WO2009151315A1 - Nutritional composition for infants delivered via caesarean section - Google Patents

Nutritional composition for infants delivered via caesarean section Download PDF

Info

Publication number
WO2009151315A1
WO2009151315A1 PCT/NL2008/050375 NL2008050375W WO2009151315A1 WO 2009151315 A1 WO2009151315 A1 WO 2009151315A1 NL 2008050375 W NL2008050375 W NL 2008050375W WO 2009151315 A1 WO2009151315 A1 WO 2009151315A1
Authority
WO
WIPO (PCT)
Prior art keywords
oligosaccharides
milk
lactic acid
producing bacteria
acid producing
Prior art date
Application number
PCT/NL2008/050375
Other languages
French (fr)
Inventor
Joachim Schmitt
Emmanuel Perrin
Bernd Stahl
Günther Boehm
Original Assignee
N.V. Nutricia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by N.V. Nutricia filed Critical N.V. Nutricia
Priority to PCT/NL2008/050375 priority Critical patent/WO2009151315A1/en
Priority to ARP090102156A priority patent/AR072141A1/en
Priority to ARP090102151A priority patent/AR078014A1/en
Priority to SI200931354T priority patent/SI2285387T1/en
Priority to PCT/NL2009/050332 priority patent/WO2009151330A1/en
Priority to CN200980131512.9A priority patent/CN102123715B/en
Priority to BRPI0915149-4A priority patent/BRPI0915149B1/en
Priority to ARP090102157A priority patent/AR072142A1/en
Priority to EP09762711.1A priority patent/EP2293677B1/en
Priority to EP17205129.4A priority patent/EP3326633A1/en
Priority to ES09762710.3T priority patent/ES2558960T3/en
Priority to PT97627103T priority patent/PT2285387E/en
Priority to ES09762711.1T priority patent/ES2656776T3/en
Priority to PCT/NL2009/050330 priority patent/WO2009151329A1/en
Priority to EP09762710.3A priority patent/EP2285387B1/en
Priority to PL09762710T priority patent/PL2285387T3/en
Priority to PCT/NL2009/050333 priority patent/WO2009151331A1/en
Priority to EP09762712A priority patent/EP2293803A1/en
Priority to PL09762711T priority patent/PL2293677T3/en
Priority to HUE09762710A priority patent/HUE028390T2/en
Priority to CN2009801222425A priority patent/CN102065867A/en
Priority to RU2011100828/15A priority patent/RU2543634C2/en
Priority to DK09762710.3T priority patent/DK2285387T3/en
Priority to US12/997,537 priority patent/US20110117077A1/en
Priority to US12/997,541 priority patent/US20110097437A1/en
Priority to CN200980131387.1A priority patent/CN102118976B/en
Priority to RU2011100829/10A priority patent/RU2498605C2/en
Priority to US12/997,527 priority patent/US20110182934A1/en
Publication of WO2009151315A1 publication Critical patent/WO2009151315A1/en
Priority to US14/952,440 priority patent/US20160206658A1/en
Priority to US15/278,475 priority patent/US20170173104A1/en
Priority to US15/406,361 priority patent/US10124016B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/702Oligosaccharides, i.e. having three to five saccharide radicals attached to each other by glycosidic linkages
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C21/00Whey; Whey preparations
    • A23C21/02Whey; Whey preparations containing, or treated with, microorganisms or enzymes
    • A23C21/026Whey; Whey preparations containing, or treated with, microorganisms or enzymes containing, or treated only with, lactic acid producing bacteria, bifidobacteria or propionic acid bacteria
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/12Fermented milk preparations; Treatment using microorganisms or enzymes
    • A23C9/123Fermented milk preparations; Treatment using microorganisms or enzymes using only microorganisms of the genus lactobacteriaceae; Yoghurt
    • A23C9/1234Fermented milk preparations; Treatment using microorganisms or enzymes using only microorganisms of the genus lactobacteriaceae; Yoghurt characterised by using a Lactobacillus sp. other than Lactobacillus Bulgaricus, including Bificlobacterium sp.
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/12Fermented milk preparations; Treatment using microorganisms or enzymes
    • A23C9/123Fermented milk preparations; Treatment using microorganisms or enzymes using only microorganisms of the genus lactobacteriaceae; Yoghurt
    • A23C9/1236Fermented milk preparations; Treatment using microorganisms or enzymes using only microorganisms of the genus lactobacteriaceae; Yoghurt using Leuconostoc, Pediococcus or Streptococcus sp. other than Streptococcus Thermophilus; Artificial sour buttermilk in general
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/30Foods or foodstuffs containing additives; Preparation or treatment thereof containing carbohydrate syrups; containing sugars; containing sugar alcohols, e.g. xylitol; containing starch hydrolysates, e.g. dextrin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/135Bacteria or derivatives thereof, e.g. probiotics
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/20Reducing nutritive value; Dietetic products with reduced nutritive value
    • A23L33/21Addition of substantially indigestible substances, e.g. dietary fibres
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/40Complete food formulations for specific consumer groups or specific purposes, e.g. infant formula
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • A61K35/741Probiotics
    • A61K35/744Lactic acid bacteria, e.g. enterococci, pediococci, lactococci, streptococci or leuconostocs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • A61K35/741Probiotics
    • A61K35/744Lactic acid bacteria, e.g. enterococci, pediococci, lactococci, streptococci or leuconostocs
    • A61K35/745Bifidobacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/12Antidiarrhoeals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Definitions

  • the present invention relates to methods for feeding of infants delivered via caesarean section and to compositions to be administered to infants delivered via caesarean section.
  • the intestinal tract of the infant Before birth the intestinal tract of the infant is normally sterile. During vaginal delivery the intestinal tract of the infant is inoculated with vaginal and/or faecal bacteria of the mother, resulting in a colonization of the infant's gastrointestinal tract by bacteria originating from the mother.
  • a maternal healthy intestinal microbiota has numerous positive effects on the infant, such as a reduced incidence of infections and a strengthened immune system.
  • the intestinal microbiota of caesarean delivered infants comprises less bacteria, less beneficial bacteria and less species of beneficial bacteria, compared to intestinal microbiota of infants born via the vaginal route.
  • the profile and content of lactic acid producing bacteria such as Bifidobacterium species of the microbiota of infants delivered via caesarean section is different from the intestinal profile and content of Bifidobacterium species of infants delivered via the vaginal route.
  • Infant formulae are normally designed to mimic the development of an intestinal microbiota in an infant receiving human breast milk, with the implication that all infants react similar to human breast milk and infant formula. However, the sub -population of infants delivered via caesarean section will react differently because the colonization is delayed and less optimal.
  • EP 1776877 discloses the use of at least two different microorganisms, or at least one microorganism and at least one indigestible oligosaccharide or at least two different Bifidobacterium species, subspecies or strains for the manufacture of a composition for enteral administration to an infant delivered via caesarean section.
  • WO 2007/046698 discloses the use of a composition comprising non-digestible oligosaccharide for the manufacture of a composition for enteral administration to an infant delivered via caesarean section.
  • Natren® produces the probiotic product Life Start® which is designed specifically for infants and suitable for infants delivered via caesarean section. Life Start® is made with Bifidobacterium infantis.
  • the inventors recognized that early exposure of the intestine of the newborn infant that was delivered by caesarean section, to a milk-derived product which has been fermented by lactic acid producing bacteria, induces an intestinal tolerance for these bacteria similar to that of vaginally born infants, enabling a fast colonisation of the intestine as in vaginally born infants.
  • the tolerance inducing effects of the fermented milk alone is insufficient to enable a sufficient intestinal colonisation.
  • the present composition comprises a mixture of oligosaccharides that efficiently improve the colonisation of the gut by lactic acid producing bacteria.
  • the intestinal microbiota plays a crucial role in the development of the infant, in particularly in the stimulation of the immune system, susceptibility for atopic diseases and resistance against infections, it is of utmost importance to stimulate a fast and healthy development of the intestinal microbiota of infants born via caesarean section.
  • Caesarean section delivered infants are delivered in a hospital environment, which is a risk for pathogenic infection and/or diarrhoea due to the occurrence of nosocomial bacteria.
  • the impaired development of a healthy intestinal microbiota results in faster colonisation of pathogenic bacteria compared to a situation where the infants intestinal tract is inoculated by maternal bacteria.
  • the present invention particularly aims to provide a composition which decreases the incidence and severity of infections and/or diarrhoea in infants born via caesarean section, by inducing tolerance of the infant's gut for beneficial bacteria, by stimulating the growth of beneficial bacteria, preferably lactic acid producing bacteria, and/or by decreasing the growth of adverse bacteria.
  • beneficial bacteria preferably lactic acid producing bacteria
  • the present composition can be advantageously used to treat and/or prevent infections in infants born via caesarean section.
  • Caesarean section delivered infants have an increased r isk in atopic diseases such as food allergy, asthma, atopic dermatitis, and/or allergic rhinitis.
  • the present invention particularly aims to provide a composition which decreases the incidence and severity of atopic diseases such as atopic eczema (or atopic dermatitis), allergy and/or asthma in infants born via caesarean section, by improving the intestinal colonization of beneficial bacteria.
  • the present invention can be advantageously used to treat and/or prevent allergy in infants born via caesarean section.
  • the milk-derived product which has been fermented by lactic acid producing bacteria comprises fragments of lactic acid producing bacteria or/and products excreted by lactic acid producing bacteria, such as glycoproteins, glycolipids, peptidoglycan, lipoteichoic acid (LTA), flagellae, lipoproteins, capsular polysaccharides and/or DNA.
  • LTA lipoteichoic acid
  • these immunogenic molecules induce the tolerance of the intestinal tract against colonisation with lactic acid producing bacteria.
  • Induction of tolerance against lactic acid producing bacteria in the intestinal tract results in a faster colonisation by the desired bacteria, while on the other hand the absence of living cells in the product results in an increased safety and improved product technological properties.
  • the safety advantage is especially important in case of caesarean section delivered infants, which are more vulnerable to infections.
  • the composition comprises at least two non-digestible oligosaccharides.
  • the presence of non-digestible oligosaccharides stimulates the growth of lactic acid producing bacteria, such as lactobacilli and/or bifidobacteria, reduces the growth of non beneficial bacteria in the gastrointestinal tract and/or directly advantageously stimulates the immune system. This results in a higher colonisation of the beneficial bacteria.
  • the presence of both non-digestible oligosaccharides and the milk-derived product obtained by fermentation with lactic acid producing bacteria acts synergistically and advantageously results in both a faster and a higher colonization with lactic acid producing bacteria, such as lactobacilli and/or bifidobacteria.
  • the presence of at least two different non-digestible oligosaccharides results in a microbiota that is more diverse in respect of different lactic acid producing bacteria species as is the case in vaginally born infants.
  • the presence of at least two different non-digestible oligosaccharides and the milk-derived product obtained by fermentation with lactic acid producing bacteria act synergistically and advantageously results in a faster, as well as a higher as well as a more diverse colonisation with lactic acid producing bacteria, especially with lactobacilli and/or bifidobacteria.
  • the present invention relates to a method for providing nutrition to an infant delivered via caesarean section, said method comprising administering to said infant a nutritional composition
  • a nutritional composition comprising a. a milk-derived product, said milk-derived product being a milk substrate that is fermented by lactic acid producing bacteria and said milk substrate comprising at least one selected from the group consisting of milk, whey, whey protein, whey protein hydro lysate, casein, casein hydro lysate and/or lactose, b. less than 10 3 cfu lactic acid producing bacteria per g dry weight of the composition, and c.
  • oligosaccharide selected from the group consisting of fructo- oligosaccharides, galacto-oligosaccharides, gluco -oligosaccharides, arabino- oligosaccharides, mannan-oligosaccharides, xylo -oligosaccharides, fuco-oligosaccharides, arabinogalacto-oligosaccharides, glucomanno-oligosaccharides, galactomanno- oligosaccharides, sialic acid comprising oligosaccharides and uronic acid oligosaccharides.
  • the present invention also concerns a nutritional composition comprising a.
  • milk-derived product being a milk substrate that is fermented by lactic acid producing bacteria and said milk substrate comprising at least one selected from the group consisting of milk, whey, whey protein, whey protein hydro lysate, casein, casein hydro lysate and/or lactose, b. less than 10 3 cfu lactic acid producing bacteria per g dry weight of the composition, and c.
  • oligosaccharide selected from the group consisting of fructo- oligosaccharides, galacto-oligosaccharides, gluco -oligosaccharides, arabino- oligosaccharides, mannan-oligosaccharides, xylo -oligosaccharides, fuco-oligosaccharides, arabinogalacto-oligosaccharides, glucomanno-oligosaccharides, galactomanno- oligosaccharides, sialic acid comprising oligosaccharides and uronic acid oligosaccharides.
  • the invention concerns the present nutritional composition for use in providing nutrition to an infant delivered via caesarean section.
  • the present invention concerns the use of a milk-derived product for the preparation of a nutritional composition, said composition comprising a) a milk-derived product, said milk-derived product being a milk substrate that is fermented by lactic acid producing bacteria and said milk sub strate comprising at least one selected from the group consisting of milk, whey, whey protein, whey protein hydrolysate, casein, casein hydrolysate and/or lactose, b) less than 10 3 cfu lactic acid producing bacteria per g dry weight of the composition, and c) at least two non-digestible oligosaccharide selected from the group consisting of fructo-oligosaccharides, galacto- oligosaccharides, gluco-oligosaccharides, arabino-oligosaccharides, mannan-oligosaccharides, xylo-oli
  • the present invention concerns a nutritional composition
  • a nutritional composition comprising a) a milk-derived product, said milk-derived product being a milk substrate that is fermented by lactic acid producing bacteria and said milk substrate comprising at least one selected from the group consisting of milk, whey , whey protein, whey protein hydrolysate, casein, casein hydrolysate and/or lactose, and b) less than 10 3 cfu lactic acid producing bacteria per g dry weight of the composition, for use in one selected from the group consisting of I) the (i) treatment and/or prevention of a disorder in infants delivered via caesarean section and/or (ii) the stimulation of health in infants delivered via caesarean section;
  • the present invention concerns the use of a milk-derived product for the preparation of a nutritional composition, said composition comprising a) a milk-derived product, said milk-derived product being a milk substrate that is fermented by lactic acid producing bacteria and said milk substrate comprising at least one selected from the group consisting of milk, whey, whey protein, whey protein hydrolysate, casein, casein hydrolysate and/or lactose, and b) less than 10 3 cfu lactic acid producing bacteria per g dry weight of the composition, for one selected from the group consisting of
  • the composition further comprises at least one non-digestible oligosaccharide selected from the group consisting of fructo- oligosaccharides, galacto-oligosaccharides, gluco-oligosaccharides, arabino-oligosaccharides, mannan-oligosaccharides, xylo-oligosaccharides, fuco -oligosaccharides, arabinogalacto- oligosaccharides, glucomanno-oligosaccharides, galactomanno -oligosaccharides, sialic acid comprising oligosaccharides and uronic acid oligosaccharides.
  • oligosaccharide selected from the group consisting of fructo- oligosaccharides, galacto-oligosaccharides, gluco-oligosaccharides, arabino-oligosaccharides, mannan-oligosaccharides, xylo-oligosaccharides
  • the non- digestible oligosaccharide is selected from the group consisting of galacto-oligosaccharides and fructo-oligosaccharides.
  • the composition comprises 0.5 to 75 g of non- digestible oligosaccharide per 100 g dry weight of the composition
  • 'milk substrate' also denoted as 'aqueous substrate' or simply 'substrate' is the material that is subjected to fermentation by lactic acid producing bacteria.
  • the term 'milk-derived product' is the product that results from the fermentation of substrate by lactic acid producing bacteria and is also denoted as 'fermented product'.
  • the present invention relates to the enteral administration of a composition comprising a milk-derived product obtainable by fermentation of a milk substrate by lactic acid producing bacteria to infants delivered via caesarean section.
  • a caesarean section (c-section) is a surgical procedure where an infant is delivered through an incision made in the mother's abdominal wall, and then through the wall of the uterus.
  • a caesarean section is usually performed when it is safer for the mother or the infant than a vaginal delivery. Alternatively, a woman may choose to have a caesarean section rather than deliver her infant vaginally.
  • Fermented milk-derived product by lactic acid producing bacteria Fermented milk-derived product by lactic acid producing bacteria.
  • a nutritional composition of the present invention or for use according to the present invention comprises a milk-derived product, which is a milk substrate that is fermented by lactic acid producing bacteria, and said milk substrate comprising at least one selected from the group consisting of milk, whey, whey protein, whey protein hydrolysate, casein, casein hydrolysate and/or lactose.
  • the composition of the present invention preferably comprises a milk-derived product which is obtainable by a process comprising the following steps: a.
  • lactic acid producing bacteria inoculating lactic acid producing bacteria in an aqueous medium comprising milk substrate in amount of between 1x10 2 to 5x10 10 cfu/ml, said aqueous medium having a pH of approximately between 4 and 8, and comprising at least one milk substrate selected from the group consisting of milk, whey, whey protein, whey protein hydrolysate, casein, casein hydrolysate, lactose, and mixtures thereof, b. incubating said lactic acid producing bacteria in said aqueous medium, under aerobic or anaerobic conditions and at a temperature of approximately 20 0 C to 50 0 C, preferably for at least 2 h, and c. inactivating and/or physically removing living cells of lactic acid producing bacteria from the aqueous medium.
  • this process may be followed by one or more of the following steps: d. ultrafiltrating the aqueous medium preferably through one or more filtration membranes having a cut-off threshold between 100 and 300 kDa, so as to obtain a concentrated retentate, e. fractionating the concentrated retentate, preferably by dehydrating the concentrated retentate, dissolving the dehydrated retentate in a buffer, performing gel exclusion chromatography of the retentate solution, preferably on a column having an exclusion threshold of 600 kDa, and f. recovering the desired fraction, preferably recovering the excluded fraction at the end of the chromatography, which fraction comprises or constitutes the milk-derived product.
  • the fermented product preferably comprises bacterial cell fragments like glycoproteins, glycolipids, peptidoglycan, lipoteichoic acid (LTA), fiagellae, lipoproteins, DNA, and/or capsular polysaccharides. These fragments evoke an immunological response in the intestine of the newborn infant, thereby inducing tolerance and speed up fast bacterial colonisation of the intestine. It is of advantage to use the fermented milk-derived product comprising inactivated bacteria and/or cell fragments directly as a part of the final nutritional product, since this will result in a higher concentration of bacterial cell fragments.
  • LTA lipoteichoic acid
  • bioactive peptides and/or oligosaccharides which also stimulate the immune system and/or stimulate the colonization of the intestinal microbiota.
  • the nutritional composition comprises 10 to 100 wt.% of the fermented product based on dry weight, more preferably 20 to 90 wt.%, even more preferably 50 to 80 wt.%.
  • the composition comprises 2 to 100 wt.% fermented product per 100 ml, more preferably 5 to 50 wt.%, even more preferably 10 to 20 wt.% per 100 ml.
  • Lactic acid producing bacteria used for producing the fermented product Lactic acid producing bacteria used for fermentation of the milk substrate are preferably provided as a mono- or mixed culture.
  • Lactic acid producing bacteria consists of the genera Bifidobacterium, Lactobacillus, Carnobacterium, Enterococcus, Lactococcus, Leuconostoc, Oenococcus, Pediococcus, Streptococcus, Tetragenococcus, Vagococcus and Weissella.
  • the lactic acid producing bacteria used for fermentation comprises bacteria of the genus Lactobacillus and/or Bifidobacterium and/or Streptococcus.
  • Bifidobacteria are Gram-positive, anaerobic, rod-shaped bacteria.
  • the present Bifidobacterium species preferably have at least 95 % identity of the 16 S rRNA sequence when compared to the type strain of the respective Bifidobacterium species, more preferably at least 97% identity as defined in handbooks on this subject for instance Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989), Molecular Cloning, A Laboratory Manual, 2nd ed., Cold Spring Harbor (N.Y.) Laboratory Press.
  • the Bifodobacteria preferably used are also described by Scardovi, V. Genus Bifidobacterium, p.1418 - p.1434.
  • the lactic acid producing bacteria used for fermentation comprises or is at least one Bifidobacterium selected from the group consisting of B. breve, B. infantis, B. bifidum, B. catenulatum, B. adolescentis, B. thermophilum, B. gallicum, B. animalis or lactis, B. angulatum, B. pseudocatenulatum, B. thermacidophilum and B.
  • the lactic acid producing bacteria used for fermentation comprises at least one, more preferably at least two, even more preferably at least three, most preferably at least four different Bifidobacterium species.
  • the lactic acid producing bacteria used for fermentation comprises at least B. longum and/or B. breve.
  • Lactobacilli are Gram -positive, anaerobic, rod-shaped bacteria.
  • the present Lactobacillus species preferably have at least 95 % identity of the 16 S rRNA sequence when compared to the type strain of the respective Lactobacillus species , more preferably at least 97% identity as defined in handbooks on this subject for instance Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989), Molecular Cloning, A Laboratory Manual, 2nd ed., Cold Spring Harbor (N.Y.) Laboratory Press.
  • the lactic acid producing bacteria used for fermentation comprises at least one, more preferably at least two Lactobacillus species selected from the group consisting of L. casei, L. reuteri, L paracasei, L.
  • L. acidophilus L. johnsonii, L. lactis, L. salivarius, L. crispatus, L. gasseri, L. zeae, L. fermentum and L. plantarum, more preferably L. casei, L. paracasei, L. rhamnosus, L. johnsonii, L. acidophilus, L. fermentum and even more preferably L. paracasei.
  • the lactic acid producing bacteria used for fermentation comprises Bifidobacterium breve and/or Lactobacillus paracasei, because the growth of these bacteria in impaired in the intestine of formula fed infants, even when non-digestible oligosaccharides are added to the infant formula, compared to the intestine of breast fed infants.
  • the further increased biodiversity will have a stimulatory effect on health of the newborn delivered by caesarean section.
  • the lactic acid producing bacteria used for fermentation comprises at least one microorganism selected from the group consisting of Carnobacterium, Enterococcus, Lactococcus, Leuconostoc, Oenococcus, Pediococcus, Streptococcus, Tetragenococcus, Vagococcus and Weissella, more preferably comprises or is Streptococcus thermophilus .
  • the further increased biodiversity will have a stimulatory effect on health of the newborn delivered by caesarean section.
  • the inoculation density is preferably between IxIO 2 to 5xlO 10 , preferably between IxIO 4 to 5x10 9 cfu lactic acid producing bacteria/ml aqueous medium containing milk substrate, more preferably between 1x10 7 to 1x10 9 cfu lactic acid producing bacteria/ml aqueous medium containing milk substrate.
  • the final bacteria density after fermentation is preferably between IxIO 3 to IxIO 10 , more preferably between IxIO 4 to IxIO 9 cfu/ml aqueous medium containing milk substrate.
  • the present nutritional composition comprises inactivated lactic acid producing bacteria and/or bacterial fragments derived from lactic acid producing bacteria obtained from more than 1x10 2 cfu lactic acid producing per g based on dry weight of the final composition, more preferably lxl ⁇ 4 cfu, even more preferably 1x10 5 cfu.
  • the inactivated bacteria or bacterial fragments are obtained from less than 1x10 11 cfu lactic acid producing bacteria per g based on dry weight of the final composition, more preferably 1x10 10 cfu, even more preferably 1x10 9 cfu.
  • the milk substrate to be fermented is selected from the group consisting of milk, whey, whey protein, whey protein hydrolysate, casein, casein hydrolysate, and lactose, and mixtures thereof, most preferably skimmed milk.
  • Milk can be whole milk, semi-skimmed milk and/or skimmed milk.
  • Whey can be sweet whey, and/or acid whey.
  • the whey is present in a concentration of 3 to 80 g dry weight per 1 aqueous medium containing milk substrate, more preferably 40 to 60 g per 1.
  • whey protein hydrolysate is present in 2 to 80 g dry weight per 1 aqueous medium containing milk substrate, more preferably 5 to 15 g/1.
  • lactose is present in 5 to 50 g dry weight per 1 aqueous substrate, more preferably 1 to 30 g/1.
  • the aqueous medium containing milk substrate comprises buffer salts in order to keep the pH within a desired range.
  • sodium or potassium dihydrogen phosphate is used as buffer salt, preferably in 0.5 to 5 g/1, more preferably 1.5 to3 g per 1.
  • the aqueous medium containing milk substrate comprises cysteine in amount of 0.1 to 0.5 g per 1 aqueous substrate, more preferably 0.2 to 0.4 g/1. The presence of cysteine results in low redox potential of the substrate which is advantageous for activity of lactic acid producing bacteria, particularly bifidobacteria.
  • the aqueous medium containing milk substrate comprises yeast extract in an amount of 0.5 to 5 g/1 aqueous medium containing milk substrate, more preferably 1.5 to 3 g/1.
  • yeast extract is a rich source of enzyme co-factors and growth factors for lactic acid producing bacteria. The presence of yeast extract will enhance the fermentation by lactic acid producing bacteria.
  • the aqueous medium containing milk substrate is pasteurised before the fermentation step, in order to eliminate the presence of unwanted living bacteria.
  • the product is pasteurised after fermentation, in order to inactivate enzymes.
  • the enzyme inactivation takes place at 75 0 C for 3 min.
  • the aqueous medium containing milk substrate is homogenised before and/or the milk-derived product is homogenised after the fermentation. Homogenisation results in a more stable substrate and/or fermented product, especially in the presence of fat.
  • the fermentation is preferably performed at a temperature of approximately 20 0 C to 50 0 C, more preferably 30 0 C to 45 0 C, even more preferably approximately 37 0 C to 42 0 C.
  • the optimum temperature for growth and/or activity for lactic acid producing bacteria, more particularly lactobacilli and/or bifidobacteria is between 37 0 C and 42 0 C.
  • the incubation is preferably under anaerobic conditions, since lactic acid producing bacteria are fermentative and since the growth of bifidobacteria and the enzymatic activity of many enzymes of bifidobacteria are impaired under aerobic conditions. However in case acidification is not desired, fermentation suitably takes place under aerobic conditions.
  • the incubation is preferably performed at a pH of 4 to 8, more preferably 6 to 7.5. This pH does not induce protein precipitation and/or an adverse taste, while at the same time lactic acid producing bacteria such as lactobacilli and/or bifidobacteria are able to ferment the milk substrate.
  • the incubation time is preferably at least 2 h, preferably between 4 and 48 h, more preferably between 6 and 24 h, even more preferably between 6 and 12 h.
  • a sufficient long time enables the fermentation and the concomitant production of immunogenic cell fragments such as glycoproteins, glycolipids, peptidoglycan, lipoteichoic acid (LTA), fiagellae, lipoproteins, DNA and/or capsular polysaccharides to take place at a high extent, whereas the incubation time need not be unnecessarily long for economical reasons.
  • one or more of the following steps may follow the above process: i) Ultrafiltrating the milk-derived product after fermentation through filtration membranes having a cut-off threshold between 100 and 300 kDa, so as to obtain a concentrated retentate.
  • the membranes are preferably polyethersulfone membranes and filtration is preferably performed at a temperature below 60 0 C.
  • Washing the concentrated retentate with water iii) Dehydrating the concentrated retentate, preferably by lyophilisation.
  • v) Performing gel exclusion chromatography of the retentate solution, on a column having an exclusion threshold of 600 kDa, preferably a Dextran or agarose column such as Superdex ®200.
  • a column having an exclusion threshold of 600 kDa preferably a Dextran or agarose column such as Superdex ®200.
  • Additional ingredients for producing the nutritional composition which is desired to obtain may be added. Usually these are added after step vi) above.
  • ingredients such as skimmed milk, whey, lactose, vegetable fat, mineral, vitamins etc as known in the art may be added.
  • a milk substrate preferably skimmed milk
  • a milk substrate is pasteurized, cooled and fermented with one or more Lactobacillus str ains to a certain degree of acidity, upon which the fermented product is cooled and stored.
  • a second milk-derived product is prepared in a similar way using one or more Bifidobacterium species for fermentation instead.
  • the two fermented products are preferably mixed together and mixed with other components making up an infant formula, except the fat component.
  • the mixture is preheated, and subsequently fat is added in-line, homogenized, pasteurized and dried.
  • a milk substrate preferably lactose
  • a milk substrate is pasteurized, cooled and fermented with one or more Streptococcus thermophilus strains, upon which the fermented product is cooled and stored.
  • a second milk-derived product is prepared in a similar way using skimmed milk and one or more Bifidobacterium species for fermentation instead.
  • the two fermented products are preferably mixed together and mixed with other components making up an infant formula, pasteurized and dried.
  • a preferred method for preparing the fermented product of the present invention is disclosed in WO 01/01785, more particular in example 1 and 2.
  • a preferred method for preparing the fermented product of the present invention is described in WO 2004/093899, more particularly in example 1.
  • Living cells of lactic acid producing bacteria in the milk-derived product are after fermentation preferably essentially all eliminated, for example by inactivation and/or physical removal.
  • the cells are preferably inactivated.
  • Living bacterial cells are preferably inactivated by methods selected from the group consisting of heat treatment, UV treatment, sonication, treatment with oxygen, treatment with bactericidals such as ethanol, ultra high pressure application, high pressure homogenisation and/or use of a cell disruptor.
  • the lactic acid producing bacteria are heat killed after fermentation of the milk-derived product.
  • Preferable ways of heat killing are pasteurization, sterilization, ultra high temperature treatment, spray cooking and/or spray drying at temperatures bacteria do not survive.
  • Cell fragments are preferably obtained by heat treatment, sonication, treatment with bactericidals such as ethanol, ultra high pressure application, high pressure homogenisation and/or use of a cell disruptor.
  • bactericidals such as ethanol
  • ultra high pressure application such as ultra high pressure application
  • high pressure homogenisation such as ethanol
  • cell disruptor Preferably intact cells of bacteria are removed from the fermented product by physical elimination such as filtration or centrifugation, for example centrifugation at 1 h at 3000 g, with the intact cells remaining in the pellet or retentate and the cell fragments remaining in the supernatant and/or filtrate, respectively.
  • the inactivation and/or physical removal of living cells is such that the amount of living lactic acid producing bacteria is below detection limit as used by conventional plating techniques known in the art. This detection limit is less than 10 3 cfu living cells of lactic acid producing bacteria based on g dry weight composition.
  • Inactivation of living cells has the advantage that, after production, the final nutritional composition can be pasteurised and/or sterilised, consequently reducing the chance of contamination with harmful micro-organisms, such as E. sakazakii. This is especially of importance for caesarean delivered infants since due to their delayed intestinal colonisation they are more prone to infections. So the present invention enables liquid, ready-to-use formula to be prepared and stored at room temperature. Furthermore, the dose of bioactive components received by each infant and/or toddler can be more easily controlled, since no further growth in a liquid product occurs, nor growth in the intestinal tract of the infant. The latter is a variable factor depending on the individual's intestinal environment, and thereby leads to variations in the extent of beneficial effects in individual infants.
  • the nutritional composition can be stored more easily and with reduced costs, since no special precautions have to be taken to maintain the viability of lactic acid producing bacteria at an acceptable level. This is especially the case in products with a water activity above 0.3. Also no post-acidification occurs in stored products with a high water activity and/or in infant formula in the period after reconstitution with water and before consumption. Adverse effect relating to coagulation of proteins and adverse taste are avoided in this way.
  • the present composition preferably comprises at least two non-digestible oligosaccharides.
  • the non-digestible oligosaccharide preferably stimulates the growth of the intestinal lactic acid producing bacteria, particularly bifidobacteria and/or the lactobacilli, more preferably bifidobacteria.
  • the presence of non-digestible oligosaccharides stimulates the growth of lactic acid producing bacteria, such as lactobacilli and/or bifidobacteria, reduces the growth of non beneficial bacteria in the gastro-intestinal tract and/or directly advantageously stimulates the immune system. This results in a higher colonisation of the beneficial bacteria.
  • the presence of both non-digestible oligosaccharides and the milk-derived product obtained by fermentation with lactic acid producing bacteria acts synergistically and advantageously results in both a faster and a higher colonization with lactic acid producing bacteria, such as lactobacilli and/or bifidobacteria.
  • the presence of at least two different non-digestible oligosaccharides results in a microbiota more diverse in respect of different lactic acid producing bacteria species as is the case in vaginally born infants.
  • the presence of at least two different non-digestible oligosaccharides and the milk-derived product obtained by fermentation with lactic acid producing bacteria act synergistically and advantageously results in a faster, as well as a higher as well as a more diverse colonisation with lactic acid producing bacteria, especially with lactobacilli and/or bifidobacteria.
  • oligosaccharide refers to saccharides with a degree of polymerization (DP) of 2 to 250, preferably a DP 2 to 100, more preferably 2 to 60, even more preferably 2 to 10. If the oligosaccharide with a DP of 2 to 100 is included in the present composition, this includes compositions which contain oligosaccharides with a DP between 2 and 5, a DP between 50 and 70 and a DP of 7 to 60.
  • DP degree of polymerization
  • non-digestible oligosaccharide refers to oligosaccharides which are not digested in the intestine by the action of acids or digestive enzymes present in the human upper digestive tract (small intestine and stomach) but which are preferably fermented by the human intestinal microbiota.
  • sucrose, lactose, maltose and maltodextrins are considered digestible.
  • the present non-digestible oligosaccharide is soluble.
  • soluble when having reference to a polysaccharide, fibre or oligosaccharide, means that the substance is at least soluble according to the method described by L. Prosky et al., J. Assoc. Off. Anal. Chem. 71, 1017-1023 (1988).
  • the present composition comprises non-digestible carbohydrate with a DP between 2 and 250, more preferably 2 to 60.
  • the non-digestible carbohydrate are at least two selected from the group consisting of fructo-oligosaccharides, galacto-oligosaccharides, gluco -oligosaccharides, arabino-oligosaccharides, mannan-oligosaccharides, xylo- oligosaccharides, fuco -oligosaccharides, arabinogalacto-oligosaccharides, glucomanno- oligosaccharides, galactomanno-oligosaccharides sialic acid comprising oligosaccharides and uronic acid oligosaccharides.
  • the present composition comprises fructo- oligosaccharides, galacto-oligosaccharides and/or galacturonic acid oligosaccharides, more preferably galacto-oligosaccharides, most preferably beta-galacto-oligosaccharides.
  • the group of fructo-oligosaccharides includes inulin
  • the group of galacto-oligosaccharides includes transgalacto -oligosaccharides or beta-galacto-oligosaccharides
  • the group of gluco - oligosaccharides includes gentio-, nigero- and cyclodextrin-oligosaccharides and poly dextrose
  • the group of arabinogalacto -oligosaccharides includes gum acacia
  • the group of galactomanno-oligosaccharides includes partially hydro lysed guar gum.
  • the present composition preferably comprises at least two non-digestible oligosaccharides with different average degrees of polymerization (DP).
  • DP average degrees of polymerization
  • both weight ratios are above 2, even more preferably above 5.
  • the present non-digestible oligosaccharide preferably has a relatively high content of short chain oligosaccharides, as these strongly stimulate the growth of bifidobacteria.
  • at least 10 wt.% of the non-digestible oligosaccharides in the present composition has a DP of 2 to 5 (i.e. 2, 3, 4, and/or 5) and at least 5 wt.% has a DP of 10 to 60.
  • Preferably at least 50 wt.%, more preferably at least 75 wt.% of the non-digestible neutral oligosaccharides has a DP of 2 to 9 (i.e. 2, 3, 4, 5, 6, 7, 8, and/or 9).
  • the composition comprises galacto-oligosaccharides.
  • the galacto- oligosaccharides are preferably selected from the group consisting of beta-galacto- oligosaccharides, lacto-N-tetraose (LNT), lacto-N-neotetraose (neo-LNT), fucosyl-lactose, fucosylated LNT and fucosylated neo-LNT.
  • the present composition comprises beta-galacto-oligosaccharides.
  • Beta-galacto -oligosaccharides as used in the present invention refers to oligosaccharides composed of over 50%, preferably over 65% galactose units based on monomeric subunits, with a degree of polymerization (DP) of 2 to 20, in which at least 50%, more preferably at least 75%, even more preferably at least 90%, of the galactose units are linked together via a beta-glycosidic linkage, preferably a beta- 1,4 glycosidic linkage. Beta-linkages are also predominant in human milk oligosaccharides.
  • the average DP is preferably of 3 to 6.
  • a glucose unit may be present at the reducing end of the chain of galactose units.
  • Beta-galacto-oligosaccharides are sometimes also referred to as transgalacto -oligosaccharides (TOS).
  • TOS transgalacto -oligosaccharides
  • a suitable source of beta-galacto- oligosaccharides is Vivinal®GOS (commercially available from Borculo Domo Ingredients, Zwolle, Netherlands).
  • Other suitable sources are Oligomate (Yakult), Cupoligo, (Nissin) and Bi2muno (Classado).
  • Beta-galacto-oligosaccharides were found to stimulate the growth of lactic acid producing bacteria, preferably bifidobacteria.
  • the composition comprises fructo-oligosaccharides.
  • Fructo -oligosaccharides as used in the present invention refers to carbohydrates composed of over 50%, preferably over 65 % fructose units based on monomeric subunits, in which at least 50%, more preferably at least 75%, even more preferably at least 90%, of the fructose units are linked together via a beta-glycosidic linkage, preferably a beta-2,1 glycosidic linkage.
  • a glucose unit may be present at the reducing end of the chain of galactose units.
  • the fructo- oligosaccharide has a DP or average DP of 2 to 250, more preferably 2 to 100, even more preferably 10 to 60.
  • Fructo-oligosaccaride comprises levan, hydrolysed levan, inulin, hydrolysed inulin, and synthesised fructo-oligosaccharides.
  • the composition comprises short chain fructo-oligosaccharides with an average degree of polymerization (DP) of 3 to 6, more preferably hydrolysed inulin or synthetic fructo-oligosaccharide.
  • the composition comprises long chain fructo-oligosaccharides with an average DP above 20, such as RaftilinHP.
  • the composition comprises both short chain and long chain fructo-oligosaccharides.
  • Fructo-oligosaccharide suitable for use in the compositions is also readily commercially available, e.g. RaftilineHP (Orafti).
  • the composition comprises a combination of galacto-oligosaccharides and fructo-oligosaccharides, more preferably long chain fructo-oligosaccharides.
  • a mixture stimulates the growth of a healthy intestinal microbiota, particularly bifidobacteria and reduces the occurrence of E. coli in infants delivered via caesarean section.
  • the mixture synergistically stimulates lactic acid producing bacteria, in particular bifidobacteria.
  • the present composition preferably comprises uronic acid oligosaccharides, more preferably galacturonic acid oligosaccharides.
  • uronic acid oligosaccharide as used in the present invention refers to an oligosaccharide wherein at least 50% of the monosaccharide units present in the oligosaccharide is uronic acid.
  • galacturonic acid oligosaccharide as used in the present invention refers to an oligosaccharide wherein at least 50% of the monosaccharide units present in the oligosaccharide is galacturonic acid.
  • the galacturonic acid oligosaccharides used in the invention are preferably prepared from degradation of pectin, pectate, and/or polygalacturonic acid.
  • the degraded pectin is prepared by hydrolysis and/or beta-elimination of fruit and/or vegetable pectins, more preferably apple, citrus and/or sugar beet pectin, even more preferably apple, citrus and/or sugar beet pectin degraded by at least one lyase.
  • at least one of the terminal galacturonic acid units of the galacturonic acid oligosaccharide has a double bond. The double bond effectively protects against attachment of pathogenic bacteria to intestinal epithelial cells.
  • one of the terminal galacturonic acid units comprises a C4-C5 double bond.
  • the galacturonic acid oligosaccharide can be derivatised.
  • the galacturonic acid oligosaccharide may be methoxylated and/or amidated.
  • the galacturonic acid oligosaccharides are characterised by a degree of methoxylation above 20%, preferably above 50% even more preferably above 70%.
  • Uronic acid oligosaccharides advantageously reduce the adhesion of pathogenic micro-organisms to the intestinal epithelial cells, thereby reducing colonization of (nosocomial) pathogenic bacteria in the colon of the infant delivered by caesarean section.
  • uronic acid oligosaccharides preferably stimulate the formation of a healthy intestinal microbiota and are fermented, resulting in a production of intestinal organic acids and a reduction of intestinal pH, which inhibit the growth of (nosocomial) pathogenic bacteria.
  • the composition for use according to the present invention preferably comprises at least beta-galacto-oligosaccharides.
  • the composition for use according to the present invention preferably comprises at least short chain fructo -oligosaccharides and/or long chain fructo-oligosaccharides, preferably long chain fructo-oligosaccharides.
  • the composition for use according to the present invention preferably comprises at least uronic acid oligosaccharides.
  • the composition for use according to the present invention preferably comprises at least beta- galacto -oligosaccharides and at least short chain fructo-oligosaccharides or long chain fructo- oligosaccharides or both.
  • composition for use according to the present invention preferably comprises at least beta-galacto -oligosaccharides and at least uronic acid oligosaccharides. In one embodiment the composition for use according to the present invention preferably comprises at least short chain fructo-oligosaccharides and uronic acid oligosaccharides or long chain fructo-oligosaccharides and uronic acid oligosaccharides.
  • the composition for use according to the present invention preferably comprises at least beta-galacto -oligosaccharides and short chain fructo-oligosaccharides and uronic acid oligosaccharides or at least beta-galacto -oligosaccharides and long chain fructo- oligosaccharides and uronic acid oligosaccharides.
  • a mixture of at least two different non- digestible carbohydrates advantageously stimulates the beneficial bacteria of the intestinal microbiota to a greater extent than based on the single non-digestible carbohydrates.
  • a mixture of at least two different non-digestible carbohydrates advantageously stimulates a wider diversity of beneficial bacteria of the intestinal microbiota single non-digestible carbohydrates.
  • the weight ratio between the mixture of two different non-digestible carbohydrates is between 20 and 0.05, more preferably between 20 and 1.
  • Beta-galacto-oligosaccharides are more pronounced to the human milk oligosaccharides.
  • the present composition comprises beta-galacto-oligosaccharides with a DP of 2-10 and/or fructo-oligosaccharides with a DP of 2-60. This combination was found to synergistically increase bifidobacteria and lactobacilli.
  • the presence of these three non-digestible oligosaccharides even further stimulates the bifidobacteria.
  • the weight ratio transgalacto-oligosaccharide : fructo- oligosaccharide : pectin degradation product is preferably (20 to 2) : 1 : (1 to 20), more preferably (12 to 7) : 1 : (1 to 3).
  • the composition comprises of 80 mg to 2 g non-digestible oligosaccharides per 100 ml, more preferably 150 mg to 1.50 g, even more preferably 300 mg to 1 g.
  • the composition preferably comprises 0.25 wt.% to 20 wt.%, more preferably 0.5 wt.% to 10 wt.%, even more preferably 1.5 wt.% to 7.5 wt.%.
  • a lower amount of non- digestible oligosaccharides will be less effective in stimulating the beneficial bacteria in the microbiota, whereas a too high amount will result in side-effects of bloating and abdominal discomfort.
  • composition used in the present invention are preferably nutritional and/or pharmaceutical compositions and suitable for administration to infants.
  • the present composition is preferably enterally administered, more preferably orally.
  • the present composition is preferably a nutritional formula, preferably an infant formula.
  • the present composition can be advantageously applied as a complete nutrition for infants.
  • the present composition preferably comprises a lipid component, protein component and carbohydrate component and is preferably administered in liquid form.
  • the present invention includes dry food (e.g. powders) which is accompanied with instructions as to mix said dry food mixture with a suitable liquid (e.g. water).
  • the present invention advantageously provides to a composition wherein the lipid provides 5 to 50% of the total calories, the protein provides 5 to 50% of the total calories, and the digestible carbohydrate component provides 15 to 90% of the total calories.
  • the lipid provides 35 to 50% of the total calories
  • the protein provides 7.5 to 12.5% of the total calories
  • the digestible carbohydrate provides 40 to 55% of the total calories.
  • the present composition preferably comprises at least one lipid selected from the group consisting of animal lipid (excluding human lipids) and vegetable lipids.
  • the present composition comprises a combination of vegetable lipids and at least one oil selected from the group consisting of fish oil, animal oil, algae oil, fungal oil, and bacterial oil.
  • the present composition excludes human milk.
  • the protein used in the nutritional preparation is preferably selected from the group consisting of non-human animal proteins (preferably milk proteins), vegetable proteins (preferably soy protein and/or rice protein), hydrolysates thereof, free amino acids and mixtures thereof.
  • the present composition preferably contains casein, whey, hydro lysed casein and/or hydro lysed whey protein.
  • the protein comprises intact proteins, more preferably intact bovine whey proteins and/or intact bovine casein proteins.
  • the protein of is preferably selected from the group consisting of hydrolyzed milk protein.
  • the present composition comprises hydrolyzed casein and/or hydrolyzed whey protein, vegetable protein and/or amino acids.
  • the use of these proteins further reduced the allergic reactions of the infant.
  • the use of these hydro lysed proteins advantageously improves the absorption of the dietary protein component by the immature intestine of the infant delivered by caesarean section.
  • the present composition preferably comprises digestible carbohydrates selected from the group consisting of sucrose, lactose, glucose, fructose, corn syrup solids, starch and maltodextrins, more preferably lactose.
  • the present composition preferably has a viscosity between 1 and 60 mPa.s, preferably between 1 and 20 mPa.s, more preferably between 1 and 10 mPa.s, most preferably between 1 and 6 mPa.s.
  • the low viscosity ensures a proper administration of the liquid, e.g. a proper passage through the whole of a nipple. Also this viscosity closely resembles the viscosity of human milk. Furthermore, a low viscosity results in a normal gastric emptying and a better energy intake, which is essential for infants which need the energy for optimal growth and development.
  • the present composition is preferably prepared by admixing a powdered composition comprising with water.
  • the present invention thus also relates to a packaged power composition wherein said package is provided with instruction to admix the powder with a suitable amount of liquid, thereby resulting in a liquid composition with a viscosity between 1 and 60 mPa.s.
  • the viscosity of the liquid is determined using a Physica Rheometer MCR 300 (Physica Messtechnik GmbH, Ostfilden, Germany) at a shear rate of 95 s "1 at 20 0 C.
  • Stool irregularities e.g. hard stools, insufficient stool volume, and diarrhoea
  • Stool irregularities are an important problem in babies delivered via caesarean section. This may be caused by the high content of E. coli in the faeces.
  • stool problems may be reduced by administering the present non-digestible oligosaccharides in liquid food with an osmolality between 50 and 500 mOsm/kg, more preferably between 100 and 400 mOsm/kg.
  • the reduced stool irregularities enhance the colonization and development of a healthy intestinal microbiota.
  • the liquid food does not have an excessive caloric density, however still provides sufficient calories to feed the subject.
  • the liquid food preferably has a caloric density between 0.1 and 2.5 kcal/ml, even more preferably a caloric density of between 0.5 and 1.5 kcal/ml, most preferably between 0.6 and 0.8 kcal/ml.
  • the present invention provides in one embodiment an enteral nutrional composition according to the present invention for use in administration to caesarean delivered infants.
  • the present invention provides (i) the treatment and/or prevention of a disorder in infants delivered via caesarean section and/or (ii) the stimulation of health in infants delivered via caesarean section.
  • the disorder is preferably selected from the group consisting of intestinal disorders caused by a microbiota low in bifidobacteria.
  • the disorder is selected from the group of allergy, eczema, asthma, infection and diarrhoea.
  • the present invention provides a nutritional composition according to the present invention for use in the treatment of a disorder selected from the group consisting of allergy, eczema, asthma, infection and diarrhoea.
  • the new-born caesarean section delivered infant with the milk-derived product which is a milk substrate that is fermented by lactic acid producing bacteria, comprising immunogenic factors (inactivated cells and/or bacteria fragments such as glycoproteins, glycolipids, peptidoglycan, lipoteichoic acid (LTA), fiagellae, lipoproteins, DNA and/or capsular polysaccharides), induces tolerance for those bacteria, thereby increasing intestinal colonization for these bacteria, and/or may decrease the colonization of adverse bacteria.
  • immunogenic factors may also have a direct effect on stimulating the growth of bifidobacteria and/or decreasing the growth of adverse bacteria. Induction of tolerance against bacteria in the intestinal tract results in a faster colonisation by the desired bacteria, while at the other hand the absence of living cells in the product results in an increased safety and improved product technological properties.
  • the present invention preferably provides a method for the prevention and/or treatment of infections and/or infection disorders, particularly gastrointestinal infections, more preferably the treatment and/or prevention of infections caused by one or more micro-organisms selected from the group consisting of Staphylococcus (especially S. aureus, S. epidermidis, S. haemolyticus) , Streptococcus (especially Streptococcus group B), Clostridium (especially C. difficile), Bacillus (especially B. subtilis, Pseudomonas (especially P. aeruginosa), Enterobacter, Klebsiella, Acinetobacter, Proteus, Aeromonas, and Escherichia, preferably Escherichia coli (E. col ⁇ ), said method comprising administering a nutritional composition according to the present invention.
  • Staphylococcus especially S. aureus, S. epidermidis, S. haemolyticus
  • Streptococcus especially Streptococcus
  • the present composition is used in a method for treatment and/or prevention of intestinal infection, intestinal inflammation and/or diarrhoea in infants delivered by caesarean section.
  • the present composition is used in a method for modulating the immune system in infants born via caesarean section.
  • the present invention therefore provides a method for treatment and/or prevention of systemic infections, urinary tract infections, otitis and/or respiratory infections in infants delivered by caesarean section, said method comprising administering a nutritional composition according to the present invention.
  • the present invention provides a method for treatment and/or prevention of allergy (particularly food allergy, more particularly cow's milk allergy), atopic eczema (e.g. atopic dermatitis), asthma, allergic rhinitis, and allergic conjunctivitis in infants delivered by caesarean section, even more preferably allergy and/or asthma, said method comprising administering to the infant a composition comprising the present milk-derived fermented product.
  • allergy particularly food allergy, more particularly cow's milk allergy
  • atopic eczema e.g. atopic dermatitis
  • asthma allergic rhinitis
  • allergic conjunctivitis allergic conjunctivitis in infants delivered by caesarean section
  • a composition comprising the present milk-derived fermented product.
  • the present invention provides a method for decreasing intestinal wall permeability in caesarean section delivered infants and/or for improving intestinal wall maturation in caesarean section delivered infants, said method comprising administering to the infant a composition comprising derived product fermented by lactic acid producing bacteria.
  • the present composition is used for tolerance induction in the caesarean section delivered infant's intestine against bacteria and/or for improving intestinal colonisation of the microbiota in caesarean delivered infants towards the microbiota found in vaginally delivered infants and/or for a fast colonisation of a microbiota rich in lactic acid producing bacteria in caesarean section delivered infants.
  • the present invention also provides a method for stimulating the development of a healthy intestinal microbiota in an infant comprising step A: admixing I) a nutritionally or pharmaceutically acceptable liquid; and II) a dry composition, wherein the dry composition II comprises the present fermented milk-derived product; and step B) administering the composition obtained in step A to an infant born via caesarean section.
  • the present composition is preferably administered to the infant delivered via caesarean section in the first year of life, preferably within 3 months after birth, more preferably within six weeks after birth, even more preferably within two weeks after birth, even more preferably within one week after birth, more preferably within 72 hours, most preferably within 48 hours after birth.
  • Example 1 Effect of non-digestible oligosaccharides on the microbiota in caesarean delivered infants.
  • the bifidobacterial content in the faeces was determined.
  • the faecal pH of the SF-group of caesarean delivered infants was 7.2 versus 6.5 of the GFSF-group of caesarean delivered infants.
  • the percentage E. coli was 11.8% in the SF group of caesarean delivered infants and 0% in the GFSF-group of the caesarean delivered infants. (See Table 1)
  • non-digestible neutral oligosaccharides results in a more bifidobacterial flora and a reduced content of potentially pathogenic bacteria compared to infants born via caesarean section that do not receive non-digestible oligosaccharides (the SF group). Additionally the results indicate a reduced content of E. coli due to the administration of non-digestible oligosaccharides.
  • the results are indicative for the advantageous use of non-digestible oligosaccharides, particularly galacto-oligosaccharides and fructo-oligosaccharides in the present composition to further improve the present therapy in infants born via caesarean section.
  • Table 1 Percentage Bifidobacteria in vaginally and caesarean section delivered infants fed a formula with (GFSF) or without (SF) non-digestible oligosaccharides.
  • Example 2 Composition for babies born via caesarean section
  • An infant formula comprising per 100 g dry material: protein (80% casein and 20% whey) 13 g; vegetable fat 25.5 g; lactose 42.25 g; maltodextrin 16 g; minerals 3 g; vitamins 0.25 g.
  • Vegetable fat was added to cow's milk heated at 75 °C.
  • the mixture was homogenised in two stages, the first one at 200 kg.s/cm 2 , the second at 50 kg.s/cm 2 .
  • Aqueous solutions of lactose and maltodextrin and vitamins and minerals were added.
  • the composition was pasteurised at 115°C and concentrated by evaporation to 48% dry material.
  • the concentrate was cooled to 37°C and inoculated with 5% of a culture of B. breve 1 -2219 containing 10 9 bacteria/ml and incubated for 8 h at 37°C. Subsequently the concentrate was pasteurized again.
  • the concentrate was spray dried and adding 14O g per litre water provided a reconstituted infant milk formula.
  • Non-digestible oligosaccharides were included to result in 0.72 g beta- galacto -oligosaccharides and 0.08 g inulin per 100 ml ready to drink formula.
  • the package and/or supporting material accompanying the product indicates that the product can suitably be used to a) stimulate intestinal colonisation with beneficial bacteria, b) prevent and/or treat infection in infants delivered via caesarean section; and/or c) prevent and/or treat allergy in infants delivered via caesarean section.
  • Example 3 Composition for babies born via caesarean section
  • An infant formula comprising protein 21 g/1, fat 24 g/1, carbohydrates 83 g/1, non-digestible oligosaccharides 8 g/1, minerals 5 g/1, vitamins 0.45 g/1 was prepared.
  • Fat was added to UHT sterilised milk at 70°C and the mixture was homogenised in two stages, the first one at 200 kg/cm2, the second at 50 kg/cm2.
  • the mixture was inoculated with 1.5% of a culture of B. breve 1 -2219 containing 1 to 5 x 10 9 bacteria/ml and incubated for 8 h at 37°C.
  • the mixture was then cooled to 5°C.
  • the rest of the ingredients were dissolved in water and added to the resulting product.
  • the composition comprised per 100 ml ready to drink formula 0.72 g beta-galacto -oligosaccharides and 0.08 g long chain and/or short chain inulin.
  • the resulting mixture was UHT sterilised at 140°C for 6 to 7 seconds and aseptically packed.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Nutrition Science (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pulmonology (AREA)
  • Dermatology (AREA)
  • Pediatric Medicine (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

The present invention relates to methods for feeding of infants delivered via caesarean section and to compositions to be administered to infants delivered via caesarean section and in particular to the use of a product obtained by fermentation of milk, whey, whey protein, whey protein hydrolysate, casein, casein hydrolysate and/or lactose by lactic acid producing bacteria. Thereby it is possible to stimulate a fast colonisation of the intestinal microbiota of said infants.

Description

NUTRITIONAL COMPOSITION FOR INFANTS DELIVERED VIA CAESAREAN
SECTION
FIELD OF THE INVENTION The present invention relates to methods for feeding of infants delivered via caesarean section and to compositions to be administered to infants delivered via caesarean section.
BACKGROUND OF THE INVENTION
Before birth the intestinal tract of the infant is normally sterile. During vaginal delivery the intestinal tract of the infant is inoculated with vaginal and/or faecal bacteria of the mother, resulting in a colonization of the infant's gastrointestinal tract by bacteria originating from the mother. A maternal healthy intestinal microbiota has numerous positive effects on the infant, such as a reduced incidence of infections and a strengthened immune system.
In infants delivered via caesarean section the colonization by intestinal bacteria is delayed and occurs by bacteria present in the hospital environment, resulting in the development of a different, less optimal intestinal microbiota. The intestinal microbiota of caesarean delivered infants comprises less bacteria, less beneficial bacteria and less species of beneficial bacteria, compared to intestinal microbiota of infants born via the vaginal route. In particular, the profile and content of lactic acid producing bacteria such as Bifidobacterium species of the microbiota of infants delivered via caesarean section is different from the intestinal profile and content of Bifidobacterium species of infants delivered via the vaginal route. These differences in microbiota persist well into childhood.
Infant formulae are normally designed to mimic the development of an intestinal microbiota in an infant receiving human breast milk, with the implication that all infants react similar to human breast milk and infant formula. However, the sub -population of infants delivered via caesarean section will react differently because the colonization is delayed and less optimal.
EP 1776877 discloses the use of at least two different microorganisms, or at least one microorganism and at least one indigestible oligosaccharide or at least two different Bifidobacterium species, subspecies or strains for the manufacture of a composition for enteral administration to an infant delivered via caesarean section. WO 2007/046698 discloses the use of a composition comprising non-digestible oligosaccharide for the manufacture of a composition for enteral administration to an infant delivered via caesarean section.
Natren® produces the probiotic product Life Start® which is designed specifically for infants and suitable for infants delivered via caesarean section. Life Start® is made with Bifidobacterium infantis.
SUMMARY OF THE INVENTION Animal experiments showed that already within two hours after birth the intestine of a vaginally born infant shows an immunological response to bacteria, whereas in caesarean section delivered infants no such fast immunological response is observed. This response is initiated by the immunogenic factors of the bacteria and is indicative for tolerance induction against these bacteria, thereby enabling a fast colonisation of the gut. It is believed that this fast immunological response is very important for a healthy development of the infant. Hence, it is particularly desirable to have similar effects in infants born via caesarean section, particularly the tolerance induction and fast colonisation of the gut by bacteria.
The inventors recognized that early exposure of the intestine of the newborn infant that was delivered by caesarean section, to a milk-derived product which has been fermented by lactic acid producing bacteria, induces an intestinal tolerance for these bacteria similar to that of vaginally born infants, enabling a fast colonisation of the intestine as in vaginally born infants.
However, the tolerance inducing effects of the fermented milk alone is insufficient to enable a sufficient intestinal colonisation. Hence, it is particularly important that the present composition comprises a mixture of oligosaccharides that efficiently improve the colonisation of the gut by lactic acid producing bacteria.
Because the intestinal microbiota plays a crucial role in the development of the infant, in particularly in the stimulation of the immune system, susceptibility for atopic diseases and resistance against infections, it is of utmost importance to stimulate a fast and healthy development of the intestinal microbiota of infants born via caesarean section. Caesarean section delivered infants are delivered in a hospital environment, which is a risk for pathogenic infection and/or diarrhoea due to the occurrence of nosocomial bacteria. Additionally, the impaired development of a healthy intestinal microbiota results in faster colonisation of pathogenic bacteria compared to a situation where the infants intestinal tract is inoculated by maternal bacteria. The present invention particularly aims to provide a composition which decreases the incidence and severity of infections and/or diarrhoea in infants born via caesarean section, by inducing tolerance of the infant's gut for beneficial bacteria, by stimulating the growth of beneficial bacteria, preferably lactic acid producing bacteria, and/or by decreasing the growth of adverse bacteria. Hence the present composition can be advantageously used to treat and/or prevent infections in infants born via caesarean section.
Caesarean section delivered infants have an increased r isk in atopic diseases such as food allergy, asthma, atopic dermatitis, and/or allergic rhinitis. The present invention particularly aims to provide a composition which decreases the incidence and severity of atopic diseases such as atopic eczema (or atopic dermatitis), allergy and/or asthma in infants born via caesarean section, by improving the intestinal colonization of beneficial bacteria. Hence the present invention can be advantageously used to treat and/or prevent allergy in infants born via caesarean section.
The milk-derived product which has been fermented by lactic acid producing bacteria comprises fragments of lactic acid producing bacteria or/and products excreted by lactic acid producing bacteria, such as glycoproteins, glycolipids, peptidoglycan, lipoteichoic acid (LTA), flagellae, lipoproteins, capsular polysaccharides and/or DNA. Without wishing to be bound by theory, it is believed by the present inventors that these immunogenic molecules induce the tolerance of the intestinal tract against colonisation with lactic acid producing bacteria. Induction of tolerance against lactic acid producing bacteria in the intestinal tract results in a faster colonisation by the desired bacteria, while on the other hand the absence of living cells in the product results in an increased safety and improved product technological properties. The safety advantage is especially important in case of caesarean section delivered infants, which are more vulnerable to infections.
The composition comprises at least two non-digestible oligosaccharides. The presence of non- digestible oligosaccharides stimulates the growth of lactic acid producing bacteria, such as lactobacilli and/or bifidobacteria, reduces the growth of non beneficial bacteria in the gastrointestinal tract and/or directly advantageously stimulates the immune system. This results in a higher colonisation of the beneficial bacteria. Hence, the presence of both non-digestible oligosaccharides and the milk-derived product obtained by fermentation with lactic acid producing bacteria acts synergistically and advantageously results in both a faster and a higher colonization with lactic acid producing bacteria, such as lactobacilli and/or bifidobacteria.
The presence of at least two different non-digestible oligosaccharides results in a microbiota that is more diverse in respect of different lactic acid producing bacteria species as is the case in vaginally born infants. The presence of at least two different non-digestible oligosaccharides and the milk-derived product obtained by fermentation with lactic acid producing bacteria act synergistically and advantageously results in a faster, as well as a higher as well as a more diverse colonisation with lactic acid producing bacteria, especially with lactobacilli and/or bifidobacteria.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention relates to a method for providing nutrition to an infant delivered via caesarean section, said method comprising administering to said infant a nutritional composition comprising a. a milk-derived product, said milk-derived product being a milk substrate that is fermented by lactic acid producing bacteria and said milk substrate comprising at least one selected from the group consisting of milk, whey, whey protein, whey protein hydro lysate, casein, casein hydro lysate and/or lactose, b. less than 103 cfu lactic acid producing bacteria per g dry weight of the composition, and c. at least two non-digestible oligosaccharide selected from the group consisting of fructo- oligosaccharides, galacto-oligosaccharides, gluco -oligosaccharides, arabino- oligosaccharides, mannan-oligosaccharides, xylo -oligosaccharides, fuco-oligosaccharides, arabinogalacto-oligosaccharides, glucomanno-oligosaccharides, galactomanno- oligosaccharides, sialic acid comprising oligosaccharides and uronic acid oligosaccharides. The present invention also concerns a nutritional composition comprising a. a milk-derived product, said milk-derived product being a milk substrate that is fermented by lactic acid producing bacteria and said milk substrate comprising at least one selected from the group consisting of milk, whey, whey protein, whey protein hydro lysate, casein, casein hydro lysate and/or lactose, b. less than 103 cfu lactic acid producing bacteria per g dry weight of the composition, and c. at least two non-digestible oligosaccharide selected from the group consisting of fructo- oligosaccharides, galacto-oligosaccharides, gluco -oligosaccharides, arabino- oligosaccharides, mannan-oligosaccharides, xylo -oligosaccharides, fuco-oligosaccharides, arabinogalacto-oligosaccharides, glucomanno-oligosaccharides, galactomanno- oligosaccharides, sialic acid comprising oligosaccharides and uronic acid oligosaccharides.
In one aspect the invention concerns the present nutritional composition for use in providing nutrition to an infant delivered via caesarean section. In other words the present invention concerns the use of a milk-derived product for the preparation of a nutritional composition, said composition comprising a) a milk-derived product, said milk-derived product being a milk substrate that is fermented by lactic acid producing bacteria and said milk sub strate comprising at least one selected from the group consisting of milk, whey, whey protein, whey protein hydrolysate, casein, casein hydrolysate and/or lactose, b) less than 103 cfu lactic acid producing bacteria per g dry weight of the composition, and c) at least two non-digestible oligosaccharide selected from the group consisting of fructo-oligosaccharides, galacto- oligosaccharides, gluco-oligosaccharides, arabino-oligosaccharides, mannan-oligosaccharides, xylo-oligosaccharides, fuco-oligosaccharides, arabinogalacto-oligosaccharides, glucomanno- oligosaccharides, galactomanno-oligosaccharides, sialic acid comprising oligosaccharides and uronic acid oligosaccharides, for providing nutrition to an infant delivered via caesarean section.
In further aspects, the present invention concerns a nutritional composition comprising a) a milk-derived product, said milk-derived product being a milk substrate that is fermented by lactic acid producing bacteria and said milk substrate comprising at least one selected from the group consisting of milk, whey , whey protein, whey protein hydrolysate, casein, casein hydrolysate and/or lactose, and b) less than 103 cfu lactic acid producing bacteria per g dry weight of the composition, for use in one selected from the group consisting of I) the (i) treatment and/or prevention of a disorder in infants delivered via caesarean section and/or (ii) the stimulation of health in infants delivered via caesarean section;
II) the treatment of a disorder selected from the group consisting of allergy, eczema, asthma, infection and diarrhoea in infants delivered via caesarean section; and III) intestinal tolerance induction against lactic acid producing bacteria in caesarean section delivered infants, and/or for use in improving the colonisation of a microbiota rich in lactic acid producing bacteria in caesarean section delivered infants.
In other words the present invention concerns the use of a milk-derived product for the preparation of a nutritional composition, said composition comprising a) a milk-derived product, said milk-derived product being a milk substrate that is fermented by lactic acid producing bacteria and said milk substrate comprising at least one selected from the group consisting of milk, whey, whey protein, whey protein hydrolysate, casein, casein hydrolysate and/or lactose, and b) less than 103 cfu lactic acid producing bacteria per g dry weight of the composition, for one selected from the group consisting of
I) the (i) treatment and/or prevention of a disorder in infants delivered via caesarean section and/or (ii) the stimulation of health in infants delivered via caesarean section;
II) the treatment of a disorder selected from the group consisting of allergy, eczema, asthma, infection and diarrhoea in infants delivered via caesarean section; and III) intestinal tolerance induction against lactic acid producing bacteria in caesarean section delivered infants, and/or for use in improving the colonisation of a microbiota rich in lactic acid producing bacteria in caesarean section delivered infants.
In further embodiments of aspects I), II) and III) the composition further comprises at least one non-digestible oligosaccharide selected from the group consisting of fructo- oligosaccharides, galacto-oligosaccharides, gluco-oligosaccharides, arabino-oligosaccharides, mannan-oligosaccharides, xylo-oligosaccharides, fuco -oligosaccharides, arabinogalacto- oligosaccharides, glucomanno-oligosaccharides, galactomanno -oligosaccharides, sialic acid comprising oligosaccharides and uronic acid oligosaccharides. Preferably the the non- digestible oligosaccharide is selected from the group consisting of galacto-oligosaccharides and fructo-oligosaccharides. Preferably the composition comprises 0.5 to 75 g of non- digestible oligosaccharide per 100 g dry weight of the composition In the context of this invention the term 'milk substrate', also denoted as 'aqueous substrate' or simply 'substrate' is the material that is subjected to fermentation by lactic acid producing bacteria. In the context of this invention the term 'milk-derived product' is the product that results from the fermentation of substrate by lactic acid producing bacteria and is also denoted as 'fermented product'.
Wherever hereinbelow reference is made to the nutritional composition of the present invention or further or preferred embodiments of the nutritional composition of the present invention are specified, this is also applicable to the use according to the present invention.
Caesarean section
The present invention relates to the enteral administration of a composition comprising a milk-derived product obtainable by fermentation of a milk substrate by lactic acid producing bacteria to infants delivered via caesarean section. A caesarean section (c-section) is a surgical procedure where an infant is delivered through an incision made in the mother's abdominal wall, and then through the wall of the uterus. A caesarean section is usually performed when it is safer for the mother or the infant than a vaginal delivery. Alternatively, a woman may choose to have a caesarean section rather than deliver her infant vaginally.
Fermented milk-derived product by lactic acid producing bacteria.
A nutritional composition of the present invention or for use according to the present invention comprises a milk-derived product, which is a milk substrate that is fermented by lactic acid producing bacteria, and said milk substrate comprising at least one selected from the group consisting of milk, whey, whey protein, whey protein hydrolysate, casein, casein hydrolysate and/or lactose. The composition of the present invention preferably comprises a milk-derived product which is obtainable by a process comprising the following steps: a. inoculating lactic acid producing bacteria in an aqueous medium comprising milk substrate in amount of between 1x102 to 5x1010 cfu/ml, said aqueous medium having a pH of approximately between 4 and 8, and comprising at least one milk substrate selected from the group consisting of milk, whey, whey protein, whey protein hydrolysate, casein, casein hydrolysate, lactose, and mixtures thereof, b. incubating said lactic acid producing bacteria in said aqueous medium, under aerobic or anaerobic conditions and at a temperature of approximately 20 0C to 50 0C, preferably for at least 2 h, and c. inactivating and/or physically removing living cells of lactic acid producing bacteria from the aqueous medium.
Optionally this process may be followed by one or more of the following steps: d. ultrafiltrating the aqueous medium preferably through one or more filtration membranes having a cut-off threshold between 100 and 300 kDa, so as to obtain a concentrated retentate, e. fractionating the concentrated retentate, preferably by dehydrating the concentrated retentate, dissolving the dehydrated retentate in a buffer, performing gel exclusion chromatography of the retentate solution, preferably on a column having an exclusion threshold of 600 kDa, and f. recovering the desired fraction, preferably recovering the excluded fraction at the end of the chromatography, which fraction comprises or constitutes the milk-derived product.
The fermented product preferably comprises bacterial cell fragments like glycoproteins, glycolipids, peptidoglycan, lipoteichoic acid (LTA), fiagellae, lipoproteins, DNA, and/or capsular polysaccharides. These fragments evoke an immunological response in the intestine of the newborn infant, thereby inducing tolerance and speed up fast bacterial colonisation of the intestine. It is of advantage to use the fermented milk-derived product comprising inactivated bacteria and/or cell fragments directly as a part of the final nutritional product, since this will result in a higher concentration of bacterial cell fragments. When commercial preparations of probiotics are used, these are usually washed and separated from the aqueous growth medium, comprising the bacterial cell fragments, thereby reducing or eliminating the presence of bacteria cell fragments. Furthermore, upon fermentation and/or other interactions of lactic acid producing bacteria with the milk substrate, additional bio -active compounds are formed, such as bioactive peptides and/or oligosaccharides, which also stimulate the immune system and/or stimulate the colonization of the intestinal microbiota.
Preferably the nutritional composition comprises 10 to 100 wt.% of the fermented product based on dry weight, more preferably 20 to 90 wt.%, even more preferably 50 to 80 wt.%. Preferably, the composition comprises 2 to 100 wt.% fermented product per 100 ml, more preferably 5 to 50 wt.%, even more preferably 10 to 20 wt.% per 100 ml. Lactic acid producing bacteria used for producing the fermented product Lactic acid producing bacteria used for fermentation of the milk substrate are preferably provided as a mono- or mixed culture. Lactic acid producing bacteria consists of the genera Bifidobacterium, Lactobacillus, Carnobacterium, Enterococcus, Lactococcus, Leuconostoc, Oenococcus, Pediococcus, Streptococcus, Tetragenococcus, Vagococcus and Weissella. Preferably the lactic acid producing bacteria used for fermentation comprises bacteria of the genus Lactobacillus and/or Bifidobacterium and/or Streptococcus.
Bifidobacteria are Gram-positive, anaerobic, rod-shaped bacteria. The present Bifidobacterium species preferably have at least 95 % identity of the 16 S rRNA sequence when compared to the type strain of the respective Bifidobacterium species, more preferably at least 97% identity as defined in handbooks on this subject for instance Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989), Molecular Cloning, A Laboratory Manual, 2nd ed., Cold Spring Harbor (N.Y.) Laboratory Press. The Bifodobacteria preferably used are also described by Scardovi, V. Genus Bifidobacterium, p.1418 - p.1434. In: Bergey's manual of systematic Bacteriology. Vol. 2. Sneath, P.H.A., N. S. Mair, M.E. Sharpe and J.G. Holt (ed.). Baltimore: Williams & Wilkins. 1986. 635 p. Preferably the lactic acid producing bacteria used for fermentation comprises or is at least one Bifidobacterium selected from the group consisting of B. breve, B. infantis, B. bifidum, B. catenulatum, B. adolescentis, B. thermophilum, B. gallicum, B. animalis or lactis, B. angulatum, B. pseudocatenulatum, B. thermacidophilum and B. longum more preferably B. breve, B. infantis, B. bifidum, B. catenulatum, B. longum, more preferably B. longum and B. breve, even more preferably B. breve, most preferably B. breve 1-2219 deposited at the CNCM in Paris, France. Preferably the lactic acid producing bacteria used for fermentation comprises at least one, more preferably at least two, even more preferably at least three, most preferably at least four different Bifidobacterium species. Preferably the lactic acid producing bacteria used for fermentation comprises at least B. longum and/or B. breve. The above-mentioned combinations commonly aim to increase the tolerance against a more diverse quantity of microorganisms in the intestine of the caesarean section delivered infant. This beneficially affects the infant, proving numerous health benefits.
Lactobacilli are Gram -positive, anaerobic, rod-shaped bacteria. The present Lactobacillus species preferably have at least 95 % identity of the 16 S rRNA sequence when compared to the type strain of the respective Lactobacillus species , more preferably at least 97% identity as defined in handbooks on this subject for instance Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989), Molecular Cloning, A Laboratory Manual, 2nd ed., Cold Spring Harbor (N.Y.) Laboratory Press. Preferably the lactic acid producing bacteria used for fermentation comprises at least one, more preferably at least two Lactobacillus species selected from the group consisting of L. casei, L. reuteri, L paracasei, L. rhamnosus, L. acidophilus, L. johnsonii, L. lactis, L. salivarius, L. crispatus, L. gasseri, L. zeae, L. fermentum and L. plantarum, more preferably L. casei, L. paracasei, L. rhamnosus, L. johnsonii, L. acidophilus, L. fermentum and even more preferably L. paracasei. Even more preferably the lactic acid producing bacteria used for fermentation comprises Bifidobacterium breve and/or Lactobacillus paracasei, because the growth of these bacteria in impaired in the intestine of formula fed infants, even when non-digestible oligosaccharides are added to the infant formula, compared to the intestine of breast fed infants. The further increased biodiversity will have a stimulatory effect on health of the newborn delivered by caesarean section.
Preferably the lactic acid producing bacteria used for fermentation comprises at least one microorganism selected from the group consisting of Carnobacterium, Enterococcus, Lactococcus, Leuconostoc, Oenococcus, Pediococcus, Streptococcus, Tetragenococcus, Vagococcus and Weissella, more preferably comprises or is Streptococcus thermophilus . The further increased biodiversity will have a stimulatory effect on health of the newborn delivered by caesarean section.
The inoculation density is preferably between IxIO2 to 5xlO10, preferably between IxIO4 to 5x109 cfu lactic acid producing bacteria/ml aqueous medium containing milk substrate, more preferably between 1x107 to 1x109 cfu lactic acid producing bacteria/ml aqueous medium containing milk substrate. The final bacteria density after fermentation is preferably between IxIO3 to IxIO10, more preferably between IxIO4 to IxIO9 cfu/ml aqueous medium containing milk substrate.
Preferably the present nutritional composition comprises inactivated lactic acid producing bacteria and/or bacterial fragments derived from lactic acid producing bacteria obtained from more than 1x102 cfu lactic acid producing per g based on dry weight of the final composition, more preferably lxlθ4cfu, even more preferably 1x105 cfu. Preferably the inactivated bacteria or bacterial fragments are obtained from less than 1x1011 cfu lactic acid producing bacteria per g based on dry weight of the final composition, more preferably 1x1010 cfu, even more preferably 1x109 cfu.
Process of fermentation The milk substrate to be fermented is selected from the group consisting of milk, whey, whey protein, whey protein hydrolysate, casein, casein hydrolysate, and lactose, and mixtures thereof, most preferably skimmed milk. Milk can be whole milk, semi-skimmed milk and/or skimmed milk. Whey can be sweet whey, and/or acid whey. Preferably the whey is present in a concentration of 3 to 80 g dry weight per 1 aqueous medium containing milk substrate, more preferably 40 to 60 g per 1. Preferably whey protein hydrolysate is present in 2 to 80 g dry weight per 1 aqueous medium containing milk substrate, more preferably 5 to 15 g/1. Preferably lactose is present in 5 to 50 g dry weight per 1 aqueous substrate, more preferably 1 to 30 g/1. Preferably the aqueous medium containing milk substrate comprises buffer salts in order to keep the pH within a desired range. Preferably sodium or potassium dihydrogen phosphate is used as buffer salt, preferably in 0.5 to 5 g/1, more preferably 1.5 to3 g per 1. Preferably the aqueous medium containing milk substrate comprises cysteine in amount of 0.1 to 0.5 g per 1 aqueous substrate, more preferably 0.2 to 0.4 g/1. The presence of cysteine results in low redox potential of the substrate which is advantageous for activity of lactic acid producing bacteria, particularly bifidobacteria. Preferably the aqueous medium containing milk substrate comprises yeast extract in an amount of 0.5 to 5 g/1 aqueous medium containing milk substrate, more preferably 1.5 to 3 g/1. Yeast extract is a rich source of enzyme co-factors and growth factors for lactic acid producing bacteria. The presence of yeast extract will enhance the fermentation by lactic acid producing bacteria.
Suitably the aqueous medium containing milk substrate is pasteurised before the fermentation step, in order to eliminate the presence of unwanted living bacteria. Suitably the product is pasteurised after fermentation, in order to inactivate enzymes. Suitably the enzyme inactivation takes place at 75 0C for 3 min. Suitably the aqueous medium containing milk substrate is homogenised before and/or the milk-derived product is homogenised after the fermentation. Homogenisation results in a more stable substrate and/or fermented product, especially in the presence of fat.
The fermentation is preferably performed at a temperature of approximately 20 0C to 50 0C, more preferably 30 0C to 45 0C, even more preferably approximately 37 0C to 42 0C. The optimum temperature for growth and/or activity for lactic acid producing bacteria, more particularly lactobacilli and/or bifidobacteria is between 37 0C and 42 0C.
The incubation is preferably under anaerobic conditions, since lactic acid producing bacteria are fermentative and since the growth of bifidobacteria and the enzymatic activity of many enzymes of bifidobacteria are impaired under aerobic conditions. However in case acidification is not desired, fermentation suitably takes place under aerobic conditions.
The incubation is preferably performed at a pH of 4 to 8, more preferably 6 to 7.5. This pH does not induce protein precipitation and/or an adverse taste, while at the same time lactic acid producing bacteria such as lactobacilli and/or bifidobacteria are able to ferment the milk substrate.
The incubation time is preferably at least 2 h, preferably between 4 and 48 h, more preferably between 6 and 24 h, even more preferably between 6 and 12 h. A sufficient long time enables the fermentation and the concomitant production of immunogenic cell fragments such as glycoproteins, glycolipids, peptidoglycan, lipoteichoic acid (LTA), fiagellae, lipoproteins, DNA and/or capsular polysaccharides to take place at a high extent, whereas the incubation time need not be unnecessarily long for economical reasons.
Optionally one or more of the following steps may follow the above process: i) Ultrafiltrating the milk-derived product after fermentation through filtration membranes having a cut-off threshold between 100 and 300 kDa, so as to obtain a concentrated retentate. The membranes are preferably polyethersulfone membranes and filtration is preferably performed at a temperature below 60 0C. ii) Washing the concentrated retentate with water, iii) Dehydrating the concentrated retentate, preferably by lyophilisation. iv) Dissolving the dehydrated retentate in a buffer, preferably a Tris buffer with pH 6-8. v) Performing gel exclusion chromatography of the retentate solution, on a column having an exclusion threshold of 600 kDa, preferably a Dextran or agarose column such as Superdex ®200. vi) Desalting the product with a membrane with a cut-off of 10 kDa. Recovering the excluded fraction at the end of the chromatography, which fraction comprises or constitutes the milk-derived product. Additional ingredients for producing the nutritional composition which is desired to obtain may be added. Usually these are added after step vi) above. For an infant milk formula, ingredients such as skimmed milk, whey, lactose, vegetable fat, mineral, vitamins etc as known in the art may be added.
Preferably, a milk substrate, preferably skimmed milk, is pasteurized, cooled and fermented with one or more Lactobacillus str ains to a certain degree of acidity, upon which the fermented product is cooled and stored. Preferably a second milk-derived product is prepared in a similar way using one or more Bifidobacterium species for fermentation instead. Subsequently, the two fermented products are preferably mixed together and mixed with other components making up an infant formula, except the fat component. Preferably, the mixture is preheated, and subsequently fat is added in-line, homogenized, pasteurized and dried.
Preferably, a milk substrate, preferably lactose, is pasteurized, cooled and fermented with one or more Streptococcus thermophilus strains, upon which the fermented product is cooled and stored. Preferably a second milk-derived product is prepared in a similar way using skimmed milk and one or more Bifidobacterium species for fermentation instead. Subsequently, the two fermented products are preferably mixed together and mixed with other components making up an infant formula, pasteurized and dried.
A preferred method for preparing the fermented product of the present invention is disclosed in WO 01/01785, more particular in example 1 and 2. A preferred method for preparing the fermented product of the present invention is described in WO 2004/093899, more particularly in example 1.
Methods of inactivation and/or physically removal of living cells
Living cells of lactic acid producing bacteria in the milk-derived product are after fermentation preferably essentially all eliminated, for example by inactivation and/or physical removal. The cells are preferably inactivated. Living bacterial cells are preferably inactivated by methods selected from the group consisting of heat treatment, UV treatment, sonication, treatment with oxygen, treatment with bactericidals such as ethanol, ultra high pressure application, high pressure homogenisation and/or use of a cell disruptor. Preferably the lactic acid producing bacteria are heat killed after fermentation of the milk-derived product. Preferable ways of heat killing are pasteurization, sterilization, ultra high temperature treatment, spray cooking and/or spray drying at temperatures bacteria do not survive. Cell fragments are preferably obtained by heat treatment, sonication, treatment with bactericidals such as ethanol, ultra high pressure application, high pressure homogenisation and/or use of a cell disruptor. Preferably intact cells of bacteria are removed from the fermented product by physical elimination such as filtration or centrifugation, for example centrifugation at 1 h at 3000 g, with the intact cells remaining in the pellet or retentate and the cell fragments remaining in the supernatant and/or filtrate, respectively. The inactivation and/or physical removal of living cells is such that the amount of living lactic acid producing bacteria is below detection limit as used by conventional plating techniques known in the art. This detection limit is less than 103 cfu living cells of lactic acid producing bacteria based on g dry weight composition.
Inactivation of living cells has the advantage that, after production, the final nutritional composition can be pasteurised and/or sterilised, consequently reducing the chance of contamination with harmful micro-organisms, such as E. sakazakii. This is especially of importance for caesarean delivered infants since due to their delayed intestinal colonisation they are more prone to infections. So the present invention enables liquid, ready-to-use formula to be prepared and stored at room temperature. Furthermore, the dose of bioactive components received by each infant and/or toddler can be more easily controlled, since no further growth in a liquid product occurs, nor growth in the intestinal tract of the infant. The latter is a variable factor depending on the individual's intestinal environment, and thereby leads to variations in the extent of beneficial effects in individual infants.
Additional advantages are that the nutritional composition can be stored more easily and with reduced costs, since no special precautions have to be taken to maintain the viability of lactic acid producing bacteria at an acceptable level. This is especially the case in products with a water activity above 0.3. Also no post-acidification occurs in stored products with a high water activity and/or in infant formula in the period after reconstitution with water and before consumption. Adverse effect relating to coagulation of proteins and adverse taste are avoided in this way. Non-digestible oligosaccharides
The present composition preferably comprises at least two non-digestible oligosaccharides. The non-digestible oligosaccharide preferably stimulates the growth of the intestinal lactic acid producing bacteria, particularly bifidobacteria and/or the lactobacilli, more preferably bifidobacteria. The presence of non-digestible oligosaccharides stimulates the growth of lactic acid producing bacteria, such as lactobacilli and/or bifidobacteria, reduces the growth of non beneficial bacteria in the gastro-intestinal tract and/or directly advantageously stimulates the immune system. This results in a higher colonisation of the beneficial bacteria. Hence, the presence of both non-digestible oligosaccharides and the milk-derived product obtained by fermentation with lactic acid producing bacteria acts synergistically and advantageously results in both a faster and a higher colonization with lactic acid producing bacteria, such as lactobacilli and/or bifidobacteria.
The presence of at least two different non-digestible oligosaccharides results in a microbiota more diverse in respect of different lactic acid producing bacteria species as is the case in vaginally born infants. The presence of at least two different non-digestible oligosaccharides and the milk-derived product obtained by fermentation with lactic acid producing bacteria act synergistically and advantageously results in a faster, as well as a higher as well as a more diverse colonisation with lactic acid producing bacteria, especially with lactobacilli and/or bifidobacteria. The term "oligosaccharide" as used in the present invention refers to saccharides with a degree of polymerization (DP) of 2 to 250, preferably a DP 2 to 100, more preferably 2 to 60, even more preferably 2 to 10. If the oligosaccharide with a DP of 2 to 100 is included in the present composition, this includes compositions which contain oligosaccharides with a DP between 2 and 5, a DP between 50 and 70 and a DP of 7 to 60. The term "non-digestible oligosaccharide" as used in the present invention refers to oligosaccharides which are not digested in the intestine by the action of acids or digestive enzymes present in the human upper digestive tract (small intestine and stomach) but which are preferably fermented by the human intestinal microbiota. For example, sucrose, lactose, maltose and maltodextrins are considered digestible.
Preferably the present non-digestible oligosaccharide is soluble. The term "soluble" as used herein, when having reference to a polysaccharide, fibre or oligosaccharide, means that the substance is at least soluble according to the method described by L. Prosky et al., J. Assoc. Off. Anal. Chem. 71, 1017-1023 (1988). Preferably, the present composition comprises non-digestible carbohydrate with a DP between 2 and 250, more preferably 2 to 60. The non-digestible carbohydrate are at least two selected from the group consisting of fructo-oligosaccharides, galacto-oligosaccharides, gluco -oligosaccharides, arabino-oligosaccharides, mannan-oligosaccharides, xylo- oligosaccharides, fuco -oligosaccharides, arabinogalacto-oligosaccharides, glucomanno- oligosaccharides, galactomanno-oligosaccharides sialic acid comprising oligosaccharides and uronic acid oligosaccharides. Preferably the present composition comprises fructo- oligosaccharides, galacto-oligosaccharides and/or galacturonic acid oligosaccharides, more preferably galacto-oligosaccharides, most preferably beta-galacto-oligosaccharides. The group of fructo-oligosaccharides includes inulin, the group of galacto-oligosaccharides includes transgalacto -oligosaccharides or beta-galacto-oligosaccharides, the group of gluco - oligosaccharides includes gentio-, nigero- and cyclodextrin-oligosaccharides and poly dextrose, the group of arabinogalacto -oligosaccharides includes gum acacia, and the group of galactomanno-oligosaccharides includes partially hydro lysed guar gum.
The present composition preferably comprises at least two non-digestible oligosaccharides with different average degrees of polymerization (DP). Preferably the weight ratios: a. (non-digestible oligosaccharides with DP 2 to 5) : (non-digestible oligosaccharides with DP 6, 7, 8, and/or 9) > 1; and/or b. (non-digestible oligosaccharides with DP 10 to 60) : (non-digestible oligosaccharides with DP 6, 7, 8, and/or 9) > 1
Preferably both weight ratios are above 2, even more preferably above 5.
For further improvement, the present non-digestible oligosaccharide preferably has a relatively high content of short chain oligosaccharides, as these strongly stimulate the growth of bifidobacteria. Hence, preferably at least 10 wt.% of the non-digestible oligosaccharides in the present composition has a DP of 2 to 5 (i.e. 2, 3, 4, and/or 5) and at least 5 wt.% has a DP of 10 to 60. Preferably at least 50 wt.%, more preferably at least 75 wt.% of the non-digestible neutral oligosaccharides has a DP of 2 to 9 (i.e. 2, 3, 4, 5, 6, 7, 8, and/or 9).
More preferably the composition comprises galacto-oligosaccharides. The galacto- oligosaccharides are preferably selected from the group consisting of beta-galacto- oligosaccharides, lacto-N-tetraose (LNT), lacto-N-neotetraose (neo-LNT), fucosyl-lactose, fucosylated LNT and fucosylated neo-LNT. In a particularly preferred embodiment the present composition comprises beta-galacto-oligosaccharides. Beta-galacto -oligosaccharides as used in the present invention refers to oligosaccharides composed of over 50%, preferably over 65% galactose units based on monomeric subunits, with a degree of polymerization (DP) of 2 to 20, in which at least 50%, more preferably at least 75%, even more preferably at least 90%, of the galactose units are linked together via a beta-glycosidic linkage, preferably a beta- 1,4 glycosidic linkage. Beta-linkages are also predominant in human milk oligosaccharides. The average DP is preferably of 3 to 6. A glucose unit may be present at the reducing end of the chain of galactose units. Beta-galacto-oligosaccharides are sometimes also referred to as transgalacto -oligosaccharides (TOS). A suitable source of beta-galacto- oligosaccharides is Vivinal®GOS (commercially available from Borculo Domo Ingredients, Zwolle, Netherlands). Other suitable sources are Oligomate (Yakult), Cupoligo, (Nissin) and Bi2muno (Classado). Beta-galacto-oligosaccharides were found to stimulate the growth of lactic acid producing bacteria, preferably bifidobacteria.
Preferably the composition comprises fructo-oligosaccharides. Fructo -oligosaccharides as used in the present invention refers to carbohydrates composed of over 50%, preferably over 65 % fructose units based on monomeric subunits, in which at least 50%, more preferably at least 75%, even more preferably at least 90%, of the fructose units are linked together via a beta-glycosidic linkage, preferably a beta-2,1 glycosidic linkage. A glucose unit may be present at the reducing end of the chain of galactose units. Preferably the fructo- oligosaccharide has a DP or average DP of 2 to 250, more preferably 2 to 100, even more preferably 10 to 60. Fructo-oligosaccaride comprises levan, hydrolysed levan, inulin, hydrolysed inulin, and synthesised fructo-oligosaccharides. Preferably the composition comprises short chain fructo-oligosaccharides with an average degree of polymerization (DP) of 3 to 6, more preferably hydrolysed inulin or synthetic fructo-oligosaccharide. Preferably the composition comprises long chain fructo-oligosaccharides with an average DP above 20, such as RaftilinHP. Preferably the composition comprises both short chain and long chain fructo-oligosaccharides. Fructo-oligosaccharide suitable for use in the compositions is also readily commercially available, e.g. RaftilineHP (Orafti).
More preferably the composition comprises a combination of galacto-oligosaccharides and fructo-oligosaccharides, more preferably long chain fructo-oligosaccharides. Such a mixture stimulates the growth of a healthy intestinal microbiota, particularly bifidobacteria and reduces the occurrence of E. coli in infants delivered via caesarean section. The mixture synergistically stimulates lactic acid producing bacteria, in particular bifidobacteria.
The present composition preferably comprises uronic acid oligosaccharides, more preferably galacturonic acid oligosaccharides. The term uronic acid oligosaccharide as used in the present invention refers to an oligosaccharide wherein at least 50% of the monosaccharide units present in the oligosaccharide is uronic acid. The term galacturonic acid oligosaccharide as used in the present invention refers to an oligosaccharide wherein at least 50% of the monosaccharide units present in the oligosaccharide is galacturonic acid. The galacturonic acid oligosaccharides used in the invention are preferably prepared from degradation of pectin, pectate, and/or polygalacturonic acid. Preferably the degraded pectin is prepared by hydrolysis and/or beta-elimination of fruit and/or vegetable pectins, more preferably apple, citrus and/or sugar beet pectin, even more preferably apple, citrus and/or sugar beet pectin degraded by at least one lyase. In a preferred embodiment, at least one of the terminal galacturonic acid units of the galacturonic acid oligosaccharide has a double bond. The double bond effectively protects against attachment of pathogenic bacteria to intestinal epithelial cells. Preferably one of the terminal galacturonic acid units comprises a C4-C5 double bond. The galacturonic acid oligosaccharide can be derivatised. The galacturonic acid oligosaccharide may be methoxylated and/or amidated. Preferably the galacturonic acid oligosaccharides are characterised by a degree of methoxylation above 20%, preferably above 50% even more preferably above 70%. Uronic acid oligosaccharides advantageously reduce the adhesion of pathogenic micro-organisms to the intestinal epithelial cells, thereby reducing colonization of (nosocomial) pathogenic bacteria in the colon of the infant delivered by caesarean section. Furthermore, uronic acid oligosaccharides preferably stimulate the formation of a healthy intestinal microbiota and are fermented, resulting in a production of intestinal organic acids and a reduction of intestinal pH, which inhibit the growth of (nosocomial) pathogenic bacteria.
Thus, in one embodiment the composition for use according to the present invention preferably comprises at least beta-galacto-oligosaccharides. In one embodiment the composition for use according to the present invention preferably comprises at least short chain fructo -oligosaccharides and/or long chain fructo-oligosaccharides, preferably long chain fructo-oligosaccharides. In one embodiment the composition for use according to the present invention preferably comprises at least uronic acid oligosaccharides. In one embodiment the composition for use according to the present invention preferably comprises at least beta- galacto -oligosaccharides and at least short chain fructo-oligosaccharides or long chain fructo- oligosaccharides or both. In one embodiment the composition for use according to the present invention preferably comprises at least beta-galacto -oligosaccharides and at least uronic acid oligosaccharides. In one embodiment the composition for use according to the present invention preferably comprises at least short chain fructo-oligosaccharides and uronic acid oligosaccharides or long chain fructo-oligosaccharides and uronic acid oligosaccharides. In one embodiment the composition for use according to the present invention preferably comprises at least beta-galacto -oligosaccharides and short chain fructo-oligosaccharides and uronic acid oligosaccharides or at least beta-galacto -oligosaccharides and long chain fructo- oligosaccharides and uronic acid oligosaccharides. A mixture of at least two different non- digestible carbohydrates advantageously stimulates the beneficial bacteria of the intestinal microbiota to a greater extent than based on the single non-digestible carbohydrates. A mixture of at least two different non-digestible carbohydrates advantageously stimulates a wider diversity of beneficial bacteria of the intestinal microbiota single non-digestible carbohydrates. Preferably the weight ratio between the mixture of two different non-digestible carbohydrates, preferably beta-galacto -oligosaccharides and fructo-oligosaccharide, is between 20 and 0.05, more preferably between 20 and 1. Beta-galacto-oligosaccharides are more reminiscent to the human milk oligosaccharides. Preferably the present composition comprises beta-galacto-oligosaccharides with a DP of 2-10 and/or fructo-oligosaccharides with a DP of 2-60. This combination was found to synergistically increase bifidobacteria and lactobacilli. The presence of these three non-digestible oligosaccharides even further stimulates the bifidobacteria. The weight ratio transgalacto-oligosaccharide : fructo- oligosaccharide : pectin degradation product is preferably (20 to 2) : 1 : (1 to 20), more preferably (12 to 7) : 1 : (1 to 3).
Preferably, the composition comprises of 80 mg to 2 g non-digestible oligosaccharides per 100 ml, more preferably 150 mg to 1.50 g, even more preferably 300 mg to 1 g. Based on dry weight, the composition preferably comprises 0.25 wt.% to 20 wt.%, more preferably 0.5 wt.% to 10 wt.%, even more preferably 1.5 wt.% to 7.5 wt.%. A lower amount of non- digestible oligosaccharides will be less effective in stimulating the beneficial bacteria in the microbiota, whereas a too high amount will result in side-effects of bloating and abdominal discomfort. Formulae
The composition used in the present invention are preferably nutritional and/or pharmaceutical compositions and suitable for administration to infants. The present composition is preferably enterally administered, more preferably orally.
The present composition is preferably a nutritional formula, preferably an infant formula. The present composition can be advantageously applied as a complete nutrition for infants. The present composition preferably comprises a lipid component, protein component and carbohydrate component and is preferably administered in liquid form. The present invention includes dry food (e.g. powders) which is accompanied with instructions as to mix said dry food mixture with a suitable liquid (e.g. water).
The present invention advantageously provides to a composition wherein the lipid provides 5 to 50% of the total calories, the protein provides 5 to 50% of the total calories, and the digestible carbohydrate component provides 15 to 90% of the total calories. Preferably, in the present composition the lipid provides 35 to 50% of the total calories, the protein provides 7.5 to 12.5% of the total calories, and the digestible carbohydrate provides 40 to 55% of the total calories. For calculation of the % of total calories for the protein, the total of energy provided by proteins, peptides and amino acids needs to be taken into account.
The present composition preferably comprises at least one lipid selected from the group consisting of animal lipid (excluding human lipids) and vegetable lipids. Preferably the present composition comprises a combination of vegetable lipids and at least one oil selected from the group consisting of fish oil, animal oil, algae oil, fungal oil, and bacterial oil. The present composition excludes human milk.
The protein used in the nutritional preparation is preferably selected from the group consisting of non-human animal proteins (preferably milk proteins), vegetable proteins (preferably soy protein and/or rice protein), hydrolysates thereof, free amino acids and mixtures thereof. The present composition preferably contains casein, whey, hydro lysed casein and/or hydro lysed whey protein. Preferably the protein comprises intact proteins, more preferably intact bovine whey proteins and/or intact bovine casein proteins. As the present composition is suitably used to reduce the allergic reaction in an infant, the protein of is preferably selected from the group consisting of hydrolyzed milk protein. Preferably the present composition comprises hydrolyzed casein and/or hydrolyzed whey protein, vegetable protein and/or amino acids. The use of these proteins further reduced the allergic reactions of the infant. The use of these hydro lysed proteins advantageously improves the absorption of the dietary protein component by the immature intestine of the infant delivered by caesarean section.
The present composition preferably comprises digestible carbohydrates selected from the group consisting of sucrose, lactose, glucose, fructose, corn syrup solids, starch and maltodextrins, more preferably lactose.
The present composition preferably has a viscosity between 1 and 60 mPa.s, preferably between 1 and 20 mPa.s, more preferably between 1 and 10 mPa.s, most preferably between 1 and 6 mPa.s. The low viscosity ensures a proper administration of the liquid, e.g. a proper passage through the whole of a nipple. Also this viscosity closely resembles the viscosity of human milk. Furthermore, a low viscosity results in a normal gastric emptying and a better energy intake, which is essential for infants which need the energy for optimal growth and development. The present composition is preferably prepared by admixing a powdered composition comprising with water. Normally infant formula is prepared in such way. The present invention thus also relates to a packaged power composition wherein said package is provided with instruction to admix the powder with a suitable amount of liquid, thereby resulting in a liquid composition with a viscosity between 1 and 60 mPa.s. The viscosity of the liquid is determined using a Physica Rheometer MCR 300 (Physica Messtechnik GmbH, Ostfilden, Germany) at a shear rate of 95 s"1 at 20 0C.
Stool irregularities (e.g. hard stools, insufficient stool volume, and diarrhoea) are an important problem in babies delivered via caesarean section. This may be caused by the high content of E. coli in the faeces. It was found that stool problems may be reduced by administering the present non-digestible oligosaccharides in liquid food with an osmolality between 50 and 500 mOsm/kg, more preferably between 100 and 400 mOsm/kg. The reduced stool irregularities enhance the colonization and development of a healthy intestinal microbiota.
In view of the above, it is also important that the liquid food does not have an excessive caloric density, however still provides sufficient calories to feed the subject. Hence, the liquid food preferably has a caloric density between 0.1 and 2.5 kcal/ml, even more preferably a caloric density of between 0.5 and 1.5 kcal/ml, most preferably between 0.6 and 0.8 kcal/ml. Application
The present invention provides in one embodiment an enteral nutrional composition according to the present invention for use in administration to caesarean delivered infants. Preferably, the present invention provides (i) the treatment and/or prevention of a disorder in infants delivered via caesarean section and/or (ii) the stimulation of health in infants delivered via caesarean section. The disorder is preferably selected from the group consisting of intestinal disorders caused by a microbiota low in bifidobacteria. Preferably the disorder is selected from the group of allergy, eczema, asthma, infection and diarrhoea.
In one aspect the present invention provides a nutritional composition according to the present invention for use in the treatment of a disorder selected from the group consisting of allergy, eczema, asthma, infection and diarrhoea.
Providing the new-born caesarean section delivered infant with the milk-derived product, which is a milk substrate that is fermented by lactic acid producing bacteria, comprising immunogenic factors (inactivated cells and/or bacteria fragments such as glycoproteins, glycolipids, peptidoglycan, lipoteichoic acid (LTA), fiagellae, lipoproteins, DNA and/or capsular polysaccharides), induces tolerance for those bacteria, thereby increasing intestinal colonization for these bacteria, and/or may decrease the colonization of adverse bacteria. These immunogenic factors may also have a direct effect on stimulating the growth of bifidobacteria and/or decreasing the growth of adverse bacteria. Induction of tolerance against bacteria in the intestinal tract results in a faster colonisation by the desired bacteria, while at the other hand the absence of living cells in the product results in an increased safety and improved product technological properties.
The present invention preferably provides a method for the prevention and/or treatment of infections and/or infection disorders, particularly gastrointestinal infections, more preferably the treatment and/or prevention of infections caused by one or more micro-organisms selected from the group consisting of Staphylococcus (especially S. aureus, S. epidermidis, S. haemolyticus) , Streptococcus (especially Streptococcus group B), Clostridium (especially C. difficile), Bacillus (especially B. subtilis, Pseudomonas (especially P. aeruginosa), Enterobacter, Klebsiella, Acinetobacter, Proteus, Aeromonas, and Escherichia, preferably Escherichia coli (E. colϊ), said method comprising administering a nutritional composition according to the present invention.
Preferably, the present composition is used in a method for treatment and/or prevention of intestinal infection, intestinal inflammation and/or diarrhoea in infants delivered by caesarean section. Preferably the present composition is used in a method for modulating the immune system in infants born via caesarean section. In a further aspect, the present invention therefore provides a method for treatment and/or prevention of systemic infections, urinary tract infections, otitis and/or respiratory infections in infants delivered by caesarean section, said method comprising administering a nutritional composition according to the present invention.
In a further aspect, the present invention provides a method for treatment and/or prevention of allergy (particularly food allergy, more particularly cow's milk allergy), atopic eczema (e.g. atopic dermatitis), asthma, allergic rhinitis, and allergic conjunctivitis in infants delivered by caesarean section, even more preferably allergy and/or asthma, said method comprising administering to the infant a composition comprising the present milk-derived fermented product. These health effects are obtained by effects on immune system, intestinal wall and/or intestinal microbiota.
Administration of the present composition results in an improved intestinal microbiota and subsequently in the formation of organic acids as metabolic end products of microbial fermentation. An increased amount of organic acids results in an increased mucus production, improves gut maturation and/or and increased gut barrier. Hence, in a further aspect, the present invention provides a method for decreasing intestinal wall permeability in caesarean section delivered infants and/or for improving intestinal wall maturation in caesarean section delivered infants, said method comprising administering to the infant a composition comprising derived product fermented by lactic acid producing bacteria.
Preferably the present composition is used for tolerance induction in the caesarean section delivered infant's intestine against bacteria and/or for improving intestinal colonisation of the microbiota in caesarean delivered infants towards the microbiota found in vaginally delivered infants and/or for a fast colonisation of a microbiota rich in lactic acid producing bacteria in caesarean section delivered infants. The present invention also provides a method for stimulating the development of a healthy intestinal microbiota in an infant comprising step A: admixing I) a nutritionally or pharmaceutically acceptable liquid; and II) a dry composition, wherein the dry composition II comprises the present fermented milk-derived product; and step B) administering the composition obtained in step A to an infant born via caesarean section.
The present composition is preferably administered to the infant delivered via caesarean section in the first year of life, preferably within 3 months after birth, more preferably within six weeks after birth, even more preferably within two weeks after birth, even more preferably within one week after birth, more preferably within 72 hours, most preferably within 48 hours after birth.
EXAMPLES
Example 1: Effect of non-digestible oligosaccharides on the microbiota in caesarean delivered infants.
Infants were administered infant formula supplemented with 0.72 g/ 100ml galacto- oligosaccharides (GOS) with an average DP between 2 and 7 and 0.08 g/100ml fructo- oligosaccharides with an average DP of above 20 (FOS, Raftilin HP®) (GFSF-group) or standard infant formula without non-digestible oligosaccharides (SF-group).
The bifidobacterial content in the faeces was determined. The percentage of the genus Bifidobacterium as a percentage of total bacteria in the first week was 4.3% in caesarean delivered infants (n=44) versus 19.8% in vaginally delivered infants (n=28). At 6 weeks the percentage bifidobacteria was 12.3% in the SF-group of caesarean delivered infants (n=21) and 17.2% in the GFSF-group of the caesarean infants (n=13). The faecal pH of the SF-group of caesarean delivered infants was 7.2 versus 6.5 of the GFSF-group of caesarean delivered infants. The percentage E. coli was 11.8% in the SF group of caesarean delivered infants and 0% in the GFSF-group of the caesarean delivered infants. (See Table 1)
These results indicate that administration of non-digestible neutral oligosaccharides to infants born via caesarean section (GFSF group) results in a more bifidobacterial flora and a reduced content of potentially pathogenic bacteria compared to infants born via caesarean section that do not receive non-digestible oligosaccharides (the SF group). Additionally the results indicate a reduced content of E. coli due to the administration of non-digestible oligosaccharides. The results are indicative for the advantageous use of non-digestible oligosaccharides, particularly galacto-oligosaccharides and fructo-oligosaccharides in the present composition to further improve the present therapy in infants born via caesarean section.
Table 1: Percentage Bifidobacteria in vaginally and caesarean section delivered infants fed a formula with (GFSF) or without (SF) non-digestible oligosaccharides.
Figure imgf000026_0001
Example 2: Composition for babies born via caesarean section
An infant formula was prepared comprising per 100 g dry material: protein (80% casein and 20% whey) 13 g; vegetable fat 25.5 g; lactose 42.25 g; maltodextrin 16 g; minerals 3 g; vitamins 0.25 g.
Vegetable fat was added to cow's milk heated at 75 °C. The mixture was homogenised in two stages, the first one at 200 kg.s/cm2, the second at 50 kg.s/cm2. Aqueous solutions of lactose and maltodextrin and vitamins and minerals were added. The composition was pasteurised at 115°C and concentrated by evaporation to 48% dry material. The concentrate was cooled to 37°C and inoculated with 5% of a culture of B. breve 1 -2219 containing 109 bacteria/ml and incubated for 8 h at 37°C. Subsequently the concentrate was pasteurized again.
The concentrate was spray dried and adding 14O g per litre water provided a reconstituted infant milk formula. Non-digestible oligosaccharides were included to result in 0.72 g beta- galacto -oligosaccharides and 0.08 g inulin per 100 ml ready to drink formula. The package and/or supporting material accompanying the product indicates that the product can suitably be used to a) stimulate intestinal colonisation with beneficial bacteria, b) prevent and/or treat infection in infants delivered via caesarean section; and/or c) prevent and/or treat allergy in infants delivered via caesarean section. Example 3: Composition for babies born via caesarean section
An infant formula comprising protein 21 g/1, fat 24 g/1, carbohydrates 83 g/1, non-digestible oligosaccharides 8 g/1, minerals 5 g/1, vitamins 0.45 g/1 was prepared.
Fat was added to UHT sterilised milk at 70°C and the mixture was homogenised in two stages, the first one at 200 kg/cm2, the second at 50 kg/cm2. At 37°C the mixture was inoculated with 1.5% of a culture of B. breve 1 -2219 containing 1 to 5 x 109 bacteria/ml and incubated for 8 h at 37°C. The mixture was then cooled to 5°C. The rest of the ingredients were dissolved in water and added to the resulting product. The composition comprised per 100 ml ready to drink formula 0.72 g beta-galacto -oligosaccharides and 0.08 g long chain and/or short chain inulin.
The resulting mixture was UHT sterilised at 140°C for 6 to 7 seconds and aseptically packed.

Claims

1 A nutritional composition comprising a. a milk-derived product, said milk-derived product being a milk substrate that is fermented by lactic acid producing bacteria and said milk substrate comprising at least one selected from the group consisting of milk, whey, whey protein, whey protein hydro lysate, casein, casein hydro lysate and/or lactose, b. less than 103 cfu lactic acid producing bacteria per g dry weight of the composition, and c. at least two non-digestible oligosaccharide selected from the group consisting of fructo-oligosaccharides, galacto -oligosaccharides, gluco-oligosaccharides, arabino-oligosaccharides, mannan-oligosaccharides, xylo -oligosaccharides, fuco-oligosaccharides, arabinogalacto-oligosaccharides, glucomanno- oligosaccharides, galactomanno-oligosaccharides, sialic acid comprising oligosaccharides and uronic acid oligosaccharides. for use in providing nutrition to an infant delivered via caesarean section.
2 A nutritional composition comprising a. a milk-derived product, said milk-derived product being a milk substrate that is fermented by lactic acid producing bacteria and said milk substrate comprising at least one selected from the group consisting of milk, whey , whey protein, whey protein hydro lysate, casein, casein hydro lysate and/or lactose, b. less than 103 cfu lactic acid producing bacteria per g dry weight of the composition, and c. at least two non-digestible oligosaccharide selected from the group consisting of fructo-oligosaccharides, galacto -oligosaccharides, gluco-oligosaccharides, arabino-oligosaccharides, mannan-oligosaccharides, xylo-oligosaccharides, fuco-oligosaccharides, arabinogalacto-oligosaccharides, glucomanno- oligosaccharides, galactomanno-oligosaccharides, sialic acid comprising oligosaccharides and uronic acid oligosaccharides.
3 Composition according to any of the preceding claims wherein said lactic acid producing bacteria comprises Bifidobacterium breve and/or Streptococcus thermophilus, preferably Bifidobacterium breve, more preferably B. breve CNCM I- 2219.
Composition according to any of the preceding claims wherein the composition comprises galacto-oligosaccharides and/or fructo-oligosaccharides.
Composition according to any one of the preceding claims wherein the composition comprises 0.5 to 75 g of non-digestible oligosaccharide per 100 g dry weight of the composition.
Composition according to any one of the preceding claims wherein the composition comprises protein, carbohydrate and fat, wherein the protein provides 5 to 25 % of the total calories, the fat provides 25 to 60 % of the total calories and the digestible carbohydrate provides 30 to 70 % of the total calories.
Composition according to any of the preceding claims wherein the composition has a viscosity of 1 to 6 mPa.s at a shear rate of 95 s"1 at 20 0C.
Composition according to any of the proceeding claims wherein the milk-derived product is obtainable by a process comprising the steps of: a. inoculating lactic acid producing bacteria in an aqueous medium comprising milk substrate in amount of between IxIO2 to 5xlO10 cfu/ lactic acid producing bacteria ml, said aqueous medium having a pH of approximately between 4 and 8, and comprising at least one milk substrate selected from the group consisting of milk, whey, whey protein, whey protein hydrolysate, casein, casein hydrolysate, and/or lactose, b. incubating said mixture under aerobic or anaerobic conditions at a temperature of approximately 20 0C to 50 0C, for at least 2 h, and c. inactivating and/or physically removing living cells of lactic acid producing bacteria from the aqueous medium.
Composition according to any one of the preceding claims, wherein the composition is enterally administered to the caesarean section delivered infant within one week after birth. 10 Composition according to any of the preceding claims for use in the (i) treatment and/or prevention of a disorder in infants delivered via caesarean section and/or (ii) the stimulation of health in infants delivered via caesarean section.
11 Composition according to any of the preceding claims for use in the treatment of a disorder selected from the group consisting of allergy, eczema, asthma, infection and diarrhoea.
12 Composition according to any of the preceding claims for use in intestinal tolerance induction against lactic acid producing bacteria in caesarean section delivered infants, and/or for use in improving the colonisation of a microbiota rich in lactic acid producing bacteria in caesarean section delivered infants.
13 A nutritional composition comprising a. a milk-derived product, said milk-derived product being a milk substrate that is fermented by lactic acid producing bacteria and said milk substrate comprising at least one selected from the group consisting of milk, whey , whey protein, whey protein hydro lysate, casein, casein hydro lysate and/or lactose, and b. less than 103 cfu lactic acid producing bacteria per g dry weight of the composition, for use in the (i) treatment and/or prevention of a disorder in infants delivered via caesarean section and/or (ii) the stimulation of health in infants delivered via caesarean section.
14 A nutritional composition comprising a. a milk-derived product, said milk-derived product being a milk substrate that is fermented by lactic acid producing bacteria and said milk substrate comprising at least one selected from the group consisting of milk, whey , whey protein, whey protein hydro lysate, casein, casein hydro lysate and/or lactose, and b. less than 103 cfu lactic acid producing bacteria per g dry weight of the composition, for use in the treatment of a disorder selected from the group consisting of allergy, eczema, asthma, infection and diarrhoea in infants delivered via caesarean section. A nutritional composition comprising a. a milk-derived product, said milk-derived product being a milk substrate that is fermented by lactic acid producing bacteria and said milk substrate comprising at least one selected from the group consisting of milk, whey , whey protein, whey protein hydro lysate, casein, casein hydro lysate and/or lactose, and b. less than 103 cfu lactic acid producing bacteria per g dry weight of the composition, for use in intestinal tolerance induction against lactic acid producing bact eria in caesarean section delivered infants, and/or for use in improving the colonisation of a microbiota rich in lactic acid producing bacteria in caesarean section delivered infants.
The composition according to any of claims 13-15, wherein said lactic acid producing bacteria comprises Bifidobacterium breve and/or Streptococcus thermophilus, preferably Bifidobacterium breve, more preferably B. breve CNCM 1-2219.
Composition according to any of claim 13-16 wherein the milk-derived product is obtainable by a process comprising the steps of: a. inoculating lactic acid producing bacteria in an aqueous medium comprising milk substrate in amount of between IxIO2 to 5xlO10 cfu/ lactic acid producing bacteria ml, said aqueous medium having a pH of approximately between 4 and 8, and comprising at least one milk substrate selected from the group consisting of milk, whey, whey protein, whey protein hydrolysate, casein, casein hydrolysate, and/or lactose, b. incubating said mixture under aerobic or anaerobic conditions at a temperature of approximately 20 0C to 50 0C, for at least 2 h, and c. inactivating and/or physically removing living cells of lactic acid producing bacteria from the aqueous medium.
The composition according to any of claims 13-17, further comprising protein, carbohydrate and fat, wherein the protein provides 5 to 25 % of the total calories, the fat provides 25 to 60 % of the total calories and the digestible carbohydrate provides 30 to 70 % of the total calories. The composition according to any of claims 13-18, further comprising at least one non-digestible oligosaccharide selected from the group consisting of fructo- oligosaccharides, galacto -oligosaccharides, gluco-oligosaccharides, arabino- oligosaccharides, mannan-oligosaccharides, xylo -oligosaccharides, fuco- oligosaccharides, arabinogalacto-oligosaccharides, glucomanno-oligosaccharides, galactomanno-oligosaccharides, sialic acid comprising oligosaccharides and uronic acid oligosaccharides.
The composition according to claim 19 wherein the non-digestible oligosaccharide is selected from the group consisting of galacto -oligosaccharides and fructo- oligosaccharides.
The composition according to claim 19 or 20, comprising 0.5 to 75 g of non-digestible oligosaccharide per 100 g dry weight of the composition.
PCT/NL2008/050375 2008-06-13 2008-06-13 Nutritional composition for infants delivered via caesarean section WO2009151315A1 (en)

Priority Applications (31)

Application Number Priority Date Filing Date Title
PCT/NL2008/050375 WO2009151315A1 (en) 2008-06-13 2008-06-13 Nutritional composition for infants delivered via caesarean section
SI200931354T SI2285387T1 (en) 2008-06-13 2009-06-12 Nutrition for prevention of infections
EP09762712A EP2293803A1 (en) 2008-06-13 2009-06-12 Immune system stimulating nutrition
PL09762710T PL2285387T3 (en) 2008-06-13 2009-06-12 Nutrition for prevention of infections
PCT/NL2009/050332 WO2009151330A1 (en) 2008-06-13 2009-06-12 Nutritional composition for infants delivered via caesarean section
CN200980131512.9A CN102123715B (en) 2008-06-13 2009-06-12 Immune system stimulating nutrition
BRPI0915149-4A BRPI0915149B1 (en) 2008-06-13 2009-06-12 NUTRITIONAL COMPOSITION, AND USES OF A COMPOSITION, AND OF A MILK-PRODUCED PRODUCT
ARP090102157A AR072142A1 (en) 2008-06-13 2009-06-12 NUTRITION TO PREVENT INFECTIONS.PROCESS. COMPOSITION. USE.
EP09762711.1A EP2293677B1 (en) 2008-06-13 2009-06-12 Nutritional composition for infants delivered via caesarean section
EP17205129.4A EP3326633A1 (en) 2008-06-13 2009-06-12 Immune system stimulating nutrition
ES09762710.3T ES2558960T3 (en) 2008-06-13 2009-06-12 Nutritional composition for infection prevention
PT97627103T PT2285387E (en) 2008-06-13 2009-06-12 Nutrition for prevention of infections
ES09762711.1T ES2656776T3 (en) 2008-06-13 2009-06-12 Nutritional composition for babies born by caesarean section
PCT/NL2009/050330 WO2009151329A1 (en) 2008-06-13 2009-06-12 Nutrition for prevention of infections
EP09762710.3A EP2285387B1 (en) 2008-06-13 2009-06-12 Nutrition for prevention of infections
ARP090102156A AR072141A1 (en) 2008-06-13 2009-06-12 NUTRITIONAL COMPOSITION FOR CHILDREN BORN BY CESAREA
PCT/NL2009/050333 WO2009151331A1 (en) 2008-06-13 2009-06-12 Immune system stimulating nutrition
US12/997,537 US20110117077A1 (en) 2008-06-13 2009-06-12 Nutritional composition for infants delivered via caesarean section
PL09762711T PL2293677T3 (en) 2008-06-13 2009-06-12 Nutritional composition for infants delivered via caesarean section
HUE09762710A HUE028390T2 (en) 2008-06-13 2009-06-12 Nutrition for prevention of infections
CN2009801222425A CN102065867A (en) 2008-06-13 2009-06-12 Nutrition for prevention of infections
RU2011100828/15A RU2543634C2 (en) 2008-06-13 2009-06-12 Nutrition that stimulates immune system
DK09762710.3T DK2285387T3 (en) 2008-06-13 2009-06-12 Nutrition for preventing infections
ARP090102151A AR078014A1 (en) 2008-06-13 2009-06-12 PROCESS FOR THE MANUFACTURE OF AN IMMUNE SYSTEM STIMULATING NUTRITIONAL COMPOSITION
US12/997,541 US20110097437A1 (en) 2008-06-13 2009-06-12 Nutrition for prevention of infections
CN200980131387.1A CN102118976B (en) 2008-06-13 2009-06-12 Nutritional composition for infants delivered via caesarean section
RU2011100829/10A RU2498605C2 (en) 2008-06-13 2009-06-12 Nutritional composition for babies born by cesarean section
US12/997,527 US20110182934A1 (en) 2008-06-13 2009-06-12 Immune system stimulating nutrition
US14/952,440 US20160206658A1 (en) 2008-06-13 2015-11-25 Nutrition for prevention of infections
US15/278,475 US20170173104A1 (en) 2008-06-13 2016-09-28 Nutritional composition for infants delivered via caesarean section
US15/406,361 US10124016B2 (en) 2008-06-13 2017-01-13 Immune system stimulating nutrition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/NL2008/050375 WO2009151315A1 (en) 2008-06-13 2008-06-13 Nutritional composition for infants delivered via caesarean section

Publications (1)

Publication Number Publication Date
WO2009151315A1 true WO2009151315A1 (en) 2009-12-17

Family

ID=40032486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/NL2008/050375 WO2009151315A1 (en) 2008-06-13 2008-06-13 Nutritional composition for infants delivered via caesarean section

Country Status (1)

Country Link
WO (1) WO2009151315A1 (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011149335A1 (en) * 2010-05-25 2011-12-01 N.V. Nutricia Immune imprinting nutritional composition
WO2011151060A1 (en) * 2010-06-04 2011-12-08 N.V. Nutricia Non-digestible oligosaccharides for oral induction of tolerance against dietary proteins
CN103734318A (en) * 2013-12-16 2014-04-23 明一国际营养品集团有限公司 High reducibility milk protein proportion infant formula milk and preparation technology
WO2016013935A1 (en) * 2014-07-24 2016-01-28 N.V. Nutricia Prevention or treatment of food allergy in infants and toddlers
EP3097791A1 (en) * 2010-06-04 2016-11-30 N.V. Nutricia Non-digestible oligosaccharides for oral induction of tolerance against dietary proteins
US9854826B2 (en) 2010-11-23 2018-01-02 Nestec S.A. Oligosaccharide mixture and food product comprising this mixture, especially infant formula
US10322151B2 (en) 2015-06-15 2019-06-18 4D Pharma Research Limited Compositions comprising bacterial strains
US10357506B2 (en) 2013-11-15 2019-07-23 Nestec S.A. Compositions for use in the prevention or treatment of URT infections in infants or young children at risk
US10391130B2 (en) 2015-06-15 2019-08-27 4D Pharma Research Limited Compositions comprising bacterial strains
US10391128B2 (en) 2015-11-23 2019-08-27 4D Pharma Research Limited Compositions comprising bacterial strains
US10456444B2 (en) 2014-12-23 2019-10-29 4D Pharma Research Limited Pirin polypeptide and immune modulation
US10471108B2 (en) 2015-11-20 2019-11-12 4D Pharma Research Limited Compositions comprising bacterial strains
US10485830B2 (en) 2016-12-12 2019-11-26 4D Pharma Plc Compositions comprising bacterial strains
US10493112B2 (en) 2015-06-15 2019-12-03 4D Pharma Research Limited Compositions comprising bacterial strains
US10500237B2 (en) 2015-06-15 2019-12-10 4D Pharma Research Limited Compositions comprising bacterial strains
US10583158B2 (en) 2016-03-04 2020-03-10 4D Pharma Plc Compositions comprising bacterial strains
US10610548B2 (en) 2016-07-13 2020-04-07 4D Pharma Plc Compositions comprising bacterial strains
US10610550B2 (en) 2015-11-20 2020-04-07 4D Pharma Research Limited Compositions comprising bacterial strains
US10729733B2 (en) 2013-05-10 2020-08-04 H.J. Heinz Company Brands Llc Probiotics and methods of use
US10736926B2 (en) 2015-06-15 2020-08-11 4D Pharma Research Limited Compositions comprising bacterial strains
US10744166B2 (en) 2015-11-23 2020-08-18 4D Pharma Research Limited Compositions comprising bacterial strains
US10851137B2 (en) 2013-04-10 2020-12-01 4D Pharma Research Limited Polypeptide and immune modulation
US10987387B2 (en) 2017-05-24 2021-04-27 4D Pharma Research Limited Compositions comprising bacterial strain
US11007233B2 (en) 2017-06-14 2021-05-18 4D Pharma Research Limited Compositions comprising a bacterial strain of the genus Megasphera and uses thereof
US11013773B2 (en) 2011-07-14 2021-05-25 4D Pharma Research Limited Lactic acid bacterial strains
US11109603B2 (en) 2011-06-20 2021-09-07 H.J. Heinz Company Brands Llc Probiotic compositions and methods
US11123379B2 (en) 2017-06-14 2021-09-21 4D Pharma Research Limited Compositions comprising bacterial strains
US11123378B2 (en) 2017-05-22 2021-09-21 4D Pharma Research Limited Compositions comprising bacterial strains
US11224620B2 (en) 2016-07-13 2022-01-18 4D Pharma Plc Compositions comprising bacterial strains
US11266698B2 (en) 2011-10-07 2022-03-08 4D Pharma Research Limited Bacterium for use as a probiotic for nutritional and medical applications
US11723933B2 (en) 2014-12-23 2023-08-15 Cj Bioscience, Inc. Composition of bacteroides thetaiotaomicron for immune modulation

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1364586A1 (en) * 2002-05-24 2003-11-26 Nestec S.A. Probiotics and oral tolerance
US20040072794A1 (en) * 2002-10-11 2004-04-15 Wyeth Nutritional formulations containing synbiotic substances
EP1597978A1 (en) * 2004-05-17 2005-11-23 Nutricia N.V. Synergism of GOS and polyfructose
US20060018890A1 (en) * 2004-07-01 2006-01-26 Erika Isolauri Method for preventing or treating respiratory infections and acute otitis media in infants
WO2006087391A1 (en) * 2005-02-21 2006-08-24 Nestec S.A. Oligosaccharide mixture
US20060233773A1 (en) * 2005-04-15 2006-10-19 Udo Herz Method for preventing or treating the development of respiratory allergies
EP1776877A1 (en) * 2005-10-21 2007-04-25 N.V. Nutricia Method for stimulating the intestinal flora

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1364586A1 (en) * 2002-05-24 2003-11-26 Nestec S.A. Probiotics and oral tolerance
US20040072794A1 (en) * 2002-10-11 2004-04-15 Wyeth Nutritional formulations containing synbiotic substances
EP1597978A1 (en) * 2004-05-17 2005-11-23 Nutricia N.V. Synergism of GOS and polyfructose
US20060018890A1 (en) * 2004-07-01 2006-01-26 Erika Isolauri Method for preventing or treating respiratory infections and acute otitis media in infants
WO2006087391A1 (en) * 2005-02-21 2006-08-24 Nestec S.A. Oligosaccharide mixture
US20060233773A1 (en) * 2005-04-15 2006-10-19 Udo Herz Method for preventing or treating the development of respiratory allergies
EP1776877A1 (en) * 2005-10-21 2007-04-25 N.V. Nutricia Method for stimulating the intestinal flora
WO2007045502A1 (en) * 2005-10-21 2007-04-26 N.V. Nutricia Method for stimulating the intestinal flora

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Life Start Dairy", INTERNET CITATION, February 2006 (2006-02-01), XP002369353 *
FANARO SILVIA ET AL: "Galacto-oligosaccharides and long-chain fructo-oligosaccharides as prebiotics in infant formulas: a review", ACTA PAEDIATRICA, vol. 94, no. S449, October 2005 (2005-10-01), OSLO, NORWAY, pages 22 - 26, XP002506654, ISSN: 0803-5326 *
GR\NLUND M M ET AL: "FECAL MICROFLORA IN HEALTHY INFANTS BORN BY DIFFERENT METHODS OF DELIVERY: PERMANENT CHANGES IN INTESTINAL FLORA AFTER CESAREAN DELIVERY", JOURNAL OF PEDIATRIC GASTROENTEROLOGY AND NUTRITION, RAVEN PRESS, NEW YORK, NY, US, vol. 28, no. 1, January 1999 (1999-01-01), pages 19 - 25, XP009084526, ISSN: 0277-2116 *
HEYMAN M ET AL: "Effects of specific lactic acid bacteria on the intestinal permeability to macromolecules and the inflammatory condition", ACTA PAEDIATRICA, UNIVERSITETSFORLAGET, OSLO, NO, vol. 94, no. Suppl. 449, 1 October 2005 (2005-10-01), pages 34 - 36, XP002480544, ISSN: 0803-5253 *
KIRJAVAINEN P V ET AL: "Probiotic bacteria in the management of atopic disease: Underscoring the importance of viability", JOURNAL OF PEDIATRIC GASTROENTEROLOGY AND NUTRITION, RAVEN PRESS, NEW YORK, NY, US, vol. 36, no. 2, 1 January 2003 (2003-01-01), pages 223 - 227, XP009100997, ISSN: 0277-2116 *
MCVAY MARCENE R ET AL: "Formula fortified with live probiotic culture reduces pulmonary and gastrointestinal bacterial colonization and translocation in a newborn animal model", JOURNAL OF PEDIATRIC SURGERY JAN 2008, vol. 43, no. 1, January 2008 (2008-01-01), pages 25 - 29, XP002506653, ISSN: 1531-5037 *

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011149345A1 (en) * 2010-05-25 2011-12-01 N.V. Nutricia Immune imprinting nutritional composition
WO2011149335A1 (en) * 2010-05-25 2011-12-01 N.V. Nutricia Immune imprinting nutritional composition
WO2011151060A1 (en) * 2010-06-04 2011-12-08 N.V. Nutricia Non-digestible oligosaccharides for oral induction of tolerance against dietary proteins
US9060996B2 (en) 2010-06-04 2015-06-23 N.V. Nutricia Non-digestible oligosaccharides for oral induction of tolerance against dietary proteins
US20160129024A1 (en) * 2010-06-04 2016-05-12 N.V. Nutricia Non-digestible oligosaccharides for oral induction of tolerance against dietary proteins
EP3097791A1 (en) * 2010-06-04 2016-11-30 N.V. Nutricia Non-digestible oligosaccharides for oral induction of tolerance against dietary proteins
US9770460B2 (en) * 2010-06-04 2017-09-26 N.V. Nutricia Non-digestible oligosaccharides for oral induction of tolerance against dietary proteins
US9854826B2 (en) 2010-11-23 2018-01-02 Nestec S.A. Oligosaccharide mixture and food product comprising this mixture, especially infant formula
US10716321B2 (en) 2010-11-23 2020-07-21 Societe Des Produits Nestle S.A. Oligosaccharide mixture and food product comprising same
US11109603B2 (en) 2011-06-20 2021-09-07 H.J. Heinz Company Brands Llc Probiotic compositions and methods
US11771102B2 (en) 2011-06-20 2023-10-03 H.J. Heinz Company Brands Llc Probiotic compositions and methods
US11013773B2 (en) 2011-07-14 2021-05-25 4D Pharma Research Limited Lactic acid bacterial strains
US11266698B2 (en) 2011-10-07 2022-03-08 4D Pharma Research Limited Bacterium for use as a probiotic for nutritional and medical applications
US10851137B2 (en) 2013-04-10 2020-12-01 4D Pharma Research Limited Polypeptide and immune modulation
US11414463B2 (en) 2013-04-10 2022-08-16 4D Pharma Research Limited Polypeptide and immune modulation
US10729733B2 (en) 2013-05-10 2020-08-04 H.J. Heinz Company Brands Llc Probiotics and methods of use
EP3111942B1 (en) 2013-11-15 2021-01-06 Société des Produits Nestlé S.A. Compositions for use in the prevention or treatment of urt infections in infants or young children at risk
US11419885B2 (en) 2013-11-15 2022-08-23 Societe Des Produits Nestle S.A. Compositions for use in the prevention or treatment of URT infections in infants or young children at risk
EP3068404B1 (en) 2013-11-15 2021-01-06 Société des Produits Nestlé S.A. Compositions for use in the prevention or treatment of urt infections in infants or young children at risk
US10357506B2 (en) 2013-11-15 2019-07-23 Nestec S.A. Compositions for use in the prevention or treatment of URT infections in infants or young children at risk
CN103734318A (en) * 2013-12-16 2014-04-23 明一国际营养品集团有限公司 High reducibility milk protein proportion infant formula milk and preparation technology
WO2016013935A1 (en) * 2014-07-24 2016-01-28 N.V. Nutricia Prevention or treatment of food allergy in infants and toddlers
US11723933B2 (en) 2014-12-23 2023-08-15 Cj Bioscience, Inc. Composition of bacteroides thetaiotaomicron for immune modulation
US10973872B2 (en) 2014-12-23 2021-04-13 4D Pharma Research Limited Pirin polypeptide and immune modulation
US10456444B2 (en) 2014-12-23 2019-10-29 4D Pharma Research Limited Pirin polypeptide and immune modulation
US10500237B2 (en) 2015-06-15 2019-12-10 4D Pharma Research Limited Compositions comprising bacterial strains
US10736926B2 (en) 2015-06-15 2020-08-11 4D Pharma Research Limited Compositions comprising bacterial strains
US10744167B2 (en) 2015-06-15 2020-08-18 4D Pharma Research Limited Compositions comprising bacterial strains
US11273185B2 (en) 2015-06-15 2022-03-15 4D Pharma Research Limited Compositions comprising bacterial strains
US10780134B2 (en) 2015-06-15 2020-09-22 4D Pharma Research Limited Compositions comprising bacterial strains
US11331352B2 (en) 2015-06-15 2022-05-17 4D Pharma Research Limited Compositions comprising bacterial strains
US10864236B2 (en) 2015-06-15 2020-12-15 4D Pharma Research Limited Compositions comprising bacterial strains
US11389493B2 (en) 2015-06-15 2022-07-19 4D Pharma Research Limited Compositions comprising bacterial strains
US11433106B2 (en) 2015-06-15 2022-09-06 4D Pharma Research Limited Compositions comprising bacterial strains
US10493112B2 (en) 2015-06-15 2019-12-03 4D Pharma Research Limited Compositions comprising bacterial strains
US10391130B2 (en) 2015-06-15 2019-08-27 4D Pharma Research Limited Compositions comprising bacterial strains
US11040075B2 (en) 2015-06-15 2021-06-22 4D Pharma Research Limited Compositions comprising bacterial strains
US10322151B2 (en) 2015-06-15 2019-06-18 4D Pharma Research Limited Compositions comprising bacterial strains
US10471108B2 (en) 2015-11-20 2019-11-12 4D Pharma Research Limited Compositions comprising bacterial strains
US11058732B2 (en) 2015-11-20 2021-07-13 4D Pharma Research Limited Compositions comprising bacterial strains
US10610550B2 (en) 2015-11-20 2020-04-07 4D Pharma Research Limited Compositions comprising bacterial strains
US10744166B2 (en) 2015-11-23 2020-08-18 4D Pharma Research Limited Compositions comprising bacterial strains
US10391128B2 (en) 2015-11-23 2019-08-27 4D Pharma Research Limited Compositions comprising bacterial strains
US10583158B2 (en) 2016-03-04 2020-03-10 4D Pharma Plc Compositions comprising bacterial strains
US10610549B2 (en) 2016-07-13 2020-04-07 4D Pharma Plc Composition comprising bacterial strains
US10960031B2 (en) 2016-07-13 2021-03-30 4D Pharma Plc Compositions comprising bacterial strains
US11224620B2 (en) 2016-07-13 2022-01-18 4D Pharma Plc Compositions comprising bacterial strains
US10967010B2 (en) 2016-07-13 2021-04-06 4D Pharma Plc Compositions comprising bacterial strains
US10610548B2 (en) 2016-07-13 2020-04-07 4D Pharma Plc Compositions comprising bacterial strains
US10898526B2 (en) 2016-12-12 2021-01-26 4D Pharma Plc Compositions comprising bacterial strains
US10485830B2 (en) 2016-12-12 2019-11-26 4D Pharma Plc Compositions comprising bacterial strains
US10543238B2 (en) 2016-12-12 2020-01-28 4D Pharma Plc Compositions comprising bacterial strains
US11382936B2 (en) 2017-05-22 2022-07-12 4D Pharma Research Limited Compositions comprising bacterial strains
US11123378B2 (en) 2017-05-22 2021-09-21 4D Pharma Research Limited Compositions comprising bacterial strains
US11376284B2 (en) 2017-05-22 2022-07-05 4D Pharma Research Limited Compositions comprising bacterial strains
US10987387B2 (en) 2017-05-24 2021-04-27 4D Pharma Research Limited Compositions comprising bacterial strain
US11007233B2 (en) 2017-06-14 2021-05-18 4D Pharma Research Limited Compositions comprising a bacterial strain of the genus Megasphera and uses thereof
US11660319B2 (en) 2017-06-14 2023-05-30 4D Pharma Research Limited Compositions comprising bacterial strains
US11123379B2 (en) 2017-06-14 2021-09-21 4D Pharma Research Limited Compositions comprising bacterial strains
US11779613B2 (en) 2017-06-14 2023-10-10 Cj Bioscience, Inc. Compositions comprising a bacterial strain of the genus Megasphera and uses thereof

Similar Documents

Publication Publication Date Title
EP2293677B1 (en) Nutritional composition for infants delivered via caesarean section
RU2762984C2 (en) Method for stimulating intestinal flora
WO2009151315A1 (en) Nutritional composition for infants delivered via caesarean section
US20110150851A1 (en) Nutritional composition for infants delivered via caesarean section
US10092606B2 (en) Synbiotic mixture
NZ582264A (en) Nutrition with non-viable bifidobacterium and non-digestible oligosaccharide
EP2418969B1 (en) Anti-reflux infant nutrition
US20160206658A1 (en) Nutrition for prevention of infections

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08766798

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08766798

Country of ref document: EP

Kind code of ref document: A1