイロット信号に基づいて、第3の送信装置11cと受信装置10との間の伝搬路特性と平均受信信号雑音比とを推定し、信号検出部32とスケジューリング部2007に出力する。
 伝搬路推定部2006-1は、パイロット分離部2005が出力したパイロット信号に基づいて、第1の送信装置11aと受信装置10との間の伝搬路特性と平均受信信号雑音比とを推定し、ソフトキャンセル部2013-1、等化部2014-1、スケジューリング部2007に出力する。
 伝搬路推定部2006-2は、パイロット分離部2005が出力したパイロット信号に基づいて、第2の送信装置11bと受信装置10との間の伝搬路特性と平均受信信号雑音比とを推定し、ソフトキャンセル部2013-2、等化部2014-2、スケジューリング部2007に出力する。
 なお、伝搬路推定部31、2006-1、2006-2は、平均受信信号雑音比を推定するのではなく、雑音の分散を推定するようにしても良い。
The propagation path estimation unit 31 estimates a propagation path characteristic and an average received signal noise ratio between the third transmission device 11c and the reception device 10 based on the pilot signal output from the pilot separation unit 2005, and performs signal detection. To the unit 32 and the scheduling unit 2007.
A propagation path estimation unit 2006-1 estimates a propagation path characteristic and an average received signal noise ratio between the first transmission device 11a and the reception device 10 based on the pilot signal output from the pilot separation unit 2005, The data is output to the soft cancellation unit 2013-1, the equalization unit 2014-1, and the scheduling unit 2007.
The propagation path estimation unit 2006-2 estimates the propagation path characteristics and the average received signal noise ratio between the second transmission device 11b and the reception device 10 based on the pilot signal output from the pilot separation unit 2005, The data is output to the soft cancellation unit 2013-2, the equalization unit 2014-2, and the scheduling unit 2007.
Note that the propagation path estimators 31, 2006-1, and 2006-2 may estimate the noise variance instead of estimating the average received signal-to-noise ratio.
 推定された伝搬路特性は、ソフトキャンセル部2013-1、2013-2、等化部2014-1、2014-2に入力されると同時に、スケジューリング部2007に入力される。
 スケジューリング部2007は、一部のスペクトルの重複を許容したスペクトル割当を決定するスケジューリングを行う。スケジューリング部2007は、決定したスペクトル割当情報を、スペクトル割当情報生成部2008に出力する。
 スペクトル割当情報生成部2008は、スケジューリング部2007が出力したスペクトル割当情報を、第1の送信装置11a、第2の送信装置11b、第3の送信装置11cに対してフィードバックするための信号に変換し、第1の送信装置11aのスペクトル割当情報、第2の送信装置11bのスペクトル割当情報、第3の送信装置11cのスペクトル割当情報を生成する。
 スペクトル割当情報生成部2008は、第1の送信装置11aのスペクトル割当情報、第2の送信装置11bのスペクトル割当情報、第3の送信装置11cを、図示しない変調部、無線部、送信アンテナを介して、第1の送信装置11a、第2の送信装置11b、第3の送信装置11cに送信する。
 また、スペクトル割当情報生成部2008は、次の伝送機会においてスペクトルデマッピング部2012において周波数信号を元に戻すためのマッピング情報として、第1の送信装置11aのスペクトル割当情報、第2の送信装置11bのスペクトル割当情報、第3の送信装置11cを、バッファ2009に保存する。
The estimated propagation path characteristics are input to the soft cancellation units 2013-1, 2013-2 and equalization units 2014-1, 2014-2, and simultaneously to the scheduling unit 2007.
The scheduling unit 2007 performs scheduling for determining a spectrum allocation that allows some spectra to overlap. The scheduling unit 2007 outputs the determined spectrum allocation information to the spectrum allocation information generation unit 2008.
The spectrum allocation information generation unit 2008 converts the spectrum allocation information output from the scheduling unit 2007 into a signal for feedback to the first transmission device 11a, the second transmission device 11b, and the third transmission device 11c. Then, spectrum allocation information of the first transmission device 11a, spectrum allocation information of the second transmission device 11b, and spectrum allocation information of the third transmission device 11c are generated.
The spectrum allocation information generation unit 2008 transmits the spectrum allocation information of the first transmission device 11a, the spectrum allocation information of the second transmission device 11b, and the third transmission device 11c via a modulation unit, a radio unit, and a transmission antenna (not shown). Then, the data is transmitted to the first transmission device 11a, the second transmission device 11b, and the third transmission device 11c.
In addition, the spectrum allocation information generation unit 2008 uses the spectrum allocation information of the first transmission device 11a and the second transmission device 11b as mapping information for returning the frequency signal in the spectrum demapping unit 2012 at the next transmission opportunity. And the third transmission device 11c are stored in the buffer 2009.
 具体的には、本実施形態の受信装置10(通信装置とも称する)のスペクトル割当情報生成部2008は、第1の割当部2008-1、第2の割当部2008-2を備える。
 第1の割当部2008-1は、一部の周波数帯域を重複させた周波数帯域を第1の送信装置11aおよび第2の送信装置11bに割り当てる。第1の割当部2008-1は、その割当情報を、第1の送信装置11aのスペクトル割当情報として第1の送信装置11aに送信するとともに、第2の送信装置11bのスペクトル割当情報として第2の送信装置11bに送信する。
 第2の割当部2008-2は、第1の送信装置11aおよび第2の送信装置11bに割り当てていない周波数帯域を第3の送信装置11cに割り当てる。第2の割当部2008-2は、その割当情報を、第3の送信装置11cのスペクトル割当情報として第3の送信装置11cに送信する。
Specifically, the spectrum allocation information generation unit 2008 of the receiving device 10 (also referred to as a communication device) of the present embodiment includes a first allocation unit 2008-1 and a second allocation unit 2008-2.
The first allocation unit 2008-1 allocates a frequency band obtained by overlapping a part of the frequency bands to the first transmission device 11a and the second transmission device 11b. The first allocation unit 2008-1 transmits the allocation information to the first transmission device 11a as spectrum allocation information of the first transmission device 11a and the second as spectrum allocation information of the second transmission device 11b. To the transmitter 11b.
The second allocation unit 2008-2 allocates a frequency band that is not allocated to the first transmission device 11a and the second transmission device 11b to the third transmission device 11c. The second allocation unit 2008-2 transmits the allocation information to the third transmission device 11c as spectrum allocation information of the third transmission device 11c.
 第1のS/P変換部2010は、パイロット分離部2005が出力した信号を、直列信号から並列信号に変換し、第1のDFT部2011に出力する。
 第1のDFT部2011は、第1のS/P変換部2010が出力した信号を、時間信号から周波数信号に変換し、スペクトルデマッピング部2012に出力する。
 スペクトルデマッピング部2012は、前の伝送機会の際に得られたマッピング情報をバッファ2009から読み出す。そして、スペクトルデマッピング部2012は、読み出したマッピング情報に基づいて、第1のDFT部2011が出力した信号から、第1の送信装置11a、第2の送信装置11b、第3の送信装置11cが送信した信号を、元の配置に戻して分離し、信号検出部32、ソフトキャンセル部2013-1、2013-2に出力する。
 この段階では、単にマッピング情報を用いて周波数信号を元に戻すだけであるから、送信時に重複していた一部の周波数信号に関しては互いに干渉として残っている。
The first S / P conversion unit 2010 converts the signal output from the pilot separation unit 2005 from a serial signal to a parallel signal, and outputs the parallel signal to the first DFT unit 2011.
The first DFT unit 2011 converts the signal output from the first S / P conversion unit 2010 from a time signal to a frequency signal and outputs the frequency signal to the spectrum demapping unit 2012.
The spectrum demapping unit 2012 reads the mapping information obtained at the previous transmission opportunity from the buffer 2009. Based on the read mapping information, the spectrum demapping unit 2012 determines whether the first transmission device 11a, the second transmission device 11b, and the third transmission device 11c are based on the signal output from the first DFT unit 2011. The transmitted signal is returned to the original arrangement and separated and output to the signal detection unit 32 and the soft cancellation units 2013-1 and 2013-2.
At this stage, since the frequency signal is simply restored using the mapping information, some of the frequency signals that were duplicated at the time of transmission remain as interference with each other.
 ソフトキャンセル部2013-1は、スペクトルデマッピング部2012が出力した信号から、伝搬路推定部2006-1、第2のDFT部2021-1、干渉抽出部2022-2が出力する信号に基づいて、自身の信号のレプリカおよび他の送信装置からの干渉レプリカをキャンセルし、等化部2014-1に出力する。
 また、ソフトキャンセル部2013-2は、スペクトルデマッピング部2012が出力した信号から、伝搬路推定部2006-2、第2のDFT部2021-2、干渉抽出部2022-1が出力する信号に基づいて、自身の信号のレプリカおよび他の送信装置からの干渉レプリカをキャンセルし、等化部2014-2に出力する。
 なお、1回目の処理では、レプリカを生成できないので、ソフトキャンセル部2013-1、2013-2は、干渉レプリカのキャンセルの処理を行わない。
Based on the signals output from the channel estimation unit 2006-1, the second DFT unit 2021-1, and the interference extraction unit 2022-2 from the signal output from the spectrum demapping unit 2012, the soft cancellation unit 2013-1 Cancel the replica of its own signal and the interference replica from other transmitters, and output them to the equalization unit 2014-1.
Further, soft cancellation section 2013-2 is based on signals output from propagation path estimation section 2006-2, second DFT section 2021-2, and interference extraction section 2022-1 from signals output from spectrum demapping section 2012. Thus, the replica of its own signal and the interference replica from another transmitting apparatus are canceled and output to the equalization unit 2014-2.
Since the replica cannot be generated in the first process, the soft cancellation units 2013-1 and 2013-2 do not perform the process of canceling the interference replica.
 等化部2014-1は、ソフトキャンセル部2013-1が出力した信号から、伝搬路推定部2006-1、ソフトレプリカ生成部2019-1が出力する信号に基づいて、無線伝搬路による信号の歪みを補償する等化処理を行い、復調部2015-1に出力する。
 等化部2014-2は、ソフトキャンセル部2013-2が出力した信号から、伝搬路推定部2006-2、ソフトレプリカ生成部2019-2が出力する信号に基づいて、無線伝搬路による信号の歪みを補償する等化処理を行い、復調部2015-2に出力する。
The equalization unit 2014-1 uses the signal output from the soft cancellation unit 2013-1, and based on the signal output from the channel estimation unit 2006-1 and the soft replica generation unit 2019-1, the signal distortion caused by the radio channel Is compensated for and output to the demodulator 2015-1.
The equalization unit 2014-2 uses the signal output from the soft cancellation unit 2013-2, based on the signal output from the propagation channel estimation unit 2006-2 and the soft replica generation unit 2019-2, to distort the signal due to the radio channel Is output to the demodulator 2015-2.
 復調部2015-1は、等化部2014-1が出力した信号を、符号ビット単位の信頼性を表す対数尤度比(LLR)に分解し、デインターリーブ部2016-1に出力する。
 復調部2015-2は、等化部2014-2が出力した信号を、符号ビット単位の信頼性を表す対数尤度比(LLR)に分解し、デインターリーブ部2016-2に出力する。
 対数尤度比(LLR)は、符号ビットが1である確率と0である確率の比の自然対数で表現される。
Demodulation section 2015-1 decomposes the signal output from equalization section 2014-1 into a log likelihood ratio (LLR) that represents the reliability in units of code bits, and outputs the result to deinterleaving section 2016-1.
Demodulation section 2015-2 decomposes the signal output from equalization section 2014-2 into a log likelihood ratio (LLR) representing reliability in units of code bits, and outputs the result to deinterleaving section 2016-2.
The log likelihood ratio (LLR) is expressed by the natural logarithm of the ratio of the probability that the sign bit is 1 and the probability that it is 0.
 デインターリーブ部2016-1は、復調部2015-1が出力した信号に対して、送信装置で行われたインターリーブによる並び(時間順)を元に戻すデインターリーブの処理を行い、復号部2017-1に出力する。
 デインターリーブ部2016-2は、復調部2015-2が出力した信号に対して、送信装置で行われたインターリーブによる並び(時間順)を元に戻すデインターリーブの処理を行い、復号部2017-2に出力する。
The deinterleaving unit 2016-1 performs deinterleaving processing for returning the arrangement (in time order) by the interleaving performed in the transmission device to the signal output from the demodulating unit 2015-1, and the decoding unit 2017-1 Output to.
The deinterleaving unit 2016-2 performs deinterleaving on the signal output from the demodulating unit 2015-2 to return the arrangement (in time order) due to the interleaving performed by the transmission device to the original, and the decoding unit 2017-2 Output to.
 復号部2017-1は、デインターリーブ部2016-1が出力した信号に対して、最大事後確率推定に基づく誤り訂正処理を行い、尤度の向上した符号ビットの外部LLRと情報ビットの事後LLRを算出する。復号部2017-1は、外部LLRをインターリーブ部2018-1に出力し、事後LLRを判定部2024-1に出力する。
 復号部2017-2は、デインターリーブ部2016-2が出力した信号に対して、最大事後確率推定に基づく誤り訂正処理を行い、尤度の向上した符号ビットの外部LLRと情報ビットの事後LLRを算出する。復号部2017-2は、外部LLRをインターリーブ部2018-2に出力し、事後LLRを判定部2024-2に出力する。
 ここで、外部LLRは、符号ビットの事後LLRから入力したLLRを減算した誤り訂正処理のみで向上した信頼性を表しており、繰り返し処理に利用される。事後LLRは、送信ビットの判定に使用される。
The decoding unit 2017-1 performs error correction processing based on the maximum posterior probability estimation for the signal output from the deinterleaving unit 2016-1, and obtains the outer LLR of the code bit and the posterior LLR of the information bit with improved likelihood. calculate. Decoding section 2017-1 outputs the external LLR to interleaving section 2018-1, and outputs the posterior LLR to determination section 2024-1.
The decoding unit 2017-2 performs error correction processing based on the maximum posterior probability estimation on the signal output from the deinterleaving unit 2016-2, and obtains the outer LLR of the code bit and the posterior LLR of the information bit with improved likelihood. calculate. Decoding section 2017-2 outputs the external LLR to interleaving section 2018-2, and outputs the posterior LLR to determination section 2024-2.
Here, the external LLR represents the reliability improved only by the error correction process obtained by subtracting the LLR input from the a posteriori LLR of the sign bit, and is used for the iterative process. The posterior LLR is used for transmission bit determination.
 インターリーブ部2018-1は、復号部2017-1が出力した外部LLRに対して、送信装置と同じ並びに並び変えるインターリーブの処理を行い、ソフトレプリカ生成部2019-1に出力する。
 インターリーブ部2018-2は、復号部2017-2が出力した外部LLRに対して、送信装置と同じ並びに並び変えるインターリーブの処理を行い、ソフトレプリカ生成部2019-2に出力する。
The interleaving unit 2018-1 performs the same interleaving process as the transmission apparatus on the external LLR output from the decoding unit 2017-1, and outputs the result to the soft replica generation unit 2019-1.
The interleaving unit 2018-2 performs the same interleaving process as the transmission apparatus on the external LLR output from the decoding unit 2017-2, and outputs the result to the soft replica generation unit 2019-2.
 ソフトレプリカ生成部2019-1は、インターリーブ部2018-1が出力した信号に基づいて、外部LLRから得られる信頼性に基づいた振幅を有するソフトレプリカを生成し、等化部2014-1、第2のS/P変換部2020-1に出力する。
 また、ソフトレプリカ生成部2019-2は、インターリーブ部2018-2が出力した信号に基づいて、外部LLRから得られる信頼性に基づいた振幅を有するソフトレプリカを生成し、等化部2014-2、第2のS/P変換部2020-2に出力する。
The soft replica generation unit 2019-1 generates a soft replica having an amplitude based on the reliability obtained from the external LLR based on the signal output from the interleaving unit 2018-1, and the equalization unit 2014-1, To the S / P converter 2020-1.
The soft replica generation unit 2019-2 generates a soft replica having an amplitude based on the reliability obtained from the external LLR based on the signal output from the interleaving unit 2018-2, and the equalization unit 2014-2, The data is output to the second S / P converter 2020-2.
 第2のDFT部2021-1は、第2のS/P変換部2020-1が出力した信号を、時間信号から周波数信号に変換する。第2のDFT部2021-1は、変換した信号を、自身の信号のキャンセルのために、ソフトキャンセル部2013-1に出力する。また、第2のDFT部2021-1は、送信装置間の干渉信号をソフトキャンセル部2013-1によりキャンセルするために、干渉抽出部2022-1に出力する。
 第2のDFT部2021-2は、第2のS/P変換部2020-2が出力した信号を、時間信号から周波数信号に変換する。第2のDFT部2021-2は、変換した信号を、自身の信号のキャンセルのために、ソフトキャンセル部2013-2に出力する。また、第2のDFT部2021-2は、送信装置間の干渉信号をソフトキャンセル部2013-2によりキャンセルするために、干渉抽出部2022-2に出力する。
The second DFT unit 2021-1 converts the signal output from the second S / P conversion unit 2020-1 from a time signal to a frequency signal. The second DFT unit 2021-1 outputs the converted signal to the soft cancel unit 2013-1 for canceling its own signal. The second DFT unit 2021-1 outputs the interference signal between the transmission apparatuses to the interference extraction unit 2022-1 so that the soft cancellation unit 2013-1 can cancel the interference signal.
The second DFT unit 2021-2 converts the signal output from the second S / P conversion unit 2020-2 from a time signal to a frequency signal. The second DFT unit 2021-2 outputs the converted signal to the soft cancel unit 2013-2 for canceling its own signal. The second DFT unit 2021-2 outputs the interference signal between the transmission apparatuses to the interference extraction unit 2022-2 so that the soft cancellation unit 2013-2 cancels the interference signal.
 ソフトキャンセル部2013-1は、上述した処理と同様の処理を繰り返す。ソフトキャンセル部2013-1は、この処理を任意の回数もしくは所定の回数繰り返す。そして、最後に、判定部2024-1は、復号部2017-1により得られた情報ビットの事後LLRを、硬判定することで復号データを生成する。
 ソフトキャンセル部2013-2は、上述した処理と同様の処理を繰り返す。ソフトキャンセル部2013-2は、この処理を任意の回数もしくは所定の回数繰り返す。そして、最後に、判定部2024-2は、復号部2017-2により得られた情報ビットの事後LLRを、硬判定することで復号データを生成する。
The soft cancel unit 2013-1 repeats the same process as the process described above. The soft cancel unit 2013-1 repeats this process an arbitrary number of times or a predetermined number of times. Finally, the determination unit 2024-1 generates decoded data by performing a hard determination on the a posteriori LLR of the information bits obtained by the decoding unit 2017-1.
The soft cancel unit 2013-2 repeats the same process as described above. The soft cancel unit 2013-2 repeats this process an arbitrary number of times or a predetermined number of times. Finally, the determination unit 2024-2 generates decoded data by performing a hard determination on the a posteriori LLR of the information bits obtained by the decoding unit 2017-2.
 伝搬路推定部31は、受信装置10と第3の送信装置11cとの間の伝搬路の伝搬定数を推定し、信号検出部32とスケジューリング部2007とに出力する。
 信号検出部32は、スペクトルデマッピング部2012が出力した信号から、第3の送信装置11cが送信した信号を検出する。
 第3の送信装置11cが送信した信号には、第1の送信装置11aと第2の送信装置11bから送信される信号が重畳されていない。そのため、スペクトルデマッピング部2012で完全に分離され、信号検出部32に出力される。
The propagation path estimation unit 31 estimates a propagation constant of a propagation path between the reception device 10 and the third transmission device 11c, and outputs the propagation constant to the signal detection unit 32 and the scheduling unit 2007.
The signal detection unit 32 detects the signal transmitted by the third transmission device 11c from the signal output by the spectrum demapping unit 2012.
The signal transmitted from the first transmission device 11a and the second transmission device 11b is not superimposed on the signal transmitted by the third transmission device 11c. Therefore, it is completely separated by the spectrum demapping unit 2012 and output to the signal detection unit 32.
 図4Aは、本発明の第1の実施形態による第1の送信装置11aが受信装置10に送信する信号の周波数配置を示す図である。
 図4Bは、本発明の第1の実施形態による第2の送信装置11bが受信装置10に送信する信号の周波数配置を示す図である。
 図4Cは、本発明の第1の実施形態による第3の送信装置11cが受信装置10に送信する信号の周波数配置を示す図である。
 図4A~図4Cにおいて、横軸は周波数を示している。
FIG. 4A is a diagram illustrating a frequency arrangement of signals transmitted from the first transmission device 11a to the reception device 10 according to the first embodiment of the present invention.
FIG. 4B is a diagram illustrating a frequency arrangement of signals transmitted from the second transmission device 11b to the reception device 10 according to the first embodiment of the present invention.
FIG. 4C is a diagram illustrating a frequency arrangement of signals transmitted from the third transmission device 11c to the reception device 10 according to the first embodiment of the present invention.
4A to 4C, the horizontal axis represents the frequency.
 図4Aに示すように、第1の送信装置11aは、第1番目、第2番目、第5番目、第6番目、第8番目、第9番目、第10番目、第14番目の周波数位置を用いて、合計8個の周波数信号b11、b12、b13、b14、b15、b16、b17、b18を受信装置10に送信している。
 また、図4Bに示すように、第2の送信装置11bは、第1番目、第5番目、第6番目、第7番目、第9番目、第10番目、第11番目、第12番目の周波数位置を用いて、合計8個の周波数信号b21、b22、b23、b24、b25、b26、b27、b28を受信装置10に送信している。
 また、図4Cに示すように、第3の送信装置11cは、第3番目、第4番目、第13番目の周波数位置を用いて、合計3個の周波数信号b31、b32、b33を受信装置10に送信している。
As shown in FIG. 4A, the first transmitter 11a determines the first, second, fifth, sixth, eighth, ninth, tenth, and fourteenth frequency positions. In total, eight frequency signals b11, b12, b13, b14, b15, b16, b17, and b18 are transmitted to the receiving apparatus 10.
Also, as shown in FIG. 4B, the second transmitter 11b has the first, fifth, sixth, seventh, ninth, tenth, eleventh, and twelfth frequencies. A total of eight frequency signals b21, b22, b23, b24, b25, b26, b27, b28 are transmitted to the receiving apparatus 10 using the position.
Further, as illustrated in FIG. 4C, the third transmission device 11c uses the third, fourth, and thirteenth frequency positions to receive a total of three frequency signals b31, b32, and b33. Is sending to.
 本実施形態では、第1の送信装置11aと第2の送信装置11bの信号を伝送可能な帯域であるNサンプルにわたるスペクトル重複リソースマネジメント(SORM)を適用する。
 次に、割り当てられた帯域から受信装置10は、第1の送信装置11aと第2の送信装置11bの信号のための離散周波数の割当後でも残る空き帯域を第3の送信装置11cのための帯域として割り当てる。
 この場合、第3の送信装置11cの信号に割り当てられるサンプル数Nは、第1の送信装置11aと第2の送信装置11bの信号に対する周波数割り当てに依存するため、伝送機会毎に変化するが、特性の劣化はない。
In the present embodiment, applying the first transmission device 11a and the spectral overlap Resource Management over N d samples is bandwidth capable of transmitting signals of a second transmission device 11b (SORM).
Next, from the allocated band, the receiving apparatus 10 uses the remaining free band for the third transmitting apparatus 11c after the allocation of the discrete frequencies for the signals of the first transmitting apparatus 11a and the second transmitting apparatus 11b. Assign as bandwidth.
In this case, the number of samples N t allocated to the signal of the third transmission device 11c depends on the frequency allocation for the signals of the first transmission device 11a and the second transmission device 11b, and thus changes for each transmission opportunity. There is no deterioration of characteristics.
 図5は、本発明の第1の実施形態による受信装置10の処理を示すフローチャートである。始めに、受信装置10の第1の割当部2008-1は、第1の送信装置11aと第2の送信装置11bに対して、スペクトル重複リソースマネジメント(SORM)を用いて離散周波数を割り当てる(ステップS1)。
 次に、受信装置10の第2の割当部2008-2は、第1の送信装置11aと第2の送信装置11bのどちらにも割り当てられなかった離散周波数を、第3の送信装置11cの周波数割当として決定する(ステップS2)。
FIG. 5 is a flowchart showing processing of the receiving device 10 according to the first embodiment of the present invention. First, the first allocation unit 2008-1 of the reception device 10 allocates discrete frequencies to the first transmission device 11a and the second transmission device 11b by using spectrum overlapping resource management (SORM) (step S1). S1).
Next, the second assigning unit 2008-2 of the receiving device 10 uses the discrete frequency that has not been assigned to either the first transmitting device 11a or the second transmitting device 11b as the frequency of the third transmitting device 11c. The assignment is determined (step S2).
 より具体的に説明すると、本発明の第1の実施形態では、受信装置10と複数の送信装置11a、11bを備える第1の送信装置群の送信装置の各々に、周波数帯域を重複しないように割り当て、その周波数帯域の一部を重複するように変更する(図5のステップS1に相当)。
 そして、少なくとも1つの送信装置11cからなる第2の送信装置群の送信装置に、重複するように変更したことによって空いた周波数帯域を含む重複しない周波数帯域を割り当てる(図5のステップS2に相当)。
 そして、第1の送信装置群を構成する複数の送信装置11a、11bの各々は、一部の周波数帯域が重複した周波数信号を受信装置10に送信する。また、第2の送信装置群を構成する送信装置11cは、第1の送信装置群を構成する送信装置11a、11bの各々が使用していない周波数帯域を使用して受信装置10に周波数信号を送信する。
More specifically, in the first embodiment of the present invention, the frequency band is not overlapped in each of the transmission devices of the first transmission device group including the reception device 10 and the plurality of transmission devices 11a and 11b. Allocation and change so that part of the frequency band overlaps (corresponding to step S1 in FIG. 5).
Then, a non-overlapping frequency band including a frequency band that has been vacated as a result of being changed so as to overlap is allocated to the transmitting apparatuses of the second transmitting apparatus group including at least one transmitting apparatus 11c (corresponding to step S2 in FIG. 5) .
Then, each of the plurality of transmission devices 11 a and 11 b configuring the first transmission device group transmits a frequency signal having a partial frequency band overlapping to the reception device 10. In addition, the transmission device 11c configuring the second transmission device group transmits a frequency signal to the reception device 10 using a frequency band that is not used by each of the transmission devices 11a and 11b configuring the first transmission device group. Send.
 上述したように、本発明の第1の実施形態では、第1の送信装置11aおよび第2の送信装置11bは、一部の周波数帯域を重複させて受信装置10に信号を送信する。また、第3の送信装置11cは、第1の送信装置11aおよび第2の送信装置11bが使用していない周波数帯域を使用して受信装置10に信号を送信する。
 本実施形態では、第1の送信装置11aと第2の送信装置11bを優先的に割り当てるため、スペクトル重複リソースマネジメント(SORM)の伝送特性を最大限発揮しつつ、送信装置から受信装置に伝送可能な情報量を大きくすることができる。
As described above, in the first embodiment of the present invention, the first transmission device 11a and the second transmission device 11b transmit signals to the reception device 10 by overlapping some frequency bands. The third transmission device 11c transmits a signal to the reception device 10 using a frequency band that is not used by the first transmission device 11a and the second transmission device 11b.
In this embodiment, since the first transmission device 11a and the second transmission device 11b are preferentially assigned, transmission from the transmission device to the reception device can be performed while maximizing the transmission characteristics of spectrum overlap resource management (SORM). The amount of information can be increased.
[第2の実施形態]
 次に、本発明の第2の実施形態について説明する。本実施形態は、スペクトル重複リソースマネジメント(SORM)を用いた多重を行う送信装置について説明する。そして、第3の送信装置の信号の伝送帯域を安定的に確保する目的で、スペクトル重複リソースマネジメント(SORM)により割り当てられない確率が高い周波数をNサンプル確保する方法について説明する。
 なお、本実施形態による無線通信システムの構成、第1~第3の送信装置の構成、受信装置の構成は、スケジューリング部2007の構成を除いて、第1の実施形態による無線通信システムの構成(図1)、第1~第3の送信装置11a~11cの構成(図2)、受信装置10の構成(図3)と、それぞれ同様であるため、同様な部分の説明を省略する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described. This embodiment demonstrates the transmitter which performs the multiplexing using spectrum overlap resource management (SORM). Then, for the purpose of stably securing the signal transmission band of the third transmitting apparatus, a method for securing N t samples of a frequency that has a high probability of not being assigned by spectrum overlap resource management (SORM) will be described.
The configuration of the wireless communication system according to the present embodiment, the configuration of the first to third transmission devices, and the configuration of the receiving device are the same as the configuration of the wireless communication system according to the first embodiment (except for the configuration of the scheduling unit 2007). Since the configuration of FIG. 1), the configuration of the first to third transmission devices 11a to 11c (FIG. 2), and the configuration of the reception device 10 (FIG. 3) are the same, the description of similar parts is omitted.
 図6A~図6Cは、本発明の第2の実施形態による送信装置11a~11cが受信装置10に送信する信号の周波数配置を示す図である。図6A~図6Cにおいて、横軸は周波数を示している。
 なお、図6Aと図6Bでは、スペクトル重複リソースマネジメント(SORM)における重複したスペクトルのポイント数が5となっているが、同図は概念のみを示している。
6A to 6C are diagrams illustrating frequency arrangements of signals transmitted from the transmission apparatuses 11a to 11c to the reception apparatus 10 according to the second embodiment of the present invention. 6A to 6C, the horizontal axis represents the frequency.
In FIG. 6A and FIG. 6B, the number of points of the overlapping spectrum in the spectrum overlapping resource management (SORM) is 5, but this figure shows only the concept.
 図6Aは、第1の送信装置11aにおいてスペクトル重複リソースマネジメント(SORM)により割り当てられた周波数配置を示している。
 図6Bは、第2の送信装置11bにおいてスペクトル重複リソースマネジメント(SORM)により割り当てられた周波数配置を示している。
 図6Cは、スペクトル重複リソースマネジメント(SORM)により空いた帯域を含めてNサンプルの周波数を確保して割り当てられた第3の送信装置11cの周波数配置を示している。
FIG. 6A shows the frequency allocation assigned by spectrum overlap resource management (SORM) in the first transmission device 11a.
FIG. 6B shows the frequency allocation assigned by spectrum overlap resource management (SORM) in the second transmitter 11b.
FIG. 6C shows a frequency arrangement of the third transmission device 11c that is allocated while securing a frequency of N t samples including a band vacated by spectrum overlap resource management (SORM).
 すなわち、図6Aにおいて、第1の送信装置11aは、一定間隔に配置された周波数位置において、周波数の低い方から高い方へと第1番目、第2番目、第5番目、第6番目、第8番目、第9番目、第10番目、第14番目の周波数位置を用いて、合計8個の周波数信号c11、c12、c13、c14、c15、c16、c17、c18を、受信装置10に送信する。これらの周波数信号c11~c18は、伝搬路特性に基づいて振幅および位相が変化して受信装置10に到達する。 That is, in FIG. 6A, the first transmission device 11a has the first, second, fifth, sixth, first, and lower frequency frequencies arranged at regular intervals from the lower frequency to the higher frequency. A total of eight frequency signals c11, c12, c13, c14, c15, c16, c17, and c18 are transmitted to the receiving apparatus 10 using the eighth, ninth, tenth, and fourteenth frequency positions. . These frequency signals c11 to c18 reach the receiving apparatus 10 with the amplitude and phase changed based on the propagation path characteristics.
 図6Bにおいて、第2の送信装置11bは、一定間隔に配置された周波数位置において、周波数の低い方から高い方へと第1番目、第2番目、第5番目、第6番目、第7番目、第9番目、第10番目、第11番目の周波数位置を用いて、合計8個の周波数信号c21、c22、c23、c24、c25、c26、c27、c28を送信する。これらの周波数信号c21~c28は、伝搬路特性に基づいて振幅および位相が変化して受信装置10に到達する。 In FIG. 6B, the second transmission device 11b has the first, second, fifth, sixth, seventh from the lower frequency to the higher frequency positions arranged at regular intervals. A total of eight frequency signals c21, c22, c23, c24, c25, c26, c27, c28 are transmitted using the ninth, tenth, and eleventh frequency positions. These frequency signals c21 to c28 reach the receiving apparatus 10 with the amplitude and phase changed based on the propagation path characteristics.
 図6Cにおいて、第3の送信装置11cは、一定間隔に配置された周波数位置において、周波数の低い方から高い方へと第3番目、第4番目、第12番目、第13番目の周波数位置を用いて、合計4個の周波数信号c31、c32、c33、c34を送信する。これらの周波数信号c31~c34は、伝搬路特性に基づいて振幅および位相が変化して受信装置10に到達する。 In FIG. 6C, the third transmission device 11c changes the third, fourth, twelfth, and thirteenth frequency positions from the lower frequency to the higher frequency positions arranged at regular intervals. In total, four frequency signals c31, c32, c33, c34 are transmitted. These frequency signals c31 to c34 reach the receiving apparatus 10 with the amplitude and phase changed based on the propagation path characteristics.
 ここでは、第1の送信装置11aと第2の送信装置11bに対するスペクトル重複リソースマネジメント(SORM)により空いた帯域を含めて、第3の送信装置11cが必要とするNサンプルを確保できなかった場合を示している。すなわち、第3の送信装置11cは、その送信装置にとって伝搬路特性の良い第12番目の周波数位置を使いたいのであるが、その周波数位置は、第2の送信装置11bによって既に使われている。
 確保できた場合はそのままで良いが、本実施形態は重複するスペクトルの割合が確率的であることを考慮して確保できなかった場合には、次の処理を行う。つまり、スペクトル重複リソースマネジメント(SORM)における第1の送信装置11aおよび第2の送信装置11bからの信号の受信品質の劣化を最小限に抑えるよう確保する処理を行う。
Here, the N t samples required by the third transmitter 11c could not be secured, including the band vacated by the spectrum overlap resource management (SORM) for the first transmitter 11a and the second transmitter 11b. Shows the case. That is, the third transmitter 11c wants to use the twelfth frequency position having good propagation path characteristics for the transmitter, but the frequency position is already used by the second transmitter 11b.
If it can be ensured, it can be left as it is, but this embodiment performs the following processing when it cannot be ensured considering that the proportion of the overlapping spectrum is probabilistic. That is, processing is performed to ensure that degradation of reception quality of signals from the first transmitter 11a and the second transmitter 11b in spectrum overlap resource management (SORM) is minimized.
 また、図6Bに示すように、第2の送信装置11bは、周波数信号c20(第12番目の周波数位置)の離散スペクトルを使用せず、他の第3の送信装置11cが使用しない離散スペクトルを利用する。ここでは、第2の送信装置11bは、結果的に周波数信号c21(第2番目の周波数位置)を使用する。
 これにより、第1の送信装置11aと第2の送信装置11bからの信号の伝送特性をあまり劣化させることなく、第3の送信装置11cからの信号Nサンプルを確保できる。また、利用可能な周波数に対して1+N/N倍のスループットを得ることができる。
Further, as illustrated in FIG. 6B, the second transmission device 11b does not use the discrete spectrum of the frequency signal c20 (the 12th frequency position), and uses the discrete spectrum that is not used by the other third transmission device 11c. Use. Here, as a result, the second transmitter 11b uses the frequency signal c21 (second frequency position).
As a result, the signal N t sample from the third transmission device 11c can be secured without significantly degrading the transmission characteristics of the signals from the first transmission device 11a and the second transmission device 11b. In addition, a throughput of 1 + N t / N d times the available frequency can be obtained.
 次に、Nサンプルの周波数を確保する処理について説明する。ここでは、帯域Nサンプルを受信装置10のスケジューリング部2007(図3)が把握している場合について説明する。まず、スペクトル重複リソースマネジメント(SORM)では、第1の送信装置11aおよび第2の送信装置11bのNサンプルの受信SNRをそれぞれ測定する。そのため、受信装置10は、デシベルで表現される受信SNRの和を離散周波数ごとに計算する。
 受信装置10は、送信装置の受信SNRが、劣悪な順にソート(並び替え)する。k番目の離散周波数における各送信装置11a、11bからの受信SNRをそれぞれS(k)、S(k)とする。式(1)を用いて、各離散周波数の合計の受信SNRを計算する。
Next, processing for securing the frequency of N t samples will be described. Here, a case will be described in which the scheduling unit 2007 (FIG. 3) of the receiving apparatus 10 grasps the band N t samples. First, to measure the spectral overlap Resource Management (SORM), the received SNR of N d samples of the first transmission device 11a and the second transmission device 11b, respectively. Therefore, the receiving device 10 calculates the sum of received SNR expressed in decibels for each discrete frequency.
The receiving device 10 sorts (reorders) the received SNR of the transmitting device in ascending order. The received SNRs from the transmitters 11a and 11b at the k-th discrete frequency are S 1 (k) and S 2 (k), respectively. Using Equation (1), the total received SNR of each discrete frequency is calculated.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式(1)において、S(k)は各離散周波数の和の平均受信信号雑音比(SNR)である。なお、ここでは平均受信信号雑音比(SNR)がデシベルで表記される場合について説明するが、これに限定されるものではない。各離散周波数における第1の送信装置11aと第2の送信装置11bの総合的な離散周波数の大小関係が分かれば良いため、真値でも同様の処理を行うことが可能である。
 また、受信状況が劣悪か否かについての判定になるため、他の指標でも受信状況が総合的に劣悪な順にソートされるような指標および演算を用いることができる。
In equation (1), S (k) is the average received signal-to-noise ratio (SNR) of the sum of the discrete frequencies. Although the case where the average received signal-to-noise ratio (SNR) is expressed in decibels is described here, the present invention is not limited to this. Since it is only necessary to know the magnitude relationship of the overall discrete frequencies of the first transmission device 11a and the second transmission device 11b at each discrete frequency, the same processing can be performed even with a true value.
In addition, since the determination is made as to whether or not the reception status is inferior, it is possible to use an index and an operation such that the other reception indexes are sorted in the order of overall poor reception status.
 式(1)において劣悪なものから順にNサンプルの離散周波数に対し、その離散周波数をスペクトル重複リソースマネジメント(SORM)による選択可能な周波数から外す。もしくは、選択されなければ良いため、劣悪なNサンプルの離散周波数に対して不当に低い受信SNR(例えば、S(k)=S(k)=-100(dB)などを割り当てても良い。 For the discrete frequency of N t samples in order from the worst in Equation (1), the discrete frequency is removed from the selectable frequencies by spectrum overlap resource management (SORM). Alternatively, even if an unreasonably low received SNR (for example, S 1 (k) = S 2 (k) = − 100 (dB), etc.) is assigned to a poor discrete frequency of N t samples because it is not necessary to select it. good.
 このようにして得られた選択可能な離散周波数に対してスペクトル重複リソースマネジメント(SORM)に基づいて第1の送信装置11aと第2の送信装置11bの信号を送信する離散周波数をそれぞれ設定する。そして、受信装置10は、選択可能な離散周波数から外れた離散周波数に対しては、第3の送信装置11cの信号を配置するよう設定する。
 ここで、第1の送信装置11aと第2の送信装置11bの信号の重複する離散周波数に関しては、第1の送信装置11aと第2の送信装置11bが自律的に使用する離散周波数を設定することにより確率的に設定する。各送信装置は、他の送信装置と重複していることについては把握せず、受信装置のみが把握し、ターボ等化技術により分離される。
 なお、選択されないように不当に低い受信SNRを割り当てた場合には、第3の送信装置11cの信号の配置は、第1の送信装置11aと第2の送信装置11bに割り当てる際に不当に低い受信SNRを割り当てた離散周波数に配置される。
Discrete frequencies for transmitting the signals of the first transmission device 11a and the second transmission device 11b are set for the selectable discrete frequencies thus obtained based on spectrum overlap resource management (SORM). And the receiver 10 sets so that the signal of the 3rd transmitter 11c may be arrange | positioned with respect to the discrete frequency remove | deviated from the selectable discrete frequency.
Here, regarding the discrete frequencies with which the signals of the first transmitter 11a and the second transmitter 11b overlap, the discrete frequencies used autonomously by the first transmitter 11a and the second transmitter 11b are set. This is set probabilistically. Each transmitting apparatus does not grasp that it overlaps with other transmitting apparatuses, but only the receiving apparatus grasps and is separated by turbo equalization technology.
When an unreasonably low received SNR is assigned so as not to be selected, the signal arrangement of the third transmitter 11c is unreasonably low when assigning to the first transmitter 11a and the second transmitter 11b. The received SNR is allocated to the discrete frequency.
 図7は、本発明の第2の実施形態による受信装置10の処理を示すフローチャートである。ここでは、受信装置10の第1の割当部2008-1は、スペクトル重複リソースマネジメント(SORM)を用いて、第1の送信装置11aと第2の送信装置11bが伝送に使用する離散周波数を決定する。始めに、第1の割当部2008-1は、第1の送信装置11aと第2の送信装置11bからの信号の受信SNRを離散周波数毎に測定し、その和を離散周波数毎に算出する(ステップS11)。 FIG. 7 is a flowchart showing processing of the receiving device 10 according to the second embodiment of the present invention. Here, the first allocation unit 2008-1 of the reception device 10 determines the discrete frequencies used for transmission by the first transmission device 11a and the second transmission device 11b using spectrum overlap resource management (SORM). To do. First, the first allocation unit 2008-1 measures the reception SNR of the signals from the first transmission device 11a and the second transmission device 11b for each discrete frequency, and calculates the sum for each discrete frequency ( Step S11).
 次に、受信装置10の第1の割当部2008-1は、受信SNRの和を低いものから順にソートする(ステップS12)。そして、第1の割当部2008-1は、上位Nサンプルをスペクトル重複リソースマネジメント(SORM)による選択可能な離散周波数の候補から外す(ステップS13)。
 次に、受信装置10の第1の割当部2008-1は、選択可能な離散周波数を用いて、第1の送信装置11aの信号と第2の送信装置11bの信号の周波数配置を決定する(ステップS14)。そして、受信装置10の第2の割当部2008-2は、スペクトル重複リソースマネジメント(SORM)における選択可能な離散周波数から外れた離散周波数に関して、第3の送信装置11cの信号に配置する(ステップS15)。
Next, the first assigning unit 2008-1 of the receiving apparatus 10 sorts the sums of received SNRs in ascending order (step S12). Then, the first assigning unit 2008-1 removes the upper N t samples from the candidates for discrete frequencies that can be selected by spectrum overlapping resource management (SORM) (step S13).
Next, the first allocation unit 2008-1 of the reception device 10 determines the frequency arrangement of the signal of the first transmission device 11a and the signal of the second transmission device 11b using the selectable discrete frequencies ( Step S14). Then, the second allocation unit 2008-2 of the reception apparatus 10 arranges the discrete frequency that is out of the selectable discrete frequencies in the spectrum overlap resource management (SORM) in the signal of the third transmission apparatus 11c (step S15). ).
 より具体的に説明すると、本発明の第2の実施形態では、少なくとも1つの送信装置11cからなる第2の送信装置群の送信装置に、周波数帯域を割り当てる(図7のステップS15に相当)。
 また、複数の送信装置11a、11bを備える第1の送信装置群の送信装置の各々に、第2の送信装置群の送信装置11cが使用しない周波数帯域をその一部が重複するように割り当てる(図7のステップS14に相当)。
 そして、第1の送信装置群を構成する複数の送信装置11a、11bの各々は、一部の周波数帯域が重複した周波数信号を受信装置10に送信する。
 そして、第2の送信装置群を構成する送信装置11cは、第1の送信装置群を構成する送信装置11a、11bの各々が使用していない周波数帯域を使用して受信装置10に周波数信号を送信する。
More specifically, in the second embodiment of the present invention, a frequency band is assigned to a transmission device of the second transmission device group including at least one transmission device 11c (corresponding to step S15 in FIG. 7).
Further, a frequency band that is not used by the transmission device 11c of the second transmission device group is assigned to each of the transmission devices of the first transmission device group including the plurality of transmission devices 11a and 11b so as to partially overlap ( Equivalent to step S14 in FIG. 7).
Then, each of the plurality of transmission devices 11 a and 11 b configuring the first transmission device group transmits a frequency signal having a partial frequency band overlapping to the reception device 10.
Then, the transmission device 11c constituting the second transmission device group sends a frequency signal to the reception device 10 using the frequency band not used by each of the transmission devices 11a and 11b constituting the first transmission device group. Send.
 本発明の第2の実施形態では、第3の送信装置11cは、所定の周波数帯域を使用して受信装置10に信号を送信する。また、第1の送信装置11aおよび第2の送信装置11bは、第3の送信装置11cが使用する所定の周波数帯域以外の周波数帯域の一部を重複させて受信装置10に信号を送信する。
 本実施形態では、第3の送信装置11cからの信号を配置するために、第1の送信装置11aと第2の送信装置11bにおけるスペクトル重複リソースマネジメント(SORM)のスケジューリングを制限する。これにより、周波数帯域を広げることなく、より多くのデータを多重することができる。また、第3の送信装置11cに対する周波数を確保することを優先しているため、第3の送信装置11cの伝送レートを補償することができる。
In the second embodiment of the present invention, the third transmission device 11c transmits a signal to the reception device 10 using a predetermined frequency band. In addition, the first transmission device 11a and the second transmission device 11b transmit signals to the reception device 10 by overlapping a part of frequency bands other than the predetermined frequency band used by the third transmission device 11c.
In this embodiment, in order to arrange a signal from the third transmission device 11c, scheduling of spectrum overlap resource management (SORM) in the first transmission device 11a and the second transmission device 11b is limited. Thereby, more data can be multiplexed without expanding the frequency band. Moreover, since priority is given to ensuring the frequency with respect to the 3rd transmitter 11c, the transmission rate of the 3rd transmitter 11c can be compensated.
 なお、ここでは、スペクトル重複リソースマネジメント(SORM)による伝送特性の劣化を最小限に抑えるために、第1の送信装置11aと第2の送信装置11bの信号を優先しているが、これに限定されるものではない。第3の送信装置11cの信号の受信状況を優先させる場合には、第3の送信装置11cの信号の受信状況の良好なものから順に、Nサンプルを選択し、残りをスペクトル重複リソースマネジメント(SORM)における選択可能な離散周波数としても良い。 Here, in order to minimize the degradation of transmission characteristics due to spectrum overlap resource management (SORM), the signals of the first transmission device 11a and the second transmission device 11b are prioritized, but this is not limitative. Is not to be done. In order to prioritize the signal reception status of the third transmission device 11c, N t samples are selected in order from the signal reception status of the third transmission device 11c in the order of good reception, and the rest is spectrum overlap resource management ( A discrete frequency selectable in (SORM) may be used.
[第3の実施形態]
 次に、本発明の第3の実施形態について説明する。本実施形態では、第3の送信装置11cに対して、割り当てる帯域がサブチャネル化している場合について説明する。
 なお、本実施形態による無線通信システムの構成、第1~第3の送信装置の構成、受信装置の構成は、スケジューリング部2007の構成を除いて、第1の実施形態による無線通信システムの構成(図1)、第1~第3の送信装置11a~11cの構成(図2)、受信装置10の構成(図3)と、それぞれ同様であるため、同様な部分の説明を省略する。
[Third Embodiment]
Next, a third embodiment of the present invention will be described. In the present embodiment, a case will be described in which the band to be allocated to the third transmission device 11c is subchannelized.
The configuration of the wireless communication system according to the present embodiment, the configuration of the first to third transmission devices, and the configuration of the receiving device are the same as the configuration of the wireless communication system according to the first embodiment (except for the configuration of the scheduling unit 2007). Since the configuration of FIG. 1), the configuration of the first to third transmission devices 11a to 11c (FIG. 2), and the configuration of the reception device 10 (FIG. 3) are the same, the description of similar parts is omitted.
 図8A~図8Cは、本発明の第3の実施形態による送信装置11a~11cが受信装置10に送信する信号の周波数配置を示す図である。
 図8Aは、本発明の第3の実施形態による第1の送信装置11aが受信装置10に送信する信号の周波数信号配置を示す図である。
 図8Bは、本発明の第3の実施形態による第2の送信装置11bが受信装置10に送信する信号の周波数信号配置を示す図である。
 図8Cは、本発明の第3の実施形態による第3の送信装置11cが受信装置10に送信する信号の周波数信号配置を示す図である。
 すなわち、図8A~図8Cにおいて、周波数の低い方から高い方へと4つのサブチャネルSc1~Sc4が配置されている。そして、各チャネルは、4つの周波数位置を有する。第1の送信装置11aは、図8Aに示すように、サブチャネルSc1において、周波数の低い方から高い方へと第1番目、第2番目の周波数位置の信号d11、d12を用い、サブチャネルSc2において第1番目、第2番目、第3番目の周波数位置の信号d13、d14、d15を用い、サブチャネルSc3において、第1番目、第3番目、第4番目の周波数位置の信号d16、d17、d18を用いて、合計8個の周波数信号を受信装置10に送信する。それらの周波数信号d11~d18は、伝搬路特性に基づいて振幅および位相が変化して受信装置10に到達する。
8A to 8C are diagrams illustrating frequency arrangements of signals transmitted from the transmission apparatuses 11a to 11c to the reception apparatus 10 according to the third embodiment of the present invention.
FIG. 8A is a diagram showing a frequency signal arrangement of signals transmitted from the first transmission device 11a to the reception device 10 according to the third embodiment of the present invention.
FIG. 8B is a diagram showing a frequency signal arrangement of signals transmitted from the second transmission device 11b to the reception device 10 according to the third embodiment of the present invention.
FIG. 8C is a diagram showing a frequency signal arrangement of signals transmitted from the third transmission device 11c to the reception device 10 according to the third embodiment of the present invention.
That is, in FIG. 8A to FIG. 8C, four subchannels Sc1 to Sc4 are arranged from the lower frequency to the higher frequency. Each channel has four frequency positions. As shown in FIG. 8A, the first transmission device 11a uses the signals d11 and d12 at the first and second frequency positions from the lower frequency to the higher frequency in the subchannel Sc1, and uses the subchannel Sc2 , The signals d13, d14 and d15 at the first, second and third frequency positions are used, and the signals d16, d17 at the first, third and fourth frequency positions in the subchannel Sc3. A total of eight frequency signals are transmitted to the receiving apparatus 10 using d18. These frequency signals d11 to d18 change their amplitude and phase based on the propagation path characteristics and reach the receiving apparatus 10.
 第2の送信装置11bは、図8Bに示すように、サブチャネルSc1において、第1番目、第2番目、第3番目、第4番目の周波数位置の信号d21、d22、d23、d24を用い、サブチャネルSc2において、第3番目、第4番目の周波数位置の信号d25、d26を用い、サブチャネルSc3において、第2番目、第3番目の周波数位置の信号d27、d28を用いて合計8個の周波数信号を受信装置10に送信する。それらの周波数信号d21~d28は、伝搬路特性に基づいて振幅および位相が変化して受信装置10に到達する。
 つまり、第1の送信装置11aと第2の送信装置11bの送信する送信信号は、サブチャネルSc1の第1番目、第2番目の周波数位置、サブチャネルSc2の第3番目の周波数位置、サブチャネルSc3の第3番目の周波数位置の合計4個の周波数位置において重複している。
 第3の送信装置11cは、図8Cに示すように、サブチャネルSc4において、全ての周波数位置の信号d31、d32、d33、d34を用いて、合計4個の周波数信号を送信する。それらの周波数信号d31~d34は、伝搬路特性に基づいて振幅および位相が変化して受信装置10に到達する。
As shown in FIG. 8B, the second transmitter 11b uses the signals d21, d22, d23, and d24 at the first, second, third, and fourth frequency positions in the subchannel Sc1, In subchannel Sc2, signals d25 and d26 of the third and fourth frequency positions are used, and in subchannel Sc3, a total of eight signals are used using signals d27 and d28 of the second and third frequency positions. The frequency signal is transmitted to the receiving device 10. These frequency signals d21 to d28 change their amplitude and phase based on the propagation path characteristics and reach the receiving apparatus 10.
That is, the transmission signals transmitted by the first transmitter 11a and the second transmitter 11b are the first and second frequency positions of the subchannel Sc1, the third frequency position of the subchannel Sc2, and the subchannel. There are overlaps at a total of four frequency positions of the third frequency position of Sc3.
As illustrated in FIG. 8C, the third transmission device 11c transmits a total of four frequency signals using the signals d31, d32, d33, and d34 at all frequency positions in the subchannel Sc4. These frequency signals d31 to d34 reach the receiving apparatus 10 with the amplitude and phase changed based on the propagation path characteristics.
 図8A~図8Cでは、サブチャネルSc1~Sc4が存在し、第1の送信装置11aの信号と、第2の送信装置11bの周波数信号とのサンプル数の合計が、サブチャネルSc1~Sc4全ての合計の周波数ポイント数に等しい。そして、サブチャネルSc1~Sc3をまたいで、スペクトル重複リソースマネジメント(SORM)が適用されている。また、第3の送信装置11cが使用する信号は、サブチャネルSc4に配置されている。 8A to 8C, subchannels Sc1 to Sc4 exist, and the total number of samples of the signal of the first transmission device 11a and the frequency signal of the second transmission device 11b is the sum of all of the subchannels Sc1 to Sc4. Equal to the total number of frequency points. Then, spectrum overlap resource management (SORM) is applied across the subchannels Sc1 to Sc3. The signal used by the third transmission device 11c is arranged in the subchannel Sc4.
 まず、第1の送信装置11aと第2の送信装置11bは、最も良好な順に、合計Nサンプルの離散周波数が残るようスペクトル重複リソースマネジメント(SORM)を適用するためのサブチャネルを選択する。ここで、1サブチャネルの離散周波数ポイントをNとすれば、式(2)の関係が成り立つようサブチャネルを選択する。 First, the first transmission device 11a and the second transmission device 11b select subchannels for applying spectrum overlap resource management (SORM) so that a total of N t samples of discrete frequencies remain in the best order. Here, if the discrete frequency point of one subchannel is Nc , the subchannel is selected so that the relationship of Expression (2) is established.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ただし、mは、スペクトル重複リソースマネジメント(SORM)のためのサブチャネル数である。また、nは、Nサンプルの離散周波数を確保するための最小のサブチャネル数である。
 つまり、N=2Nを満たしつつ、mNサンプルの離散周波数でスペクトル重複リソースマネジメント(SORM)が適用される。
 このとき、第3の送信装置11cの信号の受信状況を優先して、先にNサンプルを最低限確保するサブチャネルを決定しても良い。
Here, m is the number of subchannels for spectrum overlap resource management (SORM). N is the minimum number of subchannels for securing a discrete frequency of N t samples.
That is, spectrum overlap resource management (SORM) is applied at discrete frequencies of mN c samples while satisfying N d = 2N u .
At this time, priority may be given to the signal reception status of the third transmission device 11c, and a subchannel for securing a minimum of N t samples may be determined first.
 図9は、本発明の第3の実施形態による受信装置10の処理を示すフローチャートである。始めに、受信装置10の第1の割当部2008-1は、第1の送信装置11aと第2の送信装置11bのサブチャネル毎の受信SNRの和を計算する(ステップS21)。ここで、第2の実施形態では、受信SNRの和を離散周波数毎に計算していたが、サブチャネル毎に計算する場合は、同一サブチャネルに含まれる離散周波数の受信SNRの和を計算する。 FIG. 9 is a flowchart showing processing of the receiving device 10 according to the third embodiment of the present invention. First, the first allocation unit 2008-1 of the receiving device 10 calculates the sum of the received SNRs for each subchannel of the first transmitting device 11a and the second transmitting device 11b (step S21). Here, in the second embodiment, the sum of received SNRs is calculated for each discrete frequency. However, when calculating for each subchannel, the sum of received SNRs of discrete frequencies included in the same subchannel is calculated. .
 次に、受信装置10の第1の割当部2008-1は、受信SNRの高い順にソートする(ステップS22)。そして、第1の割当部2008-1は、Nサンプル以上残る最大のサブチャネル数だけ、上位の受信SNRを有するサブチャネルをスペクトル重複リソースマネジメント(SORM)が適用されるサブチャネルとして設定する(ステップS23)。そして、第1の割当部2008-1は、選択されたサブチャネルに含まれる離散周波数を、選択可能な周波数としてスペクトル重複リソースマネジメント(SORM)を適用し、第1の送信装置11aと第2の送信装置11bの信号の周波数配置として設定する(ステップS24)。 Next, the first allocation unit 2008-1 of the receiving apparatus 10 sorts the received SNR in descending order (step S22). Then, first allocation section 2008-1 sets subchannels having higher received SNRs as subchannels to which spectrum overlapping resource management (SORM) is applied, for the maximum number of subchannels remaining for N t samples or more ( Step S23). Then, the first allocation unit 2008-1 applies spectrum overlap resource management (SORM) with the discrete frequencies included in the selected subchannel as selectable frequencies, and the first transmitter 11a and the second transmitter The frequency arrangement of the signal of the transmission device 11b is set (step S24).
 次に、受信装置10の第2の割当部2008-2は、ステップS23において選択されなかったサブチャネルに第3の送信装置11cの信号を割り当てる(ステップS25)。ここで、ステップS25における第3の送信装置11cの信号配置に関しては、Nサンプルの離散周波数より多ければ、受信状況の良好な離散周波数を割り当てるダイナミックスペクトル制御のような手法を用いても良いし、連続的に割り当てても良い。 Next, the second allocation unit 2008-2 of the reception device 10 allocates the signal of the third transmission device 11c to the subchannel not selected in Step S23 (Step S25). Here, regarding the signal arrangement of the third transmission device 11c in step S25, a method such as dynamic spectrum control that allocates a discrete frequency with a good reception condition may be used as long as it is greater than the discrete frequency of N t samples. May be assigned continuously.
 本発明の第3の実施形態では、周波数帯域を所定幅の周波数帯域ごとにサブチャネルに分割し、少なくとも1つの送信装置11cからなる第2の送信装置群に、1つまたは複数のサブチャネルを割り当てる(図9のステップS25に相当)。
 また、複数の送信装置11a、11bからなる第1の送信装置群の送信装置の各々に、第2の送信装置群の送信装置11cが使用しない1つまたは複数のサブチャネルを用い、その一部の周波数帯域が重複するように割り当てる(図9のステップS24に相当)。
 そして、第1の送信装置群を構成する複数の送信装置11a、11bの各々は、そのサブチャネルの一部の周波数帯域が重複した周波数信号を受信装置10に送信する。
 そして、第2の送信装置群を構成する送信装置11cは、第1の送信装置群を構成する送信装置11a、11bの各々が使用していないサブチャネルの周波数帯域を使用して受信装置10に周波数信号を送信する。
In the third embodiment of the present invention, the frequency band is divided into sub-channels for each frequency band of a predetermined width, and one or more sub-channels are assigned to the second transmitting device group including at least one transmitting device 11c. Assign (corresponding to step S25 in FIG. 9).
Further, one or a plurality of subchannels that are not used by the transmission device 11c of the second transmission device group are used for each of the transmission devices of the first transmission device group including the plurality of transmission devices 11a and 11b, and a part thereof Are assigned so as to overlap (corresponding to step S24 in FIG. 9).
Then, each of the plurality of transmission devices 11a and 11b configuring the first transmission device group transmits to the reception device 10 a frequency signal in which some frequency bands of the subchannel overlap.
Then, the transmission device 11c constituting the second transmission device group uses the frequency band of the subchannel not used by each of the transmission devices 11a and 11b constituting the first transmission device group as the reception device 10. Send a frequency signal.
 本発明の第3の実施形態では、第3の送信装置11cは、所定のサブチャネルを使用して受信装置10に信号を送信する。また、第1の送信装置11aおよび第2の送信装置11bは、第3の送信装置11cが使用した所定のサブチャネル以外のサブチャネルの一部を重複させて受信装置10に信号を送信する。
 本実施形態では、割当可能な伝送帯域全体が複数のサブチャネルに分割されている場合に、第3の送信装置11cの信号をシステムレベルで決定されているサブチャネルに配置することができる。即ち、本実施形態では、システムに影響を与えることなく、より多くの情報量の通信を行うことができる。
In the third embodiment of the present invention, the third transmission device 11c transmits a signal to the reception device 10 using a predetermined subchannel. In addition, the first transmission device 11a and the second transmission device 11b transmit signals to the reception device 10 by overlapping a part of subchannels other than the predetermined subchannel used by the third transmission device 11c.
In the present embodiment, when the entire assignable transmission band is divided into a plurality of subchannels, the signal of the third transmission device 11c can be arranged in the subchannel determined at the system level. That is, in this embodiment, communication with a larger amount of information can be performed without affecting the system.
 上述した第1~第3の実施形態では、スペクトル重複リソースマネジメント(SORM)により空いた、もしくは所定の帯域幅だけ空けた周波数帯域にさらなる信号を多重する。これにより、スペクトル重複リソースマネジメント(SORM)による伝送レートを変更することなく、かつ帯域を広げることなく送信装置11a~11cから受信装置10に情報をより多く伝送できる。また、高い周波数利用効率、即ちスループットを達成することができる。 In the first to third embodiments described above, a further signal is multiplexed in a frequency band that is vacated by spectrum overlap resource management (SORM) or vacated by a predetermined bandwidth. As a result, more information can be transmitted from the transmission devices 11a to 11c to the reception device 10 without changing the transmission rate by spectrum overlap resource management (SORM) and without expanding the bandwidth. Further, high frequency utilization efficiency, that is, throughput can be achieved.
 なお、第3の送信装置11cのように、他の送信装置と同じ離散周波数を使用しない直交する離散周波数を確保する送信装置が複数存在する場合に、上述した第1又は第2の実施形態を適用しても良い。 The first or second embodiment described above is used when there are a plurality of transmission apparatuses that ensure orthogonal discrete frequencies that do not use the same discrete frequency as other transmission apparatuses, such as the third transmission apparatus 11c. It may be applied.
[第4の実施形態]
 次に、本発明の第4の実施形態について説明する。第1から第3の実施形態では、SORMにより複数のユーザがサブキャリアを選択した後、残ったサブキャリアを、他のユーザに割り当てる方法について説明した。割り当ての順序を入れ替えること、即ち、他のユーザがサブキャリアを選択した後、残ったサブキャリアを、SORMを用いて複数のユーザが選択しても良い。
[Fourth Embodiment]
Next, a fourth embodiment of the present invention will be described. In the first to third embodiments, the method of allocating the remaining subcarriers to other users after a plurality of users select subcarriers by SORM has been described. The order of allocation may be changed, that is, after other users select subcarriers, the remaining subcarriers may be selected by a plurality of users using SORM.
 本実施形態では、各ユーザがSORMのように伝搬路に応じてサブキャリアを選択する方法ではなく、基地局装置から割り当てられたサブキャリアを使用する方法について説明する。
 本実施形態では、帯域全体のサブキャリア数を16とし、第1の送信装置を用いるユーザU1が使用するサブキャリア数を8とする。また、第2の送信装置を用いるユーザU2が使用するサブキャリア数を8とし、第3の送信装置を用いるユーザU3が使用するサブキャリア数を3とする。そして、ユーザU1とユーザU2は、3つのサブキャリアを重複使用する。また、本実施形態では、受信装置となる基地局装置が、各ユーザが使用するサブキャリアを指定する。
In the present embodiment, a method of using subcarriers allocated from the base station apparatus, instead of a method in which each user selects a subcarrier according to a propagation path as in the case of SORM, will be described.
In the present embodiment, the number of subcarriers in the entire band is 16, and the number of subcarriers used by the user U1 who uses the first transmission device is 8. Further, the number of subcarriers used by the user U2 using the second transmission device is 8, and the number of subcarriers used by the user U3 using the third transmission device is 3. And user U1 and user U2 use three subcarriers redundantly. Moreover, in this embodiment, the base station apparatus which becomes a receiving apparatus designates the subcarrier which each user uses.
 図10は、本発明の第4の実施形態による基地局装置が指定する論理サブキャリア番号の一例を示す表である。本実施形態ではまず、基地局装置は、各ユーザが使用する論理サブキャリア番号を指定する。
 ここでは、ユーザU1に対して、論理サブキャリア番号1、2、3、4、5、6、7、8が割り当てられる。
 また、ユーザU2に対して、論理サブキャリア番号6、7、8、9、10、11、12、13が割り当てられる。
 また、ユーザU3に対して、論理サブキャリア番号14、15、16が割り当てられる。
 ただし、3つの論理サブキャリア番号6、7、8が、ユーザU1とユーザU2とで重複使用される。
FIG. 10 is a table showing an example of logical subcarrier numbers designated by the base station apparatus according to the fourth embodiment of the present invention. In this embodiment, first, the base station apparatus specifies a logical subcarrier number used by each user.
Here, logical subcarrier numbers 1, 2, 3, 4, 5, 6, 7, and 8 are assigned to user U1.
Also, logical subcarrier numbers 6, 7, 8, 9, 10, 11, 12, and 13 are assigned to the user U2.
Further, logical subcarrier numbers 14, 15, and 16 are assigned to the user U3.
However, three logical subcarrier numbers 6, 7, and 8 are redundantly used by the user U1 and the user U2.
 図11は、本発明の第4の実施形態による論理サブキャリア番号と物理サブキャリア番号のマッピングの一例を示す図である。図11において、横軸が周波数(サブキャリア番号)であり、縦軸が時間である。
 図11中の一番上の行の16個の四角中の数字が物理サブキャリア番号を示している。また、時間がT1、T2、T3、T4の4行×16列の四角中の数字が、物理サブキャリア番号に割り当てられる論理サブキャリア番号を示している。
FIG. 11 is a diagram illustrating an example of mapping between logical subcarrier numbers and physical subcarrier numbers according to the fourth embodiment of the present invention. In FIG. 11, the horizontal axis is frequency (subcarrier number), and the vertical axis is time.
The numbers in the 16 squares in the top row in FIG. 11 indicate physical subcarrier numbers. Further, the numbers in the squares of 4 rows × 16 columns of time T1, T2, T3, and T4 indicate the logical subcarrier numbers assigned to the physical subcarrier numbers.
 時間T1~T4の1、2、3、4、5で示す論理サブキャリア番号は、ユーザU1が使用するサブキャリアである。また、時間T1~T4の9、10、11、12、13で示す論理サブキャリア番号は、ユーザU2が使用するサブキャリアである。
 また、時間T1~T4の6、7、8で示す論理サブキャリア番号は、ユーザU3が使用するサブキャリアである。また、時間T1~T4の14、15、16で示す論理サブキャリア番号は、ユーザU4が使用するサブキャリアである。
Logical subcarrier numbers indicated by 1, 2, 3, 4, and 5 at times T1 to T4 are subcarriers used by the user U1. Further, logical subcarrier numbers indicated by 9, 10, 11, 12, and 13 at times T1 to T4 are subcarriers used by the user U2.
The logical subcarrier numbers indicated by 6, 7, and 8 at times T1 to T4 are subcarriers used by the user U3. Further, logical subcarrier numbers indicated by 14, 15, and 16 at times T1 to T4 are subcarriers used by the user U4.
 図11では、マッピングが時間とともに変化(T1からT4)しているが、この変化は一例であり、マッピングを時間とともに変化させなくても良い。そして、このマッピングは通信を行う前に、基地局装置から各ユーザに通知される。
 各ユーザは、予め割り当てられた論理サブキャリア番号と、マッピングを用いて使用するサブキャリアを決定する。
In FIG. 11, the mapping changes with time (T1 to T4), but this change is an example, and the mapping does not have to change with time. This mapping is notified to each user from the base station apparatus before communication.
Each user determines a logical subcarrier number assigned in advance and a subcarrier to be used using mapping.
 図12は、本発明の第4の実施形態において、時間T3で各ユーザが使用する物理サブキャリア番号の一例を示す表である。
 ユーザU1は、時間T3において、1、2、5、6、9、10、13、14のサブキャリア番号を使用する。
 また、ユーザU2は、時間T3において、3、4、6、7、10、11、14、15のサブキャリア番号を使用する。
 また、ユーザU3は、時間T3において、8、12、16のサブキャリア番号を使用する。
FIG. 12 is a table showing an example of physical subcarrier numbers used by each user at time T3 in the fourth embodiment of the present invention.
User U1 uses the subcarrier numbers 1, 2, 5, 6, 9, 10, 13, and 14 at time T3.
Further, the user U2 uses the subcarrier numbers of 3, 4, 6, 7, 10, 11, 14, 15 at time T3.
Also, the user U3 uses the 8, 12, and 16 subcarrier numbers at time T3.
 本実施形態では、伝搬路の状況によらずサブキャリアを重複使用する端末と、単独でサブキャリアを選択する端末とを共存させて動作させる。なお、サブキャリアをグループ化しても同じ方法を用いることが可能である。
 このようにサブキャリアを重複利用することで、さらに他のユーザを多重することが可能となり、スループットを改善することができる。本実施形態で使用する送信装置や受信装置としては、第1の実施形態による送信装置(図2)や受信装置(図3)と同様の構成を用いることができる。
In the present embodiment, a terminal that uses a subcarrier redundantly and a terminal that selects a subcarrier independently coexist regardless of propagation path conditions. The same method can be used even when subcarriers are grouped.
In this way, by using the subcarriers in duplicate, it is possible to multiplex other users and improve the throughput. As the transmission device and the reception device used in the present embodiment, the same configuration as that of the transmission device (FIG. 2) and the reception device (FIG. 3) according to the first embodiment can be used.
 本実施形態は、物理サブキャリアの割当を、基地局装置が決定して通知する。なお、確定的に生成可能な疑似乱数と、通信回線を張るときに用いる通信に必要な情報(ユーザIDなど)とを用いて決定した物理サブキャリアを用いる場合には、物理サブキャリアの割当の指定や通知は必要ない。この場合であっても、本実施形態と、本質的には同一である。 In this embodiment, the base station apparatus determines and notifies physical subcarrier allocation. In addition, when using physical subcarriers determined using pseudo-random numbers that can be generated deterministically and information (user ID, etc.) required for communication used when establishing a communication line, physical subcarrier allocation No designation or notification is required. Even in this case, this embodiment is essentially the same.
 なお、以上説明した実施形態において、第1~第3の送信装置11a~11c(図2)の各部や、受信装置10(図3)の各部の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録しても良い。そして、この記録媒体に記録されたプログラムを、送信装置11a~11c、受信装置10に内蔵させたコンピュータシステム(図示省略)に読み込ませ、実行することにより第1~第3の送信装置11a~11cや受信装置10の制御を行っても良い。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含む。 In the embodiment described above, a computer-readable program for realizing the functions of the respective units of the first to third transmitting apparatuses 11a to 11c (FIG. 2) and the respective units of the receiving apparatus 10 (FIG. 3) is possible. You may record on a recording medium. Then, the programs recorded on the recording medium are read into a computer system (not shown) incorporated in the transmission devices 11a to 11c and the reception device 10 and executed, thereby executing the first to third transmission devices 11a to 11c. Alternatively, the receiving device 10 may be controlled. The “computer system” here includes an OS and hardware such as peripheral devices.
 また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時刻プログラムを保持しているものも含む。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。 Further, the “computer-readable recording medium” means a storage device such as a flexible disk, a magneto-optical disk, a portable medium such as a ROM and a CD-ROM, and a hard disk incorporated in a computer system. Furthermore, the “computer-readable recording medium” is a medium that dynamically holds a program for a short time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line, In this case, it includes a program that holds a program for a certain time, such as a volatile memory inside a computer system that serves as a server or a client. The program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も特許請求の範囲に含まれる。 The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and the design and the like within the scope of the present invention are also within the scope of the claims. include.
 本発明は、高い周波数利用効率で、送信装置から受信装置に信号を送信することができる無線通信システム、通信装置、プログラム及び無線通信方法などに適用できる。 The present invention can be applied to a wireless communication system, a communication device, a program, a wireless communication method, and the like that can transmit a signal from a transmission device to a reception device with high frequency utilization efficiency.
10・・・受信装置、11a・・・第1の送信装置、11b・・・第2の送信装置、11c・・・第3の送信装置、31・・・伝搬路推定部、32・・・信号検出部、1001・・・符号部、1002・・・インターリーブ部、1003・・・変調部、1004・・・S/P変換部、1005・・・DFT部、1006・・・スペクトルマッピング部、1007・・・IDFT部、1008・・・P/S変換部、1009・・・パイロット信号生成部、1010・・・パイロット多重部、1011・・・CP挿入部、1012・・・D/A変換部、1013・・・無線部、1014・・・送信アンテナ、2001・・・受信アンテナ、2002・・・無線部、2003・・・A/D変換部、2004・・・CP除去部、2005・・・パイロット分離部、2006-1、2006-2・・・伝搬路推定部、2007・・・スケジューリング部、2008・・・スペクトル割当情報生成部、2009・・・バッファ、2010・・・第1のS/P変換部、2011・・・第1のDFT部、2012・・・スペクトルデマッピング部、2013-1、2014-2・・・ソフトキャンセル部、2014-1、2014-2・・・等化部、2015-1、2015-2・・・復調部、2016-1、2016-2・・・デインターリーブ部、2017-1、2017-2・・・復号部、2018-1、2018-2・・・インターリーブ部、2019-1、2019-2・・・ソフトレプリカ生成部、2020-1、2020-2・・・第2のS/P変換部、2021-1、2021-2・・・第2のDFT部、2022-1、2022-2・・・干渉抽出部 DESCRIPTION OF SYMBOLS 10 ... Reception apparatus, 11a ... 1st transmission apparatus, 11b ... 2nd transmission apparatus, 11c ... 3rd transmission apparatus, 31 ... Propagation path estimation part, 32 ... Signal detection unit, 1001... Encoding unit, 1002... Interleaving unit, 1003... Modulation unit, 1004... S / P conversion unit, 1005. DESCRIPTION OF SYMBOLS 1007 ... IDFT part, 1008 ... P / S conversion part, 1009 ... Pilot signal generation part, 1010 ... Pilot multiplexing part, 1011 ... CP insertion part, 1012 ... D / A conversion , 1013... Radio unit, 1014... Transmit antenna, 2001... Receive antenna, 2002... Radio unit, 2003... A / D converter, 2004. ..Pyro Separation unit, 2006-1, 2006-2 ... propagation path estimation unit, 2007 ... scheduling unit, 2008 ... spectrum allocation information generation unit, 2009 ... buffer, 2010 ... first S / P conversion unit, 2011 ... first DFT unit, 2012 ... spectrum demapping unit, 2013-1, 2014-2 ... soft cancellation unit, 2014-1, 2014-2 ... equalization , 2015-1, 2015-2 ... demodulator, 2016-1, 2016-2 ... deinterleaver, 2017-1, 2017-2 ... decoder, 2018-1, 2018-2 ..Interleave units, 2019-1, 2019-2... Soft replica generation units, 2020-1, 2020-2... Second S / P conversion units, 2021-1, 2021-2 ... the second DFT unit, 2022-1,2022-2 ... interference extraction unit

Claims (10)

  1.  受信装置と第1~第3の送信装置とを備える通信システムであって、
     前記第1の送信装置および第2の送信装置は、一部の周波数帯域を重複させて前記受信装置に信号を送信し、
     前記第3の送信装置は、前記第1および第2の送信装置が使用していない周波数帯域を使用して前記受信装置に信号を送信する通信システム。
    A communication system comprising a receiving device and first to third transmitting devices,
    The first transmission device and the second transmission device transmit signals to the reception device by overlapping some frequency bands,
    The third transmission device is a communication system that transmits a signal to the reception device using a frequency band that is not used by the first and second transmission devices.
  2.  受信装置と第1~第3の送信装置とを備える通信システムであって、
     前記第3の送信装置は、所定の周波数帯域を使用して前記受信装置に信号を送信し、
     前記第1の送信装置および第2の送信装置は、前記所定の周波数帯域以外の周波数帯域の一部を重複させて前記受信装置に信号を送信する通信システム。
    A communication system comprising a receiving device and first to third transmitting devices,
    The third transmitting device transmits a signal to the receiving device using a predetermined frequency band,
    The first transmission device and the second transmission device are communication systems that transmit a signal to the reception device by overlapping a part of a frequency band other than the predetermined frequency band.
  3.  前記第3の送信装置が使用する周波数帯域は、前記第1および第2の送信装置の受信信号雑音比の和の小さい周波数に基づいて決定される請求項2に記載の通信システム。 The communication system according to claim 2, wherein the frequency band used by the third transmission device is determined based on a frequency having a small sum of reception signal noise ratios of the first and second transmission devices.
  4.  受信装置と第1~第3の送信装置とを備える通信システムであって、
     前記第3の送信装置は、所定のサブチャネルを使用して前記受信装置に信号を送信し、
     前記第1の送信装置および第2の送信装置は、前記所定のサブチャネル以外のサブチャネルの一部を重複させて前記受信装置に信号を送信する通信システム。
    A communication system comprising a receiving device and first to third transmitting devices,
    The third transmitting device transmits a signal to the receiving device using a predetermined subchannel,
    The communication system in which the first transmission device and the second transmission device transmit signals to the reception device by overlapping a part of subchannels other than the predetermined subchannel.
  5.  前記第1の送信装置および第2の送信装置が使用するサブチャネルの伝送帯域の合計は、前記第1の送信装置と第2の送信装置の信号を割当可能な伝送帯域よりも大きい請求項4に記載の通信システム。 5. The total transmission bandwidth of subchannels used by the first transmission device and the second transmission device is larger than a transmission bandwidth to which signals of the first transmission device and the second transmission device can be allocated. The communication system according to 1.
  6.  第1~第3の送信装置と通信する通信装置であって、
     一部の周波数帯域を重複させた周波数帯域を前記第1の送信装置および第2の送信装置に割り当てる第1の割当部と、
     前記第1および第2の送信装置に割り当てていない周波数帯域を前記第3の送信装置に割り当てる第2の割当部と、
     を備える通信装置。
    A communication device that communicates with the first to third transmission devices,
    A first allocation unit that allocates a frequency band obtained by overlapping a part of frequency bands to the first transmission device and the second transmission device;
    A second allocation unit that allocates a frequency band that is not allocated to the first and second transmission devices to the third transmission device;
    A communication device comprising:
  7.  第1~第3の送信装置と通信する通信装置のコンピュータを、
     一部の周波数帯域を重複させた周波数帯域を前記第1の送信装置および第2の送信装置に割り当てる第1の割当手段と、
     前記第1および第2の送信装置に割り当てていない周波数帯域を前記第3の送信装置に割り当てる第2の割当手段として機能させるプログラム。
    A communication device computer for communicating with the first to third transmission devices;
    First allocating means for allocating a frequency band obtained by overlapping a part of frequency bands to the first transmitting apparatus and the second transmitting apparatus;
    A program for causing a frequency band that is not allocated to the first and second transmission apparatuses to function as a second allocation unit that allocates a frequency band to the third transmission apparatus.
  8.  複数の送信装置を備える第1の送信装置群と、少なくとも1つの送信装置からなる第2の送信装置群と、受信装置とを用いる通信方法であって、
     前記第1の送信装置群の送信装置の各々に、周波数帯域を重複しないように割り当てる過程と、
     前記周波数帯域の一部を重複するように変更する過程と、
     前記第2の送信装置群の送信装置に、前記重複するように変更したことによって空いた周波数帯域を含む重複しない周波数帯域を割り当てる過程と、
     前記第1の送信装置群を構成する複数の送信装置の各々は、前記一部の周波数帯域が重複した周波数信号を前記受信装置に送信する過程と、
     前記第2の送信装置群を構成する送信装置は、前記第1の送信装置群を構成する送信装置の各々が使用していない周波数帯域を使用して前記受信装置に周波数信号を送信する過程と、
     を有する通信方法。
    A communication method using a first transmission device group including a plurality of transmission devices, a second transmission device group including at least one transmission device, and a reception device,
    Assigning the frequency bands to each of the transmission devices of the first transmission device group so as not to overlap;
    Changing a part of the frequency band to overlap;
    A process of assigning non-overlapping frequency bands including a frequency band vacated by changing the overlapping to the transmitting apparatuses of the second transmitting apparatus group,
    Each of a plurality of transmission devices constituting the first transmission device group transmits a frequency signal with the partial frequency band overlapping to the reception device;
    The transmitting device constituting the second transmitting device group transmits a frequency signal to the receiving device using a frequency band not used by each of the transmitting devices constituting the first transmitting device group; ,
    A communication method.
  9.  複数の送信装置を備える第1の送信装置群と、少なくとも1つの送信装置からなる第2の送信装置群と、受信装置とを用いる通信方法であって、
     前記第2の送信装置群の送信装置に、周波数帯域を割り当てる過程と、
     前記第1の送信装置群の送信装置の各々に、前記第2の送信装置群の送信装置が使用しない周波数帯域をその一部が重複するように割り当てる過程と、
     前記第1の送信装置群を構成する複数の送信装置の各々は、前記一部の周波数帯域が重複した周波数信号を前記受信装置に送信する過程と、
     前記第2の送信装置群を構成する送信装置は、前記第1の送信装置群を構成する送信装置の各々が使用していない周波数帯域を使用して前記受信装置に周波数信号を送信する過程と、
     を有する通信方法。
    A communication method using a first transmission device group including a plurality of transmission devices, a second transmission device group including at least one transmission device, and a reception device,
    Assigning a frequency band to the transmission devices of the second transmission device group;
    A process of assigning to each of the transmission devices of the first transmission device group a frequency band that is not used by the transmission devices of the second transmission device group so that a part thereof overlaps;
    Each of a plurality of transmission devices constituting the first transmission device group transmits a frequency signal with the partial frequency band overlapping to the reception device;
    The transmitting device constituting the second transmitting device group transmits a frequency signal to the receiving device using a frequency band not used by each of the transmitting devices constituting the first transmitting device group; ,
    A communication method.
  10.  複数の送信装置からなる第1の送信装置群と、少なくとも1つの送信装置からなる第2の送信装置群と、受信装置とを用いる通信方法であって、
     周波数帯域を所定幅の周波数帯域ごとにサブチャネルに分割する過程と、
     前記第2の送信装置群の送信装置に、1つまたは複数のサブチャネルを割り当てる過程と、
     前記第1の送信装置群の送信装置の各々に、前記第2の送信装置群の送信装置が使用しない1つまたは複数のサブチャネルを用い、その一部の周波数帯域が重複するように割り当てる過程と、
     前記第1の送信装置群を構成する複数の送信装置の各々は、そのサブチャネルの一部の周波数帯域が重複した周波数信号を前記受信装置に送信する過程と、
     前記第2の送信装置群を構成する送信装置は、前記第1の送信装置群を構成する送信装置の各々が使用していないサブチャネルの周波数帯域を使用して前記受信装置に周波数信号を送信する過程と、
     を有する通信方法。
    A communication method using a first transmission device group composed of a plurality of transmission devices, a second transmission device group composed of at least one transmission device, and a reception device,
    Dividing the frequency band into sub-channels for each frequency band of a predetermined width;
    Assigning one or more subchannels to the transmitters of the second transmitter group;
    A process of using one or a plurality of subchannels that are not used by the transmission devices of the second transmission device group and assigning the frequency bands to overlap each of the transmission devices of the first transmission device group. When,
    Each of the plurality of transmission devices constituting the first transmission device group transmits a frequency signal in which some of the frequency bands of the subchannel overlap to the reception device;
    The transmission devices that constitute the second transmission device group transmit frequency signals to the reception devices using frequency bands of subchannels that are not used by the transmission devices that constitute the first transmission device group. The process of
    A communication method.
PCT/JP2009/061095 2008-06-20 2009-06-18 Communication system, communication device, program, and communication method WO2009154250A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008161648 2008-06-20
JP2008-161648 2008-06-20

Publications (1)

Publication Number Publication Date
WO2009154250A1 true WO2009154250A1 (en) 2009-12-23

Family

ID=41434165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061095 WO2009154250A1 (en) 2008-06-20 2009-06-18 Communication system, communication device, program, and communication method

Country Status (1)

Country Link
WO (1) WO2009154250A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011250105A (en) * 2010-05-26 2011-12-08 Sharp Corp Radio communication system, base station apparatus, and frequency assigning method
WO2012111417A1 (en) * 2011-02-14 2012-08-23 シャープ株式会社 Wireless control device, wireless communication system, control program and integrated circuit
WO2013084908A1 (en) * 2011-12-05 2013-06-13 シャープ株式会社 Base-station device, wireless communication system, wireless communication device, method for allocating frequency band, and program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005086516A1 (en) * 2004-03-05 2005-09-15 Ntt Docomo, Inc. Frequency channel assigning system, base station, control station, inter-system common control apparatus, frequency channel assigning method and control method
JP2006094005A (en) * 2004-09-22 2006-04-06 Ntt Docomo Inc Multiband mobile communication system and transmitter
JP2007189360A (en) * 2006-01-11 2007-07-26 Sharp Corp Communication control apparatus, communication terminal, and communication control method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005086516A1 (en) * 2004-03-05 2005-09-15 Ntt Docomo, Inc. Frequency channel assigning system, base station, control station, inter-system common control apparatus, frequency channel assigning method and control method
JP2006094005A (en) * 2004-09-22 2006-04-06 Ntt Docomo Inc Multiband mobile communication system and transmitter
JP2007189360A (en) * 2006-01-11 2007-07-26 Sharp Corp Communication control apparatus, communication terminal, and communication control method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ISSEI YOKOMAKURA ET AL.: "Dynamic Spectrum Seigyo o Mochiita Spectrum Chofuku Resource Management", THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS SOGO TAIKAI KOEN RONBUNSHU TSUSHIN, vol. 1, 5 March 2008 (2008-03-05), pages 437 - B-5-51 *
YASUHIRO HAMAGUCHI ET AL.: "Spectrum Chofuku Resource Management ni Okeru Jushin Denryokusa no Eikyo", THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS SOGO TAIKAI KOEN RONBUNSHU, 5 March 2008 (2008-03-05), pages 438 - B-5-52 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011250105A (en) * 2010-05-26 2011-12-08 Sharp Corp Radio communication system, base station apparatus, and frequency assigning method
WO2012111417A1 (en) * 2011-02-14 2012-08-23 シャープ株式会社 Wireless control device, wireless communication system, control program and integrated circuit
JP2012169848A (en) * 2011-02-14 2012-09-06 Sharp Corp Radio controller, radio communications system, control program, and integrated circuit
WO2013084908A1 (en) * 2011-12-05 2013-06-13 シャープ株式会社 Base-station device, wireless communication system, wireless communication device, method for allocating frequency band, and program

Similar Documents

Publication Publication Date Title
JP4907721B2 (en) Wireless communication method and apparatus for assigning training signals and information bits
US7974176B2 (en) Systems, methods and transceivers for wireless communications over discontiguous spectrum segments
CA2556948C (en) Method and apparatus for allocating subcarriers in a broadband wireless communication system using multiple carriers
JP5483690B2 (en) Wireless communication system, base station apparatus, and frequency allocation method
JP2004523945A (en) Error reduction method and apparatus in quadrature modulation system
JP2013153479A (en) Dynamically selecting methods to reduce distortion in multi-carrier modulated signals resulting from high peak-to-average power ratios
JP2007202160A (en) Methods for data transmission
KR20040044267A (en) Apparatus for generating edge sidelobe canceling signal and communication apparatus for uplink employing the same in OFDMA system
US20130279439A1 (en) Wireless transmission apparatus, wireless reception apparatus, wireless communication system, and control program and integrated circuit of wireless transmission apparatus
KR20050050322A (en) Method for adptive modulation in a ofdma mobile communication system
US9137798B2 (en) Wireless transmission device and wireless transmission method
JP5067981B2 (en) Communication apparatus, communication system, and transmission method
JP5660705B2 (en) COMMUNICATION DEVICE, RADIO COMMUNICATION SYSTEM, AND FREQUENCY ALLOCATION METHOD
WO2009154250A1 (en) Communication system, communication device, program, and communication method
WO2012115087A1 (en) Wireless communication system, wireless communication method, transmission device, and processor
KR20140096560A (en) Apparatus and method for supporting time-quadrature amplitude modulation in wireless communication system
JPWO2005109709A1 (en) Multicarrier transmission apparatus, multicarrier reception apparatus, multicarrier transmission method, and multicarrier reception method
JP5394894B2 (en) Wireless communication system, communication apparatus, communication method, and program
EP1665703B1 (en) Multicarrier system with transmit diversity
KR100828478B1 (en) Apparatus and method for allocating dynamic channel with low complexity in multi-carrier communication system
KR101145379B1 (en) Apparatus and method for using transmitter and receiver with heterogeneous bandwidths in wireless communication system
KR100784323B1 (en) Apparatus and method for allocating resource in mobile communication base station system
JPWO2009038018A1 (en) Wireless transmission device, wireless communication system, and wireless transmission method
WO2014027667A1 (en) Communication system, communication device, and communication method
Dayana et al. Dynamic Power Allocation for Mc-Cdma System Using Iterative Water Filling Algorithm (Iwfa)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09766698

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09766698

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP