WO2009144823A1 - Heat dissipation structure of electronic device and electronic device comprising the same - Google Patents

Heat dissipation structure of electronic device and electronic device comprising the same Download PDF

Info

Publication number
WO2009144823A1
WO2009144823A1 PCT/JP2008/060065 JP2008060065W WO2009144823A1 WO 2009144823 A1 WO2009144823 A1 WO 2009144823A1 JP 2008060065 W JP2008060065 W JP 2008060065W WO 2009144823 A1 WO2009144823 A1 WO 2009144823A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat dissipation
dissipation structure
absorbing member
electronic device
Prior art date
Application number
PCT/JP2008/060065
Other languages
French (fr)
Japanese (ja)
Inventor
後藤克一
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2008/060065 priority Critical patent/WO2009144823A1/en
Publication of WO2009144823A1 publication Critical patent/WO2009144823A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • G06F1/203Cooling means for portable computers, e.g. for laptops

Definitions

  • the present invention relates to a heat dissipation structure for an electronic device and an electronic device including the same.
  • the heat dissipation structure that dissipates the heat in the electronic device includes an air intake port that takes air into the housing of the electronic device, an air exhaust port that exhausts the heat in the housing, and a heat exhaustor that absorbs heat generated by the electronic components.
  • a heat sink that transfers heat and a cooling fan that absorbs the heat of the heat sink into the air and exhausts it from the exhaust port are widely used.
  • TCP Tape Carrier Package mounted on the back side of the circuit board, a heat receiving part for releasing the heat of the TCP in the direction of the surface of the circuit board, and the heat of the TCP via the heat receiving part.
  • a circuit module including a cold plate that receives a fan unit and a fan unit that includes a rotor and a fan case that houses the rotor is known.
  • a CPU module in which a heat dissipation module is mounted on a CPU mounted on a central processing unit (CPU) module substrate.
  • CPU central processing unit
  • a personal computer main body in which a fan for forced cooling is installed on a CPU that is a main heat source, and a heat plate is fixed on the fan (Patent Document 1, Patent Document). 2, see Patent Document 3).
  • the present invention provides a heat dissipation structure for an electronic device and an electronic device equipped with the heat dissipation structure that can achieve both a reduction in size of the structure and an improvement in heat dissipation efficiency.
  • a heat dissipation structure for an electronic device disclosed in this specification includes a heat absorbing member disposed on the first surface side of the printed circuit board, a heat dissipating fin that dissipates heat collected in the heat absorbing member, A fan unit that is disposed on the second surface side of the printed circuit board and blows air to the heat radiating fin; and a connection member that passes through the printed circuit board and thermally connects the heat absorbing member and the fan unit.
  • the heat-absorbing member collects heat generated by electronic components such as a CPU mounted on the printed circuit board.
  • the heat collected on the heat absorbing member is transferred to the heat radiating fins.
  • the heat radiating fins are arranged on the air flow path of the fan unit, and the heat transferred to the heat radiating fins is radiated by the air blown by the fan unit. Thereby, cooling in an electronic device is performed.
  • the heat dissipation structure of the electronic device disclosed in the present specification can also dissipate a part of the heat collected in the heat absorbing member directly by blowing air from the fan unit.
  • heat can be transmitted to the fan unit by contacting the heat absorbing member and the fan unit via a connection member that is thermally connected. The heat transmitted to the fan unit is radiated by the fan unit.
  • FIG. 1 is an external view of a laptop personal computer which is a specific embodiment of an electronic apparatus.
  • FIG. 2 is a diagram showing one side of the personal computer.
  • FIG. 3 is a diagram showing a side surface of the personal computer opposite to FIG.
  • FIG. 4 is an internal configuration diagram of the personal computer.
  • FIG. 5 is an internal configuration diagram of the main unit.
  • FIG. 6 is a plan view of a portion including a heat dissipation structure housed in the main body housing in the embodiment.
  • FIG. 7 is a bottom view of a portion including a heat dissipation structure accommodated in the main body housing in the embodiment.
  • FIG. 8 is an explanatory view schematically showing a state in which the printed board, the heat absorbing member, the heat radiating fins, and the fan unit included in the heat radiating structure in the embodiment are disassembled.
  • FIG. 9 is an explanatory view schematically showing a state in which the printed circuit board, the heat absorbing member, the heat radiating fins, and the fan unit included in the heat radiating structure are assembled in the embodiment.
  • FIG. 10 is an explanatory view schematically showing a printed circuit board and a heat absorbing member, a heat radiating fin, and a fan unit included in the heat radiating structure in a comparative example in an exploded state.
  • FIG. 11 is an explanatory diagram schematically showing a state in which a printed board, a heat absorbing member, a heat radiating fin, and a fan unit included in a heat radiating structure are assembled in a comparative example.
  • FIG. 12 is an explanatory diagram showing the positional relationship between the inside of the fan unit and the radiation fins.
  • FIG. 13 is a diagram showing the back of the personal computer in a state where the display unit is closed with respect to the main unit.
  • FIG. 14 is an internal configuration diagram of the main unit near the heat dissipation structure.
  • FIG. 15 is an explanatory view schematically showing a state in which a printed board having a notch, a heat absorbing member, a heat radiating fin, and a fan housing included in the heat radiating structure are disassembled.
  • FIG. 16 is an explanatory view schematically showing a state in which a printed board having a notch, a heat absorbing member, a heat radiating fin, and a fan housing included in the heat radiating structure are assembled.
  • FIG. 1 is an external view of a laptop personal computer 10 which is one of the specific embodiments of the electronic apparatus of the present invention.
  • the personal computer 10 includes a main unit 20 and a display unit 30.
  • the display unit 30 is connected to the main unit 20 by a hinge part 40 so as to be freely opened and closed.
  • FIG. 1 shows a view of the personal computer 10 with the display unit 30 opened as viewed from the front.
  • the main unit 20 is for executing various types of information processing, and a CPU, a hard disk device, and the like are accommodated in the main body housing 28.
  • a keyboard 21, a track pad 22, a left click button 23, a right click button 24, and the like are provided on the upper surface of the main body housing 28.
  • a fingerprint sensor 25 that performs fingerprint authentication by tracing a fingertip and a medium loading port 26 into which a small recording medium is loaded are provided in front of the main body housing 28.
  • the display unit 30 is for displaying the information processing result executed by the main unit 20.
  • the display unit 30 includes a display housing 32.
  • a thin liquid crystal panel, a liquid crystal panel control circuit, a communication antenna, and the like are accommodated in the display housing 32.
  • the display housing 32 includes a front cover 32A and a rear cover 32B, and the liquid crystal panel is sandwiched from the front and rear by the front cover 32A and the rear cover 32B with the display screen 31 in the front side.
  • the display unit 30 is a wide-type display device in which the display screen 31 is extended to the vicinity of the side surface of the display housing 32 by arranging various electronic components not on the side of the liquid crystal panel but on the back side.
  • FIG. 2 is a diagram illustrating one side of the personal computer 10.
  • a security slot 26a for locking with a wire cable On one side of the main unit 20, a security slot 26a for locking with a wire cable, a connector 26b for a power supply module, and a connector 26c for an external monitor are provided.
  • a connector 26d for a Local Area Network (LAN) cable and connectors 26e and 26f for Universal Serial Bus (USB) are provided.
  • an audio jack connector 26g, a microphone connector 26h, a headphone connector 26i, and the like are provided.
  • FIG. 3 is a diagram showing a side surface of the personal computer 10 opposite to that in FIG.
  • an expansion card loading slot 27a for loading an expansion card for function expansion such as a LAN card, Compact ⁇ Disc (CD), Digital Versatile Disk (DVD), etc.
  • An optical disk loading port 27b for loading the optical disk is provided.
  • a USB connector 27c and a modem connector 27d are provided.
  • FIG. 4 is an internal configuration diagram of the personal computer 10.
  • the personal computer 10 includes a CPU 101 that executes various programs and a hard disk device 103 that stores various programs and data. Further, a main memory 102 is built in which a program stored in the hard disk device 103 is read and expanded for execution by the CPU 101. Further, an audio device 104 equipped with a microphone, a speaker, and the like, and an input interface 105 for inputting data from an external device are incorporated. Further, an operation element 106 including a keyboard 21 and a track pad 22, a display device 107 for displaying information on a display screen 31, and a fingerprint sensor 25 shown in FIG. 1 are incorporated.
  • a small recording medium 61 is loaded, and a small memory drive 109 for accessing the loaded small recording medium 61 is incorporated.
  • a compact disk read only memory (CD-ROM) 62 and a DVD are loaded, and an optical disk drive 110 for accessing the loaded CD-ROM 62 and DVD is incorporated.
  • a communication interface 111 that performs communication using the expansion card 63, an output interface 112 that outputs data to an external device, and the like are incorporated.
  • FIG. 5 is an internal configuration diagram of the main unit 20.
  • a power supply control circuit 331 connected to the connector 26b for the power supply module shown in FIG. 2 and a display control circuit 332 connected to the connector 26c for an external monitor are provided inside the main body housing 28.
  • the communication control circuit 333 connected to the LAN cable connector 26d is accommodated.
  • the input / output control circuit (not shown in FIG. 5) connected to the USB connectors 26e, 26f, and 27c, the audio jack connector 26g, the microphone connector 26h, and the headphone connector 26i are connected.
  • the audio circuit 335 is accommodated.
  • the expansion processing circuit (not shown in FIG. 5) connected to the expansion card loading slot 27a shown in FIG.
  • the optical disk drive 110 connected to the optical disk loading slot 27b, and the data connected to the modem connector 27d.
  • a conversion circuit 337 is accommodated.
  • various electronic components such as a heat dissipation structure (hereinafter simply referred to as a heat dissipation structure) 320 of an electronic device for radiating heat generated in the main body housing 28 and a rechargeable battery 310 are accommodated. Yes.
  • FIG. 6 is a plan view of a portion including the heat dissipation structure 320 of the present embodiment housed in the main body housing 28.
  • FIG. 7 is a bottom view of a portion including the heat dissipation structure 320.
  • FIG. 8 is an explanatory view schematically showing the printed circuit board 321 and the heat absorbing member 322, the heat radiating fins 326, and the fan unit 324 included in the heat radiating structure 320 in the present embodiment in an exploded state.
  • FIG. 9 is an explanatory diagram schematically showing the printed circuit board 321 and the heat absorbing member 322, the heat radiating fins 326, and the fan unit 324 included in the heat radiating structure 320 in this embodiment.
  • the CPU 101 and some other electronic components are mounted on a printed circuit board 321 as shown in FIGS.
  • the CPU 101 is mounted on the first surface 321 b of the printed circuit board 321.
  • Two through holes 321a are formed in the printed circuit board 321 as shown in FIGS.
  • the through hole 321a is provided on the side of the CPU 101 that easily generates heat among electronic components.
  • the heat absorbing member 322 is disposed on the first surface 321b side of the printed board 321.
  • a fan unit 324 is disposed on the second surface 321c side which is the back surface of the first surface 321b of the printed circuit board 321. That is, the heat absorbing member 322 and the fan unit 324 are arranged so as to sandwich the printed circuit board 321.
  • the fan unit 324 houses a fan 324a inside the fan housing 324b. The fan unit 324 dissipates heat collected by the heat absorbing member 322 by blowing air.
  • the heat dissipation structure 320 also includes a stud 323 that passes through the printed circuit board 321 and contacts the heat absorbing member 322 and the fan unit 324.
  • the stud 323 extends from the heat absorbing member 322 in a state where the heat dissipation structure 320 is assembled, passes through the printed board 321, and contacts the fan unit 324.
  • the stud 323 is an example of a connection member that passes through the printed board 321 and thermally connects the heat absorbing member 322 and the fan unit 324.
  • the heat absorbing member 322 is a copper plate and is disposed so as to cover the CPU 101.
  • the heat absorbing member 322 collects heat generated by the CPU 101 and other electronic components.
  • Stud 323 is a solid copper rod. The stud 323 passes through the side of the CPU 101 through the through hole 321a.
  • the heat absorbing member 322 and the stud 323 are integrated by welding, and the stud 322 extends from the heat absorbing member 323.
  • heat transfer efficiency from the heat absorption member 322 to the stud 323 is improved by integrating the heat absorption member 322 and the stud 323 instead of simply contacting each other.
  • the stud 323 and the heat absorbing member 322 may be in contact with each other.
  • the heat transfer efficiency between the heat absorbing member 322 and the stud 323 can be improved by providing them integrally by welding.
  • the stud 323 and the heat absorbing member 322 are integrated, the number of steps in the assembly process of the heat dissipation structure 320 can be reduced, which is convenient.
  • the heat pipe 325 encloses the working fluid therein, takes heat by vaporization of the working fluid, and dissipates heat when the vaporized working fluid moves to the other end side and returns to the liquid again. By this action, the heat collected in the heat absorbing member 322 is moved to the heat radiating fins 326. The heat that has moved to the heat radiating fins 326 is dissipated by blowing air from the fan unit 324.
  • the stud 323 extending from the heat absorbing member 322 passes through the side of the CPU 101 and contacts the fan unit 324 through the through hole 321a provided in the printed circuit board 321 as described above.
  • the stud 323 is fixed to the fan housing 324b.
  • the fan housing 324b is provided with two screwing portions 327.
  • the fan housing 324b and the stud 323 are fixed by a screw 328 through a screw hole provided in the screw fixing portion 327.
  • the stud 323 and the fan unit 324 may be in contact with each other. However, by fixing these, the thermal bondability is improved and the heat transfer efficiency is improved. be able to. If the heat transfer efficiency to the fan unit 324 is improved, the heat dissipation efficiency by the air blowing from the fan 324a is also improved.
  • FIG. 12 is an explanatory view showing the positional relationship between the inside of the fan unit 324 and the radiation fins 326.
  • the fan 324a accommodated in the fan housing 324b can suck air from both the top surface side and the bottom surface side of the fan housing 324b. Then, an airflow in the centrifugal direction is generated and blown on the blowing path indicated by an arrow 329 in FIG.
  • casing 28 are arrange
  • FIG. 10 is an explanatory diagram schematically showing the printed circuit board 501 and the heat absorbing member 502, the heat radiating fins 506, and the fan unit 504 included in the heat radiating structure 500 in a comparative example.
  • FIG. 11 is an explanatory view schematically showing a state in which the printed board 501 and the heat absorbing member 502, the heat radiating fins 506, and the fan unit 504 included in the heat radiating structure 500 are assembled in the comparative example.
  • the CPU 101 and some other electronic components are mounted on a printed board 501 as shown in FIGS. This is the same as in this embodiment.
  • the printed circuit board 501 does not have a through hole through which the stud penetrates unlike the printed circuit board 321 of the present embodiment.
  • the heat absorbing member 502 is disposed on the first surface 501b side of the printed circuit board 501 on which the CPU 101 is mounted.
  • a fan housing 504 with a built-in fan 504a is disposed on the second surface 501c side which is the back surface side of the first surface 501b.
  • the heat absorbing member 502 itself is the same as the heat absorbing member 322 in the present embodiment.
  • a fan unit 504 in which the fan 504a is built in the fan housing 504b is also the same as the fan unit 324 in this embodiment.
  • the heat dissipating structure 500 is different from the heat dissipating structure 320 of this embodiment in the stud mounting method.
  • the printed circuit board 501 includes two studs 503a on the first surface 501b side and two studs 503b on the second surface 501c side. That is, the studs 503a and 503b are arranged on both sides of the printed circuit board 501 with the printed circuit board 501 therebetween.
  • the heat pipe 505 is attached to the heat absorbing member 502.
  • the other end of the heat pipe 505 is attached to the upper surface of the heat radiating fin 506.
  • the heat radiating fins 506 are arranged on the air blowing path of the fan 504a in an assembled state. These points are the same as the heat dissipation structure 320 of the present embodiment.
  • the heat absorbing member 502 is screwed to the stud 503a mounted on the first surface 501b side of the printed circuit board 501 with screws 508.
  • the fan housing 504b is fixed to a stud 503c attached to the second surface 501c side of the printed circuit board 501.
  • the fan housing 504b includes a screw stopper 507 provided with a screw hole.
  • the fan housing 504 b is screwed using a screw 508 through a screw hole provided in the screw fixing portion 507. As a result, the fan housing 504b and the stud 503c are fixed.
  • the heat dissipation structure 320 of the present embodiment as described above and the heat dissipation structure 500 of the comparative example are different from each other as follows.
  • the heat absorbing member 322 disposed so as to cover the CPU 101 absorbs the heat radiated from the CPU 101. Part of the heat collected by the heat absorbing member 322 is transmitted to the fan unit 324 through the stud 323. The heat transferred to the fan unit 324 is directly radiated by the air blown by the fan 324a.
  • a part of the heat quantity radiated through the heat absorbing member 322 and the heat pipe 325 can be directly radiated by the air blown by the fan 324a. Thereby, the amount of heat dissipated through the heat absorbing member 322 and the heat pipe 325 is reduced, and efficient heat dissipation can be performed.
  • the heat absorbing member 502 arranged so as to cover the CPU 101 absorbs the heat radiated from the CPU 101.
  • the heat collected in the heat absorbing member 502 moves to the heat radiating fins 506 through the heat pipe 505 and is radiated by the air blown by the fan 504a.
  • the stud 503a attached to the first surface 501b of the printed board 501 and the stud 503b attached to the second surface 501c are separate bodies. Furthermore, it is divided by a printed circuit board 501 having low thermal conductivity.
  • the heat dissipation structure 500 of the comparative example does not include a configuration in which a part of the heat radiated through the heat absorbing member 502, the heat pipe 505, and the heat radiating fin 506 is radiated by direct exhaust of the fan 504a.
  • the heat dissipation structure 320 of the present embodiment can dissipate a part of the heat absorbed by the heat absorbing member 500 by direct exhaust of the fan 324a. That is, a part of the heat dissipation process can be directly borne by the fan 324a. For this reason, there is a surplus in the heat capacity that can be radiated and the structure can be downsized.
  • the heat dissipation structure 320 can reduce the number of assembly steps as compared with the heat dissipation structure 500 of the comparative example.
  • the heat dissipation structure 500 includes a total of four studs, two studs 503a and two studs 503b. Therefore, the screwing process for these studs also requires four processes.
  • the heat dissipation structure 320 of this embodiment includes only two studs 323. Therefore, the screwing process for the stud is also a process for two.
  • the mounting process of the stud itself requires four processes in the comparative example, whereas only two processes are required in this embodiment.
  • the heat dissipation structure 320 configured as described above is arranged in the main body housing 28 of the personal computer 10.
  • FIG. 13 is a rear view of the personal computer 10 in a state where the display unit 30 is closed with respect to the main unit 20.
  • a rechargeable battery 310 shown in FIG. 5 is fitted into the main unit 20 on the back surface of the personal computer 10.
  • an intake port 412 through which air can be supplied to the heat dissipation structure 320 and an exhaust port 411 through which air is discharged during heat dissipation are provided.
  • the intake port 412 is provided above the exhaust port 411.
  • the space between the intake port 412 and the exhaust port 411 is divided by the display unit 30, so that the heat radiation efficiency can be maintained. it can. Specifically, high-temperature air exhausted from the exhaust port 411 can be prevented from being sucked again from the intake port 412.
  • the air inlet 412 is exposed to the outer surface of the personal computer 10. Therefore, even when the display unit 30 is closed, air can be taken in from the air inlet 412, and heat generated during operation in a state where the display unit 30 is closed is surely dissipated outside the main body housing 28. can do.
  • the air taken into the main body housing 28 from the intake port 412 provided in the main body housing 28 is sent out toward the exhaust port 411 by the fan 324a.
  • the radiation fins 326 are arranged as shown in FIG.
  • the air sent out by the fan 324 a absorbs the heat absorbed by the heat radiating fins 326 and is discharged to the outside of the main body housing 28 through the exhaust port 411. Thereby, heat dissipation can be performed.
  • the shape of the printed circuit board 321 on which the heat dissipation structure 320 is arranged is different from that in the above embodiment. Specifically, it is as follows.
  • the printed circuit board 321 includes the through hole 321a.
  • the printed board 321 is provided with a notch 321d instead of the through hole 321a.
  • the stud 323 extends from the heat absorbing member 322 through the notch 321d and passes through the printed board 321 in a state where the heat dissipation structure 320 is assembled.
  • the fan unit 324 is fixed to the fan housing 324b.
  • the printed circuit board 321 does not necessarily have to include the through hole 321a and the notch 321d.
  • it may be configured such that the stud 323 passes through the side of the printed circuit board 321 when assembled. In other words, any configuration is acceptable as long as it passes through the printed board 321 and allows heat transfer between the heat absorbing member 322 and the fan unit 324.
  • a personal computer is shown as one form of the electronic device.
  • the electronic device may be a server, a personal digital assistant (PDA), a game machine, a television, a mobile phone, or the like. .
  • PDA personal digital assistant
  • the display panel is a liquid crystal panel, but the type of the display panel such as a plasma display, a field emission display, or an organic EL display is not questioned.
  • welding is used as a method for integrating the stud 323 with the heat absorbing member 322, but so-called caulking processing such as spindle processing can also be employed. Moreover, it can also shape
  • the stud 323 is a solid copper rod, but a hollow rod may be employed in consideration of heat capacity and the like.
  • the material is not limited to copper, and can be appropriately selected in consideration of the heat capacity and the like. The same applies to the material of the heat absorbing member 322, and can be selected as appropriate.

Abstract

A heat absorbing member (322) is arranged on the first surface (321b) side of a printed substrate (321). A fan unit (324) is arranged on the second surface (321c) side which is the back surface of the first surface (321b) of the printed substrate (321). A heat dissipation structure (320) comprises a stud (323) which is a connection member which runs through the printed substrate (321) and comes into contact with the heat absorbing member (322) and the fan unit (324). The stud (323) extends from the heat absorbing member (322), runs through the printed substrate (321), and comes into contact with the fan unit (324) in a state in which the heat dissipation structure (320) is assembled. Heat generated by an electronic component is dissipated via the heat absorbing member (322) and can be dissipated by use of direct discharge from the fan unit (324).

Description

電子機器の放熱構造およびこれを備えた電子機器Electronic device heat dissipation structure and electronic device equipped with the same
 本発明は、電子機器の放熱構造およびこれを備えた電子機器に関する。 The present invention relates to a heat dissipation structure for an electronic device and an electronic device including the same.
 パーソナルコンピュータなどの電子機器では、その内部に収容される電子部品が発熱し、電子機器の内部が高温となる。電子機器の内部に熱が溜まると、電子部品の性能が劣化してしまうという問題があり、電子機器の内部で発生した熱を効率よく放熱する必要がある。 In an electronic device such as a personal computer, electronic components housed therein generate heat, and the inside of the electronic device becomes hot. When heat accumulates inside the electronic device, there is a problem that the performance of the electronic component deteriorates, and it is necessary to efficiently dissipate the heat generated inside the electronic device.
 電子機器内の熱を放熱する放熱構造としては、電子機器の筐体内に空気を取り込む吸気口と、筐体内の熱を排気する排気口と、電子部品で発生した熱を吸収して排気口に伝熱するヒートシンクと、ヒートシンクの熱を空気に吸熱させて排気口から排気させる冷却用のファンとを備えたものが広く用いられている。 The heat dissipation structure that dissipates the heat in the electronic device includes an air intake port that takes air into the housing of the electronic device, an air exhaust port that exhausts the heat in the housing, and a heat exhaustor that absorbs heat generated by the electronic components. A heat sink that transfers heat and a cooling fan that absorbs the heat of the heat sink into the air and exhausts it from the exhaust port are widely used.
 例えば、回路基板の裏面に実装されたTape Carrier Package(TCP)と、TCPの熱を回路基板の表面の方向に逃がす受熱部と、回路基板の表面に配置され、受熱部を介してTCPの熱を受けるコールドプレートと、ロータおよびロータを収容するファンケースとを有するファンユニットとを備えた回路モジュールが知られている。また、Central Processing Unit(CPU)モジュール用基板上に搭載されたCPU上に放熱モジュールが取り付けられたCPUモジュールが知られている。また、主な発熱源であるCPUの上に強制冷却のためのファンが設置され、さらにそのファンの上にヒートプレートが固定されたパーソナルコンピュータの本体が知られている(特許文献1、特許文献2、特許文献3参照)。 For example, Tape Carrier Package (TCP) mounted on the back side of the circuit board, a heat receiving part for releasing the heat of the TCP in the direction of the surface of the circuit board, and the heat of the TCP via the heat receiving part. 2. Description of the Related Art A circuit module including a cold plate that receives a fan unit and a fan unit that includes a rotor and a fan case that houses the rotor is known. There is also known a CPU module in which a heat dissipation module is mounted on a CPU mounted on a central processing unit (CPU) module substrate. Also, a personal computer main body is known in which a fan for forced cooling is installed on a CPU that is a main heat source, and a heat plate is fixed on the fan (Patent Document 1, Patent Document). 2, see Patent Document 3).
特開平10-303582号公報JP-A-10-303582 特開2001-135761号公報JP 2001-135761 A 特開2003-133773号公報JP 2003-133773 A
 ところで、近年の電子機器は、さらなる処理速度の高速化や、搭載される機能の多様化が求められている。このような要望を実現するために、電子機器に内蔵される電子部品の高性能化や高密度化が進められている。この結果、電子機器の内部で発生する熱が増加してきている。このため、ヒートシンクや、ファンが処理すべき熱量が増加してきている。また、近年では、電子機器の小型化が進んでおり、ヒートシンクや冷却ファンなどを収容するスペースを狭めることも要求されてきている。 Incidentally, recent electronic devices are required to further increase the processing speed and diversify the functions to be mounted. In order to realize such a demand, higher performance and higher density of electronic components built in electronic devices are being promoted. As a result, the heat generated inside the electronic device is increasing. For this reason, the heat quantity which a heat sink and a fan should process has increased. In recent years, electronic devices have been miniaturized, and it has been required to narrow a space for accommodating a heat sink, a cooling fan, and the like.
 このような状況に対し、上記特許文献において開示された内容は、いずれもさらなる改良の余地を有していた。 For such a situation, the contents disclosed in the above patent documents all have room for further improvement.
 そこで、本発明は上記事情に鑑み、構造の小型化と放熱効率の向上とを両立させることができる電子機器の放熱構造およびこれを備えた電子機器を提供する。 Therefore, in view of the above circumstances, the present invention provides a heat dissipation structure for an electronic device and an electronic device equipped with the heat dissipation structure that can achieve both a reduction in size of the structure and an improvement in heat dissipation efficiency.
 上記課題を解決するために、本明細書開示の電子機器の放熱構造は、プリント基板の第一面側に配置された吸熱部材と、当該吸熱部材に集められた熱を放熱する放熱フィンと、前記プリント基板の第二面側に配置され、前記放熱フィンに送風するファンユニットと、前記プリント基板を通過して前記吸熱部材と前記ファンユニットとを熱的に接続する接続部材と、を備えている。 In order to solve the above problems, a heat dissipation structure for an electronic device disclosed in this specification includes a heat absorbing member disposed on the first surface side of the printed circuit board, a heat dissipating fin that dissipates heat collected in the heat absorbing member, A fan unit that is disposed on the second surface side of the printed circuit board and blows air to the heat radiating fin; and a connection member that passes through the printed circuit board and thermally connects the heat absorbing member and the fan unit. Yes.
 吸熱部材には、プリント基板上に実装されたCPU等の電子部品が発した熱が集められる。吸熱部材に集められた熱は、放熱フィンに伝えられる。放熱フィンは、ファンユニットの送風経路上に配置され、放熱フィンに伝えられた熱は、ファンユニットの送風によって放熱される。これにより、電子機器内の冷却が行われる。 The heat-absorbing member collects heat generated by electronic components such as a CPU mounted on the printed circuit board. The heat collected on the heat absorbing member is transferred to the heat radiating fins. The heat radiating fins are arranged on the air flow path of the fan unit, and the heat transferred to the heat radiating fins is radiated by the air blown by the fan unit. Thereby, cooling in an electronic device is performed.
 上記放熱に加え、本明細書開示の電子機器の放熱構造は、吸熱部材に集められた熱の一部を、直接、ファンユニットの送風によって放熱することもできる。本明細書開示の電子機器の放熱構造では、熱的に接続する接続部材を介して吸熱部材とファンユニットとが接触することにより、ファンユニットにも熱を伝えることができる。ファンユニットに伝えられた熱は、ファンユニットの送風によって放熱される。 In addition to the above heat dissipation, the heat dissipation structure of the electronic device disclosed in the present specification can also dissipate a part of the heat collected in the heat absorbing member directly by blowing air from the fan unit. In the heat dissipation structure for an electronic device disclosed in this specification, heat can be transmitted to the fan unit by contacting the heat absorbing member and the fan unit via a connection member that is thermally connected. The heat transmitted to the fan unit is radiated by the fan unit.
 このように二系統の放熱ルートによる効率的な放熱が可能となることにより、放熱構造の熱容量に対する設計に余裕が生まれる。この結果、放熱構造を小型化することができ、よって電子機器を小型化することが可能となる。 ¡Efficient heat dissipation by two heat dissipation routes is possible in this way, so that there is room for designing the heat capacity of the heat dissipation structure. As a result, the heat dissipation structure can be reduced in size, and thus the electronic device can be reduced in size.
 構造の小型化と放熱効率の向上とを両立した電子機器の放熱構造を提供することができる。 It is possible to provide a heat dissipation structure for electronic equipment that achieves both a compact structure and improved heat dissipation efficiency.
図1は、電子機器の具体的な一実施形態であるラップトップ型のパーソナルコンピュータの外観図である。FIG. 1 is an external view of a laptop personal computer which is a specific embodiment of an electronic apparatus. 図2は、パーソナルコンピュータの一側面側を示す図である。FIG. 2 is a diagram showing one side of the personal computer. 図3は、パーソナルコンピュータの、図2とは逆側の側面を示す図である。FIG. 3 is a diagram showing a side surface of the personal computer opposite to FIG. 図4は、パーソナルコンピュータの内部構成図である。FIG. 4 is an internal configuration diagram of the personal computer. 図5は、本体ユニットの内部構成図である。FIG. 5 is an internal configuration diagram of the main unit. 図6は、実施形態における本体筐体内に収容される放熱構造を含む部分の平面図である。FIG. 6 is a plan view of a portion including a heat dissipation structure housed in the main body housing in the embodiment. 図7は、実施形態における本体筐体内に収容される放熱構造を含む部分の底面図である。FIG. 7 is a bottom view of a portion including a heat dissipation structure accommodated in the main body housing in the embodiment. 図8は、実施形態におけるプリント基板と、放熱構造に含まれる吸熱部材、放熱フィン、ファンユニットを分解した状態で模式的に示した説明図である。FIG. 8 is an explanatory view schematically showing a state in which the printed board, the heat absorbing member, the heat radiating fins, and the fan unit included in the heat radiating structure in the embodiment are disassembled. 図9は、実施形態におけるプリント基板と、放熱構造に含まれる吸熱部材、放熱フィン、ファンユニットを組み立てた状態で模式的に示した説明図である。FIG. 9 is an explanatory view schematically showing a state in which the printed circuit board, the heat absorbing member, the heat radiating fins, and the fan unit included in the heat radiating structure are assembled in the embodiment. 図10は、比較例におけるプリント基板と、放熱構造に含まれる吸熱部材、放熱フィン、ファンユニットを分解した状態で模式的に示した説明図である。FIG. 10 is an explanatory view schematically showing a printed circuit board and a heat absorbing member, a heat radiating fin, and a fan unit included in the heat radiating structure in a comparative example in an exploded state. 図11は、比較例におけるプリント基板と、放熱構造に含まれる吸熱部材、放熱フィン、ファンユニットを組み立てた状態で模式的に示した説明図である。FIG. 11 is an explanatory diagram schematically showing a state in which a printed board, a heat absorbing member, a heat radiating fin, and a fan unit included in a heat radiating structure are assembled in a comparative example. 図12は、ファンユニットの内部及び放熱フィンとの位置関係を示した説明図である。FIG. 12 is an explanatory diagram showing the positional relationship between the inside of the fan unit and the radiation fins. 図13は、本体ユニットに対して表示ユニットを閉じた状態におけるパーソナルコンピュータの背面を示す図である。FIG. 13 is a diagram showing the back of the personal computer in a state where the display unit is closed with respect to the main unit. 図14は、本体ユニットの、放熱構造付近の内部構成図である。FIG. 14 is an internal configuration diagram of the main unit near the heat dissipation structure. 図15は、切欠き部を有するプリント基板と、放熱構造に含まれる吸熱部材、放熱フィン、ファンハウジングを分解した状態で模式的に示した説明図である。FIG. 15 is an explanatory view schematically showing a state in which a printed board having a notch, a heat absorbing member, a heat radiating fin, and a fan housing included in the heat radiating structure are disassembled. 図16は、切欠き部を有するプリント基板と、放熱構造に含まれる吸熱部材、放熱フィン、ファンハウジングを組み立てた状態で模式的に示した説明図である。FIG. 16 is an explanatory view schematically showing a state in which a printed board having a notch, a heat absorbing member, a heat radiating fin, and a fan housing included in the heat radiating structure are assembled.
 以下、本発明の実施の形態を、図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の電子機器の具体的な実施形態のひとつであるラップトップ型のパーソナルコンピュータ10の外観図である。 FIG. 1 is an external view of a laptop personal computer 10 which is one of the specific embodiments of the electronic apparatus of the present invention.
 パーソナルコンピュータ10は、本体ユニット20と表示ユニット30とを備えている。表示ユニット30は、ヒンジ部40によって本体ユニット20に対して開閉自在に連結されている。図1には、表示ユニット30が開かれた状態のパーソナルコンピュータ10を前方から見た図が示されている。 The personal computer 10 includes a main unit 20 and a display unit 30. The display unit 30 is connected to the main unit 20 by a hinge part 40 so as to be freely opened and closed. FIG. 1 shows a view of the personal computer 10 with the display unit 30 opened as viewed from the front.
 本体ユニット20は、各種情報処理を実行するためのものであり、本体筐体28の内部にCPUやハードディスク装置などが収容されている。本体筐体28の上面には、キーボード21、トラックパッド22、左クリックボタン23、および右クリックボタン24等が備えられている。さらに、本体筐体28の前方には、指先がなぞられることによって指紋認証を行う指紋センサ25と、小型記録媒体が装填される媒体装填口26が設けられている。 The main unit 20 is for executing various types of information processing, and a CPU, a hard disk device, and the like are accommodated in the main body housing 28. A keyboard 21, a track pad 22, a left click button 23, a right click button 24, and the like are provided on the upper surface of the main body housing 28. Further, a fingerprint sensor 25 that performs fingerprint authentication by tracing a fingertip and a medium loading port 26 into which a small recording medium is loaded are provided in front of the main body housing 28.
 表示ユニット30は、本体ユニット20で実行された情報処理結果を表示するためのものである。表示ユニット30は、表示筐体32を備えている。そして、この表示筐体32の内部に、薄型の液晶パネルや、液晶パネル用の制御回路や、通信用のアンテナなどが収容されている。表示筐体32は、図2に示すように前方カバー32Aおよび後方カバー32Bによって構成されており、液晶パネルは、表示画面31を前側にして前方カバー32Aおよび後方カバー32Bによって前後から挟まれている。なお、表示ユニット30は、各種電子部品を、液晶パネルの脇ではなく裏側に配置することによって、表示筐体32の側面付近にまで表示画面31が広げられたワイド型の表示装置である。 The display unit 30 is for displaying the information processing result executed by the main unit 20. The display unit 30 includes a display housing 32. A thin liquid crystal panel, a liquid crystal panel control circuit, a communication antenna, and the like are accommodated in the display housing 32. As shown in FIG. 2, the display housing 32 includes a front cover 32A and a rear cover 32B, and the liquid crystal panel is sandwiched from the front and rear by the front cover 32A and the rear cover 32B with the display screen 31 in the front side. . The display unit 30 is a wide-type display device in which the display screen 31 is extended to the vicinity of the side surface of the display housing 32 by arranging various electronic components not on the side of the liquid crystal panel but on the back side.
 図2は、パーソナルコンピュータ10の一側面側を示す図である。
 本体ユニット20の一側面には、ワイヤケーブル付きロック用のセキュリティスロット26a、電源モジュール用のコネクタ26b、外付けモニタ用のコネクタ26cが設けられている。また、Local Area Network(LAN)ケーブル用のコネクタ26d、Universal Serial Bus(USB)用のコネクタ26e,26fが設けられている。さらに、オーディオジャック用のコネクタ26g、マイク用のコネクタ26h、およびヘッドフォン用のコネクタ26iなどが設けられている。
FIG. 2 is a diagram illustrating one side of the personal computer 10.
On one side of the main unit 20, a security slot 26a for locking with a wire cable, a connector 26b for a power supply module, and a connector 26c for an external monitor are provided. In addition, a connector 26d for a Local Area Network (LAN) cable and connectors 26e and 26f for Universal Serial Bus (USB) are provided. Further, an audio jack connector 26g, a microphone connector 26h, a headphone connector 26i, and the like are provided.
 図3は、パーソナルコンピュータ10の、図2とは逆側の側面を示す図である。本体ユニット20の、図2とは逆側の側面には、LANカードなどといった機能拡張用の拡張カードを装填するための拡張カード装填口27a、Compact Disc(CD)やDigital Versatile Disk(DVD)等の光ディスクを装填するための光ディスク装填口27bが設けられている。また、USB用のコネクタ27c、およびモデム用のコネクタ27dが設けられている。 FIG. 3 is a diagram showing a side surface of the personal computer 10 opposite to that in FIG. On the side opposite to FIG. 2 of the main unit 20, an expansion card loading slot 27a for loading an expansion card for function expansion such as a LAN card, Compact 、 Disc (CD), Digital Versatile Disk (DVD), etc. An optical disk loading port 27b for loading the optical disk is provided. In addition, a USB connector 27c and a modem connector 27d are provided.
 続いて、パーソナルコンピュータ10の内部構成について説明する。
 図4は、パーソナルコンピュータ10の内部構成図である。
 パーソナルコンピュータ10には、図4に示すように、各種プログラムを実行するCPU101、各種プログラムやデータ等が保存されたハードディスク装置103が内蔵されている。また、このハードディスク装置103に格納されたプログラムが読み出されCPU101での実行のために展開される主メモリ102が内蔵されている。さらに、マイクやスピーカなどが搭載されたオーディオデバイス104、外部装置からデータを入力する入力インタフェース105が内蔵されている。また、キーボード21やトラックパッド22などを含む操作子106、表示画面31上に情報を表示に関する表示装置107、図1にも示す指紋センサ25が内蔵されている。また、小型記録媒体61が装填され、装填された小型記録媒体61をアクセスする小型メモリドライブ109が内蔵されている。さらに、Compact Disk Read Only Memory(CD-ROM)62やDVDが装填され、その装填されたCD-ROM62やDVDをアクセスする光ディスクドライブ110が内蔵されている。また、拡張カード63を使って通信を行う通信インタフェース111、および外部装置へデータを出力する出力インタフェース112などが内蔵されている。これらの各種要素は、バス113を介して相互に接続されている。
Next, the internal configuration of the personal computer 10 will be described.
FIG. 4 is an internal configuration diagram of the personal computer 10.
As shown in FIG. 4, the personal computer 10 includes a CPU 101 that executes various programs and a hard disk device 103 that stores various programs and data. Further, a main memory 102 is built in which a program stored in the hard disk device 103 is read and expanded for execution by the CPU 101. Further, an audio device 104 equipped with a microphone, a speaker, and the like, and an input interface 105 for inputting data from an external device are incorporated. Further, an operation element 106 including a keyboard 21 and a track pad 22, a display device 107 for displaying information on a display screen 31, and a fingerprint sensor 25 shown in FIG. 1 are incorporated. In addition, a small recording medium 61 is loaded, and a small memory drive 109 for accessing the loaded small recording medium 61 is incorporated. Further, a compact disk read only memory (CD-ROM) 62 and a DVD are loaded, and an optical disk drive 110 for accessing the loaded CD-ROM 62 and DVD is incorporated. Further, a communication interface 111 that performs communication using the expansion card 63, an output interface 112 that outputs data to an external device, and the like are incorporated. These various elements are connected to each other via a bus 113.
 図5は、本体ユニット20の内部構成図である。
 図5に示すように、本体筐体28の内部には、図2に示す電源モジュール用のコネクタ26bに接続された電源制御回路331、外付けモニタ用のコネクタ26cに接続された表示制御回路332、LANケーブル用のコネクタ26dに接続された通信制御回路333が収容されている。また、USB用のコネクタ26e,26f,27cに接続された入出力制御回路(図5では見えていない)、オーディオジャック用のコネクタ26g、マイク用のコネクタ26h、およびヘッドフォン用のコネクタ26iに接続されたオーディオ回路335が収容されている。また、図3に示す拡張カード装填口27aに接続された拡張処理回路(図5では見えていない)、光ディスク装填口27bに接続された光ディスクドライブ110、およびモデム用のコネクタ27dに接続されたデータ変換回路337が収容されている。さらに、これらに加えて、本体筐体28内で発生した熱を放熱するための電子機器の放熱構造(以下、単に、放熱構造という)320や、充電池310などといった各種電子部品が収容されている。
FIG. 5 is an internal configuration diagram of the main unit 20.
As shown in FIG. 5, a power supply control circuit 331 connected to the connector 26b for the power supply module shown in FIG. 2 and a display control circuit 332 connected to the connector 26c for an external monitor are provided inside the main body housing 28. The communication control circuit 333 connected to the LAN cable connector 26d is accommodated. The input / output control circuit (not shown in FIG. 5) connected to the USB connectors 26e, 26f, and 27c, the audio jack connector 26g, the microphone connector 26h, and the headphone connector 26i are connected. The audio circuit 335 is accommodated. Further, the expansion processing circuit (not shown in FIG. 5) connected to the expansion card loading slot 27a shown in FIG. 3, the optical disk drive 110 connected to the optical disk loading slot 27b, and the data connected to the modem connector 27d. A conversion circuit 337 is accommodated. In addition to these, various electronic components such as a heat dissipation structure (hereinafter simply referred to as a heat dissipation structure) 320 of an electronic device for radiating heat generated in the main body housing 28 and a rechargeable battery 310 are accommodated. Yes.
 次に、本施形態の放熱構造320の構成を説明する。 Next, the configuration of the heat dissipation structure 320 of this embodiment will be described.
 図6は、本体筐体28内に収容される本実施形態の放熱構造320を含む部分の平面図である。図7は、放熱構造320を含む部分の底面図である。また、図8は、本実施形態におけるプリント基板321と、放熱構造320に含まれる吸熱部材322、放熱フィン326、ファンユニット324を分解した状態で模式的に示した説明図である。図9は、本実施形態におけるプリント基板321と、放熱構造320に含まれる吸熱部材322、放熱フィン326、ファンユニット324を組み立てた状態で模式的に示した説明図である。 FIG. 6 is a plan view of a portion including the heat dissipation structure 320 of the present embodiment housed in the main body housing 28. FIG. 7 is a bottom view of a portion including the heat dissipation structure 320. FIG. 8 is an explanatory view schematically showing the printed circuit board 321 and the heat absorbing member 322, the heat radiating fins 326, and the fan unit 324 included in the heat radiating structure 320 in the present embodiment in an exploded state. FIG. 9 is an explanatory diagram schematically showing the printed circuit board 321 and the heat absorbing member 322, the heat radiating fins 326, and the fan unit 324 included in the heat radiating structure 320 in this embodiment.
[本実施形態の放熱構造320の構成]
 本実施形態のパーソナルコンピュータ10では、CPU101や、その他の電子部品の一部は、図6乃至図9に示すようにプリント基板321上に実装されている。CPU101は、プリント基板321の第一面321bに実装されている。プリント基板321には、図8、図9に示すように二つの貫通孔321aが形成されている。この貫通孔321aは、電子部品のなかでも発熱し易いCPU101の側方に設けられている。
[Configuration of Heat Dissipation Structure 320 of this Embodiment]
In the personal computer 10 of this embodiment, the CPU 101 and some other electronic components are mounted on a printed circuit board 321 as shown in FIGS. The CPU 101 is mounted on the first surface 321 b of the printed circuit board 321. Two through holes 321a are formed in the printed circuit board 321 as shown in FIGS. The through hole 321a is provided on the side of the CPU 101 that easily generates heat among electronic components.
 このようなプリント基板321の第一面321b側には、吸熱部材322が配置されている。また、プリント基板321の第一面321bの裏面となる第二面321c側にはファンユニット324が配置さている。すなわち、プリント基板321を挟むように吸熱部材322とファンユニット324とが配置されている。ファンユニット324は、ファンハウジング324bの内部にファン324aを収納している。ファンユニット324は、吸熱部材322に集められた熱を送風により放熱するものである。 The heat absorbing member 322 is disposed on the first surface 321b side of the printed board 321. A fan unit 324 is disposed on the second surface 321c side which is the back surface of the first surface 321b of the printed circuit board 321. That is, the heat absorbing member 322 and the fan unit 324 are arranged so as to sandwich the printed circuit board 321. The fan unit 324 houses a fan 324a inside the fan housing 324b. The fan unit 324 dissipates heat collected by the heat absorbing member 322 by blowing air.
 放熱構造320は、また、プリント基板321を通過して吸熱部材322とファンユニット324とに接触するスタッド323を備えている。このスタッド323は放熱構造320が組み立てられた状態で吸熱部材322から延び、プリント基板321を通過してファンユニット324に接触している。スタッド323は、プリント基板321を通過して吸熱部材322とファンユニット324とを熱的に接続する接続部材の一例である。 The heat dissipation structure 320 also includes a stud 323 that passes through the printed circuit board 321 and contacts the heat absorbing member 322 and the fan unit 324. The stud 323 extends from the heat absorbing member 322 in a state where the heat dissipation structure 320 is assembled, passes through the printed board 321, and contacts the fan unit 324. The stud 323 is an example of a connection member that passes through the printed board 321 and thermally connects the heat absorbing member 322 and the fan unit 324.
 吸熱部材322は、銅製の板体であり、CPU101を覆うように配置されている。吸熱部材322は、CPU101や、その他の電子部品が発した熱を集める。 The heat absorbing member 322 is a copper plate and is disposed so as to cover the CPU 101. The heat absorbing member 322 collects heat generated by the CPU 101 and other electronic components.
 スタッド323は、銅製の中実棒体である。スタッド323は、貫通孔321aを通じ、CPU101の側方を通過する。 Stud 323 is a solid copper rod. The stud 323 passes through the side of the CPU 101 through the through hole 321a.
 このような吸熱部材322とスタッド323とは、溶接により一体とされ、スタッド322が吸熱部材323から延びた状態とされている。このように吸熱部材322とスタッド323を単なる接触ではなく一体とすることにより、吸熱部材322からスタッド323への伝熱効率が向上する。 The heat absorbing member 322 and the stud 323 are integrated by welding, and the stud 322 extends from the heat absorbing member 323. Thus, heat transfer efficiency from the heat absorption member 322 to the stud 323 is improved by integrating the heat absorption member 322 and the stud 323 instead of simply contacting each other.
 吸熱部材322からスタッド323へ熱を伝えるためには、スタッド323と吸熱部材322とが接触していればよい。しかし、これらが溶接により一体として設けられることにより、吸熱部材322とスタッド323との間の伝熱効率を向上させることができる。また、スタッド323と吸熱部材322とが一体とされていることにより、放熱構造320の組立工程における工数を減らすことができ、都合がよい。 In order to transfer heat from the heat absorbing member 322 to the stud 323, the stud 323 and the heat absorbing member 322 may be in contact with each other. However, the heat transfer efficiency between the heat absorbing member 322 and the stud 323 can be improved by providing them integrally by welding. In addition, since the stud 323 and the heat absorbing member 322 are integrated, the number of steps in the assembly process of the heat dissipation structure 320 can be reduced, which is convenient.
 吸熱部材322には、ヒートパイプ325の一端側が装着されている。このヒートパイプ325の他端側は、放熱フィン326の上面に装着されている。放熱フィン326は、組み上がった状態でファンユニット324の送風経路上に配置されている。ヒートパイプ325は、内部に作動液が封入されており、その作動液の気化により熱を奪い、気化した作動液が他端側に移動して再び液体に戻るときに放熱する。この作用により、吸熱部材322に集められた熱を放熱フィン326へ移動させる。放熱フィン326に移動した熱は、ファンユニット324による送風によって放熱される。 One end side of the heat pipe 325 is attached to the heat absorbing member 322. The other end of the heat pipe 325 is attached to the upper surface of the heat radiating fin 326. The heat dissipating fins 326 are arranged on the air blowing path of the fan unit 324 in an assembled state. The heat pipe 325 encloses the working fluid therein, takes heat by vaporization of the working fluid, and dissipates heat when the vaporized working fluid moves to the other end side and returns to the liquid again. By this action, the heat collected in the heat absorbing member 322 is moved to the heat radiating fins 326. The heat that has moved to the heat radiating fins 326 is dissipated by blowing air from the fan unit 324.
 一方、吸熱部材322から延びるスタッド323は、前記のようにプリント基板321に設けられた貫通孔321aを通じ、CPU101の側方を通過してファンユニット324に接触している。そして、スタッド323は、ファンハウジング324bに固定されている。具体的には、ファンハウジング324bには、二カ所のビス止め部327が設けられている。このビス止め部327に設けられたビス穴を介してビス328によりファンハウジング324bとスタッド323とが固定されている。このようにスタッド323をファンハウジング324bに固定することにより、スタッド323からファンユニット324への伝熱効率が向上する。スタッド323からファンユニット324へ伝熱させるためには、スタッド323とファンユニット324とが接触していればよいが、これらが固定されることにより、熱的結合性を高め、伝熱効率を向上させることができる。ファンユニット324への伝熱効率が向上すれば、ファン324aの送風による放熱効率も向上する。 On the other hand, the stud 323 extending from the heat absorbing member 322 passes through the side of the CPU 101 and contacts the fan unit 324 through the through hole 321a provided in the printed circuit board 321 as described above. The stud 323 is fixed to the fan housing 324b. Specifically, the fan housing 324b is provided with two screwing portions 327. The fan housing 324b and the stud 323 are fixed by a screw 328 through a screw hole provided in the screw fixing portion 327. By fixing the stud 323 to the fan housing 324b in this way, the heat transfer efficiency from the stud 323 to the fan unit 324 is improved. In order to transfer heat from the stud 323 to the fan unit 324, the stud 323 and the fan unit 324 may be in contact with each other. However, by fixing these, the thermal bondability is improved and the heat transfer efficiency is improved. be able to. If the heat transfer efficiency to the fan unit 324 is improved, the heat dissipation efficiency by the air blowing from the fan 324a is also improved.
 図12は、ファンユニット324の内部及び放熱フィン326との位置関係を示した説明図である。ファンハウジング324b内に収容されたファン324aはファンハウジング324bの天面側と底面側の両面から空気を吸い込むことができる。そして、遠心方向の気流を生成し、図12に矢示329で示した送風経路上に送風する。送風経路329上には放熱フィン326と、本体筐体28に設けられた排気口411が配置される。 FIG. 12 is an explanatory view showing the positional relationship between the inside of the fan unit 324 and the radiation fins 326. The fan 324a accommodated in the fan housing 324b can suck air from both the top surface side and the bottom surface side of the fan housing 324b. Then, an airflow in the centrifugal direction is generated and blown on the blowing path indicated by an arrow 329 in FIG. On the ventilation path 329, the radiation fin 326 and the exhaust port 411 provided in the main body housing | casing 28 are arrange | positioned.
[比較例の放熱構造500の構成]
 次に、上述した本実施形態の放熱構造320とは異なる構成の放熱構造を比較例として説明する。
 図10は、比較例におけるプリント基板501と、放熱構造500に含まれる吸熱部材502、放熱フィン506、ファンユニット504を分解した状態で模式的に示した説明図である。さらに、図11は、比較例におけるプリント基板501と、放熱構造500に含まれる吸熱部材502、放熱フィン506、ファンユニット504を組み立てた状態で模式的に示した説明図である。
 比較例における放熱構造500では、CPU101や、その他の電子部品の一部は、図10、図11に示すようにプリント基板501上に実装されている。この点は本実施形態の場合と同様である。ただし、プリント基板501は、本実施形態のプリント基板321のように、スタッドが貫通する貫通孔を持たない。
[Configuration of Heat Dissipation Structure 500 of Comparative Example]
Next, a heat dissipation structure having a different configuration from the heat dissipation structure 320 of the present embodiment described above will be described as a comparative example.
FIG. 10 is an explanatory diagram schematically showing the printed circuit board 501 and the heat absorbing member 502, the heat radiating fins 506, and the fan unit 504 included in the heat radiating structure 500 in a comparative example. Further, FIG. 11 is an explanatory view schematically showing a state in which the printed board 501 and the heat absorbing member 502, the heat radiating fins 506, and the fan unit 504 included in the heat radiating structure 500 are assembled in the comparative example.
In the heat dissipation structure 500 in the comparative example, the CPU 101 and some other electronic components are mounted on a printed board 501 as shown in FIGS. This is the same as in this embodiment. However, the printed circuit board 501 does not have a through hole through which the stud penetrates unlike the printed circuit board 321 of the present embodiment.
 このようなプリント基板501のCPU101が実装された第一面501b側には、吸熱部材502が配置される。また、この第一面501bの裏面側となる第二面501c側に、ファン504aを内蔵したファンハウジング504が配置される。ここで、吸熱部材502自体は、本実施形態における吸熱部材322と同一のものである。また、ファンハウジング504b内にファン504aを内蔵したファンユニット504も本実施形態におけるファンユニット324と同一のものである。 The heat absorbing member 502 is disposed on the first surface 501b side of the printed circuit board 501 on which the CPU 101 is mounted. A fan housing 504 with a built-in fan 504a is disposed on the second surface 501c side which is the back surface side of the first surface 501b. Here, the heat absorbing member 502 itself is the same as the heat absorbing member 322 in the present embodiment. A fan unit 504 in which the fan 504a is built in the fan housing 504b is also the same as the fan unit 324 in this embodiment.
 ただし、放熱構造500は、本実施形態の放熱構造320と比較してスタッドの装着方法が異なっている。
 具体的には、放熱構造500では、プリント基板501は、第一面501b側に2本のスタッド503aを備え、また、第二面501c側に2本のスタッド503bを備えている。すなわち、スタッド503a、503bは、プリント基板501を隔てた形でプリント基板501の両面側にそれぞれ配置されている。
However, the heat dissipating structure 500 is different from the heat dissipating structure 320 of this embodiment in the stud mounting method.
Specifically, in the heat dissipation structure 500, the printed circuit board 501 includes two studs 503a on the first surface 501b side and two studs 503b on the second surface 501c side. That is, the studs 503a and 503b are arranged on both sides of the printed circuit board 501 with the printed circuit board 501 therebetween.
 吸熱部材502には、ヒートパイプ505の一端側が装着されている。このヒートパイプ505の他端側は、放熱フィン506の上面に装着されている。放熱フィン506は、組み上がった状態でファン504aの送風経路上に配置されることとなる。これらの点は、本実施形態の放熱構造320と同一である。 One end side of the heat pipe 505 is attached to the heat absorbing member 502. The other end of the heat pipe 505 is attached to the upper surface of the heat radiating fin 506. The heat radiating fins 506 are arranged on the air blowing path of the fan 504a in an assembled state. These points are the same as the heat dissipation structure 320 of the present embodiment.
 ただし、吸熱部材502は、プリント基板501の第一面501b側に装着されたスタッド503aにビス508によりビス止めされている。また、ファンハウジング504bは、プリント基板501の第二面501c側に装着されたスタッド503cに固定されている。具体的には、ファンハウジング504bは、ビス穴が設けられたビス止め部507を備えている。ファンハウジング504bは、このビス止め部507に設けられたビス穴を介してビス508を用いたビス止めがされる。これによりファンハウジング504bとスタッド503cとが固定される。 However, the heat absorbing member 502 is screwed to the stud 503a mounted on the first surface 501b side of the printed circuit board 501 with screws 508. The fan housing 504b is fixed to a stud 503c attached to the second surface 501c side of the printed circuit board 501. Specifically, the fan housing 504b includes a screw stopper 507 provided with a screw hole. The fan housing 504 b is screwed using a screw 508 through a screw hole provided in the screw fixing portion 507. As a result, the fan housing 504b and the stud 503c are fixed.
 上記のような本実施形態の放熱構造320と比較例の放熱構造500とは、その放熱態様が以下のように相違する。 The heat dissipation structure 320 of the present embodiment as described above and the heat dissipation structure 500 of the comparative example are different from each other as follows.
 放熱構造320では、CPU101を覆うように配置された吸熱部材322は、CPU101から放熱された熱を吸熱する。吸熱部材322に集められた熱の一部はスタッド323を介してファンユニット324へ伝えられる。ファンユニット324へ伝えられた熱は、直接ファン324aの送風によって放熱される。このように、本実施形態では、吸熱部材322、ヒートパイプ325を介して放熱される熱量の一部をファン324aの送風により直接放熱することができる。これにより、吸熱部材322、ヒートパイプ325を介して放熱される熱量が軽減され、効率的な放熱を行うことができる。 In the heat dissipation structure 320, the heat absorbing member 322 disposed so as to cover the CPU 101 absorbs the heat radiated from the CPU 101. Part of the heat collected by the heat absorbing member 322 is transmitted to the fan unit 324 through the stud 323. The heat transferred to the fan unit 324 is directly radiated by the air blown by the fan 324a. Thus, in this embodiment, a part of the heat quantity radiated through the heat absorbing member 322 and the heat pipe 325 can be directly radiated by the air blown by the fan 324a. Thereby, the amount of heat dissipated through the heat absorbing member 322 and the heat pipe 325 is reduced, and efficient heat dissipation can be performed.
 一方、比較例の放熱構造500では、CPU101を覆うように配置された吸熱部材502は、CPU101から放熱された熱を吸熱する。吸熱部材502に集められた熱はヒートパイプ505を介して放熱フィン506へ移動し、ファン504aの送風により放熱される。
 ここで、プリント基板501の第一面501bに装着されたスタッド503aと第二面501cに装着されたスタッド503bとは別体である。さらに、熱伝導性の低いプリント基板501によって分断されている。このため、放熱構造500では、吸熱部材502を通じて放熱される熱の一部をファンユニット504へ伝えることは困難である。この結果、ファン504aの送風による直接の放熱も困難である。
On the other hand, in the heat dissipation structure 500 of the comparative example, the heat absorbing member 502 arranged so as to cover the CPU 101 absorbs the heat radiated from the CPU 101. The heat collected in the heat absorbing member 502 moves to the heat radiating fins 506 through the heat pipe 505 and is radiated by the air blown by the fan 504a.
Here, the stud 503a attached to the first surface 501b of the printed board 501 and the stud 503b attached to the second surface 501c are separate bodies. Furthermore, it is divided by a printed circuit board 501 having low thermal conductivity. For this reason, in the heat dissipation structure 500, it is difficult to transmit a part of the heat radiated through the heat absorbing member 502 to the fan unit 504. As a result, it is difficult to directly dissipate heat by blowing air from the fan 504a.
 以上のように、比較例の放熱構造500は、吸熱部材502、ヒートパイプ505、放熱フィン506を介して放熱される熱の一部をファン504aの直接排気により放熱させる構成を備えていない。これに対し、本実施形態の放熱構造320は、吸熱部材500で吸熱された熱の一部を、ファン324aの直接排気により放熱させることができる。すなわち、放熱処理の一部をファン324aに直接負担させることができる。このため、放熱処理することができる熱容量に余裕が生まれ、構造の小型化も可能となる。 As described above, the heat dissipation structure 500 of the comparative example does not include a configuration in which a part of the heat radiated through the heat absorbing member 502, the heat pipe 505, and the heat radiating fin 506 is radiated by direct exhaust of the fan 504a. On the other hand, the heat dissipation structure 320 of the present embodiment can dissipate a part of the heat absorbed by the heat absorbing member 500 by direct exhaust of the fan 324a. That is, a part of the heat dissipation process can be directly borne by the fan 324a. For this reason, there is a surplus in the heat capacity that can be radiated and the structure can be downsized.
 さらに、放熱構造320は、比較例の放熱構造500と比較すると、組立工数を低減することができる。すなわち、放熱構造500では、スタッド503aが2本、スタッド503bが2本の合計4本のスタッドを備えている。従って、これらのスタッドに対するビス止め工程も4本分の工程が必要となる。これに対し、本実施形態の放熱構造320は、スタッド323を2本備えるのみである。従って、このスタッドに対するビス止め工程も2本分の工程で済む。また、スタッド自体の装着工程も比較例では、4本分の工程が必要であるのに対し、本実施例では、2本分の工程で済む。 Furthermore, the heat dissipation structure 320 can reduce the number of assembly steps as compared with the heat dissipation structure 500 of the comparative example. In other words, the heat dissipation structure 500 includes a total of four studs, two studs 503a and two studs 503b. Therefore, the screwing process for these studs also requires four processes. On the other hand, the heat dissipation structure 320 of this embodiment includes only two studs 323. Therefore, the screwing process for the stud is also a process for two. In addition, the mounting process of the stud itself requires four processes in the comparative example, whereas only two processes are required in this embodiment.
 以上のように構成される放熱構造320は、パーソナルコンピュータ10の本体筐体28内に配置される。 The heat dissipation structure 320 configured as described above is arranged in the main body housing 28 of the personal computer 10.
 図13は、本体ユニット20に対して表示ユニット30を閉じた状態におけるパーソナルコンピュータ10の背面図である。
 パーソナルコンピュータ10の背面には、本体ユニット20に、図5にも示す充電池310が嵌め込まれている。また、放熱構造320へ空気を供給することができる吸気口412と放熱時に空気が排出される排気口411が設けられている。吸気口412は、排気口411よりも上側に設けられている。これにより、パーソナルコンピュータ10の底付近に溜まった熱が吸気口412から取り込まれてしまう不具合を軽減している。この結果、パーソナルコンピュータ10を使用し続けても放熱効率を維持することができる。
FIG. 13 is a rear view of the personal computer 10 in a state where the display unit 30 is closed with respect to the main unit 20.
A rechargeable battery 310 shown in FIG. 5 is fitted into the main unit 20 on the back surface of the personal computer 10. Further, an intake port 412 through which air can be supplied to the heat dissipation structure 320 and an exhaust port 411 through which air is discharged during heat dissipation are provided. The intake port 412 is provided above the exhaust port 411. Thereby, the problem that the heat accumulated near the bottom of the personal computer 10 is taken in from the air inlet 412 is reduced. As a result, the heat radiation efficiency can be maintained even if the personal computer 10 is continuously used.
 図14は、パーソナルコンピュータ10の本体ユニット20の本体筐体28内に組み込まれた放熱構造320付近の内部構成図である。
 図14に示すように、本体筐体28には、吸気口412と排気口411とが設けられている。吸気口412と排気口411とは本体筐体28の異なる面に設けられている。すなわち、吸気口412は、本体筐体28の上面に設けられ、排気口411は、本体筐体28の背面に設けられている。また、吸気口412は、表示ユニット30が開いた状態で表示ユニット30よりも前方に位置する。また、排気口411は、表示ユニット30よりも後方に位置している。吸気口412と排気口411とが、このような配置とされていることにより、表示ユニット30によって吸気口412と排気口411との間の空間が分断されるため、放熱効率を維持することができる。具体的には、排気口411から排気された温度の高い空気が再び吸気口412から吸い込まれてしまうことを抑制することができる。
FIG. 14 is an internal configuration diagram near the heat dissipation structure 320 incorporated in the main body housing 28 of the main body unit 20 of the personal computer 10.
As shown in FIG. 14, the body housing 28 is provided with an intake port 412 and an exhaust port 411. The intake port 412 and the exhaust port 411 are provided on different surfaces of the main body housing 28. That is, the intake port 412 is provided on the upper surface of the main body housing 28, and the exhaust port 411 is provided on the back surface of the main body housing 28. Further, the air inlet 412 is located in front of the display unit 30 in a state where the display unit 30 is opened. Further, the exhaust port 411 is located behind the display unit 30. By arranging the intake port 412 and the exhaust port 411 in this way, the space between the intake port 412 and the exhaust port 411 is divided by the display unit 30, so that the heat radiation efficiency can be maintained. it can. Specifically, high-temperature air exhausted from the exhaust port 411 can be prevented from being sucked again from the intake port 412.
 また、表示ユニット30が閉じられた状態においても、吸気口412はパーソナルコンピュータ10の外面に露出する。これにより、表示ユニット30が閉じられていても吸気口412から空気を取り込むことができ、表示ユニット30が閉じられた状態での稼働中に発生する熱も確実に本体筐体28の外に放熱することができる。 Further, even when the display unit 30 is closed, the air inlet 412 is exposed to the outer surface of the personal computer 10. Thereby, even when the display unit 30 is closed, air can be taken in from the air inlet 412, and heat generated during operation in a state where the display unit 30 is closed is surely dissipated outside the main body housing 28. can do.
 このように本体筐体28に設けられた吸気口412から本体筐体28内部に取り込まれた空気は、ファン324aによって排気口411に向けて送り出される。排気口411の近傍には、図12に示すように放熱フィン326が配置されている。ファン324aによって送り出される空気は、放熱フィン326に吸熱された熱を吸収し、排気口411を通じて本体筐体28の外部へ排出される。これにより、放熱を行うことができる。 Thus, the air taken into the main body housing 28 from the intake port 412 provided in the main body housing 28 is sent out toward the exhaust port 411 by the fan 324a. In the vicinity of the exhaust port 411, the radiation fins 326 are arranged as shown in FIG. The air sent out by the fan 324 a absorbs the heat absorbed by the heat radiating fins 326 and is discharged to the outside of the main body housing 28 through the exhaust port 411. Thereby, heat dissipation can be performed.
 次に、放熱構造の変形例を図15、図16を参照しつつ説明する。この変形例は、上記実施形態の場合と比較して、放熱構造320が配置されるプリント基板321の形状が異なっている。具体的には、以下の如くである。すなわち、上記実施形態では、プリント基板321は貫通孔321aを備えている。これに対し、この変形例では、プリント基板321は、貫通孔321aに代えて切欠き部321dが設けられている。スタッド323は、放熱構造320が組み立てられた状態で、切欠き部321dを通じ、吸熱部材322から延び、プリント基板321を通過する。そして、ファンユニット324のファンハウジング324bに固定されている。 Next, a modification of the heat dissipation structure will be described with reference to FIGS. In this modification, the shape of the printed circuit board 321 on which the heat dissipation structure 320 is arranged is different from that in the above embodiment. Specifically, it is as follows. In other words, in the above embodiment, the printed circuit board 321 includes the through hole 321a. On the other hand, in this modification, the printed board 321 is provided with a notch 321d instead of the through hole 321a. The stud 323 extends from the heat absorbing member 322 through the notch 321d and passes through the printed board 321 in a state where the heat dissipation structure 320 is assembled. The fan unit 324 is fixed to the fan housing 324b.
 また、プリント基板321は、必ずしも貫通孔321aや、切欠き部321dを備えていなくてもよい。例えば、組み立てられたときに、プリント基板321の側方をスタッド323が通過するような構成であってもよい。すなわち、どのような形態であれ、プリント基板321を通過し、吸熱部材322とファンユニット324との間で熱の移動が許容される構成となっていればよい。 Moreover, the printed circuit board 321 does not necessarily have to include the through hole 321a and the notch 321d. For example, it may be configured such that the stud 323 passes through the side of the printed circuit board 321 when assembled. In other words, any configuration is acceptable as long as it passes through the printed board 321 and allows heat transfer between the heat absorbing member 322 and the fan unit 324.
 上記実施形態は本発明を実施するための例にすぎず、本発明はこれらに限定されるものではなく、これらの実施形態を種々変形することは本発明の範囲内であり、更に本発明の範囲内において、他の様々な実施形態とするが可能であることは上記記載から自明である。例えば、上記実施形態では、電子機器の一形態としてパーソナルコンピュータが示されているが、この電子機器は、サーバ、Personal Digital Assistants(PDA)、ゲーム機、テレビ、および携帯電話機などであってもよい。 The above-described embodiments are merely examples for carrying out the present invention, and the present invention is not limited to these embodiments. Various modifications of these embodiments are within the scope of the present invention, and further, It is apparent from the above description that various other embodiments are possible within the scope. For example, in the above-described embodiment, a personal computer is shown as one form of the electronic device. However, the electronic device may be a server, a personal digital assistant (PDA), a game machine, a television, a mobile phone, or the like. .
 また、上記では、表示パネルは、液晶パネルとしているが、プラズマディスプレイや電界放出ディスプレイ、有機ELディスプレイなどその表示パネルの種類を問うものではない。 In the above description, the display panel is a liquid crystal panel, but the type of the display panel such as a plasma display, a field emission display, or an organic EL display is not questioned.
 さらに、本実施形態では、スタッド323を吸熱部材322に一体化する方法として溶接を用いているが、スピンドル加工等によるいわゆるカシメ加工を採用することもできる。また、プレス加工により当初より一体として成形することもできる。 Furthermore, in this embodiment, welding is used as a method for integrating the stud 323 with the heat absorbing member 322, but so-called caulking processing such as spindle processing can also be employed. Moreover, it can also shape | mold integrally from the beginning by press work.
 また、本実施形態では、スタッド323は、銅製の中実棒体としているが、熱容量等を考慮して中空棒体を採用することもできる。また、材質も銅に限定されることはなく、熱容量等を考慮して適宜選択することができる。吸熱部材322の材質についても同様であり、適宜選択することができる。 In the present embodiment, the stud 323 is a solid copper rod, but a hollow rod may be employed in consideration of heat capacity and the like. Also, the material is not limited to copper, and can be appropriately selected in consideration of the heat capacity and the like. The same applies to the material of the heat absorbing member 322, and can be selected as appropriate.

Claims (6)

  1.  プリント基板の第一面側に配置された吸熱部材と、
     当該吸熱部材に集められた熱を放熱する放熱フィンと、
     前記プリント基板の第二面側に配置され、前記放熱フィンに送風するファンユニットと、
     前記プリント基板を通過して前記吸熱部材と前記ファンユニットとを熱的に接続する接続部材と、
    を備えた電子機器の放熱構造。
    An endothermic member disposed on the first surface side of the printed circuit board;
    A radiating fin for radiating the heat collected in the heat absorbing member;
    A fan unit that is arranged on the second surface side of the printed circuit board and blows air to the heat dissipating fins;
    A connecting member that passes through the printed board and thermally connects the heat absorbing member and the fan unit;
    Heat dissipation structure for electronic equipment with
  2.  前記接続部材は、前記プリント基板に形成された貫通孔を貫通する請求項1記載の電子機器の放熱構造。 The heat dissipation structure for an electronic device according to claim 1, wherein the connection member passes through a through hole formed in the printed board.
  3.  前記接続部材は、前記ファンユニットに固定されている請求項1または2記載の電子機器の放熱構造。 The heat dissipation structure for an electronic device according to claim 1 or 2, wherein the connecting member is fixed to the fan unit.
  4.  前記接続部材は、スタッドである請求項1乃至3のいずれか一項記載の電子機器の放熱構造。 4. The heat dissipation structure for an electronic device according to any one of claims 1 to 3, wherein the connecting member is a stud.
  5.  請求項1乃至4のいずれか一項記載の電子機器の放熱構造と、
     前記プリント基板の前記第一面に設けられた電子部品と、
    を備えた電子機器。
    A heat dissipation structure for an electronic device according to any one of claims 1 to 4,
    An electronic component provided on the first surface of the printed circuit board;
    With electronic equipment.
  6.  前記スタッドは、前記電子部品の側方を通過する請求項5記載の電子機器。 The electronic device according to claim 5, wherein the stud passes laterally of the electronic component.
PCT/JP2008/060065 2008-05-30 2008-05-30 Heat dissipation structure of electronic device and electronic device comprising the same WO2009144823A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/060065 WO2009144823A1 (en) 2008-05-30 2008-05-30 Heat dissipation structure of electronic device and electronic device comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/060065 WO2009144823A1 (en) 2008-05-30 2008-05-30 Heat dissipation structure of electronic device and electronic device comprising the same

Publications (1)

Publication Number Publication Date
WO2009144823A1 true WO2009144823A1 (en) 2009-12-03

Family

ID=41376722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/060065 WO2009144823A1 (en) 2008-05-30 2008-05-30 Heat dissipation structure of electronic device and electronic device comprising the same

Country Status (1)

Country Link
WO (1) WO2009144823A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012198673A (en) * 2011-03-18 2012-10-18 Toshiba Corp Electronic equipment
JP2016034019A (en) * 2014-07-29 2016-03-10 日本電産株式会社 Heat module

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10340138A (en) * 1997-06-10 1998-12-22 Matsushita Electric Ind Co Ltd Electronic device
JP2000082888A (en) * 1998-09-07 2000-03-21 Pfu Ltd Electronic equipment equipped with heat dissipating device
JP2001284863A (en) * 2000-03-31 2001-10-12 Fujitsu Ltd Heat radiation mechanism and electronic apparatus having this heat radiation mechanism
JP2001326485A (en) * 2000-05-12 2001-11-22 Fujitsu Ltd Portable electronic equipment
JP2003092483A (en) * 2001-09-17 2003-03-28 Fujitsu Ltd Printed board unit with cooling device and electronic equipment
WO2004100262A1 (en) * 2003-05-07 2004-11-18 Fujitsu Limited Cooling part, substrate, and electronic equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10340138A (en) * 1997-06-10 1998-12-22 Matsushita Electric Ind Co Ltd Electronic device
JP2000082888A (en) * 1998-09-07 2000-03-21 Pfu Ltd Electronic equipment equipped with heat dissipating device
JP2001284863A (en) * 2000-03-31 2001-10-12 Fujitsu Ltd Heat radiation mechanism and electronic apparatus having this heat radiation mechanism
JP2001326485A (en) * 2000-05-12 2001-11-22 Fujitsu Ltd Portable electronic equipment
JP2003092483A (en) * 2001-09-17 2003-03-28 Fujitsu Ltd Printed board unit with cooling device and electronic equipment
WO2004100262A1 (en) * 2003-05-07 2004-11-18 Fujitsu Limited Cooling part, substrate, and electronic equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012198673A (en) * 2011-03-18 2012-10-18 Toshiba Corp Electronic equipment
JP2016034019A (en) * 2014-07-29 2016-03-10 日本電産株式会社 Heat module

Similar Documents

Publication Publication Date Title
US8248780B2 (en) All-in-one computer
US6519149B1 (en) Radiator mechanism and electronic apparatus
US6765794B1 (en) Heat sink, manufacturing method thereof, and electronic apparatus having the heat sink
JP4607170B2 (en) Electronics
US20030110779A1 (en) Apparatus and method for augmented cooling of computers
JP2006114035A (en) Portable computer system
JP2008027370A (en) Electronic device
US8797734B2 (en) Electronic apparatus
US20090201639A1 (en) Chassis of portable electronic apparatus
US20090154087A1 (en) Display apparatus and electronic apparatus
WO2009144823A1 (en) Heat dissipation structure of electronic device and electronic device comprising the same
US20090237879A1 (en) Electronic device having a heat dissipating mechanism
JPWO2003067949A1 (en) Cooling mechanism and information processing apparatus using the cooling mechanism
JP3911525B2 (en) Heat dissipation mechanism and electronic device having the heat dissipation mechanism
JP4549659B2 (en) Heat sink, housing and cooling fan, and electronic device having heat sink
US20080239664A1 (en) Heat dissipating system for computer
CN211349137U (en) Notebook computer
JP4171028B2 (en) Electronics
JP3014371B1 (en) Electronics
US20090154081A1 (en) Electronic apparatus
JP2000353887A (en) Cooling structure of portable electronic equipment
JP3579266B2 (en) Heat dissipation device for thin electronic devices
US20120092825A1 (en) Electronic device with heat dissipation module
US20080112114A1 (en) Portable electronic device
CN113568489A (en) Computer heat abstractor and integral type computer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08777063

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08777063

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP