WO2009147922A1 - Optical switch - Google Patents

Optical switch Download PDF

Info

Publication number
WO2009147922A1
WO2009147922A1 PCT/JP2009/058690 JP2009058690W WO2009147922A1 WO 2009147922 A1 WO2009147922 A1 WO 2009147922A1 JP 2009058690 W JP2009058690 W JP 2009058690W WO 2009147922 A1 WO2009147922 A1 WO 2009147922A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
optical switch
temperature
electro
region
Prior art date
Application number
PCT/JP2009/058690
Other languages
French (fr)
Japanese (ja)
Inventor
修 石橋
藤男 奥村
雅彦 太田
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2010515813A priority Critical patent/JP5187396B2/en
Publication of WO2009147922A1 publication Critical patent/WO2009147922A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/292Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection by controlled diffraction or phased-array beam steering
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0147Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on thermo-optic effects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/124Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode interdigital
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/21Thermal instability, i.e. DC drift, of an optical modulator; Arrangements or methods for the reduction thereof

Definitions

  • the present invention relates to an optical switch that switches between reflection and transmission of incident light by applying an electric field to an electro-optic crystal.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2006-293018
  • This light modulation device has a resonator structure in which an optical crystal plate made of an electro-optic crystal is sandwiched between a first reflective layer and a second reflective layer.
  • First and second electrodes are formed on the surface of the optical crystal plate.
  • the first and second electrodes are comb-shaped electrodes in which a plurality of linear electrodes are arranged in parallel at equal intervals, and linear electrodes corresponding to the comb teeth are alternately arranged.
  • the incident light is repeatedly reflected in the resonator (the first reflective layer and the second reflective layer), and then emitted outward from the surface of the first reflective layer.
  • the refractive index of the optical crystal plate changes due to the electric field.
  • the resonance wavelength of the resonator shifts to a longer wavelength side than before the change of the refractive index, and as a result, the reflectance of the resonator changes.
  • the intensity of the output light from the resonator is proportional to the reflectance of the resonator. Therefore, the intensity of the output light of the resonator can be changed by applying a voltage between the first and second electrodes to change the reflectance of the resonator. Thereby, light modulation becomes possible.
  • An object of the present invention is to provide an optical switch that can solve the above-mentioned problems.
  • an optical switch includes an electrode part in an electro-optic crystal, and reflects and transmits light incident on the electro-optic crystal by controlling voltage supply to the electrode part.
  • FIG. 1B is a cross-sectional view taken along line AA in FIG. 1A. It is a schematic diagram which shows the refractive index change area
  • FIG. 4B is a cross-sectional view taken along line AA in FIG. 4A. It is a schematic diagram which shows the positional relationship of the electrode part in the advancing direction of incident light.
  • FIG. 6B is a cross-sectional view taken along line AA in FIG. 6A.
  • FIG. 6B is a cross-sectional view taken along line BB in FIG. 6A. It is a figure for demonstrating the temperature control function of the optical switch which is the 3rd Embodiment of this invention.
  • FIG. 7B is a cross-sectional view taken along line AA in FIG. 7A.
  • FIG. 7B is a cross-sectional view taken along line BB in FIG. 7A. It is a top view of the optical switch which is the 5th Embodiment of this invention.
  • FIG. 8B is a cross-sectional view taken along line AA in FIG. 8A.
  • FIG. 8B is a sectional view taken along line BB in FIG. 8A.
  • It is a figure for demonstrating the temperature control function of the optical switch which is the 5th Embodiment of this invention.
  • It is sectional process drawing for demonstrating the electrode formation method of the optical switch of the 1st Embodiment of this invention.
  • It is sectional process drawing for demonstrating the electrode formation method of the optical switch of the 1st Embodiment of this invention.
  • It is sectional process drawing for demonstrating the electrode formation method of the optical switch of the 1st Embodiment of this invention.
  • FIG. 1A is a top view of the optical switch according to the first embodiment of the present invention
  • FIG. 1B is a sectional view taken along line AA in FIG. 1A.
  • the optical switch has a structure in which an optical crystal plate 10 and an optical crystal plate 11 having electrode portions 13a and 13b formed on the surface are laminated.
  • the optical crystal plates 10 and 11 are made of a crystal having an electro-optic effect (electro-optic crystal).
  • Each of the electrode portions 13a and 13b is a comb-shaped electrode having a plurality of linear electrodes arranged at equal intervals and having a main cross section having the maximum area in the same plane.
  • the linear electrodes are alternately arranged, and the intervals between the linear electrodes are equal.
  • the optical crystal plate 10 is affixed to the surface of the optical crystal plate 11 so as to cover the portion where the linear electrodes corresponding to the comb teeth of the electrode portions 13a and 13b are formed. Note that the intervals between the linear electrodes are not only in a state where the distances between the linear electrodes are completely matched, but also in a state where the spacing between the linear electrodes is shifted due to a manufacturing error or the like. Is also included. That is, the distance between the linear electrodes may be equal so that a refractive index change region for reflecting incident light can be formed.
  • FIG. 1A is a perspective view showing a state in which the electrode portions 13a and 13b formed on the surface of the optical crystal plate 11 are viewed from the optical crystal plate 10 side.
  • the region where the linear electrodes of the electrode portions 13a and 13b are alternately arranged is long in the width direction of the linear electrode.
  • the shape electrode has a shorter length direction.
  • Void portions 1a and 1b are formed along both ends in the longitudinal direction of the electrode forming region.
  • the gaps 1a and 1b are cavities that have a square cross-sectional shape and extend in a certain direction.
  • the depths, lengths, and widths of the gaps 1a and 1b are appropriately set in consideration of the size of crystal expansion and contraction due to electrostriction induced by the electric field from the electrode parts 13a and 13b.
  • the depth and length of the gaps 1a and 1b are set to be substantially the same as the depth and length of the linear electrode.
  • An optical switch is formed by laminating the optical crystal plates 10 and 11 shown in FIGS. 1A and 1B under high temperature and high pressure.
  • the optical crystal plates 10 and 11 bonded together under high temperature and high pressure can be regarded as one optical crystal (specifically, an electro-optical crystal). That is, by bonding the optical crystal plates 10 and 11 under high temperature and high pressure, an electro-optical crystal having an electrode portion therein can be formed.
  • FIG. 2 schematically shows a refractive index change region formed in the electrode vicinity region including the electrode portions 13a and 13b.
  • a voltage is applied between the electrode portions 13a and 13b, an electric field is generated between adjacent linear electrodes, and the refractive index of the crystal in the electrode vicinity region including each linear electrode changes due to the electric field.
  • the region where the refractive index has changed is the refractive index changing region 16 shown in FIG.
  • Incident light is totally reflected at the interface (refractive index interface) between the refractive index changing region 16 and the surrounding crystal region.
  • the incident angle of the incident light is desirably set so as to satisfy a condition that allows total reflection at the interface.
  • FIG. 2 shows a state in which incident light enters the refractive index change region from the left side toward the drawing and the reflected light goes to the right side.
  • Is preferably configured so that it enters the refractive index change region from the front side (or back side) toward the drawing and the reflected light goes to the back side (or front side).
  • the electrode when an opaque material is used as the electrode, the electrode itself blocks a part of the incident light, so that the light use efficiency is reduced accordingly.
  • the use efficiency of light can be improved by making an electrode into a transparent electrode.
  • the refractive index change region 16 When a voltage is applied to the electrode portions 13a and 13b, the refractive index change region 16 is formed, so that the incident light is totally reflected at the interface of the refractive index change region 16. On the other hand, when the supply of voltage to the electrode portions 13a and 13b is stopped, the refractive index changing region 16 is not formed, and the incident light passes through the electrode portions 13a and 13b as it is.
  • the optical switch can be switched between a first state in which incident light is reflected and a second state in which incident light is transmitted.
  • a voltage is applied to the electrode portions 13a and 13b to form a refractive index change region, and incident light is reflected at the refractive index interface of the refractive index change region.
  • the second state voltage supply to the electrode portions 13a and 13b is stopped. Since the refractive index change due to the electro-optic effect does not occur in the region including the electrode portions 13a and 13b by stopping the voltage supply, the incident light is transmitted between the electrode portions 13a and 13b.
  • the crystal stretches due to electrostriction. Crystal expansion and contraction due to electrostriction occurs in each of the length direction, the width direction, and the thickness direction of the electrode formation region including the electrode portions 13a and 13b. Larger than the direction of.
  • the gap portions 1a and 1b are formed along both end portions in the length direction of the electrode formation region, and stress generated by expansion and contraction in the length direction of the electrode formation region is caused by the gap portions 1a and 1b. Absorbed. Thereby, generation
  • the crystal expansion and contraction caused by electrostriction is greatest in the length direction of the electrode formation region, and the gaps 1a and 1b are formed in the length direction of the electrode formation region. It is provided at both ends. Thereby, the stress produced by crystal expansion and contraction can be absorbed efficiently.
  • the void portion may be provided at one of the end portions in the length direction of the electrode formation region as long as crystal breakage can be reliably suppressed.
  • the number of gaps provided for one end may be two or more.
  • a plurality of gaps 1a and 1b may be arranged in parallel in the longitudinal direction of the electrode formation region.
  • a material softer than the electrode material of the electrode portions 13a and 13b may be filled in the gap portion.
  • the thickness of the gap is the thickness of the refractive index change region formed by applying a voltage to the electrode portions 13a and 13b (or its thickness). It is desirable to set a value close to that).
  • the gaps 1a and 1b may be formed on both of the optical crystal plates 10 and 11.
  • the cross-sectional structure shown in FIG. 3 corresponds to the cross section taken along line AA in FIG. 1A.
  • the gap may be provided at each end of the electrode formation region.
  • FIG. 4A is a top view of an optical switch according to the second embodiment of the present invention
  • FIG. 4B is a cross-sectional view taken along line AA in FIG. 4A.
  • the optical switch includes an optical crystal plate 10, an optical crystal plate 11 having electrode portions 13a and 13b formed on the surface, and an optical crystal having electrode portions 14a and 14b formed on the surface. It has a structure in which the plate 12 is laminated.
  • the optical crystal plates 10 to 12 are made of crystals having an electro-optic effect.
  • gaps 1a and 1b are formed at both ends in the longitudinal direction of the electrode forming region including the electrode parts 13a and 13b. These electrode portions 13a and 13b and the gap portions 1a and 1b are the same as those formed in the optical switch of the first embodiment.
  • the electrode portions 14a and 14b are comb electrodes similar to the electrode portions 13a and 13b, and the linear electrodes are alternately arranged.
  • the intervals between the linear electrodes of the electrode portions 14a and 14b are equal intervals, and are the same as the intervals between the linear electrodes of the electrode portions 13a and 13b.
  • gaps 2a and 2b are formed at both ends in the longitudinal direction of the electrode forming region including the electrode portions 14a and 14b.
  • the optical crystal plate 10 is attached to the surface of the optical crystal plate 11 so as to cover the portion where the linear electrodes corresponding to the comb teeth of the electrode portions 13a and 13b are formed.
  • the optical crystal plate 11 to which the optical crystal plate 10 is attached is attached to the surface of the optical crystal plate 12 so as to cover the portion where the linear electrodes corresponding to the comb teeth of the electrode portions 14a and 14b are formed.
  • FIG. 4A is a perspective view showing a state where the electrode portions 13a and 13b formed on the surface of the optical crystal plate 11 are viewed from the optical crystal plate 10 side.
  • the first electrode formation region composed of the electrode portions 13a and 13b is slightly shifted from the second electrode formation region composed of the electrode portions 14a and 14b. Is formed.
  • FIG. 4B when viewed from the direction perpendicular to the cross section of the optical crystal plates 10 to 12 cut along the line AA in FIG. 4A, the position of each linear electrode of the electrode portions 13a and 13b, and the electrode The positions of the linear electrodes of the portions 14a and 14b are the same.
  • first and second electrode forming regions are sequentially arranged in the traveling direction of the incident light. That is, the first and second electrode formation regions are located on the optical path.
  • the first and second electrode formation regions are electrode surfaces composed of a plurality of linear electrodes in the electrode portions of each region ( Alternatively, they are laminated so that the surfaces on which the electrode portions are formed are parallel to each other.
  • FIG. 5 is a schematic diagram showing the positional relationship between the electrode portions 13a and 13b and the electrode portions 14a and 14b in the traveling direction of incident light.
  • the cross section shown in FIG. 5 is a cross section taken along line BB of FIG. 4A.
  • the first electrode formation region composed of the electrode portions 13a and 13b and the second electrode formation region composed of the electrode portions 14a and 14b are sequentially arranged along the traveling direction of the incident light.
  • the linear electrodes of the electrode portions 13a and 13b overlap the linear electrodes of the electrode portions 14a and 14b.
  • An optical switch is formed by bonding the optical crystal plates 10 to 12 shown in FIGS. 4A and 4B under high temperature and high pressure.
  • the optical crystal plates 10 to 12 bonded together under high temperature and high pressure can be regarded as one optical crystal (specifically, an electro-optical crystal). That is, by bonding the optical crystal plates 10 to 12 under high temperature and high pressure, an electro-optical crystal having a plurality of electrode portions (a plurality of electrode formation regions) inside can be formed.
  • the electrode surface (or electrode forming surface) at an incident angle ⁇ .
  • the electrode surface (or electrode formation surface) is parallel to the interface (refractive index interface) between the refractive index changing region 16 and the surrounding crystal region shown in FIG. 2, and the incident angle ⁇ is Satisfying conditions that allow total reflection.
  • the incident angle is an angle formed by a perpendicular (normal line in the case of a curved surface) set up at an incident point of the electrode surface (or electrode forming surface) and an incident light beam.
  • the switching operation is performed by switching between a first state in which incident light is reflected and a second state in which incident light is transmitted.
  • a voltage is applied between the electrode portions 13a and 13b to form the first refractive index changing region
  • a voltage is applied between the electrode portions 14a and 14b to set the second refractive index changing region.
  • the incident light is reflected in these refractive index changing regions.
  • voltage supply to the electrode portions 13a and 13b and the electrode portions 14a and 14b is stopped. By stopping the voltage supply, the refractive index change due to the electro-optic effect does not occur in each of the electrode portions 13a and 13b and the electrode portions 14a and 14b, so that the incident light passes through these regions.
  • the refractive index interface of the refractive index changing region partially includes a region that does not satisfy the condition of total reflection, and a part of the incident light is transmitted through this region.
  • the range of the region that does not satisfy the total reflection condition depends on the interval between the linear electrodes and the magnitude of the applied voltage (the magnitude of the electric field).
  • incident light is reflected at the refractive index interface of the first refractive index change region formed by applying a voltage to the electrode portions 13a and 13b, and is further applied to the electrode portions 14a and 14b.
  • the light transmitted through the first refractive index changing region is reflected at the refractive index interface of the second refractive index changing region formed by applying a voltage.
  • the extinction ratio can be further improved by setting the number of electrode forming regions (the number of refractive index changing regions) formed along the traveling direction of incident light to three or more.
  • the number of electrode formation regions (refractive index changing regions) is increased, the number and capacity of the electrodes increase accordingly, which is not desirable from the viewpoint of power saving and miniaturization.
  • the number of electrode forming regions (refractive index changing regions) is desirably determined in consideration of the relationship between the extinction ratio and power saving and miniaturization.
  • the gap portions 1a and 1b are formed at both ends in the length direction of the electrode formation regions of the electrode portions 13a and 13b, and stress generated by expansion and contraction in the length direction of the electrode formation regions is absorbed by the gap portions 1a and 1b. Is done.
  • the gap portions 2a and 2b are formed at both ends in the length direction of the electrode formation regions of the electrode portions 14a and 14b, and the stress generated by the expansion and contraction in the length direction of the electrode formation region is the gap portion. Absorbed by 2a and 2b. This suppresses the occurrence of crystal breakage due to electrostriction.
  • FIG. 6A is a top view of an optical switch according to a third embodiment of the present invention
  • FIG. 6B is a cross-sectional view taken along line AA in FIG. 6A
  • FIG. 6C is a cross-sectional view taken along line BB in FIG. is there.
  • the optical switch according to the present embodiment is mainly different in the configuration of the gap from the configuration of the optical switch according to the first embodiment.
  • the structures of the electrode portions 13a and 13b are the same as the configuration of the optical switch of the first embodiment.
  • FIG. 6A is a perspective view of the state where the electrode portions 13a and 13b formed on the surface of the optical crystal plate 11 and the gap portion 1 provided around the electrode portions 13a and 13b are viewed from the optical crystal plate 10 side. Has been shown. As shown in FIG. 6A, when viewed from the direction perpendicular to the electrode surface, the gap 1 is provided so as to surround the electrode formation region in which the electrode portions 13a and 13b are formed.
  • the gap portion 1 intersects with the electrode portions 13a and 13b.
  • the cross-sectional shape of the space 1 where the gap 1 intersects the electrodes 13a and 13b is a C shape.
  • the gap 1 is filled with a metal material having a lower hardness (softer) than the electrode material of the electrode portions 13 a and 13 b, thereby forming a metal layer 4.
  • a metal material having a lower hardness (softer) than the electrode material of the electrode portions 13 a and 13 b
  • an insulating layer 10 a is formed between the electrode portion 13 a and the gap portion 1
  • an insulating layer 10 b is formed between the electrode portion 13 b and the gap portion 1.
  • etching is performed on a portion that intersects the electrode portion of the metal layer, and a material to be an insulating layer is deposited thereon, and a surface thereof is polished.
  • Layers 10a and 10b are formed.
  • the insulating layers 10a and 10b may be formed of any material as long as the electrode portions 13a and 13b and the metal layer 4 can be insulated.
  • the insulating layers 10 a and 10 b may be formed of the same material as the optical crystal plate 10.
  • a part of the metal layer 4 is exposed to the outside on the surface of the optical crystal plate 11 (the surface not covered with the optical crystal plate 10), and the temperature control element 3 is formed on the exposed surface.
  • the temperature control element 3 includes a thermoelectric conversion element typified by a Peltier element and a temperature sensor.
  • the thermoelectric conversion element is provided such that its heat generating surface is in contact with the exposed surface of the metal layer 4.
  • the thermoelectric conversion element generates heat when supplied with current.
  • the metal layer 4 is heated by the heat energy from the heat generating surface.
  • the temperature in the vicinity region including the electrode formation region of the electrode portions 13a and 13b rises.
  • thermoelectric conversion element has a heat absorption function that absorbs heat energy from a portion in contact with the heat generating surface.
  • a Peltier device that is a thermoelectric conversion device, when a direct current is passed, one surface absorbs heat and heat is generated on the opposite surface. When the polarity of the current is reversed, the relationship is reversed. Thereby, heat absorption becomes possible.
  • the temperature of the region where the thermoelectric conversion element is provided is detected. Based on this detected temperature, the temperature of the electrode forming region can be estimated. Based on the relationship between the temperature of the region where the thermoelectric conversion element is provided and the estimated temperature of the electrode formation region, a threshold value for maintaining the electrode formation region at a constant temperature is determined in advance. When the detected temperature is lower than the threshold value, the heat generation operation by the thermoelectric conversion element is performed. When the detected temperature is equal to or higher than the threshold value, an endothermic operation by the thermoelectric conversion element is performed. By this operation, the temperature of the electrode formation region can be maintained within a certain temperature range.
  • the temperature control element 3 is connected to the temperature control unit 50.
  • the temperature control unit 50 is a circuit that controls current supply to the thermoelectric conversion element of the temperature control element 3.
  • the output of the temperature sensor of the temperature control element 3 is supplied to the temperature control unit 50.
  • the temperature control unit 50 causes the thermoelectric conversion element to generate heat, and when the detected temperature is equal to or higher than the threshold value, the temperature control unit 50 causes the thermoelectric conversion element to perform an endothermic operation. Thereby, the temperature of the region near the metal layer 4 (including the electrode formation regions of the electrode portions 13a and 13b) is maintained within a certain temperature range.
  • the temperature of the region in the vicinity of the metal layer 4 (including the electrode formation regions of the electrode portions 13a and 13b) is set within a certain temperature range. Maintain within. In this state, the switch operation is performed by controlling the supply of voltage to the electrode portions 13a and 13b. Thereby, output light with a constant intensity can be obtained.
  • the crystal stretches due to electrostriction. Since the metal layer 4 formed in the space 1 is made of a metal material having a low hardness (soft), it functions as an elastic means. Therefore, the stress generated by crystal expansion and contraction is absorbed by the elastic metal layer 4. Thereby, generation
  • a temperature control metal layer is formed using a gap for strain absorption.
  • Such a structure is simpler than a structure in which a gap for strain absorption and a metal layer for temperature control are formed in different regions.
  • the gap 1 including the metal layer 4 is not limited to the configuration shown in FIGS. 6A to 6C.
  • the void portion 1 including the metal layer 4 can maintain the temperature of the region including the electrode portions 13a and 13b within a certain temperature range, and can suppress the occurrence of crystal breakage due to electrostriction. Any structure may be used.
  • the void portion 1 may be constituted by a plurality of void portions formed along the end portion of the electrode formation region, and each of the void portions may be filled with a metal material. In this case, a part of the metal layer in each gap is exposed, and a temperature control element is provided on each exposed surface.
  • region containing electrode part 13a, 13b is maintained within a fixed temperature range by performing operation
  • the stress generated by the crystal expansion and contraction is absorbed by the elastic metal layer formed in each gap.
  • the exposed surface of the metal layer 4 and the position of the temperature control element 3 are not limited to those shown in FIGS. 6A to 6C.
  • the exposed surface of the metal layer 4 and the position of the temperature control element 3 can be appropriately set.
  • a plurality of portions of the metal layer 4 may be exposed and a temperature control element may be provided on each exposed surface.
  • temperature control of the region including the electrode portions 13a and 13b can be performed efficiently.
  • the optical crystal plates 10 and 11 are transparent above the phase transition temperature at which the crystal structure changes, and are electro-optic crystals that can obtain a large refractive index near the phase transition temperature, such as KTN (potassium niobate tantalate: KTa). 1-x Nb x O 3 ).
  • the temperature control element 3 performs heating or endothermic operation on the metal layer 4 to maintain the temperature of the region including the electrode portions 13a and 13b of the optical crystal plates 10 and 11 at or above the phase transition temperature. More desirably, the temperature of the region including the electrode portions 13a and 13b of the optical crystal plates 10 and 11 is maintained at or above the phase transition temperature and in the vicinity of the phase transition temperature.
  • the switch operation is performed by controlling the supply of voltage to the electrode portions 13a and 13b.
  • the electro-optic crystal By maintaining the electro-optic crystal in a transparent state, the amount of light transmitted through the electro-optic crystal is increased, and the extinction ratio can be increased accordingly.
  • the upper limit value of the temperature control range is set within the range in which the optical switch operates in consideration of the temperature dependence of the refractive index of the electro-optic crystal. .
  • the upper limit value of the temperature control range is determined as follows.
  • the refractive index of the electro-optic crystal changes, and accordingly, the critical angle when incident light is totally reflected at the refractive index interface in the refractive index changing region also changes. For this reason, for example, when the incident angle of the incident light with respect to the refractive index interface is set to a critical angle at the phase transition temperature, the set incident angle becomes smaller than the critical angle when the critical angle changes due to the temperature rise. In this case, incident light is not totally reflected at the refractive index interface of the refractive index change region, but is transmitted through the refractive index change region, and as a result, the optical switch does not operate.
  • the upper limit value of the temperature control range is a temperature at which the critical angle does not exceed the set incident angle.
  • the temperature condition where the critical angle does not exceed the set incident angle can be defined by the parameters of the distance between the linear electrodes, the magnitude of the applied voltage, and the incident angle.
  • the strain absorption structure and the temperature control structure using the void portion 1 including the elastic metal layer 4 of the optical switch of the present embodiment described above are the optical switches described in the second embodiment, that is, incident light.
  • the present invention can be applied to an optical switch in which a plurality of refractive index changing regions are formed along the traveling direction. In this case, the strain absorption structure and the temperature control structure are provided for each refractive index change region.
  • the metal layer 4 itself has a heat dissipation action. Specifically, the thermal energy from the region near the metal layer 4 (including the electrode formation regions of the electrode portions 13a and 13b) is transmitted through the metal layer 4 and released from the exposed surface of the metal layer 4 to the external space. . Due to the release of the thermal energy, the temperature of the region near the metal layer 4 (including the electrode formation regions of the electrode portions 13a and 13b) decreases. In order to efficiently dissipate heat, it is desirable to increase the area of the exposed surface of the metal layer 4. From the viewpoint of cooling the electrode formation region, the heat dissipation structure by the metal layer 4 is effective.
  • FIG. 7A is a top view of an optical switch according to a fourth embodiment of the present invention
  • FIG. 7B is a sectional view taken along line AA in FIG. 7A
  • FIG. 7C is a sectional view taken along line BB in FIG. 7A. is there.
  • the optical switch of the present embodiment has the same configuration as the optical switch of the third embodiment except that the configuration of the gap is different.
  • 7A shows a state in which the electrode portions 13a and 13b formed on the surface of the optical crystal plate 11 and the gap portions 1c and 1d provided around the electrode portions 13a and 13b are viewed from the optical crystal plate 10 side. It is shown in perspective.
  • the gaps 1c and 1d are provided along the end portions of the electrode formation region where the electrode parts 13a and 13b are formed.
  • Part of the portions 1c and 1d is formed along both ends in the longitudinal direction of the electrode formation region, and is disposed so as to face each other.
  • a metal layer 4a is formed in the gap 1c.
  • the metal layer 4a is formed in a region on the side of the electrode portions 13a and 13b in a portion along the end in the longitudinal direction of the electrode forming region of the gap portion 1c.
  • a metal layer 4b is formed in the gap 1d.
  • the metal layer 4a is formed in a region on the electrode portions 13a and 13b side.
  • the gap 1d intersects with the electrode portion 13b as shown in FIG. 7C.
  • the cross-sectional shape of the intersection of the gap 1d with the electrode 13b is C-shaped.
  • an insulating layer 10c is formed between the electrode portion 13b and the metal layer 4b.
  • the insulating layer 10c may be formed of any material as long as the electrode portion 13b and the metal layer 4b can be insulated.
  • the insulating layer 10 c may be formed of the same material as the optical crystal plate 10.
  • the metal layers 4a and 4b may be formed of the same electrode material as the electrode material of the electrode portions 13a and 13b, but more preferably, a metal material that easily conducts heat, for example, a metal material such as gold or aluminum. .
  • a metal material such as gold or aluminum.
  • a part of the metal layer 4a is exposed to the outside on the surface of the optical crystal plate 11 (the surface not covered with the optical crystal plate 10), and the temperature control element 3a is formed on the exposed surface.
  • a part of the metal layer 4b is also exposed to the outside, and the temperature control element 3b is formed on this exposed surface.
  • the temperature control elements 3a and 3b have the same configuration as the temperature control element 3 shown in FIG. 6A, and include a thermoelectric conversion element typified by a Peltier element and a temperature sensor. Although not shown, thermoelectric conversion elements and temperature sensors provided in each of the temperature control elements 3a and 3b are connected to a temperature control unit.
  • the temperature control unit corresponds to the temperature control unit 50 shown in FIG.
  • the temperature control unit When the temperature detected by the temperature sensor of the temperature control element 3a is less than the threshold value, the temperature control unit causes the thermoelectric conversion element of the temperature control element 3a to perform a heat generation operation. When the detected temperature is equal to or higher than the threshold value, the temperature control unit The heat absorption operation by the thermoelectric conversion element of the element 3a is performed. Similarly, the temperature control unit causes the thermoelectric conversion element to perform a heat generation operation when the temperature detected by the temperature sensor is less than the threshold for the temperature control element 3b, and when the detected temperature is equal to or higher than the threshold, The endothermic operation is performed. Thereby, the temperature of the area
  • the temperature of the region including the electrode portions 13a and 13b of the optical crystal plates 10 and 11 is kept constant by heating or absorbing the metal layers 4a and 4b with the temperature control elements 3a and 3b. Maintain within the temperature range of. In this state, the switch operation is performed by controlling the supply of voltage to the electrode portions 13a and 13b. Thereby, output light with a constant intensity can be obtained.
  • the crystal stretches due to electrostriction.
  • the stress generated by the crystal expansion and contraction is absorbed by the hollow portions in the void portions 1c and 1d. Thereby, generation
  • a temperature control metal layer is formed using a gap for strain absorption.
  • Such a structure is simpler than a structure in which a gap for strain absorption and a metal layer for temperature control are formed in different regions.
  • the gaps 1c and 1d including the metal layers 4a and 4b are not limited to the configurations shown in FIGS. 7A to 7C.
  • the void portions 1c and 1d including the metal layers 4a and 4b can maintain the temperature of the region including the electrode portions 13a and 13b within a certain temperature range, and suppress the occurrence of crystal breakage due to electrostriction. Any structure can be used as long as it is possible.
  • one or a plurality of voids may be formed along the end of the electrode formation region, and the metal layer may be formed on the side wall on the electrode formation region side in the void.
  • the metal layer is used for the purpose of controlling the temperature of the region including the electrode part.
  • the metal layer is desirably provided on the side wall on the region side of the electrode portion in the gap.
  • the exposed surfaces of the metal layers 4a and 4b and the positions of the temperature control elements 3a and 3b are not limited to those shown in FIGS. 7A to 7C.
  • the exposed surfaces of the metal layers 4a and 4b and the positions of the temperature control elements 3a and 3b can be set as appropriate.
  • each of the metal layers 4a and 4b a plurality of locations may be exposed and a temperature control element may be provided on each exposed surface.
  • a temperature control element may be provided on each exposed surface.
  • the optical crystal plates 10 and 11 may be made of an electro-optical crystal (for example, KTN) that becomes transparent at a phase transition temperature or higher.
  • KTN electro-optical crystal
  • the temperature control elements 3a and 3b to perform heating or endothermic operation on the metal layers 4a and 4b, the temperature of the region including the electrode portions 13a and 13b of the optical crystal plates 10 and 11 is changed to the phase transition temperature. Maintain above. More desirably, the temperature of the region including the electrode portions 13a and 13b is maintained at or above the phase transition temperature and in the vicinity of the phase transition temperature. In this state, the switch operation is performed by controlling the supply of voltage to the electrode portions 13a and 13b.
  • KTN electro-optical crystal
  • the electro-optic crystal By maintaining the electro-optic crystal in a transparent state, the amount of light transmitted through the electro-optic crystal is increased, and the extinction ratio can be increased accordingly.
  • the electro-optic crystal is maintained at a temperature equal to or higher than the phase transition temperature, the upper limit value of the temperature control range is as described in the third embodiment.
  • the strain absorption structure and the temperature control structure using the gaps 1c and 1d including the metal layers 4a and 4b of the optical switch of the present embodiment described above are the optical switches described in the second embodiment, that is, incident light.
  • the present invention can be applied to an optical switch in which a plurality of refractive index changing regions are formed along the traveling direction of light. In this case, the strain absorption structure and the temperature control structure are provided for each refractive index change region.
  • FIG. 8A is a top view of an optical switch according to a fifth embodiment of the present invention
  • FIG. 8B is a sectional view taken along line AA in FIG. 8A
  • FIG. 8C is a sectional view taken along line BB in FIG. 8A. is there.
  • FIG. 8A is a perspective view of the state where the electrode portions 13a and 13b formed on the surface of the optical crystal plate 11 and the gap portion 1e provided around the electrode portions 13a and 13b are viewed from the optical crystal plate 10 side. Has been shown. As shown in FIG. 8A, when viewed from a direction perpendicular to the electrode surface, the gap 1e is provided so as to surround the electrode formation region in which the electrode portions 13a and 13b are formed.
  • the gap 1e is indicated by a vertical line region.
  • the gap 1e intersects the electrode portion 13b.
  • the cross-sectional shape of the space 1e intersecting with the electrode portion 13b is a C shape.
  • An insulating layer 10d is formed on the electrode portion 13b at the intersection. That is, the insulating layer 10d is formed so as to cover the exposed surface of the electrode portion 13b in the gap portion 1e, so that, for example, a part of the electrode portion 13b is exposed to the fluid flowing in the gap portion 1e. , To suppress deterioration of the portion due to corrosion or the like.
  • the insulating layer 10d may be formed of any material as long as the portion of the electrode portion 13b exposed in the gap portion 1e can be protected.
  • the insulating layer 10d may be formed of the same material as the optical crystal plate 10.
  • one end of the gap 1e is formed across both the optical crystal plates 10 and 11, and this portion communicates with a space outside the optical crystal plate. 1 opening is formed. The other end of the gap 1e is also formed across both the optical crystal plates 10 and 11, and a second opening communicating with the space outside the optical crystal plate is formed in this portion. ing.
  • the first opening communicates with the inflow portion 5a
  • the second opening communicates with the outflow portion 5b.
  • the inflow part 5a is connected to the jet outlet of the fluid supply part 51 via a flow path
  • the outflow part 5b is connected to the fluid recovery port of the fluid supply part 51 via a flow path.
  • the fluid supply part 51 supplies the fluid (gas or liquid) maintained within a certain temperature range from the inflow part 5a, and collects the supplied fluid from the outflow part 5b.
  • the fluid maintained in a certain temperature range circulates in the gap 1e, whereby the temperature of the electrode forming regions of the electrode portions 13a and 13b can be maintained in the certain temperature range.
  • the temperature of the region including the electrode portions 13a and 13b of the optical crystal plates 10 and 11 is set to a constant temperature by supplying the fluid maintained in the constant temperature range into the gap 1e. Keep within range.
  • the switch operation is performed by controlling the supply of voltage to the electrode portions 13a and 13b. Thereby, output light with a constant intensity can be obtained.
  • the crystal stretches due to electrostriction.
  • the stress generated by this crystal expansion and contraction is absorbed by the gap 1e. Thereby, generation
  • a fluid supply path for temperature control is formed using a gap portion for strain absorption.
  • Such a structure is simpler than a structure in which a gap for strain absorption and a fluid supply path for temperature control are formed in different regions.
  • the gap 1e is not limited to the configuration shown in FIGS. 8A to 8C. As long as the gap 1e can maintain the temperature of the region including the electrode portions 13a and 13b within a certain temperature range and can suppress the occurrence of crystal damage due to electrostriction, It is good also as a structure.
  • the optical crystal plates 10 and 11 may be made of an electro-optical crystal (for example, KTN) that becomes transparent at a phase transition temperature or higher.
  • the temperature of the region including the electrode portions 13a and 13b of the optical crystal plates 10 and 11 is maintained above the phase transition temperature. More desirably, the temperature of the region including the electrode portions 13a and 13b is maintained at or above the phase transition temperature and in the vicinity of the phase transition temperature.
  • the switch operation is performed by controlling the supply of voltage to the electrode portions 13a and 13b.
  • the electro-optic crystal By maintaining the electro-optic crystal in a transparent state, the amount of light transmitted through the electro-optic crystal is increased, and the extinction ratio can be increased accordingly.
  • the electro-optic crystal is maintained at a temperature equal to or higher than the phase transition temperature, the upper limit value of the temperature control range is as described in the third embodiment.
  • the strain absorption structure and the temperature control flow path structure using the gap portion 1e of the optical switch of the present embodiment described above are the optical switch described in the second embodiment, that is, along the traveling direction of incident light. It can be applied to an optical switch in which a plurality of refractive index changing regions are formed. In this case, the strain absorption structure and the temperature control channel structure are provided for each refractive index change region.
  • the optical switch of each embodiment described above can be formed using an existing semiconductor process.
  • 9A to 9I are cross-sectional process diagrams showing one procedure of the electrode forming method of the optical switch according to the first embodiment of the present invention.
  • a resist 91 is applied to the surface of the electro-optic crystal 90 (step of FIG. 9A).
  • the mask 92 on which the electrode pattern is formed is used to mask the surface coated with the resist 91, and the coated surface is exposed (step of FIG. 9B).
  • the exposed portion of the resist 91 is removed (step of FIG. 9C).
  • the exposed surface of the electro-optic crystal 90 is etched using the resist 91 from which the exposed portion has been removed as a mask (step of FIG. 9D).
  • the etching material is hydrogen fluoride or the like.
  • a resist is applied to a region that becomes a void (step of FIG. 9E).
  • an electrode material gold, platinum, etc. is applied to the etched portion of the electro-optic crystal 90.
  • Is deposited to form the electrode 93 step of FIG. 9F.
  • the resist used as a mask for vapor deposition is removed (step of FIG. 9G).
  • the surface of the electro-optic crystal 90 on which the electrode 93 is formed and one surface of the electro-optic crystal 94 are brought into close contact under high temperature and high pressure conditions, thereby bonding the electro-optic crystals 90 and 94 (see FIG. 9I step).
  • the surfaces to which the electro-optic crystals 90 and 94 are bonded are processed into surfaces having sufficient flatness.
  • the optical switch shown in FIGS. 1A and 1B can be realized by applying the processes of FIGS. 9A to 9I.
  • the electrode portions 13a and 13b and the gaps as shown in FIGS. 4A and 4B are applied.
  • a structure in which the optical crystal plate 10 is bonded to the surface of the optical crystal plate 11 on which the portions 1a and 1b are formed is formed.
  • the optical crystal plate 12 in which the electrode portions 14a and 14b and the gap portions 2a and 2b are respectively formed is formed.
  • the opposite surface is stuck together under high temperature and high pressure conditions.
  • the positions of the electrode portions 13a and 13b and the gap portions 1a and 1b on the optical crystal plate 11 side and the positions of the electrode portions 14a and 14b and the gap portions 2a and 2b on the optical crystal plate 12 side are determined. It is necessary to adjust precisely. In particular, in the alignment of the electrode portions, when the electrode portions are viewed along the traveling direction of the incident light, the positions of the linear electrodes of the electrode portions are matched. Further, the surfaces of the optical crystal plates to be bonded to each other are processed into surfaces having sufficient flatness.
  • FIGS. 10A to 10H are cross-sectional process diagrams showing one procedure of the electrode forming method of the optical switch according to the third embodiment of the present invention.
  • a resist 91 is applied to the surface of the electro-optic crystal 90 (step of FIG. 10A).
  • the mask 92 on which the electrode pattern is formed is used to mask the surface coated with the resist 91, and the coated surface is exposed (step of FIG. 10B).
  • the exposed portion of the resist 91 is removed (step of FIG. 10C).
  • the exposed surface of the electro-optic crystal 90 is etched using the resist 91 from which the exposed portion has been removed as a mask (step of FIG. 10D).
  • the etching material is hydrogen fluoride or the like.
  • an electrode material gold, platinum, etc.
  • an electrode material gold, platinum, etc.
  • a metal layer 95 is a portion formed on the optical crystal plate 11 side of the metal layer 4 shown in FIG. 6A.
  • the electro-optic crystal 94 corresponding to the optical crystal plate 10 on which a part of the metal layer 4 is formed as shown in FIG. 6C is formed by applying the above-described steps of FIGS. 10A to 10G. 6C, insulating layers corresponding to the insulating layers 10a and 10b formed at the intersections of the electrode portions 13a and 13b and the metal layer 4 are formed in the corresponding regions of the electro-optic crystal 94.
  • the surface of the electro-optic crystal 90 on which the electrode 93 and the metal layer 95 are formed and the surface of the electro-optic crystal 94 on which a part of the metal layer is formed are brought into close contact under high temperature and high pressure conditions. Then, the electro-optic crystals 90 and 94 are bonded together (step of FIG. 10H). In this bonding step, the surfaces to which the electro-optic crystals 90 and 94 are bonded are processed into surfaces having sufficient flatness.
  • the optical switch shown in FIGS. 6A to 6C can be realized by applying the processes of FIGS. 10A to 10H.
  • the optical switch of the fourth embodiment of the present invention When forming the optical switch of the fourth embodiment of the present invention, first, by applying the steps of FIGS. 9A to 9H, the electrode portions 13a and 13b, the gap portion 1a, as shown in FIG. Then, an optical crystal plate in which a part of the gap 1b is formed is formed.
  • a resist mask pattern for forming a metal layer is formed on the surface of the optical crystal plate on which the electrode part and the gap part are formed, and a metal material (gold, platinum, etc.) is deposited on the exposed surface. Then, a metal layer is formed, and then the resist mask pattern is removed. Then, those surfaces are polished so that the surface of the optical crystal plate and the surface of the metal layer have the same height. Thereby, the optical crystal plate 11 shown in FIG. 7A is obtained.
  • the optical crystal plate 10 on which a part of the metal layer 4b is formed as shown in FIG. 7C is formed by applying the processes of FIGS. 10A to 10G. Further, as shown in FIG. 7C, an insulating layer corresponding to the insulating layer 10c formed at the intersection of the electrode portion 13b and the metal layer 4b is formed in a corresponding region of the optical crystal plate 10.
  • the optical crystal plates 10 and 11 are brought into close contact under high temperature and high pressure conditions.
  • the surface to be bonded of the optical crystal plate is processed into a surface having sufficient flatness. In this manner, the optical switch shown in FIGS. 7A to 7C can be realized.
  • a part of the gap 1e shown in FIG. 8A is formed on one surface of the optical crystal plate. Then, the resist pattern is removed, and the optical crystal plate 10 in which a part of the gap 1e is formed as shown in FIG. 8C is formed. Further, as shown in FIG. 8C, an insulating layer corresponding to the insulating layer 10d formed at the intersection of the electrode portion 13b and the gap portion 1e is formed in a corresponding region of the optical crystal plate 10.
  • the optical crystal plates 10 and 11 are brought into close contact under high temperature and high pressure conditions.
  • the surface to be bonded of the optical crystal plate is processed into a surface having sufficient flatness. In this way, the optical switch shown in FIGS. 8A to 8C can be realized.
  • the optical switch of the present invention can be applied to an optical communication device, an image display device, an image forming device, and the like.
  • an image display apparatus and an image forming apparatus will be described as application examples of the optical switch.
  • FIG. 11 is a schematic diagram showing an example of an image display device.
  • This image display device includes laser light sources 102, 103, 104, collimator lenses 105, 106, 107, reflection mirror 108, dichroic mirrors 109, 110, horizontal scanning mirror 115, vertical scanning mirror 116, and optical switches 118, 119, 120.
  • the optical switches 118, 119, and 120 are the optical switches of the present invention.
  • a collimator lens 105, an optical switch 118, and a reflection mirror 108 are sequentially arranged in the traveling direction of the laser light from the laser light source 102.
  • a parallel light beam from the collimator lens 105 enters the optical switch 118.
  • the optical switch 118 operates according to a control signal supplied from a control unit (not shown).
  • a control signal supplied from a control unit (not shown).
  • a voltage is applied to the electrode portion of the optical switch 118 to form a refractive index change region, so that incident light is reflected in the refractive index change region. This reflected light deviates from the optical path toward the reflecting mirror 108.
  • incident light passes through the optical switch 118 and travels toward the reflection mirror 108.
  • the collimator lens 106, the optical switch 119, and the dichroic mirror 109 are sequentially arranged in the traveling direction of the laser light from the laser light source 103.
  • a parallel light beam from the collimator lens 106 enters the optical switch 119.
  • the optical switch 119 the same operation as that of the optical switch 118 is performed.
  • incident light is reflected in the refractive index change region, and the reflected light deviates from the optical path toward the dichroic mirror 109.
  • incident light passes through the optical switch 119 and travels toward the dichroic mirror 109.
  • the collimator lens 107, the optical switch 120, and the dichroic mirror 110 are sequentially arranged in the traveling direction of the laser light from the laser light source 104.
  • a parallel light beam from the collimator lens 107 enters the optical switch 120.
  • the optical switch 120 the same operation as that of the optical switch 118 is performed.
  • incident light is reflected in the refractive index change region, and the reflected light deviates from the optical path toward the dichroic mirror 110.
  • incident light passes through the optical switch 120 and travels toward the dichroic mirror 110.
  • the dichroic mirror 109 is provided at a position where the light beam from the optical switch 119 and the light beam reflected by the reflection mirror 108 intersect.
  • the dichroic mirror 109 has a wavelength selection characteristic that reflects light from the optical switch 119 and transmits light from the reflection mirror 108.
  • the dichroic mirror 110 is provided at a position where the light beam from the optical switch 120 and the light beam from the dichroic mirror 109 intersect.
  • the dichroic mirror 109 has a wavelength selection characteristic that reflects light from the optical switch 120 and transmits light from the dichroic mirror 109.
  • the horizontal scanning mirror 115 is arranged in the traveling direction of the light beam from the dichroic mirror 110, and its operation is controlled by a horizontal scanning control signal from a control unit (not shown).
  • the vertical scanning mirror 116 is disposed in the traveling direction of the light beam from the horizontal scanning mirror 115, and its operation is controlled by a vertical scanning control signal from a control unit (not shown).
  • a color image can be displayed on the screen 117 by controlling on / off of the optical switches 118, 119, and 120 and controlling the horizontal scanning mirror 115 and the vertical scanning mirror 116.
  • FIG. 12 is a schematic diagram illustrating an example of an image forming apparatus.
  • This image forming apparatus includes a housing 200, an f ⁇ lens 223, and a photoreceptor 224.
  • a laser light source 202, a collimator lens 205, a reflection mirror 208, a scanning mirror 222, and an optical switch 218 are accommodated in the housing 200.
  • the optical switch 218 is the optical switch of the present invention.
  • a collimator lens 205, an optical switch 218, and a reflection mirror 208 are sequentially arranged in the traveling direction of the laser light from the laser light source 202.
  • a parallel light beam from the collimator lens 205 enters the optical switch 218.
  • the optical switch 218 operates in accordance with a control signal supplied from a control unit (not shown).
  • a control signal supplied from a control unit (not shown).
  • a control signal supplied from a control unit (not shown).
  • a voltage is applied to the electrode portion of the optical switch 218 to form a refractive index change region, so that incident light is reflected in the refractive index change region. This reflected light deviates from the optical path toward the reflecting mirror 208.
  • incident light passes through the optical switch 218 and travels toward the reflection mirror 208.
  • the scanning mirror 222 is arranged in the traveling direction of the light beam from the reflection mirror 208, and its operation is controlled by a scanning control signal from a control unit (not shown). Light from the scanning mirror 222 is applied to the photoconductor 224 via the f ⁇ lens 223.
  • an image can be formed on the photosensitive member 224.
  • lithium niobate having a phase transition temperature lithium niobate or the like may be used as the electro-optic crystal. In this case as well, the same operational effects as when KTN is used can be obtained.
  • optical switch of each embodiment can be applied to all optical modulation devices.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

An optical switch includes electrode portions (13a, 13b) arranged inside an electro-optical crystal so as to control voltage supply to the electrode portions (13a, 13b), thereby performing switching between the reflection state and the transmission state for the light incident to the electro-optical crystal.  Gap portions (1a, 1b) are formed in a region adjacent to the end portions of the regions of the electrode portions (13a, 13b) at least along a part of the end portions.

Description

光スイッチLight switch
 本発明は、電気光学結晶に電界を印加することで、入射光に対する反射と透過の状態を切り替える光スイッチに関する。 The present invention relates to an optical switch that switches between reflection and transmission of incident light by applying an electric field to an electro-optic crystal.
 電気光学効果を利用した光スイッチの一例として、特開2006-293018号公報(以下、特許文献1と記す。)に記載の光変調装置がある。この光変調装置は、電気光学結晶よりなる光学結晶板を第1反射層および第2反射層で挟んだ共振器構造を有する。第1および第2の電極が、光学結晶板表面に形成されている。第1および第2の電極は、複数の線状電極が等間隔で平行に配置された櫛形状電極であって、互いの櫛の歯に相当する線状電極が交互に配置されている。 As an example of an optical switch using the electro-optic effect, there is a light modulation device described in Japanese Patent Application Laid-Open No. 2006-293018 (hereinafter referred to as Patent Document 1). This light modulation device has a resonator structure in which an optical crystal plate made of an electro-optic crystal is sandwiched between a first reflective layer and a second reflective layer. First and second electrodes are formed on the surface of the optical crystal plate. The first and second electrodes are comb-shaped electrodes in which a plurality of linear electrodes are arranged in parallel at equal intervals, and linear electrodes corresponding to the comb teeth are alternately arranged.
 光は、第2反射層側から入射する。入射した光は、共振器内(第1反射層および第2反射層間)で繰り返し反射された後、第1反射層の表面から外部に向けて出射される。第1および第2の電極の間に電圧を印加することで、これら電極間において電界が生じ、その電界により、光学結晶板の屈折率が変化する。光学結晶板の屈折率が変化すると、共振器の共振波長が、屈折率の変化前に比べて長波長側へシフトし、その結果、共振器の反射率が変化する。 Light enters from the second reflective layer side. The incident light is repeatedly reflected in the resonator (the first reflective layer and the second reflective layer), and then emitted outward from the surface of the first reflective layer. By applying a voltage between the first and second electrodes, an electric field is generated between these electrodes, and the refractive index of the optical crystal plate changes due to the electric field. When the refractive index of the optical crystal plate changes, the resonance wavelength of the resonator shifts to a longer wavelength side than before the change of the refractive index, and as a result, the reflectance of the resonator changes.
 共振器の出力光の強度は、共振器の反射率に比例する。したがって、第1および第2の電極間に電圧を印加して、共振器の反射率を変化させることで、共振器の出力光の強度を変化させることができる。これにより、光変調が可能となる。 The intensity of the output light from the resonator is proportional to the reflectance of the resonator. Therefore, the intensity of the output light of the resonator can be changed by applying a voltage between the first and second electrodes to change the reflectance of the resonator. Thereby, light modulation becomes possible.
 特許文献1に記載されたような、電気光学結晶に電界(電場)を印加して結晶の屈折率を変化させる光スイッチにおいては、結晶に電界(電場)を加えることによって生じる電場誘起歪、所謂電歪により、スイッチ動作時に、電極部近傍の結晶が伸縮する。この伸縮の周期(電極間に印加する交流電圧の周波数により決まる)が、電気光学結晶構造に固有の共振周波数と一致すると、電気光学結晶は過大に膨張および収縮を繰り返すこととなり、その結果、電極部近傍の結晶領域にクラック等の結晶破損が生じる場合がある。 In an optical switch that changes the refractive index of a crystal by applying an electric field (electric field) to an electro-optic crystal as described in Patent Document 1, an electric field-induced strain generated by applying an electric field (electric field) to the crystal, so-called Due to electrostriction, the crystal near the electrode portion expands and contracts during the switch operation. If the period of expansion / contraction (determined by the frequency of the AC voltage applied between the electrodes) matches the resonance frequency inherent in the electro-optic crystal structure, the electro-optic crystal excessively expands and contracts, and as a result, the electrodes Crystal breakage such as cracks may occur in the crystal region near the portion.
 本発明の目的は、上記課題を解決することのできる光スイッチを提供することにある。 An object of the present invention is to provide an optical switch that can solve the above-mentioned problems.
 上記目的を達成するために、本発明の光スイッチは、電気光学結晶の内部に電極部を備え、該電極部への電圧供給を制御することで前記電気光学結晶に入射する光に対する反射および透過の状態が切り替えられる光スイッチであって、前記電気光学結晶の内部の、前記電極部が形成された電極形成領域の端部に隣接する領域に、前記電極形成領域の端部の少なくとも一部に沿って空隙部が形成されている。 In order to achieve the above object, an optical switch according to the present invention includes an electrode part in an electro-optic crystal, and reflects and transmits light incident on the electro-optic crystal by controlling voltage supply to the electrode part. An optical switch in which the state is switched to a region adjacent to an end portion of the electrode forming region in which the electrode portion is formed inside the electro-optic crystal, and at least a part of the end portion of the electrode forming region. A void portion is formed along.
本発明の第1の実施形態である光スイッチの主要部の上面図である。It is a top view of the principal part of the optical switch which is the 1st Embodiment of this invention. 図1Aの線A-Aによる断面図である。FIG. 1B is a cross-sectional view taken along line AA in FIG. 1A. 図1Aに示す光スイッチの電界印加時に形成される屈折率変化領域を示す模式図である。It is a schematic diagram which shows the refractive index change area | region formed at the time of the electric field application of the optical switch shown to FIG. 1A. 本発明の第1の実施形態である光スイッチの変形例を示す断面図である。It is sectional drawing which shows the modification of the optical switch which is the 1st Embodiment of this invention. 本発明の第2の実施形態である光スイッチの上面図である。It is a top view of the optical switch which is the 2nd Embodiment of this invention. 図4Aの線A-Aによる断面図である。FIG. 4B is a cross-sectional view taken along line AA in FIG. 4A. 入射光の進行方向における電極部の位置関係を示す模式図である。It is a schematic diagram which shows the positional relationship of the electrode part in the advancing direction of incident light. 本発明の第3の実施形態である光スイッチの上面図である。It is a top view of the optical switch which is the 3rd Embodiment of this invention. 図6Aの線A-Aによる断面図である。FIG. 6B is a cross-sectional view taken along line AA in FIG. 6A. 図6Aの線B-Bによる断面図である。FIG. 6B is a cross-sectional view taken along line BB in FIG. 6A. 本発明の第3の実施形態である光スイッチの温度制御機能を説明するための図である。It is a figure for demonstrating the temperature control function of the optical switch which is the 3rd Embodiment of this invention. 本発明の第4の実施形態である光スイッチの上面図である。It is a top view of the optical switch which is the 4th Embodiment of this invention. 図7Aの線A-Aによる断面図である。FIG. 7B is a cross-sectional view taken along line AA in FIG. 7A. 図7Aの線B-Bによる断面図である。FIG. 7B is a cross-sectional view taken along line BB in FIG. 7A. 本発明の第5の実施形態である光スイッチの上面図である。It is a top view of the optical switch which is the 5th Embodiment of this invention. 図8Aの線A-Aによる断面図である。FIG. 8B is a cross-sectional view taken along line AA in FIG. 8A. 図8Aの線B-Bによる断面図である。FIG. 8B is a sectional view taken along line BB in FIG. 8A. 本発明の第5の実施形態である光スイッチの温度制御機能を説明するための図である。It is a figure for demonstrating the temperature control function of the optical switch which is the 5th Embodiment of this invention. 本発明の第1の実施形態の光スイッチの電極形成方法を説明するための断面工程図である。It is sectional process drawing for demonstrating the electrode formation method of the optical switch of the 1st Embodiment of this invention. 本発明の第1の実施形態の光スイッチの電極形成方法を説明するための断面工程図である。It is sectional process drawing for demonstrating the electrode formation method of the optical switch of the 1st Embodiment of this invention. 本発明の第1の実施形態の光スイッチの電極形成方法を説明するための断面工程図である。It is sectional process drawing for demonstrating the electrode formation method of the optical switch of the 1st Embodiment of this invention. 本発明の第1の実施形態の光スイッチの電極形成方法を説明するための断面工程図である。It is sectional process drawing for demonstrating the electrode formation method of the optical switch of the 1st Embodiment of this invention. 本発明の第1の実施形態の光スイッチの電極形成方法を説明するための断面工程図である。It is sectional process drawing for demonstrating the electrode formation method of the optical switch of the 1st Embodiment of this invention. 本発明の第1の実施形態の光スイッチの電極形成方法を説明するための断面工程図である。It is sectional process drawing for demonstrating the electrode formation method of the optical switch of the 1st Embodiment of this invention. 本発明の第1の実施形態の光スイッチの電極形成方法を説明するための断面工程図である。It is sectional process drawing for demonstrating the electrode formation method of the optical switch of the 1st Embodiment of this invention. 本発明の第1の実施形態の光スイッチの電極形成方法を説明するための断面工程図である。It is sectional process drawing for demonstrating the electrode formation method of the optical switch of the 1st Embodiment of this invention. 本発明の第1の実施形態の光スイッチの電極形成方法を説明するための断面工程図である。It is sectional process drawing for demonstrating the electrode formation method of the optical switch of the 1st Embodiment of this invention. 本発明の第3の実施形態の光スイッチの電極形成方法を説明するための断面工程図である。It is sectional process drawing for demonstrating the electrode formation method of the optical switch of the 3rd Embodiment of this invention. 本発明の第3の実施形態の光スイッチの電極形成方法を説明するための断面工程図である。It is sectional process drawing for demonstrating the electrode formation method of the optical switch of the 3rd Embodiment of this invention. 本発明の第3の実施形態の光スイッチの電極形成方法を説明するための断面工程図である。It is sectional process drawing for demonstrating the electrode formation method of the optical switch of the 3rd Embodiment of this invention. 本発明の第3の実施形態の光スイッチの電極形成方法を説明するための断面工程図である。It is sectional process drawing for demonstrating the electrode formation method of the optical switch of the 3rd Embodiment of this invention. 本発明の第3の実施形態の光スイッチの電極形成方法を説明するための断面工程図である。It is sectional process drawing for demonstrating the electrode formation method of the optical switch of the 3rd Embodiment of this invention. 本発明の第3の実施形態の光スイッチの電極形成方法を説明するための断面工程図である。It is sectional process drawing for demonstrating the electrode formation method of the optical switch of the 3rd Embodiment of this invention. 本発明の第3の実施形態の光スイッチの電極形成方法を説明するための断面工程図である。It is sectional process drawing for demonstrating the electrode formation method of the optical switch of the 3rd Embodiment of this invention. 本発明の第3の実施形態の光スイッチの電極形成方法を説明するための断面工程図である。It is sectional process drawing for demonstrating the electrode formation method of the optical switch of the 3rd Embodiment of this invention. 画像表示装置の一例を示す模式図である。It is a schematic diagram which shows an example of an image display apparatus. 画像形成装置の一例を示す模式図である。1 is a schematic diagram illustrating an example of an image forming apparatus.
 1a、1b 空隙部
 10、11 光学結晶板
 13a、13b、14a、14b 電極部
1a, 1b Cavity 10, 11 Optical crystal plate 13a, 13b, 14a, 14b Electrode part
 (第1の実施形態)
 図1Aは、本発明の第1の実施形態である光スイッチの上面図、図1Bは、図1Aの線A-Aによる断面図である。
(First embodiment)
FIG. 1A is a top view of the optical switch according to the first embodiment of the present invention, and FIG. 1B is a sectional view taken along line AA in FIG. 1A.
 図1Aおよび図1Bに示すように、光スイッチは、光学結晶板10と、表面に電極部13a、13bが形成された光学結晶板11とを積層した構造を有する。光学結晶板10、11は、電気光学効果を有する結晶(電気光学結晶)よりなる。 As shown in FIGS. 1A and 1B, the optical switch has a structure in which an optical crystal plate 10 and an optical crystal plate 11 having electrode portions 13a and 13b formed on the surface are laminated. The optical crystal plates 10 and 11 are made of a crystal having an electro-optic effect (electro-optic crystal).
 電極部13a、13bのそれぞれは、等間隔に配置され、かつ、面積最大となる主断面が同一平面内に配置された複数の線状電極を有する櫛形電極である。電極部13aと電極部13bとは、互いの線状電極が交互に配置されており、各線状電極の間隔は等間隔である。光学結晶板10は、電極部13a、13bの櫛歯に相当する線状電極が形成された部分を覆うように、光学結晶板11の表面に貼り付けられる。なお、線状電極の間隔が等間隔であるとは、各線状電極間の距離が完全に一致している状態だけでなく、製造誤差等により線状電極間の間隔にズレが生じている状態をも含む。すなわち、線状電極の間隔は、入射光を反射させるための屈折率変化領域を形成できる程度に、等間隔であればよい。 Each of the electrode portions 13a and 13b is a comb-shaped electrode having a plurality of linear electrodes arranged at equal intervals and having a main cross section having the maximum area in the same plane. In the electrode portion 13a and the electrode portion 13b, the linear electrodes are alternately arranged, and the intervals between the linear electrodes are equal. The optical crystal plate 10 is affixed to the surface of the optical crystal plate 11 so as to cover the portion where the linear electrodes corresponding to the comb teeth of the electrode portions 13a and 13b are formed. Note that the intervals between the linear electrodes are not only in a state where the distances between the linear electrodes are completely matched, but also in a state where the spacing between the linear electrodes is shifted due to a manufacturing error or the like. Is also included. That is, the distance between the linear electrodes may be equal so that a refractive index change region for reflecting incident light can be formed.
 図1Aには、光学結晶板11の表面に形成された電極部13a、13bを光学結晶板10側から見た状態が透視図的に示されている。光学結晶板10の表面に垂直な方向から見た場合、電極部13a、13bの互いの線状電極が交互に配置された領域(電極形成領域)は、線状電極の幅方向が長く、線状電極の長さ方向が短くなった形状とされている。 FIG. 1A is a perspective view showing a state in which the electrode portions 13a and 13b formed on the surface of the optical crystal plate 11 are viewed from the optical crystal plate 10 side. When viewed from the direction perpendicular to the surface of the optical crystal plate 10, the region where the linear electrodes of the electrode portions 13a and 13b are alternately arranged (electrode formation region) is long in the width direction of the linear electrode. The shape electrode has a shorter length direction.
 電極形成領域の長手方向の両端部に沿って、空隙部1a、1bが形成されている。空隙部1a、1bは、図1Bに示すように、断面形状が方形で、一定の方向に伸びた空洞である。空隙部1a、1bの深さ、長さ、幅は、電極部13a、13bからの電界により誘起される電歪による結晶の伸縮の大きさを考慮して適宜に設定する。図1Bに示した例では、空隙部1a、1bの深さ、長さは、線状電極の深さ、長さとほぼ同じになるように設定されている。 Void portions 1a and 1b are formed along both ends in the longitudinal direction of the electrode forming region. As shown in FIG. 1B, the gaps 1a and 1b are cavities that have a square cross-sectional shape and extend in a certain direction. The depths, lengths, and widths of the gaps 1a and 1b are appropriately set in consideration of the size of crystal expansion and contraction due to electrostriction induced by the electric field from the electrode parts 13a and 13b. In the example shown in FIG. 1B, the depth and length of the gaps 1a and 1b are set to be substantially the same as the depth and length of the linear electrode.
 図1Aおよび図1Bに示した光学結晶板10、11を高温・高圧下で貼り合わせることで、光スイッチが形成される。高温・高圧下で貼り合わせた光学結晶板10、11は、1つの光学結晶(具体的には、電気光学結晶)と見なすことができる。すなわち、光学結晶板10、11を高温・高圧下で貼り合わせることで、内部に電極部を備える電気光学結晶を形成することができる。 An optical switch is formed by laminating the optical crystal plates 10 and 11 shown in FIGS. 1A and 1B under high temperature and high pressure. The optical crystal plates 10 and 11 bonded together under high temperature and high pressure can be regarded as one optical crystal (specifically, an electro-optical crystal). That is, by bonding the optical crystal plates 10 and 11 under high temperature and high pressure, an electro-optical crystal having an electrode portion therein can be formed.
 この光スイッチでは、電極部13a、13b間に電圧を印加すると、電気光学効果により、電極部13a、13bを含む電極近傍領域の結晶の屈折率が変化する。 In this optical switch, when a voltage is applied between the electrode portions 13a and 13b, the refractive index of the crystal in the vicinity of the electrode including the electrode portions 13a and 13b changes due to the electro-optic effect.
 図2に、電極部13a、13bを含む電極近傍領域に形成される屈折率変化領域を模式的に示す。電極部13a、13b間に電圧を印加すると、隣接する線状電極間において電界が発生し、その電界により、各線状電極を含む電極近傍領域の結晶の屈折率が変化する。この屈折率が変化した領域が、図2に示す屈折率変化領域16である。入射光は、屈折率変化領域16とその周りの結晶領域との界面(屈折率界面)において全反射する。入射光の入射角度は、この界面における全反射が可能な条件を満たすように設定することが望ましい。 FIG. 2 schematically shows a refractive index change region formed in the electrode vicinity region including the electrode portions 13a and 13b. When a voltage is applied between the electrode portions 13a and 13b, an electric field is generated between adjacent linear electrodes, and the refractive index of the crystal in the electrode vicinity region including each linear electrode changes due to the electric field. The region where the refractive index has changed is the refractive index changing region 16 shown in FIG. Incident light is totally reflected at the interface (refractive index interface) between the refractive index changing region 16 and the surrounding crystal region. The incident angle of the incident light is desirably set so as to satisfy a condition that allows total reflection at the interface.
 なお、図2では、入射光が図面に向かって左側から屈折率変化領域に入射し、その反射光が右側へ向かう状態が示されているが、光の利用効率をより向上させるため、入射光は、図面に向かって手前側(または奥側)から屈折率変化領域に入射し、その反射光が奥側(または手前側)へ向かうように構成することが望ましい。 Note that FIG. 2 shows a state in which incident light enters the refractive index change region from the left side toward the drawing and the reflected light goes to the right side. However, in order to further improve the light utilization efficiency, Is preferably configured so that it enters the refractive index change region from the front side (or back side) toward the drawing and the reflected light goes to the back side (or front side).
 また、電極として不透明な材料を用いた場合、電極自身が入射光の一部を遮ることになるため、その分、光の利用効率が低下する。電極を透明電極にすることで、光の利用効率を向上させることができる。 In addition, when an opaque material is used as the electrode, the electrode itself blocks a part of the incident light, so that the light use efficiency is reduced accordingly. The use efficiency of light can be improved by making an electrode into a transparent electrode.
 電極部13a、13bへ電圧を印加した場合は、屈折率変化領域16が形成されるため、入射光は、その屈折率変化領域16の界面で全反射される。一方、電極部13a、13bへの電圧の供給を停止すると、屈折率変化領域16が形成されず、入射光は、そのまま電極部13a、13bの部分を透過する。 When a voltage is applied to the electrode portions 13a and 13b, the refractive index change region 16 is formed, so that the incident light is totally reflected at the interface of the refractive index change region 16. On the other hand, when the supply of voltage to the electrode portions 13a and 13b is stopped, the refractive index changing region 16 is not formed, and the incident light passes through the electrode portions 13a and 13b as it is.
 光スイッチでは、入射光が反射される第1の状態と、入射光が透過する第2の状態との切り替えが可能である。第1の状態では、電極部13a、13bに電圧を印加して屈折率変化領域を形成し、この屈折率変化領域の屈折率界面にて、入射光を反射する。第2の状態では、電極部13a、13bへの電圧供給を停止する。電圧供給の停止により、電極部13a、13bを含む領域において、電気光学効果による屈折率変化を生じなくなるため、入射光は電極部13a、13b間を透過する。 The optical switch can be switched between a first state in which incident light is reflected and a second state in which incident light is transmitted. In the first state, a voltage is applied to the electrode portions 13a and 13b to form a refractive index change region, and incident light is reflected at the refractive index interface of the refractive index change region. In the second state, voltage supply to the electrode portions 13a and 13b is stopped. Since the refractive index change due to the electro-optic effect does not occur in the region including the electrode portions 13a and 13b by stopping the voltage supply, the incident light is transmitted between the electrode portions 13a and 13b.
 上記のスイッチ動作において、電歪による結晶の伸縮が生じる。電歪による結晶の伸縮は、電極部13a、13bを含む電極形成領域の、長さ方向、幅方向、および厚さ方向のそれぞれにおいて発生するが、それら方向のうち、長さ方向における伸縮が他の方向に比べて大きい。本実施形態では、空隙部1a、1bが、電極形成領域の長さ方向の両端部に沿って形成されており、電極形成領域の長さ方向における伸縮により生じる応力が、空隙部1a、1bにより吸収される。これにより、電歪による結晶破損の発生を抑制することができる。 In the above switch operation, the crystal stretches due to electrostriction. Crystal expansion and contraction due to electrostriction occurs in each of the length direction, the width direction, and the thickness direction of the electrode formation region including the electrode portions 13a and 13b. Larger than the direction of. In the present embodiment, the gap portions 1a and 1b are formed along both end portions in the length direction of the electrode formation region, and stress generated by expansion and contraction in the length direction of the electrode formation region is caused by the gap portions 1a and 1b. Absorbed. Thereby, generation | occurrence | production of the crystal breakage by electrostriction can be suppressed.
 上述したように、本実施形態では、電極形成領域の長さ方向において、電歪により生じる結晶の伸縮が最も大きくなることに着目し、空隙部1a、1bが、電極形成領域の長さ方向の両端部に設けられている。これにより、結晶伸縮により生じる応力を、効率よく吸収することができる。 As described above, in the present embodiment, attention is paid to the fact that the crystal expansion and contraction caused by electrostriction is greatest in the length direction of the electrode formation region, and the gaps 1a and 1b are formed in the length direction of the electrode formation region. It is provided at both ends. Thereby, the stress produced by crystal expansion and contraction can be absorbed efficiently.
 なお、結晶破損を確実に抑制することができるのであれば、空隙部は、電極形成領域の長さ方向の端部の一方に設けられてもよい。 Note that the void portion may be provided at one of the end portions in the length direction of the electrode formation region as long as crystal breakage can be reliably suppressed.
 また、1つの端部に対して設けられる空隙部の数は、2つ以上であってもよい。例えば、図1Aに示した構成において、空隙部1a、1bのそれぞれを、電極形成領域の長手方向に、平行に複数配置してもよい。 In addition, the number of gaps provided for one end may be two or more. For example, in the configuration shown in FIG. 1A, a plurality of gaps 1a and 1b may be arranged in parallel in the longitudinal direction of the electrode formation region.
 さらに、電極部13a、13bの電極材料より柔らかい材料を空隙部内に充填してもよい。 Furthermore, a material softer than the electrode material of the electrode portions 13a and 13b may be filled in the gap portion.
 さらに、電歪の大きさは、電界強度に比例することから、空隙部の厚さは、電極部13a、13bに電圧を印加することで形成される屈折率変化領域の厚さ(またはその厚さに近い値)とすることが望ましい。 Furthermore, since the magnitude of electrostriction is proportional to the electric field strength, the thickness of the gap is the thickness of the refractive index change region formed by applying a voltage to the electrode portions 13a and 13b (or its thickness). It is desirable to set a value close to that).
 また、図3に示すように、空隙部1a、1bは、光学結晶板10、11の双方に形成してもよい。図3に示す断面構造は、図1AのA-A線による断面に対応する。 Further, as shown in FIG. 3, the gaps 1a and 1b may be formed on both of the optical crystal plates 10 and 11. The cross-sectional structure shown in FIG. 3 corresponds to the cross section taken along line AA in FIG. 1A.
 さらに、空隙部は、電極形成領域の各端部のそれぞれに設けられても良い。 Further, the gap may be provided at each end of the electrode formation region.
 (第2の実施形態)
 図4Aは、本発明の第2の実施形態である光スイッチの上面図、図4Bは、図4Aの線A-Aによる断面図である。
(Second Embodiment)
4A is a top view of an optical switch according to the second embodiment of the present invention, and FIG. 4B is a cross-sectional view taken along line AA in FIG. 4A.
 図4Aおよび図4Bに示すように、光スイッチは、光学結晶板10と、表面に電極部13a、13bが形成された光学結晶板11と、表面に電極部14a、14bが形成された光学結晶板12とを積層した構造を有する。光学結晶板10~12は、電気光学効果を有する結晶よりなる。 As shown in FIGS. 4A and 4B, the optical switch includes an optical crystal plate 10, an optical crystal plate 11 having electrode portions 13a and 13b formed on the surface, and an optical crystal having electrode portions 14a and 14b formed on the surface. It has a structure in which the plate 12 is laminated. The optical crystal plates 10 to 12 are made of crystals having an electro-optic effect.
 光学結晶板11には、電極部13a、13bを含む電極形成領域の長手方向の両端部に、空隙部1a、1bが形成されている。これら電極部13a、13bおよび空隙部1a、1bは、第1の実施形態の光スイッチに形成されたものと同様のものである。 In the optical crystal plate 11, gaps 1a and 1b are formed at both ends in the longitudinal direction of the electrode forming region including the electrode parts 13a and 13b. These electrode portions 13a and 13b and the gap portions 1a and 1b are the same as those formed in the optical switch of the first embodiment.
 電極部14a、14bは、電極部13a、13bと同様の櫛形電極であり、互いの線状電極が交互に配置されている。電極部14a、14bの各線状電極間の間隔は等間隔であり、電極部13a、13bの各線状電極間の間隔と同じである。光学結晶板12には、電極部14a、14bを含む電極形成領域の長手方向の両端部に、空隙部2a、2bが形成されている。 The electrode portions 14a and 14b are comb electrodes similar to the electrode portions 13a and 13b, and the linear electrodes are alternately arranged. The intervals between the linear electrodes of the electrode portions 14a and 14b are equal intervals, and are the same as the intervals between the linear electrodes of the electrode portions 13a and 13b. In the optical crystal plate 12, gaps 2a and 2b are formed at both ends in the longitudinal direction of the electrode forming region including the electrode portions 14a and 14b.
 光学結晶板10は、電極部13a、13bの櫛歯に相当する線状電極が形成された部分を覆うように、光学結晶板11の表面に貼り付けられる。光学結晶板10が貼り付けられた光学結晶板11は、電極部14a、14bの櫛歯に相当する線状電極が形成された部分を覆うように、光学結晶板12の表面に貼り付けられる。 The optical crystal plate 10 is attached to the surface of the optical crystal plate 11 so as to cover the portion where the linear electrodes corresponding to the comb teeth of the electrode portions 13a and 13b are formed. The optical crystal plate 11 to which the optical crystal plate 10 is attached is attached to the surface of the optical crystal plate 12 so as to cover the portion where the linear electrodes corresponding to the comb teeth of the electrode portions 14a and 14b are formed.
 図4Aには、光学結晶板11の表面に形成された電極部13a、13bを光学結晶板10側から見た状態が透視図的に示されている。光学結晶板10の表面に垂直な方向から見た場合、電極部13a、13bよりなる第1の電極形成領域は、電極部14a、14bよりなる第2の電極形成領域上から少しずれた位置に形成されている。ただし、図4Bに示すように、図4AのA-A線により光学結晶板10~12を切断した断面に垂直な方向から見た場合、電極部13a、13bの各線状電極の位置と、電極部14a、14bの各線状電極の位置は一致する。 FIG. 4A is a perspective view showing a state where the electrode portions 13a and 13b formed on the surface of the optical crystal plate 11 are viewed from the optical crystal plate 10 side. When viewed from the direction perpendicular to the surface of the optical crystal plate 10, the first electrode formation region composed of the electrode portions 13a and 13b is slightly shifted from the second electrode formation region composed of the electrode portions 14a and 14b. Is formed. However, as shown in FIG. 4B, when viewed from the direction perpendicular to the cross section of the optical crystal plates 10 to 12 cut along the line AA in FIG. 4A, the position of each linear electrode of the electrode portions 13a and 13b, and the electrode The positions of the linear electrodes of the portions 14a and 14b are the same.
 また、第1および第2の電極形成領域は、入射光の進行方向に順に配置されている。すなわち、第1および第2の電極形成領域は、光路上に位置する。入射光の進行方向に沿って第1および第2の電極形成領域を見た場合、第1および第2の電極形成領域は、互いの領域の電極部の複数の線状電極からなる電極面(または電極部が形成された面)が平行になるように積層されている。 Further, the first and second electrode forming regions are sequentially arranged in the traveling direction of the incident light. That is, the first and second electrode formation regions are located on the optical path. When the first and second electrode formation regions are viewed along the traveling direction of the incident light, the first and second electrode formation regions are electrode surfaces composed of a plurality of linear electrodes in the electrode portions of each region ( Alternatively, they are laminated so that the surfaces on which the electrode portions are formed are parallel to each other.
 図5は、入射光の進行方向における電極部13a、13bと電極部14a、14bの位置関係を示す模式図である。図5に示す断面は、図4AのB-B線における断面である。 FIG. 5 is a schematic diagram showing the positional relationship between the electrode portions 13a and 13b and the electrode portions 14a and 14b in the traveling direction of incident light. The cross section shown in FIG. 5 is a cross section taken along line BB of FIG. 4A.
 図5に示すように、電極部13a、13bよりなる第1の電極形成領域と電極部14a、14bよりなる第2の電極形成領域は、入射光の進行方向に沿って順に配置されている。入射光15の進行方向に沿って見た場合、電極部13a、13bの各線状電極は、電極部14a、14bの各線状電極と重なる。 As shown in FIG. 5, the first electrode formation region composed of the electrode portions 13a and 13b and the second electrode formation region composed of the electrode portions 14a and 14b are sequentially arranged along the traveling direction of the incident light. When viewed along the traveling direction of the incident light 15, the linear electrodes of the electrode portions 13a and 13b overlap the linear electrodes of the electrode portions 14a and 14b.
 図4Aおよび図4Bに示した光学結晶板10~12を高温・高圧下で貼り合わせることで光スイッチを形成する。高温・高圧下で貼り合わせた光学結晶板10~12は、1つの光学結晶(具体的には、電気光学結晶)と見なすことができる。すなわち、光学結晶板10~12を高温・高圧下で貼り合わせることで、内部に複数の電極部(複数の電極形成領域)を備える電気光学結晶を形成することができる。 An optical switch is formed by bonding the optical crystal plates 10 to 12 shown in FIGS. 4A and 4B under high temperature and high pressure. The optical crystal plates 10 to 12 bonded together under high temperature and high pressure can be regarded as one optical crystal (specifically, an electro-optical crystal). That is, by bonding the optical crystal plates 10 to 12 under high temperature and high pressure, an electro-optical crystal having a plurality of electrode portions (a plurality of electrode formation regions) inside can be formed.
 この光スイッチでは、図5に示すように、電極面(または電極形成面)に対して入射角θで光を入射させる。ここで、電極面(または電極形成面)は、図2に示した屈折率変化領域16とその周りの結晶領域との界面(屈折率界面)と平行であり、入射角θは、この界面における全反射が可能な条件を満たす。また、入射角は、電極面(または電極形成面)の入射点に立てた垂線(曲面の場合は法線)と入射光束との為す角である。 In this optical switch, as shown in FIG. 5, light is incident on the electrode surface (or electrode forming surface) at an incident angle θ. Here, the electrode surface (or electrode formation surface) is parallel to the interface (refractive index interface) between the refractive index changing region 16 and the surrounding crystal region shown in FIG. 2, and the incident angle θ is Satisfying conditions that allow total reflection. Further, the incident angle is an angle formed by a perpendicular (normal line in the case of a curved surface) set up at an incident point of the electrode surface (or electrode forming surface) and an incident light beam.
 また、光スイッチでは、入射光が反射される第1の状態と、入射光が透過する第2の状態とを切り替えることによりスイッチ動作が行われる。第1の状態では、電極部13a、13b間に電圧を印加して第1の屈折率変化領域を形成するとともに、電極部14a、14b間に電圧を印加して第2の屈折率変化領域を形成し、これら屈折率変化領域にて、入射光を反射する。第2の状態では、電極部13a、13bおよび電極部14a、14bへの電圧供給を停止する。電圧供給の停止により、電極部13a、13bおよび電極部14a、14bの各領域において、電気光学効果による屈折率変化を生じなくなるため、入射光はこれら領域を透過する。 In the optical switch, the switching operation is performed by switching between a first state in which incident light is reflected and a second state in which incident light is transmitted. In the first state, a voltage is applied between the electrode portions 13a and 13b to form the first refractive index changing region, and a voltage is applied between the electrode portions 14a and 14b to set the second refractive index changing region. Then, the incident light is reflected in these refractive index changing regions. In the second state, voltage supply to the electrode portions 13a and 13b and the electrode portions 14a and 14b is stopped. By stopping the voltage supply, the refractive index change due to the electro-optic effect does not occur in each of the electrode portions 13a and 13b and the electrode portions 14a and 14b, so that the incident light passes through these regions.
 なお、屈折率変化領域の屈折率界面は、部分的に、全反射の条件を満たさない領域を含んでおり、この領域において、入射光の一部が透過する。全反射の条件を満たさない領域の範囲は、線状電極の間隔や印加電圧の大きさ(電界の大きさ)に依存する。 Note that the refractive index interface of the refractive index changing region partially includes a region that does not satisfy the condition of total reflection, and a part of the incident light is transmitted through this region. The range of the region that does not satisfy the total reflection condition depends on the interval between the linear electrodes and the magnitude of the applied voltage (the magnitude of the electric field).
 本実施形態の光スイッチにおいては、電極部13a、13bに電圧を印加することで形成された第1の屈折率変化領域の屈折率界面で入射光を反射し、さらに、電極部14a、14bに電圧を印加することで形成された第2の屈折率変化領域の屈折率界面で、第1の屈折率変化領域を透過した光を反射する。これにより、高い消光比を得ることが可能となっている。 In the optical switch of the present embodiment, incident light is reflected at the refractive index interface of the first refractive index change region formed by applying a voltage to the electrode portions 13a and 13b, and is further applied to the electrode portions 14a and 14b. The light transmitted through the first refractive index changing region is reflected at the refractive index interface of the second refractive index changing region formed by applying a voltage. Thereby, it is possible to obtain a high extinction ratio.
 入射光の進行方向に沿って形成される電極形成領域の数(屈折率変化領域の数)を3つ以上とすることで、消光比をさらに改善することができる。ただし、電極形成領域(屈折率変化領域)の数を増大すると、それにともなって電極の数および容量も増えるため、省電力化および小型化の観点からは望ましくない。電極形成領域(屈折率変化領域)の数は、消光比と省電力化および小型化との関係を考慮して決定することが望ましい。 The extinction ratio can be further improved by setting the number of electrode forming regions (the number of refractive index changing regions) formed along the traveling direction of incident light to three or more. However, when the number of electrode formation regions (refractive index changing regions) is increased, the number and capacity of the electrodes increase accordingly, which is not desirable from the viewpoint of power saving and miniaturization. The number of electrode forming regions (refractive index changing regions) is desirably determined in consideration of the relationship between the extinction ratio and power saving and miniaturization.
 また、本実施形態の光スイッチにおいても、第1の実施形態の場合と同様に、スイッチ動作の際に、電極部13a、13bおよび電極部14a、14bの各電極形成領域において、電歪による結晶伸縮が生じる。空隙部1a、1bが、電極部13a、13bの電極形成領域の長さ方向の両端部に形成されており、電極形成領域の長さ方向における伸縮により生じる応力が、空隙部1a、1bにより吸収される。これと同様に、空隙部2a、2bが、電極部14a、14bの電極形成領域の長さ方向の両端部に形成されており、電極形成領域の長さ方向における伸縮により生じる応力が、空隙部2a、2bにより吸収される。これにより、電歪による結晶破損の発生を抑制する。 Also in the optical switch of this embodiment, as in the case of the first embodiment, during the switch operation, in the electrode formation regions of the electrode portions 13a and 13b and the electrode portions 14a and 14b, crystals due to electrostriction Expansion and contraction occurs. The gap portions 1a and 1b are formed at both ends in the length direction of the electrode formation regions of the electrode portions 13a and 13b, and stress generated by expansion and contraction in the length direction of the electrode formation regions is absorbed by the gap portions 1a and 1b. Is done. Similarly, the gap portions 2a and 2b are formed at both ends in the length direction of the electrode formation regions of the electrode portions 14a and 14b, and the stress generated by the expansion and contraction in the length direction of the electrode formation region is the gap portion. Absorbed by 2a and 2b. This suppresses the occurrence of crystal breakage due to electrostriction.
 (第3の実施形態)
 電気光学結晶に電界を印加して屈折率を変化させる場合、結晶の屈折率の変化は、結晶の温度に依存する。屈折率の変化の大きさが温度により変化すると、光スイッチの出力光の強度も変化することになる。光スイッチの動作をより安定させるためには、電気光学結晶の、屈折率変化が生じる領域(透過および反射による状態切り替えが行われる領域)の温度を適正な温度範囲内で維持する必要がある。ここでは、本発明の第3の実施形態として、電歪による結晶破損の発生を抑制することができ、かつ、屈折率変化が生じる領域を一定の温度範囲内で維持することのできる、簡単な構造の光スイッチについて説明する。
(Third embodiment)
When the refractive index is changed by applying an electric field to the electro-optic crystal, the change in the refractive index of the crystal depends on the temperature of the crystal. When the magnitude of the change in refractive index changes with temperature, the intensity of output light from the optical switch also changes. In order to make the operation of the optical switch more stable, it is necessary to maintain the temperature of the region where the refractive index change of the electro-optic crystal (the region where the state is switched by transmission and reflection) within an appropriate temperature range. Here, as a third embodiment of the present invention, the occurrence of crystal breakage due to electrostriction can be suppressed, and a region where the refractive index change occurs can be maintained within a certain temperature range. An optical switch having a structure will be described.
 図6Aは、本発明の第3の実施形態である光スイッチの上面図、図6Bは、図6Aの線A-Aによる断面図、図6Cは、図6Aの線B-Bによる断面図である。 6A is a top view of an optical switch according to a third embodiment of the present invention, FIG. 6B is a cross-sectional view taken along line AA in FIG. 6A, and FIG. 6C is a cross-sectional view taken along line BB in FIG. is there.
 本実施形態の光スイッチは、第1の実施形態の光スイッチの構成と比較して、主に、空隙部の構成が異なる。電極部13a、13bの構造は、第1の実施形態の光スイッチの構成と同じである。 The optical switch according to the present embodiment is mainly different in the configuration of the gap from the configuration of the optical switch according to the first embodiment. The structures of the electrode portions 13a and 13b are the same as the configuration of the optical switch of the first embodiment.
 図6Aには、光学結晶板11の表面に形成された電極部13a、13bおよびこれら電極部13a、13bの周囲に設けられた空隙部1を、光学結晶板10側から見た状態が透視図的に示されている。図6Aに示すように、電極面に垂直な方向から見た場合に、空隙部1は、電極部13a、13bが形成された電極形成領域を囲むように設けられている。 FIG. 6A is a perspective view of the state where the electrode portions 13a and 13b formed on the surface of the optical crystal plate 11 and the gap portion 1 provided around the electrode portions 13a and 13b are viewed from the optical crystal plate 10 side. Has been shown. As shown in FIG. 6A, when viewed from the direction perpendicular to the electrode surface, the gap 1 is provided so as to surround the electrode formation region in which the electrode portions 13a and 13b are formed.
 空隙部1は、電極部13a、13bと交差する。図6Cに示すように、空隙部1の、電極部13a、13bとの交差部の断面形状は、C形状である。空隙部1内には、電極部13a、13bの電極材料に比べて硬度の低い(柔らかい)金属材料が充填されており、これにより金属層4を形成している。金属層4の材料として、柔らかく、熱を通し易い金属材料、例えば、金やアルミなどの金属材料を用いることが望ましい。なお、図6Cに示した断面において、電極部13aと空隙部1との間には絶縁層10aが形成され、電極部13bと空隙部1との間には絶縁層10bが形成されている。例えば、金属層となる金属材料を蒸着した後、その金属層の電極部と交差する部分をエッチングし、そこに、絶縁層となる材料を堆積し、その表面を研磨する、といった工程によって、絶縁層10a、10bを形成する。絶縁層10a、10bは、電極部13a、13bと金属層4とを絶縁することができるのであれば、どのような材料で形成してもよい。例えば、絶縁層10a、10bは、光学結晶板10と同じ材料で形成してもよい。なお、電極部13a、13bと金属層4とが接することがない場合は、絶縁層10a、10bを設ける必要はない。 The gap portion 1 intersects with the electrode portions 13a and 13b. As shown in FIG. 6C, the cross-sectional shape of the space 1 where the gap 1 intersects the electrodes 13a and 13b is a C shape. The gap 1 is filled with a metal material having a lower hardness (softer) than the electrode material of the electrode portions 13 a and 13 b, thereby forming a metal layer 4. As the material of the metal layer 4, it is desirable to use a soft metal material that is easy to pass heat, such as a metal material such as gold or aluminum. In the cross section shown in FIG. 6C, an insulating layer 10 a is formed between the electrode portion 13 a and the gap portion 1, and an insulating layer 10 b is formed between the electrode portion 13 b and the gap portion 1. For example, after vapor-depositing a metal material to be a metal layer, etching is performed on a portion that intersects the electrode portion of the metal layer, and a material to be an insulating layer is deposited thereon, and a surface thereof is polished. Layers 10a and 10b are formed. The insulating layers 10a and 10b may be formed of any material as long as the electrode portions 13a and 13b and the metal layer 4 can be insulated. For example, the insulating layers 10 a and 10 b may be formed of the same material as the optical crystal plate 10. In addition, when the electrode parts 13a and 13b and the metal layer 4 do not contact, it is not necessary to provide the insulating layers 10a and 10b.
 金属層4の一部は、光学結晶板11の表面(光学結晶板10で覆われていない面)において外部に露出しており、この露出面に、温度制御素子3が形成されている。 A part of the metal layer 4 is exposed to the outside on the surface of the optical crystal plate 11 (the surface not covered with the optical crystal plate 10), and the temperature control element 3 is formed on the exposed surface.
 温度制御素子3は、ペルチェ素子に代表される熱電変換素子と温度センサとからなる。熱電変換素子は、その発熱面が金属層4の露出面に接触するように設けられている。熱電変換素子は、電流が供給されることで発熱する。熱電変換素子が発熱すると、発熱面からの熱エネルギーによって、金属層4が加熱される。金属層4が加熱されると、その近傍領域(電極部13a、13bの電極形成領域を含む)の温度が上昇する。 The temperature control element 3 includes a thermoelectric conversion element typified by a Peltier element and a temperature sensor. The thermoelectric conversion element is provided such that its heat generating surface is in contact with the exposed surface of the metal layer 4. The thermoelectric conversion element generates heat when supplied with current. When the thermoelectric conversion element generates heat, the metal layer 4 is heated by the heat energy from the heat generating surface. When the metal layer 4 is heated, the temperature in the vicinity region (including the electrode formation region of the electrode portions 13a and 13b) rises.
 また、熱電変換素子は、発熱面と接する部分から熱エネルギーを吸収する吸熱機能も備えている。具体的には、熱電変換素子であるペルチェ素子においては、直流電流を流すと、一方の面が吸熱し、反対面に発熱が起こる。電流の極性を逆転させると、その関係が反転する。これにより、吸熱が可能となる。 Also, the thermoelectric conversion element has a heat absorption function that absorbs heat energy from a portion in contact with the heat generating surface. Specifically, in a Peltier device that is a thermoelectric conversion device, when a direct current is passed, one surface absorbs heat and heat is generated on the opposite surface. When the polarity of the current is reversed, the relationship is reversed. Thereby, heat absorption becomes possible.
 温度センサの出力に基づいて、熱電変換素子が設けられた領域の温度を検出する。この検出温度に基づいて電極形成領域の温度を推定するこができる。熱電変換素子が設けられた領域の温度と電極形成領域の推定温度との関係に基づいて、電極形成領域を一定の温度で維持するための閾値が予め決定されている。検出温度が閾値未満の場合は、熱電変換素子による発熱動作を行わせる。検出温度が閾値以上の場合は、熱電変換素子による吸熱動作を行わせる。この動作により、電極形成領域の温度を一定の温度範囲内で維持することが可能である。 * Based on the output of the temperature sensor, the temperature of the region where the thermoelectric conversion element is provided is detected. Based on this detected temperature, the temperature of the electrode forming region can be estimated. Based on the relationship between the temperature of the region where the thermoelectric conversion element is provided and the estimated temperature of the electrode formation region, a threshold value for maintaining the electrode formation region at a constant temperature is determined in advance. When the detected temperature is lower than the threshold value, the heat generation operation by the thermoelectric conversion element is performed. When the detected temperature is equal to or higher than the threshold value, an endothermic operation by the thermoelectric conversion element is performed. By this operation, the temperature of the electrode formation region can be maintained within a certain temperature range.
 図6Dに示すように、温度制御素子3は、温度制御部50に接続されている。温度制御部50は、温度制御素子3の熱電変換素子への電流供給を制御する回路である。温度制御素子3の温度センサの出力が、温度制御部50に供給されている。温度制御部50は、温度センサにより検出された温度が閾値未満の場合は、熱電変換素子による発熱動作を行わせ、検出温度が閾値以上の場合は、熱電変換素子による吸熱動作を行わせる。これにより、金属層4近傍の領域(電極部13a、13bの電極形成領域を含む)の温度を一定温度範囲内に維持する。 As shown in FIG. 6D, the temperature control element 3 is connected to the temperature control unit 50. The temperature control unit 50 is a circuit that controls current supply to the thermoelectric conversion element of the temperature control element 3. The output of the temperature sensor of the temperature control element 3 is supplied to the temperature control unit 50. When the temperature detected by the temperature sensor is less than the threshold value, the temperature control unit 50 causes the thermoelectric conversion element to generate heat, and when the detected temperature is equal to or higher than the threshold value, the temperature control unit 50 causes the thermoelectric conversion element to perform an endothermic operation. Thereby, the temperature of the region near the metal layer 4 (including the electrode formation regions of the electrode portions 13a and 13b) is maintained within a certain temperature range.
 本実施形態の光スイッチでは、温度制御素子3への電流供給を制御することで、金属層4の近傍の領域(電極部13a、13bの電極形成領域を含む)の温度を、一定の温度範囲内で維持する。この状態で、電極部13a、13bへの電圧の供給を制御してスイッチ動作を行う。これにより、一定強度の出力光を得られる。 In the optical switch of the present embodiment, by controlling the current supply to the temperature control element 3, the temperature of the region in the vicinity of the metal layer 4 (including the electrode formation regions of the electrode portions 13a and 13b) is set within a certain temperature range. Maintain within. In this state, the switch operation is performed by controlling the supply of voltage to the electrode portions 13a and 13b. Thereby, output light with a constant intensity can be obtained.
 上記のスイッチ動作において、電歪による結晶の伸縮が生じる。空隙部1内に形成された金属層4は、硬度の低い(柔らかい)金属材料よりなるので、弾性手段として作用する。したがって、結晶伸縮により生じる応力が、弾性を有する金属層4により吸収される。これにより、電歪による結晶破損の発生を抑制することができる。 In the above switch operation, the crystal stretches due to electrostriction. Since the metal layer 4 formed in the space 1 is made of a metal material having a low hardness (soft), it functions as an elastic means. Therefore, the stress generated by crystal expansion and contraction is absorbed by the elastic metal layer 4. Thereby, generation | occurrence | production of the crystal breakage by electrostriction can be suppressed.
 また、本実施形態の光スイッチでは、歪吸収のための空隙部を利用して温度制御用の金属層が形成されている。このような構造は、歪吸収のための空隙部と温度制御用の金属層とを別々の領域に形成する構造に比べてシンプルである。 Further, in the optical switch of the present embodiment, a temperature control metal layer is formed using a gap for strain absorption. Such a structure is simpler than a structure in which a gap for strain absorption and a metal layer for temperature control are formed in different regions.
 なお、金属層4を含む空隙部1は、図6A~図6Cに示した構成に限定されるものではない。金属層4を含む空隙部1は、電極部13a、13bを含む領域の温度を一定の温度範囲内で維持することができ、かつ、電歪による結晶破損の発生を抑制することができるのであれば、どのような構造としてもよい。例えば、空隙部1を、電極形成領域の端部に沿って形成された複数の空隙部により構成し、それぞれの空隙部内に金属材料を充填してもよい。この場合は、各空隙部内の金属層の一部がそれぞれ露出するような構成とし、各露出面に、温度制御素子を設ける。そして、各温度制御素子により各金属層に対する加熱または吸熱の動作を行うことで、電極部13a、13bを含む領域の温度を一定の温度範囲内で維持する。結晶伸縮により生じる応力は、各空隙部内に形成された弾性を有する金属層により吸収される。 The gap 1 including the metal layer 4 is not limited to the configuration shown in FIGS. 6A to 6C. The void portion 1 including the metal layer 4 can maintain the temperature of the region including the electrode portions 13a and 13b within a certain temperature range, and can suppress the occurrence of crystal breakage due to electrostriction. Any structure may be used. For example, the void portion 1 may be constituted by a plurality of void portions formed along the end portion of the electrode formation region, and each of the void portions may be filled with a metal material. In this case, a part of the metal layer in each gap is exposed, and a temperature control element is provided on each exposed surface. And the temperature of the area | region containing electrode part 13a, 13b is maintained within a fixed temperature range by performing operation | movement of the heating or heat absorption with respect to each metal layer by each temperature control element. The stress generated by the crystal expansion and contraction is absorbed by the elastic metal layer formed in each gap.
 また、金属層4の露出面および温度制御素子3の位置は、図6A~図6Cに示したものに限定されない。金属層4の露出面および温度制御素子3の位置は、適宜に設定することができる。 Further, the exposed surface of the metal layer 4 and the position of the temperature control element 3 are not limited to those shown in FIGS. 6A to 6C. The exposed surface of the metal layer 4 and the position of the temperature control element 3 can be appropriately set.
 さらに、金属層4の複数の箇所を露出させ、各露出面に温度制御素子を設けてもよい。複数個所の露出面で金属層4に対する加熱または吸熱の動作を行うことで、電極部13a、13bを含む領域の温度制御を効率的に行うことができる。 Furthermore, a plurality of portions of the metal layer 4 may be exposed and a temperature control element may be provided on each exposed surface. By performing heating or endothermic operation on the metal layer 4 at a plurality of exposed surfaces, temperature control of the region including the electrode portions 13a and 13b can be performed efficiently.
 また、光学結晶板10、11を、結晶の構造が変化する相転移温度以上で透明となり、相転移温度付近で大きな屈折率を得られる電気光学結晶、例えば、KTN(タンタル酸ニオブ酸カリウム:KTa1-xNbxO3)により構成することもできる。この場合は、温度制御素子3により金属層4に対する加熱または吸熱の動作を行って、光学結晶板10、11の電極部13a、13bを含む領域の温度を、相転移温度以上で維持する。より望ましくは、光学結晶板10、11の電極部13a、13bを含む領域の温度を、相転移温度以上、かつ、相転移温度近傍に維持する。この状態で、電極部13a、13bへの電圧の供給を制御してスイッチ動作を行う。電気光学結晶を透明な状態で維持することで、電気光学結晶を透過する光の光量が増大し、その分、消光比を高くすることができる。 In addition, the optical crystal plates 10 and 11 are transparent above the phase transition temperature at which the crystal structure changes, and are electro-optic crystals that can obtain a large refractive index near the phase transition temperature, such as KTN (potassium niobate tantalate: KTa). 1-x Nb x O 3 ). In this case, the temperature control element 3 performs heating or endothermic operation on the metal layer 4 to maintain the temperature of the region including the electrode portions 13a and 13b of the optical crystal plates 10 and 11 at or above the phase transition temperature. More desirably, the temperature of the region including the electrode portions 13a and 13b of the optical crystal plates 10 and 11 is maintained at or above the phase transition temperature and in the vicinity of the phase transition temperature. In this state, the switch operation is performed by controlling the supply of voltage to the electrode portions 13a and 13b. By maintaining the electro-optic crystal in a transparent state, the amount of light transmitted through the electro-optic crystal is increased, and the extinction ratio can be increased accordingly.
 なお、電気光学結晶を相転移温度以上の温度で維持する場合、その温度制御範囲の上限値は、電気光学結晶の屈折率の温度依存性を考慮して、光スイッチが動作する範囲内とする。具体的には、以下のようにして温度制御範囲の上限値は決まる。 When the electro-optic crystal is maintained at a temperature equal to or higher than the phase transition temperature, the upper limit value of the temperature control range is set within the range in which the optical switch operates in consideration of the temperature dependence of the refractive index of the electro-optic crystal. . Specifically, the upper limit value of the temperature control range is determined as follows.
 電気光学結晶の温度が上昇すると、電気光学結晶の屈折率が変化し、それに伴って、屈折率変化領域の屈折率界面において入射光が全反射するときの臨界角も変化する。このため、例えば、入射光の屈折率界面に対する入射角を相転移温度における臨界角に設定した場合、温度上昇により臨界角が変化すると、設定した入射角が臨界角よりも小さくなる。この場合、入射光は屈折率変化領域の屈折率界面にて全反射されず、屈折率変化領域を透過することになり、その結果、光スイッチが動作しなくなる。したがって、温度制御範囲の上限値は、臨界角が設定した入射角を超えない温度とされる。臨界角が設定した入射角を超えない温度の条件は、線状電極の間隔、印加電圧の大きさ、および入射角の各パラメータにより規定することができる。 When the temperature of the electro-optic crystal rises, the refractive index of the electro-optic crystal changes, and accordingly, the critical angle when incident light is totally reflected at the refractive index interface in the refractive index changing region also changes. For this reason, for example, when the incident angle of the incident light with respect to the refractive index interface is set to a critical angle at the phase transition temperature, the set incident angle becomes smaller than the critical angle when the critical angle changes due to the temperature rise. In this case, incident light is not totally reflected at the refractive index interface of the refractive index change region, but is transmitted through the refractive index change region, and as a result, the optical switch does not operate. Therefore, the upper limit value of the temperature control range is a temperature at which the critical angle does not exceed the set incident angle. The temperature condition where the critical angle does not exceed the set incident angle can be defined by the parameters of the distance between the linear electrodes, the magnitude of the applied voltage, and the incident angle.
 以上説明した本実施形態の光スイッチの、弾性を有する金属層4を含む空隙部1を用いた、歪吸収構造および温度制御構造は、第2の実施形態で説明した光スイッチ、すなわち、入射光の進行方向に沿って複数の屈折率変化領域が形成される光スイッチに適用することが可能である。この場合は、屈折率変化領域毎に、それら歪吸収構造および温度制御構造を設ける。 The strain absorption structure and the temperature control structure using the void portion 1 including the elastic metal layer 4 of the optical switch of the present embodiment described above are the optical switches described in the second embodiment, that is, incident light. The present invention can be applied to an optical switch in which a plurality of refractive index changing regions are formed along the traveling direction. In this case, the strain absorption structure and the temperature control structure are provided for each refractive index change region.
 また、熱電変換素子による吸熱だけでなく、金属層4自体も放熱作用を有する。具体的には、金属層4の近傍の領域(電極部13a、13bの電極形成領域を含む)からの熱エネルギーは金属層4を伝わって、金属層4の露出面から外部空間へ放出される。この熱エネルギーの放出により、金属層4の近傍の領域(電極部13a、13bの電極形成領域を含む)の温度が低下する。なお、放熱を効率的に行うために、金属層4の露出面の面積を大きくすることが望ましい。電極形成領域を冷却するという観点からすると、金属層4による放熱構造は有効である。 Moreover, not only the heat absorption by the thermoelectric conversion element, but also the metal layer 4 itself has a heat dissipation action. Specifically, the thermal energy from the region near the metal layer 4 (including the electrode formation regions of the electrode portions 13a and 13b) is transmitted through the metal layer 4 and released from the exposed surface of the metal layer 4 to the external space. . Due to the release of the thermal energy, the temperature of the region near the metal layer 4 (including the electrode formation regions of the electrode portions 13a and 13b) decreases. In order to efficiently dissipate heat, it is desirable to increase the area of the exposed surface of the metal layer 4. From the viewpoint of cooling the electrode formation region, the heat dissipation structure by the metal layer 4 is effective.
 (第4の実施形態)
 図7Aは、本発明の第4の実施形態である光スイッチの上面図、図7Bは、図7Aの線A-Aによる断面図、図7Cは、図7Aの線B-Bによる断面図である。
(Fourth embodiment)
7A is a top view of an optical switch according to a fourth embodiment of the present invention, FIG. 7B is a sectional view taken along line AA in FIG. 7A, and FIG. 7C is a sectional view taken along line BB in FIG. 7A. is there.
 本実施形態の光スイッチは、空隙部の構成が異なる以外は、第3の実施形態の光スイッチと同様の構成のものである。図7Aには、光学結晶板11の表面に形成された電極部13a、13bおよびこれら電極部13a、13bの周囲に設けられた空隙部1c、1dを、光学結晶板10側から見た状態が透視図的に示されている。図7Aに示すように、電極面に垂直な方向から見た場合に、空隙部1c、1dは、電極部13a、13bが形成された電極形成領域の端部に沿って設けられており、空隙部1c、1dの一部は、電極形成領域の長手方向の両端部に沿って形成されており、互いに対向するように配置されている。 The optical switch of the present embodiment has the same configuration as the optical switch of the third embodiment except that the configuration of the gap is different. 7A shows a state in which the electrode portions 13a and 13b formed on the surface of the optical crystal plate 11 and the gap portions 1c and 1d provided around the electrode portions 13a and 13b are viewed from the optical crystal plate 10 side. It is shown in perspective. As shown in FIG. 7A, when viewed from the direction perpendicular to the electrode surface, the gaps 1c and 1d are provided along the end portions of the electrode formation region where the electrode parts 13a and 13b are formed. Part of the portions 1c and 1d is formed along both ends in the longitudinal direction of the electrode formation region, and is disposed so as to face each other.
 空隙部1c内に金属層4aが形成されている。空隙部1cの電極形成領域の長手方向の端部に沿った部分において、金属層4aは、電極部13a、13b側の領域に形成されている。これと同様に、空隙部1d内に金属層4bが形成されている。空隙部1dの電極形成領域の長手方向の端部に沿った部分において、金属層4aは、電極部13a、13b側の領域に形成されている。なお、空隙部1dは、図7Cに示すように、電極部13bと交差する。空隙部1dの、電極部13bとの交差部の断面形状は、C字状である。この交差部において、電極部13bと金属層4bとの間には絶縁層10cが形成されている。絶縁層10cは、電極部13bと金属層4bとを絶縁することができるのであれば、どのような材料で形成されてもよい。例えば、絶縁層10cは、光学結晶板10と同じ材料で形成してもよい。 A metal layer 4a is formed in the gap 1c. The metal layer 4a is formed in a region on the side of the electrode portions 13a and 13b in a portion along the end in the longitudinal direction of the electrode forming region of the gap portion 1c. Similarly, a metal layer 4b is formed in the gap 1d. In the portion along the longitudinal end of the electrode forming region of the gap 1d, the metal layer 4a is formed in a region on the electrode portions 13a and 13b side. The gap 1d intersects with the electrode portion 13b as shown in FIG. 7C. The cross-sectional shape of the intersection of the gap 1d with the electrode 13b is C-shaped. At this intersection, an insulating layer 10c is formed between the electrode portion 13b and the metal layer 4b. The insulating layer 10c may be formed of any material as long as the electrode portion 13b and the metal layer 4b can be insulated. For example, the insulating layer 10 c may be formed of the same material as the optical crystal plate 10.
 金属層4a、4bは、電極部13a、13bの電極材料と同じ電極材料で形成してもよいが、より望ましくは、熱を通し易い金属材料、例えば、金やアルミなどの金属材料により形成する。なお、金属層4a、4bと電極部13a、13bを同一の金属材料で形成する場合は、同一の形成プロセスでこれら金属層4a、4bと電極部13a、13bを形成することができる。 The metal layers 4a and 4b may be formed of the same electrode material as the electrode material of the electrode portions 13a and 13b, but more preferably, a metal material that easily conducts heat, for example, a metal material such as gold or aluminum. . When the metal layers 4a and 4b and the electrode portions 13a and 13b are formed of the same metal material, the metal layers 4a and 4b and the electrode portions 13a and 13b can be formed by the same formation process.
 金属層4aの一部は、光学結晶板11の表面(光学結晶板10で覆われていない面)において外部に露出しており、この露出面に、温度制御素子3aが形成されている。これと同様に、金属層4bの一部も外部に露出しており、この露出面に、温度制御素子3bが形成されている。 A part of the metal layer 4a is exposed to the outside on the surface of the optical crystal plate 11 (the surface not covered with the optical crystal plate 10), and the temperature control element 3a is formed on the exposed surface. Similarly, a part of the metal layer 4b is also exposed to the outside, and the temperature control element 3b is formed on this exposed surface.
 温度制御素子3a、3bは、図6Aに示した温度制御素子3と同様の構成であって、ペルチェ素子に代表される熱電変換素子と温度センサとを有する。また、図示はされていないが、温度制御素子3a、3bのそれぞれに設けられた熱電変換素子および温度センサは、温度制御部に接続されている。温度制御部は、図3に示した温度制御部50に相当するものである。 The temperature control elements 3a and 3b have the same configuration as the temperature control element 3 shown in FIG. 6A, and include a thermoelectric conversion element typified by a Peltier element and a temperature sensor. Although not shown, thermoelectric conversion elements and temperature sensors provided in each of the temperature control elements 3a and 3b are connected to a temperature control unit. The temperature control unit corresponds to the temperature control unit 50 shown in FIG.
 温度制御部は、温度制御素子3aの温度センサにより検出された温度が閾値未満の場合は、温度制御素子3aの熱電変換素子による発熱動作を行わせ、検出温度が閾値以上の場合は、温度制御素子3aの熱電変換素子による吸熱動作を行わせる。同様に、温度制御部は、温度制御素子3bについて、温度センサにより検出された温度が閾値未満の場合は、熱電変換素子による発熱動作を行わせ、検出温度が閾値以上の場合は、熱電変換素子による吸熱動作を行わせる。これにより、金属層4a、4bの近傍の領域(電極部13a、13bよりなる電極形成領域を含む)の温度を一定の温度範囲内で維持する。 When the temperature detected by the temperature sensor of the temperature control element 3a is less than the threshold value, the temperature control unit causes the thermoelectric conversion element of the temperature control element 3a to perform a heat generation operation. When the detected temperature is equal to or higher than the threshold value, the temperature control unit The heat absorption operation by the thermoelectric conversion element of the element 3a is performed. Similarly, the temperature control unit causes the thermoelectric conversion element to perform a heat generation operation when the temperature detected by the temperature sensor is less than the threshold for the temperature control element 3b, and when the detected temperature is equal to or higher than the threshold, The endothermic operation is performed. Thereby, the temperature of the area | region (including the electrode formation area | region which consists of electrode parts 13a and 13b) near the metal layers 4a and 4b is maintained within a fixed temperature range.
 本実施形態の光スイッチでは、金属層4a、4bに対して温度制御素子3a、3bにより加熱または吸熱を行うことで、光学結晶板10、11の電極部13a、13bを含む領域の温度を一定の温度範囲内で維持する。この状態で、電極部13a、13bへの電圧の供給を制御してスイッチ動作を行う。これにより、一定強度の出力光を得られる。 In the optical switch of the present embodiment, the temperature of the region including the electrode portions 13a and 13b of the optical crystal plates 10 and 11 is kept constant by heating or absorbing the metal layers 4a and 4b with the temperature control elements 3a and 3b. Maintain within the temperature range of. In this state, the switch operation is performed by controlling the supply of voltage to the electrode portions 13a and 13b. Thereby, output light with a constant intensity can be obtained.
 上記のスイッチ動作において、電歪による結晶の伸縮が生じる。この結晶伸縮により生じる応力は、空隙部1c、1d内の空洞部分で吸収される。これにより、電歪による結晶破損の発生を抑制することができる。 In the above switch operation, the crystal stretches due to electrostriction. The stress generated by the crystal expansion and contraction is absorbed by the hollow portions in the void portions 1c and 1d. Thereby, generation | occurrence | production of the crystal breakage by electrostriction can be suppressed.
 また、本実施形態の光スイッチでは、歪吸収のための空隙部を利用して温度制御用の金属層が形成されている。このような構造は、歪吸収のための空隙部と温度制御用の金属層とを別々の領域に形成する構造に比べてシンプルである。 Further, in the optical switch of the present embodiment, a temperature control metal layer is formed using a gap for strain absorption. Such a structure is simpler than a structure in which a gap for strain absorption and a metal layer for temperature control are formed in different regions.
 なお、金属層4a、4bを含む空隙部1c、1dは、図7A~図7Cに示した構成に限定されるものではない。金属層4a、4bを含む空隙部1c、1dは、電極部13a、13bを含む領域の温度を一定の温度範囲内で維持することができ、かつ、電歪による結晶破損の発生を抑制することができるのであれば、どのような構造としてもよい。例えば、空隙部を、電極形成領域の端部に沿って1つまたは複数形成し、その空隙部内の電極形成領域側の側壁に金属層を形成してもよい。 The gaps 1c and 1d including the metal layers 4a and 4b are not limited to the configurations shown in FIGS. 7A to 7C. The void portions 1c and 1d including the metal layers 4a and 4b can maintain the temperature of the region including the electrode portions 13a and 13b within a certain temperature range, and suppress the occurrence of crystal breakage due to electrostriction. Any structure can be used as long as it is possible. For example, one or a plurality of voids may be formed along the end of the electrode formation region, and the metal layer may be formed on the side wall on the electrode formation region side in the void.
 なお、本実施形態では、金属層は、電極部を含む領域の温度を制御する目的で使用する。効率よく温度制御を行うためには、金属層は空隙部内の電極部の領域側の側壁に設けることが望ましい。 In the present embodiment, the metal layer is used for the purpose of controlling the temperature of the region including the electrode part. In order to efficiently control the temperature, the metal layer is desirably provided on the side wall on the region side of the electrode portion in the gap.
 また、金属層4a、4bの露出面および温度制御素子3a、3bの位置は、図7A~図7Cに示したものに限定されない。金属層4a、4bの露出面および温度制御素子3a、3bの位置は、適宜に設定することができる。 Further, the exposed surfaces of the metal layers 4a and 4b and the positions of the temperature control elements 3a and 3b are not limited to those shown in FIGS. 7A to 7C. The exposed surfaces of the metal layers 4a and 4b and the positions of the temperature control elements 3a and 3b can be set as appropriate.
 さらに、金属層4a、4bのそれぞれにおいて、複数の箇所を露出させ、各露出面に温度制御素子を設けてもよい。複数個所の露出面で金属層に対する加熱または吸熱を行うことで、電極部13a、13bを含む領域の温度を効率的に制御することができる。 Furthermore, in each of the metal layers 4a and 4b, a plurality of locations may be exposed and a temperature control element may be provided on each exposed surface. By performing heating or heat absorption on the metal layer at a plurality of exposed surfaces, the temperature of the region including the electrode portions 13a and 13b can be efficiently controlled.
 また、本実施形態においても、第3の実施形態の場合と同様に、光学結晶板10、11を、相転移温度以上で透明となる電気光学結晶(例えば、KTN)により構成してもよい。この場合は、温度制御素子3a、3bにより金属層4a、4bに対する加熱または吸熱の動作を行わせることで、光学結晶板10、11の電極部13a、13bを含む領域の温度を、相転移温度以上で維持する。より望ましくは、電極部13a、13bを含む領域の温度を、相転移温度以上、かつ、相転移温度近傍に維持する。この状態で、電極部13a、13bへの電圧の供給を制御してスイッチ動作を行う。電気光学結晶を透明な状態で維持することで、電気光学結晶を透過する光の光量が増大し、その分、消光比を高くすることができる。なお、電気光学結晶を相転移温度以上の温度で維持する場合、その温度制御範囲の上限値は、第3の実施形態で説明したとおりである。 Also in this embodiment, as in the case of the third embodiment, the optical crystal plates 10 and 11 may be made of an electro-optical crystal (for example, KTN) that becomes transparent at a phase transition temperature or higher. In this case, by causing the temperature control elements 3a and 3b to perform heating or endothermic operation on the metal layers 4a and 4b, the temperature of the region including the electrode portions 13a and 13b of the optical crystal plates 10 and 11 is changed to the phase transition temperature. Maintain above. More desirably, the temperature of the region including the electrode portions 13a and 13b is maintained at or above the phase transition temperature and in the vicinity of the phase transition temperature. In this state, the switch operation is performed by controlling the supply of voltage to the electrode portions 13a and 13b. By maintaining the electro-optic crystal in a transparent state, the amount of light transmitted through the electro-optic crystal is increased, and the extinction ratio can be increased accordingly. When the electro-optic crystal is maintained at a temperature equal to or higher than the phase transition temperature, the upper limit value of the temperature control range is as described in the third embodiment.
 以上説明した本実施形態の光スイッチの、金属層4a、4bを含む空隙部1c、1dを用いた、歪吸収構造および温度制御構造は、第2の実施形態で説明した光スイッチ、すなわち、入射光の進行方向に沿って複数の屈折率変化領域が形成される光スイッチに適用することが可能である。この場合は、屈折率変化領域毎に、それら歪吸収構造および温度制御構造を設ける。 The strain absorption structure and the temperature control structure using the gaps 1c and 1d including the metal layers 4a and 4b of the optical switch of the present embodiment described above are the optical switches described in the second embodiment, that is, incident light. The present invention can be applied to an optical switch in which a plurality of refractive index changing regions are formed along the traveling direction of light. In this case, the strain absorption structure and the temperature control structure are provided for each refractive index change region.
 (第5の実施形態)
 図8Aは、本発明の第5の実施形態である光スイッチの上面図、図8Bは、図8Aの線A-Aによる断面図、図8Cは、図8Aの線B-Bによる断面図である。
(Fifth embodiment)
8A is a top view of an optical switch according to a fifth embodiment of the present invention, FIG. 8B is a sectional view taken along line AA in FIG. 8A, and FIG. 8C is a sectional view taken along line BB in FIG. 8A. is there.
 本実施形態の光スイッチは、空隙部の構成が異なる以外は、第3または第4の実施形態の光スイッチと同様の構成のものである。図8Aには、光学結晶板11の表面に形成された電極部13a、13bおよびこれら電極部13a、13bの周囲に設けられた空隙部1eを、光学結晶板10側から見た状態が透視図的に示されている。図8Aに示すように、電極面に垂直な方向から見た場合に、空隙部1eは、電極部13a、13bが形成された電極形成領域を囲むように設けられている。 The optical switch of the present embodiment has the same configuration as the optical switch of the third or fourth embodiment except that the configuration of the gap is different. FIG. 8A is a perspective view of the state where the electrode portions 13a and 13b formed on the surface of the optical crystal plate 11 and the gap portion 1e provided around the electrode portions 13a and 13b are viewed from the optical crystal plate 10 side. Has been shown. As shown in FIG. 8A, when viewed from a direction perpendicular to the electrode surface, the gap 1e is provided so as to surround the electrode formation region in which the electrode portions 13a and 13b are formed.
 図8Bおよび図8Cでは、空隙部1eの領域を明確にするために、空隙部1eは、縦線の領域で示している。空隙部1eは、電極部13bと交差する。図8Cに示すように、空隙部1eの、電極部13bとの交差部の断面形状は、C形状である。この交差部において、電極部13b上に絶縁層10dが形成されている。すなわち、絶縁層10dは、空隙部1e内において、電極部13bの露出面を覆うように形成されており、これにより、例えば空隙部1e内を流れる流体に電極部13bの一部が晒されて、その部分が腐食等により劣化することを抑制する。絶縁層10dは、空隙部1e内に露出した電極部13bの部分を保護することができるのであれば、どのような材料で形成してもよい。例えば、絶縁層10dは、光学結晶板10と同じ材料で形成してもよい。 8B and 8C, in order to clarify the region of the gap 1e, the gap 1e is indicated by a vertical line region. The gap 1e intersects the electrode portion 13b. As shown in FIG. 8C, the cross-sectional shape of the space 1e intersecting with the electrode portion 13b is a C shape. An insulating layer 10d is formed on the electrode portion 13b at the intersection. That is, the insulating layer 10d is formed so as to cover the exposed surface of the electrode portion 13b in the gap portion 1e, so that, for example, a part of the electrode portion 13b is exposed to the fluid flowing in the gap portion 1e. , To suppress deterioration of the portion due to corrosion or the like. The insulating layer 10d may be formed of any material as long as the portion of the electrode portion 13b exposed in the gap portion 1e can be protected. For example, the insulating layer 10d may be formed of the same material as the optical crystal plate 10.
 また、図8Bに示すように、空隙部1eの一方の端部は、光学結晶板10、11の双方に跨って形成されており、この部分に、光学結晶板の外部の空間と連通する第1の開口部が形成されている。また、空隙部1eの他方の端部も、光学結晶板10、11の双方に跨って形成されており、この部分に、光学結晶板の外部の空間と連通する第2の開口部が形成されている。ここでは、第1の開口部は、流入部5aに連通し、第2の開口部は、流出部5bに連通している。 Also, as shown in FIG. 8B, one end of the gap 1e is formed across both the optical crystal plates 10 and 11, and this portion communicates with a space outside the optical crystal plate. 1 opening is formed. The other end of the gap 1e is also formed across both the optical crystal plates 10 and 11, and a second opening communicating with the space outside the optical crystal plate is formed in this portion. ing. Here, the first opening communicates with the inflow portion 5a, and the second opening communicates with the outflow portion 5b.
 図8Dに示すように、流入部5aは、流体供給部51の噴出口に流路を介して連結され、流出部5bは、流体供給部51の流体回収口に流路を介して連結されている。流体供給部51は、一定の温度範囲内に維持された流体(気体または液体)を流入部5aから供給し、その供給した流体を流出部5bから回収する。一定の温度範囲内に維持された流体が空隙部1e内を循環し、これにより、電極部13a、13bの電極形成領域の温度を一定温度範囲内に維持することが可能である。 As shown in FIG. 8D, the inflow part 5a is connected to the jet outlet of the fluid supply part 51 via a flow path, and the outflow part 5b is connected to the fluid recovery port of the fluid supply part 51 via a flow path. Yes. The fluid supply part 51 supplies the fluid (gas or liquid) maintained within a certain temperature range from the inflow part 5a, and collects the supplied fluid from the outflow part 5b. The fluid maintained in a certain temperature range circulates in the gap 1e, whereby the temperature of the electrode forming regions of the electrode portions 13a and 13b can be maintained in the certain temperature range.
 本実施形態の光スイッチでは、一定の温度範囲内に維持された流体を空隙部1e内に供給することで、光学結晶板10、11の電極部13a、13bを含む領域の温度を一定の温度範囲内で維持する。この状態で、電極部13a、13bへの電圧の供給を制御してスイッチ動作を行う。これにより、一定強度の出力光を得られる。 In the optical switch of the present embodiment, the temperature of the region including the electrode portions 13a and 13b of the optical crystal plates 10 and 11 is set to a constant temperature by supplying the fluid maintained in the constant temperature range into the gap 1e. Keep within range. In this state, the switch operation is performed by controlling the supply of voltage to the electrode portions 13a and 13b. Thereby, output light with a constant intensity can be obtained.
 上記のスイッチ動作において、電歪による結晶の伸縮が生じる。この結晶伸縮により生じる応力は、空隙部1eで吸収される。これにより、電歪による結晶破損の発生を抑制することができる。 In the above switch operation, the crystal stretches due to electrostriction. The stress generated by this crystal expansion and contraction is absorbed by the gap 1e. Thereby, generation | occurrence | production of the crystal breakage by electrostriction can be suppressed.
 また、本実施形態の光スイッチでは、歪吸収のための空隙部を利用して温度制御用の流体供給路が形成されている。このような構造は、歪吸収のための空隙部と温度制御用の流体供給路とを別々の領域に形成する構造に比べてシンプルである。 Further, in the optical switch of the present embodiment, a fluid supply path for temperature control is formed using a gap portion for strain absorption. Such a structure is simpler than a structure in which a gap for strain absorption and a fluid supply path for temperature control are formed in different regions.
 なお、空隙部1eは、図8A~図8Cに示した構成に限定されるものではない。空隙部1eは、電極部13a、13bを含む領域の温度を一定の温度範囲内で維持することができ、かつ、電歪による結晶破損の発生を抑制することができるのであれば、どのような構造としてもよい。 Note that the gap 1e is not limited to the configuration shown in FIGS. 8A to 8C. As long as the gap 1e can maintain the temperature of the region including the electrode portions 13a and 13b within a certain temperature range and can suppress the occurrence of crystal damage due to electrostriction, It is good also as a structure.
 また、本実施形態においても、第3の実施形態の場合と同様に、光学結晶板10、11を、相転移温度以上で透明となる電気光学結晶(例えば、KTN)により構成してもよい。この場合は、光学結晶板10、11の電極部13a、13bを含む領域の温度を、相転移温度以上で維持する。より望ましくは、電極部13a、13bを含む領域の温度を、相転移温度以上、かつ、相転移温度近傍に維持する。この状態で、電極部13a、13bへの電圧の供給を制御してスイッチ動作を行う。電気光学結晶を透明な状態で維持することで、電気光学結晶を透過する光の光量が増大し、その分、消光比を高くすることができる。なお、電気光学結晶を相転移温度以上の温度で維持する場合、その温度制御範囲の上限値は、第3の実施形態で説明したとおりである。 Also in this embodiment, as in the case of the third embodiment, the optical crystal plates 10 and 11 may be made of an electro-optical crystal (for example, KTN) that becomes transparent at a phase transition temperature or higher. In this case, the temperature of the region including the electrode portions 13a and 13b of the optical crystal plates 10 and 11 is maintained above the phase transition temperature. More desirably, the temperature of the region including the electrode portions 13a and 13b is maintained at or above the phase transition temperature and in the vicinity of the phase transition temperature. In this state, the switch operation is performed by controlling the supply of voltage to the electrode portions 13a and 13b. By maintaining the electro-optic crystal in a transparent state, the amount of light transmitted through the electro-optic crystal is increased, and the extinction ratio can be increased accordingly. When the electro-optic crystal is maintained at a temperature equal to or higher than the phase transition temperature, the upper limit value of the temperature control range is as described in the third embodiment.
 以上説明した本実施形態の光スイッチの、空隙部1eを用いた歪吸収構造および温度制御用流路構造は、第2の実施形態で説明した光スイッチ、すなわち、入射光の進行方向に沿って複数の屈折率変化領域が形成される光スイッチに適用することが可能である。この場合は、屈折率変化領域毎に、それら歪吸収構造および温度制御用流路構造を設ける。 The strain absorption structure and the temperature control flow path structure using the gap portion 1e of the optical switch of the present embodiment described above are the optical switch described in the second embodiment, that is, along the traveling direction of incident light. It can be applied to an optical switch in which a plurality of refractive index changing regions are formed. In this case, the strain absorption structure and the temperature control channel structure are provided for each refractive index change region.
 [電極形成方法]
 上述した各実施形態の光スイッチは、既存の半導体プロセスを利用して形成することができる。
[Electrode formation method]
The optical switch of each embodiment described above can be formed using an existing semiconductor process.
 図9A~図9Iは、本発明の第1の実施形態の光スイッチの電極形成方法の一手順を示す断面工程図である。 9A to 9I are cross-sectional process diagrams showing one procedure of the electrode forming method of the optical switch according to the first embodiment of the present invention.
 まず、電気光学結晶90の表面にレジスト91を塗布する(図9Aの工程)。次に、電極パターンが形成されたマスク92を用いて、レジスト91が塗布された面をマスキングし、その塗布面を露光する(図9Bの工程)。次に、レジスト91の露光された部分を除去する(図9Cの工程)。 First, a resist 91 is applied to the surface of the electro-optic crystal 90 (step of FIG. 9A). Next, the mask 92 on which the electrode pattern is formed is used to mask the surface coated with the resist 91, and the coated surface is exposed (step of FIG. 9B). Next, the exposed portion of the resist 91 is removed (step of FIG. 9C).
 次に、露光部分が除去されたレジスト91をマスクとして用いて、電気光学結晶90の露出した表面をエッチングする(図9Dの工程)。エッチング材料は、フッ化水素等である。エッチング後、空隙部となる領域にレジストを塗布する(図9Eの工程)。 Next, the exposed surface of the electro-optic crystal 90 is etched using the resist 91 from which the exposed portion has been removed as a mask (step of FIG. 9D). The etching material is hydrogen fluoride or the like. After the etching, a resist is applied to a region that becomes a void (step of FIG. 9E).
 次に、図9Dの工程でマスクとして用いたレジスト91と図9Eの工程で塗布したレジストとを蒸着用のマスクとして用いて、電気光学結晶90のエッチングされた部分に電極材料(金、白金など)を堆積して電極93を形成する(図9Fの工程)。その後、蒸着用のマスクとして用いたレジストを除去する(図9Gの工程)。 Next, using the resist 91 used as a mask in the step of FIG. 9D and the resist applied in the step of FIG. 9E as a mask for vapor deposition, an electrode material (gold, platinum, etc.) is applied to the etched portion of the electro-optic crystal 90. ) Is deposited to form the electrode 93 (step of FIG. 9F). Thereafter, the resist used as a mask for vapor deposition is removed (step of FIG. 9G).
 次に、電気光学結晶90の表面と電極93の表面とが同じ高さになるように、それらの面を研磨する(図9Hの工程)。 Next, those surfaces are polished so that the surface of the electro-optic crystal 90 and the surface of the electrode 93 are at the same height (step in FIG. 9H).
 最後に、電気光学結晶90の電極93が形成された面と電気光学結晶94の一方の面とを、高温、高圧の条件下で密着させることで、電気光学結晶90、94を貼り合わせる(図9Iの工程)。この貼り合わせ工程において、電気光学結晶90、94の貼り合わせる面は、十分な平坦度を有する面に加工してあるものとする。 Finally, the surface of the electro-optic crystal 90 on which the electrode 93 is formed and one surface of the electro-optic crystal 94 are brought into close contact under high temperature and high pressure conditions, thereby bonding the electro-optic crystals 90 and 94 (see FIG. 9I step). In this bonding step, the surfaces to which the electro-optic crystals 90 and 94 are bonded are processed into surfaces having sufficient flatness.
 以上のように、図9A~図9Iの工程を適用することで、図1Aおよび図1Bに示した光スイッチを実現することができる。 As described above, the optical switch shown in FIGS. 1A and 1B can be realized by applying the processes of FIGS. 9A to 9I.
 本発明の第2の実施形態の光スイッチを形成する場合は、まず、図9A~図9Iの工程を適用することにより、図4Aおよび図4Bに示したような、電極部13a、13bおよび空隙部1a、1bがそれぞれ形成された光学結晶板11の表面に光学結晶板10を貼り合わせた構造が形成される。また、図9A~図9Iの工程を適用することにより、電極部14a、14bおよび空隙部2a、2bがそれぞれ形成された光学結晶板12が形成される。そして、光学結晶板12の、電極部14a、14bおよび空隙部2a、2bが形成された面と、光学結晶板11の、電極部13a、13bおよび空隙部1a、1bが形成された面とは反対の面とを、高温、高圧の条件下で密着させて貼り合わせる。 When forming the optical switch of the second embodiment of the present invention, first, by applying the steps of FIGS. 9A to 9I, the electrode portions 13a and 13b and the gaps as shown in FIGS. 4A and 4B are applied. A structure in which the optical crystal plate 10 is bonded to the surface of the optical crystal plate 11 on which the portions 1a and 1b are formed is formed. Further, by applying the steps of FIGS. 9A to 9I, the optical crystal plate 12 in which the electrode portions 14a and 14b and the gap portions 2a and 2b are respectively formed is formed. The surface of the optical crystal plate 12 on which the electrode portions 14a and 14b and the gap portions 2a and 2b are formed and the surface of the optical crystal plate 11 on which the electrode portions 13a and 13b and the gap portions 1a and 1b are formed. The opposite surface is stuck together under high temperature and high pressure conditions.
 なお、この貼り合わせ工程において、光学結晶板11側の電極部13a、13bおよび空隙部1a、1bの位置と、光学結晶板12側の電極部14a、14bおよび空隙部2a、2bの位置とを正確に合わせる必要がある。特に、電極部の位置あわせでは、入射光の進行方向に沿って各電極部を見た場合に、各電極部の線状電極の位置が合致するようにする。また、光学結晶板の互いの貼り合わせる面は十分な平坦度を有する面に加工してあるものとする。 In this bonding step, the positions of the electrode portions 13a and 13b and the gap portions 1a and 1b on the optical crystal plate 11 side and the positions of the electrode portions 14a and 14b and the gap portions 2a and 2b on the optical crystal plate 12 side are determined. It is necessary to adjust precisely. In particular, in the alignment of the electrode portions, when the electrode portions are viewed along the traveling direction of the incident light, the positions of the linear electrodes of the electrode portions are matched. Further, the surfaces of the optical crystal plates to be bonded to each other are processed into surfaces having sufficient flatness.
 図10A~図10Hは、本発明の第3の実施形態の光スイッチの電極形成方法の一手順を示す断面工程図である。 FIGS. 10A to 10H are cross-sectional process diagrams showing one procedure of the electrode forming method of the optical switch according to the third embodiment of the present invention.
 まず、電気光学結晶90の表面にレジスト91を塗布する(図10Aの工程)。次に、電極パターンが形成されたマスク92を用いて、レジスト91が塗布された面をマスキングし、その塗布面を露光する(図10Bの工程)。次に、レジスト91の露光された部分を除去する(図10Cの工程)。 First, a resist 91 is applied to the surface of the electro-optic crystal 90 (step of FIG. 10A). Next, the mask 92 on which the electrode pattern is formed is used to mask the surface coated with the resist 91, and the coated surface is exposed (step of FIG. 10B). Next, the exposed portion of the resist 91 is removed (step of FIG. 10C).
 次に、露光部分が除去されたレジスト91をマスクとして用いて、電気光学結晶90の露出した表面をエッチングする(図10Dの工程)。エッチング材料は、フッ化水素等である。 Next, the exposed surface of the electro-optic crystal 90 is etched using the resist 91 from which the exposed portion has been removed as a mask (step of FIG. 10D). The etching material is hydrogen fluoride or the like.
 次に、電気光学結晶90のエッチングされた部分に電極材料(金、白金など)を堆積して電極93および金属層95を形成し(図10Eの工程)、その後、レジスト91を除去する(図10Fの工程)。電極93は、図6Aに示した電極部13a、13bである。金属層95は、図6Aに示した金属層4の、光学結晶板11側に形成された部分である。 Next, an electrode material (gold, platinum, etc.) is deposited on the etched portion of the electro-optic crystal 90 to form an electrode 93 and a metal layer 95 (step of FIG. 10E), and then the resist 91 is removed (FIG. 10). 10F step). The electrode 93 is the electrode portions 13a and 13b shown in FIG. 6A. The metal layer 95 is a portion formed on the optical crystal plate 11 side of the metal layer 4 shown in FIG. 6A.
 次に、電気光学結晶90の表面と電極93および金属層95の各表面とが同じ高さになるように、それらの面を研磨する(図10Gの工程)。これにより、図6Aに示した光学結晶板11を得る。 Next, those surfaces are polished so that the surface of the electro-optic crystal 90 and each surface of the electrode 93 and the metal layer 95 have the same height (step of FIG. 10G). Thereby, the optical crystal plate 11 shown in FIG. 6A is obtained.
 次に、上記の図10A~図10Gの工程を適用して、図6Cに示したような、金属層4の一部が形成された光学結晶板10に対応する電気光学結晶94を形成する。また、図6Cに示したような、電極部13a、13bと金属層4の交差部に形成された絶縁層10a、10bに対応する絶縁層を、電気光学結晶94の対応する領域に形成する。 Next, the electro-optic crystal 94 corresponding to the optical crystal plate 10 on which a part of the metal layer 4 is formed as shown in FIG. 6C is formed by applying the above-described steps of FIGS. 10A to 10G. 6C, insulating layers corresponding to the insulating layers 10a and 10b formed at the intersections of the electrode portions 13a and 13b and the metal layer 4 are formed in the corresponding regions of the electro-optic crystal 94.
 最後に、電気光学結晶90の電極93および金属層95が形成された面と、電気光学結晶94の金属層の一部が形成された面とを、高温、高圧の条件下で密着させることで、電気光学結晶90、94を貼り合わせる(図10Hの工程)。この貼り合わせ工程において、電気光学結晶90、94の貼り合わせる面は、十分な平坦度を有する面に加工してあるものとする。 Finally, the surface of the electro-optic crystal 90 on which the electrode 93 and the metal layer 95 are formed and the surface of the electro-optic crystal 94 on which a part of the metal layer is formed are brought into close contact under high temperature and high pressure conditions. Then, the electro-optic crystals 90 and 94 are bonded together (step of FIG. 10H). In this bonding step, the surfaces to which the electro-optic crystals 90 and 94 are bonded are processed into surfaces having sufficient flatness.
 以上のように、図10A~図10Hの工程を適用することで、図6Aから図6Cに示した光スイッチを実現することができる。 As described above, the optical switch shown in FIGS. 6A to 6C can be realized by applying the processes of FIGS. 10A to 10H.
 本発明の第4の実施形態の光スイッチを形成する場合は、まず、図9A~図9Hの工程を適用することにより、図7Aに示したような、電極部13a、13b、空隙部1a、および空隙部1bの一部が、それぞれ形成された光学結晶板が形成される。 When forming the optical switch of the fourth embodiment of the present invention, first, by applying the steps of FIGS. 9A to 9H, the electrode portions 13a and 13b, the gap portion 1a, as shown in FIG. Then, an optical crystal plate in which a part of the gap 1b is formed is formed.
 次に、上記の光学結晶板の、電極部および空隙部が形成された面上に、金属層形成用のレジストマスクパターンを形成し、露出した表面に金属材料(金、白金など)を堆積して金属層を形成し、その後、レジストマスクパターンを除去する。そして、光学結晶板の表面と金属層の表面とが同じ高さになるように、それらの面を研磨する。これにより、図7Aに示した光学結晶板11を得る。 Next, a resist mask pattern for forming a metal layer is formed on the surface of the optical crystal plate on which the electrode part and the gap part are formed, and a metal material (gold, platinum, etc.) is deposited on the exposed surface. Then, a metal layer is formed, and then the resist mask pattern is removed. Then, those surfaces are polished so that the surface of the optical crystal plate and the surface of the metal layer have the same height. Thereby, the optical crystal plate 11 shown in FIG. 7A is obtained.
 次に、上記の図10A~図10Gの工程を適用して、図7Cに示したような、金属層4bの一部が形成された光学結晶板10が形成される。また、図7Cに示したような、電極部13bと金属層4bの交差部に形成された絶縁層10cに対応する絶縁層を、光学結晶板10の対応する領域に形成する。 Next, the optical crystal plate 10 on which a part of the metal layer 4b is formed as shown in FIG. 7C is formed by applying the processes of FIGS. 10A to 10G. Further, as shown in FIG. 7C, an insulating layer corresponding to the insulating layer 10c formed at the intersection of the electrode portion 13b and the metal layer 4b is formed in a corresponding region of the optical crystal plate 10.
 最後に、光学結晶板10、11を、高温、高圧の条件下で密着させる。この貼り合わせ工程において、光学結晶板の貼り合わせる面は、十分な平坦度を有する面に加工してあるものとする。このようにして、図7Aから図7Cに示した光スイッチを実現することができる。 Finally, the optical crystal plates 10 and 11 are brought into close contact under high temperature and high pressure conditions. In this bonding step, the surface to be bonded of the optical crystal plate is processed into a surface having sufficient flatness. In this manner, the optical switch shown in FIGS. 7A to 7C can be realized.
 本発明の第5の実施形態の光スイッチを形成する場合は、まず、図9A~図9Hの工程を適用することにより、図8Aに示したような、電極部13a、13b、空隙部1eの一部が、それぞれ形成された光学結晶板11が形成される。 When forming the optical switch of the fifth embodiment of the present invention, first, by applying the steps of FIGS. 9A to 9H, the electrode portions 13a and 13b and the gap portion 1e as shown in FIG. A part of the optical crystal plate 11 is formed.
 次に、上記の図9A~図9Dの工程を適用して、光学結晶板の一方の面上に図8Aに示した空隙部1eの一部を形成する。そして、レジストパターンを除去して、図8Cに示したような、空隙部1eの一部が形成された光学結晶板10が形成される。また、図8Cに示したような、電極部13bと空隙部1eの交差部に形成された絶縁層10dに対応する絶縁層を、光学結晶板10の対応する領域に形成する。 Next, by applying the steps shown in FIGS. 9A to 9D, a part of the gap 1e shown in FIG. 8A is formed on one surface of the optical crystal plate. Then, the resist pattern is removed, and the optical crystal plate 10 in which a part of the gap 1e is formed as shown in FIG. 8C is formed. Further, as shown in FIG. 8C, an insulating layer corresponding to the insulating layer 10d formed at the intersection of the electrode portion 13b and the gap portion 1e is formed in a corresponding region of the optical crystal plate 10.
 最後に、光学結晶板10、11を、高温、高圧の条件下で密着させる。この貼り合わせ工程において、光学結晶板の貼り合わせる面は、十分な平坦度を有する面に加工してあるものとする。このようにして、図8Aから図8Cに示した光スイッチを実現することができる。 Finally, the optical crystal plates 10 and 11 are brought into close contact under high temperature and high pressure conditions. In this bonding step, the surface to be bonded of the optical crystal plate is processed into a surface having sufficient flatness. In this way, the optical switch shown in FIGS. 8A to 8C can be realized.
 本発明の光スイッチは、光通信装置、画像表示装置や画像形成装置等に適用することができる。以下に、光スイッチの適用例として、画像表示装置および画像形成装置を説明する。 The optical switch of the present invention can be applied to an optical communication device, an image display device, an image forming device, and the like. Hereinafter, an image display apparatus and an image forming apparatus will be described as application examples of the optical switch.
 [画像表示装置]
 本発明の光スイッチを備える画像表示装置の構成について説明する。
[Image display device]
A configuration of an image display device including the optical switch of the present invention will be described.
 図11は、画像表示装置の一例を示す模式図である。この画像表示装置は、レーザ光源102、103、104、コリメータレンズ105、106、107、反射ミラー108、ダイクロイックミラー109、110、水平走査ミラー115、垂直走査ミラー116、および光スイッチ118、119、120を収容した筐体100を有する。光スイッチ118、119、120は、本発明の光スイッチである。 FIG. 11 is a schematic diagram showing an example of an image display device. This image display device includes laser light sources 102, 103, 104, collimator lenses 105, 106, 107, reflection mirror 108, dichroic mirrors 109, 110, horizontal scanning mirror 115, vertical scanning mirror 116, and optical switches 118, 119, 120. Has a housing 100 containing the. The optical switches 118, 119, and 120 are the optical switches of the present invention.
 レーザ光源102からのレーザ光の進行方向に、コリメータレンズ105、光スイッチ118、および反射ミラー108が順に配置されている。コリメータレンズ105からの平行光束が光スイッチ118に入射する。光スイッチ118は、不図示の制御部から供給される制御信号に応じて動作する。制御信号がオンの期間(電圧供給期間)は、光スイッチ118の電極部に電圧が印加され、屈折率変化領域が形成されるため、その屈折率変化領域にて入射光が反射される。この反射光は、反射ミラー108へ向かう光路から外れる。制御信号がオフの期間(電圧供給停止期間)は、入射光は光スイッチ118を透過して反射ミラー108へ向かう。 A collimator lens 105, an optical switch 118, and a reflection mirror 108 are sequentially arranged in the traveling direction of the laser light from the laser light source 102. A parallel light beam from the collimator lens 105 enters the optical switch 118. The optical switch 118 operates according to a control signal supplied from a control unit (not shown). During a period in which the control signal is on (voltage supply period), a voltage is applied to the electrode portion of the optical switch 118 to form a refractive index change region, so that incident light is reflected in the refractive index change region. This reflected light deviates from the optical path toward the reflecting mirror 108. During a period when the control signal is off (voltage supply stop period), incident light passes through the optical switch 118 and travels toward the reflection mirror 108.
 レーザ光源103からのレーザ光の進行方向に、コリメータレンズ106、光スイッチ119、およびダイクロイックミラー109が順に配置されている。コリメータレンズ106からの平行光束が光スイッチ119に入射する。光スイッチ119においても、光スイッチ118と同様な動作が行われる。制御信号がオンの期間(電圧供給期間)は、屈折率変化領域にて入射光が反射され、その反射光は、ダイクロイックミラー109へ向かう光路から外れる。制御信号がオフの期間(電圧供給停止期間)は、入射光は光スイッチ119を透過してダイクロイックミラー109へ向かう。 The collimator lens 106, the optical switch 119, and the dichroic mirror 109 are sequentially arranged in the traveling direction of the laser light from the laser light source 103. A parallel light beam from the collimator lens 106 enters the optical switch 119. In the optical switch 119, the same operation as that of the optical switch 118 is performed. During the period when the control signal is on (voltage supply period), incident light is reflected in the refractive index change region, and the reflected light deviates from the optical path toward the dichroic mirror 109. During a period when the control signal is off (voltage supply stop period), incident light passes through the optical switch 119 and travels toward the dichroic mirror 109.
 レーザ光源104からのレーザ光の進行方向に、コリメータレンズ107、光スイッチ120、およびダイクロイックミラー110が順に配置されている。コリメータレンズ107からの平行光束が光スイッチ120に入射する。光スイッチ120においても、光スイッチ118と同様な動作が行われる。制御信号がオンの期間(電圧供給期間)は、屈折率変化領域にて入射光が反射され、その反射光は、ダイクロイックミラー110へ向かう光路から外れる。制御信号がオフの期間(電圧供給停止期間)は、入射光は光スイッチ120を透過してダイクロイックミラー110へ向かう。 The collimator lens 107, the optical switch 120, and the dichroic mirror 110 are sequentially arranged in the traveling direction of the laser light from the laser light source 104. A parallel light beam from the collimator lens 107 enters the optical switch 120. In the optical switch 120, the same operation as that of the optical switch 118 is performed. During a period in which the control signal is on (voltage supply period), incident light is reflected in the refractive index change region, and the reflected light deviates from the optical path toward the dichroic mirror 110. During a period in which the control signal is off (voltage supply stop period), incident light passes through the optical switch 120 and travels toward the dichroic mirror 110.
 ダイクロイックミラー109は、光スイッチ119からの光束と反射ミラー108にて反射された光束とが交差する位置に設けられている。ダイクロイックミラー109は、光スイッチ119からの光を反射し、反射ミラー108からの光を透過するような波長選択特性を有している。 The dichroic mirror 109 is provided at a position where the light beam from the optical switch 119 and the light beam reflected by the reflection mirror 108 intersect. The dichroic mirror 109 has a wavelength selection characteristic that reflects light from the optical switch 119 and transmits light from the reflection mirror 108.
 ダイクロイックミラー110は、光スイッチ120からの光束とダイクロイックミラー109からの光束とが交差する位置に設けられている。ダイクロイックミラー109は、光スイッチ120からの光を反射し、ダイクロイックミラー109からの光を透過するような波長選択特性を有している。 The dichroic mirror 110 is provided at a position where the light beam from the optical switch 120 and the light beam from the dichroic mirror 109 intersect. The dichroic mirror 109 has a wavelength selection characteristic that reflects light from the optical switch 120 and transmits light from the dichroic mirror 109.
 水平走査ミラー115は、ダイクロイックミラー110からの光束の進行方向に配置されており、不図示の制御部からの水平走査制御信号によりその動作が制御される。垂直走査ミラー116は、水平走査ミラー115からの光束の進行方向に配置されており、不図示の制御部からの垂直走査制御信号によりその動作が制御される。 The horizontal scanning mirror 115 is arranged in the traveling direction of the light beam from the dichroic mirror 110, and its operation is controlled by a horizontal scanning control signal from a control unit (not shown). The vertical scanning mirror 116 is disposed in the traveling direction of the light beam from the horizontal scanning mirror 115, and its operation is controlled by a vertical scanning control signal from a control unit (not shown).
 レーザ光源102、103、104として、R、G、Bの3原色に対応する色のレーザ光を出射する光源を用いる。光スイッチ118、119、120をオンオフ制御し、かつ、水平走査ミラー115および垂直走査ミラー116を制御することで、スクリーン117上に、カラー画像を表示することができる。 As the laser light sources 102, 103, and 104, light sources that emit laser light of colors corresponding to the three primary colors R, G, and B are used. A color image can be displayed on the screen 117 by controlling on / off of the optical switches 118, 119, and 120 and controlling the horizontal scanning mirror 115 and the vertical scanning mirror 116.
 [画像形成装置]
 本発明の光スイッチを備える画像形成装置の構成について説明する。
[Image forming apparatus]
A configuration of an image forming apparatus including the optical switch of the present invention will be described.
 図12は、画像形成装置の一例を示す模式図である。この画像形成装置は、筐体200、fθレンズ223および感光体224を有する。レーザ光源202、コリメータレンズ205、反射ミラー208、走査ミラー222、および光スイッチ218が、筐体200内に収容されている。光スイッチ218は、本発明の光スイッチである。 FIG. 12 is a schematic diagram illustrating an example of an image forming apparatus. This image forming apparatus includes a housing 200, an fθ lens 223, and a photoreceptor 224. A laser light source 202, a collimator lens 205, a reflection mirror 208, a scanning mirror 222, and an optical switch 218 are accommodated in the housing 200. The optical switch 218 is the optical switch of the present invention.
 レーザ光源202からのレーザ光の進行方向に、コリメータレンズ205、光スイッチ218、および反射ミラー208が順に配置されている。コリメータレンズ205からの平行光束が光スイッチ218に入射する。光スイッチ218は、不図示の制御部から供給される制御信号に応じて動作する。制御信号がオンの期間(電圧供給期間)は、光スイッチ218の電極部に電圧が印加され、屈折率変化領域が形成されるため、その屈折率変化領域にて入射光が反射される。この反射光は、反射ミラー208へ向かう光路から外れる。制御信号がオフの期間(電圧供給停止期間)は、入射光は光スイッチ218を透過して反射ミラー208へ向かう。 A collimator lens 205, an optical switch 218, and a reflection mirror 208 are sequentially arranged in the traveling direction of the laser light from the laser light source 202. A parallel light beam from the collimator lens 205 enters the optical switch 218. The optical switch 218 operates in accordance with a control signal supplied from a control unit (not shown). During a period in which the control signal is on (voltage supply period), a voltage is applied to the electrode portion of the optical switch 218 to form a refractive index change region, so that incident light is reflected in the refractive index change region. This reflected light deviates from the optical path toward the reflecting mirror 208. During a period when the control signal is off (voltage supply stop period), incident light passes through the optical switch 218 and travels toward the reflection mirror 208.
 走査ミラー222は、反射ミラー208からの光束の進行方向に配置されており、不図示の制御部からの走査制御信号によりその動作が制御される。走査ミラー222からの光は、fθレンズ223を介して感光体224に照射される。 The scanning mirror 222 is arranged in the traveling direction of the light beam from the reflection mirror 208, and its operation is controlled by a scanning control signal from a control unit (not shown). Light from the scanning mirror 222 is applied to the photoconductor 224 via the fθ lens 223.
 光スイッチ218をオンオフ制御し、かつ、走査ミラー222を制御することで、感光体224上に画像を形成するができる。 By turning on / off the optical switch 218 and controlling the scanning mirror 222, an image can be formed on the photosensitive member 224.
 以上の通りの本発明によれば、電歪による結晶伸縮が生じた場合に、その結晶伸縮により生じる応力が空隙部によって吸収されるので、結晶破損の発生を抑制することができる。 According to the present invention as described above, when crystal expansion / contraction due to electrostriction occurs, stress generated by the crystal expansion / contraction is absorbed by the voids, so that the occurrence of crystal breakage can be suppressed.
 以上、実施形態を参照して本発明を説明したが、本発明は上述した実施形態に限定されるものではない。本発明の構成および動作については、本発明の趣旨を逸脱しない範囲において、当業者が理解し得る様々な変更を行うことができる。 The present invention has been described above with reference to the embodiments, but the present invention is not limited to the above-described embodiments. Various modifications that can be understood by those skilled in the art can be made to the configuration and operation of the present invention without departing from the spirit of the present invention.
 各実施形態の光スイッチにおいて、空隙部は、入射光の光路上から外れるように形成することが望ましい。 In the optical switch of each embodiment, it is desirable to form the gap so as to be out of the optical path of the incident light.
 また、電気光学結晶として、KTNの他、相転移温度を有するニオブ酸リチウム(リチウムナイオベート)等を用いてもよい。この場合も、KTNを用いた場合と同様な作用効果を得ることができる。 In addition to KTN, lithium niobate having a phase transition temperature (lithium niobate) or the like may be used as the electro-optic crystal. In this case as well, the same operational effects as when KTN is used can be obtained.
 各実施形態の光スイッチは、光変調装置全般に適用することができる。 The optical switch of each embodiment can be applied to all optical modulation devices.
 この出願は、2008年6月5日に出願された日本出願特願2008-148141を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2008-148141 filed on June 5, 2008, the entire disclosure of which is incorporated herein.

Claims (12)

  1.  電気光学結晶の内部に電極部を備え、該電極部への電圧供給を制御することで前記電気光学結晶に入射する光に対する反射および透過の状態が切り替えられる光スイッチであって、
     前記電気光学結晶の内部の、前記電極部が形成された電極形成領域の端部に隣接する領域に、前記電極形成領域の端部の少なくとも一部に沿って空隙部が形成されている、光スイッチ。
    An optical switch comprising an electrode part inside an electro-optic crystal, and the state of reflection and transmission with respect to light incident on the electro-optic crystal can be switched by controlling voltage supply to the electrode part,
    In the electro-optic crystal, in the region adjacent to the end of the electrode forming region where the electrode portion is formed, a gap is formed along at least a part of the end of the electrode forming region. switch.
  2.  前記空隙部は、前記電極形成領域の長手方向における端部の少なくとも一方に沿って形成されている、請求の範囲第1項に記載の光スイッチ。 2. The optical switch according to claim 1, wherein the gap is formed along at least one of end portions in the longitudinal direction of the electrode formation region.
  3.  前記空隙部は、前記電気光学結晶の外部の空間に連通している、請求の範囲第1項または第2項に記載の光スイッチ。 3. The optical switch according to claim 1, wherein the gap portion communicates with a space outside the electro-optic crystal.
  4.  前記空隙部内に、前記電極部を構成する金属材料より硬度の低い金属材料よりなる金属層を備え、該金属層の一部が前記電気光学結晶の外部に露出している、請求の範囲第3項に記載の光スイッチ。 A metal layer made of a metal material whose hardness is lower than that of the metal material constituting the electrode part is provided in the gap, and a part of the metal layer is exposed to the outside of the electro-optic crystal. The optical switch according to item.
  5.  前記空隙部内の前記電極形成領域側の側壁に設けられた金属層を有し、該金属層の一部が前記電気光学結晶の外部に露出している、請求の範囲第3項に記載の光スイッチ。 4. The light according to claim 3, further comprising a metal layer provided on a side wall on the electrode formation region side in the gap, wherein a part of the metal layer is exposed to the outside of the electro-optic crystal. switch.
  6.  前記金属層は、前記電極部を構成する金属材料と同じ金属材料より構成されている、請求の範囲第5項に記載の光スイッチ。 The optical switch according to claim 5, wherein the metal layer is made of the same metal material as that of the electrode part.
  7.  前記金属層の露出した部分に設けられ、供給された電流の極性に応じて発熱もしくは吸熱する熱電変換素子と、
     前記熱電変換素子が形成された領域に設けられ、該領域の温度を検出する温度センサと、
     前記温度センサにより検出される温度が一定の温度範囲内で維持されるように前記熱電変換素子への電流の供給を制御する温度制御部と、を有する、請求の範囲第4項から第6項のいずれか1項に記載の光スイッチ。
    A thermoelectric conversion element that is provided in an exposed portion of the metal layer and generates heat or absorbs heat according to the polarity of the supplied current;
    A temperature sensor provided in a region where the thermoelectric conversion element is formed, and detecting a temperature of the region;
    The temperature control part which controls supply of the electric current to the said thermoelectric conversion element so that the temperature detected by the said temperature sensor may be maintained within a fixed temperature range, The range 4th-6th Claim The optical switch according to any one of the above.
  8.  前記温度制御部は、少なくとも前記電極形成領域の温度を前記電気光学結晶の相転移温度以上の温度で維持する、請求の範囲第7項に記載の光スイッチ。 The optical switch according to claim 7, wherein the temperature controller maintains at least the temperature of the electrode formation region at a temperature equal to or higher than a phase transition temperature of the electro-optic crystal.
  9.  前記空隙部は、前記電気光学結晶の外部の空間に連通する第1および第2の開口部を備えており、
     前記第1の開口部から流体を供給し、その供給した流体を前記第2の開口部から回収するとともに、前記流体の温度を一定の温度範囲に維持する流体供給部を、さらに有する、請求の範囲第1項から第3項のいずれか1項に記載の光スイッチ。
    The gap includes first and second openings communicating with a space outside the electro-optic crystal,
    A fluid supply unit that supplies a fluid from the first opening, collects the supplied fluid from the second opening, and maintains a temperature of the fluid in a certain temperature range. 4. The optical switch according to any one of items 1 to 3 in the range.
  10.  前記流体供給部は、少なくとも前記電極形成領域の温度を前記電気光学結晶の相転移温度以上の温度で維持する、請求の範囲第9項に記載の光スイッチ。 10. The optical switch according to claim 9, wherein the fluid supply unit maintains at least a temperature of the electrode formation region at a temperature equal to or higher than a phase transition temperature of the electro-optic crystal.
  11.  前記電極部は、平行に配置され、かつ、面積最大となる主断面が同一平面内に配置された複数の線状電極からなる、請求の範囲第1項から第10項のいずれか1項に記載の光スイッチ。 The said electrode part consists of several linear electrodes arrange | positioned in parallel and the main cross section which becomes the largest area is arrange | positioned in the same plane, In any one of Claims 1-10. The optical switch described.
  12.  前記電極部は、前記電気光学結晶の内部に複数設けられており、
     複数の前記電極部は、前記複数の線状電極により構成される電極面が互いに平行となるように配設され、前記空隙部が、複数の前記電極部のそれぞれに形成されている、請求の範囲第11項に記載の光スイッチ。
    A plurality of the electrode portions are provided inside the electro-optic crystal,
    The plurality of electrode portions are arranged such that electrode surfaces constituted by the plurality of linear electrodes are parallel to each other, and the gap portion is formed in each of the plurality of electrode portions. The optical switch according to claim 11.
PCT/JP2009/058690 2008-06-05 2009-05-08 Optical switch WO2009147922A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010515813A JP5187396B2 (en) 2008-06-05 2009-05-08 Light switch

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-148141 2008-06-05
JP2008148141 2008-06-05

Publications (1)

Publication Number Publication Date
WO2009147922A1 true WO2009147922A1 (en) 2009-12-10

Family

ID=41398000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058690 WO2009147922A1 (en) 2008-06-05 2009-05-08 Optical switch

Country Status (2)

Country Link
JP (1) JP5187396B2 (en)
WO (1) WO2009147922A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114279599A (en) * 2021-12-27 2022-04-05 北京京东方技术开发有限公司 Flexible pressure sensor, flexible pressure strain sensing assembly and pressure detection method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62270926A (en) * 1986-05-20 1987-11-25 Fujitsu Ltd Total reflection type optical modulation element
JPH05142587A (en) * 1991-05-23 1993-06-11 Alcatel Nv Optical switch
JP2001133744A (en) * 1999-11-05 2001-05-18 Ube Ind Ltd Optical shutter element
JP2004070136A (en) * 2002-08-08 2004-03-04 Ngk Insulators Ltd Optical waveguide device and traveling waveform light modulator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62270926A (en) * 1986-05-20 1987-11-25 Fujitsu Ltd Total reflection type optical modulation element
JPH05142587A (en) * 1991-05-23 1993-06-11 Alcatel Nv Optical switch
JP2001133744A (en) * 1999-11-05 2001-05-18 Ube Ind Ltd Optical shutter element
JP2004070136A (en) * 2002-08-08 2004-03-04 Ngk Insulators Ltd Optical waveguide device and traveling waveform light modulator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114279599A (en) * 2021-12-27 2022-04-05 北京京东方技术开发有限公司 Flexible pressure sensor, flexible pressure strain sensing assembly and pressure detection method

Also Published As

Publication number Publication date
JPWO2009147922A1 (en) 2011-10-27
JP5187396B2 (en) 2013-04-24

Similar Documents

Publication Publication Date Title
US5724463A (en) Projection display with electrically controlled waveguide-routing
US5664032A (en) Display panel with electrically-controlled waveguide-routing
JP5240195B2 (en) Light switch
JP5187396B2 (en) Light switch
JP5249009B2 (en) Light modulator
US7580594B2 (en) Optical modulation element and optical modulation device having the same
JP2013190723A (en) Electro-optical element, method of manufacturing the same, and electro-optical device
JP2005091925A (en) Optical control element
JP5187395B2 (en) Light switch
JP5187391B2 (en) Light switch
JP2013044762A (en) Electro-optical element and manufacturing method thereof, and optical deflection device using electro-optical element
JP5168076B2 (en) Optical switch, optical switch manufacturing method, image display apparatus, and image forming apparatus
US8509576B2 (en) Optical switch, image display device, image forming device, and method for manufacturing optical switch
US7583428B2 (en) Transmissive active grating device
JP4750390B2 (en) Optical switching element
JP2015041041A (en) Diffracting grating and optical module
WO2009119276A1 (en) Method and system for adjusting electrode position
JP2006251331A (en) Surface type optical modulating element and surface type optical modulating element array
JP5299421B2 (en) Light switch
WO2010001852A1 (en) Optical modulator
JP2014085398A (en) Optical modulator and optical deflector
JP2006113475A (en) Optical switch and printer using same
JP2013195687A (en) Optical switching element
KR20130057763A (en) Active optical device and display apparatus including the same
JP2007025072A (en) Optical switch

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09758189

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010515813

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09758189

Country of ref document: EP

Kind code of ref document: A1