WO2009152673A1 - A method and a system for implementing the uplink hybrid automatic retransmission request - Google Patents

A method and a system for implementing the uplink hybrid automatic retransmission request Download PDF

Info

Publication number
WO2009152673A1
WO2009152673A1 PCT/CN2008/073526 CN2008073526W WO2009152673A1 WO 2009152673 A1 WO2009152673 A1 WO 2009152673A1 CN 2008073526 W CN2008073526 W CN 2008073526W WO 2009152673 A1 WO2009152673 A1 WO 2009152673A1
Authority
WO
WIPO (PCT)
Prior art keywords
hybrid automatic
subframe
automatic repeat
repeat request
uplink
Prior art date
Application number
PCT/CN2008/073526
Other languages
French (fr)
Chinese (zh)
Inventor
王军虎
孙长印
王文焕
Original Assignee
刘建
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 刘建 filed Critical 刘建
Publication of WO2009152673A1 publication Critical patent/WO2009152673A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A method and a system for implementing the uplink Hybrid Automatic Retransmission Request are provided, wherein the method includes: a mobile station sends data to a base station by the preset uplink synchronous HARQ sub-frames and/or uplink asynchronous HARQ sub-frames. By using the scheme, a fixed RTT can be remained, the overhead of the system is reduced, a shorter RTT is remained, and a flexible scheduling is also supported.

Description

上行混合自动重传请求的实现方法和系统 技术领域 本发明涉及通信领域, 特别地, 涉及一种上行混合自动重传请求的实现 方法和系统。 背景技术 混合自动重传请求 ( Hybrid Automatic Retransmission Request, 简称为 HARQ ) 是一种为克服无线移动信道时变和多径衰落对信号传输的影响而提 出的技术,该技术是通过 ^!夸自动重传请求 ( Automatic Retransmission Request, 简称为 ARQ ) 和前向纠错编码 ( Forward Error Correction, 简称为 FEC ) 这 两种技术联合使用来实现的。 HARQ技术能够使无线移动通信系统获得更高 的系统吞吐量和更高的系统稳定性, 并且是 3G 长期演进 (Long Term Evolution , 简称为 LTE ) 系统中的关键技术之一。 在 HARQ技术中, 将 ARQ与 FEC相结合, 在发送的每个数据包中含 有纠错和检错的校验比特。 如果接收包中的出错比特数目在纠错能力之内, 则错误被 FEC 自行纠正, 不需使用 ARQ; 当差错较严重, 已超出 FEC的纠 错能力时, 则通过 ARQ反馈、 通知发端重发。 从而, 可获得额外的信噪比 增益, 并且通过数据包的合并产生时间分集效应, 从而提高系统的吞吐量和 性能。 才艮据目前的两种划分标准, 可以对 HARQ的实现方式进行如下划分: 第一, 按照重传发生的时刻来区分, 可以将 HARQ分为同步 HARQ和 异步 HARQ, 其中, 同步 HARQ是指一个 HARQ进程的传输 (重传) 发生 在固定时刻, 由于接收端预先已知传输的时刻, 因此不需要额外的信令开销 来标识 HARQ进程的序号, 此时的 HARQ进程的序号可以从子帧号获得; 异步 HARQ是指一个 HARQ进程的传输 (重传) 可以发生在任何时刻, 接 收端预先不知道传输的发生时刻, 因此 HARQ进程的处理序号需要连同数据 一起发送; 第二, 根据重传格式来区分, 可以将 HARQ分为自适应 HARQ和非自 适应 HARQ两种模式, 其中, 重传格式包括调制编码方式、 资源划分、 重传 间隔, 具体地, 自适应 HARQ是指: 在每一次重传过程中, 发送端可以根据 实际的信道状态信息改变部分的传输参数, 因此在每次传输过程中, 包含传 输参数的控制信令信息要一并发送; 非自适应 HARQ是指: 这些传输参数相 对于接收端而言都是预先已知的, 因此不需要传输包含传输参数的控制信令 信息。 可以看出, 同步非自适应 HARQ具有节省信令开销的优点; 而异步自 适应 HARQ每一次重传都需要与首次传输开销相同。 对于某些业务,例如,语音 IP( Voice Over Internet Protocol,简称为 VoIP ) 业务, 其要求重传间隔小, 每次的业务量小, 因此, 如果每次重传都占用相 同的开销, 即, 釆用异步自适应 HARQ的方式, 则会导致频 i普的利用效率比 较低。 假定一次传输时的资源指配等信令比特为 M, HARQ进程数为 N, 平 均重传次数为 P, 则异步自适应 HARQ需要的开销是 N*M*P, 而相对应的, 同步非自适应 HARQ需要的开销为 N*M, 减少了 ( P _ 1 ) *N*M。 因此, 同 步非自适应 HARQ具有显著的降低开销和简化系统复杂度的优点,而且适应 于时延要求小、 每次传输载荷比较小的业务。 此外, 异步 HARQ对于重传时间没有严格的时间要求, 因而可以灵活 调度优先级别比较高的业务, 而不会产生冲突。 异步自适应能够根据信道质 量, 自适应地调整重传数据包的调制编码方式、 资源分配等, 还能够获得调 度增益。 同时, 异步 HARQ每次传输都需要信令的开销, 增强了传输的可靠 性。 例如, 发射端在错误接收 ACK/NACK (正确应答 /错误应答) 反馈消息 时, 由于其传输时有信息指示是否为新数据, 接收端仍然可以知道是重传数 据或者新数据, 而且, 每次传输时携带有资源指配信息, 以保证接收端能在 正确的位置进行接收。 然而, 由于上行和下行的传输是彼此独立的, 因此, 目前无法实现将异 步 HARQ和同步非自适应 HARQ进行结合使用进行上行传输。 发明内容 考虑到现有技术中无法实现将异步 HARQ和同步非自适应 HARQ结合 使用用于上行传输的问题而提出本发明, 为此, 本发明的主要目的在于提供 一种上行混合自动重传请求的实现机制,以结合异步 HARQ和同步非自适应 HARQ进行上行传输。 才艮据本发明的一方面, 提供了一种方上行混合自动重传请求的实现方 法, 应用于包含基站和终端的时分双工正交频分多路复用系统。 上述方法包括: 移动台通过预设的上行同步混合自动重传请求子帧和 / 或上行异步混合自动重传请求子帧向基站发送数据。 其中, 在移动台通过上行同步混合自动重传请求子帧和 /或异步混合自 动重传请求子帧向基站发送数据之前, 该方法可进一步包括: 基站将上行同 步混合自动重传请求子帧的信息和 /或异步混合自动重传请求子帧的信息通 知移动台, 其中, 上行同步混合自动重传请求子帧的信息包括上行同步混合 自动重传请求子帧的数量及位置, 上行异步混合自动重传请求子帧的信息包 括上行异步混合自动重传请求子帧的数量及位置。 并且, 在上行同步混合自动重传请求子帧的信息和 /或上述异步混合自 动重传请求子帧的信息发生变化的情况下, 基站将变化后的上行同步混合自 动重传请求子帧的信息和 /或上述异步混合自动重传请求子帧的信息通知给 所示移动台, 其中, 通知的方式包括通过广播、 多播、 单播中的任一种或其 组合。 其中,移动台在预定的最大同步混合自动重传区域内选择同步混合自动 重传的子帧, 其中, 最大同步混合自动重传区域为使混合自动重传的重传间 隔为一个无线帧的最大的子帧区域, 其中, 每个子帧上发送的数据都能够在 处理等时延条件允许下, 在下一个无线帧的相应的位置上进行重新发送。 此夕卜,在移动台通过上行同步混合自动重传请求子帧向基站发送数据的 情况下, 该方法进一步包括: 基站在通过下行子帧向移动台回复上行同步混 合自动重传请求子帧的应答消息。 其中, 应答消息与上行同步混合自动重传请求子帧间隔至少 2个子帧。 另外, 在应答消息为错误应答消息的情况下, 该方法可进一步包括: 移 动台在上行同步混合自动重传请求子帧所在无线帧的下一个无线帧的相应位 置重传上行同步混合自动重传请求数据。 并且,应答消息与重传的上行同步混合自动重传请求数据的子帧间隔至 少 2个子帧。 优选地,在移动台通过上行同步混合自动重传请求子帧向基站发送数据 的情况下, 该方法可进一步包括: 移动台通过无线帧的同步混合自动重传请 求进程向基站发送数据, 其中, 同步混合自动重传请求进程包括一个上行同 步混合自动重传请求子帧、 或者包括多个连续或不连续的上行同步混合自动 重传请求子帧。 另一方面,在移动台通过上行异步混合自动重传请求子帧向基站发送数 据的情况下, 该方法可进一步包括: 基站在通过下行子帧向移动台回复上行 异步混合自动重传请求子帧的应答消息。 其中, 应答消息与上行异步混合自动重传请求子帧间隔至少 2个子帧。 并且, 在应答消息为错误应答消息的情况下, 该方法可进一步包括: 移 动台在上行异步混合自动重传请求子帧所在无线帧后续的无线帧中重传上行 异步混合自动重传请求数据。 其中,应答消息与重传的上行异步混合自动重传请求数据的子帧间隔至 少 2个子帧。 此外,在移动台通过上行异步混合自动重传请求子帧向基站发送数据的 情况下, 该方法可进一步包括: 移动台通过无线帧的异步混合自动重传请求 进程向基站发送数据, 其中, 异步混合自动重传请求进程包括一个上行异步 混合自动重传请求子帧、 或者包括多个连续或不连续的上行异步混合自动重 传请求子帧。 除此之外, 在重传间隔小于或等于一个无线帧长度的情况下, 移动台通 过上行同步混合自动重传请求子帧向基站发送数据; 在重传间隔大于一个无 线帧长度的情况下, 移动台通过上行异步混合自动重传请求子帧向基站发送 数据。 并且,上行同步混合自动重传请求子帧为同步非自适应混合自动重传请 求模式的上行子帧; 上行异步混合自动重传请求子帧为异步非自适应混合自 动重传请求模式的上行子帧。 根据本发明的另一方面, 提供了一种上行混合自动重传请求的实现系 统。 上述系统包括: 移动台, 用于通过无线帧的上行同步混合自动重传请求 子帧和 /或上行异步混合自动重传请求子帧向基站发送数据; 以及基站, 用于 通过无线帧的下行子帧向移动台回复应答信息。 借助于上述技术方案至少之一,通过本发明能够保持固定的 RTT, 减小 系统开销、 保持较短的 RTT, 并且还支持灵活的调度。 附图说明 此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中: 图 1 是才艮据本发明方法实施例的上行混合自动重传请求的实现方法的 流程图; 图 2是根据相关技术的 TDD-OFDMA系统的无线帧的结构示意图; 图 3是才艮据本发明实施例的 DL/UL为 6: 2的一种 HARQ机制的示意 图; 图 4是才艮据本发明实施例的 DL/UL为 4: 4的一种 HARQ机制的示意 图; 图 5是才艮据本发明实施例的 DL/UL为 4:4的另一 HARQ机制的示意图; 图 6是才艮据本发明实施例的 DL/UL为 2: 6的一种 HARQ机制的示意 图; 图 7是才艮据本发明实施例的 DL/UL为 2: 6的另一 HARQ机制的示意 图; 图 8是才艮据本发明实施例的 DL/UL为 3: 5时最大同步 HARQ区域示 意图; 图 9是才艮据本发明实施例的 DL/UL为 3: 5时最大同步 HARQ区域示 意图; 图 10是才艮据本发明实施例的混合自动重传方法的优选实例的处理流程 图; 图 11 是根据本发明系统实施例的混合自动重传请求的实现系统的框 图。 具体实施方式 功能相无述 在本发明实施例提供的技术方案中,通过基站将预设的上行同步 HARQ 子帧的信息和 /或异步 HARQ 子帧的信息通知给移动台, 使得移动台可以通 过接收的上行同步 HARQ子帧和 /或上行异步 HARQ子帧向基站发送数据, 其中, 上行同步 HARQ子帧的信息包括上行同步 HARQ子帧的数量及位置, 上行异步 HARQ子帧的信息包括上行异步 HARQ子帧的数量及位置。 方法实施例 在本发明实施例中, 提供了一种上行混合自动重传请求( HARQ )的实 现方法, 应用于包含基站和终端的时分双工正交频分多路复用系统。 基站将上行同步 HARQ子帧的信息和 /或异步混合自动重传请求子帧的 信息通知移动台, 其中, 上行同步 HARQ 子帧的信息包括上行同步 HARQ 子帧的数量及位置, 上行异步混合自动重传请求子帧的信息包括上行异步混 合自动重传请求子帧的数量及位置。 以下进行到图 1所示的处理流程, 其中, 图 1是根据本发明实施例的上行混合自动重传请求的实现方法, 示出了步骤 S102和步骤 S104。 步骤 S102 , 移动台通过预设的上行同步 HARQ 子帧和 /或上行异步 HARQ子帧向基站发送数据。其中,上行同步 HARQ子帧在最大同步 HARQ 区域内, 这里的最大同步 HARQ 区域是满足 RTT为一个无线帧要求的上行 子帧, 这里的上行同步 HARQ子帧为同步非自适应 HARQ模式的上行子帧, 上行异步 HARQ子帧为异步非自适应 HARQ模式的上行子帧。 在具体实施过程中,移动台应当在所允许的最大同步混合自动重传区域 内选择同步混合自动重传的子帧, 其中, 最大同步混合自动重传区域为使混 合自动重传的重传间隔为一个无线帧的最大的子帧区域, 其中, 每个子帧上 发送的数据都能够在处理等时延条件允许下, 在下一个无线帧的相应的位置 上进行重新发送。 在移动台通过上行同步 HARQ子帧向基站发送数据的情况下, 移动台 通过无线帧的同步 HARQ进程向基站发送数据, 其中, 同步 HARQ进程包 括一个上行同步 HARQ子帧、或者包括多个连续或不连续的上行同步 HARQ 子帧。 也就是说, 移动台可通过无线帧的一个同步 HARQ上行子帧向基站发 送数据;或者由多个移动台通过无线帧的多个同步 HARQ上行子帧向基站发 送数据。 在上行同步 HARQ子帧的信息发生变化的情况下, 基站将变化后的上 行同步 HARQ子帧的信息通知给所示移动台, 其中, 通知的方式包括广播、 多播、 单播中的任一种或其组合。 在移动台通过上行异步 HARQ子帧向基站发送数据的情况下, 基站在 通过下行子帧向移动台回复上行异步 HARQ子帧的应答消息。 其中, 应答消 息与上行异步 HARQ子帧间隔至少 2个子帧。 在上述应答消息为 NACK的 情况下,移动台在上行异步 HARQ子帧所在无线帧后续的无线帧中重传上行 异步 HARQ数据。 其中, 应答消息与重传的上行异步 HARQ数据的子帧间 隔至少 2个子帧。 此外, 移动台通过无线帧的异步 HARQ进程向基站发送数 据, 其中, 异步 HARQ进程包括一个上行异步 HARQ子帧、 或者包括多个 连续或不连续的上行异步 HARQ子帧。 除此之外, 在重传间隔小于或等于一个无线帧长度的情况下, 移动台通 过上行同步 HARQ子帧向基站发送数据;在重传间隔大于一个无线帧长度的 情况下, 移动台通过上行异步 HARQ子帧向基站发送数据, 其中, 可以部分 釆用异步 HARQ子帧或者全部釆用异步 HARQ子帧。 步骤 S104, 基站对移动台发送的数据回复应答消息。 具体地, 在移动 台通过上行同步 HARQ子帧向基站发送数据的情况下,基站在通过下行子帧 向移动台回复上行同步 HARQ子帧的应答消息,这里的应答消息与上行同步 HARQ子帧间隔至少 2个子帧, 如果该应答消息为 NACK, 则移动台在上行 同步 HARQ 子帧所在无线帧的下一个无线帧的相应位置重传上行同步 HARQ数据。 从上述描述可以看出, 能够使用同步非自适应 HARQ模式的下行子帧 传输数据, 能够保持固定的 RTT, 从而减小系统开销。 下面将结合无线帧的上行、下行不同传输比例详细说明本发明的混合自 动重传方法。 图 2示出了根据相关技术的 TDD OFDM系统的无线帧结构, 如图 2所 示, 一个无线帧包含 8个子帧, 即, SF0至 SF7。 实施例一 基于图 2所示的帧结构,图 3中的方案 a至方案 d是根据本发明实施例 的 UL/DL为 2:6的一种 HARQ机制的示意图。 如图 3所示, 在方案 a中, 在一个无线帧中, 上行子帧为 2个, 下行子帧为 6个, 每个帧中有一对上下 行切换点, 其中, 最大同步 HARQ区域如方案 a所示。 在方案 b中, 其中 2 个上行子帧 SF0和 SF1均可釆用同步非自适应的 HARQ方式。 具体的同步 HARQ进程如图 3的方案 c以及方案 d所示, RTT为一个无线帧的长度, 即, 8个 TTI的时长。 实施例二 图 4的方案 a至方案 f 是才艮据本发明实施例的 DL/UL为 4:4的一种 HARQ机制的示意图, 。图 4所示, 在方案 a中, 在一个无线帧中, 下行子 帧为 4个,上行子帧为 4个,每个帧中有一对上下行切换点,最大同步 HARQ 区域有 4个下行子帧。 在方案 b中, 其中四个下行子帧均釆用同步非自适应 HARQ方式, RTT为一个无线帧的长度,即 8个 TTI的长度。 4个同步 HARQ 进程的如图 4中的方案 方案 d、 方案 e和方案 f所示。 实施例三 图 5是才艮据本发明实施例的 DL/UL为 4:4的另一 HARQ机制的示意图, 如图 5所示, 在方案 b中, 上行子帧 SF0和上行子帧 SF1釆用异步自适应 HARQ机制, 而上行子帧 SF2和上行子帧 SF3釆用同步 HARQ机制。 2个同 步 HARQ进程的方法可釆用图 5中的方案 c和方案 d,其 RTT为一个无线帧 长。 这里, 当最大同步 HARQ区域包含所有上行子帧时, 即, 任何上行子帧 均可满足同步非自适应 HARQ的时序要求,可以令所有上行子帧釆用同步非 自适应 HARQ机制, 也可以部分选择为异步自适应 HARQ方式, 以体现异 步自适应 HARQ 的灵活性。 具体地, 可以由系统才艮据需求选择同步 HARQ 子帧。 实施例四 图 6是才艮据本发明实施例的 UL/DL为 6:2的 HARQ机制的示意图, 如 图 6所述, 在方案 a中, 在一个无线帧中, 下行子帧为 6个, 上行子帧为 2 个, 每个帧中有一对上下行切换点, 最大同步 HARQ区域为 4个子帧。 在方 案 d中, 上行子帧 SF2、 SF3、 SF4釆用同步非自适应 HARQ机制, 而子帧 SF0、 SF1、 SF5釆用异步自适应 HARQ机制。 子帧 SF2、 SF3、 SF4分另' J为 同步 HARQ进程 1、 2、 3; 子帧 SF2、 SF3、 SF4分别为异步 HARQ区 i或, 其进程不作规定。 对于不同用户, 选定的同步区域是可以是相同的, 也可以 是不同的。 例如, 用户 1选择子帧 SF2为同步非自适应 HARQ区域, 用户 2 选择 SF3为同步非自适应 HARQ区域,此分配在基本能力协商时基站与移动 台协商决定。 用户的同步 HARQ数据在同步 HARQ子帧中发送, 异步自适 应 HARQ数据在异步 HARQ 区域发送。 基站根据业务情况, 可以改变作为 同步非自适应 HARQ的子帧个数以及子帧序号, 基站通过广播、 多播或单播 消息通知基站,所有同步非自适应 HARQ的子帧必须在系统给定的最大同步 非自适应 HARQ区域内。 实施例五 图 7是才艮据本发明实施例的 UL/DL为 6:2的另一 HARQ机制的示意图, 如图 7所示, 在方案 a中, 在一个无线帧中, 上行子帧为 6个, 下行子帧为 2个, 每个帧中有一对上下行切换点, 最大同步 HARQ区域为 4个子帧。 在 方案 d中,基站在广播信息里发布可以进行同步非自适应 HARQ的上行子帧 序号, 移动台可以通过这些子帧中给基站发送数据, 其 HARQ模式即为同步 非自适应模式。移动台在同步非自适应 HARQ区域以外发送的数据即为异步 自适应模式。 其中, 子帧 SF2和 SF3可以联合为一个 HARQ进程, 为同步 非自适应 HARQ进程 1 ,如方案 c; 子帧 SF4为同步非自适应 HARQ进程 2, 如方案 d。 子帧 SF0、 SF1、 SF5为异步自适应 HARQ模式, 其中 SF0、 SF1 可以联合为 1个进程, 即, 为异步自适应 HARQ进程 1 , 子帧 SF5为异步自 适应 HARQ进程 2。多个釆用相同 HARQ模式的子帧可以自由组合形成一个 进程, 以适应大业务量需求, 进一步减小系统的开销。 移动台与基站进行基本能力协商时, 选择上行子帧 SF2、 SF3、 SF4釆 用同步非自适应 HARQ机制, 而子帧 SF0、 SF1、 SF5釆用异步自适应 HARQ 机制。 基站根据业务情况, 可以改变作为同步非自适应 HARQ的子帧个数以 及子帧序号, 通过广播消息通知所有移动台或者相应的移动台。 实施例六 图 8是才艮据本发明实施例的 UL/DL为 3:5时最大同步 HARQ区域的示 意图, 图 9是才艮据本发明实施例的 UL/DL为 5:3时最大同步 HARQ区域的 示意图, 图 8和图 9所对应的处理过程与图 5、 图 6、 以及图 7所对应的处 理过程类似, 这里不再重复。 基于以上描述, 图 10给出了根据本发明实施例的混合自动重传方法的 一个优选实施例, 如图 10 所示, 该优选实施例的混合自动重传方法的处理 流程包括以下步骤 (步骤 S 1002—步骤 S1004 ): 步骤 S 1002 , 移动台通过无线帧的同步 HARQ上行子帧和异步 HARQ 上行子帧向基站发送数据, 其中, 同步 HARQ上行子帧为使用同步非自适应 HARQ模式的上行子帧, 异步 HARQ上行子帧为使用异步自适应 HARQ模 式的上行子帧; 步骤 S1004, 基站通过无线帧的下行子帧向基站回复同步 HARQ上行 子帧和异步 HARQ上行子帧的应答信息, 其中, 回复应答消息的下行子帧与 同步 HARQ上行子帧和异步 HARQ上行子帧至少间隔 2个子帧。 系统实施例 在本实施例中, 提供了一种上行 HARQ的实现系统。 图 11是根据本实施例的上行 HARQ的实现系统的框图, 如图 11所示, 该上行 HARQ的实现系统包括移动台 1和基站 3。 The present invention relates to the field of communications, and in particular, to a method and system for implementing an uplink hybrid automatic repeat request. BACKGROUND Hybrid Automatic Retransmission Request (HARQ) is a technology proposed to overcome the influence of wireless mobile channel time-varying and multipath fading on signal transmission. The combination of Automatic Retransmission Request (ARQ) and Forward Error Correction (FEC) is used in combination. HARQ technology enables wireless mobile communication systems to achieve higher system throughput and higher system stability, and is one of the key technologies in the 3G Long Term Evolution (LTE) system. In the HARQ technique, ARQ is combined with FEC to include error correction and error detection parity bits in each data packet transmitted. If the number of error bits in the received packet is within the error correction capability, the error is corrected by the FEC itself, and no ARQ is needed. When the error is serious and the error correction capability of the FEC has been exceeded, the ARQ feedback is sent to notify the originating retransmission. . Thereby, additional signal-to-noise ratio gain can be obtained, and time diversity effects are generated by the combination of data packets, thereby improving the throughput and performance of the system. According to the current two classification criteria, the implementation of HARQ can be divided as follows: First, according to the time of retransmission, HARQ can be divided into synchronous HARQ and asynchronous HARQ, where synchronous HARQ refers to a The transmission (retransmission) of the HARQ process occurs at a fixed time. Since the receiving end knows the time of transmission in advance, no additional signaling overhead is needed to identify the sequence number of the HARQ process. The sequence number of the HARQ process at this time can be from the subframe number. Acquired; Asynchronous HARQ means that the transmission (retransmission) of a HARQ process can occur at any time, and the receiving end does not know the occurrence time of the transmission in advance, so the processing sequence number of the HARQ process needs to be sent together with the data; Second, according to the retransmission format To distinguish, HARQ can be divided into two modes: adaptive HARQ and non-adaptive HARQ. The retransmission format includes modulation and coding, resource division, and retransmission. Interval, specifically, adaptive HARQ means: In each retransmission process, the transmitting end can change part of the transmission parameters according to the actual channel state information, so in each transmission process, the control signaling information including the transmission parameters To be sent together; non-adaptive HARQ means: These transmission parameters are known in advance with respect to the receiving end, so there is no need to transmit control signaling information including transmission parameters. It can be seen that synchronous non-adaptive HARQ has the advantage of saving signaling overhead; while asynchronous adaptive HARQ needs to be the same as the first transmission overhead for each retransmission. For some services, for example, a Voice Over Internet Protocol (VoIP) service requires a small retransmission interval and a small amount of traffic each time. Therefore, if each retransmission takes up the same overhead, that is, By using the asynchronous adaptive HARQ method, the utilization efficiency of the frequency is relatively low. Assume that the signaling bits such as resource assignments in a single transmission are M, the number of HARQ processes is N, and the average number of retransmissions is P, then the overhead required for asynchronous adaptive HARQ is N*M*P, and correspondingly, the synchronization is not The overhead required for adaptive HARQ is N*M, which reduces (P _ 1 ) *N*M. Therefore, synchronous non-adaptive HARQ has the advantages of significantly reducing overhead and simplifying system complexity, and is suitable for services with small delay requirements and relatively small transmission load. In addition, asynchronous HARQ has no strict time requirements for retransmission time, so it can flexibly schedule services with higher priority levels without conflicts. Asynchronous adaptation can adaptively adjust the modulation and coding mode, resource allocation, etc. of the retransmitted data packet according to the channel quality, and can also obtain the scheduling gain. At the same time, asynchronous HARQ requires signaling overhead for each transmission, which enhances the reliability of transmission. For example, when the transmitting end receives an ACK/NACK (correct response/error response) feedback message incorrectly, because the information indicates whether it is new data during transmission, the receiving end can still know whether to retransmit data or new data, and each time The resource carries the resource assignment information to ensure that the receiver can receive at the correct location. However, since the uplink and downlink transmissions are independent of each other, it is currently impossible to combine asynchronous HARQ and synchronous non-adaptive HARQ for uplink transmission. SUMMARY OF THE INVENTION The present invention has been made in view of the inability in the prior art to implement the problem of using asynchronous HARQ and synchronous non-adaptive HARQ in combination for uplink transmission. To this end, the main object of the present invention is to provide an uplink hybrid automatic repeat request. The implementation mechanism is to perform uplink transmission in combination with asynchronous HARQ and synchronous non-adaptive HARQ. According to an aspect of the present invention, a method for implementing a square uplink hybrid automatic repeat request is provided, which is applied to a time division duplex orthogonal frequency division multiplexing system including a base station and a terminal. The method includes: the mobile station transmitting data to the base station by using a preset uplink synchronization hybrid automatic repeat request subframe and/or an uplink asynchronous hybrid automatic repeat request subframe. The method may further include: before the mobile station sends data to the base station by using an uplink synchronization hybrid automatic repeat request subframe and/or an asynchronous hybrid automatic repeat request subframe, the method further includes: the base station mixing the uplink synchronization automatic retransmission request subframe The information and/or the information of the asynchronous hybrid automatic repeat request subframe is notified to the mobile station, where the information of the uplink synchronous hybrid automatic repeat request subframe includes the number and location of the uplink synchronous hybrid automatic repeat request subframe, and the uplink asynchronous hybrid automatic The information of the retransmission request subframe includes the number and location of the uplink asynchronous hybrid automatic repeat request subframe. And, in the case that the information of the uplink synchronization hybrid automatic repeat request subframe and/or the information of the asynchronous hybrid automatic repeat request subframe change, the base station changes the information of the changed uplink synchronization hybrid automatic repeat request subframe. And/or the information of the asynchronous hybrid automatic repeat request subframe is notified to the mobile station, where the manner of notification includes any one of broadcast, multicast, unicast or a combination thereof. The mobile station selects a subframe of the synchronous hybrid automatic retransmission in the predetermined maximum synchronous hybrid automatic retransmission area, where the maximum synchronous hybrid automatic retransmission area is such that the retransmission interval of the hybrid automatic retransmission is the maximum of one radio frame. The sub-frame area, wherein the data sent on each sub-frame can be re-transmitted at the corresponding position of the next radio frame, while allowing the processing of the isochronous condition. Furthermore, in the case that the mobile station transmits data to the base station by using the uplink synchronization hybrid automatic repeat request subframe, the method further includes: the base station replies to the mobile station with the uplink synchronization hybrid automatic repeat request subframe by using the downlink subframe. Reply message. The response message and the uplink synchronization hybrid automatic repeat request subframe are separated by at least 2 subframes. In addition, in the case that the response message is an error response message, the method may further include: the mobile station retransmitting the uplink synchronization hybrid automatic retransmission in a corresponding position of the next radio frame of the radio frame in which the uplink synchronization hybrid automatic repeat request subframe is located. Request data. And, the response message and the retransmitted uplink synchronization hybrid automatic retransmission request data have a subframe interval of at least 2 subframes. Preferably, the mobile station transmits data to the base station by using an uplink synchronization hybrid automatic repeat request subframe. The method may further include: the mobile station transmitting data to the base station by using a synchronous hybrid automatic repeat request process of the radio frame, where the synchronous hybrid automatic repeat request process includes an uplink synchronous hybrid automatic repeat request subframe, or A plurality of consecutive or discontinuous uplink synchronous hybrid automatic repeat request subframes are included. On the other hand, in a case where the mobile station sends data to the base station through the uplink asynchronous hybrid automatic repeat request subframe, the method may further include: the base station replies to the mobile station with the uplink asynchronous hybrid automatic repeat request subframe by using the downlink subframe. Reply message. The response message is separated from the uplink asynchronous hybrid automatic repeat request subframe by at least 2 subframes. Moreover, in the case that the response message is an error response message, the method may further include: the mobile station retransmitting the uplink asynchronous hybrid automatic repeat request data in a subsequent radio frame of the radio frame in which the uplink asynchronous hybrid automatic repeat request subframe is located. The subframe between the response message and the retransmitted uplink asynchronous hybrid automatic retransmission request data is at least 2 subframes. In addition, in a case that the mobile station sends data to the base station through the uplink asynchronous hybrid automatic repeat request subframe, the method may further include: the mobile station sends data to the base station by using an asynchronous hybrid automatic repeat request process of the wireless frame, where, the asynchronous The hybrid automatic repeat request process includes an uplink asynchronous hybrid automatic repeat request subframe or a plurality of consecutive or discontinuous uplink asynchronous hybrid automatic repeat request subframes. In addition, in the case that the retransmission interval is less than or equal to one radio frame length, the mobile station transmits data to the base station through the uplink synchronization hybrid automatic retransmission request subframe; when the retransmission interval is greater than one radio frame length, The mobile station transmits data to the base station through the uplink asynchronous hybrid automatic repeat request subframe. Moreover, the uplink synchronous hybrid automatic repeat request subframe is an uplink subframe of the synchronous non-adaptive hybrid automatic repeat request mode; the uplink asynchronous hybrid automatic repeat request subframe is an uplink of the asynchronous non-adaptive hybrid automatic repeat request mode. frame. According to another aspect of the present invention, an implementation system for an uplink hybrid automatic repeat request is provided. The system includes: a mobile station, configured to send data to the base station by using an uplink synchronization hybrid automatic repeat request subframe and/or an uplink asynchronous hybrid automatic repeat request subframe of the radio frame; and a base station, configured to: The response information is returned to the mobile station through the downlink subframe of the radio frame. By means of at least one of the above technical solutions, the present invention is capable of maintaining a fixed RTT, reducing system overhead, maintaining a short RTT, and also supporting flexible scheduling. BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are set to illustrate,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, In the drawings: FIG. 1 is a flowchart of a method for implementing an uplink hybrid automatic repeat request according to an embodiment of the method of the present invention; FIG. 2 is a schematic structural diagram of a radio frame of a TDD-OFDMA system according to the related art; A schematic diagram of a HARQ mechanism in which the DL/UL is 6:2 according to an embodiment of the present invention; FIG. 4 is a schematic diagram of a HARQ mechanism in which the DL/UL is 4:4 according to an embodiment of the present invention; 5 is a schematic diagram of another HARQ mechanism in which DL/UL is 4:4 according to an embodiment of the present invention; FIG. 6 is a HARQ mechanism according to an embodiment of the present invention in which DL/UL is 2:6. FIG. 7 is a schematic diagram of another HARQ mechanism in which DL/UL is 2:6 according to an embodiment of the present invention; FIG. 8 is a maximum synchronous HARQ when DL/UL is 3:5 according to an embodiment of the present invention. FIG. 9 is a schematic diagram of a maximum synchronous HARQ region when a DL/UL is 3:5 according to an embodiment of the present invention; FIG. 10 is a flowchart showing a preferred example of a hybrid automatic retransmission method according to an embodiment of the present invention; Figure 11 is a block diagram of an implementation system for a hybrid automatic repeat request in accordance with an embodiment of the present invention. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the technical solution provided by the embodiment of the present invention, the base station notifies the mobile station of the information of the preset uplink synchronization HARQ subframe and/or the information of the asynchronous HARQ subframe, so that the mobile station can pass The received uplink synchronization HARQ subframe and/or the uplink asynchronous HARQ subframe sends data to the base station, where the information of the uplink synchronization HARQ subframe includes the number and location of the uplink synchronization HARQ subframe, and the uplink asynchronous HARQ subframe information includes the uplink asynchronous The number and location of HARQ subframes. Method Embodiment In the embodiment of the present invention, an implementation method of an uplink hybrid automatic repeat request (HARQ) is provided, which is applied to a time division duplex orthogonal frequency division multiplexing system including a base station and a terminal. The base station notifies the mobile station of the information of the uplink synchronization HARQ subframe and/or the information of the asynchronous hybrid automatic retransmission request subframe, where the information of the uplink synchronization HARQ subframe includes the number and location of the uplink synchronization HARQ subframe, and the uplink asynchronous hybrid automatic The information of the retransmission request subframe includes the number and location of the uplink asynchronous hybrid automatic repeat request subframe. The process flow shown in FIG. 1 is performed below. FIG. 1 is a flowchart showing an implementation method of an uplink hybrid automatic repeat request according to an embodiment of the present invention, and shows step S102 and step S104. Step S102: The mobile station sends data to the base station by using a preset uplink synchronization HARQ subframe and/or an uplink asynchronous HARQ subframe. The uplink synchronous HARQ subframe is in the maximum synchronous HARQ region, where the maximum synchronous HARQ region is an uplink subframe that satisfies the RTT requirement for a radio frame, where the uplink synchronous HARQ subframe is an uplink sub-frame of the synchronous non-adaptive HARQ mode. The uplink asynchronous HARQ subframe is an uplink subframe of the asynchronous non-adaptive HARQ mode. In a specific implementation process, the mobile station should select a subframe of synchronous hybrid automatic retransmission in the allowed maximum synchronous hybrid automatic retransmission area, where the maximum synchronous hybrid automatic retransmission area is a retransmission interval for hybrid automatic retransmission. The largest sub-frame area of a radio frame, wherein the data transmitted on each sub-frame can be retransmitted at a corresponding position of the next radio frame, while allowing processing of the isochronous condition. In the case that the mobile station transmits data to the base station through the uplink synchronization HARQ subframe, the mobile station transmits data to the base station through the synchronous HARQ process of the radio frame, where the synchronous HARQ process includes one uplink synchronization HARQ subframe, or includes multiple consecutive or Discontinuous uplink synchronization HARQ subframes. That is, the mobile station may transmit data to the base station through one synchronous HARQ uplink subframe of the radio frame; or may transmit data to the base station through multiple synchronous HARQ uplink subframes of the radio frame by multiple mobile stations. When the information of the uplink synchronization HARQ subframe changes, the base station notifies the mobile station of the changed uplink synchronization HARQ subframe, wherein the notification manner includes any one of broadcast, multicast, and unicast. Kind or a combination thereof. When the mobile station transmits data to the base station through the uplink asynchronous HARQ subframe, the base station returns a response message of the uplink asynchronous HARQ subframe to the mobile station through the downlink subframe. The response message is separated from the uplink asynchronous HARQ subframe by at least 2 subframes. In the case that the response message is NACK, the mobile station retransmits the uplink asynchronous HARQ data in the subsequent radio frame of the radio frame in which the uplink asynchronous HARQ subframe is located. The response message is separated from the retransmitted uplink asynchronous HARQ data by at least 2 subframes. In addition, the mobile station transmits data to the base station through an asynchronous HARQ process of the radio frame, where the asynchronous HARQ process includes one uplink asynchronous HARQ subframe or multiple consecutive or discontinuous uplink asynchronous HARQ subframes. In addition, when the retransmission interval is less than or equal to one radio frame length, the mobile station transmits data to the base station through the uplink synchronization HARQ subframe; when the retransmission interval is greater than one radio frame length, the mobile station passes the uplink. The asynchronous HARQ subframe transmits data to the base station, and the asynchronous HARQ subframe or all the asynchronous HARQ subframes may be partially used. Step S104: The base station replies with a response message to the data sent by the mobile station. Specifically, in a case where the mobile station transmits data to the base station through the uplink synchronization HARQ subframe, the base station returns a response message of the uplink synchronization HARQ subframe to the mobile station through the downlink subframe, where the response message and the uplink synchronization HARQ subframe interval At least 2 subframes, if the response message is NACK, the mobile station retransmits the uplink synchronization HARQ data at the corresponding location of the next radio frame of the radio frame in which the uplink synchronization HARQ subframe is located. As can be seen from the above description, the downlink subframe transmission data capable of using the synchronous non-adaptive HARQ mode can maintain a fixed RTT, thereby reducing system overhead. The hybrid automatic retransmission method of the present invention will be described in detail below in conjunction with different uplink and downlink transmission ratios of radio frames. 2 shows a radio frame structure of a TDD OFDM system according to the related art. As shown in FIG. 2, one radio frame includes 8 subframes, that is, SF0 to SF7. Embodiment 1 Based on the frame structure shown in FIG. 2, the schemes a to d in FIG. 3 are schematic diagrams of a HARQ mechanism in which the UL/DL is 2:6 according to an embodiment of the present invention. As shown in FIG. 3, in the scheme a, in one radio frame, there are two uplink subframes and six downlink subframes, and each frame has a pair of uplink and downlink handover points, wherein the maximum synchronization HARQ region is as shown in the scheme. a is shown. In scheme b, two of the uplink subframes SF0 and SF1 can adopt the synchronous non-adaptive HARQ mode. The specific synchronous HARQ process is as shown in the scheme c and the scheme d of FIG. 3, and the RTT is the length of one radio frame, that is, the duration of eight TTIs. Embodiment 2 The schemes a to b of FIG. 4 are schematic diagrams of a HARQ mechanism in which the DL/UL is 4:4 according to an embodiment of the present invention. As shown in FIG. 4, in scheme a, in one radio frame, there are 4 downlink subframes, 4 uplink subframes, and each pair has uplink and downlink switching points, and the maximum synchronous HARQ region has 4 downlink sub-frames. frame. In the scheme b, the four downlink subframes adopt the synchronous non-adaptive HARQ mode, and the RTT is the length of one radio frame, that is, the length of eight TTIs. The four synchronous HARQ processes are as shown in scenario 4, scheme e, and scheme f in FIG. Embodiment 3 FIG. 5 is a schematic diagram of another HARQ mechanism in which DL/UL is 4:4 according to an embodiment of the present invention. As shown in FIG. 5, in scheme b, an uplink subframe SF0 and an uplink subframe SF1釆The asynchronous HARQ mechanism is used, and the uplink subframe SF2 and the uplink subframe SF3 use the synchronous HARQ mechanism. The two methods of synchronizing the HARQ process may use the scheme c and the scheme d in FIG. 5, and the RTT is a radio frame length. Here, when the maximum synchronous HARQ region includes all uplink subframes, that is, any uplink subframe can satisfy the synchronization non-adaptive HARQ timing requirement, all uplink subframes can be synchronized or non-adaptive HARQ mechanisms, or partially The choice is asynchronous adaptive HARQ mode to reflect the flexibility of asynchronous adaptive HARQ. Specifically, the system can select a synchronous HARQ subframe according to requirements. Embodiment 4 FIG. 6 is a schematic diagram of a HARQ mechanism with a UL/DL of 6:2 according to an embodiment of the present invention. As shown in FIG. 6, in scheme a, in one radio frame, the downlink subframe is six. There are two uplink subframes, one pair of uplink and downlink switching points in each frame, and the maximum synchronous HARQ area is 4 subframes. In scheme d, the uplink subframes SF2, SF3, and SF4 use a synchronous non-adaptive HARQ mechanism, and the subframes SF0, SF1, and SF5 employ an asynchronous adaptive HARQ mechanism. The subframes SF2, SF3, and SF4 are respectively referred to as synchronous HARQ processes 1, 2, and 3; the subframes SF2, SF3, and SF4 are respectively asynchronous HARQ areas i or whose processes are not specified. For different users, the selected sync area can be the same or different. For example, user 1 selects subframe SF2 as a synchronous non-adaptive HARQ region, and user 2 selects SF3 as a synchronous non-adaptive HARQ region, and this allocation is negotiated with the mobile station at the base capability negotiation. The user's synchronous HARQ data is transmitted in a synchronous HARQ subframe, and the asynchronous adaptive HARQ data is transmitted in an asynchronous HARQ region. The base station may change the number of subframes and the subframe number as the synchronous non-adaptive HARQ according to the service condition, and the base station notifies the base station by using a broadcast, multicast, or unicast message, and all the subframes of the synchronous non-adaptive HARQ must be given in the system. The maximum synchronization is within the non-adaptive HARQ region. Embodiment 5 FIG. 7 is a schematic diagram of another HARQ mechanism with a UL/DL of 6:2 according to an embodiment of the present invention. As shown in FIG. 7, in scheme a, in a radio frame, an uplink subframe is Six, the downlink subframe is two, each frame has a pair of uplink and downlink switching points, and the maximum synchronous HARQ area is 4 subframes. In the scheme d, the base station issues an uplink subframe number that can perform synchronous non-adaptive HARQ in the broadcast information, and the mobile station can send data to the base station through the subframes, and the HARQ mode is the synchronous non-adaptive mode. The data transmitted by the mobile station outside the synchronous non-adaptive HARQ area is the asynchronous adaptive mode. The subframes SF2 and SF3 may be combined into one HARQ process, which is a synchronous non-adaptive HARQ process 1, such as scheme c; and the subframe SF4 is a synchronous non-adaptive HARQ process 2, such as scheme d. The subframes SF0, SF1, and SF5 are asynchronous adaptive HARQ modes, where SF0 and SF1 can be combined into one process, that is, asynchronous adaptive HARQ process 1, and subframe SF5 is asynchronous adaptive HARQ process 2. Multiple subframes using the same HARQ mode can be freely combined to form a process to accommodate large traffic demands, further reducing system overhead. When the mobile station performs basic capability negotiation with the base station, the uplink subframes SF2, SF3, and SF4 are selected to use the synchronous non-adaptive HARQ mechanism, and the subframes SF0, SF1, and SF5 use the asynchronous adaptive HARQ mechanism. The base station may change the number of subframes and the subframe number as the synchronous non-adaptive HARQ according to the service condition, and notify all mobile stations or corresponding mobile stations by using a broadcast message. Embodiment 6 FIG. 8 is a schematic diagram of a maximum synchronous HARQ region when the UL/DL is 3:5 according to an embodiment of the present invention, and FIG. 9 is a maximum synchronization when the UL/DL is 5:3 according to an embodiment of the present invention. The schematic diagram of the HARQ area, the processing procedure corresponding to FIG. 8 and FIG. 9 is similar to the processing procedure corresponding to FIG. 5, FIG. 6, and FIG. 7, and will not be repeated here. Based on the above description, FIG. 10 shows a preferred embodiment of a hybrid automatic retransmission method according to an embodiment of the present invention. As shown in FIG. 10, the processing flow of the hybrid automatic retransmission method of the preferred embodiment includes the following steps (steps S1002 - step S1004): Step S1002: The mobile station transmits data to the base station by using a synchronous HARQ uplink subframe and an asynchronous HARQ uplink subframe of the radio frame, where the synchronous HARQ uplink subframe is an uplink using the synchronous non-adaptive HARQ mode. The subframe, the asynchronous HARQ uplink subframe is an uplink subframe that uses the asynchronous adaptive HARQ mode; in step S1004, the base station returns the response information of the synchronous HARQ uplink subframe and the asynchronous HARQ uplink subframe to the base station by using the downlink subframe of the radio frame, where The downlink subframe of the reply response message is separated from the synchronous HARQ uplink subframe and the asynchronous HARQ uplink subframe by at least 2 subframes. System Embodiment In this embodiment, an implementation system of uplink HARQ is provided. 11 is a block diagram of an implementation system of uplink HARQ according to the present embodiment. As shown in FIG. 11, the implementation system of the uplink HARQ includes a mobile station 1 and a base station 3.
移动台 移动台 1 ,用于通过无线帧的上行同步 HARQ子帧和 /或上行异步 HARQ 子帧向基站发送数据。 优选地, 该移动台 1可以包括构造单元 11 , 用于构造 无线帧, 将无线帧构造为包括同步 HARQ上行子帧; 以及发送单元 13 , 连 接至构造单元 11 , 用于通过同步 HARQ上行子帧发送数据。 优选地, 移动 台 1还可以包括: 接收单元 15 , 用于接收来自基站的应答消息, 这里的应答 消息可以是 ACK或 NACK; 重传单元 17 , 连接至接收单元 15 , 用于在应答 消息为 NACK的情况下, 在下一个无线帧相同的位置重传同步 HARQ数据, 或后续无线帧的重新传送异步数据。 基站 The mobile station mobile station 1 is configured to transmit data to the base station through an uplink synchronization HARQ subframe and/or an uplink asynchronous HARQ subframe of the radio frame. Preferably, the mobile station 1 may comprise a construction unit 11 for constructing a radio frame, the radio frame being configured to include a synchronous HARQ uplink subframe, and a transmitting unit 13 connected to the construction unit 11 for synchronizing the HARQ uplink subframe send data. Preferably, the mobile station 1 may further include: a receiving unit 15 configured to receive a response message from the base station, where the response message may be an ACK or a NACK; and a retransmission unit 17 connected to the receiving unit 15 for responding to the message In the case of NACK, synchronous HARQ data is retransmitted at the same location of the next radio frame, or asynchronous data is retransmitted by subsequent radio frames. Base station
基站 2, 与移动台 1进行通信, 用于通过无线帧的下行子帧向移动台回 复应答信息。 优选地, 基站 2可以包括: 接收单元 21 , 用于接收来自移动台 1的无线帧; 以及应答单元 23 , 连接至接收单元 21 , 用于通过下行子帧向移 动台回复同步 HARQ上行子帧的应答信息,回复应答信息的下行子帧与同步 HARQ 上行子帧至少间隔 2 个子帧, 并且回复应答信息的下行子帧与异步 HARQ上行子帧的重传子帧至少间隔 2个子帧。 优选地, 基站 20还包括: 构造单元 25 , 用于构造无线帧, 将无线帧构造为包括同步 HARQ上行子帧 和异步 HARQ子帧。 优选地, 根据本发明实施例的上行 HARQ的实现系统还包括: 同步子 帧和异步子帧通知单元,用于基站预先通知移动台同步 HARQ上行子帧的信 息以及异步 HARQ上行子帧的信息, 其中, 同步 HARQ上行子帧的信息包 括同步 HARQ上行子帧的数量以及位置; 异步 HARQ上行子帧的信息包括 异步 HARQ上行子帧的数量以及位置。 通过本发明的上述技术方案, 可以实现如下技术效果:  The base station 2 communicates with the mobile station 1 for replying the response information to the mobile station through the downlink subframe of the radio frame. Preferably, the base station 2 may include: a receiving unit 21, configured to receive a radio frame from the mobile station 1; and a response unit 23 connected to the receiving unit 21, for returning the synchronous HARQ uplink subframe to the mobile station by using the downlink subframe The response information, the downlink subframe of the reply response information is separated from the synchronous HARQ uplink subframe by at least 2 subframes, and the downlink subframe of the reply acknowledgement information and the retransmission subframe of the asynchronous HARQ uplink subframe are separated by at least 2 subframes. Preferably, the base station 20 further includes: a constructing unit 25, configured to construct a radio frame, and configure the radio frame to include a synchronous HARQ uplink subframe and an asynchronous HARQ subframe. Preferably, the implementation system of the uplink HARQ according to the embodiment of the present invention further includes: a synchronization subframe and an asynchronous subframe notification unit, configured to notify the mobile station to synchronize the information of the HARQ uplink subframe and the information of the asynchronous HARQ uplink subframe in advance, The information of the synchronous HARQ uplink subframe includes the number and location of the synchronous HARQ uplink subframes. The information of the asynchronous HARQ uplink subframe includes the number and location of the asynchronous HARQ uplink subframes. With the above technical solution of the present invention, the following technical effects can be achieved:
( 1 ) 利用同步非自适应 HARQ开销小、 处理简单以及 RTT 固定的优 点, 减小了系统开销; (1) Utilizing the advantages of synchronous non-adaptive HARQ, low processing, simple processing, and fixed RTT, the system overhead is reduced;
( 2 ) 利用异步自适应 HARQ的调度灵活性, 避免了紧急业务的冲突; (2) Using the scheduling flexibility of asynchronous adaptive HARQ to avoid conflicts of emergency services;
( 3 )利用异步自适应 HARQ的高的传输效率特点,降低 HARQ的 RTT 和重传次数。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 或 者将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制 作成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软 件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变^^ 凡在本发明的^^申和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。 (3) Using the high transmission efficiency characteristics of asynchronous adaptive HARQ, the RTT and retransmission times of HARQ are reduced. Obviously, those skilled in the art should understand that the above modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device, or they may be separately fabricated into individual integrated circuit modules, or they may be Multiple modules or steps are made into a single integrated circuit module. Thus, the invention is not limited to any particular combination of hardware and software. The above is only the preferred embodiment of the present invention, and is not intended to limit the present invention. For those skilled in the art, the present invention can be variously modified and modified. Any modifications, equivalent substitutions, improvements, etc. made therein are intended to be included within the scope of the present invention.

Claims

权 利 要 求 书 Claim
1. 一种上行混合自动重传请求的实现方法, 应用于包含基站和移动台的时 分双工正交频分多路复用系统, 其特征在于, 所述方法包括: 移动台通过预设的上行同步混合自动重传请求子帧和 /或上行异步 混合自动重传请求子帧向基站发送数据。 An implementation method for an uplink hybrid automatic repeat request, which is applied to a time division duplex orthogonal frequency division multiplexing system including a base station and a mobile station, wherein the method includes: the mobile station adopts a preset The uplink synchronous hybrid automatic repeat request subframe and/or the uplink asynchronous hybrid automatic repeat request subframe transmit data to the base station.
2. 根据权利要求 1所述的方法, 其特征在于, 在所述移动台通过所述上行 同步混合自动重传请求子帧和 /或所述异步混合自动重传请求子帧向所 述基站发送所述数据之前, 还包括: 2. The method according to claim 1, wherein the mobile station transmits to the base station by using the uplink synchronization hybrid automatic repeat request subframe and/or the asynchronous hybrid automatic repeat request subframe. Before the data, it also includes:
所述基站将所述上行同步混合自动重传请求子帧的信息和 /或所述 异步混合自动重传请求子帧的信息通知所述移动台, 其中, 所述上行同 步混合自动重传请求子帧的信息包括所述上行同步混合自动重传请求子 帧的数量及位置, 所述上行异步混合自动重传请求子帧的信息包括所述 上行异步混合自动重传请求子帧的数量及位置。  Notifying the mobile station of the information of the uplink synchronization hybrid automatic repeat request subframe and/or the information of the asynchronous hybrid automatic repeat request subframe, where the uplink synchronization hybrid automatic repeat requester The information of the frame includes the number and location of the uplink synchronous hybrid automatic repeat request subframe, and the information of the uplink asynchronous hybrid automatic repeat request subframe includes the number and location of the uplink asynchronous hybrid automatic repeat request subframe.
3. 根据权利要求 2所述的方法, 其特征在于, 在所述上行同步混合自动重 传请求子帧的信息和 /或上述异步混合自动重传请求子帧的信息发生变 化的情况下, 所述基站将变化后的上行同步混合自动重传请求子帧的信 息和 /或异步混合自动重传请求子帧的信息通知给所示移动台, 其中, 通 知的方式包括通过广播、 多播、 单播中的任一种或其组合。 The method according to claim 2, wherein, in the case that the information of the uplink synchronization hybrid automatic repeat request subframe and/or the information of the asynchronous hybrid automatic repeat request subframe changes, The base station notifies the mobile station of the information of the changed uplink synchronization hybrid automatic repeat request subframe and/or the information of the asynchronous hybrid automatic repeat request subframe, wherein the manner of notification includes: broadcasting, multicast, and single Any one of the broadcasts or a combination thereof.
4. 根据权利要求 2所述的方法, 其特征在于, 所述移动台在预定的最大同 步混合自动重传区域内选择所述同步混合自动重传的子帧, 其中, 所述 最大同步混合自动重传区域为使混合自动重传的重传间隔为一个无线帧 的最大的子帧区域, 其中, 每个子帧上发送的数据都能够在处理等时延 条件允许下, 在下一个无线帧的相应的位置上进行重新发送。 The method according to claim 2, wherein the mobile station selects the subframe of the synchronous hybrid automatic retransmission in a predetermined maximum synchronous hybrid automatic retransmission area, where the maximum synchronization hybrid automatic The retransmission area is such that the retransmission interval of the hybrid automatic retransmission is the largest subframe area of one radio frame, wherein the data transmitted in each sub-frame can be corresponding to the processing of the isochronous condition, and the corresponding in the next radio frame. Resend at the location.
5. 根据权利要求 1所述的方法, 其特征在于, 在所述移动台通过所述上行 同步混合自动重传请求子帧向所述基站发送所述数据的情况下, 所述方 法还包括: The method according to claim 1, wherein, in the case that the mobile station sends the data to the base station by using the uplink synchronization hybrid automatic repeat request subframe, the method further includes:
所述基站在所述通过下行子帧向所述移动台回复所述上行同步混 合自动重传请求子帧的应答消息。 And transmitting, by the base station, a response message of the uplink synchronization hybrid automatic repeat request subframe to the mobile station by using a downlink subframe.
6. 根据权利要求 5所述的方法, 其特征在于, 所述应答消息与所述上行同 步混合自动重传请求子帧间隔至少 2个子帧。 The method according to claim 5, wherein the response message is separated from the uplink synchronization automatic repeat request subframe by at least 2 subframes.
7. 根据权利要求 5所述的方法, 其特征在于, 在所述应答消息为错误应答 消息的情况下, 所述方法还包括: The method according to claim 5, wherein, in the case that the response message is an error response message, the method further includes:
所述移动台在所述上行同步混合自动重传请求子帧所在无线帧的 下一个无线帧的相应位置重传所述上行同步混合自动重传请求数据; 其中,所述应答消息与重传的所述上行同步混合自动重传请求数据 的子帧间隔至少 2个子帧。  The mobile station retransmits the uplink synchronization hybrid automatic repeat request data at a corresponding position of a next radio frame of the radio frame in which the uplink synchronization hybrid automatic repeat request subframe is located; wherein the response message and the retransmission The subframe of the uplink synchronization hybrid automatic repeat request data is separated by at least 2 subframes.
8. 根据权利要求 5所述的方法, 其特征在于, 在所述移动台通过所述上行 同步混合自动重传请求子帧向所述基站发送所述数据的情况下, 所述方 法还包括: The method according to claim 5, wherein, in a case that the mobile station sends the data to the base station by using the uplink synchronization hybrid automatic repeat request subframe, the method further includes:
所述移动台通过无线帧的同步混合自动重传请求进程向所述基站 发送所述数据, 其中, 所述同步混合自动重传请求进程包括一个上行同 步混合自动重传请求子帧、 或者包括多个连续或不连续的上行同步混合 自动重传请求子帧。  The mobile station sends the data to the base station by using a synchronous hybrid automatic repeat request process of a radio frame, where the synchronous hybrid automatic repeat request process includes an uplink synchronous hybrid automatic repeat request subframe, or includes multiple A continuous or discontinuous uplink synchronization hybrid automatic repeat request subframe.
9. 根据权利要求 1所述的方法, 其特征在于, 在所述移动台通过所述上行 异步混合自动重传请求子帧向所述基站发送所述数据的情况下, 所述方 法还包括: The method according to claim 1, wherein, in a case that the mobile station sends the data to the base station by using the uplink asynchronous hybrid automatic repeat request subframe, the method further includes:
所述基站在所述通过下行子帧向所述移动台回复所述上行异步混 合自动重传请求子帧的应答消息。  And transmitting, by the base station, a response message of the uplink asynchronous hybrid automatic repeat request subframe to the mobile station by using a downlink subframe.
10. 根据权利要求 9所述的方法, 其特征在于, 所述应答消息与所述上行异 步混合自动重传请求子帧间隔至少 2个子帧。 The method according to claim 9, wherein the response message is separated from the uplink asynchronous hybrid automatic repeat request subframe by at least 2 subframes.
11. 根据权利要求 9所述的方法, 其特征在于, 在所述应答消息为错误应答 消息的情况下, 所述方法还包括: The method according to claim 9, wherein, in the case that the response message is an error response message, the method further includes:
所述移动台在所述上行异步混合自动重传请求子帧所在无线帧后 续的无线帧中重传所述上行异步混合自动重传请求数据;  And the mobile station retransmits the uplink asynchronous hybrid automatic repeat request data in a subsequent radio frame of the radio frame in which the uplink asynchronous hybrid automatic repeat request subframe is located;
其中,所述应答消息与重传的所述上行异步混合自动重传请求数据 的子帧间隔至少 2个子帧。 The response message is separated from the retransmitted subframe of the uplink asynchronous hybrid automatic retransmission request data by at least 2 subframes.
12. 才艮据权利要求 9所述的方法, 其特征在于, 在所述移动台通过所述上行 异步混合自动重传请求子帧向所述基站发送所述数据的情况下, 所述方 法还包括: 12. The method according to claim 9, wherein in the case that the mobile station transmits the data to the base station by using the uplink asynchronous hybrid automatic repeat request subframe, the method further Includes:
所述移动台通过无线帧的异步混合自动重传请求进程向所述基站 发送所述数据, 其中, 所述异步混合自动重传请求进程包括一个上行异 步混合自动重传请求子帧、 或者包括多个连续或不连续的上行异步混合 自动重传请求子帧。  The mobile station sends the data to the base station by using an asynchronous hybrid automatic repeat request process of the radio frame, where the asynchronous hybrid automatic repeat request process includes an uplink asynchronous hybrid automatic repeat request subframe, or includes multiple A continuous or discontinuous uplink asynchronous hybrid automatic repeat request subframe.
13. 根据权利要求 1至 12中任一项所述的方法, 其特征在于, 在重传间隔小 于或等于一个无线帧长度的情况下, 所述移动台通过所述上行同步混合 自动重传请求子帧向所述基站发送数据; 在重传间隔大于一个无线帧长 度的情况下, 所述移动台通过所述上行异步混合自动重传请求子帧向所 述基站发送数据。 The method according to any one of claims 1 to 12, wherein, when the retransmission interval is less than or equal to a radio frame length, the mobile station transmits an automatic retransmission request by using the uplink synchronization hybrid The subframe transmits data to the base station; when the retransmission interval is greater than one radio frame length, the mobile station transmits data to the base station by using the uplink asynchronous hybrid automatic repeat request subframe.
14. 根据权利要求 1至 12中任一项所述的方法, 其特征在于, 所述上行同步 混合自动重传请求子帧为同步非自适应混合自动重传请求模式的上行子 帧; 所述上行异步混合自动重传请求子帧为异步非自适应混合自动重传 请求模式的上行子帧。 The method according to any one of claims 1 to 12, wherein the uplink synchronization hybrid automatic repeat request subframe is an uplink subframe of a synchronous non-adaptive hybrid automatic repeat request mode; The uplink asynchronous hybrid automatic repeat request subframe is an uplink subframe of the asynchronous non-adaptive hybrid automatic repeat request mode.
15. 一种上行混合自动重传请求的实现系统, 其特征在于, 包括: An implementation system for an uplink hybrid automatic repeat request, which is characterized by comprising:
移动台, 用于通过无线帧的上行同步混合自动重传请求子帧和 /或 上行异步混合自动重传请求子帧向基站发送数据; 以及  a mobile station, configured to send data to the base station by using an uplink synchronization hybrid automatic repeat request subframe and/or an uplink asynchronous hybrid automatic repeat request subframe of the radio frame;
基站, 用于通过无线帧的下行子帧向所述移动台回复应答信息。  And a base station, configured to reply the response information to the mobile station by using a downlink subframe of the radio frame.
PCT/CN2008/073526 2008-06-19 2008-12-16 A method and a system for implementing the uplink hybrid automatic retransmission request WO2009152673A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810127117.0 2008-06-19
CN 200810127117 CN101610138B (en) 2008-06-19 2008-06-19 Method and system for realizing uplink hybrid automatic repeat requests

Publications (1)

Publication Number Publication Date
WO2009152673A1 true WO2009152673A1 (en) 2009-12-23

Family

ID=41433658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/073526 WO2009152673A1 (en) 2008-06-19 2008-12-16 A method and a system for implementing the uplink hybrid automatic retransmission request

Country Status (2)

Country Link
CN (1) CN101610138B (en)
WO (1) WO2009152673A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109962758A (en) * 2017-12-25 2019-07-02 中国移动通信有限公司研究院 A kind of transfer control method and equipment of data packet

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102377546B (en) * 2010-08-10 2016-09-07 中兴通讯股份有限公司 The ascending HARQ course recognition methods of a kind of repeated link and device
CN105429738A (en) * 2011-04-01 2016-03-23 华为技术有限公司 Data transmission method, device and system
CN102752862B (en) * 2011-04-20 2015-09-09 华为技术有限公司 The method of up-downgoing data traffic transmission, base station and subscriber equipment
CN102916792B (en) * 2012-10-12 2015-08-26 北京创毅讯联科技股份有限公司 Data transmission method and subscriber equipment
AR103887A1 (en) * 2015-03-09 2017-06-14 ERICSSON TELEFON AB L M (publ) BRIEF PUCCH CHANNEL IN SPUCCH CHANNEL OF ASCENDING LINK

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070113138A1 (en) * 2005-10-21 2007-05-17 Samsung Electronics Co., Ltd. Apparatus and method for transmitting and receiving packet data using HARQ in a mobile communication system
CN1981473A (en) * 2004-05-05 2007-06-13 高通股份有限公司 Method and apparatus for overhead reduction in an enhanced uplink in a wireless communication system
CN101132262A (en) * 2006-08-21 2008-02-27 大唐移动通信设备有限公司 Method for implementing synchronous HARQ in TDD system and data transmission

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1981473A (en) * 2004-05-05 2007-06-13 高通股份有限公司 Method and apparatus for overhead reduction in an enhanced uplink in a wireless communication system
US20070113138A1 (en) * 2005-10-21 2007-05-17 Samsung Electronics Co., Ltd. Apparatus and method for transmitting and receiving packet data using HARQ in a mobile communication system
CN101132262A (en) * 2006-08-21 2008-02-27 大唐移动通信设备有限公司 Method for implementing synchronous HARQ in TDD system and data transmission

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109962758A (en) * 2017-12-25 2019-07-02 中国移动通信有限公司研究院 A kind of transfer control method and equipment of data packet

Also Published As

Publication number Publication date
CN101610138A (en) 2009-12-23
CN101610138B (en) 2013-01-16

Similar Documents

Publication Publication Date Title
EP2648356B1 (en) Method and arrangement in a mobile telecommunications network for HARQ with TTI bundling
US8321740B2 (en) Method and apparatus of handling TTI bundling
US8391311B2 (en) Method for transmitting VoIP packet
US9143282B2 (en) Uplink hybrid-ARQ mechanism for cooperative base stations
US9025573B2 (en) Introducing a delay in the transmission of a nack for a packet received employing coordinated multi-point transmission
WO2010075706A1 (en) Method and device for implementing hybrid automatic retransmission request (harq) based on time division duplex (tdd) system
US8352822B2 (en) Method and arrangement relating to communications network
JP5600060B2 (en) Communication method and apparatus for controlling data transmission and retransmission of mobile station at base station
WO2013143453A1 (en) Hybrid automatic repeat request transmission method, device and system
WO2013044880A1 (en) Data transmission method and device
WO2009152673A1 (en) A method and a system for implementing the uplink hybrid automatic retransmission request
WO2012065525A1 (en) Transmission method and device for hybrid automatic repeat request
KR20100134024A (en) Method for performing a harq in a radio communication system
EP2692071A1 (en) Cooperative transmission
WO2009140862A1 (en) Base station for networked or cooperated mimo system and the harq method thereof
KR20090017398A (en) Method of transmitting data using harq
KR101201046B1 (en) Method and Apparatus for retransmitting a control message in a mobile communication system
WO2009105990A1 (en) Uplink transmission / feedback method based on wireless communication time division duplex system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08874677

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08874677

Country of ref document: EP

Kind code of ref document: A1