WO2009142265A1 - Iii nitride semiconductor light emitting element and method for manufacturing the same, and lamp - Google Patents

Iii nitride semiconductor light emitting element and method for manufacturing the same, and lamp Download PDF

Info

Publication number
WO2009142265A1
WO2009142265A1 PCT/JP2009/059357 JP2009059357W WO2009142265A1 WO 2009142265 A1 WO2009142265 A1 WO 2009142265A1 JP 2009059357 W JP2009059357 W JP 2009059357W WO 2009142265 A1 WO2009142265 A1 WO 2009142265A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
iii nitride
group iii
nitride semiconductor
substrate
Prior art date
Application number
PCT/JP2009/059357
Other languages
French (fr)
Japanese (ja)
Inventor
裕直 篠原
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Publication of WO2009142265A1 publication Critical patent/WO2009142265A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • H01L21/0243Surface structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers

Definitions

  • the present invention relates to a group III nitride semiconductor light-emitting device having a light-emitting diode (LED) structure and an emission wavelength of 490 to 570 nm, a method for manufacturing the same, and a lamp.
  • LED light-emitting diode
  • Group III nitride semiconductors have attracted attention as semiconductor materials for light-emitting elements that emit light of short wavelengths.
  • MOCVD method metal organic chemical vapor deposition method
  • MBE method molecular beam epitaxy method
  • an n-type semiconductor layer, a light emitting layer, and a p type semiconductor layer made of a group III nitride semiconductor are arranged in this order on a sapphire single crystal substrate.
  • stacked is mentioned.
  • the sapphire substrate is an insulator. Therefore, the element structure using the sapphire substrate generally has a structure in which the positive electrode formed on the p-type semiconductor layer and the negative electrode formed on the n-type semiconductor layer are present on the same plane in the lateral direction. .
  • a face-up method in which a transparent electrode is used as a positive electrode and light is extracted from the p-type semiconductor side, and a highly reflective film such as Ag is used as a positive electrode from the sapphire substrate side.
  • a flip chip type that extracts light.
  • External quantum efficiency is used as an index of the output of such a light emitting element. If the external quantum efficiency is high, it can be said that the light-emitting element has a high output.
  • the external quantum efficiency is a value obtained by multiplying the internal quantum efficiency and the light extraction efficiency.
  • the internal quantum efficiency is a rate at which the energy of current injected into the device is converted into light in the light emitting layer.
  • the light extraction efficiency is a ratio of light that can be extracted outside the light emitting element among light generated in the light emitting layer. Therefore, in order to improve the external quantum efficiency, it is necessary to improve the light extraction efficiency.
  • an element that emits green light having an emission wavelength of 490 to 570 nm is used in various fields that require such an emission color.
  • the emission wavelength is a long wavelength of 490 nm or longer, the emission color is green.
  • the emission wavelength is around 505 nm, a blue-green color used for a traffic light or the like is exhibited.
  • the emission wavelength is in the vicinity of 525 nm, a pure green color that is used as a light source for three primary colors such as a display can be obtained.
  • the emission wavelength when the emission wavelength is near 560 nm, a yellowish green color used for, for example, a pilot lamp is obtained, and when the emission wavelength is 570 nm, the emission color becomes a color tone close to yellow.
  • the emission wavelength needs to be 490 nm or more.
  • indium (In) contained in a well layer (active layer) included in the light emitting layer is used. It is necessary to increase the concentration. However, when the indium concentration is increased, the lattice constant increases, and the difference in lattice constant between the lower layer (substrate side) layer and the barrier layer located below the light emitting layer increases. For this reason, there is a problem that distortion occurs in the light emitting layer, leading to a decrease in internal quantum efficiency. Moreover, indium is easy to evaporate. For this reason, in the temperature rising process for forming the barrier layer, indium evaporates from the well layer, and as a result, the crystallinity is lowered and distortion occurs in the light emitting layer, leading to a decrease in internal quantum efficiency. appear.
  • the present invention has been made in view of the above problems, and provides a group III nitride semiconductor light-emitting device excellent in light extraction efficiency and a manufacturing method thereof without reducing the internal quantum efficiency of an LED structure that emits green light.
  • an object of the present invention is to provide a lamp that uses the above-mentioned group III nitride semiconductor light emitting device and has excellent light emission characteristics.
  • a group III nitride semiconductor light emitting device in which an LED structure is formed on a single crystal group III nitride semiconductor layer formed on a substrate,
  • the substrate has a main surface composed of a flat portion made of a (0001) C plane and a plurality of convex portions, and a back surface, and the base width of the convex portion is 0.05 to 1.5 ⁇ m
  • the group III nitride semiconductor layer is formed so as to cover the planar portion and the convex portion on the main surface of the substrate by epitaxial growth of the group III nitride semiconductor.
  • the group III nitride semiconductor light-emitting device characterized in that the light emission wavelength of the LED structure is in the range of 490 to 570 nm.
  • the group III nitride semiconductor light-emitting device according to the above [1], wherein the convex portion is configured by a surface non-parallel to the C-plane.
  • the convex portion has a base width of 0.05 to 1 ⁇ m, a height in the range of 0.05 to 1 ⁇ m, and 1 ⁇ 4 or more of the base width, and between adjacent convex portions.
  • the LED structure includes an n-type semiconductor layer, a light-emitting layer, and a p-type semiconductor layer, each of which is made of a group III nitride semiconductor, in this order on the main surface of the substrate.
  • the group III nitride semiconductor light-emitting device according to any one of [8].
  • a buffer layer made of polycrystalline Al x Ga 1-x N (0 ⁇ x ⁇ 1) and having a thickness of 0.01 to 0.5 ⁇ m is stacked on the main surface of the substrate by sputtering.
  • a buffer layer made of single-crystal Al x Ga 1-x N (0 ⁇ x ⁇ 1) and having a thickness of 0.01 to 0.5 ⁇ m is stacked on the main surface of the substrate by sputtering.
  • the group III nitride semiconductor light-emitting device according to any one of the above [1] to [10], wherein the group III nitride semiconductor layer is stacked on the buffer layer.
  • the n-type semiconductor layer includes an n-type cladding layer
  • the p-type semiconductor layer includes a p-type cladding layer
  • at least one of the n-type cladding layer and the p-type cladding layer has a superlattice structure.
  • the group III nitride semiconductor light-emitting device according to any one of the above [8] to [12], comprising: [14] Any one of [1] to [13] above, wherein a half width of an X-ray rocking curve (XRC) in the (10-10) plane of the group III nitride semiconductor layer is 150 arcsec or more.
  • XRC X-ray rocking curve
  • a substrate processing step for forming a main surface comprising: An epitaxial step of forming a single crystal group III nitride semiconductor layer covering the planar portion and the convex portion by epitaxially growing a group III nitride semiconductor on the main surface of the substrate;
  • a method of manufacturing a group III nitride semiconductor light emitting device comprising: an LED stacking step of forming an LED structure having an emission wavelength in the range of 490 to 570 nm on the group III nitride semiconductor layer.
  • the group III nitride semiconductor light-emitting device according to [15], wherein in the substrate processing step, the surface of the convex portion is formed by a surface non-parallel to the C-plane Manufacturing method.
  • the base width is in the range of 0.05 to 1 ⁇ m
  • the height is in the range of 0.05 to 1 ⁇ m
  • a mask pattern is formed on the (0001) C surface of the substrate using one of a stepper exposure method, a nanoimprint method, an electron beam (EB) exposure method, and a laser exposure method.
  • the LED structure is formed by stacking an n-type semiconductor layer, a light-emitting layer, and a p-type semiconductor layer made of a group III nitride semiconductor in this order on the main surface of the substrate.
  • the method for producing a group III nitride semiconductor light-emitting device according to any one of the above [15] to [23], wherein [25] The method for producing a group III nitride semiconductor light-emitting element according to the above [24], wherein, in the LED stacking step, an In concentration of a light-emitting layer provided in the LED structure is 7% by mass or more.
  • a thickness of 0.1% of the polycrystalline Al x Ga 1-x N (0 ⁇ x ⁇ 1) is formed on the main surface of the substrate.
  • the group III nitride semiconductor light-emitting device according to any one of [15] to [25], wherein a buffer layer forming step of laminating a buffer layer of 01 to 0.5 ⁇ m by a sputtering method is included. Production method.
  • the n-type semiconductor layer includes an n-type cladding layer
  • the p-type semiconductor layer includes a p-type cladding layer
  • the n-type cladding layer and the p-type cladding layer are the n-type cladding layer and the p-type cladding layer.
  • XRC line rocking curve
  • the substrate has a flat surface composed of a (0001) C plane, a main surface composed of a plurality of convex portions, and a back surface.
  • the base width is 0.05 to 1.5 ⁇ m.
  • the group III nitride semiconductor layer is formed by epitaxially growing a group III nitride semiconductor on the main surface of the substrate so as to cover the planar portion and the convex portion.
  • the emission wavelength in the LED structure is in the range of 490 to 570 nm.
  • the present invention can appropriately control the crystallinity of the group III nitride semiconductor layer and suppress the occurrence of lattice mismatch with the LED structure further stacked on this layer. can do. Moreover, the said effect becomes more remarkable and the exceptional effect is acquired because the convex part of a board
  • substrate is comprised by the surface non-parallel to C surface. With these characteristics, there is no distortion in the LED structure that emits green light, and it is possible to suppress the decrease in internal quantum efficiency and the occurrence of leakage current, so that the electrical characteristics are excellent and the light emission output is high. A group nitride semiconductor light emitting device is obtained.
  • the light emitting device of the present invention includes an n-type cladding layer and / or a p-type cladding layer, and when the n-type cladding layer and / or the p-type cladding layer has a superlattice structure, the output is remarkably high. Thus, a light-emitting element having excellent electrical characteristics can be obtained.
  • a plurality of convex portions having a base width of 0.05 to 1.5 ⁇ m are formed on the plane composed of the (0001) C plane of the substrate. Is done.
  • a substrate processing step for forming a main surface composed of a flat portion and a convex portion on a substrate, and a group III nitride semiconductor is epitaxially grown on the main surface of the substrate to cover the flat surface and the convex portion.
  • an epitaxial process for forming the group III nitride semiconductor layer and an LED stacking process for forming the LED structure with an emission wavelength in the LED structure in the range of 490 to 570 nm are included.
  • a group III nitride semiconductor layer with properly controlled crystallinity can be formed, and it is possible to suppress the occurrence of lattice mismatch with the LED structure formed on this layer, distortion, etc. It is possible to form an LED structure without causing the above.
  • the said effect becomes more remarkable by using the method of forming the convex part comprised by the surface which is non-parallel with respect to C surface in a board
  • the lamp according to the present invention has excellent light emission characteristics.
  • FIG. 1 It is a figure which illustrates typically an example of the group III nitride semiconductor light-emitting device based on this invention, and is sectional drawing which shows the light-emitting device in which the LED structure was formed on the laminated structure shown in FIG. It is a figure which illustrates typically an example of the group III nitride semiconductor light-emitting device based on this invention, and is an expanded sectional view which shows the principal part of FIG. It is the schematic explaining typically an example of the lamp
  • FIG. 1 is a diagram for explaining a part of a light emitting device 1 according to the present invention.
  • FIG. 1 is a cross-sectional view showing a laminated structure in which a buffer layer and a single crystal underlayer (group III nitride semiconductor layer) 103 are formed on a main surface 10 of a substrate 101.
  • FIG. FIG. 2 is a perspective view for explaining the substrate 101 shown in FIG.
  • FIG. 3 is a cross-sectional view showing the light-emitting element 1 in which the LED structure 20 is formed on the base layer (group III nitride semiconductor layer) 103 having the stacked structure shown in FIG.
  • reference numeral 107 denotes a positive electrode bonding pad
  • reference numeral 108 denotes a negative electrode bonding pad.
  • 4 is a partial cross-sectional view showing cross sections of the n-type semiconductor layer 104, the light-emitting layer 105, and the p-type semiconductor layer 106 in the light-emitting element 1 shown in FIG.
  • a light-emitting element 1 according to the present invention is schematically configured as in the example shown in FIGS. 1 to 4, and is formed on a single crystal underlayer (group III nitride semiconductor layer) 103 formed on a substrate 101.
  • An LED structure 20 is formed.
  • the substrate 101 has a main surface 10 composed of a back surface, a flat portion 11 made of a (0001) C plane, and a plurality of convex portions 12 made of a surface 12c non-parallel to the C surface.
  • the base width of the convex portion 12 is 0.05 to 3 ⁇ m.
  • the underlayer 103 is formed by epitaxially growing a group III nitride semiconductor on the main surface 10 of the substrate 101 so as to cover the flat portion 11 and the convex portion 12.
  • the emission wavelength in the LED structure 20 is in the range of 490 to 570 nm.
  • a buffer layer 102 is provided on the substrate 101, and a base layer 103 is further formed on the buffer layer 102.
  • the light-emitting element 1 which is an example of the present invention described in the present embodiment is a single electrode type as shown in FIG.
  • a buffer layer 102 and an LED structure (Group III nitride semiconductor layer) 20 made of a Group III nitride semiconductor containing Ga as a Group III element are formed on the substrate 101 as described above.
  • the LED structure 20 provided in the light-emitting element 1 includes an n-type semiconductor layer 104, a light-emitting layer 105, and a p-type semiconductor layer 106 stacked in this order.
  • the group III nitride semiconductor light-emitting device of the present invention has a light emission wavelength of 490 nm by controlling the indium (In) content of the well layer constituting the light-emitting layer to be high concentration in the LED structure described in detail later. It exhibits green light emission as described above, and more preferably exhibits an emission wavelength in the range of 490 to 570 nm.
  • the element of the present invention can emit good green light.
  • the laminated structure of the light emitting element 1 will be described in detail.
  • the material that can be used for the substrate 101 is not particularly limited as long as it is a substrate material on which a group III nitride semiconductor crystal is epitaxially grown, and various materials can be selected and used. it can.
  • sapphire SiC, silicon, zinc oxide, magnesium oxide, manganese oxide, zirconium oxide, manganese zinc iron, magnesium aluminum oxide, zirconium boride, gallium oxide, indium oxide, lithium gallium oxide, lithium aluminum oxide, neodymium gallium oxide Lanthanum strontium oxide aluminum tantalum, strontium titanium oxide, titanium oxide, hafnium, tungsten, molybdenum and the like.
  • sapphire is particularly preferable. It is desirable that an intermediate layer (buffer layer) 102 be formed on the c-plane of the sapphire substrate.
  • the buffer layer 102 is preferably used.
  • the buffer layer 102 in the case where an underlayer 103 described later is formed by a method using ammonia after forming the buffer layer 102 without using ammonia, the buffer layer 102 also functions as a coat layer. It is effective in preventing chemical alteration. It is also preferable to form the buffer layer 102 by sputtering. In the case where the buffer layer 102 is formed by a sputtering method, the temperature of the substrate 101 can be kept low. Therefore, even when the substrate 101 made of a material that decomposes at a high temperature is used, the formation of each layer on the substrate without damaging the substrate 101 by forming the buffer layer 102 by sputtering. A membrane is possible.
  • a plurality of convex portions 12 are formed on the main surface 10 of the substrate 101 used in this embodiment, as in the example shown in FIG.
  • a portion of the main surface 10 of the substrate 101 where the convex portion 12 is not formed is constituted by a flat portion 11 made of a (0001) C plane. Therefore, as in the example shown in FIGS. 2 and 3, the main surface 10 of the substrate 101 is composed of a flat surface portion 11 made of a C surface and a plurality of convex portions 12.
  • the surface of the convex portion 12 is a surface 12 c that is non-parallel to the C plane.
  • the C surface does not appear on the surface 12c.
  • the convex portions 12 shown in FIGS. 1 and 2 have an obstructed bowl-like (hemispherical) shape. That is, the planar shape of the base 12a (the shape of the bottom surface of the convex portion 12) is substantially circular, and the convex portion 12 has a shape in which the outer shape (cross-sectional area) gradually decreases toward the top.
  • the side surface 12b of the convex portion 12 is curved outward.
  • the planar arrangement of the protrusions 12 is arranged in a grid pattern at regular intervals.
  • the base width d 1 is 0.05 to 1.5 ⁇ m
  • the height h is 0.05 to 1 ⁇ m
  • the distance d 2 between the adjacent convex portions 12 is 0.5 to 5 times the base width d 1 .
  • the base width d 1 of the convex portion 12 refers to the maximum width at the bottom surface (base portion 12 a) of the convex portion 12.
  • the distance d 2 between the adjacent convex portions 12 refers to the shortest distance between the edge of the base portion 12 a of the convex portion 12 and the edge of the base portion 12 a of the convex portion 12 closest to the convex portion 12.
  • the distance d 2 between the convex portions 12 adjacent to each other is preferably 0.5 to 5 times the base width d 1 . If the interval d 2 between the convex portions 12 adjacent is less than 0.5 times the base width d 1 from each other, when epitaxially growing a base layer 103 of n-type semiconductor layer 104 (semiconductor layer 30) is formed thereon. In addition, it is difficult to promote crystal growth from the C-plane flat portion 11, and it becomes difficult to completely fill the convex portion 12 with the underlayer 103, and the flatness of the surface 103 a of the underlayer 103 is sufficiently high. It may not be obtained.
  • the base width d 1 is preferably 0.05 to 1.5 ⁇ m.
  • the base width d 1 is less than 0.05 ⁇ m, when a group III nitride semiconductor light emitting device is formed using the substrate 101, the effect of irregularly reflecting light may not be obtained sufficiently.
  • the base width d 1 exceeds 1.5 ⁇ m, it may be difficult to completely fill the convex portion 12 and epitaxially grow the base layer 103. Further, even if an underlayer with good flatness and crystallinity can be formed, the distortion between the underlayer and the light-emitting layer may increase, leading to a decrease in internal quantum efficiency.
  • the base width d 1 is within the above range, the light emission output of the light emitting element can be further improved as the configuration is made smaller.
  • the base width d 1 is more preferably 0.05 to 1 ⁇ m.
  • the height h of the convex portion 12 is preferably 0.05 to 1 ⁇ m.
  • the height h of the convex portion 12 is less than 0.05 ⁇ m, when a group III nitride semiconductor light emitting device is formed using the substrate 101, the effect of irregularly reflecting light may not be sufficiently obtained.
  • the height h of the convex portion 12 exceeds 1 ⁇ m, it may be difficult to epitaxially grow the base layer 103 by filling the convex portion 12, and the flatness of the surface 14a of the base layer 103 may not be sufficiently obtained. is there.
  • the height h of the convex portion 12 is preferably 1/4 or more base portion width d 1. More preferably, it is 1 ⁇ 2 or more and 1/1 or less. When the height h of the convex portion 12 is less than 1 ⁇ 4 of the base width d 1 , the effect of irregularly reflecting light when the substrate 101 is used to form a group III nitride semiconductor light-emitting device and the light extraction efficiency are improved. The effect of improving may not be obtained sufficiently.
  • the shape of the convex part 12 is not limited to the example shown in FIG.1 and FIG.2, and what kind of shape may be sufficient if it is comprised from the surface non-parallel to C surface.
  • the planar shape of the base may be substantially polygonal, and the outer shape may gradually decrease toward the top, or the side surface 12 may be curved outward.
  • the shape of the convex part 12 may be a substantially conical shape or a substantially polygonal pyramid whose side width gradually decreases toward the top.
  • the side surface may protrude outward.
  • the side surface inclination angle may be a shape that changes in multiple stages, for example, in two stages.
  • planar arrangement of the protrusions 12 is not limited to the example shown in FIGS. 1 and 2 (a grid pattern), and may be arranged at equal intervals or may be arranged at non-equal intervals. . Further, the planar arrangement of the convex portions 12 may be a quadrangular shape, a triangular shape, or a random shape.
  • the convex portion 12 provided on the substrate 101 can be formed by etching the substrate 101 by a manufacturing method described in detail later.
  • the manufacturing method is not limited to this.
  • the convex portion may be formed by depositing another material forming the convex portion on the C surface of the substrate 101 on the substrate.
  • a method for depositing another material for forming a convex portion on the substrate for example, a sputtering method, a vapor deposition method, a CVD method, or the like can be used.
  • the material forming the convex portion it is preferable to use a material having a refractive index substantially equal to the material of the substrate, such as an oxide or a nitride.
  • the substrate is a sapphire substrate, for example, SiO 2 , Al 2 O 3 , SiN, ZnO, or the like can be used.
  • the substrate 101 since the substrate 101 has the above-described configuration including the main surface 10 including the flat portion 11 and the convex portion 12, the interface between the substrate 101 and the underlayer 103, which will be described in detail later, is a buffer layer. Concavities and convexities are formed through 102. For this reason, confinement of light inside the light emitting element due to irregular reflection of light due to the unevenness is reduced, and the light emitting element 1 having excellent light extraction efficiency can be realized. Further, since the substrate 101 has the above-described structure, the crystallinity of the base layer 103 can be appropriately controlled, so that a lattice is formed between the light emitting layer 105 (well layer 105b) provided in the LED structure 20 described later and the base layer 103.
  • Inconsistencies are prevented from occurring. Thereby, even when the In concentration of the well layer 105b provided in the light emitting layer 105 is set to a high concentration to constitute the light emitting element 1 that emits green light, the occurrence of distortion or the like in the well layer 105b is suppressed. Accordingly, it is possible to realize the light emitting device 1 that has excellent internal quantum efficiency, has a high light emission output, and is excellent in electrical characteristics by suppressing generation of leakage current.
  • buffer layer In the present invention, it is preferable to form the buffer layer 102 on the main surface 10 of the substrate 101 and form an underlayer 103 described later on the buffer layer 102.
  • the buffer layer 102 is stacked on the substrate 101 with a composition of Al X Ga 1-X N (0 ⁇ x ⁇ 1).
  • the buffer layer can be formed by a reactive sputtering method in which a gas containing a group V element and a metal material are activated and reacted with plasma.
  • a film formed by a method using a plasma metal raw material as in this embodiment has an effect that alignment is easily obtained.
  • the buffer layer 102 has a function of alleviating the difference in lattice constant between the substrate 101 and the base layer 103 and, as a result, easily forming a C-axis oriented single crystal layer on the C plane of the substrate 101. Therefore, when a single-crystal group III nitride semiconductor layer (underlayer 103) is stacked on the buffer layer 102 formed on the substrate, the underlayer has better crystallinity than the case without the buffer layer. 103 can be formed. In the present embodiment, it is most preferable to form the buffer layer 102 between the substrate 101 and the base layer 103, but a configuration in which the buffer layer is omitted may be employed.
  • the buffer layer 102 preferably has a composition of Al X Ga 1-X N (0 ⁇ x ⁇ 1), and more preferably AlN.
  • the buffer layer laminated on the substrate preferably has a composition containing Al, and may be a group III nitride compound represented by the general formula Al X Ga 1-X N (0 ⁇ x ⁇ 1). Any material can be used. Furthermore, it can also be set as the composition containing As and P as V group.
  • the Al composition is more preferably 50% or more.
  • a material constituting the buffer layer 102 a material having the same crystal structure as that of the group III nitride semiconductor can be used, but the length of the lattice is close to that of the group III nitride semiconductor constituting the underlayer described later. And nitrides of group IIIa elements of the periodic table are particularly preferred.
  • the group III nitride crystal forming the buffer layer has a hexagonal crystal structure, and can be formed into a single crystal film by controlling the film formation conditions. Further, the group III nitride crystal can be formed into a columnar crystal (polycrystal) having a texture based on a hexagonal column by controlling the film forming conditions. Note that the columnar crystal described here is a crystal which is separated by forming a crystal grain boundary between adjacent crystal grains, and is itself a columnar shape as a longitudinal sectional shape.
  • the buffer layer 102 preferably has a single crystal structure from the viewpoint of the buffer function.
  • the group III nitride crystal has a hexagonal crystal and forms a structure based on a hexagonal column.
  • the buffer layer 102 having the single crystal structure as described above is formed over the substrate 101, the buffer function of the buffer layer 102 effectively operates. Therefore, the group III nitride semiconductor layer formed thereon is a crystal film having good orientation and crystallinity.
  • the thickness of the buffer layer 102 is preferably in the range of 0.01 to 0.5 ⁇ m. By setting the thickness of the buffer layer 102 in the above range, it has good orientation and functions effectively as a coating layer when each layer made of a group III nitride semiconductor is formed on the buffer layer 102. The buffer layer 102 is obtained. When the film thickness of the buffer layer 102 is less than 0.01 ⁇ m, a sufficient function as the above-described coat layer cannot be obtained, and the buffer function that alleviates the difference in lattice constant between the substrate 101 and the base layer 103. May not be sufficiently obtained.
  • the buffer layer 102 when the buffer layer 102 is formed with a film thickness exceeding 0.5 ⁇ m, the film formation processing time is prolonged and the productivity is lowered although there is no change in the buffer function and the function as the coat layer. There is.
  • the thickness of the buffer layer 102 is more preferably in the range of 0.02 to 0.1 ⁇ m.
  • the underlayer (group III nitride semiconductor layer) 103 provided in the light emitting device 1 of the present invention is made of a group III nitride semiconductor as described above, and is laminated on the buffer layer 102 by a conventionally known MOCVD method. can do.
  • the base layer 103 described in this example is formed of a group III nitride semiconductor on the main surface 10 of the substrate 101 via the buffer layer 102 so as to cover the planar portion 11 and the convex portion 12. It is formed by epitaxial growth.
  • the use of an Al y Ga 1-y N layer (0 ⁇ y ⁇ 1, preferably 0 ⁇ y ⁇ 0.5, more preferably 0 ⁇ y ⁇ 0.1) as the base layer 103 provides good crystallinity. It is more preferable in that the underlayer 103 can be formed.
  • a material different from that of the buffer layer 102 may be used as the material of the base layer 103, but the same material as that of the buffer layer 102 may be used.
  • the underlayer 103 may have a configuration in which n-type impurities are doped in the range of 1 ⁇ 10 17 to 1 ⁇ 10 19 atoms / cm 3 as necessary, but may be undoped ( ⁇ 1 ⁇ 10 17 atoms / cm 3). 3 ). Undoped is preferable in that good crystallinity can be maintained.
  • the base layer 103 is doped with a dopant so that the substrate 101 is conductive, whereby electrodes can be provided above and below the light emitting element.
  • a chip structure in which the positive electrode and the negative electrode are provided on the same surface of the light-emitting element is employed.
  • the base layer 103 be an undoped crystal because crystallinity is improved.
  • the n-type impurity doped in the base layer 103 is not particularly limited, and examples thereof include Si, Ge, and Sn, and preferably Si and Ge.
  • the thickness of the underlayer 103 is preferably in the range of 1 to 8 ⁇ m, from the viewpoint of obtaining an underlayer with good crystallinity, and in the range of 2 to 5 ⁇ m shortens the process time required for film formation. This is more preferable in terms of productivity.
  • the maximum thickness H of the base layer 103 illustrated in FIG. 1 is not less than twice the height h of the convex portion 12 of the substrate 101 because a flat base layer 103 having a surface 103a can be obtained.
  • the maximum thickness H of the base layer 103 is smaller than twice the height h of the convex portion 12, the flatness of the surface 103a of the base layer 103 grown so as to cover the convex portion 12 becomes insufficient. There is a possibility that the crystallinity of each layer which is laminated on the underlayer 103 and constitutes the LED structure 20 is lowered.
  • the X-ray rocking curve (XRC) half width of the (10-10) plane of the underlayer 103 is 150 arcsec or more. If the XRC half width of the underlayer 103 is 150 arcsec or more, the crystallinity of the underlayer 103 does not become too high and is controlled within an appropriate range. Therefore, the LED structure 20, particularly the light emitting layer 105, laminated on the surface 103 a is prepared. The well layer 105b is free from distortion and becomes a good crystal layer.
  • the XRC half-width of the (10-10) plane of the underlayer is an index of crystallinity, and the smaller this value, the higher the crystallinity of the underlayer.
  • the half-value width affects the crystallinity of the LED structure formed thereon, a method of increasing the crystallinity of the entire light-emitting element by setting the value as small as possible has been employed.
  • a light emitting element that emits green light with an emission wavelength of 490 to 570 nm as in the present invention, it is necessary to increase the In concentration of the well layer provided in the light emitting element. Lattice constant increases.
  • the crystallinity of the underlayer 103 is set within an appropriate range.
  • Well controlled In order to obtain green light emission, even when the In concentration of the well layer 105b of the light emitting layer 105 provided in the LED structure 20 is increased, there is a large lattice mismatch between the base layer 103 and the well layer 105b. It is suppressed from occurring. Accordingly, the occurrence of defects such as strain in the well layer 105b is suppressed, and the internal quantum efficiency is not lowered, so that the light emitting element 1 having a high light emission output can be realized.
  • XRC X-ray rocking curve
  • the XRC half width of the underlayer 103 can be appropriately controlled by the base width d 1 of the convex portion 12 formed on the substrate 101 described above.
  • the base width d 1 of the convex portion 12 of the substrate 101 is 1 ⁇ m
  • the XRC half width of the base layer 103 is about 150 to 200 arcsec. If the base width d 1 is kept within the preferred range of the present invention, the half width tends to be 150 arcsec or more.
  • the XRC half-value width of the underlayer is about 100 arcsec or more and less than 150 arcsec, and the crystallinity of the underlayer is greatly enhanced.
  • the XRC half-value width of the (10-10) plane of the underlayer 103 is 150 arcsec or more from the viewpoint of controlling the crystallinity of the underlayer 103 appropriately.
  • crystallinity will fall too much when the XRC half value width of a base layer exceeds 250 arcsec, it is preferable to control so that it may become 250 arcsec or less.
  • the XRC half-value width of the (10-10) plane on the side of the mold semiconductor layer 106 has the same tendency as that of the base layer 103. Therefore, in the present invention, the XRC half width of the (10-10) plane of the underlayer is used as an index representing crystallinity.
  • the LED structure 20 includes an n-type semiconductor layer 104, a light-emitting layer 105, and a p-type semiconductor layer 106 each made of a group III nitride semiconductor. By forming each layer of such an LED structure 20 by MOCVD, a layer with higher crystallinity can be obtained.
  • the n-type semiconductor layer 104 is generally composed of an n-type contact layer 104a and an n-type cladding layer 104b.
  • the n-type contact layer 104a can also serve as the n-type cladding layer 104b.
  • the n-type contact layer 104a is a layer for providing a negative electrode.
  • the n-type contact layer 104a is preferably composed of an Al x Ga 1-x N layer (0 ⁇ x ⁇ 1, preferably 0 ⁇ x ⁇ 0.5, more preferably 0 ⁇ x ⁇ 0.1).
  • the n-type contact layer 104a is preferably doped with an n-type impurity, and the n-type impurity is preferably 1 ⁇ 10 17 to 1 ⁇ 10 20 / cm 3 , preferably 1 ⁇ 10 18 to 1 ⁇ 10 19 /. Containing at a concentration of cm 3 is preferable in terms of maintaining good ohmic contact with the negative electrode.
  • an n-type impurity For example, Si, Ge, Sn, etc. are mentioned, Preferably Si and Ge are mentioned.
  • the film thickness of the n-type contact layer 104a is preferably 0.5 to 5 ⁇ m, and more preferably set to a range of 1 to 3 ⁇ m. When the film thickness of the n-type contact layer 104a is in the above range, the crystallinity of the semiconductor is maintained well.
  • the n-type cladding layer 104b is a layer that injects carriers into the light emitting layer 105 and confines carriers.
  • the n-type cladding layer 104b can be formed of AlGaN, GaN, GaInN, or the like. Further, a structure in which these are heterojunctioned or a superlattice structure in which a plurality of layers are laminated may be used.
  • the n-type cladding layer 104b is formed of GaInN, it is desirable to make the band gap of the n-type cladding layer 104b larger than the band gap of GaInN of the light emitting layer 105.
  • the film thickness of the n-type cladding layer 104b is not particularly limited, but is preferably 0.005 to 0.5 ⁇ m, and more preferably 0.005 to 0.1 ⁇ m.
  • the n-type doping concentration of the n-type cladding layer 104b is preferably 1 ⁇ 10 17 to 1 ⁇ 10 20 / cm 3 , more preferably 1 ⁇ 10 18 to 1 ⁇ 10 19 / cm 3 . A doping concentration within this range is preferable in terms of maintaining good crystallinity and reducing the operating voltage of the device.
  • n-type cladding layer 104b is a layer including a superlattice structure, a detailed illustration is omitted, but an n-side first layer made of a group III nitride semiconductor having a thickness of 100 angstroms or less.
  • the n-type cladding layer 104b may include a structure in which n-side first layers and n-side second layers are alternately and repeatedly stacked. Preferably, either the n-side first layer or the n-side second layer is in contact with the active layer (light-emitting layer 105).
  • compositions of the n-side first layer and the n-side second layer as described above include, for example, AlGaN-based Al (sometimes simply referred to as AlGaN) and GaInN-based (including simply InGa). Or a composition of GaN.
  • the n-side first layer and the n-side second layer have a GaInN / GaN alternating structure, an AlGaN / GaN alternating structure, a GaInN / AlGaN alternating structure, and a GaInN / GaInN alternating structure having a different composition (the present invention).
  • the n-side first layer and the n-side second layer are preferably GaInN / GaInN having different GaInN / GaN structures or different compositions.
  • the n-side first layer and the n-side second layer which are superlattice layers, are each preferably 60 angstroms or less, more preferably 40 angstroms or less, and each in the range of 10 angstroms to 40 angstroms. Most preferably it is. If the thickness of each of the n-side first layer and the n-side second layer forming the superlattice layer exceeds 100 angstroms, crystal defects are likely to occur, which is not preferable.
  • the n-side first layer and the n-side second layer may each have a doped structure, or a combination of a doped structure and an undoped structure.
  • the impurity to be doped conventionally known impurities can be applied to the material composition without any limitation.
  • an n-type cladding layer is formed of an alternate structure of GaInN / GaN or a combination of an n-side first layer and an n-side second layer having an alternate structure of GaInN / GaInN having different compositions, Si as an impurity. Is preferred.
  • the n-side superlattice multilayer film as described above may be formed in a multilayer structure using the same composition typified by GaInN, AlGaN, and GaN while appropriately turning ON / OFF doping.
  • the n-type cladding layer 104b has a layer structure including a superlattice structure, the light emission output is remarkably improved and the light emitting element 1 having excellent electric characteristics can be obtained.
  • Examples of the light emitting layer 105 stacked on the n-type semiconductor layer 104 include a light emitting layer 105 having a single quantum well structure or a multiple quantum well structure.
  • a well layer having a quantum well structure as shown in FIG. 4 for example, in the case of a structure exhibiting blue light emission, a composition having a composition of Ga 1-y In y N (0 ⁇ y ⁇ 0.04) is usually used.
  • a group III nitride semiconductor is used, in the case of the well layer 105b exhibiting green light emission as in the present invention, the composition of indium such as Ga 1-y In y N (0.07 ⁇ y ⁇ 0.20) is used. The one with increased is used.
  • the Ga 1-y In y N is used as the well layer 105b, and Al x Ga 1-x N (0 ⁇ z ⁇ 0.3) is preferably the barrier layer 105a.
  • the well layer 105b and the barrier layer 105a may or may not be doped with impurities depending on the design.
  • the film thickness of the well layer 105b can be, for example, a film thickness at which a quantum effect can be obtained, that is, 1 to 10 nm, and more preferably 2 to 6 nm from the viewpoint of light emission output.
  • the emission wavelength In order for the group III nitride semiconductor light emitting device to emit green light, the emission wavelength needs to be 490 nm or more. In order to obtain good green light emission, the emission wavelength is more preferably in the range of 490 to 570 nm. For this reason, in the light emitting element 1 of the present invention, the In composition ratio of the well layer 105b forming the light emitting layer 105 is preferably 7% or more. If the In concentration of the well layer 105b is within this range, good green light emission with an emission wavelength of 490 to 570 nm can be obtained.
  • the light emitting element 1 emits green light when the In concentration of the well layer 105b is as high as described above and the emission wavelength is in the above range.
  • the well layer 105b included in the light emitting layer 105 is configured with a high In concentration
  • the crystallinity of the underlying layer 103 which is the lower layer
  • the internal quantum efficiency is reduced due to crystal defects in the well layer, and thus the emission intensity is low. End up.
  • the substrate 101 has the main surface 10 composed of the flat portion 11 and the convex portion 12 and the back surface thereof, and the base width of the convex portion 12 is 0.05 to 1.5 ⁇ m.
  • a base layer 103 formed by epitaxially growing a single crystal group III nitride semiconductor is provided on the main surface 10 of the substrate 101 so as to cover the flat portion 11 and the convex portion 12.
  • a crystal does not grow from the parallel surface 12c, and a crystal oriented in the C-axis direction grows epitaxially only from the flat portion 11 made of the (0001) C plane. Therefore, the underlying layer 103 formed on the main surface 10 of the substrate 101 is epitaxially grown so as to cover the convex portion 12 on the main surface 10 and does not cause crystal defects such as dislocations in the crystal. It becomes a controlled layer.
  • each layer constituting the LED structure 20 on the base layer 103 whose crystallinity is well controlled in an appropriate range as described above, the well layer 105b exhibiting green light emission with a high In concentration. Even when the layer is formed, the occurrence of lattice mismatch between the base layer 103 and the well layer 105b is suppressed. Thereby, crystal defects such as strain do not occur in the well layer 105b, it is possible to suppress a decrease in internal quantum efficiency and a leak current, and the light emitting device 1 having excellent electrical characteristics and high light emission output. It becomes possible to do.
  • the p-type semiconductor layer 106 is generally composed of a p-type cladding layer 106a and a p-type contact layer 106b.
  • the p-type contact layer 106b can also serve as the p-type cladding layer 106a.
  • the p-type cladding layer 106 a is a layer that performs confinement of carriers and injection of carriers in the light emitting layer 105.
  • the composition of the p-type cladding layer 106 a is not particularly limited as long as the composition is larger than the band gap energy of the light emitting layer 105 and can confine carriers in the light emitting layer 105.
  • a preferable composition is Al x Ga 1-x N (0 ⁇ x ⁇ 0.4).
  • the p-type cladding layer 106a is made of such AlGaN, it is preferable in terms of confining carriers in the light emitting layer.
  • the film thickness of the p-type cladding layer 106a is not particularly limited, but is preferably 1 to 400 nm, and more preferably 5 to 100 nm.
  • the p-type doping concentration of the p-type cladding layer 106a is preferably 1 ⁇ 10 18 to 1 ⁇ 10 21 / cm 3 , more preferably 1 ⁇ 10 19 to 1 ⁇ 10 20 / cm 3 .
  • the p-type dope concentration is in the above range, a good p-type crystal can be obtained without reducing the crystallinity.
  • the p-type cladding layer 106a may have a superlattice structure in which a plurality of layers are stacked.
  • the p-type cladding layer 106a is a layer including a superlattice structure, a detailed illustration is omitted, but a p-side first layer made of a group III nitride semiconductor having a thickness of 100 angstroms or less.
  • the p-type cladding layer 106a may include a structure in which p-side first layers and p-side second layers are alternately and repeatedly stacked.
  • composition of the p-side first layer and the p-side second layer as described above may be different compositions, for example, any composition of AlGaN, GaInN, or GaN.
  • the p-side first layer and the p-side second layer may have a GaInN / GaN alternating structure, an AlGaN / GaN alternating structure, or a GaInN / AlGaN alternating structure.
  • the p-side first layer and the p-side second layer preferably have an AlGaN / AlGaN or AlGaN / GaN alternating structure.
  • the superlattice layers of the p-side first layer and the p-side second layer are each preferably 60 angstroms or less, more preferably 40 angstroms or less, and each in the range of 10 angstroms to 40 angstroms. Is most preferred. If the thickness of each of the p-side first layer and the p-side second layer forming the superlattice layer exceeds 100 angstroms, it becomes a layer containing many crystal defects and the like, which is not preferable.
  • the p-side first layer and the p-side second layer may each have a doped structure, or a combination of a doped structure and an undoped structure.
  • the impurity to be doped conventionally known impurities can be applied to the material composition without any limitation.
  • Mg is suitable as the impurity.
  • the p-side superlattice multilayer film as described above has the same composition as GaInN, AlGaN, or GaN, a multilayer structure can be produced by appropriately turning ON / OFF doping.
  • the p-type cladding layer 105a has a layer structure including a superlattice structure, the light emission output is remarkably improved and the light emitting device 1 having excellent electric characteristics can be obtained.
  • the p-type contact layer 106b is a layer for providing a positive electrode.
  • the p-type contact layer 106b preferably has a composition of Al x Ga 1-x N (0 ⁇ x ⁇ 0.4). When the Al composition is in the above range, it is preferable in that good crystallinity is maintained and good ohmic contact with the p ohmic electrode is possible.
  • the p-type contact layer 106b contains a p-type impurity (dopant) at a concentration of 1 ⁇ 10 18 to 1 ⁇ 10 21 / cm 3 , preferably 5 ⁇ 10 19 to 5 ⁇ 10 20 / cm 3 .
  • the thickness of the p-type contact layer 106b is not particularly limited, but is preferably 0.01 to 0.5 ⁇ m, and more preferably 0.05 to 0.2 ⁇ m. When the film thickness of the p-type contact layer 106b is within this range, it is preferable in terms of light emission output.
  • a translucent positive electrode 109 made of a translucent conductive oxide film layer is provided in contact with the p-type semiconductor layer 106.
  • the positive electrode bonding pad 107 is provided on a part of the translucent positive electrode 109.
  • the translucent positive electrode 109 is selected from ITO (In 2 O 3 —SnO 2 ), AZnO (ZnO—Al 2 O 3 ), ISnO (In 2 O 3 —ZnO), and GZO (ZnO—Ga 2 O 3 ).
  • ITO In 2 O 3 —SnO 2
  • AZnO ZnO—Al 2 O 3
  • ISnO In 2 O 3 —ZnO
  • GZO ZnO—Ga 2 O 3
  • the structure of the translucent positive electrode 109 can be used without any limitation, including a conventionally known structure.
  • the translucent positive electrode 109 may be formed so as to cover almost the entire surface of the p-type semiconductor layer 106, or may be formed in a lattice shape or a tree shape with a gap. After forming the translucent positive electrode 109, thermal annealing may be performed for the purpose of alloying or transparency, but it may not be performed.
  • the positive electrode bonding pad 107 is provided for electrical connection with a circuit board, a lead frame or the like.
  • various structures using Au, Al, Ni, Cu and the like are well known, and these known materials and structures can be used without any limitation.
  • the thickness of the positive electrode bonding pad 107 is preferably in the range of 100 to 1500 nm. Further, in view of the characteristics of the bonding pad, the larger the thickness, the higher the bondability. Therefore, the thickness of the positive electrode bonding pad 107 is more preferably 300 nm or more.
  • the negative electrode bonding pad 108 is formed in contact with the n-type semiconductor layer 104 of the LED structure 20. For this reason, when forming the negative electrode bonding pad 108, the light emitting layer 105 and the p-type semiconductor layer 106 are partially removed to expose the n-type contact layer of the n-type semiconductor layer 104, and the negative electrode bonding pad is formed thereon. 108 is installed.
  • compositions and structures are well known, and these well known compositions and structures can be used without any limitation, and can be provided by conventional means well known in this technical field.
  • the substrate 101 has the principal surface 10 composed of the planar portion 11 composed of the (0001) C plane and the plurality of convex portions 12.
  • the base width d 1 of the convex portion 12 is 0.05 to 1.5 ⁇ m
  • the base layer (group III nitride semiconductor layer) 103 covers the planar portion 11 and the convex portion 12 on the main surface 10 of the substrate 101.
  • the group III nitride semiconductor is formed by epitaxial growth.
  • the LED structure 20 has a configuration in which the emission wavelength is in the range of 490 to 570 nm.
  • the crystallinity of the underlayer 103 is appropriately controlled, so that it is possible to suppress the occurrence of lattice mismatch with the LED structure 20 stacked thereon.
  • the LED structure 20 that emits green light in particular, the well layer 105b included in the light emitting layer 105 is not distorted, and it is possible to suppress a decrease in internal quantum efficiency and a leakage current.
  • the light emitting device 1 having excellent optical characteristics and high light emission output can be obtained.
  • the interface between the substrate 101 and the base layer 103 is uneven through the buffer layer 102, light confinement inside the light-emitting element is reduced due to irregular reflection of light, so that light extraction efficiency is excellent.
  • the light emitting device 1 can be realized.
  • the n-type cladding layer 104b and / or the p-type cladding layer 105a has a layer structure including a superlattice structure, whereby the output is remarkably improved and the light emitting device 1 having excellent electrical characteristics is provided. can do.
  • a single crystal underlayer (group III nitride semiconductor layer) 103 is formed on a substrate 101, and an LED structure 20 is formed on the underlayer 103.
  • a plurality of convex portions 12 having a base width of 0.05 to 3 ⁇ m are formed on the flat portion 11 made of the (0001) C surface of the substrate 101, thereby forming the flat portion 11 on the substrate 101.
  • each process with which the manufacturing method of this invention is equipped is demonstrated in detail.
  • FIG. 2 is a diagram for explaining an example of a process for manufacturing the laminated structure shown in the schematic diagram of FIG. 1. Specifically, it is a perspective view showing a substrate 101 prepared in the manufacturing method of the present embodiment.
  • the substrate 101 has a main surface 10 composed of a flat surface portion 11 composed of a C surface and a plurality of convex portions 12 formed on the C surface.
  • a method for processing the substrate 101 as shown in FIG. 2 will be described.
  • the substrate processing step for example, by forming a plurality of convex portions 12 having a surface non-parallel to the C plane on the (0001) C plane of the sapphire substrate, the plane portion 11 and the convex portion 12 having the C plane are formed.
  • a substrate 101 having a main surface 10 made of is manufactured.
  • Such a substrate processing step includes, for example, a patterning step for forming a mask on the substrate 101 so as to have a planar arrangement of the convex portions 12 on the substrate 101, and a substrate 101 using the mask formed by the patterning step. And a method including an etching step of forming the convex portion 12 by etching.
  • a sapphire single crystal wafer having a (0001) C plane as a surface is used as a substrate material for forming the plurality of convex portions 12.
  • the substrate having the (0001) C plane as the surface includes a substrate in which an off angle is given in the range of ⁇ 3 ° from the (0001) direction in the plane direction of the substrate.
  • the surface that is not parallel to the C plane means a surface that is not within a range of ⁇ 3 ° from the (0001) C plane.
  • the patterning process can be performed by a general photolithography method.
  • the base width d 1 of the base portion 12a is preferably at 1.5 ⁇ m or less. Therefore, in order to uniformly pattern the entire surface of the substrate 101, it is preferable to use a stepper exposure method among photolithography methods.
  • an expensive stepper device is required, resulting in high cost.
  • a laser exposure method, a nanoimprint method, an electron beam (EB) exposure method, or the like used in the field of optical discs is used. Is preferred.
  • Examples of the method for etching the substrate in the etching process include a dry etching method and a wet etching method.
  • a dry etching method since the crystal plane of the substrate 101 is exposed, it is difficult to form the convex portion 12 formed of the surface 12c that is non-parallel to the C plane. For this reason, it is preferable to use a dry etching method in an etching process.
  • the convex part 12 constituted by the surface 12c non-parallel to the C plane can be formed, for example, by dry etching the substrate 101 until the mask formed in the patterning process described above disappears. More specifically, for example, a resist is formed on the substrate 101 and then patterned into a predetermined shape. Thereafter, the side surface of the resist having a predetermined shape is tapered by post-baking in which heat treatment is performed at 110 ° C. for 30 minutes using an oven or the like. Next, the convex portion 12 can be formed by performing dry etching under predetermined conditions that promote lateral etching until the resist disappears.
  • the convex portion 12 constituted by the surface 12c non-parallel to the C-plane may be formed by using a method in which the substrate is dry-etched using a mask and then the mask is removed again and the substrate 101 is dry-etched. I can do it. More specifically, for example, a resist is formed on the substrate 101 and patterned into a predetermined shape. Thereafter, the side surface of the resist having a predetermined shape is tapered by post-baking in which heat treatment is performed at 110 ° C. for 30 minutes using an oven or the like. Next, dry etching is performed under a predetermined condition that promotes lateral etching, and the dry etching is interrupted before the resist disappears.
  • the convex part 12 formed by such a method is excellent in in-plane uniformity of the height dimension.
  • the convex portion 12 constituted by the surface 12c non-parallel to the C plane can be formed by combining with the dry etching method.
  • the wet etching can be performed by using a mixed acid of phosphoric acid and sulfuric acid at a high temperature of 250 ° C. or higher.
  • the convex portion 12 is formed by performing a predetermined amount of wet etching using a high-temperature acid. can do.
  • the convex portion 12 By forming the convex portion 12 using such a method, the crystal plane is exposed on the slope constituting the side surface of the convex portion 12, and the angle of the slope constituting the side surface of the convex portion 12 is formed with good reproducibility. Can do. Further, a good crystal plane can be exposed to the main surface 10 with good reproducibility.
  • a mask made of a material resistant to an acid such as SiO 2 is formed and wet etching is performed, and then the mask is peeled off.
  • the convex portion 12 can also be formed by a method of performing dry etching under a predetermined condition for promoting lateral etching.
  • the convex part 12 formed by such a method is excellent in in-plane uniformity of the height dimension. Moreover, even when the convex part 12 is formed using such a method, the angle of the slope which comprises the side surface of the convex part 12 can be formed with sufficient reproducibility.
  • the convex part is formed of oxide or nitride, after depositing a material on the substrate, a mask patterned by a method such as nanoimprinting is formed, and the convex part is formed by dry etching or wet etching. It can be a method to do.
  • this invention is not limited to the said method.
  • a buffer layer 102 as shown in FIGS. 1 and 3 is laminated on the main surface 10 of the substrate 101 prepared by the above method.
  • the buffer layer 102 as shown in FIG. 1 is stacked on the main surface 10 of the substrate 101 by performing a buffer layer forming step after the substrate processing step and before the epitaxial step.
  • the buffer layer may be omitted. In this case, the buffer layer forming step may not be performed.
  • Pretreatment of substrate In this embodiment, after introducing the substrate 101 into the chamber of the sputtering apparatus and before forming the buffer layer 102, it is desirable to perform pretreatment using a method such as reverse sputtering by plasma treatment.
  • the surface can be prepared by exposing the substrate 101 to Ar or N 2 plasma.
  • organic matter and oxide attached to the surface of the substrate 101 can be removed by reverse sputtering in which plasma such as Ar gas or N 2 gas is applied to the surface of the substrate 101.
  • plasma such as Ar gas or N 2 gas
  • the buffer layer 102 can be formed over the entire surface of the substrate 101 in the subsequent steps, and a film made of a group III nitride semiconductor formed thereon It becomes possible to increase the crystallinity. Further, it is more preferable that the substrate 101 is subjected to a wet pretreatment before the pretreatment by reverse sputtering as described above.
  • the pretreatment for the substrate 101 plasma is performed in an atmosphere in which ion components such as N + and (N 2 ) + and radical components having no charge such as N radicals and N 2 radicals are mixed. It is preferable to carry out by processing.
  • the pretreatment on the substrate 101 is a method using plasma treatment performed in an atmosphere in which an ionic component and a radical component are mixed as described above.
  • Deposition of buffer layer After performing the pretreatment to the substrate 101 on the substrate 101 by a reactive sputtering method, forming an Al X Ga 1-X N ( 0 ⁇ X ⁇ 1) buffer layer 102 of the composition it is.
  • the ratio of the flow rate of the nitrogen source to the total flow rate of the nitrogen source and the inert gas in the chamber of the sputtering apparatus is in the range of 50 to 100%. It is preferable to control so that it is about 75%.
  • the ratio of the flow rate of the nitrogen source to the total flow rate of the nitrogen source and the inert gas in the chamber of the sputtering apparatus is 1 to 50%. It is preferable to control to be within the range, and more preferably about 25%.
  • the buffer layer 102 is not limited to the reactive sputtering method described above, and can be formed using, for example, the MOCVD method. However, since the convex portion 12 is formed on the main surface 10 of the substrate 101, the flow of the source gas may be disturbed on the main surface 10 when the buffer layer is formed by the MOCVD method. In contrast to the MOCVD method, the reactive sputtering method has a high degree of straightness of the raw material particles, so that the uniform buffer layer 102 can be stacked without being affected by the shape of the main surface 10. Therefore, the buffer layer 102 is preferably formed using a reactive sputtering method.
  • the buffer layer forming step As shown in FIGS. 1 and 3, a single crystal group III nitride semiconductor is epitaxially grown on the buffer layer 102 formed on the main surface 10 of the substrate 101. An epitaxial process is performed to form a base layer (group III nitride semiconductor layer) 103 so as to cover 10.
  • the LED stacking process includes the n-type semiconductor layer 104, the light emitting layer 105, and the p-type semiconductor layer 106 on the base layer 103.
  • An LED structure 20 is formed.
  • the description of the configuration common to both processes may be partially omitted for the epitaxial process and the LED stacking process in which each layer is formed using a group III nitride semiconductor.
  • the growth method of the gallium nitride compound semiconductor (group III nitride semiconductor) when forming the base layer 103, the n-type semiconductor layer 104, the light emitting layer 105, and the p-type semiconductor layer 106 is not particularly limited. All methods known to grow nitride semiconductors such as reactive sputtering, MOCVD (metal organic chemical vapor deposition), HVPE (hydride vapor deposition), MBE (molecular beam epitaxy), etc. Applicable.
  • the MOCVD method for example, hydrogen (H 2 ) or nitrogen (N 2 ) as a carrier gas, trimethyl gallium (TMG) or triethyl gallium (TEG) as a Ga source as a group III source, and as an Al source Trimethylaluminum (TMA) or triethylaluminum (TEA), trimethylindium (TMI) or triethylindium (TEI) as the In source, ammonia (NH 3 ), hydrazine (N 2 H 4 ), etc. as the N source that is a group V source Can be used.
  • monosilane (SiH 4 ) or disilane (Si 2 H 6 ) can be used as a Si raw material for the n-type, and germane gas (GeH 4 ) or tetramethyl germanium ((CH 3 ) as a Ge raw material.
  • germane gas GeH 4
  • tetramethyl germanium (CH 3 )
  • Organic germanium compounds such as 4 Ge) and tetraethyl germanium ((C 2 H 5 ) 4 Ge) can be used.
  • elemental germanium can also be used as a doping source.
  • the p-type for example, biscyclopentadienyl magnesium (Cp 2 Mg) or bisethylcyclopentadienyl magnesium (EtCp 2 Mg) can be used as the Mg raw material.
  • the gallium nitride compound semiconductor as described above can contain other group III elements in addition to Al, Ga, and In, and can contain Ge, Si, Mg, Ca, Zn, and Be as necessary.
  • a dopant element can be contained.
  • it is not limited to the element added intentionally, but may include impurities that are inevitably included depending on the film forming conditions and the like, as well as trace impurities that are included in the raw materials and reaction tube materials.
  • the MOCVD method is preferably used from the viewpoint of obtaining a film having good crystallinity.
  • an example using the MOCVD method in the epitaxial process and the LED stacking process will be described. To do.
  • a base layer 103 is formed on a buffer layer 102 formed on a substrate 101 by using a conventionally known MOCVD method, and a planar portion 11 that forms the main surface 10 of the substrate 101. And it forms so that the convex part 12 may be covered.
  • the underlayer 103 is formed using the MOCVD method.
  • the method for stacking the base layer 103 is not particularly limited, and any crystal growth method that can cause dislocation looping can be used without any limitation.
  • the MOCVD method, the MBE method, the VPE method, and the like are preferable in that a film with favorable crystallinity can be formed because migration can occur.
  • the MOCVD method can be used more suitably in that a film having particularly good crystallinity can be obtained.
  • a single crystal group III nitride semiconductor layer is grown on the main surface of a sapphire substrate using MOCVD, a single crystal layer is epitaxially grown from the C surface, but a single crystal is formed on the main surface other than the C surface.
  • the layer does not grow epitaxially. That is, in the example described in this embodiment, when the base layer 103 made of a single crystal group III nitride semiconductor is epitaxially grown on the main surface 10 of the substrate 101 on which the buffer layer 102 is formed, it is non-parallel to the C plane.
  • a crystal does not grow from the surface 12c of the first layer, and a crystal oriented in the C-axis direction grows epitaxially only from the flat portion 11 made of the (0001) C plane.
  • the base layer 103 formed on the main surface 10 of the substrate 101 is epitaxially grown so as to cover the convex portion 12 on the main surface 10, so that crystal defects such as dislocations do not occur in the crystal, so that the crystallinity is improved.
  • a properly controlled layer is used to control the base layer 103 formed on the main surface 10 of the substrate 101 so as to cover the convex portion 12 on the main surface 10, so that crystal defects such as dislocations do not occur in the crystal, so that the crystallinity is improved.
  • the substrate 101 on which the protrusions 12 are formed has a better flatness when the underlayer 103 is epitaxially grown on the main surface 10 by the MOCVD method than the substrate on which the protrusions 12 are not formed. It is difficult to stack.
  • the base layer 103 laminated on the main surface 10 of the substrate 101 on which the convex portions 12 are formed is liable to cause a tilt in the C-axis direction that deteriorates the crystallinity, a twist in the C-axis, or the like.
  • the base layer 103 is epitaxially grown by the MOCVD method on the main surface 10 of the substrate 101 on which the convex portions 12 are formed, the following growth conditions are used in order to obtain sufficient surface flatness and good crystallinity. It is desirable.
  • the growth pressure and the growth temperature are set as described below. Generally, when the growth pressure is lowered and the growth temperature is raised, lateral crystal growth is promoted. On the other hand, when the growth pressure is raised and the growth temperature is lowered, the facet growth mode ( ⁇ shape) is entered. Further, when the growth pressure at the initial stage of growth is increased, the half-value width (XRC-FWHM) of the X-ray rocking curve is decreased, and the crystallinity tends to be improved.
  • the base layer 103 is epitaxially grown by the MOCVD method on the main surface 10 of the substrate 101 on which the convex portions 12 are formed, it is preferable to change the growth pressure in two stages. That is, it is preferable to change the growth pressure until the film thickness of the underlayer 103 is about 2 ⁇ m or more (first half film formation) and after the underlayer 103 is laminated about 2 ⁇ m or more (second half film formation).
  • the growth pressure is preferably 40 kPa or more, and more preferably about 60 kPa.
  • the growth pressure When the growth pressure is set to 40 kPa or more, a facet growth mode ( ⁇ shape) is set, dislocations bend in the lateral direction, and do not penetrate the epitaxial surface. For this reason, it is presumed that by increasing the growth pressure, the dislocation is lowered and the crystallinity is improved. If the growth pressure is less than 40 kPa, the crystallinity is deteriorated and the half width (XRC-FWHM) of the X-ray rocking curve is increased, which is not preferable.
  • XRC-FWHM half width
  • the growth pressure is 40 kPa or more in the first half film formation, pits are likely to be generated on the surface of the epitaxially grown base layer 103, and sufficient surface flatness may not be obtained.
  • the growth temperature is preferably 1140 ° C. or less, and more preferably about 1120 ° C. By setting the growth temperature to 1140 ° C. or lower, the generation of pits can be sufficiently suppressed even when the growth pressure is 40 kPa or more, preferably about 60 kPa.
  • the growth pressure is preferably 40 kPa or less, more preferably about 20 kPa.
  • the base layer 103 can be formed by being doped with impurities as necessary, but undoped is preferable from the viewpoint of improving crystallinity. It is also possible to form the base layer 103 made of a group III nitride semiconductor by using a reactive sputtering method. When the sputtering method is used, the apparatus can have a simple configuration as compared with the MOCVD method, the MBE method, or the like.
  • the stacked structure shown in FIG. 1 is obtained.
  • the base layer 103 is grown on the main surface 10 so as to cover the planar portion 11 and the convex portion 12. Since the epitaxial process is provided, crystal defects such as dislocations are not easily generated in the crystal of the base layer 103, and the base layer 103 in which the crystallinity is well controlled within an appropriate range can be formed.
  • the crystal defect which arose here is the semiconductor layer which comprises LED structure. If the light-emitting element is formed by the crystal, the internal quantum efficiency may be reduced and the leakage current may be increased.
  • the convex portion 12 made of the surface 12c that is non-parallel to the C plane is formed on the substrate 101, so that the flat portion 11 made of the C plane and the convex portion 12 are formed.
  • the main surface 10 is formed.
  • the base layer 103 is epitaxially grown on the main surface 10 of the substrate 101, crystals grow only from the planar portion 11. Therefore, the underlayer 103 formed on the main surface 10 of the substrate 101 is epitaxially grown on the main surface 10 so as to cover the convex portions 12, and crystal defects such as dislocations do not occur in the crystal.
  • the interface between the substrate 101 and the base layer 103 is uneven via the buffer layer 102, light confinement inside the light-emitting element is reduced due to irregular reflection of light. The extraction efficiency can be further improved.
  • (X-ray rocking curve half width) In the present invention, as described above, (10) of the base layer 103 in a state where the base layer 103 made of a group III nitride semiconductor is formed on the main surface 10 of the substrate 101 provided with the protrusions 12 by the epitaxial process. It is preferable that the X-ray rocking curve (XRC) half-width in the ⁇ 10) plane is 150 arcsec or more. If the X-ray rocking curve (XRC) half-value width in the (10-10) plane of the underlayer 103 is such a numerical value, the crystallinity of the underlayer 103 is well controlled within an appropriate range, and is formed thereon.
  • the LED structure 20 composed of the n-type semiconductor layer 104, the light-emitting layer 105, and the p-type semiconductor layer 106 on the base layer 103.
  • MOCVD method Metal Organic Chemical Vapor Deposition
  • n-type semiconductor layer 104 is formed by sequentially laminating an n-type contact layer 104a and an n-type clad layer 104b on the base layer 103 formed by the epitaxial process using a conventionally known MOCVD method.
  • MOCVD apparatus used for forming the base layer 103 and the light-emitting layer 105 described later may be used by appropriately changing various conditions. Is possible.
  • the n-type contact layer 104a and the n-type cladding layer 104b can be formed by a reactive sputtering method.
  • the light emitting layer 105 is formed on the n-type cladding layer 104b (n-type semiconductor layer 104) by a conventionally known MOCVD method.
  • the light emitting layer 105 formed in the present embodiment has a stacked structure starting with a GaN barrier layer and ending with the GaN barrier layer. That is, seven barrier layers 105a made of GaN and six well layers 105b made of non-doped Ga 0.8 In 0.2 N are alternately stacked.
  • the light emitting layer 105 can be formed using the same film forming apparatus (MOCVD apparatus) used for forming the n-type semiconductor layer 104 described above.
  • a light emitting element that emits green light with an emission wavelength in the range of 490 to 570 nm can be configured.
  • the concentration of In contained in the well layer 105b is high, the growth temperature of the well layer 105b needs to be about 700 to 800 ° C., for example.
  • the lowering is achieved by controlling the half width.
  • the p-type semiconductor layer 106 composed of the p-type cladding layer 106a and the p-type contact layer 106b is formed on the light-emitting layer 105, that is, on the barrier layer 105a that is the uppermost layer of the light-emitting layer 105 by a conventionally known MOCVD method.
  • MOCVD method a conventionally known MOCVD method.
  • the same apparatus as the MOCVD apparatus used for forming the n-type semiconductor layer 104 and the light-emitting layer 105 can be used by appropriately changing various conditions.
  • the p-type cladding layer 106a and the p-type contact layer 106b constituting the p-type semiconductor layer 106 can be formed using a reactive sputtering method.
  • a p-type cladding layer 106a made of Al 0.1 Ga 0.9 N doped with Mg is formed on the light emitting layer 105 (the uppermost barrier layer 105a), and further, Mg A p-type contact layer 106b made of Al 0.02 Ga 0.98 N doped with is formed.
  • the same MOCVD apparatus can be used for stacking the p-type cladding layer 106a and the p-type contact layer 106b.
  • not only Mg but also zinc (Zn), for example, can be used as the p-type impurity.
  • electrodes are installed on the wafer on which the LED structure 20 is formed in the LED stacking step. Specifically, after forming a translucent positive electrode 109 at a predetermined position on the p-type semiconductor layer 106, a positive electrode bonding pad 107 is formed on each of the translucent positive electrodes 109. Also, the n-type semiconductor layer 104 is exposed by etching away a predetermined position of the LED structure 20 to form an exposed region 104c, and a negative electrode bonding pad 108 is formed in the exposed region 104c.
  • the translucent positive electrode 109 made of ITO is formed on the p-type contact layer 106b of the laminated semiconductor 10 in which each layer is formed by the above method.
  • a method for forming the translucent positive electrode 109 is not particularly limited, and the translucent positive electrode 109 can be provided by a common means well known in this technical field. Further, any structure including a conventionally known structure can be used without any limitation.
  • the material of the translucent positive electrode 109 is not limited to ITO, and can be formed using materials such as AZO, IZO, and GZO. Further, after forming the translucent positive electrode 109, thermal annealing may be performed for the purpose of alloying or transparency, but it may not be performed.
  • a positive electrode bonding pad 107 is further formed on the translucent positive electrode 109 formed on the laminated semiconductor 10.
  • the positive electrode bonding pad 107 can be formed, for example, by laminating Ti, Al, and Au materials in order from the surface side of the translucent positive electrode 109 by a conventionally known method.
  • the negative electrode bonding pad 108 when forming the negative electrode bonding pad 108, first, a part of the p-type semiconductor layer 106, the light emitting layer 105, and the n-type semiconductor layer 104 formed on the substrate 101 is removed by a method such as dry etching. The exposed region 104c of the n-type contact layer 104a is formed. Then, on this exposed region 104c, for example, each material of Ni, Al, Ti, and Au is sequentially laminated from the surface side of the exposed region 104c by a conventionally known method, thereby omitting detailed illustration.
  • the negative electrode bonding pad 108 can be formed.
  • the base width is 0.05 to 1.5 ⁇ m on the planar portion 11 made of the (0001) C plane of the substrate 101.
  • a substrate processing step of forming a plurality of convex portions 12 to form main surface 10 composed of flat portion 11 and convex portions 12 on substrate 101, and a group III nitride on main surface 10 of substrate 101 By epitaxially growing a semiconductor, an epitaxial process for forming a base layer so as to cover the planar portion 11 and the convex portion 12 and an LED structure 20 having the emission wavelength in the range of 490 to 570 nm are formed. LED lamination process.
  • the method for manufacturing a group III nitride semiconductor light emitting device it is possible to form the underlayer 103 with properly controlled crystallinity, and the LED structure 20 formed on this layer, particularly light emission.
  • the occurrence of lattice mismatch with the well layer 105b provided in the layer 105 is suppressed, and the well layer 105b (light-emitting layer 105) can be formed without causing distortion or the like.
  • the LED structure 20 exhibiting green light emission is formed, a group III nitride semiconductor light emitting device having excellent internal quantum efficiency and light extraction efficiency and having high light emission characteristics can be manufactured.
  • the group III nitride semiconductor light-emitting device of the present invention is used for the lamp of the present invention.
  • Examples of the lamp of the present invention include a combination of the group III nitride semiconductor light emitting device of the present invention and a phosphor.
  • a lamp in which a group III nitride semiconductor light emitting device and a phosphor are combined may be manufactured by means well known to those skilled in the art and may have a structure well known to those skilled in the art.
  • Conventionally, a technique for changing the emission color by combining a group III nitride semiconductor light-emitting element and a phosphor is known, and such a technique should be adopted in the lamp of the present invention without any limitation. Is possible.
  • FIG. 5 is a schematic view schematically showing an example of a lamp configured using the group III nitride semiconductor light emitting device according to the present invention.
  • the lamp 3 shown in FIG. 5 is a cannonball type, and the group III nitride semiconductor light emitting device 1 shown in FIG. 3 is used.
  • the group III nitride semiconductor light emitting device 1 is mounted. That is, the positive electrode bonding pad 107 of the group III nitride semiconductor light emitting device 1 is bonded to one of the two frames 31 and 32 (the frame 31 in FIG. 5) by the wire 33, and the negative electrode bonding pad of the light emitting device 1. 108 is bonded to the other frame 32 by a wire 34. Further, the periphery of the group III nitride semiconductor light emitting device 1 is sealed with a mold 35 made of a transparent resin.
  • the lamp of the present invention has excellent light emission characteristics.
  • the lamp of the present invention is not limited in shape and use, and can be used for any use such as a general-use bullet type, a side view type for a portable backlight, and a top view type used for a display.
  • Examples 1 and 2 A sapphire substrate having a plurality of (0001) C faces is prepared. On the (0001) C face of the sapphire substrate, “base width”, “height”, “base width / 4”, “ By forming a plurality of convex portions that satisfy the conditions of “interval between adjacent convex portions” and “presence / absence of convex surface C”, the substrates of Examples 1 and 2 and Comparative Example 1 are formed. Formed (substrate processing step). The convex portions were formed by forming a mask on a C-plane sapphire substrate having a diameter of 2 inches by a known photolithography method and etching the sapphire substrate by a dry etching method. As an exposure method, a stepper exposure method using ultraviolet light was used. In addition, a mixed gas of BCl 3 and Cl 2 was used for dry etching.
  • the convex portions of the substrates of Examples 1 and 2 and Comparative Example 1 obtained in this way have a shape in which the planar shape of the base of the convex portion is circular and the outer shape (cross-sectional area) gradually decreases toward the top. Yes, it had a bowl-like (hemispherical) shape with side surfaces curved outward.
  • a sapphire substrate having a principal surface made of a (0001) C surface without a convex portion without carrying out the substrate processing step as described above was prepared and used as a substrate of Comparative Example 2.
  • the thickness made of AlN having a single crystal structure using RF sputtering is used.
  • a 50 nm buffer layer was formed (buffer layer forming step).
  • the sputtering film forming apparatus an apparatus having a high-frequency power source and having a mechanism capable of moving the position of the magnet in the target was used.
  • a 50 nm thick buffer layer made of AlN having a single crystal structure was also formed on the main surface of the substrate of Comparative Example 2 having no protrusions using the same procedure described below.
  • a substrate having a plurality of convex portions was introduced into a chamber of a sputter deposition apparatus and heated to 500 ° C., and only nitrogen gas was introduced into the chamber at a flow rate of 15 sccm. Thereafter, the pressure in the chamber was maintained at 1 Pa, a high frequency bias of 500 W was applied to the substrate side, and the substrate was exposed to nitrogen plasma, thereby cleaning the surface of the substrate (pretreatment).
  • argon and nitrogen gas were introduced into the chamber, the pressure in the chamber was maintained at 0.5 Pa, and Ar gas was circulated at 5 sccm and nitrogen gas was circulated at 15 sccm. Under the conditions (the ratio of nitrogen to the whole gas is 75%), a high frequency bias of 2000 W is applied to the metal Al target side to start the formation of a buffer layer made of AlN on the substrate on which a plurality of convex portions are formed. It was. The growth rate was 0.08 nm / s. Note that the magnet in the target was swung both when the substrate was cleaned and when the buffer layer was formed.
  • film formation is performed for a prescribed time according to a film formation rate measured in advance, and after the buffer layer made of a 50 nm AlN layer is deposited on the substrate on which the plurality of convex portions are formed, the plasma is stopped from being generated. The substrate temperature was lowered.
  • an underlying layer made of a group III nitride semiconductor was epitaxially grown on the buffer layer thus obtained by using the low pressure MOCVD method described below (epitaxial process).
  • the substrate on which the buffer layer was formed was taken out from the sputter deposition apparatus. This substrate is introduced into a stainless steel vapor phase growth reactor used for the growth of a group III nitride semiconductor layer by MOCVD, and heated to a film formation temperature by a high frequency (RF) induction heating heater. The substrate was placed on a susceptor made of high-purity graphite for semiconductor in a reaction furnace. Thereafter, nitrogen gas was circulated in the reaction furnace to purge the reaction furnace.
  • RF high frequency
  • nitrogen gas was distribute
  • the induction heater was activated to raise the temperature of the sapphire substrate from room temperature to 500 ° C. in about 10 minutes.
  • the temperature of the substrate was kept at 500 ° C., and NH 3 gas and nitrogen gas were circulated in the reaction furnace.
  • the pressure in the vapor growth reactor was 95 kPa.
  • the temperature of the substrate was raised to 1000 ° C. over about 10 minutes, and the substrate surface was left under this temperature and pressure for 10 minutes to thermally clean the surface of the substrate. Even after the thermal cleaning was completed, the supply of nitrogen gas into the vapor phase growth reactor was continued.
  • the temperature of the substrate was raised to 1120 ° C. in a hydrogen atmosphere while continuing the flow of NH 3 gas, and the pressure in the reactor was 60 kPa. Then, after confirming that the temperature of the substrate was stabilized at 1120 ° C., supply of trimethylgallium (TMG) into the vapor phase growth reactor was started, and an undoped GaN layer having a thickness of 3 ⁇ m was formed on the AlN buffer layer. Until epitaxial growth. At this time, the amount of ammonia was adjusted so that the V group (N) / III group (Ga) ratio was 600. Then, after the growth of a base layer made of 3 ⁇ m of GaN (Group III nitride semiconductor), the supply of the raw material to the reaction furnace was stopped, and the temperature of the substrate was lowered.
  • TMG trimethylgallium
  • the substrate on which the buffer layer and the underlayer were formed was taken out from the reaction furnace, and the X-ray rocking curve (XRC) half widths of the (10-10) plane and the (0002) plane of the underlayer were measured. Indicated.
  • the X-ray rocking curve (XRC) on the (0002) plane represents the flatness of the crystal.
  • the sample of Comparative Example 1 in which the base layer was formed via the buffer layer on the main surface of the substrate having the base width of the protrusions of 2 nm is the XRC half of the (10-10) plane. It can be seen that the value width is 121 arcsec, the XRC half-value width of the (0002) plane is 38 arcsec, and the crystallinity of the underlayer is greatly enhanced. Further, in the sample of Comparative Example 2 in which the base layer is formed on the main surface of the substrate on which the convex portion is not formed via the buffer layer, the XRC half-value width of the (10-10) plane is 220 arcsec and the (0002) plane. The XRC half-value width is 36 arcsec, indicating that the crystallinity of the underlayer is inferior.
  • Example 1 in which the base layer was formed on the main surface of the substrate with the base width of the convex portion being 1 ⁇ m so as to cover the convex portion through the buffer layer is the (10-10) plane
  • the XRC half width was 171 arcsec
  • the XRC half width of the (0002) plane was 40 arcsec.
  • the sample of Example 1 has a smaller XRC half-value width, that is, improved crystallinity, as compared with Comparative Example 2 in which the base layer is formed on the substrate on which no convex portion is formed.
  • the sample of Example 1 has a larger XRC half-value width, that is, lower crystallinity than Comparative Example 1 in which the base layer is formed on the substrate on which the base width is as large as 2 ⁇ m. It is apparent that the crystallinity of the underlayer is controlled by controlling the dimensions of the convex portions formed on the substrate.
  • an n-type semiconductor layer constituting an LED structure is formed on the base layer made of a group III nitride semiconductor produced by the same method as in Examples 1 and 2 and Comparative Examples 1 and 2 by the following method.
  • the light emitting layer and the p-type semiconductor layer were laminated in this order to produce a light emitting element as shown in FIG. 3 (see also FIG. 4).
  • a lamp (light emitting diode: LED) using the light emitting element as shown in FIG. 5 was manufactured using the light emitting element.
  • n-type contact layer 104a made of GaN was formed on the underlayer 103 by the same MOCVD apparatus. At this time, the n-type contact layer 104a was doped with Si. Crystal growth was performed under the same conditions as the underlayer except that SiH 4 was circulated as a Si dopant material.
  • An n-type contact layer was formed by the process as described above. That is, an AlN buffer layer 102 having a single crystal structure is formed on a substrate 101 made of sapphire whose surface is reverse-sputtered, and an undoped GaN layer (underlayer 103) having a thickness of 8 ⁇ m is formed thereon. A 2 ⁇ m Si-doped GaN layer (n-type contact layer 104a) having a carrier concentration of 5 ⁇ 10 18 cm ⁇ 3 was formed. The substrate taken out from the apparatus after film formation was colorless and transparent, and the surface of the GaN layer (here, the initial layer forming the n-type contact layer 104a) was a mirror surface.
  • n-type cladding layer 104b was stacked on the n-type contact layer 104a produced by the above procedure by MOCVD.
  • the substrate on which the n-type contact layer 104a was grown by the above procedure was introduced into an MOCVD apparatus, and then the substrate temperature was lowered to 760 ° C. with nitrogen as the carrier gas while circulating the NH 3 gas. While waiting for the temperature change in the furnace, the NH 3 gas was continuously supplied into the furnace at the same flow rate. At this time, the supply amount of SiH 4 was set while waiting for the temperature change in the furnace. That is, the amount of SiH 4 to be distributed was calculated in advance, and the amount of SiH 4 was adjusted so that the electron concentration of the Si-doped layer was 4 ⁇ 10 18 cm ⁇ 3 .
  • a calculated amount of SiH 4 gas and TMI and TEG vapor generated by bubbling are circulated into the furnace, and a layer composed of Ga 0.99 In 0.01 N is formed.
  • a layer composed of Ga 0.99 In 0.01 N was formed with a thickness of 1.7 nm and a layer made of GaN with a thickness of 1.7 nm.
  • a layer made of Ga 0.99 In 0.01 N was grown at 1.7 nm.
  • the SiH 4 flow was continued during this process.
  • an n-type cladding layer 104b having a superlattice structure of Si-doped Ga 0.99 In 0.01 N and GaN was formed.
  • the light emitting layer 105 was laminated
  • the light emitting layer 105 has a multiple quantum well structure including a barrier layer 105a made of GaN and a well layer 105b made of Ga 0.85 In 0.15 N.
  • a barrier layer 105a is first formed on an n-type cladding layer 104c having a superlattice structure of Si-doped GaInN and GaN, and Ga 0.85 In is formed on the barrier layer 105a.
  • a well layer 105b made of 0.15 N was formed.
  • a seventh barrier layer 105a is formed on the sixth stacked well layer 105b, on both sides (upper and lower) of the light emitting layer 105 having a multiple quantum well structure.
  • the barrier layer 105a is provided.
  • the light emitting layer 105 was formed by the following method.
  • the barrier layer 105a of the light emitting layer 105 was formed as follows. With the substrate temperature kept at 760 ° C., supply of TEG and SiH 4 into the furnace was started, and an initial barrier layer made of GaN doped with Si for a predetermined time was formed to 0.8 nm, and then TEG and SiH 4 Supply was stopped. Thereafter, the temperature of the susceptor was raised to 920 ° C. Then, the supply of TEG and SiH 4 into the furnace was restarted, and the 1.7 nm intermediate barrier layer was grown while the substrate temperature remained at 920 ° C., and then the supply of TEG and SiH 4 into the furnace was stopped. did.
  • the susceptor temperature is lowered to 760 ° C.
  • the supply of TEG and SiH 4 is started
  • the final barrier layer of 3.5 nm is grown
  • the supply of TEG and SiH 4 is stopped again, and the GaN Finished the growth of the barrier layer.
  • an Si-doped GaN barrier layer (barrier layer 105a) having a total film thickness of 6 nm, which is composed of an initial barrier layer, an intermediate barrier layer, and a final barrier layer, is formed. did.
  • the amount of SiH 4 was adjusted so that the Si concentration was 1 ⁇ 10 17 cm ⁇ 3 .
  • the well layer 105b of the light emitting layer 105 was formed as follows. After the growth of the GaN barrier layer (barrier layer 105a) is completed, TEG and TMI are supplied into the furnace to form a well layer, and a Ga 0.85 In 0.15 N layer having a thickness of 3 nm is formed. (Well layer 105b) was formed on barrier layer 105a. During the deposition process of the well layer 105b, the In concentration of the well layer 105b was 8%, and the substrate temperature during growth was 750 ° C. Then, after the growth of the well layer 105b made of Ga 0.85 In 0.15 N, the setting of the TEGa supply amount was changed. Subsequently, the supply of TEGa and SiH 4 was restarted, and the second barrier layer 105a was formed.
  • barrier layers 105a made of Si-doped GaN and six layers of well layers 105b made of Ga 0.85 In 0.15 N are formed alternately. did.
  • a seventh barrier layer was formed.
  • the supply of SiH 4 was stopped, and an initial barrier layer made of undoped GaN was formed.
  • the substrate temperature is raised to 920 ° C. while the supply of the TEG into the furnace is continued, and the intermediate barrier layer is grown at the substrate temperature of 920 ° C. for a specified time.
  • the supply to was stopped.
  • the substrate temperature was lowered to 760 ° C., the supply of TEG was started, and the final barrier layer was grown. Thereafter, the supply of TEG was stopped again, and the growth of the GaN barrier layer was completed.
  • a seventh barrier layer made of undoped GaN having an initial barrier layer, an intermediate barrier layer, and a final barrier layer and having a total thickness of 4 nm was formed (in the light emitting layer 105 in FIG. 4).
  • top barrier layer 105a which uses the same reference number 105a but is not doped unlike the other barrier layers.
  • a well layer having a non-uniform thickness (the first to fifth well layers 105b from the n-type semiconductor layer 104 side in FIG. 4) and a well layer having a uniform thickness (the n-type in FIG. 4).
  • Formation of p-type semiconductor layer A superlattice composed of four layers of non-doped Al 0.06 Ga 0.94 N and three layers of Mg-doped GaN stacked alternately using the same MOCVD apparatus following the above-described steps. A p-type cladding layer 106 a having a structure was formed, and a p-type contact layer 106 b made of Mg-doped GaN having a thickness of 200 nm was formed thereon to form a p-type semiconductor layer 106.
  • the p-type semiconductor layer 106 was formed by the following method.
  • the p-type cladding layer 106a of the p-type semiconductor layer 106 was formed as follows. The substrate temperature was raised to 975 ° C. while supplying NH 3 gas, and then the carrier gas was switched from nitrogen to hydrogen at this temperature. Subsequently, the substrate temperature was changed to 1050 ° C. Then, by supplying TMG and TMA into the furnace, a 2.5 nm layer made of non-doped Al 0.06 Ga 0.94 N was formed. Subsequently, without taking an interval, the TMA valve was closed and the Cp 2 Mg valve was opened, and a Mg-doped GaN layer was deposited to 2.5 nm. The above operation was repeated three times, and finally a p-type cladding layer 106a having a superlattice structure was formed by forming an undoped Al 0.06 Ga 0.94 N layer.
  • the p-type contact layer 106b of the p-type semiconductor layer 106 was formed as follows. After forming the p-type cladding layer 106a, only Cp 2 Mg and TMG were supplied into the furnace to form a p-type contact layer 106b made of 200-nm p-type GaN. This p-type contact layer exhibited p-type characteristics even without annealing for activating p-type carriers.
  • the energization of the high-frequency induction heater used to heat the substrate is stopped immediately, and at the same time, the carrier gas is switched from hydrogen to nitrogen, and NH The flow rate of 3 gases was reduced. Specifically, during the growth, the amount of NH 3 gas that had been tightened by about 14% of the volume of the total circulation gas was reduced to 0.2%. Furthermore, after maintaining for 45 seconds in this state, the flow of NH 3 gas was stopped. In this state, it was confirmed that the substrate temperature was lowered to room temperature, and the substrate on which each layer was laminated was taken out into the atmosphere.
  • the n-type semiconductor layer, the light-emitting layer, and the p-type semiconductor layer constituting the LED structure are arranged in this order on the base layer manufactured in the same manner as in Examples 1-2 and Comparative Examples 1-2.
  • Samples (epitaxial wafers) of Examples 3 to 4 and Comparative Examples 3 to 4 formed in the above were produced.
  • the LED epitaxial wafer produced as described above has the following laminated structure. That is, after forming an AlN layer (buffer layer 102) having a single crystal structure on a substrate 101 made of sapphire having a c-plane, an 8 ⁇ m undoped GaN layer (underlayer 103), 5 ⁇ 10 18 cm -3 of 2 ⁇ m with electron concentration Si-doped GaNn type contact layer 104a, 4 has a Si concentration of ⁇ 10 18 cm -3, the 20 layers of 1.7nm Ga 0.99 in 0.01 N And 19 layers of a cladding layer (n-type cladding layer 104b) having a superlattice structure made of 1.7 nm of GaN.
  • a six-layer Si-doped GaN barrier layer (barrier layer 105a) that starts with the GaN barrier layer and ends with the GaN barrier layer and has a layer thickness of 6 nm, and a layer thickness of 3 nm 6 non-doped Ga 0.85 In 0.15 N well layers (well layers 105b) are alternately stacked, and the uppermost barrier layer made of non-doped GaN (the light emitting layer 105 in FIG.
  • a multi-quantum well structure (light-emitting layer 105) having a top barrier layer 105a in contact with the semiconductor layer 106 is stacked.
  • a p-type cladding layer 106a composed of three layers made of 0.01 Ga 0.99 N and having a superlattice structure, and a p-type contact layer 106b composed of Mg-doped GaN with a thickness of 200 nm.
  • a p-type semiconductor layer 106 is stacked.
  • a light-emitting diode which is a kind of semiconductor light-emitting element, was fabricated by the following procedure using the substrate on which each layer to be an LED structure obtained in this way was formed (see FIG. 3).
  • a light-transmitting positive electrode made of ITO is formed on a p-type contact layer of a substrate on which each layer to be an LED structure is formed by a known photolithography technique, and Ti, Al, and Au are sequentially formed on the light-transmitting positive electrode.
  • a positive electrode bonding pad having a laminated structure was formed.
  • dry etching was performed on the portion where the positive electrode bonding pad was not formed to expose the n-type semiconductor layer where the negative electrode bonding pad was formed.
  • a negative electrode bonding pad composed of four layers of Ni, Al, Ti, and Au was formed on the exposed n-type semiconductor layer.
  • substrate with which the positive electrode bonding pad and the negative electrode bonding pad were formed was ground and grind
  • the substrate was cut into 350 ⁇ m square chips to form LED chips. This chip was placed on the lead frame so that the positive electrode bonding pad and the negative electrode bonding pad were on top, and was connected to the lead frame with a gold wire to produce a lamp (see FIG. 5).
  • the forward voltage (driving voltage Vf) when a forward current of 20 mA was passed between the p-side electrode and the n-side electrode was measured, and the p-side transparency was measured.
  • the emission wavelength WD (nm) and the emission output Po (mW) were measured through the photocathode, and the results are shown in Table 2 below.
  • the samples of Examples 3 to 4 manufactured by the manufacturing method according to the present invention have a drive voltage Vf of 3.27 to 3.30 V, and an emission wavelength WD of 538 nm to 539 nm. While exhibiting good green light emission, the light emission output Po was 8.4 to 8.7 (mW).
  • the sample of Comparative Example 3 in which the base width of the convex portion of the substrate is 2 ⁇ m requires a driving voltage Vf of 3.37 V, which is higher than the samples of Examples 3 to 4, Further, the light emission output Po is 7.9 mW, which is lower than the samples of Examples 3 to 4. Further, in the sample of Comparative Example 4 having the conventional configuration in which the convex portion is not formed on the substrate, the driving voltage Vf is 3.35 V, and the light emission output Po is 7.7 mW. Luminous properties are inferior to the sample.
  • Example 1 In the same manner as in Examples 3 to 4, a 350 ⁇ m square Group III nitride semiconductor light emitting device chip was fabricated, and the lead frame was similarly placed so that the positive electrode bonding pad and the negative electrode bonding pad were on top. The sample was placed on top and connected to a lead frame with a gold wire to prepare a light emitting device sample. At this time, a sample in which the base width of the convex portion of the substrate was 1 ⁇ m was designated as Experimental Example 1, and a sample in which the base width of the convex portion was 2 ⁇ m was designated as Experimental Example 2, and five samples were produced. The emission intensity of each sample was measured while moving the detector in the direction perpendicular to the top surface of the chip, and the measurement results are shown in the graphs of FIGS. 6A and 6B.
  • the light-emitting element chip of Experimental Example 1 in which the interval between the protrusions formed on the substrate is 1 ⁇ m has an interval between the protrusions of 2 ⁇ m as shown in the graph of FIG. 6B. It can be seen that the light emission output is higher than that of the light emitting element chip of Experimental Example 2. From this result, it was found that the light emission output of the light emitting element can be improved when the interval between the convex portions formed on the substrate is smaller.
  • the group III nitride semiconductor light-emitting device of the present invention has excellent light extraction efficiency without reducing the internal quantum efficiency of the LED structure exhibiting green light emission, and high emission intensity. It is clear that
  • the present invention it is possible to provide a group III nitride semiconductor light-emitting device having excellent light extraction efficiency, a method for manufacturing the same, and a lamp without reducing the internal quantum efficiency of the LED structure that emits green light.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Led Devices (AREA)

Abstract

Provided is a III nitride semiconductor light emitting element wherein an LED structure is formed on a single crystalline III nitride semiconductor layer formed on a substrate.  The substrate has a main surface, which is composed of a flat surface section composed of a (0001)C surface and a plurality of protruding sections, and a rear surface, and the width of a base portion of the protruding section is 0.05-1.5μm.  The III nitride semiconductor layer is formed on the main surface of the substrate by epitaxially growing a III nitride semiconductor to cover the flat surface section and the protruding sections.  The emission wavelength of the LED structure is within the range of 490-570nm.

Description

III族窒化物半導体発光素子及びその製造方法、並びにランプGroup III nitride semiconductor light emitting device, method for manufacturing the same, and lamp
 本発明は、発光ダイオード(LED)構造を有し、発光波長が490~570nmであるIII族窒化物半導体発光素子、及びその製造方法、並びにランプに関する。
 本願は、2008年5月21日に、日本に出願された特願2008-133199号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a group III nitride semiconductor light-emitting device having a light-emitting diode (LED) structure and an emission wavelength of 490 to 570 nm, a method for manufacturing the same, and a lamp.
This application claims priority based on Japanese Patent Application No. 2008-133199 filed in Japan on May 21, 2008, the contents of which are incorporated herein by reference.
 近年、短波長の光を発する発光素子用の半導体材料として、III族窒化物半導体が注目を集めている。III族窒化物半導体は、一般式AlGaInN(0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=1)で表され、サファイア単結晶をはじめ種々の酸化物やIII-V族化合物からなる基板の上に、有機金属化学気相成長法(MOCVD法)や分子線エピタキシー法(MBE法)等によって形成される。 In recent years, group III nitride semiconductors have attracted attention as semiconductor materials for light-emitting elements that emit light of short wavelengths. Group III nitride semiconductors are represented by the general formula Al x Ga y In z N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ z ≦ 1, x + y + z = 1), and include various sapphire single crystals. It is formed on a substrate made of an oxide or a III-V compound by a metal organic chemical vapor deposition method (MOCVD method), a molecular beam epitaxy method (MBE method), or the like.
 III族窒化物半導体を用いた一般的な発光素子の例としては、サファイア単結晶基板の上に、III族窒化物半導体からなるn型半導体層、発光層、及びp型半導体層をこの順で積層したものが挙げられる。サファイア基板は絶縁体である。よってサファイア基板を用いた上記素子構造は、一般的に、p型半導体層上に形成された正極とn型半導体層上に形成された負極とが同一面上に横方向に存在する構造となる。このようなIII族窒化物半導体発光素子には、正極に透明電極を使用してp型半導体側から光を取り出すフェイスアップ方式と、正極にAgなどの高反射膜を使用してサファイア基板側から光を取り出すフリップチップ方式との2種類がある。 As an example of a general light emitting device using a group III nitride semiconductor, an n-type semiconductor layer, a light emitting layer, and a p type semiconductor layer made of a group III nitride semiconductor are arranged in this order on a sapphire single crystal substrate. The thing laminated | stacked is mentioned. The sapphire substrate is an insulator. Therefore, the element structure using the sapphire substrate generally has a structure in which the positive electrode formed on the p-type semiconductor layer and the negative electrode formed on the n-type semiconductor layer are present on the same plane in the lateral direction. . In such a group III nitride semiconductor light-emitting device, a face-up method in which a transparent electrode is used as a positive electrode and light is extracted from the p-type semiconductor side, and a highly reflective film such as Ag is used as a positive electrode from the sapphire substrate side. There are two types, a flip chip type that extracts light.
 このような発光素子の出力の指標として、外部量子効率が用いられる。外部量子効率が高ければ、出力の高い発光素子と言うことができる。外部量子効率は、内部量子効率と光取り出し効率とを掛け合わせた値である。内部量子効率とは、素子に注入した電流のエネルギーが発光層で光に変換される割合である。光取り出し効率とは、発光層で発生した光のうち発光素子の外部に取り出すことができる光の割合である。従って、外部量子効率を向上させるには、光取り出し効率を改善する必要がある。 External quantum efficiency is used as an index of the output of such a light emitting element. If the external quantum efficiency is high, it can be said that the light-emitting element has a high output. The external quantum efficiency is a value obtained by multiplying the internal quantum efficiency and the light extraction efficiency. The internal quantum efficiency is a rate at which the energy of current injected into the device is converted into light in the light emitting layer. The light extraction efficiency is a ratio of light that can be extracted outside the light emitting element among light generated in the light emitting layer. Therefore, in order to improve the external quantum efficiency, it is necessary to improve the light extraction efficiency.
 光取り出し効率を改善するためには、主として2つの方法がある。一つは、光取り出し面に形成される電極等による光の吸収を低減させる方法である。もう一つは、発光素子とその外部に位置する媒体との屈折率の違いによって生じる発光素子の内部への光の閉じ込めを低減させる方法である。 There are mainly two methods for improving the light extraction efficiency. One is a method of reducing light absorption by an electrode or the like formed on the light extraction surface. The other is a method of reducing the confinement of light inside the light emitting element caused by the difference in refractive index between the light emitting element and the medium located outside the light emitting element.
 発光素子の内部への光の閉じ込めを低減させる方法としては、発光素子の光取り出し面に凹凸を形成する技術が挙げられる(例えば、特許文献1参照)。
 しかしながら、機械的加工又は化学的加工によって光取り出し面に凹凸を形成した発光素子では、光取り出し面に加工を施すことで、光取り出し面を有する半導体層に負荷を掛けることになり、発光層にダメージを残してしまう。また、光取り出し面に凹凸が形成されるような条件で半導体層を成長させた発光素子では、半導体層の結晶性が劣化してしまうため、発光層が欠陥を含んだものになる。このため、光取り出し面に凹凸を形成した場合、光取り出し効率は向上するものの、内部量子効率が低下してしまい、発光強度を増加させることができないという問題がある。
As a method for reducing the confinement of light inside the light emitting element, there is a technique of forming irregularities on the light extraction surface of the light emitting element (for example, see Patent Document 1).
However, in a light emitting device in which unevenness is formed on the light extraction surface by mechanical processing or chemical processing, by processing the light extraction surface, a load is applied to the semiconductor layer having the light extraction surface. It will leave damage. In addition, in a light-emitting element in which a semiconductor layer is grown under conditions where irregularities are formed on the light extraction surface, the crystallinity of the semiconductor layer is deteriorated, so that the light-emitting layer includes a defect. For this reason, when unevenness is formed on the light extraction surface, although the light extraction efficiency is improved, there is a problem that the internal quantum efficiency is lowered and the emission intensity cannot be increased.
 一方で、III族窒化物半導体発光素子として、発光波長が490~570nmである緑色発光を呈する素子が、このような発光色を必要とする各分野において用いられるようになっている。一般に、発光波長が490nm以上の長い波長の場合には、発光色は緑色系となる。例えば、発光波長が505nm付近であると、信号機等に用いられるような青緑色を呈する。また、発光波長が525nm付近では、例えばディスプレイ等の3原色光源として用いられるような純緑色が得られる。また、発光波長が560nm付近であると、例えばパイロットランプ等に用いられるような黄緑色が得られ、発光波長が570nmになると発光色が黄色に近い色調となる。このように緑色発光を得るためには、発光波長が490nm以上である必要がある。 On the other hand, as a group III nitride semiconductor light emitting element, an element that emits green light having an emission wavelength of 490 to 570 nm is used in various fields that require such an emission color. Generally, when the emission wavelength is a long wavelength of 490 nm or longer, the emission color is green. For example, when the emission wavelength is around 505 nm, a blue-green color used for a traffic light or the like is exhibited. Further, when the emission wavelength is in the vicinity of 525 nm, a pure green color that is used as a light source for three primary colors such as a display can be obtained. Further, when the emission wavelength is near 560 nm, a yellowish green color used for, for example, a pilot lamp is obtained, and when the emission wavelength is 570 nm, the emission color becomes a color tone close to yellow. Thus, in order to obtain green light emission, the emission wavelength needs to be 490 nm or more.
 窒化ガリウム系化合物半導体(III族窒化物半導体)発光素子において、発光波長が490nm以上の緑色発光を得るためには、発光層に含まれる井戸層(活性層)に含有されるインジウム(In)の濃度を高くする必要がある。しかしながら、インジウム濃度を高めた場合には格子定数が大きくなり、発光層よりも下側に位置する下層側(基板側)の層や障壁層との格子定数の差が大きくなる。このことから発光層内部に歪みが生じ、内部量子効率の低下を招くという問題がある。また、インジウムは蒸発し易い。このため、障壁層を形成するための昇温過程において、井戸層からインジウムが蒸発し、その結果、結晶性が低下して発光層内部に歪みが生じ、内部量子効率の低下を招くという問題も発生する。 In a gallium nitride compound semiconductor (Group III nitride semiconductor) light emitting device, in order to obtain green light emission having an emission wavelength of 490 nm or more, indium (In) contained in a well layer (active layer) included in the light emitting layer is used. It is necessary to increase the concentration. However, when the indium concentration is increased, the lattice constant increases, and the difference in lattice constant between the lower layer (substrate side) layer and the barrier layer located below the light emitting layer increases. For this reason, there is a problem that distortion occurs in the light emitting layer, leading to a decrease in internal quantum efficiency. Moreover, indium is easy to evaporate. For this reason, in the temperature rising process for forming the barrier layer, indium evaporates from the well layer, and as a result, the crystallinity is lowered and distortion occurs in the light emitting layer, leading to a decrease in internal quantum efficiency. appear.
 近年、光取り出し効率及び結晶性の向上を目的として、光取り出し面に凹凸を形成するのではなく、サファイアからなる基板の表面に凹凸を形成し、その上にIII族窒化物半導体層を成長させる方法が提案されている(例えば、特許文献2参照)。このような方法によれば、サファイア基板とIII族窒化物半導体層との界面が凹凸となるので、サファイア基板とIII族窒化物半導体層との屈折率の違いによる界面での光の乱反射により、発光素子の内部への光の閉じ込めを低減させることができ、光取り出し効率を向上させることができる。また、サファイア基板の表面に形成された凹凸により、結晶が横方向に成長するのを利用して結晶欠陥を低減させ、内部量子効率を向上させることが可能となる。 In recent years, for the purpose of improving light extraction efficiency and crystallinity, instead of forming irregularities on the light extraction surface, irregularities are formed on the surface of a substrate made of sapphire, and a group III nitride semiconductor layer is grown thereon. A method has been proposed (see, for example, Patent Document 2). According to such a method, since the interface between the sapphire substrate and the group III nitride semiconductor layer becomes uneven, due to irregular reflection of light at the interface due to the difference in refractive index between the sapphire substrate and the group III nitride semiconductor layer, Light confinement inside the light emitting element can be reduced, and light extraction efficiency can be improved. In addition, the unevenness formed on the surface of the sapphire substrate makes it possible to reduce crystal defects and improve internal quantum efficiency by utilizing the lateral growth of crystals.
 しかしながら、特許文献2に記載されたような凹凸が形成された基板を用いて、上述のような、インジウム濃度を高めた緑色発光を呈する発光層を有するIII族窒化物半導体発光素子を構成した場合、発光層よりも下側に位置する層の結晶性が横方向成長により大きく向上するために、発光層と下層側との間の結晶性の違いがさらに大きくなる。このため、発光層と下層側との間との間の格子不整合が大きくなり、基板側のIII族窒化物半導体層の結晶性が向上しているのにも関わらず、発光層内に大きな歪みが生じて内部量子効率が低下し、発光強度が低下するという問題があった。 However, when a group III nitride semiconductor light-emitting device having a light-emitting layer exhibiting green light emission with an increased indium concentration as described above is configured using a substrate on which irregularities as described in Patent Document 2 are formed. Since the crystallinity of the layer located below the light emitting layer is greatly improved by lateral growth, the difference in crystallinity between the light emitting layer and the lower layer side is further increased. For this reason, the lattice mismatch between the light emitting layer and the lower layer side is increased, and the crystallinity of the group III nitride semiconductor layer on the substrate side is improved, but a large amount is present in the light emitting layer. There is a problem that distortion occurs, the internal quantum efficiency decreases, and the light emission intensity decreases.
特許第2836687号公報Japanese Patent No. 2836687 特開2002-280611号公報JP 2002-280611 A
 本発明は上記課題に鑑みてなされたものであり、緑色発光を呈するLED構造の内部量子効率を低下させることなく、光取り出し効率に優れたIII族窒化物半導体発光素子及びその製造方法を提供することを目的とする。
 さらに、本発明は、上記III族窒化物半導体発光素子が用いられてなり、発光特性に優れたランプを提供することを目的とする。
The present invention has been made in view of the above problems, and provides a group III nitride semiconductor light-emitting device excellent in light extraction efficiency and a manufacturing method thereof without reducing the internal quantum efficiency of an LED structure that emits green light. For the purpose.
Furthermore, an object of the present invention is to provide a lamp that uses the above-mentioned group III nitride semiconductor light emitting device and has excellent light emission characteristics.
 本発明者は、上記問題を解決するために鋭意検討した結果、本発明を以下のように完成した。([1]、[15]及び[31]以外は本発明の好ましい例を示す。) As a result of intensive studies to solve the above problems, the present inventor has completed the present invention as follows. (Except for [1], [15] and [31], preferred examples of the present invention are shown.)
 [1] 基板上に形成された単結晶のIII族窒化物半導体層上にLED構造が形成されたIII族窒化物半導体発光素子であって、
 前記基板は、(0001)C面からなる平面部と複数の凸部とからなる主面と、裏面とを有し、前記凸部の基部幅が0.05~1.5μmであり、
 前記III族窒化物半導体層は、III族窒化物半導体がエピタキシャル成長することによって前記基板の主面上に、前記平面部及び前記凸部を覆い形成されたものであり、
 前記LED構造の発光波長は490~570nmの範囲であることを特徴とするIII族窒化物半導体発光素子。
 [2] 前記凸部は、前記C面に非並行の表面により構成されることを特徴とする上記[1]に記載のIII族窒化物半導体発光素子。
 [3] 前記凸部は、前記基部幅が0.05~1μmであり、高さが0.05~1μmの範囲であり且つ前記基部幅の1/4以上であり、隣接する前記凸部間の間隔が前記基部幅の0.5~5倍であることを特徴とする[1]又は[2]に記載のIII族窒化物半導体発光素子。
 [4] 前記凸部が上部に向かって徐々に外形が小さくなる形状であることを特徴とする上記[1]~[3]の何れか1項に記載のIII族窒化物半導体発光素子。
 [5] 前記凸部が略円錐状ないし略多角錐状であることを特徴とする上記[1]~[4]の何れか1項に記載のIII族窒化物半導体発光素子。
 [6] 前記凸部が、前記基板のC面上に設けられた酸化物又は窒化物であることを特徴とする上記[1]~[5]の何れか1項に記載のIII族窒化物半導体発光素子。
 [7] 前記凸部が、SiO、Al、SiN、ZnOの何れかからなることを特徴とする上記[6]に記載のIII族窒化物半導体発光素子。
 [8] 前記基板がサファイア基板であることを特徴とする上記[1]~[7]の何れか1項に記載のIII族窒化物半導体発光素子。
[1] A group III nitride semiconductor light emitting device in which an LED structure is formed on a single crystal group III nitride semiconductor layer formed on a substrate,
The substrate has a main surface composed of a flat portion made of a (0001) C plane and a plurality of convex portions, and a back surface, and the base width of the convex portion is 0.05 to 1.5 μm
The group III nitride semiconductor layer is formed so as to cover the planar portion and the convex portion on the main surface of the substrate by epitaxial growth of the group III nitride semiconductor.
The group III nitride semiconductor light-emitting device characterized in that the light emission wavelength of the LED structure is in the range of 490 to 570 nm.
[2] The group III nitride semiconductor light-emitting device according to the above [1], wherein the convex portion is configured by a surface non-parallel to the C-plane.
[3] The convex portion has a base width of 0.05 to 1 μm, a height in the range of 0.05 to 1 μm, and ¼ or more of the base width, and between adjacent convex portions. The group III nitride semiconductor light-emitting device according to [1] or [2], wherein the interval is 0.5 to 5 times the base width.
[4] The group III nitride semiconductor light-emitting device according to any one of the above [1] to [3], wherein the convex portion has a shape whose outer shape gradually decreases toward the top.
[5] The group III nitride semiconductor light-emitting device according to any one of [1] to [4], wherein the convex portion has a substantially conical shape or a substantially polygonal pyramid shape.
[6] The group III nitride according to any one of [1] to [5], wherein the convex portion is an oxide or a nitride provided on the C-plane of the substrate. Semiconductor light emitting device.
[7] The group III nitride semiconductor light-emitting device according to the above [6], wherein the convex portion is made of any one of SiO 2 , Al 2 O 3 , SiN, and ZnO.
[8] The group III nitride semiconductor light-emitting device according to any one of [1] to [7], wherein the substrate is a sapphire substrate.
 [9] 前記LED構造は、前記基板の主面上に、III族窒化物半導体から各々がなる、n型半導体層、発光層及びp型半導体層をこの順で有することを特徴とする上記[1]~[8]の何れか1項に記載のIII族窒化物半導体発光素子。
 [10] 前記LED構造に備えられる発光層のIn濃度が7質量%以上であることを特徴とする上記[9]に記載のIII族窒化物半導体発光素子。
 [11] 前記基板の主面上に、多結晶のAlGa1-xN(0≦x≦1)からなり、厚さが0.01~0.5μmであるバッファ層がスパッタ法によって積層され、前記バッファ層上に前記III族窒化物半導体層が積層されていることを特徴とする上記[1]~[10]の何れか1項に記載のIII族窒化物半導体発光素子。
 [12] 前記基板の主面上に、単結晶のAlGa1-xN(0≦x≦1)からなり、厚さが0.01~0.5μmであるバッファ層がスパッタ法によって積層され、前記バッファ層上に前記III族窒化物半導体層が積層されていることを特徴とする上記[1]~[10]の何れか1項に記載のIII族窒化物半導体発光素子。
 [13] 前記n型半導体層にn型クラッド層を含むとともに、前記p型半導体層がp型クラッド層を含んでおり、前記n型クラッド層及び前記p型クラッド層の少なくとも一つが超格子構造を含むことを特徴とする上記[8]~[12]の何れか1項に記載のIII族窒化物半導体発光素子。
 [14] 前記III族窒化物半導体層の(10-10)面におけるX線ロッキングカーブ(XRC)半値幅が150arcsec以上であることを特徴とする上記[1]~[13]の何れか1項に記載のIII族窒化物半導体発光素子。
[9] The LED structure includes an n-type semiconductor layer, a light-emitting layer, and a p-type semiconductor layer, each of which is made of a group III nitride semiconductor, in this order on the main surface of the substrate. [1] The group III nitride semiconductor light-emitting device according to any one of [8].
[10] The group III nitride semiconductor light-emitting device according to [9], wherein an In concentration of the light-emitting layer provided in the LED structure is 7% by mass or more.
[11] A buffer layer made of polycrystalline Al x Ga 1-x N (0 ≦ x ≦ 1) and having a thickness of 0.01 to 0.5 μm is stacked on the main surface of the substrate by sputtering. The group III nitride semiconductor light-emitting device according to any one of the above [1] to [10], wherein the group III nitride semiconductor layer is stacked on the buffer layer.
[12] A buffer layer made of single-crystal Al x Ga 1-x N (0 ≦ x ≦ 1) and having a thickness of 0.01 to 0.5 μm is stacked on the main surface of the substrate by sputtering. The group III nitride semiconductor light-emitting device according to any one of the above [1] to [10], wherein the group III nitride semiconductor layer is stacked on the buffer layer.
[13] The n-type semiconductor layer includes an n-type cladding layer, the p-type semiconductor layer includes a p-type cladding layer, and at least one of the n-type cladding layer and the p-type cladding layer has a superlattice structure. The group III nitride semiconductor light-emitting device according to any one of the above [8] to [12], comprising:
[14] Any one of [1] to [13] above, wherein a half width of an X-ray rocking curve (XRC) in the (10-10) plane of the group III nitride semiconductor layer is 150 arcsec or more. A group III nitride semiconductor light-emitting device according to item 2.
 [15]前記 前記基板の(0001)C面からなる平面上に、基部幅が0.05~1.5μmである複数の凸部を形成することにより、前記基板上に平面部と凸部とからなる主面を形成する基板加工工程と、
 前記基板の主面上に、III族窒化物半導体をエピタキシャル成長させることにより、前記平面部及び前記凸部を覆う、単結晶のIII族窒化物半導体層を形成するエピタキシャル工程と、
 前記III族窒化物半導体層上に、発光波長が490~570nmの範囲であるLED構造を前記形成するLED積層工程と、を含むことを特徴とするIII族窒化物半導体発光素子の製造方法。
 [16] 基板加工工程において、前記凸部の表面が、前記C面に非並行の表面により構成されるように形成することを特徴とする上記[15]に記載のIII族窒化物半導体発光素子の製造方法。
 [17] 前記基板加工工程において、前記基部幅が0.05~1μm、高さが0.05~1μmの範囲であって且つ前記基部幅の1/4以上であり、隣接する前記凸部間の間隔が前記基部幅の0.5~5倍である前記凸部を形成することを特徴とする[15]又は[16]に記載のIII族窒化物半導体発光素子の製造方法。
 [18]前記基板加工工程において、前記凸部として上部に向かって徐々にその外形が小さくなる形状が形成されることを特徴とする上記[15]~[17]の何れか1項に記載のIII族窒化物半導体発光素子の製造方法。
 [19] 前記基板加工工程において、前記凸部が、略円錐状ないし略多角錐状に形成されることを特徴とする上記[15]~[18]の何れか1項に記載のIII族窒化物半導体発光素子の製造方法。
 [20] 前記基板がサファイア基板であることを特徴とする上記[15]~[19]の何れか1項に記載のIII族窒化物半導体発光素子の製造方法。
 [21] 前記基板加工工程において、前記基板の(0001)C面上に、ステッパー露光法、ナノインプリント法、電子ビーム(EB)露光法、レーザー露光法の内の何れかを用いてマスクパターンを形成した後、前記基板をエッチングすることによって、前記凸部が形成されることを特徴とする上記[15]~[20]の何れか1項に記載のIII族窒化物半導体発光素子の製造方法。
 [22] 前記凸部を、前記基板のC面上に、酸化物又は窒化物から形成することを特徴とする上記[15]~[20]の何れか1項に記載のIII族窒化物半導体発光素子の製造方法。
 [23] 前記凸部を、SiO、Al、SiN、ZnOの何れかから形成することを特徴とする上記[22]に記載のIII族窒化物半導体発光素子の製造方法。
[15] By forming a plurality of convex portions having a base width of 0.05 to 1.5 μm on a plane composed of the (0001) C plane of the substrate, the plane portions and the convex portions are formed on the substrate. A substrate processing step for forming a main surface comprising:
An epitaxial step of forming a single crystal group III nitride semiconductor layer covering the planar portion and the convex portion by epitaxially growing a group III nitride semiconductor on the main surface of the substrate;
A method of manufacturing a group III nitride semiconductor light emitting device, comprising: an LED stacking step of forming an LED structure having an emission wavelength in the range of 490 to 570 nm on the group III nitride semiconductor layer.
[16] The group III nitride semiconductor light-emitting device according to [15], wherein in the substrate processing step, the surface of the convex portion is formed by a surface non-parallel to the C-plane Manufacturing method.
[17] In the substrate processing step, the base width is in the range of 0.05 to 1 μm, the height is in the range of 0.05 to 1 μm, and is ¼ or more of the base width, and between the adjacent convex portions. The method for producing a group III nitride semiconductor light-emitting device according to [15] or [16], wherein the convex portions having an interval of 0.5 to 5 times the base width are formed.
[18] The substrate processing step according to any one of [15] to [17], wherein the convex portion is formed with a shape whose outer shape gradually decreases toward the top. A method for manufacturing a group III nitride semiconductor light-emitting device.
[19] The group III nitride according to any one of [15] to [18], wherein in the substrate processing step, the convex portion is formed in a substantially conical shape or a substantially polygonal pyramid shape. For manufacturing a semiconductor light emitting device.
[20] The method for producing a group III nitride semiconductor light-emitting device according to any one of the above [15] to [19], wherein the substrate is a sapphire substrate.
[21] In the substrate processing step, a mask pattern is formed on the (0001) C surface of the substrate using one of a stepper exposure method, a nanoimprint method, an electron beam (EB) exposure method, and a laser exposure method. The method for producing a Group III nitride semiconductor light-emitting device according to any one of [15] to [20] above, wherein the convex portion is formed by etching the substrate.
[22] The group III nitride semiconductor according to any one of [15] to [20], wherein the convex portion is formed of an oxide or a nitride on the C-plane of the substrate. Manufacturing method of light emitting element.
[23] The method for producing a group III nitride semiconductor light-emitting element according to the above [22], wherein the convex portion is formed of any one of SiO 2 , Al 2 O 3 , SiN, and ZnO.
 [24] 前記LED積層工程において、前記基板の主面上に、III族窒化物半導体から各々なるn型半導体層、発光層及びp型半導体層をこの順で積層して前記LED構造が形成されることを特徴とする上記[15]~[23]の何れか1項に記載のIII族窒化物半導体発光素子の製造方法。
 [25] 前記LED積層工程において、前記LED構造に備えられる発光層のIn濃度が7質量%以上であることを特徴とする上記[24]に記載のIII族窒化物半導体発光素子の製造方法。
 [26] 前記基板加工工程の後であって、前記エピタキシャル工程の前に、前記基板の主面上に多結晶のAlGa1-xN(0≦x≦1)からなる厚さ0.01~0.5μmのバッファ層を、スパッタ法によって積層するバッファ層形成工程が含まれることを特徴とする[15]~[25]の何れか1項に記載のIII族窒化物半導体発光素子の製造方法。
 [27] 前記基板加工工程の後、前記エピタキシャル工程の前に、前記基板の主面上に単結晶のAlGa1-xN(0≦x≦1)からなる厚さ0.01~0.5μmのバッファ層を、スパッタ法によって積層するバッファ層形成工程が備えられていることを特徴とする上記[15]~[25]の何れか1項に記載のIII族窒化物半導体発光素子の製造方法。
 [28] 前記LED積層工程において、前記n型半導体層にn型クラッド層が含まれ、前記p型半導体層にp型クラッド層が含まれ、且つ、前記n型クラッド層及び前記p型クラッド層の少なくとも一つが超格子構造を含む層であることを特徴とする上記[24]~[27]の何れか1項に記載のIII族窒化物半導体発光素子の製造方法。
 [29] 前記エピタキシャル工程において、前記凸部を備えた前記基板の主面上に前記III族窒化物半導体層を形成した後の、前記III族窒化物半導体層の(10-10)面におけるX線ロッキングカーブ(XRC)半値幅が150arcsec以上であることを特徴とする上記[15]~[28]の何れか1項に記載のIII族窒化物半導体発光素子の製造方法。
[24] In the LED stacking step, the LED structure is formed by stacking an n-type semiconductor layer, a light-emitting layer, and a p-type semiconductor layer made of a group III nitride semiconductor in this order on the main surface of the substrate. The method for producing a group III nitride semiconductor light-emitting device according to any one of the above [15] to [23], wherein
[25] The method for producing a group III nitride semiconductor light-emitting element according to the above [24], wherein, in the LED stacking step, an In concentration of a light-emitting layer provided in the LED structure is 7% by mass or more.
[26] After the substrate processing step, and before the epitaxial step, a thickness of 0.1% of the polycrystalline Al x Ga 1-x N (0 ≦ x ≦ 1) is formed on the main surface of the substrate. The group III nitride semiconductor light-emitting device according to any one of [15] to [25], wherein a buffer layer forming step of laminating a buffer layer of 01 to 0.5 μm by a sputtering method is included. Production method.
[27] After the substrate processing step and before the epitaxial step, a thickness of 0.01 to 0 made of single crystal Al x Ga 1-x N (0 ≦ x ≦ 1) on the main surface of the substrate A group III nitride semiconductor light-emitting device according to any one of the above [15] to [25], further comprising a buffer layer forming step of stacking a buffer layer of .5 μm by sputtering. Production method.
[28] In the LED stacking step, the n-type semiconductor layer includes an n-type cladding layer, the p-type semiconductor layer includes a p-type cladding layer, and the n-type cladding layer and the p-type cladding layer. The method for producing a group III nitride semiconductor light-emitting device according to any one of the above [24] to [27], wherein at least one of the layers is a layer containing a superlattice structure.
[29] X in the (10-10) plane of the group III nitride semiconductor layer after forming the group III nitride semiconductor layer on the main surface of the substrate having the convex portion in the epitaxial step. The method for producing a group III nitride semiconductor light-emitting device according to any one of the above [15] to [28], wherein the line rocking curve (XRC) half width is 150 arcsec or more.
 [30] 上記[15]~[29]の何れか1項に記載の製造方法によって得られるIII族窒化物半導体発光素子。
 [31] 上記[1]~[14]、及び[30]の何れか1項に記載のIII族窒化物半導体発光素子が用いられてなることを特徴とするランプ。
[30] A group III nitride semiconductor light-emitting device obtained by the manufacturing method according to any one of [15] to [29].
[31] A lamp comprising the group III nitride semiconductor light-emitting device according to any one of [1] to [14] and [30].
 本発明のIII族窒化物半導体発光素子によれば、基板が、(0001)C面からなるの平面部と複数の凸部とからなる主面と、裏面とを有するものであり、凸部の基部幅が0.05~1.5μmである。また、III族窒化物半導体層は、基板の主面上に、前記平面部及び凸部を覆うようにIII族窒化物半導体がエピタキシャル成長することにより形成されたものである。また、LED構造における発光波長は490~570nmの範囲である。上記の特徴により、本発明では、III族窒化物半導体層の結晶性を適正に制御することができ、この層の上にさらに積層されるLED構造との間で格子不整合が生じるのを抑制することができる。
 また、基板の凸部が、C面に非並行の表面により構成されることにより、上記効果がより顕著となり、格別な効果が得られる。
 これらの特徴により、緑色発光を呈するLED構造に歪み等が生じることが無く、内部量子効率の低下やリーク電流が生じるのを抑制することができるので、電気的特性に優れるとともに発光出力が高いIII族窒化物半導体発光素子が得られる。また、基板とIII族窒化物半導体層との界面が凹凸であるので、光の乱反射によって発光素子の内部への光の閉じ込めが低減されるため、光取り出し効率に優れたIII族窒化物半導体発光素子を実現できる。
 さらに、本発明の発光素子は、n型クラッド層及び/又はp型クラッド層を含み、かつn型クラッド層及び/又はp型クラッド層が超格子構造を含む層構成である場合、出力が格段に向上し、電気特性に優れた発光素子とすることができる。
According to the group III nitride semiconductor light emitting device of the present invention, the substrate has a flat surface composed of a (0001) C plane, a main surface composed of a plurality of convex portions, and a back surface. The base width is 0.05 to 1.5 μm. The group III nitride semiconductor layer is formed by epitaxially growing a group III nitride semiconductor on the main surface of the substrate so as to cover the planar portion and the convex portion. The emission wavelength in the LED structure is in the range of 490 to 570 nm. Due to the above characteristics, the present invention can appropriately control the crystallinity of the group III nitride semiconductor layer and suppress the occurrence of lattice mismatch with the LED structure further stacked on this layer. can do.
Moreover, the said effect becomes more remarkable and the exceptional effect is acquired because the convex part of a board | substrate is comprised by the surface non-parallel to C surface.
With these characteristics, there is no distortion in the LED structure that emits green light, and it is possible to suppress the decrease in internal quantum efficiency and the occurrence of leakage current, so that the electrical characteristics are excellent and the light emission output is high. A group nitride semiconductor light emitting device is obtained. In addition, since the interface between the substrate and the group III nitride semiconductor layer is uneven, light confinement inside the light emitting element is reduced due to diffused reflection of light, so that the group III nitride semiconductor light emitting with excellent light extraction efficiency is achieved. An element can be realized.
Furthermore, the light emitting device of the present invention includes an n-type cladding layer and / or a p-type cladding layer, and when the n-type cladding layer and / or the p-type cladding layer has a superlattice structure, the output is remarkably high. Thus, a light-emitting element having excellent electrical characteristics can be obtained.
 また、本発明のIII族窒化物半導体発光素子の製造方法によれば、基板の(0001)C面からなる平面上に、基部幅が0.05~1.5μmである複数の凸部が形成される。本発明の方法は、基板上に平面部と凸部とからなる主面を形成する基板加工工程と、基板の主面上にIII族窒化物半導体をエピタキシャル成長させることにより、平面及び凸部を覆うようにIII族窒化物半導体層を形成するエピタキシャル工程と、LED構造を、前記LED構造における発光波長を490~570nmの範囲として形成するLED積層工程と、を含んでいる。その結果、結晶性が適正に制御されたIII族窒化物半導体層を形成することができ、この層の上に形成されるLED構造との間で格子不整合が生じるのが抑制でき、歪み等を生じさせること無くLED構造を形成することが可能となる。
 また、基板加工工程において、C面に対して非並行である表面により構成される凸部を形成する方法を用いることにより、上記効果がより顕著となり、格別な効果が得られる。
 これらの特徴により、緑色発光を呈するLED構造を形成する場合においても、内部量子効率及び光取り出し効率に優れ、高い発光特性を有することができる、III族窒化物半導体発光素子を製造することが可能となる。
 さらに、本発明に係るランプは、本発明のIII族窒化物半導体発光素子が用いられるので、発光特性に優れたものとなる。
In addition, according to the method for manufacturing a group III nitride semiconductor light emitting device of the present invention, a plurality of convex portions having a base width of 0.05 to 1.5 μm are formed on the plane composed of the (0001) C plane of the substrate. Is done. In the method of the present invention, a substrate processing step for forming a main surface composed of a flat portion and a convex portion on a substrate, and a group III nitride semiconductor is epitaxially grown on the main surface of the substrate to cover the flat surface and the convex portion. Thus, an epitaxial process for forming the group III nitride semiconductor layer and an LED stacking process for forming the LED structure with an emission wavelength in the LED structure in the range of 490 to 570 nm are included. As a result, a group III nitride semiconductor layer with properly controlled crystallinity can be formed, and it is possible to suppress the occurrence of lattice mismatch with the LED structure formed on this layer, distortion, etc. It is possible to form an LED structure without causing the above.
Moreover, the said effect becomes more remarkable by using the method of forming the convex part comprised by the surface which is non-parallel with respect to C surface in a board | substrate processing process, and a special effect is acquired.
With these features, even when forming an LED structure that emits green light, it is possible to manufacture a group III nitride semiconductor light-emitting device that is excellent in internal quantum efficiency and light extraction efficiency and has high light emission characteristics. It becomes.
Furthermore, since the group III nitride semiconductor light emitting device of the present invention is used, the lamp according to the present invention has excellent light emission characteristics.
本発明に係るIII族窒化物半導体発光素子の一例を模式的に説明する図であり、基板の主面上に、バッファ層と単結晶のIII族窒化物半導体からなる下地層とが形成された積層構造を示す断面図である。It is a figure which illustrates typically an example of the group III nitride semiconductor light-emitting device based on this invention, and the base layer which consists of a buffer layer and a single crystal group III nitride semiconductor was formed on the main surface of a board | substrate It is sectional drawing which shows a laminated structure. 本発明に係るIII族窒化物半導体発光素子の一例を模式的に説明する図であり、図1の要部を示す斜視図である。It is a figure which illustrates typically an example of the group III nitride semiconductor light-emitting device based on this invention, and is a perspective view which shows the principal part of FIG. 本発明に係るIII族窒化物半導体発光素子の一例を模式的に説明する図であり、図1に示す積層構造の上にLED構造が形成された発光素子を示す断面図である。It is a figure which illustrates typically an example of the group III nitride semiconductor light-emitting device based on this invention, and is sectional drawing which shows the light-emitting device in which the LED structure was formed on the laminated structure shown in FIG. 本発明に係るIII族窒化物半導体発光素子の一例を模式的に説明する図であり、図3の要部を示す拡大断面図である。It is a figure which illustrates typically an example of the group III nitride semiconductor light-emitting device based on this invention, and is an expanded sectional view which shows the principal part of FIG. 本発明に係るIII族窒化物半導体発光素子を用いて構成したランプの一例を模式的に説明する概略図である。It is the schematic explaining typically an example of the lamp | ramp comprised using the group III nitride semiconductor light-emitting device based on this invention. 本発明に係るIII族窒化物半導体発光素子の実験例について説明する図であり、基板に形成された基部幅を1μmとした場合の発光特性を示すグラフである。It is a figure explaining the experiment example of the group III nitride semiconductor light-emitting device based on this invention, and is a graph which shows the light emission characteristic when the base part width | variety formed in the board | substrate is 1 micrometer. 本発明に係るIII族窒化物半導体発光素子の実験例について説明する図であり、基板に形成された基部幅を2μmとした場合の発光特性を示すグラフである。It is a figure explaining the experiment example of the group III nitride semiconductor light-emitting device based on this invention, and is a graph which shows the light emission characteristic when the base part width | variety formed in the board | substrate was 2 micrometers.
 以下、本発明に係るIII族窒化物半導体発光素子(以下、発光素子と略称することがある)及びその製造方法、並びにランプの一実施形態について、図面を適宜参照しながら説明する。しかしながら、本発明はこれら例のみに限定されるものではなく、特に問題のない限り、数、大きさ、厚さ、形状、位置などの、変更、追加、省略などをしてもよい。
 図1は、本発明に係る発光素子1の一部を説明するための図である。基板101の主面10上に、バッファ層102と単結晶の下地層(III族窒化物半導体層)103とが形成された積層構造を示した断面図である。図2は、図1に示す基板101を説明するための斜視図である。図3は、図1に示す積層構造の下地層(III族窒化物半導体層)103上に、LED構造20が形成されている、発光素子1を示す断面図である。図中、符号107は正極ボンディングパッドを示し、符号108は負極ボンディングパッドを示している。図4は、図3に示す発光素子1の内の、n型半導体層104、発光層105及びp型半導体層106の断面を示す部分断面図である。
Hereinafter, a group III nitride semiconductor light emitting device (hereinafter sometimes abbreviated as a light emitting device) according to the present invention, a manufacturing method thereof, and an embodiment of a lamp will be described with reference to the drawings as appropriate. However, the present invention is not limited to these examples, and the number, size, thickness, shape, position, and the like may be changed, added, omitted, etc., as long as there is no particular problem.
FIG. 1 is a diagram for explaining a part of a light emitting device 1 according to the present invention. 1 is a cross-sectional view showing a laminated structure in which a buffer layer and a single crystal underlayer (group III nitride semiconductor layer) 103 are formed on a main surface 10 of a substrate 101. FIG. FIG. 2 is a perspective view for explaining the substrate 101 shown in FIG. FIG. 3 is a cross-sectional view showing the light-emitting element 1 in which the LED structure 20 is formed on the base layer (group III nitride semiconductor layer) 103 having the stacked structure shown in FIG. In the figure, reference numeral 107 denotes a positive electrode bonding pad, and reference numeral 108 denotes a negative electrode bonding pad. 4 is a partial cross-sectional view showing cross sections of the n-type semiconductor layer 104, the light-emitting layer 105, and the p-type semiconductor layer 106 in the light-emitting element 1 shown in FIG.
[III族窒化物半導体発光素子]
 本発明に係る発光素子1は、図1~図4に示す一例のように概略構成されており、基板101上に形成された単結晶の下地層(III族窒化物半導体層)103上に、LED構造20が形成されている。基板101は、裏面と、(0001)C面からなる平面部11と、C面に非平行の表面12cからなる複数の凸部12とからなる主面10を有する。凸部12の基部幅は0.05~3μmである。下地層103は、基板101の主面10上に、平面部11及び凸部12を覆うようにIII族窒化物半導体がエピタキシャル成長することによって形成されたものである。LED構造20における発光波長は490~570nmの範囲である。また、この図示例においては、基板101上にバッファ層102が設けられ、このバッファ層102上にさらに下地層103が形成されている。
[Group III nitride semiconductor light emitting device]
A light-emitting element 1 according to the present invention is schematically configured as in the example shown in FIGS. 1 to 4, and is formed on a single crystal underlayer (group III nitride semiconductor layer) 103 formed on a substrate 101. An LED structure 20 is formed. The substrate 101 has a main surface 10 composed of a back surface, a flat portion 11 made of a (0001) C plane, and a plurality of convex portions 12 made of a surface 12c non-parallel to the C surface. The base width of the convex portion 12 is 0.05 to 3 μm. The underlayer 103 is formed by epitaxially growing a group III nitride semiconductor on the main surface 10 of the substrate 101 so as to cover the flat portion 11 and the convex portion 12. The emission wavelength in the LED structure 20 is in the range of 490 to 570 nm. In the illustrated example, a buffer layer 102 is provided on the substrate 101, and a base layer 103 is further formed on the buffer layer 102.
 本実施形態で説明される、本発明の一例である発光素子1は、図3で示されるように、一面電極型である。上述したような基板101上に、バッファ層102と、III族元素としてGaを含有するIII族窒化物半導体からなるLED構造(III族窒化物半導体層)20とが形成されている。発光素子1に備えられるLED構造20は、図3に示すように、n型半導体層104、発光層105及びp型半導体層106がこの順で積層されたものである。 The light-emitting element 1 which is an example of the present invention described in the present embodiment is a single electrode type as shown in FIG. A buffer layer 102 and an LED structure (Group III nitride semiconductor layer) 20 made of a Group III nitride semiconductor containing Ga as a Group III element are formed on the substrate 101 as described above. As shown in FIG. 3, the LED structure 20 provided in the light-emitting element 1 includes an n-type semiconductor layer 104, a light-emitting layer 105, and a p-type semiconductor layer 106 stacked in this order.
 本発明のIII族窒化物半導体発光素子は、詳細を後述するLED構造において、発光層を構成する井戸層のインジウム(In)含有量を高濃度になるように制御することにより、発光波長が490nm以上の緑色発光を呈するものであり、より好ましくは490~570nmの範囲の発光波長を呈するものである。本発明の素子は、良好な緑色発光が可能である。
 以下、発光素子1の積層構造について詳しく説明する。
The group III nitride semiconductor light-emitting device of the present invention has a light emission wavelength of 490 nm by controlling the indium (In) content of the well layer constituting the light-emitting layer to be high concentration in the LED structure described in detail later. It exhibits green light emission as described above, and more preferably exhibits an emission wavelength in the range of 490 to 570 nm. The element of the present invention can emit good green light.
Hereinafter, the laminated structure of the light emitting element 1 will be described in detail.
『基板』
(基板の材料)
 本実施形態の発光素子において、基板101に用いることができる材料としては、III族窒化物半導体結晶が表面にエピタキシャル成長される基板材料であれば特に限定されず、各種材料を選択して用いることができる。例えば、サファイア、SiC、シリコン、酸化亜鉛、酸化マグネシウム、酸化マンガン、酸化ジルコニウム、酸化マンガン亜鉛鉄、酸化マグネシウムアルミニウム、ホウ化ジルコニウム、酸化ガリウム、酸化インジウム、酸化リチウムガリウム、酸化リチウムアルミニウム、酸化ネオジウムガリウム、酸化ランタンストロンチウムアルミニウムタンタル、酸化ストロンチウムチタン、酸化チタン、ハフニウム、タングステン、及びモリブデン等が挙げられる。
 上記基板材料の中でも、特に、サファイアを用いることが好ましい。またサファイア基板のc面上に中間層(バッファ層)102が形成されることが望ましい。
"substrate"
(Substrate material)
In the light emitting device of the present embodiment, the material that can be used for the substrate 101 is not particularly limited as long as it is a substrate material on which a group III nitride semiconductor crystal is epitaxially grown, and various materials can be selected and used. it can. For example, sapphire, SiC, silicon, zinc oxide, magnesium oxide, manganese oxide, zirconium oxide, manganese zinc iron, magnesium aluminum oxide, zirconium boride, gallium oxide, indium oxide, lithium gallium oxide, lithium aluminum oxide, neodymium gallium oxide Lanthanum strontium oxide aluminum tantalum, strontium titanium oxide, titanium oxide, hafnium, tungsten, molybdenum and the like.
Among the substrate materials, sapphire is particularly preferable. It is desirable that an intermediate layer (buffer layer) 102 be formed on the c-plane of the sapphire substrate.
 なお、上記基板材料の内、高温でアンモニアに接触することで化学的な変性を引き起こすことが知られている酸化物基板や金属基板等を用いる場合には、バッファ層102の使用が好ましい。例えば、アンモニアを使用せずにバッファ層102を成膜した後に、アンモニアを使用する方法で後述の下地層103を成膜する場合には、バッファ層102がコート層としても作用するので、基板101の化学的な変質を防ぐ点で効果的である。
 また、バッファ層102をスパッタ法で形成する事も好ましい。バッファ層102がスパッタ法により形成された場合、基板101の温度を低く抑えることが可能である。よって、高温で分解してしまう性質を持つ材料からなる基板101を用いた場合でも、バッファ層102をスパッタ法で形成することによって、基板101にダメージを与えることなく、基板上への各層の成膜が可能である。
In the case of using an oxide substrate or a metal substrate that is known to cause chemical modification by contact with ammonia at a high temperature, the buffer layer 102 is preferably used. For example, in the case where an underlayer 103 described later is formed by a method using ammonia after forming the buffer layer 102 without using ammonia, the buffer layer 102 also functions as a coat layer. It is effective in preventing chemical alteration.
It is also preferable to form the buffer layer 102 by sputtering. In the case where the buffer layer 102 is formed by a sputtering method, the temperature of the substrate 101 can be kept low. Therefore, even when the substrate 101 made of a material that decomposes at a high temperature is used, the formation of each layer on the substrate without damaging the substrate 101 by forming the buffer layer 102 by sputtering. A membrane is possible.
(基板の形状:平面と凸部とからなる主面)
 本実施形態で用いられる基板101の主面10には、図2に示す例のように、複数の凸部12が形成されている。基板101の主面10において凸部12の形成されていない部分は、(0001)C面からなる平面部11により構成されている。従って、図2及び図3に示す例のように、基板101の主面10は、C面からなる平面部11と、複数の凸部12とから構成される。
(Substrate shape: main surface consisting of flat and convex parts)
A plurality of convex portions 12 are formed on the main surface 10 of the substrate 101 used in this embodiment, as in the example shown in FIG. A portion of the main surface 10 of the substrate 101 where the convex portion 12 is not formed is constituted by a flat portion 11 made of a (0001) C plane. Therefore, as in the example shown in FIGS. 2 and 3, the main surface 10 of the substrate 101 is composed of a flat surface portion 11 made of a C surface and a plurality of convex portions 12.
 凸部12の表面は、図1及び図2に示すように、C面に対して非平行の表面12cである。この表面12cにはC面が現れていない。凸部12の形状、位置、大きさや数は必要に応じて選択できるが、図1及び図2に示す凸部12は、伏せたお椀状(半球状)の形状である。すなわち、基部12aの平面形状(凸部12の底面形状)が略円形であり、凸部12は上部に向かうほど徐々に外形(断面積)が小さくなる形状である。凸部12の側面12bは外側に向かって湾曲している。
 なお、凸部が、詳細を後述するように、サファイア以外の酸化物又は窒化物から構成される場合は、円柱形としても構わない。
 凸部12の平面配置は、図1及び図2に示すように、碁盤目状に等間隔に配置されている。
As shown in FIGS. 1 and 2, the surface of the convex portion 12 is a surface 12 c that is non-parallel to the C plane. The C surface does not appear on the surface 12c. Although the shape, position, size, and number of the convex portions 12 can be selected as necessary, the convex portions 12 shown in FIGS. 1 and 2 have an obstructed bowl-like (hemispherical) shape. That is, the planar shape of the base 12a (the shape of the bottom surface of the convex portion 12) is substantially circular, and the convex portion 12 has a shape in which the outer shape (cross-sectional area) gradually decreases toward the top. The side surface 12b of the convex portion 12 is curved outward.
In addition, when a convex part is comprised from oxides or nitrides other than sapphire so that a detail may mention later, it is good also as a column shape.
As shown in FIGS. 1 and 2, the planar arrangement of the protrusions 12 is arranged in a grid pattern at regular intervals.
 また、図1及び図2に示す凸部12の例では、基部幅dが0.05~1.5μm、高さhが0.05~1μmの範囲で、且つ基部幅dの1/4以上である。また、互いに隣接する凸部12間の間隔dは、基部幅dの0.5~5倍である。ここで、凸部12の基部幅dとは、凸部12の底面(基部12a)における最大の幅のことをいう。また、隣接する凸部12との間隔dとは、凸部12の基部12aの縁と、前記凸部12に最も近接した凸部12の基部12aの縁の間の最短距離をいう。 1 and 2, the base width d 1 is 0.05 to 1.5 μm, the height h is 0.05 to 1 μm, and 1 / of the base width d 1 . 4 or more. Further, the distance d 2 between the adjacent convex portions 12 is 0.5 to 5 times the base width d 1 . Here, the base width d 1 of the convex portion 12 refers to the maximum width at the bottom surface (base portion 12 a) of the convex portion 12. The distance d 2 between the adjacent convex portions 12 refers to the shortest distance between the edge of the base portion 12 a of the convex portion 12 and the edge of the base portion 12 a of the convex portion 12 closest to the convex portion 12.
 互いに隣接する凸部12間の間隔dは、基部幅dの0.5~5倍であることが好ましい。互いに隣接する凸部12間の間隔dが基部幅dの0.5倍未満であると、その上にn型半導体層104(半導体層30)が形成される下地層103をエピタキシャル成長する際に、C面からなる平面部11上からの結晶成長が促進され難くなり、凸部12を下地層103で完全に埋め込むことが難しくなり、また、下地層103の表面103aの平坦性が十分に得られない場合がある。従って、前記のような条件で凸部12を埋めた下地層103上にさらにLED構造をなす半導体層の結晶を形成した場合、この結晶にはピットが多く形成されてしまい、形成されたIII族窒化物半導体発光素子の出力や電気特性等の悪化につながる場合がある。一方で、凸部12間の間隔dが基部幅dの5倍を超えると、基板101を用いてIII族窒化物半導体発光素子を形成した場合に、基板101と、基板101上に形成されたIII族窒化物半導体層との界面での光の乱反射の機会が減少し、光の取り出し効率を十分に向上させることができなくなる場合がある。 The distance d 2 between the convex portions 12 adjacent to each other is preferably 0.5 to 5 times the base width d 1 . If the interval d 2 between the convex portions 12 adjacent is less than 0.5 times the base width d 1 from each other, when epitaxially growing a base layer 103 of n-type semiconductor layer 104 (semiconductor layer 30) is formed thereon In addition, it is difficult to promote crystal growth from the C-plane flat portion 11, and it becomes difficult to completely fill the convex portion 12 with the underlayer 103, and the flatness of the surface 103 a of the underlayer 103 is sufficiently high. It may not be obtained. Therefore, when a semiconductor layer crystal having an LED structure is further formed on the base layer 103 in which the convex portion 12 is buried under the above-described conditions, a lot of pits are formed in the crystal, and the formed group III In some cases, the output and electrical characteristics of the nitride semiconductor light emitting device may be deteriorated. On the other hand, when the distance d 2 between the protrusions 12 exceeds 5 times the base width d 1 , the substrate 101 is formed on the substrate 101 when the group III nitride semiconductor light emitting device is formed using the substrate 101. In some cases, the chance of irregular reflection of light at the interface with the group III nitride semiconductor layer is reduced, and the light extraction efficiency cannot be sufficiently improved.
 基部幅dは0.05~1.5μmであることが好ましい。基部幅dが0.05μm未満であると、基板101を用いてIII族窒化物半導体発光素子を形成した場合に、光を乱反射させる効果が十分に得られない場合がある。また、基部幅dが1.5μmを超えると、凸部12を完全に埋めて下地層103をエピタキシャル成長させることが困難になる場合がある。また、平坦性及び結晶性の良好な下地層が形成できたとしても、下地層と発光層との間の歪みが大きくなり、内部量子効率の低下を招く可能性がある。
 また、基部幅dは、上記範囲内ならば、より小さい構成とすればするほど、発光素子の発光出力がさらに向上する効果が得られる。
 基部幅dは0.05~1μmとされることがより好ましい。
The base width d 1 is preferably 0.05 to 1.5 μm. When the base width d 1 is less than 0.05 μm, when a group III nitride semiconductor light emitting device is formed using the substrate 101, the effect of irregularly reflecting light may not be obtained sufficiently. On the other hand, if the base width d 1 exceeds 1.5 μm, it may be difficult to completely fill the convex portion 12 and epitaxially grow the base layer 103. Further, even if an underlayer with good flatness and crystallinity can be formed, the distortion between the underlayer and the light-emitting layer may increase, leading to a decrease in internal quantum efficiency.
In addition, if the base width d 1 is within the above range, the light emission output of the light emitting element can be further improved as the configuration is made smaller.
The base width d 1 is more preferably 0.05 to 1 μm.
 凸部12の高さhは0.05~1μmであることが好ましい。凸部12の高さhが0.05μm未満であると、基板101を用いてIII族窒化物半導体発光素子を形成した場合に、光を乱反射させる効果が十分に得られない場合がある。また、凸部12の高さhが1μmを超えると、凸部12を埋めて下地層103をエピタキシャル成長することが困難になり、下地層103の表面14aの平坦性が十分に得られない場合がある。 The height h of the convex portion 12 is preferably 0.05 to 1 μm. When the height h of the convex portion 12 is less than 0.05 μm, when a group III nitride semiconductor light emitting device is formed using the substrate 101, the effect of irregularly reflecting light may not be sufficiently obtained. In addition, if the height h of the convex portion 12 exceeds 1 μm, it may be difficult to epitaxially grow the base layer 103 by filling the convex portion 12, and the flatness of the surface 14a of the base layer 103 may not be sufficiently obtained. is there.
 また、凸部12の高さhは基部幅dの1/4以上であることが好ましい。より好ましくは1/2以上であって1/1以下である。凸部12の高さhが基部幅dの1/4未満であると、基板101を用いてIII族窒化物半導体発光素子を形成した場合の光を乱反射させる効果や、光の取り出し効率を向上させる効果が十分に得られない場合がある。 The height h of the convex portion 12 is preferably 1/4 or more base portion width d 1. More preferably, it is ½ or more and 1/1 or less. When the height h of the convex portion 12 is less than ¼ of the base width d 1 , the effect of irregularly reflecting light when the substrate 101 is used to form a group III nitride semiconductor light-emitting device and the light extraction efficiency are improved. The effect of improving may not be obtained sufficiently.
 凸部12の形状は、図1及び図2に示す例に限定されるものではなく、C面に非平行の表面から構成されるものであれば、いかなる形状であってもよい。例えば、基部の平面形状が略多角形であり、上部に向かって徐々に外形が小さくなる形状であってもよく、側面12が外側に向かって湾曲する形状であってもよい。また、凸部12の形状は、略円錐状や、側面幅が上部に向かって徐々に小さくなる略多角錐状であってもよい。側面は外側に向かって張り出していてもよい。また、側面の傾斜角度は、多段階に、例えば2段階的に変化する形状であってもよい。また、凸部が、詳細を後述するように、サファイア以外の酸化物又は窒化物から構成される場合は、円柱形としても良い。
 また、凸部12の平面配置も、図1及び図2に示す例(碁盤目状)に限定されるものではなく、等間隔に配置されてもよいし、等間隔でない配置であってもよい。また、凸部12の平面配置は、四角形状であってもよいし、三角形状であってもよいし、ランダムであってもよい。
The shape of the convex part 12 is not limited to the example shown in FIG.1 and FIG.2, and what kind of shape may be sufficient if it is comprised from the surface non-parallel to C surface. For example, the planar shape of the base may be substantially polygonal, and the outer shape may gradually decrease toward the top, or the side surface 12 may be curved outward. Moreover, the shape of the convex part 12 may be a substantially conical shape or a substantially polygonal pyramid whose side width gradually decreases toward the top. The side surface may protrude outward. Further, the side surface inclination angle may be a shape that changes in multiple stages, for example, in two stages. Moreover, when a convex part is comprised from oxides or nitrides other than sapphire so that a detail may mention later, it is good also as a column shape.
Further, the planar arrangement of the protrusions 12 is not limited to the example shown in FIGS. 1 and 2 (a grid pattern), and may be arranged at equal intervals or may be arranged at non-equal intervals. . Further, the planar arrangement of the convex portions 12 may be a quadrangular shape, a triangular shape, or a random shape.
 なお、本実施形態おいて、基板101上に設けられる凸部12は、詳細を後述する製造方法により、基板101をエッチングすることによって形成することができる。しかしながら、製造方法はこれには限定されない。例えば、基板上に、凸部をなす別の材料を基板101のC面上に堆積させることによって凸部を形成してもよい。上記基板上に凸部をなす別の材料を堆積させる方法としては、例えば、スパッタ法、蒸着法、及びCVD法等の各方法を用いることができる。また、凸部をなす材料としては、酸化物や窒化物等の、基板の材料とほぼ同等の屈折率を有する材料を用いることが好ましい。基板がサファイア基板の場合には、例えば、SiO、Al、SiN、及びZnO等を用いることができる。 In the present embodiment, the convex portion 12 provided on the substrate 101 can be formed by etching the substrate 101 by a manufacturing method described in detail later. However, the manufacturing method is not limited to this. For example, the convex portion may be formed by depositing another material forming the convex portion on the C surface of the substrate 101 on the substrate. As a method for depositing another material for forming a convex portion on the substrate, for example, a sputtering method, a vapor deposition method, a CVD method, or the like can be used. Further, as the material forming the convex portion, it is preferable to use a material having a refractive index substantially equal to the material of the substrate, such as an oxide or a nitride. When the substrate is a sapphire substrate, for example, SiO 2 , Al 2 O 3 , SiN, ZnO, or the like can be used.
 本発明においては、基板101を、平面部11及び凸部12からなる主面10が備えられた上記構成としたことにより、基板101と、詳細を後述する下地層103との界面は、バッファ層102を介して凹凸とされる。このため、凹凸によって光の乱反射によって発光素子の内部への光の閉じ込めが低減され、光取り出し効率に優れた発光素子1が実現できる。また、基板101を上記構成としたことにより、下地層103の結晶性が適正に制御できるので、後述のLED構造20に備えられる発光層105(井戸層105b)と下地層103との間に格子不整合が生じるのが抑制される。これにより、発光層105に備えられる井戸層105bのIn濃度を高濃度として、緑色発光を呈する発光素子1を構成する場合であっても、井戸層105bに歪み等が生じるのが抑制される。従って、内部量子効率に優れ、高い発光出力を備えるとともに、リーク電流の発生が抑制されて電気的特性に優れる、発光素子1を実現することができる。 In the present invention, since the substrate 101 has the above-described configuration including the main surface 10 including the flat portion 11 and the convex portion 12, the interface between the substrate 101 and the underlayer 103, which will be described in detail later, is a buffer layer. Concavities and convexities are formed through 102. For this reason, confinement of light inside the light emitting element due to irregular reflection of light due to the unevenness is reduced, and the light emitting element 1 having excellent light extraction efficiency can be realized. Further, since the substrate 101 has the above-described structure, the crystallinity of the base layer 103 can be appropriately controlled, so that a lattice is formed between the light emitting layer 105 (well layer 105b) provided in the LED structure 20 described later and the base layer 103. Inconsistencies are prevented from occurring. Thereby, even when the In concentration of the well layer 105b provided in the light emitting layer 105 is set to a high concentration to constitute the light emitting element 1 that emits green light, the occurrence of distortion or the like in the well layer 105b is suppressed. Accordingly, it is possible to realize the light emitting device 1 that has excellent internal quantum efficiency, has a high light emission output, and is excellent in electrical characteristics by suppressing generation of leakage current.
『バッファ層』
 本発明においては、基板101の主面10上にバッファ層102を形成し、その上に、後述の下地層103を形成することが好ましい。
 バッファ層102は、AlGa1-XN(0≦x≦1)の組成で基板101上に積層される。例えばバッファ層は、V族元素を含むガスと金属材料とをプラズマで活性化して反応させる反応性スパッタ法によって形成することができる。本実施形態のような、プラズマ化した金属原料を用いた方法で成膜された膜は、配向が得られ易いという作用がある。
"Buffer layer"
In the present invention, it is preferable to form the buffer layer 102 on the main surface 10 of the substrate 101 and form an underlayer 103 described later on the buffer layer 102.
The buffer layer 102 is stacked on the substrate 101 with a composition of Al X Ga 1-X N (0 ≦ x ≦ 1). For example, the buffer layer can be formed by a reactive sputtering method in which a gas containing a group V element and a metal material are activated and reacted with plasma. A film formed by a method using a plasma metal raw material as in this embodiment has an effect that alignment is easily obtained.
 バッファ層102は、基板101と下地層103との格子定数の違いを緩和し、その結果、基板101のC面上にC軸配向した単結晶層が形成することを容易にする働きがある。従って、基板上に形成されたバッファ層102の上に単結晶のIII族窒化物半導体層(下地層103)を積層すると、バッファ層なしの場合と比較して、より結晶性に優れた下地層103が形成できる。なお、本実施形態では、基板101と下地層103の間にバッファ層102を形成することが最も好ましいが、バッファ層を省略した構成とすることも可能である。 The buffer layer 102 has a function of alleviating the difference in lattice constant between the substrate 101 and the base layer 103 and, as a result, easily forming a C-axis oriented single crystal layer on the C plane of the substrate 101. Therefore, when a single-crystal group III nitride semiconductor layer (underlayer 103) is stacked on the buffer layer 102 formed on the substrate, the underlayer has better crystallinity than the case without the buffer layer. 103 can be formed. In the present embodiment, it is most preferable to form the buffer layer 102 between the substrate 101 and the base layer 103, but a configuration in which the buffer layer is omitted may be employed.
(バッファ層の組成)
 本実施形態では、バッファ層102が、上記AlGa1-XN(0≦x≦1)の組成であることが好ましく、AlNであることがより好ましい。一般に、基板上に積層させるバッファ層としては、Alを含有する組成であることが好ましく、一般式AlGa1-XN(0≦x≦1)で表されるIII族窒化物化合物であれば、如何なる材料も用いることができる。さらに、V族としてAsやPが含有される組成とすることもできる。バッファ層が、AlGaNの組成でである場合、Alの組成が50%以上であることがより好ましい。
 また、バッファ層102を構成する材料としては、III族窒化物半導体と同じ結晶構造を有するものを用いることができるが、格子の長さが後述の下地層を構成するIII族窒化物半導体に近いものが好ましく、特に周期表のIIIa族元素の窒化物が好適である。
(Composition of buffer layer)
In the present embodiment, the buffer layer 102 preferably has a composition of Al X Ga 1-X N (0 ≦ x ≦ 1), and more preferably AlN. In general, the buffer layer laminated on the substrate preferably has a composition containing Al, and may be a group III nitride compound represented by the general formula Al X Ga 1-X N (0 ≦ x ≦ 1). Any material can be used. Furthermore, it can also be set as the composition containing As and P as V group. When the buffer layer has an AlGaN composition, the Al composition is more preferably 50% or more.
In addition, as a material constituting the buffer layer 102, a material having the same crystal structure as that of the group III nitride semiconductor can be used, but the length of the lattice is close to that of the group III nitride semiconductor constituting the underlayer described later. And nitrides of group IIIa elements of the periodic table are particularly preferred.
(バッファ層の結晶構造)
 バッファ層をなすIII族窒化物の結晶は、六方晶系の結晶構造を持ち、成膜条件をコントロールすることにより、単結晶膜とすることができる。また、III族窒化物の結晶は、上記成膜条件をコントロールすることにより、六角柱を基本とした集合組織からなる柱状結晶(多結晶)とすることも可能である。なお、ここで説明する柱状結晶とは、隣接する結晶粒との間に結晶粒界を形成して隔てられており、それ自体は縦断面形状として柱状になっている結晶のことをいう。
(Crystal structure of buffer layer)
The group III nitride crystal forming the buffer layer has a hexagonal crystal structure, and can be formed into a single crystal film by controlling the film formation conditions. Further, the group III nitride crystal can be formed into a columnar crystal (polycrystal) having a texture based on a hexagonal column by controlling the film forming conditions. Note that the columnar crystal described here is a crystal which is separated by forming a crystal grain boundary between adjacent crystal grains, and is itself a columnar shape as a longitudinal sectional shape.
 バッファ層102は、単結晶構造であることが、バッファ機能の面から好ましい。上述したように、III族窒化物の結晶は六方晶系の結晶を有し、六角柱を基本とした組織を形成する。III族窒化物の結晶は、成膜条件等を制御することにより、上方向に成長した結晶だけではなく、面内方向にも成長した結晶を成膜することが可能である。上述のような単結晶構造を有するバッファ層102を基板101上に成膜した場合、バッファ層102のバッファ機能が有効に作用する。このため、その上に成膜されるIII族窒化物半導体の層は、良好な配向性及び結晶性を持つ結晶膜となる。 The buffer layer 102 preferably has a single crystal structure from the viewpoint of the buffer function. As described above, the group III nitride crystal has a hexagonal crystal and forms a structure based on a hexagonal column. By controlling the film forming conditions and the like for the group III nitride crystal, it is possible to form a crystal grown not only in the upward direction but also in the in-plane direction. When the buffer layer 102 having the single crystal structure as described above is formed over the substrate 101, the buffer function of the buffer layer 102 effectively operates. Therefore, the group III nitride semiconductor layer formed thereon is a crystal film having good orientation and crystallinity.
(バッファ層の膜厚)
 バッファ層102の膜厚は、0.01~0.5μmの範囲であることが好ましい。バッファ層102の膜厚を上記範囲とすることにより、良好な配向性を有し、かつ、バッファ層102上にIII族窒化物半導体からなる各層を成膜する際に、コート層として有効に機能するバッファ層102が得られる。バッファ層102の膜厚が0.01μm未満であると、上述したコート層としての充分な機能が得られず、また、基板101と下地層103との間の格子定数の違いを緩和するバッファ作用が充分に得られない場合がある。また、0.5μmを超える膜厚でバッファ層102を形成した場合、バッファ作用やコート層としての機能には変化が無いのにも関わらず成膜処理時間が長くなり、生産性が低下する場合がある。また、バッファ層102の膜厚は、0.02~0.1μmの範囲であることがより好ましい。
(Buffer layer thickness)
The thickness of the buffer layer 102 is preferably in the range of 0.01 to 0.5 μm. By setting the thickness of the buffer layer 102 in the above range, it has good orientation and functions effectively as a coating layer when each layer made of a group III nitride semiconductor is formed on the buffer layer 102. The buffer layer 102 is obtained. When the film thickness of the buffer layer 102 is less than 0.01 μm, a sufficient function as the above-described coat layer cannot be obtained, and the buffer function that alleviates the difference in lattice constant between the substrate 101 and the base layer 103. May not be sufficiently obtained. In addition, when the buffer layer 102 is formed with a film thickness exceeding 0.5 μm, the film formation processing time is prolonged and the productivity is lowered although there is no change in the buffer function and the function as the coat layer. There is. The thickness of the buffer layer 102 is more preferably in the range of 0.02 to 0.1 μm.
『III族窒化物半導体層(下地層)』
 本発明の発光素子1に備えられる下地層(III族窒化物半導体層)103は、上述したようにIII族窒化物半導体からなり、従来公知のMOCVD法によってバッファ層102上に積層して成膜することができる。また、本例で説明する下地層103は、上述したように、基板101の主面10上に、バッファ層102を介して、平面部11及び凸部12を覆うようにIII族窒化物半導体がエピタキシャル成長することによって形成される。
"Group III nitride semiconductor layer (underlayer)"
The underlayer (group III nitride semiconductor layer) 103 provided in the light emitting device 1 of the present invention is made of a group III nitride semiconductor as described above, and is laminated on the buffer layer 102 by a conventionally known MOCVD method. can do. In addition, as described above, the base layer 103 described in this example is formed of a group III nitride semiconductor on the main surface 10 of the substrate 101 via the buffer layer 102 so as to cover the planar portion 11 and the convex portion 12. It is formed by epitaxial growth.
(下地層の材料)
 下地層103の材料としては、例えば、下地層103として、AlGaInN(0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=1)を用いることができる。AlGa1―yN層(0≦y≦1、好ましくは0≦y≦0.5、さらに好ましくは0≦y≦0.1)を下地層103として用いることが、結晶性の良好な下地層103を形成できる点でより好ましい。
 下地層103の材料は、上述したように、バッファ層102と異なる材料を用いても良いが、バッファ層102と同じ材料を用いることも可能である。
(Underlayer material)
As the material of the base layer 103, for example, Al x Ga y In z N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ z ≦ 1, x + y + z = 1) can be used as the base layer 103. . The use of an Al y Ga 1-y N layer (0 ≦ y ≦ 1, preferably 0 ≦ y ≦ 0.5, more preferably 0 ≦ y ≦ 0.1) as the base layer 103 provides good crystallinity. It is more preferable in that the underlayer 103 can be formed.
As described above, a material different from that of the buffer layer 102 may be used as the material of the base layer 103, but the same material as that of the buffer layer 102 may be used.
 下地層103は、必要に応じて、n型不純物が1×1017~1×1019個/cmの範囲内でドープされた構成としても良いが、アンドープ(<1×1017個/cm)の構成とすることもできる。アンドープの方が良好な結晶性を維持できる点で好ましい。
 基板101が導電性である場合には、下地層103にドーパントをドープして導電性とすることにより、発光素子の上下に電極を設けて使用することができる。一方、基板101に絶縁性の材料を用いる場合には、発光素子の同じ面に正極及び負極の各電極が設けられたチップ構造をとることになる。よってこの場合、下地層103はドープしない結晶とした方が、結晶性が良好となるので好ましい。
 下地層103にドープされるn型不純物としては、特に限定されないが、例えば、Si、GeおよびSn等が挙げられ、好ましくはSiおよびGeが挙げられる。
The underlayer 103 may have a configuration in which n-type impurities are doped in the range of 1 × 10 17 to 1 × 10 19 atoms / cm 3 as necessary, but may be undoped (<1 × 10 17 atoms / cm 3). 3 ). Undoped is preferable in that good crystallinity can be maintained.
In the case where the substrate 101 is conductive, the base layer 103 is doped with a dopant so that the substrate 101 is conductive, whereby electrodes can be provided above and below the light emitting element. On the other hand, when an insulating material is used for the substrate 101, a chip structure in which the positive electrode and the negative electrode are provided on the same surface of the light-emitting element is employed. Therefore, in this case, it is preferable that the base layer 103 be an undoped crystal because crystallinity is improved.
The n-type impurity doped in the base layer 103 is not particularly limited, and examples thereof include Si, Ge, and Sn, and preferably Si and Ge.
(下地層の厚さ)
 下地層103の厚さは、1~8μmの範囲とすることが、結晶性の良好な下地層が得られる点で好ましく、2~5μmの範囲とすることが、成膜に要する工程時間を短縮でき、生産性が向上する点でより好ましい。
 また、図1に示す下地層103の最大厚さHは、基板101の凸部12の高さhの2倍以上とすることが、表面103aの平坦な下地層103が得られるため好ましい。下地層103の最大厚さHが、凸部12の高さhの2倍より小さいと、凸部12を覆うように成長した下地層103の表面103aの平坦性が不充分となり、その結果、下地層103上に積層され、LED構造20を構成する各層の結晶性が低下する虞がある。
(Underlayer thickness)
The thickness of the underlayer 103 is preferably in the range of 1 to 8 μm, from the viewpoint of obtaining an underlayer with good crystallinity, and in the range of 2 to 5 μm shortens the process time required for film formation. This is more preferable in terms of productivity.
In addition, it is preferable that the maximum thickness H of the base layer 103 illustrated in FIG. 1 is not less than twice the height h of the convex portion 12 of the substrate 101 because a flat base layer 103 having a surface 103a can be obtained. If the maximum thickness H of the base layer 103 is smaller than twice the height h of the convex portion 12, the flatness of the surface 103a of the base layer 103 grown so as to cover the convex portion 12 becomes insufficient. There is a possibility that the crystallinity of each layer which is laminated on the underlayer 103 and constitutes the LED structure 20 is lowered.
(下地層のX線ロッキングカーブ半値幅)
 本発明の発光素子1では、下地層103の(10-10)面のX線ロッキングカーブ(XRC)半値幅が150arcsec以上であることが好ましい。下地層103のXRC半値幅が150arcsec以上であれば、下地層103の結晶性が高くなり過ぎず適正範囲に制御されるので、表面103a上に積層されるLED構造20、特に発光層105に備えられる井戸層105b、に歪等が生じることが無く、良好な結晶層となる。
(Half width of X-ray rocking curve of underlayer)
In the light emitting device 1 of the present invention, it is preferable that the X-ray rocking curve (XRC) half width of the (10-10) plane of the underlayer 103 is 150 arcsec or more. If the XRC half width of the underlayer 103 is 150 arcsec or more, the crystallinity of the underlayer 103 does not become too high and is controlled within an appropriate range. Therefore, the LED structure 20, particularly the light emitting layer 105, laminated on the surface 103 a is prepared. The well layer 105b is free from distortion and becomes a good crystal layer.
 通常、下地層の(10-10)面のXRC半値幅は結晶性の指標となり、この数値が小さいほど下地層の結晶性が高いことを示す。また、半値幅はその上に形成されるLED構造の結晶性に影響を与えることから、出来る限り小さな数値とすることで発光素子全体の結晶性を高める方法がこれまで採用されてきている。しかしながら、本発明のような発光波長が490~570nmの緑色発光を呈する発光素子においては、発光素子に備えられる井戸層のIn濃度を高濃度とする必要があり、この場合には、井戸層の格子定数が大きくなる。このため、結晶性が非常に高められた下地層と井戸層との間での格子不整合が大きくなり、井戸層に歪み等の欠陥が生じてしまう問題がある。
 本発明では、下地層103の(10-10)面におけるX線ロッキングカーブ(XRC)半値幅を150arcsec以上、より好ましくは170arcsec以上、に規定することで、下地層103の結晶性が適正範囲として良好に制御される。これにより、緑色発光を得るため、LED構造20に備えられる発光層105の井戸層105bのIn濃度を高めた場合であっても、下地層103と井戸層105bとの間で大きな格子不整合が生じるのが抑制される。従って、井戸層105bに歪み等の欠陥が生じるのが抑制され、内部量子効率が低下することが無いので、高い発光出力を有する発光素子1が実現できる。
Usually, the XRC half-width of the (10-10) plane of the underlayer is an index of crystallinity, and the smaller this value, the higher the crystallinity of the underlayer. In addition, since the half-value width affects the crystallinity of the LED structure formed thereon, a method of increasing the crystallinity of the entire light-emitting element by setting the value as small as possible has been employed. However, in a light emitting element that emits green light with an emission wavelength of 490 to 570 nm as in the present invention, it is necessary to increase the In concentration of the well layer provided in the light emitting element. Lattice constant increases. For this reason, there is a problem in that lattice mismatch between the underlayer and the well layer with extremely high crystallinity is increased, and defects such as strain are generated in the well layer.
In the present invention, by setting the X-ray rocking curve (XRC) half-value width in the (10-10) plane of the underlayer 103 to 150 arcsec or more, more preferably 170 arcsec or more, the crystallinity of the underlayer 103 is set within an appropriate range. Well controlled. Thereby, in order to obtain green light emission, even when the In concentration of the well layer 105b of the light emitting layer 105 provided in the LED structure 20 is increased, there is a large lattice mismatch between the base layer 103 and the well layer 105b. It is suppressed from occurring. Accordingly, the occurrence of defects such as strain in the well layer 105b is suppressed, and the internal quantum efficiency is not lowered, so that the light emitting element 1 having a high light emission output can be realized.
 下地層103のXRC半値幅は、上述した基板101に形成される凸部12の基部幅dにより、適正に制御することが可能である。例えば、基板101の凸部12の基部幅dを1μmとした場合には、下地層103のXRC半値幅は150~200arcsec程度となる。なお基部幅dを本発明の好ましい範囲にしておくと、半値幅は150arcsec以上となりやすい。
 一方、基板に凸部を形成せずに、C面のみからなる主面上に下地層を形成した場合には、光取り出し効率が低下するため好ましくない。また、基板の凸部の基部幅を2μmとした場合には、下地層のXRC半値幅は100arcsec以上150arcsec未満程度となり、下地層の結晶性が非常に高められた状態となる。しかしながら、このような結晶性の非常に高い下地層上に、上層として高濃度でInを含有する井戸層を形成した場合には、下地層と井戸層との間の格子不整合が大きくなり、上述のように、井戸層に歪み等の結晶欠陥が生じてしまう。
 このため、本発明においては、下地層103の(10-10)面のXRC半値幅を150arcsec以上とすることが、下地層103の結晶性を適正に制御する点から好ましい。なお、下地層のXRC半値幅が250arcsecを超えると結晶性が低下し過ぎるので、250arcsec以下となるように制御することが好ましい。
The XRC half width of the underlayer 103 can be appropriately controlled by the base width d 1 of the convex portion 12 formed on the substrate 101 described above. For example, when the base width d 1 of the convex portion 12 of the substrate 101 is 1 μm, the XRC half width of the base layer 103 is about 150 to 200 arcsec. If the base width d 1 is kept within the preferred range of the present invention, the half width tends to be 150 arcsec or more.
On the other hand, it is not preferable to form a base layer on the main surface consisting only of the C-plane without forming a convex portion on the substrate because the light extraction efficiency is lowered. Further, when the base width of the convex portion of the substrate is 2 μm, the XRC half-value width of the underlayer is about 100 arcsec or more and less than 150 arcsec, and the crystallinity of the underlayer is greatly enhanced. However, when a well layer containing In at a high concentration is formed as an upper layer on such a highly crystalline underlayer, the lattice mismatch between the underlayer and the well layer increases, As described above, crystal defects such as strain are generated in the well layer.
Therefore, in the present invention, it is preferable that the XRC half-value width of the (10-10) plane of the underlayer 103 is 150 arcsec or more from the viewpoint of controlling the crystallinity of the underlayer 103 appropriately. In addition, since crystallinity will fall too much when the XRC half value width of a base layer exceeds 250 arcsec, it is preferable to control so that it may become 250 arcsec or less.
 なお、本発明者等が鋭意研究した結果、上述のような下地層103上に、後述のn型半導体層104、発光層105及びp型半導体層106からなるLED構造20を積層した場合、p型半導体層106側における(10-10)面のXRC半値幅についても、下地層103と同様の傾向のデータとなることが明らかとなっている。このため、本発明においては、結晶性を表す指標として下地層の(10-10)面のXRC半値幅を用いている。 In addition, as a result of intensive studies by the present inventors, when an LED structure 20 including an n-type semiconductor layer 104, a light-emitting layer 105, and a p-type semiconductor layer 106, which will be described later, is stacked on the base layer 103 as described above, p It has been clarified that the XRC half-value width of the (10-10) plane on the side of the mold semiconductor layer 106 has the same tendency as that of the base layer 103. Therefore, in the present invention, the XRC half width of the (10-10) plane of the underlayer is used as an index representing crystallinity.
『LED構造』 
 LED構造20は、各々がIII族窒化物半導体からなるn型半導体層104と発光層105とp型半導体層106とを有する。このようなLED構造20の各層を、MOCVD法で形成することにより、より結晶性の高い層を得る事ができる。
"LED structure"
The LED structure 20 includes an n-type semiconductor layer 104, a light-emitting layer 105, and a p-type semiconductor layer 106 each made of a group III nitride semiconductor. By forming each layer of such an LED structure 20 by MOCVD, a layer with higher crystallinity can be obtained.
「n型半導体層」
 n型半導体層104は、通常n型コンタクト層104aとn型クラッド層104bとから構成される。n型コンタクト層104aはn型クラッド層104bを兼ねることも可能である。
"N-type semiconductor layer"
The n-type semiconductor layer 104 is generally composed of an n-type contact layer 104a and an n-type cladding layer 104b. The n-type contact layer 104a can also serve as the n-type cladding layer 104b.
 n型コンタクト層104aは、負極を設けるための層である。n型コンタクト層104aは、AlGa1-xN層(0≦x<1、好ましくは0≦x≦0.5、さらに好ましくは0≦x≦0.1)から構成されることが好ましい。また、n型コンタクト層104aにはn型不純物がドープされていることが好ましく、n型不純物を1×1017~1×1020/cm、好ましくは1×1018~1×1019/cmの濃度で含有すると、負極との良好なオーミック接触の維持の点で好ましい。n型不純物としては、特に限定されないが、例えば、Si、GeおよびSn等が挙げられ、好ましくはSiおよびGeが挙げられる。 The n-type contact layer 104a is a layer for providing a negative electrode. The n-type contact layer 104a is preferably composed of an Al x Ga 1-x N layer (0 ≦ x <1, preferably 0 ≦ x ≦ 0.5, more preferably 0 ≦ x ≦ 0.1). . The n-type contact layer 104a is preferably doped with an n-type impurity, and the n-type impurity is preferably 1 × 10 17 to 1 × 10 20 / cm 3 , preferably 1 × 10 18 to 1 × 10 19 /. Containing at a concentration of cm 3 is preferable in terms of maintaining good ohmic contact with the negative electrode. Although it does not specifically limit as an n-type impurity, For example, Si, Ge, Sn, etc. are mentioned, Preferably Si and Ge are mentioned.
 n型コンタクト層104aの膜厚は、0.5~5μmであることが好ましく、1~3μmの範囲に設定することがより好ましい。n型コンタクト層104aの膜厚が上記範囲にあると、半導体の結晶性が良好に維持される。 The film thickness of the n-type contact layer 104a is preferably 0.5 to 5 μm, and more preferably set to a range of 1 to 3 μm. When the film thickness of the n-type contact layer 104a is in the above range, the crystallinity of the semiconductor is maintained well.
 n型コンタクト層104aと発光層105との間には、n型クラッド層104bを設けることが好ましい。n型クラッド層104bは、発光層105へのキャリアの注入とキャリアの閉じ込めを行なう層である。n型クラッド層104bはAlGaNや、GaN、及びGaInNなどで形成することが可能である。また、これらをヘテロ接合した構造や、複数回積層した超格子構造としてもよい。n型クラッド層104bをGaInNで形成する場合には、発光層105のGaInNのバンドギャップよりも、n型クラッド層104bのバンドギャップを大きくすることが望ましいことは言うまでもない。 It is preferable to provide an n-type cladding layer 104b between the n-type contact layer 104a and the light emitting layer 105. The n-type cladding layer 104b is a layer that injects carriers into the light emitting layer 105 and confines carriers. The n-type cladding layer 104b can be formed of AlGaN, GaN, GaInN, or the like. Further, a structure in which these are heterojunctioned or a superlattice structure in which a plurality of layers are laminated may be used. Needless to say, when the n-type cladding layer 104b is formed of GaInN, it is desirable to make the band gap of the n-type cladding layer 104b larger than the band gap of GaInN of the light emitting layer 105.
 n型クラッド層104bの膜厚は、特に限定されないが、好ましくは0.005~0.5μmであり、より好ましくは0.005~0.1μmである。n型クラッド層104bのn型ドープ濃度は1×1017~1×1020/cmが好ましく、より好ましくは1×1018~1×1019/cmである。ドープ濃度がこの範囲であると、良好な結晶性の維持および素子の動作電圧低減の点で好ましい。 The film thickness of the n-type cladding layer 104b is not particularly limited, but is preferably 0.005 to 0.5 μm, and more preferably 0.005 to 0.1 μm. The n-type doping concentration of the n-type cladding layer 104b is preferably 1 × 10 17 to 1 × 10 20 / cm 3 , more preferably 1 × 10 18 to 1 × 10 19 / cm 3 . A doping concentration within this range is preferable in terms of maintaining good crystallinity and reducing the operating voltage of the device.
 なお、n型クラッド層104bを、超格子構造を含む層とする場合には、詳細な図示を省略するが、100オングストローム以下の膜厚を有したIII族窒化物半導体からなるn側第1層と、前記n側第1層と組成が異なるとともに100オングストローム以下の膜厚を有したIII族窒化物半導体からなるn側第2層とが積層された構造を含むn型クラッド層104bであっても良い。また、n型クラッド層104bは、n側第1層とn側第2層とが交互に繰返し積層された構造を含んだものであってもよい。また、好ましくは、前記n側第1層又はn側第2層の何れかが、活性層(発光層105)に接する構成とすれば良い。 When the n-type cladding layer 104b is a layer including a superlattice structure, a detailed illustration is omitted, but an n-side first layer made of a group III nitride semiconductor having a thickness of 100 angstroms or less. And an n-type cladding layer 104b including a structure in which an n-side second layer made of a group III nitride semiconductor having a composition different from that of the n-side first layer and having a thickness of 100 angstroms or less is laminated. Also good. The n-type cladding layer 104b may include a structure in which n-side first layers and n-side second layers are alternately and repeatedly stacked. Preferably, either the n-side first layer or the n-side second layer is in contact with the active layer (light-emitting layer 105).
 上述のようなn側第1層及びn側第2層の組成としては、例えば、Alを含むAlGaN系(単にAlGaNと記載することがある)、Inを含むGaInN系(単にGaInNと記載することがある)、またはGaNの組成とすることができる。また、n側第1層及びn側第2層の構造は、GaInN/GaNの交互構造、AlGaN/GaNの交互構造、GaInN/AlGaNの交互構造、組成の異なるGaInN/GaInNの交互構造(本発明における“組成の異なる”との説明は、各元素組成比が異なることを指し、以下同様である)、組成の異なるAlGaN/AlGaNの交互構造であってもよい。本発明においては、n側第1層及びn側第2層は、GaInN/GaNの交互構造又は組成の異なるGaInN/GaInNであることが好ましい。 Examples of the composition of the n-side first layer and the n-side second layer as described above include, for example, AlGaN-based Al (sometimes simply referred to as AlGaN) and GaInN-based (including simply InGa). Or a composition of GaN. The n-side first layer and the n-side second layer have a GaInN / GaN alternating structure, an AlGaN / GaN alternating structure, a GaInN / AlGaN alternating structure, and a GaInN / GaInN alternating structure having a different composition (the present invention). The description of “different compositions” in FIG. 4 indicates that the elemental composition ratios are different, and the same applies hereinafter), and may be AlGaN / AlGaN alternating structures having different compositions. In the present invention, the n-side first layer and the n-side second layer are preferably GaInN / GaInN having different GaInN / GaN structures or different compositions.
 上記超格子層であるn側第1層及びn側第2層は、それぞれ60オングストローム以下であることが好ましく、それぞれ40オングストローム以下であることがより好ましく、それぞれ10オンストローム~40オングストロームの範囲であることが最も好ましい。超格子層を形成するn側第1層とn側第2層のそれぞれの膜厚が100オングストローム超だと、結晶欠陥が入りやすく好ましくない。 The n-side first layer and the n-side second layer, which are superlattice layers, are each preferably 60 angstroms or less, more preferably 40 angstroms or less, and each in the range of 10 angstroms to 40 angstroms. Most preferably it is. If the thickness of each of the n-side first layer and the n-side second layer forming the superlattice layer exceeds 100 angstroms, crystal defects are likely to occur, which is not preferable.
 上記n側第1層及びn側第2層は、それぞれドープした構造であってもよく、また、ドープ構造/未ドープ構造の組み合わせであってもよい。ドープされる不純物としては、上記材料組成に対して従来公知のものを、何ら制限無く適用できる。例えば、n型クラッド層として、GaInN/GaNの交互構造、又は組成の異なるGaInN/GaInNの交互構造であるn側第1層及びn側第2層の組み合わせを用いた場合には、不純物としてSiが好適である。また、上述のようなn側超格子多層膜は、GaInNやAlGaN、GaNで代表される同じ組成を用いながら、ドーピングを適宜ON、OFFしながら、多層構造を作製してもよい。
 上述のように、n型クラッド層104bを、超格子構造を含む層構成とすることで、発光出力が格段に向上し、電気特性に優れた発光素子1とすることが可能となる。
The n-side first layer and the n-side second layer may each have a doped structure, or a combination of a doped structure and an undoped structure. As the impurity to be doped, conventionally known impurities can be applied to the material composition without any limitation. For example, when an n-type cladding layer is formed of an alternate structure of GaInN / GaN or a combination of an n-side first layer and an n-side second layer having an alternate structure of GaInN / GaInN having different compositions, Si as an impurity. Is preferred. In addition, the n-side superlattice multilayer film as described above may be formed in a multilayer structure using the same composition typified by GaInN, AlGaN, and GaN while appropriately turning ON / OFF doping.
As described above, when the n-type cladding layer 104b has a layer structure including a superlattice structure, the light emission output is remarkably improved and the light emitting element 1 having excellent electric characteristics can be obtained.
「発光層」
 n型半導体層104の上に積層される発光層105としては、単一量子井戸構造あるいは多重量子井戸構造などの発光層105が挙げられる。図4に示すような量子井戸構造の井戸層としては、例えば、青色発光を呈する構成とする場合には、通常、Ga1-yInN(0<y<0.04)である組成のIII族窒化物半導体が用いられるが、本発明のような緑色発光を呈する井戸層105bの場合には、Ga1-yInN(0.07<y<0.20)等、インジウムの組成が高められたものが用いられる。
"Light emitting layer"
Examples of the light emitting layer 105 stacked on the n-type semiconductor layer 104 include a light emitting layer 105 having a single quantum well structure or a multiple quantum well structure. As a well layer having a quantum well structure as shown in FIG. 4, for example, in the case of a structure exhibiting blue light emission, a composition having a composition of Ga 1-y In y N (0 <y <0.04) is usually used. Although a group III nitride semiconductor is used, in the case of the well layer 105b exhibiting green light emission as in the present invention, the composition of indium such as Ga 1-y In y N (0.07 <y <0.20) is used. The one with increased is used.
 本発明のような多重量子井戸構造の発光層105の場合には、上記Ga1-yInNを井戸層105bとし、井戸層105bよりバンドギャップエネルギーが大きいAlGa1-xN(0≦z<0.3)を障壁層105aとすることが好ましい。
 また、井戸層105bおよび障壁層105aには、設計により不純物をドープしても、又はしなくてもよい。
In the case of the light emitting layer 105 having the multiple quantum well structure as in the present invention, the Ga 1-y In y N is used as the well layer 105b, and Al x Ga 1-x N (0 ≦ z <0.3) is preferably the barrier layer 105a.
Further, the well layer 105b and the barrier layer 105a may or may not be doped with impurities depending on the design.
 また、井戸層105bの膜厚は、例えば量子効果の得られる程度の膜厚、すなわち1~10nmとすることができ、より好ましくは2~6nmとすると発光出力の点で好ましい。 The film thickness of the well layer 105b can be, for example, a film thickness at which a quantum effect can be obtained, that is, 1 to 10 nm, and more preferably 2 to 6 nm from the viewpoint of light emission output.
 III族窒化物半導体発光素子の発光色を緑色発光とするためには、発光波長が490nm以上である必要がある。また、良好な緑色発光を得るためには、発光波長が490~570nmの範囲であることがより好ましい。
 このため、本発明の発光素子1においては、発光層105を形成する井戸層105bのIn組成比を7%以上とすることが好ましい。井戸層105bのIn濃度がこの範囲であれば、発光波長が490~570nmの良好な緑色発光が得られる。
In order for the group III nitride semiconductor light emitting device to emit green light, the emission wavelength needs to be 490 nm or more. In order to obtain good green light emission, the emission wavelength is more preferably in the range of 490 to 570 nm.
For this reason, in the light emitting element 1 of the present invention, the In composition ratio of the well layer 105b forming the light emitting layer 105 is preferably 7% or more. If the In concentration of the well layer 105b is within this range, good green light emission with an emission wavelength of 490 to 570 nm can be obtained.
 本発明に係る発光素子1は、井戸層105bのIn濃度が上述したような高濃度であり、上記範囲の発光波長であることで、緑色発光するものである。このように、緑色発光を目的として、発光層105に含まれる井戸層105bを高いIn濃度で構成した場合、下側の層である下地層103の結晶性が適正範囲を超えて高められると、井戸層と下地層との間で格子不整合が大きくなり、井戸層に歪み等の欠陥が生じてしまう問題がある。このため、従来の緑色発光する発光素子のように、単に井戸層のIn濃度を高めるのみの構成では、井戸層の結晶欠陥に伴って内部量子効率が低下するため、発光強度が低いものとなってしまう。 The light emitting element 1 according to the present invention emits green light when the In concentration of the well layer 105b is as high as described above and the emission wavelength is in the above range. Thus, for the purpose of green light emission, when the well layer 105b included in the light emitting layer 105 is configured with a high In concentration, when the crystallinity of the underlying layer 103, which is the lower layer, is increased beyond the appropriate range, There is a problem in that lattice mismatch increases between the well layer and the base layer, and defects such as strain occur in the well layer. For this reason, in the configuration in which the In concentration of the well layer is simply increased as in the conventional light emitting element that emits green light, the internal quantum efficiency is reduced due to crystal defects in the well layer, and thus the emission intensity is low. End up.
 通常では、井戸層及び発光層全体の結晶性を向上させることを目的とした場合、発光層が積層されるn型半導体層や下地層の結晶性を可能な限り高めておくことが考えられる。しかしながら、本発明者等が鋭意研究したところ、単に発光層が積層されるn型半導体層や下地層の結晶性を高めただけでは、井戸層のIn濃度が高濃度とされる発光素子においては、n型半導体層や下地層と、発光層(井戸層)との間の格子定数の不整合が一層大きくなることがわかった。このため、井戸層に歪み等の欠陥が生じ、内部量子効率が低下するのに伴って、発光出力が低下してしまうことが明らかとなった。 Usually, for the purpose of improving the crystallinity of the entire well layer and the light emitting layer, it is conceivable to increase the crystallinity of the n-type semiconductor layer and the base layer on which the light emitting layer is laminated as much as possible. However, as a result of diligent research by the present inventors, in a light-emitting element in which the In concentration of the well layer is made high by simply increasing the crystallinity of the n-type semiconductor layer or the underlayer on which the light-emitting layer is laminated. It has been found that the lattice constant mismatch between the light emitting layer (well layer) and the n-type semiconductor layer or the underlying layer is further increased. For this reason, it became clear that defects such as strain occurred in the well layer and the light emission output decreased as the internal quantum efficiency decreased.
 本発明においては、上述のように、まず、基板101を、平面部11と凸部12とからなる主面10及びその裏面を有し、凸部12の基部幅を0.05~1.5μmの範囲となるように構成し、この基板101の主面10上に、単結晶のIII族窒化物半導体がエピタキシャル成長してなる下地層103を、平面部11及び凸部12を覆うように設ける。後述の製造方法において詳細を説明するが、サファイアからなる基板の主面に単結晶のIII族窒化物半導体層をエピタキシャル成長させる場合、C面からはC軸方向に配向した単結晶がエピタキシャル成長しやすく、C面以外の主面上からはエピタキシャル成長が生じにくいという傾向がある。従って、本実施形態で説明する例においては、バッファ層102の形成された基板101の主面10上に、単結晶のIII族窒化物半導体からなる下地層103をエピタキシャル成長させると、C面に非平行の表面12cからは結晶が成長せず、(0001)C面からなる平面部11からのみC軸方向に配向した結晶がエピタキシャル成長する。このため、基板101の主面10に形成される下地層103は、主面10上において凸部12を覆うようにエピタキシャル成長し、結晶中に転位等の結晶欠陥を生じないため、結晶性が適正に制御された層となる。 In the present invention, as described above, first, the substrate 101 has the main surface 10 composed of the flat portion 11 and the convex portion 12 and the back surface thereof, and the base width of the convex portion 12 is 0.05 to 1.5 μm. A base layer 103 formed by epitaxially growing a single crystal group III nitride semiconductor is provided on the main surface 10 of the substrate 101 so as to cover the flat portion 11 and the convex portion 12. Although details will be described in the manufacturing method described later, when a single-crystal group III nitride semiconductor layer is epitaxially grown on the main surface of a substrate made of sapphire, a single crystal oriented in the C-axis direction is easily epitaxially grown from the C-plane, There is a tendency that epitaxial growth hardly occurs from the main surface other than the C-plane. Therefore, in the example described in this embodiment, when the base layer 103 made of a single crystal group III nitride semiconductor is epitaxially grown on the main surface 10 of the substrate 101 on which the buffer layer 102 is formed, the non-surface is formed on the C plane. A crystal does not grow from the parallel surface 12c, and a crystal oriented in the C-axis direction grows epitaxially only from the flat portion 11 made of the (0001) C plane. Therefore, the underlying layer 103 formed on the main surface 10 of the substrate 101 is epitaxially grown so as to cover the convex portion 12 on the main surface 10 and does not cause crystal defects such as dislocations in the crystal. It becomes a controlled layer.
 そして、上述のように結晶性が適正範囲で良好に制御された下地層103の上に、LED構造20を構成する各層を形成することにより、高いIn濃度とされて緑色発光を呈する井戸層105bを形成した場合であっても、下地層103と井戸層105bとの間に、格子不整合が生じるのが抑制される。これにより、井戸層105bに歪み等の結晶欠陥が生じることがなく、内部量子効率の低下やリーク電流が生じるのを抑制することができ、電気的特性に優れるとともに発光出力が高い発光素子1とすることが可能となる。 Then, by forming each layer constituting the LED structure 20 on the base layer 103 whose crystallinity is well controlled in an appropriate range as described above, the well layer 105b exhibiting green light emission with a high In concentration. Even when the layer is formed, the occurrence of lattice mismatch between the base layer 103 and the well layer 105b is suppressed. Thereby, crystal defects such as strain do not occur in the well layer 105b, it is possible to suppress a decrease in internal quantum efficiency and a leak current, and the light emitting device 1 having excellent electrical characteristics and high light emission output. It becomes possible to do.
「p型半導体層」
 p型半導体層106は、通常、p型クラッド層106aおよびp型コンタクト層106bから構成される。また、p型コンタクト層106bがp型クラッド層106aを兼ねることも可能である。
"P-type semiconductor layer"
The p-type semiconductor layer 106 is generally composed of a p-type cladding layer 106a and a p-type contact layer 106b. The p-type contact layer 106b can also serve as the p-type cladding layer 106a.
 p型クラッド層106aは、発光層105へのキャリアの閉じ込めとキャリアの注入を行なう層である。p型クラッド層106aの組成としては、発光層105のバンドギャップエネルギーより大きくなる組成であって、発光層105へのキャリアの閉じ込めができるものであれば特に限定されない。好ましくは、AlGa1-xN(0<x≦0.4)のものが好ましい組成として挙げられる。p型クラッド層106aがこのようなAlGaNからなると、発光層へのキャリアの閉じ込めの点で好ましい。p型クラッド層106aの膜厚は、特に限定されないが、好ましくは1~400nmであり、より好ましくは5~100nmである。p型クラッド層106aのp型ドープ濃度は、1×1018~1×1021/cmが好ましく、より好ましくは1×1019~1×1020/cmである。p型ドープ濃度が上記範囲であると、結晶性を低下させることなく良好なp型結晶が得られる。
 また、p型クラッド層106aは、複数回積層した超格子構造としてもよい。
The p-type cladding layer 106 a is a layer that performs confinement of carriers and injection of carriers in the light emitting layer 105. The composition of the p-type cladding layer 106 a is not particularly limited as long as the composition is larger than the band gap energy of the light emitting layer 105 and can confine carriers in the light emitting layer 105. A preferable composition is Al x Ga 1-x N (0 <x ≦ 0.4). When the p-type cladding layer 106a is made of such AlGaN, it is preferable in terms of confining carriers in the light emitting layer. The film thickness of the p-type cladding layer 106a is not particularly limited, but is preferably 1 to 400 nm, and more preferably 5 to 100 nm. The p-type doping concentration of the p-type cladding layer 106a is preferably 1 × 10 18 to 1 × 10 21 / cm 3 , more preferably 1 × 10 19 to 1 × 10 20 / cm 3 . When the p-type dope concentration is in the above range, a good p-type crystal can be obtained without reducing the crystallinity.
The p-type cladding layer 106a may have a superlattice structure in which a plurality of layers are stacked.
 なお、p型クラッド層106aを、超格子構造を含む層とする場合には、詳細な図示は省略するが、100オングストローム以下の膜厚を有したIII族窒化物半導体からなるp側第1層と、前記p側第1層と組成が異なるとともに100オングストローム以下の膜厚を有したIII族窒化物半導体からなるp側第2層とが積層された構造を含むp型クラッド層106aであっても良い。また、p側第1層とp側第2層とが交互に繰返し積層された構造を含んだp型クラッド層106aであっても良い。 When the p-type cladding layer 106a is a layer including a superlattice structure, a detailed illustration is omitted, but a p-side first layer made of a group III nitride semiconductor having a thickness of 100 angstroms or less. A p-type cladding layer 106a including a structure in which a p-side second layer made of a group III nitride semiconductor having a composition different from that of the p-side first layer and having a thickness of 100 angstroms or less is laminated. Also good. Alternatively, the p-type cladding layer 106a may include a structure in which p-side first layers and p-side second layers are alternately and repeatedly stacked.
 上述のようなp側第1層及びp側第2層の組成は、それぞれ異なる組成であってよく、例えば、AlGaN、GaInN又はGaNの内の何れの組成であっても良い。またp側第1層及びp側第2層の構造は、GaInN/GaNの交互構造、AlGaN/GaNの交互構造、又はGaInN/AlGaNの交互構造であっても良い。本発明においては、p側第1層及びp側第2層は、AlGaN/AlGaN又はAlGaN/GaNの交互構造であることが好ましい。 The composition of the p-side first layer and the p-side second layer as described above may be different compositions, for example, any composition of AlGaN, GaInN, or GaN. The p-side first layer and the p-side second layer may have a GaInN / GaN alternating structure, an AlGaN / GaN alternating structure, or a GaInN / AlGaN alternating structure. In the present invention, the p-side first layer and the p-side second layer preferably have an AlGaN / AlGaN or AlGaN / GaN alternating structure.
 上記p側第1層及びp側第2層の超格子層は、それぞれ60オングストローム以下であることが好ましく、それぞれ40オングストローム以下であることがより好ましく、それぞれ10オングストローム~40オングストロームの範囲であることが最も好ましい。超格子層を形成するp側第1層とp側第2層のそれぞれの膜厚が100オングストローム超だと、結晶欠陥等を多く含む層となり、好ましくない。 The superlattice layers of the p-side first layer and the p-side second layer are each preferably 60 angstroms or less, more preferably 40 angstroms or less, and each in the range of 10 angstroms to 40 angstroms. Is most preferred. If the thickness of each of the p-side first layer and the p-side second layer forming the superlattice layer exceeds 100 angstroms, it becomes a layer containing many crystal defects and the like, which is not preferable.
 上記p側第1層及びp側第2層は、それぞれドープした構造であっても良く、また、ドープ構造/未ドープ構造の組み合わせであっても良い。ドープされる不純物としては、上記材料組成に対して従来公知のものを、何ら制限無く適用できる。例えば、p型クラッド層として、AlGaN/GaNの交互構造又は組成の異なるAlGaN/AlGaNの交互構造のものを用いた場合には、不純物としてMgが好適である。また、上述のようなp側超格子多層膜は、組成がGaInNやAlGaN、あるいはGaNのように同じであっても、ドーピングを適宜ON、OFFする事により、多層構造を作製できる。
 上述のように、p型クラッド層105aを、超格子構造を含む層構成とすることで、発光出力が格段に向上し、電気特性に優れた発光素子1とすることが可能となる。
The p-side first layer and the p-side second layer may each have a doped structure, or a combination of a doped structure and an undoped structure. As the impurity to be doped, conventionally known impurities can be applied to the material composition without any limitation. For example, when an AlGaN / GaN alternating structure or an AlGaN / AlGaN alternating structure having a different composition is used as the p-type cladding layer, Mg is suitable as the impurity. Further, even if the p-side superlattice multilayer film as described above has the same composition as GaInN, AlGaN, or GaN, a multilayer structure can be produced by appropriately turning ON / OFF doping.
As described above, when the p-type cladding layer 105a has a layer structure including a superlattice structure, the light emission output is remarkably improved and the light emitting device 1 having excellent electric characteristics can be obtained.
 p型コンタクト層106bは、正極を設けるための層である。p型コンタクト層106bは、AlGa1-xN(0≦x≦0.4)の組成である事が好ましい。Al組成が上記範囲であると、良好な結晶性の維持およびpオーミック電極との良好なオーミック接触が可能である点で好ましい。p型コンタクト層106bがp型不純物(ドーパント)を1×1018~1×1021/cmの濃度、好ましくは5×1019~5×1020/cmの濃度で含有していると、良好なオーミック接触の維持、クラック発生の防止、及び良好な結晶性の維持の点で好ましい。p型不純物としては、特に限定されないが、例えば好ましくはMgが挙げられる。p型コンタクト層106bの膜厚は、特に限定されないが、0.01~0.5μmが好ましく、より好ましくは0.05~0.2μmである。p型コンタクト層106bの膜厚がこの範囲であると、発光出力の点で好ましい。 The p-type contact layer 106b is a layer for providing a positive electrode. The p-type contact layer 106b preferably has a composition of Al x Ga 1-x N (0 ≦ x ≦ 0.4). When the Al composition is in the above range, it is preferable in that good crystallinity is maintained and good ohmic contact with the p ohmic electrode is possible. The p-type contact layer 106b contains a p-type impurity (dopant) at a concentration of 1 × 10 18 to 1 × 10 21 / cm 3 , preferably 5 × 10 19 to 5 × 10 20 / cm 3 . From the viewpoint of maintaining good ohmic contact, preventing the occurrence of cracks, and maintaining good crystallinity. Although it does not specifically limit as a p-type impurity, For example, Preferably Mg is mentioned. The thickness of the p-type contact layer 106b is not particularly limited, but is preferably 0.01 to 0.5 μm, and more preferably 0.05 to 0.2 μm. When the film thickness of the p-type contact layer 106b is within this range, it is preferable in terms of light emission output.
「電極」
 図5に示されるように、透光性導電酸化膜層からなる透光性正極109が、p型半導体層106と接するように設けられる。正極ボンディングパッド107は、透光性正極109上の一部に設けられている。
 透光性正極109は、ITO(In-SnO)、AZnO(ZnO-Al)、IZnO(In-ZnO)、及びGZO(ZnO-Ga)から選ばれる少なくとも一種類を含んだ材料を、この技術分野でよく知られた慣用の手段で設けることによって得られる。また、透光性正極109の構造も、従来公知の構造を含めて如何なる構造のものも、何ら制限なく用いることができる。透光性正極109は、p型半導体層106上のほぼ全面を覆うように形成しても構わないし、隙間を開けて格子状や樹形状に形成しても良い。透光性正極109を形成した後に、合金化や透明化を目的とした熱アニールを施す場合もあるが、施さなくても構わない。
"electrode"
As shown in FIG. 5, a translucent positive electrode 109 made of a translucent conductive oxide film layer is provided in contact with the p-type semiconductor layer 106. The positive electrode bonding pad 107 is provided on a part of the translucent positive electrode 109.
The translucent positive electrode 109 is selected from ITO (In 2 O 3 —SnO 2 ), AZnO (ZnO—Al 2 O 3 ), ISnO (In 2 O 3 —ZnO), and GZO (ZnO—Ga 2 O 3 ). Provided by a conventional means well known in the art. Moreover, the structure of the translucent positive electrode 109 can be used without any limitation, including a conventionally known structure. The translucent positive electrode 109 may be formed so as to cover almost the entire surface of the p-type semiconductor layer 106, or may be formed in a lattice shape or a tree shape with a gap. After forming the translucent positive electrode 109, thermal annealing may be performed for the purpose of alloying or transparency, but it may not be performed.
 正極ボンディングパッド107は、回路基板やリードフレーム等との電気接続のために設けられる。正極ボンディングパッドとしては、Au、Al、NiおよびCu等を用いた各種構造が周知であり、これら周知の材料や構造を何ら制限無く用いることができる。 The positive electrode bonding pad 107 is provided for electrical connection with a circuit board, a lead frame or the like. As the positive electrode bonding pad, various structures using Au, Al, Ni, Cu and the like are well known, and these known materials and structures can be used without any limitation.
 正極ボンディングパッド107の厚さは、100~1500nmの範囲内であることが好ましい。また、ボンディングパッドの特性上、厚さが大きい方が、ボンダビリティーが高くなるため、正極ボンディングパッド107の厚さは300nm以上とすることがより好ましい。 The thickness of the positive electrode bonding pad 107 is preferably in the range of 100 to 1500 nm. Further, in view of the characteristics of the bonding pad, the larger the thickness, the higher the bondability. Therefore, the thickness of the positive electrode bonding pad 107 is more preferably 300 nm or more.
 一方、負極ボンディングパッド108は、LED構造20のn型半導体層104に接するように形成される。このため、負極ボンディングパッド108を形成する際には、発光層105およびp型半導体層106の一部を除去してn型半導体層104のn型コンタクト層を露出させ、この上に負極ボンディングパッド108を設置する。 Meanwhile, the negative electrode bonding pad 108 is formed in contact with the n-type semiconductor layer 104 of the LED structure 20. For this reason, when forming the negative electrode bonding pad 108, the light emitting layer 105 and the p-type semiconductor layer 106 are partially removed to expose the n-type contact layer of the n-type semiconductor layer 104, and the negative electrode bonding pad is formed thereon. 108 is installed.
 負極ボンディングパッド108としては、各種組成や構造が周知であり、これら周知の組成や構造を何ら制限無く用いることができ、この技術分野でよく知られた慣用の手段で設けることができる。 As the negative electrode bonding pad 108, various compositions and structures are well known, and these well known compositions and structures can be used without any limitation, and can be provided by conventional means well known in this technical field.
 以上説明したような、本発明に係るIII族窒化物半導体発光素子1では、基板101が、(0001)C面からなる平面部11と複数の凸部12とからなる主面10を有し、凸部12の基部幅dが0.05~1.5μmであり、下地層(III族窒化物半導体層)103は、基板101の主面10上に、平面部11及び凸部12を覆うようにIII族窒化物半導体がエピタキシャル成長して形成されたものである。また、LED構造20は、発光波長が490~570nmの範囲である構成である。これらの特徴により、下地層103の結晶性が適正に制御されるので、この上に積層されるLED構造20との間で格子不整合が生じるのを抑制することができる。これにより、緑色発光を呈するLED構造20、特に発光層105に備えられる井戸層105bに歪み等が生じることが無く、内部量子効率の低下やリーク電流が生じるのを抑制することができるので、電気的特性に優れるとともに発光出力が高い発光素子1が得られる。また、基板101と下地層103との界面が、バッファ層102を介して凹凸とされることで、光の乱反射によって発光素子の内部への光の閉じ込めが低減されるため、光取り出し効率に優れた発光素子1が実現できる。またさらに、本発明においては、n型クラッド層104b及び/又はp型クラッド層105aを、超格子構造を含む層構成とすることで出力が格段に向上し、電気特性に優れた発光素子1とすることができる。 In the group III nitride semiconductor light-emitting device 1 according to the present invention as described above, the substrate 101 has the principal surface 10 composed of the planar portion 11 composed of the (0001) C plane and the plurality of convex portions 12. The base width d 1 of the convex portion 12 is 0.05 to 1.5 μm, and the base layer (group III nitride semiconductor layer) 103 covers the planar portion 11 and the convex portion 12 on the main surface 10 of the substrate 101. Thus, the group III nitride semiconductor is formed by epitaxial growth. The LED structure 20 has a configuration in which the emission wavelength is in the range of 490 to 570 nm. Due to these characteristics, the crystallinity of the underlayer 103 is appropriately controlled, so that it is possible to suppress the occurrence of lattice mismatch with the LED structure 20 stacked thereon. As a result, the LED structure 20 that emits green light, in particular, the well layer 105b included in the light emitting layer 105 is not distorted, and it is possible to suppress a decrease in internal quantum efficiency and a leakage current. The light emitting device 1 having excellent optical characteristics and high light emission output can be obtained. In addition, since the interface between the substrate 101 and the base layer 103 is uneven through the buffer layer 102, light confinement inside the light-emitting element is reduced due to irregular reflection of light, so that light extraction efficiency is excellent. The light emitting device 1 can be realized. Furthermore, in the present invention, the n-type cladding layer 104b and / or the p-type cladding layer 105a has a layer structure including a superlattice structure, whereby the output is remarkably improved and the light emitting device 1 having excellent electrical characteristics is provided. can do.
[III族窒化物半導体発光素子の製造方法]
 本発明に係るIII族窒化物半導体発光素子の製造方法は、基板101上に単結晶の下地層(III族窒化物半導体層)103を形成し、前記下地層103上にLED構造20を形成する方法である。上記方法には、基板101の(0001)C面からなる平面部11上に、基部幅が0.05~3μmである複数の凸部12を形成することにより、基板101上に平面部11と凸部12とからなる主面10を形成する基板加工工程と、基板101の主面10上にIII族窒化物半導体をエピタキシャル成長させることにより、平面部11及び凸部12を覆うようにして下地層103を形成するエピタキシャル工程と、前記下地層103上に、前記発光波長が490~570nmの範囲であるLED構造20を形成するLED積層工程とが含まれる。
 以下、本発明の製造方法に備えられる各工程について詳しく説明する。
[Method for Producing Group III Nitride Semiconductor Light-Emitting Device]
In the method for manufacturing a group III nitride semiconductor light emitting device according to the present invention, a single crystal underlayer (group III nitride semiconductor layer) 103 is formed on a substrate 101, and an LED structure 20 is formed on the underlayer 103. Is the method. In the above method, a plurality of convex portions 12 having a base width of 0.05 to 3 μm are formed on the flat portion 11 made of the (0001) C surface of the substrate 101, thereby forming the flat portion 11 on the substrate 101. Substrate processing step for forming main surface 10 composed of convex portion 12 and a base layer so as to cover flat portion 11 and convex portion 12 by epitaxially growing a group III nitride semiconductor on main surface 10 of substrate 101 And an LED stacking process for forming the LED structure 20 having the emission wavelength in the range of 490 to 570 nm on the underlayer 103.
Hereinafter, each process with which the manufacturing method of this invention is equipped is demonstrated in detail.
『基板加工工程』
 図2は、図1の模式図に示す積層構造を製造する工程の一例を説明するための図である。具体的には、本実施形態の製造方法において用意される基板101を示す斜視図である。この基板101は、C面からなる平面部11と、C面上に形成される複数の凸部12とからなる主面10を有してなる。以下、図2に示すような基板101を加工する方法の一例を説明する。
"Board processing process"
FIG. 2 is a diagram for explaining an example of a process for manufacturing the laminated structure shown in the schematic diagram of FIG. 1. Specifically, it is a perspective view showing a substrate 101 prepared in the manufacturing method of the present embodiment. The substrate 101 has a main surface 10 composed of a flat surface portion 11 composed of a C surface and a plurality of convex portions 12 formed on the C surface. Hereinafter, an example of a method for processing the substrate 101 as shown in FIG. 2 will be described.
 基板加工工程では、例えば、サファイア基板の(0001)C面上に、C面に非平行の表面からなる複数の凸部12を形成することにより、C面からなる平面部11と凸部12とからなる主面10を有する基板101を製造する。このような基板加工工程は、例えば、基板101上における凸部12の平面配置となるようにマスクを基板101上に形成するパターニング工程と、前記パターニング工程によって形成されたマスクを使って基板101をエッチングして凸部12を形成するエッチング工程とを備えた方法であってもよい。 In the substrate processing step, for example, by forming a plurality of convex portions 12 having a surface non-parallel to the C plane on the (0001) C plane of the sapphire substrate, the plane portion 11 and the convex portion 12 having the C plane are formed. A substrate 101 having a main surface 10 made of is manufactured. Such a substrate processing step includes, for example, a patterning step for forming a mask on the substrate 101 so as to have a planar arrangement of the convex portions 12 on the substrate 101, and a substrate 101 using the mask formed by the patterning step. And a method including an etching step of forming the convex portion 12 by etching.
 本実施形態において、複数の凸部12を形成する基板材料として、(0001)C面を表面とするサファイア単結晶のウェーハが用いられる。ここで(0001)C面を表面とする基板には、基板の面方位に(0001)方向から±3°の範囲でオフ角が付与された基板も含まれる。また、C面に非平行の表面とは、(0001)C面から±3°の範囲内にはない表面であることを意味する。 In this embodiment, a sapphire single crystal wafer having a (0001) C plane as a surface is used as a substrate material for forming the plurality of convex portions 12. Here, the substrate having the (0001) C plane as the surface includes a substrate in which an off angle is given in the range of ± 3 ° from the (0001) direction in the plane direction of the substrate. Further, the surface that is not parallel to the C plane means a surface that is not within a range of ± 3 ° from the (0001) C plane.
 前記パターニング工程は、一般的なフォトリソグラフィー法で行なうことができる。基板加工工程において形成する凸部12の、基部12aの基部幅dは1.5μm以下であることが好ましい。このため、基板101の表面全面を均一にパターニングするためには、フォトリソグラフィー法の中でも、ステッパー露光法を用いることが好ましい。しかしながら、1μm以下の基部幅dである凸部12のパターンを形成する場合には高価なステッパー装置が必要であり、高コストとなる。このため、凸部幅dが1μm以下であるマスクパターンを形成する場合には、光ディスクの分野で使用されているレーザー露光法、もしくはナノインプリント法、あるいは電子ビーム(EB)露光法等を用いることが好ましい。 The patterning process can be performed by a general photolithography method. Of the convex portions 12 be formed in the substrate processing process, the base width d 1 of the base portion 12a is preferably at 1.5μm or less. Therefore, in order to uniformly pattern the entire surface of the substrate 101, it is preferable to use a stepper exposure method among photolithography methods. However, when forming the pattern of the convex part 12 having a base width d 1 of 1 μm or less, an expensive stepper device is required, resulting in high cost. Therefore, when forming a mask pattern having a convex width d 1 of 1 μm or less, a laser exposure method, a nanoimprint method, an electron beam (EB) exposure method, or the like used in the field of optical discs is used. Is preferred.
 エッチング工程において基板をエッチングする方法としては、ドライエッチング法やウェットエッチング法が挙げられる。しかしながら、エッチング方法としてウェットエッチング法を用いる場合には、基板101の結晶面が露出されるため、C面に非平行の表面12cからなる凸部12を形成することが困難となる。このため、エッチング工程においては、ドライエッチング法を用いることが好ましい。 Examples of the method for etching the substrate in the etching process include a dry etching method and a wet etching method. However, when the wet etching method is used as the etching method, since the crystal plane of the substrate 101 is exposed, it is difficult to form the convex portion 12 formed of the surface 12c that is non-parallel to the C plane. For this reason, it is preferable to use a dry etching method in an etching process.
 C面に非平行の表面12cにより構成される凸部12は、例えば、上述したパターニング工程で形成されたマスクが消失するまで基板101をドライエッチングすることにより、形成することが出来る。より具体的にいえば、例えば、基板101上にレジストを形成し、その後所定の形状にパターニングする。その後、オーブン等を用いて110℃で30分の熱処理を行なうポストベークにより、所定の形状のレジストの側面をテーパ状とする。次いで、横方向のエッチングを促進させる所定の条件で、レジストが消失するまでドライエッチングを行なうことにより、凸部12を形成することができる。 The convex part 12 constituted by the surface 12c non-parallel to the C plane can be formed, for example, by dry etching the substrate 101 until the mask formed in the patterning process described above disappears. More specifically, for example, a resist is formed on the substrate 101 and then patterned into a predetermined shape. Thereafter, the side surface of the resist having a predetermined shape is tapered by post-baking in which heat treatment is performed at 110 ° C. for 30 minutes using an oven or the like. Next, the convex portion 12 can be formed by performing dry etching under predetermined conditions that promote lateral etching until the resist disappears.
 また、C面に非平行の表面12cにより構成される凸部12は、マスクを使って基板をドライエッチングした後、再度マスクを剥離して基板101をドライエッチングする方法を用いて形成することも出来る。より具体的にいえば、例えば、基板101上にレジストを形成し、所定の形状にパターニングする。この後、オーブン等を用いて110℃で30分の熱処理を行なうポストベークにより、所定の形状のレジストの側面をテーパ状とする。次いで、横方向のエッチングを促進させる所定の条件でドライエッチングを行ない、レジストが消失する前にドライエッチングを中断する。その後、レジストを剥離してドライエッチングを再開し、所定量のエッチングを行なうことにより、凸部12を形成することができる。このような方法で形成された凸部12は、高さ寸法の面内均一性に優れたものとなる。 Further, the convex portion 12 constituted by the surface 12c non-parallel to the C-plane may be formed by using a method in which the substrate is dry-etched using a mask and then the mask is removed again and the substrate 101 is dry-etched. I can do it. More specifically, for example, a resist is formed on the substrate 101 and patterned into a predetermined shape. Thereafter, the side surface of the resist having a predetermined shape is tapered by post-baking in which heat treatment is performed at 110 ° C. for 30 minutes using an oven or the like. Next, dry etching is performed under a predetermined condition that promotes lateral etching, and the dry etching is interrupted before the resist disappears. Thereafter, the resist 12 is removed, dry etching is resumed, and a predetermined amount of etching is performed, whereby the convex portion 12 can be formed. The convex part 12 formed by such a method is excellent in in-plane uniformity of the height dimension.
 また、エッチング方法としてウェットエッチング法を用いる場合には、ドライエッチング法と組み合わせることにより、C面に非平行の表面12cにより構成される凸部12を形成することができる。
 ウェットエッチングとしては、例えば、基板101がサファイア単結晶からなるものである場合、250℃以上の高温とした燐酸と硫酸との混酸等を用いることにより、ウェットエッチングすることができる。
 ウェットエッチング法とドライエッチング法と組み合わせた方法としては、例えば、マスクが消失するまで基板101をドライエッチングした後、高温の酸を用いて所定量のウェットエッチングを行なう方法により、凸部12を形成することができる。このような方法を用いて凸部12を形成することにより、凸部12の側面を構成する斜面に結晶面が露出され、再現性よく凸部12の側面を構成する斜面の角度を形成することができる。また、主面10に良好な結晶面を再現性よく露出させることができる。
 また、ウェットエッチング法とドライエッチング法と組み合わせたその他の方法としては、例えば、SiO等の酸に対して耐性を有する材料からなるマスクを形成してウェットエッチングを行なった後、マスクを剥離し、横方向のエッチングを促進させるための所定の条件でドライエッチングを行なう方法でも、凸部12を形成することができる。このような方法で形成された凸部12は、高さ寸法の面内均一性に優れたものとなる。また、このような方法を用いて凸部12を形成した場合においても、再現性よく凸部12の側面を構成する斜面の角度を形成することができる。
 また、凸部を酸化物もしくは窒化物で形成する場合には、基板上に材料を堆積させた後、ナノインプリント等の方法でパターニングされたマスクを形成させ、ドライエッチングもしくはウェットエッチングにより凸部を形成する方法とすることができる。
Further, when the wet etching method is used as the etching method, the convex portion 12 constituted by the surface 12c non-parallel to the C plane can be formed by combining with the dry etching method.
For example, when the substrate 101 is made of a sapphire single crystal, the wet etching can be performed by using a mixed acid of phosphoric acid and sulfuric acid at a high temperature of 250 ° C. or higher.
As a method of combining the wet etching method and the dry etching method, for example, after the substrate 101 is dry etched until the mask disappears, the convex portion 12 is formed by performing a predetermined amount of wet etching using a high-temperature acid. can do. By forming the convex portion 12 using such a method, the crystal plane is exposed on the slope constituting the side surface of the convex portion 12, and the angle of the slope constituting the side surface of the convex portion 12 is formed with good reproducibility. Can do. Further, a good crystal plane can be exposed to the main surface 10 with good reproducibility.
In addition, as another method in combination with the wet etching method and the dry etching method, for example, a mask made of a material resistant to an acid such as SiO 2 is formed and wet etching is performed, and then the mask is peeled off. The convex portion 12 can also be formed by a method of performing dry etching under a predetermined condition for promoting lateral etching. The convex part 12 formed by such a method is excellent in in-plane uniformity of the height dimension. Moreover, even when the convex part 12 is formed using such a method, the angle of the slope which comprises the side surface of the convex part 12 can be formed with sufficient reproducibility.
In addition, when the convex part is formed of oxide or nitride, after depositing a material on the substrate, a mask patterned by a method such as nanoimprinting is formed, and the convex part is formed by dry etching or wet etching. It can be a method to do.
 なお、本実施形態の製造方法においては、凸部を形成する方法としてエッチング法を用い、基板をエッチングする例を挙げて説明したが、本発明は上記方法に限定されるものではない。例えば、上述したように、基板上に凸部を構成する材料を堆積させることにより、凸部を形成する方法とすることも可能であり、適宜選択して採用することができる。 In addition, in the manufacturing method of this embodiment, although the example which etches a board | substrate using the etching method as a method of forming a convex part was demonstrated, this invention is not limited to the said method. For example, as described above, it is possible to adopt a method of forming a convex portion by depositing a material constituting the convex portion on the substrate, and the method can be appropriately selected and adopted.
『バッファ層形成工程』
 次に、バッファ層形成工程では、上記方法によって準備された基板101の主面10上に、図1や図3に示されるようなバッファ層102を積層する。
 本実施形態で説明する例では、基板加工工程の後、エピタキシャル工程の前にバッファ層形成工程を行なうことにより、基板101の主面10上に図1に示すようなバッファ層102を積層する。
 また、本発明においては、上述したようにバッファ層を省略した構成とすることも可能であり、この場合にはバッファ層形成工程を行なわなくても良い。
"Buffer layer formation process"
Next, in the buffer layer forming step, a buffer layer 102 as shown in FIGS. 1 and 3 is laminated on the main surface 10 of the substrate 101 prepared by the above method.
In the example described in this embodiment, the buffer layer 102 as shown in FIG. 1 is stacked on the main surface 10 of the substrate 101 by performing a buffer layer forming step after the substrate processing step and before the epitaxial step.
In the present invention, as described above, the buffer layer may be omitted. In this case, the buffer layer forming step may not be performed.
「基板の前処理」
 本実施形態では、基板101をスパッタ装置のチャンバ内に導入した後、バッファ層102を形成する前に、プラズマ処理による逆スパッタ等の方法を用いて前処理を行うことが望ましい。具体的には、基板101をArやNのプラズマ中に曝す事によって、表面を整えることができる。例えば、ArガスやNガスなどのプラズマを基板101表面に作用させる逆スパッタにより、基板101表面に付着した有機物や酸化物を除去することができる。この場合、基板101とチャンバとの間に電圧を印加すれば、プラズマ粒子が効率的に基板101に作用する。このような前処理を基板101に施すことにより、その後の工程で、基板101の表面全面にわたってバッファ層102を成膜することができ、その上に成膜されるIII族窒化物半導体からなる膜の結晶性を高めることが可能となる。また、基板101には、上述のような逆スパッタによる前処理を行なう前に、湿式の前処理を施すことがより好ましい。
"Pretreatment of substrate"
In this embodiment, after introducing the substrate 101 into the chamber of the sputtering apparatus and before forming the buffer layer 102, it is desirable to perform pretreatment using a method such as reverse sputtering by plasma treatment. Specifically, the surface can be prepared by exposing the substrate 101 to Ar or N 2 plasma. For example, organic matter and oxide attached to the surface of the substrate 101 can be removed by reverse sputtering in which plasma such as Ar gas or N 2 gas is applied to the surface of the substrate 101. In this case, if a voltage is applied between the substrate 101 and the chamber, the plasma particles efficiently act on the substrate 101. By applying such pretreatment to the substrate 101, the buffer layer 102 can be formed over the entire surface of the substrate 101 in the subsequent steps, and a film made of a group III nitride semiconductor formed thereon It becomes possible to increase the crystallinity. Further, it is more preferable that the substrate 101 is subjected to a wet pretreatment before the pretreatment by reverse sputtering as described above.
 また、基板101への前処理としては、N、(Nなどのイオン成分と、Nラジカル、Nラジカルなどの電荷を持たないラジカル成分とが混合された雰囲気で行なわれる、プラズマ処理で行なうことが好ましい。
 基板の表面から有機物や酸化物等のコンタミを除去する際に、例えば、イオン成分等を単独で基板表面に供給した場合には、エネルギーが強すぎて基板表面にダメージを与えてしまい、基板上に成長させる結晶の品質を低下させてしまう問題がある。本実施形態においては、基板101への前処理を、上述のようなイオン成分とラジカル成分とが混合された雰囲気で行なわれるプラズマ処理を用いた方法とすることが好ましい、その結果、基板101に適度なエネルギーを持つ反応種を作用させることにより、基板101表面にダメージを与えずにコンタミ等の除去を行なうことが可能となる。このような効果が得られるメカニズムとしては、イオン成分の割合が少ないプラズマを用いることで基板101表面に与えるダメージが抑制されることと、基板101表面にプラズマを作用させることによって効果的にコンタミを除去できること等が考えられる。
In addition, as the pretreatment for the substrate 101, plasma is performed in an atmosphere in which ion components such as N + and (N 2 ) + and radical components having no charge such as N radicals and N 2 radicals are mixed. It is preferable to carry out by processing.
When removing contaminants such as organic substances and oxides from the surface of the substrate, for example, if an ionic component or the like is supplied to the substrate surface alone, the energy is too strong and the substrate surface is damaged, There is a problem in that the quality of the crystal to be grown is lowered. In the present embodiment, it is preferable that the pretreatment on the substrate 101 is a method using plasma treatment performed in an atmosphere in which an ionic component and a radical component are mixed as described above. By allowing a reactive species having an appropriate energy to act, it is possible to remove contamination and the like without damaging the surface of the substrate 101. As a mechanism for obtaining such an effect, damage caused to the surface of the substrate 101 is suppressed by using plasma with a small proportion of ion components, and contamination is effectively performed by causing plasma to act on the surface of the substrate 101. It can be considered that it can be removed.
「バッファ層の成膜」
 基板101に前処理を行なった後、基板101上に、反応性スパッタ法により、AlGa1-XN(0≦X≦1)である組成のバッファ層102を成膜する。反応性スパッタ法によって単結晶構造を有するバッファ層102を形成する場合、スパッタ装置のチャンバ内の窒素原料と不活性ガスの合計流量に対する窒素原料の流量の比を、50~100%の範囲となるように制御することが好ましく、75%程度とすることがより好ましい。
 また、柱状結晶(多結晶)構造を有するバッファ層102を形成する場合には、スパッタ装置のチャンバ内の窒素原料と不活性ガスの合計流量に対する窒素原料の流量の比を、1~50%の範囲となるように制御することが好ましく、25%程度とすることがより好ましい。
"Deposition of buffer layer"
After performing the pretreatment to the substrate 101 on the substrate 101 by a reactive sputtering method, forming an Al X Ga 1-X N ( 0 ≦ X ≦ 1) buffer layer 102 of the composition it is. When the buffer layer 102 having a single crystal structure is formed by the reactive sputtering method, the ratio of the flow rate of the nitrogen source to the total flow rate of the nitrogen source and the inert gas in the chamber of the sputtering apparatus is in the range of 50 to 100%. It is preferable to control so that it is about 75%.
When the buffer layer 102 having a columnar crystal (polycrystalline) structure is formed, the ratio of the flow rate of the nitrogen source to the total flow rate of the nitrogen source and the inert gas in the chamber of the sputtering apparatus is 1 to 50%. It is preferable to control to be within the range, and more preferably about 25%.
 バッファ層102は、上述した反応性スパッタ法に限らず、例えば、MOCVD法を用いて形成することも可能である。しかしながら、基板101の主面10には凸部12が形成されているため、MOCVD法でバッファ層を形成した場合、主面10で原料ガスの流れが乱れてしまう虞がある。このようなMOCVD法に対し、反応性スパッタ法は原料粒子の直進性が高いので、主面10の形状に影響を受けずに均一なバッファ層102を積層することが可能である。従って、バッファ層102は、反応性スパッタ法を用いて形成することが好ましい。 The buffer layer 102 is not limited to the reactive sputtering method described above, and can be formed using, for example, the MOCVD method. However, since the convex portion 12 is formed on the main surface 10 of the substrate 101, the flow of the source gas may be disturbed on the main surface 10 when the buffer layer is formed by the MOCVD method. In contrast to the MOCVD method, the reactive sputtering method has a high degree of straightness of the raw material particles, so that the uniform buffer layer 102 can be stacked without being affected by the shape of the main surface 10. Therefore, the buffer layer 102 is preferably formed using a reactive sputtering method.
『エピタキシャル工程及びLED積層工程』
 上記バッファ層形成工程の後、図1や図3に示すように、基板101の主面10上に形成されたバッファ層102上に、単結晶のIII族窒化物半導体をエピタキシャル成長させて、主面10を覆うように下地層(III族窒化物半導体層)103を形成するエピタキシャル工程を行なう。
 また、エピタキシャル工程においてIII族窒化物半導体からなる下地層103を形成した後、LED積層工程において、下地層103上に、n型半導体層104、発光層105及びp型半導体層106の各層からなるLED構造20を形成する。
 なお、本実施形態においては、それぞれIII族窒化物半導体を用いて各層を成膜するエピタキシャル工程及びLED積層工程について、両工程に共通する構成の説明を、一部、省略することがある。
"Epitaxial process and LED stacking process"
After the buffer layer forming step, as shown in FIGS. 1 and 3, a single crystal group III nitride semiconductor is epitaxially grown on the buffer layer 102 formed on the main surface 10 of the substrate 101. An epitaxial process is performed to form a base layer (group III nitride semiconductor layer) 103 so as to cover 10.
In addition, after the base layer 103 made of a group III nitride semiconductor is formed in the epitaxial process, the LED stacking process includes the n-type semiconductor layer 104, the light emitting layer 105, and the p-type semiconductor layer 106 on the base layer 103. An LED structure 20 is formed.
In the present embodiment, the description of the configuration common to both processes may be partially omitted for the epitaxial process and the LED stacking process in which each layer is formed using a group III nitride semiconductor.
 本発明において、下地層103、n型半導体層104、発光層105及びp型半導体層106を形成する際の窒化ガリウム系化合物半導体(III族窒化物半導体)の成長方法は特に限定されない。反応性スパッタ法、MOCVD(有機金属化学気相成長法)、HVPE(ハイドライド気相成長法)、MBE(分子線エピタキシー法)等、窒化物半導体を成長させることが知られている全ての方法を適用できる。
これらの方法の内、MOCVD法では、例えば、キャリアガスとして水素(H)または窒素(N)、III族原料であるGa源としてトリメチルガリウム(TMG)またはトリエチルガリウム(TEG)、Al源としてトリメチルアルミニウム(TMA)またはトリエチルアルミニウム(TEA)、In源としてトリメチルインジウム(TMI)またはトリエチルインジウム(TEI)、V族原料であるN源としてアンモニア(NH)、ヒドラジン(N)などを用いることができる。また、ドーパントとしては、n型にはSi原料としてモノシラン(SiH)またはジシラン(Si)を利用でき、またGe原料としてゲルマンガス(GeH)や、テトラメチルゲルマニウム((CHGe)やテトラエチルゲルマニウム((CGe)等の有機ゲルマニウム化合物を利用できる。MBE法では、元素状のゲルマニウムもドーピング源として利用できる。p型にはMg原料としては、例えばビスシクロペンタジエニルマグネシウム(CpMg)またはビスエチルシクロペンタジエニルマグネシウム(EtCpMg)を用いることができる。
 また、上述したような窒化ガリウム系化合物半導体は、Al、GaおよびIn以外に他のIII族元素を含有することができ、必要に応じてGe、Si、Mg、Ca、Zn、及びBe等のドーパント元素を含有することができる。さらに、意図的に添加した元素に限らず、成膜条件等に依存して必然的に含まれる不純物、並びに原料、反応管材質に含まれる微量不純物を含む場合もある。
 本発明においては、上記各方法の中でも、結晶性の良好な膜が得られる点からMOCVD法を用いることが好ましく、本実施形態では、エピタキシャル工程及びLED積層工程においてMOCVD法を用いた例について説明する。
In the present invention, the growth method of the gallium nitride compound semiconductor (group III nitride semiconductor) when forming the base layer 103, the n-type semiconductor layer 104, the light emitting layer 105, and the p-type semiconductor layer 106 is not particularly limited. All methods known to grow nitride semiconductors such as reactive sputtering, MOCVD (metal organic chemical vapor deposition), HVPE (hydride vapor deposition), MBE (molecular beam epitaxy), etc. Applicable.
Among these methods, in the MOCVD method, for example, hydrogen (H 2 ) or nitrogen (N 2 ) as a carrier gas, trimethyl gallium (TMG) or triethyl gallium (TEG) as a Ga source as a group III source, and as an Al source Trimethylaluminum (TMA) or triethylaluminum (TEA), trimethylindium (TMI) or triethylindium (TEI) as the In source, ammonia (NH 3 ), hydrazine (N 2 H 4 ), etc. as the N source that is a group V source Can be used. Moreover, as a dopant, monosilane (SiH 4 ) or disilane (Si 2 H 6 ) can be used as a Si raw material for the n-type, and germane gas (GeH 4 ) or tetramethyl germanium ((CH 3 ) as a Ge raw material. Organic germanium compounds such as 4 Ge) and tetraethyl germanium ((C 2 H 5 ) 4 Ge) can be used. In the MBE method, elemental germanium can also be used as a doping source. For the p-type, for example, biscyclopentadienyl magnesium (Cp 2 Mg) or bisethylcyclopentadienyl magnesium (EtCp 2 Mg) can be used as the Mg raw material.
Further, the gallium nitride compound semiconductor as described above can contain other group III elements in addition to Al, Ga, and In, and can contain Ge, Si, Mg, Ca, Zn, and Be as necessary. A dopant element can be contained. Furthermore, it is not limited to the element added intentionally, but may include impurities that are inevitably included depending on the film forming conditions and the like, as well as trace impurities that are included in the raw materials and reaction tube materials.
In the present invention, among the above methods, the MOCVD method is preferably used from the viewpoint of obtaining a film having good crystallinity. In the present embodiment, an example using the MOCVD method in the epitaxial process and the LED stacking process will be described. To do.
「エピタキシャル工程(下地層の形成)」
 エピタキシャル工程では、図1に示すように、基板101上に形成されたバッファ層102の上に、下地層103を、従来公知のMOCVD法を用いて、基板101の主面10をなす平面部11及び凸部12を覆うようにして形成する。
"Epitaxial process (underlayer formation)"
In the epitaxial process, as shown in FIG. 1, a base layer 103 is formed on a buffer layer 102 formed on a substrate 101 by using a conventionally known MOCVD method, and a planar portion 11 that forms the main surface 10 of the substrate 101. And it forms so that the convex part 12 may be covered.
(成膜条件)
 本実施形態の製造方法では、MOCVD法を用いて下地層103を形成している。しかしながら、下地層103を積層する方法としては特に限定されず、転位のループ化を生じさせることができる結晶成長方法であれば、何ら制限なく用いることができる。特に、MOCVD法やMBE法、VPE法等は、マイグレーションを生じさせることができるため、結晶性の良好な膜を形成することが可能となる点で好適である。中でも、MOCVD法は、特に結晶性の良好な膜を得ることができる点で、より好適に用いることができる。
(Deposition conditions)
In the manufacturing method of the present embodiment, the underlayer 103 is formed using the MOCVD method. However, the method for stacking the base layer 103 is not particularly limited, and any crystal growth method that can cause dislocation looping can be used without any limitation. In particular, the MOCVD method, the MBE method, the VPE method, and the like are preferable in that a film with favorable crystallinity can be formed because migration can occur. Among these, the MOCVD method can be used more suitably in that a film having particularly good crystallinity can be obtained.
 例えば、MOCVD法を用いてサファイア基板の主面に単結晶のIII族窒化物半導体層を成長させると、C面からは単結晶層がエピタキシャル成長するが、C面以外の主面上には単結晶層がエピタキシャル成長しないという特性がある。つまり、本実施形態で説明する例では、バッファ層102の形成された基板101の主面10上に、単結晶のIII族窒化物半導体からなる下地層103をエピタキシャル成長させると、C面に非平行の表面12cからは結晶が成長せず、(0001)C面からなる平面部11からのみC軸方向に配向した結晶がエピタキシャル成長する。これにより、基板101の主面10に形成される下地層103は、主面10上において凸部12を覆うようにエピタキシャル成長するので、結晶中に転位等の結晶欠陥を生じないため、結晶性が適正に制御された層となる。 For example, when a single crystal group III nitride semiconductor layer is grown on the main surface of a sapphire substrate using MOCVD, a single crystal layer is epitaxially grown from the C surface, but a single crystal is formed on the main surface other than the C surface. The layer does not grow epitaxially. That is, in the example described in this embodiment, when the base layer 103 made of a single crystal group III nitride semiconductor is epitaxially grown on the main surface 10 of the substrate 101 on which the buffer layer 102 is formed, it is non-parallel to the C plane. A crystal does not grow from the surface 12c of the first layer, and a crystal oriented in the C-axis direction grows epitaxially only from the flat portion 11 made of the (0001) C plane. As a result, the base layer 103 formed on the main surface 10 of the substrate 101 is epitaxially grown so as to cover the convex portion 12 on the main surface 10, so that crystal defects such as dislocations do not occur in the crystal, so that the crystallinity is improved. A properly controlled layer.
 凸部12の形成された基板101は、凸部12の形成されていない基板と比較して、主面10に下地層103をMOCVD法でエピタキシャル成長した場合に、平坦性の良好な下地層103を積層することが困難である。また、凸部12の形成された基板101の主面10に積層された下地層103は、結晶性を悪化させるC軸方向の傾き(チルト)やC軸のねじれ(ツイスト)等が生じやすい。このため、凸部12の形成された基板101の主面10に下地層103をMOCVD法でエピタキシャル成長させる場合、十分な表面平坦性や良好な結晶性を得るために、以下に示す成長条件とすることが望ましい。 The substrate 101 on which the protrusions 12 are formed has a better flatness when the underlayer 103 is epitaxially grown on the main surface 10 by the MOCVD method than the substrate on which the protrusions 12 are not formed. It is difficult to stack. In addition, the base layer 103 laminated on the main surface 10 of the substrate 101 on which the convex portions 12 are formed is liable to cause a tilt in the C-axis direction that deteriorates the crystallinity, a twist in the C-axis, or the like. Therefore, when the base layer 103 is epitaxially grown by the MOCVD method on the main surface 10 of the substrate 101 on which the convex portions 12 are formed, the following growth conditions are used in order to obtain sufficient surface flatness and good crystallinity. It is desirable.
 凸部12の形成された基板101の主面10に下地層103をMOCVD法でエピタキシャル成長させる場合には、成長圧力および成長温度を以下に説明するような条件とすることが好ましい。
 一般に、成長圧力を低くして成長温度を高くすると、横方向の結晶成長が促進され、一方で、成長圧力を高くして成長温度を低くすると、ファセット成長モード(△形状)になる。また、成長初期の成長圧力を高くすると、X線ロッキングカーブの半値幅(XRC-FWHM)が小さくなり、結晶性が向上する傾向がある。
When the base layer 103 is epitaxially grown by the MOCVD method on the main surface 10 of the substrate 101 on which the convex portions 12 are formed, it is preferable that the growth pressure and the growth temperature are set as described below.
Generally, when the growth pressure is lowered and the growth temperature is raised, lateral crystal growth is promoted. On the other hand, when the growth pressure is raised and the growth temperature is lowered, the facet growth mode (Δ shape) is entered. Further, when the growth pressure at the initial stage of growth is increased, the half-value width (XRC-FWHM) of the X-ray rocking curve is decreased, and the crystallinity tends to be improved.
 以上の事から、凸部12の形成された基板101の主面10上に下地層103をMOCVD法でエピタキシャル成長させる場合には、成長圧力を2段階に変化させることが好ましい。すなわち、下地層103の膜厚が2μm程度以上になるまで(前半成膜)と、下地層103を2μm程度以上積層した後(後半成膜)とで、成長圧力を変化させることが好ましい。
 成長圧力は前半成膜においては、40kPa以上とすることが好ましく、60kPa程度とすることがより好ましい。成長圧力を40kPa以上とすると、ファセット成長モード(△形状)になり、転位が横方向に屈曲し、エピタキシャル表面に貫通しない。このため、成長圧力を高くする事で、低転位化され、結晶性が良好となると推定される。成長圧力を40kPa未満とすると、結晶性が悪化し、X線ロッキングカーブの半値幅(XRC-FWHM)が大きくなるため好ましくない。
From the above, when the base layer 103 is epitaxially grown by the MOCVD method on the main surface 10 of the substrate 101 on which the convex portions 12 are formed, it is preferable to change the growth pressure in two stages. That is, it is preferable to change the growth pressure until the film thickness of the underlayer 103 is about 2 μm or more (first half film formation) and after the underlayer 103 is laminated about 2 μm or more (second half film formation).
In the first half film formation, the growth pressure is preferably 40 kPa or more, and more preferably about 60 kPa. When the growth pressure is set to 40 kPa or more, a facet growth mode (Δ shape) is set, dislocations bend in the lateral direction, and do not penetrate the epitaxial surface. For this reason, it is presumed that by increasing the growth pressure, the dislocation is lowered and the crystallinity is improved. If the growth pressure is less than 40 kPa, the crystallinity is deteriorated and the half width (XRC-FWHM) of the X-ray rocking curve is increased, which is not preferable.
 しかしながら前半成膜において、成長圧力を40kPa以上とすると、エピタキシャル成長させた下地層103の表面にピットが発生しやすくなり、十分な表面平坦性が得られない場合がある。
このため、成長圧力を40kPa以上とする場合、成長温度を1140℃以下とすることが好ましく、1120℃程度とすることがより好ましい。成長温度を1140℃以下とすることで、成長圧力を40kPa以上、好ましくは60kPa程度とした場合であっても、ピットの発生を十分に抑制できる。
However, if the growth pressure is 40 kPa or more in the first half film formation, pits are likely to be generated on the surface of the epitaxially grown base layer 103, and sufficient surface flatness may not be obtained.
For this reason, when the growth pressure is 40 kPa or more, the growth temperature is preferably 1140 ° C. or less, and more preferably about 1120 ° C. By setting the growth temperature to 1140 ° C. or lower, the generation of pits can be sufficiently suppressed even when the growth pressure is 40 kPa or more, preferably about 60 kPa.
 また、後半成膜においては、成長圧力を40kPa以下とすることが好ましく、20kPa程度とすることがより好ましい。後半成膜において成長圧力を40kPa以下とすることで、横方向の結晶成長を促進することができ、表面平坦性に優れた下地層103が得られる。 In the latter half film formation, the growth pressure is preferably 40 kPa or less, more preferably about 20 kPa. By setting the growth pressure to 40 kPa or less in the latter half film formation, the lateral crystal growth can be promoted, and the base layer 103 having excellent surface flatness can be obtained.
 なお、下地層103には、必要に応じて、不純物をドープして成膜することができるが、アンドープとすることが、結晶性が向上する点から好ましい。
 また、反応性スパッタ法を用いてIII族窒化物半導体からなる下地層103を成膜することも可能である。スパッタ法を用いる場合には、MOCVD法やMBE法等と比較して、装置を簡便な構成とすることが可能となる。
Note that the base layer 103 can be formed by being doped with impurities as necessary, but undoped is preferable from the viewpoint of improving crystallinity.
It is also possible to form the base layer 103 made of a group III nitride semiconductor by using a reactive sputtering method. When the sputtering method is used, the apparatus can have a simple configuration as compared with the MOCVD method, the MBE method, or the like.
 以上説明したようなエピタキシャル工程により、図1に示す積層構造が得られる。
 本発明に係るIII族窒化物半導体発光素子の製造方法では、上述したような基板加工工程に次いで、主面10上に、平面部11及び凸部12を覆うようにして下地層103を成長させるエピタキシャル工程を備えているので、下地層103の結晶中に転位などの結晶欠陥が生じにくく、結晶性が適正な範囲で良好に制御された下地層103が形成できる。
By the epitaxial process as described above, the stacked structure shown in FIG. 1 is obtained.
In the method for manufacturing a group III nitride semiconductor light-emitting device according to the present invention, after the substrate processing step as described above, the base layer 103 is grown on the main surface 10 so as to cover the planar portion 11 and the convex portion 12. Since the epitaxial process is provided, crystal defects such as dislocations are not easily generated in the crystal of the base layer 103, and the base layer 103 in which the crystallinity is well controlled within an appropriate range can be formed.
 ここで、例えば、凸部の表面にC面が存在する場合、凸部の形成された基板上に単結晶のIII族窒化物半導体をエピタキシャル成長させると、凸部の表面に存在するC面と、凸部の形成されていない領域のC面とから結晶が成長することになる。この場合、凸部の表面から成長した結晶と、凸部の形成されていない領域から成長した結晶とが合体した部分に転位などの結晶欠陥が発生しやすく、結晶性の良好なIII族窒化物半導体が得られにくい。ここで生じた結晶欠陥は、III族窒化物半導体からなる下地層の上に、n型半導体層、発光層、p型半導体層からなるLED構造を形成した場合、LED構造を構成する半導体層の結晶に引き継がれ、発光素子を形成した場合における内部量子効率の低下やリーク電流の増大の原因となる虞がある。 Here, for example, when a C-plane exists on the surface of the convex portion, when a single crystal group III nitride semiconductor is epitaxially grown on the substrate on which the convex portion is formed, the C-plane existing on the surface of the convex portion, A crystal grows from the C-plane of the region where no convex portion is formed. In this case, a crystal defect such as dislocation is likely to occur in a portion where the crystal grown from the surface of the convex portion and the crystal grown from the region where the convex portion is not formed, and the group III nitride having good crystallinity It is difficult to obtain a semiconductor. When the LED structure which consists of an n-type semiconductor layer, a light emitting layer, and a p-type semiconductor layer is formed on the base layer which consists of a group III nitride semiconductor, the crystal defect which arose here is the semiconductor layer which comprises LED structure. If the light-emitting element is formed by the crystal, the internal quantum efficiency may be reduced and the leakage current may be increased.
 これに対し、本発明では、上述したように、基板101上にC面に非平行の表面12cからなる凸部12を形成することにより、C面からなる平面部11と凸部12とからなる主面10を形成する。その結果、基板101の主面10に下地層103のエピタキシャル成長を行った場合、平面部11からのみ結晶が成長する。従って、基板101の主面10に形成される下地層103は、主面10上において凸部12を覆うようにエピタキシャル成長し、結晶中に転位などの結晶欠陥を生じない。
 また、基板101と下地層103との界面が、バッファ層102を介して凹凸とされることで、光の乱反射によって発光素子の内部への光の閉じ込めが低減されるため、発光素子1の光取り出し効率をより向上させることが可能となる。
On the other hand, in the present invention, as described above, the convex portion 12 made of the surface 12c that is non-parallel to the C plane is formed on the substrate 101, so that the flat portion 11 made of the C plane and the convex portion 12 are formed. The main surface 10 is formed. As a result, when the base layer 103 is epitaxially grown on the main surface 10 of the substrate 101, crystals grow only from the planar portion 11. Therefore, the underlayer 103 formed on the main surface 10 of the substrate 101 is epitaxially grown on the main surface 10 so as to cover the convex portions 12, and crystal defects such as dislocations do not occur in the crystal.
In addition, since the interface between the substrate 101 and the base layer 103 is uneven via the buffer layer 102, light confinement inside the light-emitting element is reduced due to irregular reflection of light. The extraction efficiency can be further improved.
(X線ロッキングカーブ半値幅)
 本発明では、上述したように、エピタキシャル工程により、凸部12を備えた基板101の主面10上にIII族窒化物半導体からなる下地層103を形成した状態での、下地層103の(10-10)面におけるX線ロッキングカーブ(XRC)半値幅が150arcsec以上であることが好ましい。下地層103の(10-10)面におけるX線ロッキングカーブ(XRC)半値幅がこのような数値であれば、下地層103の結晶性が適正範囲で良好に制御され、この上に形成されるLED構造20と間で格子不整合が生じるのを抑制できる。従って、後述のLED積層工程において、井戸層105bにインジウム(In)を高濃度で添加し、高温で成長させた場合であっても、井戸層105bに歪み等の結晶欠陥が生じるのを抑制することが可能となる。
(X-ray rocking curve half width)
In the present invention, as described above, (10) of the base layer 103 in a state where the base layer 103 made of a group III nitride semiconductor is formed on the main surface 10 of the substrate 101 provided with the protrusions 12 by the epitaxial process. It is preferable that the X-ray rocking curve (XRC) half-width in the −10) plane is 150 arcsec or more. If the X-ray rocking curve (XRC) half-value width in the (10-10) plane of the underlayer 103 is such a numerical value, the crystallinity of the underlayer 103 is well controlled within an appropriate range, and is formed thereon. It is possible to suppress a lattice mismatch between the LED structure 20 and the LED structure 20. Accordingly, in the later-described LED stacking step, even when indium (In) is added to the well layer 105b at a high concentration and grown at a high temperature, the occurrence of crystal defects such as strain in the well layer 105b is suppressed. It becomes possible.
「LED積層工程」
 次に、LED積層工程において、上記エピタキシャル工程の後、図3に示すように、下地層103の上に、n型半導体層104、発光層105及びp型半導体層106の各層からなるLED構造20を、従来公知のMOCVD法を用いて積層する。
"LED lamination process"
Next, in the LED stacking step, after the epitaxial step, as shown in FIG. 3, the LED structure 20 composed of the n-type semiconductor layer 104, the light-emitting layer 105, and the p-type semiconductor layer 106 on the base layer 103. Are stacked using a conventionally known MOCVD method.
(n型半導体層の形成)
 上記エピタキシャル工程で形成された下地層103の上に、従来公知のMOCVD法を用いて、n型コンタクト層104a及びn型クラッド層104bを順次積層することにより、n型半導体層104を形成する。n型コンタクト層104a及びn型クラッド層104bを形成する成膜装置としては、上述の下地層103や後述の発光層105の成膜に用いるMOCVD装置を、各種条件を適宜変更して用いることが可能である。また、n型コンタクト層104a及びn型クラッド層104bを反応性スパッタ法で形成することも可能である。
(Formation of n-type semiconductor layer)
An n-type semiconductor layer 104 is formed by sequentially laminating an n-type contact layer 104a and an n-type clad layer 104b on the base layer 103 formed by the epitaxial process using a conventionally known MOCVD method. As a film forming apparatus for forming the n-type contact layer 104a and the n-type clad layer 104b, the MOCVD apparatus used for forming the base layer 103 and the light-emitting layer 105 described later may be used by appropriately changing various conditions. Is possible. Further, the n-type contact layer 104a and the n-type cladding layer 104b can be formed by a reactive sputtering method.
(発光層の形成)
 次いで、n型クラッド層104b(n型半導体層104)上に、発光層105を、従来公知のMOCVD法によって形成する。本実施形態で形成する発光層105は、図4に例示するように、GaN障壁層に始まりGaN障壁層に終わる積層構造を有している。すなわち、GaNからなる7層の障壁層105aと、ノンドープのGa0.8In0.2Nからなる6層の井戸層105bとを交互に積層して形成されている。また、本実施形態の製造方法では、上述したn型半導体層104の成膜に用いる成膜装置(MOCVD装置)と同じものを使用して発光層105を成膜することができる。
(Formation of light emitting layer)
Next, the light emitting layer 105 is formed on the n-type cladding layer 104b (n-type semiconductor layer 104) by a conventionally known MOCVD method. As illustrated in FIG. 4, the light emitting layer 105 formed in the present embodiment has a stacked structure starting with a GaN barrier layer and ending with the GaN barrier layer. That is, seven barrier layers 105a made of GaN and six well layers 105b made of non-doped Ga 0.8 In 0.2 N are alternately stacked. In the manufacturing method of this embodiment, the light emitting layer 105 can be formed using the same film forming apparatus (MOCVD apparatus) used for forming the n-type semiconductor layer 104 described above.
 本発明では、井戸層105bに含有されるInの濃度を、例えば7質量%以上の高濃度とすることにより、発光波長が490~570nmの範囲の緑色発光を呈する発光素子を構成できる。このように、井戸層105bに含有されるInを高濃度とした場合、井戸層105bの成長温度を、例えば700~800℃程度とする必要がある。本発明の製造方法では、このような高い成長温度を用いて井戸層105bを成膜し、In組成が低下することによって結晶性の低下が生じた場合であっても、半値幅のコントロールによって下地層103との間での格子不整合が抑制されるので、井戸層105に歪み等の結晶欠陥が生じるのを防止することができる。これにより、内部量子効率の低下が抑制され、高い発光出力を備えた発光素子を製造することが可能となる。 In the present invention, by setting the concentration of In contained in the well layer 105b to a high concentration of, for example, 7% by mass or more, a light emitting element that emits green light with an emission wavelength in the range of 490 to 570 nm can be configured. As described above, when the concentration of In contained in the well layer 105b is high, the growth temperature of the well layer 105b needs to be about 700 to 800 ° C., for example. In the manufacturing method of the present invention, even when the well layer 105b is formed using such a high growth temperature and the crystallinity is lowered due to the decrease in the In composition, the lowering is achieved by controlling the half width. Since lattice mismatch with the ground layer 103 is suppressed, crystal defects such as strain can be prevented from occurring in the well layer 105. Thereby, the fall of internal quantum efficiency is suppressed and it becomes possible to manufacture the light emitting element provided with the high light emission output.
(p型半導体層の形成)
 次いで、発光層105上、つまり、発光層105の最上層となる障壁層105aの上に、p型クラッド層106a及びp型コンタクト層106bからなるp型半導体層106を、従来公知のMOCVD法を用いて形成する。p型半導体層106の形成には、n型半導体層104及び発光層105の形成に用いるMOCVD装置と同じ装置を、各種条件を適宜変更して用いることが可能である。また、p型半導体層106を構成するp型クラッド層106a及びp型コンタクト層106bを、反応性スパッタ法を用いて形成することも可能である。
(Formation of p-type semiconductor layer)
Next, the p-type semiconductor layer 106 composed of the p-type cladding layer 106a and the p-type contact layer 106b is formed on the light-emitting layer 105, that is, on the barrier layer 105a that is the uppermost layer of the light-emitting layer 105 by a conventionally known MOCVD method. Use to form. For the formation of the p-type semiconductor layer 106, the same apparatus as the MOCVD apparatus used for forming the n-type semiconductor layer 104 and the light-emitting layer 105 can be used by appropriately changing various conditions. In addition, the p-type cladding layer 106a and the p-type contact layer 106b constituting the p-type semiconductor layer 106 can be formed using a reactive sputtering method.
 本実施形態では、まず、MgをドープしたAl0.1Ga0.9Nからなるp型クラッド層106aを発光層105(最上層の障壁層105a)上に形成し、さらにその上に、MgをドープしたAl0.02Ga0.98Nからなるp型コンタクト層106bを形成する。この際、p型クラッド層106a及びp型コンタクト層106bの積層には、同じMOCVD装置を用いることができる。なお、上述したように、p型不純物としては、Mgのみならず、例えば亜鉛(Zn)等も同様に用いることができる。 In the present embodiment, first, a p-type cladding layer 106a made of Al 0.1 Ga 0.9 N doped with Mg is formed on the light emitting layer 105 (the uppermost barrier layer 105a), and further, Mg A p-type contact layer 106b made of Al 0.02 Ga 0.98 N doped with is formed. At this time, the same MOCVD apparatus can be used for stacking the p-type cladding layer 106a and the p-type contact layer 106b. As described above, not only Mg but also zinc (Zn), for example, can be used as the p-type impurity.
『電極の形成』
 次に、LED積層工程おいてLED構造20が形成されたウェーハに対し、図3に例示するように、電極を設置する。具体的には、p型半導体層106上の所定の位置に透光性正極109を形成した後、前記透光性正極109の各々の上に正極ボンディングパッド107を形成する。またLED構造20の所定の位置をエッチング除去することにより、n型半導体層104を露出させて露出領域104cを形成し、前記露出領域104cに負極ボンディングパッド108を形成する。
"Formation of electrodes"
Next, as illustrated in FIG. 3, electrodes are installed on the wafer on which the LED structure 20 is formed in the LED stacking step. Specifically, after forming a translucent positive electrode 109 at a predetermined position on the p-type semiconductor layer 106, a positive electrode bonding pad 107 is formed on each of the translucent positive electrodes 109. Also, the n-type semiconductor layer 104 is exposed by etching away a predetermined position of the LED structure 20 to form an exposed region 104c, and a negative electrode bonding pad 108 is formed in the exposed region 104c.
「透光性正極の形成」
 まず、上記方法によって各層が形成されてなる積層半導体10のp型コンタクト層106b上に、ITOからなる透光性正極109を形成する。
 透光性正極109の形成方法としては、特に限定されず、この技術分野でよく知られた慣用の手段で設けることができる。また、その構造も、従来公知の構造を含めて如何なる構造のものも何ら制限なく用いることができる。
"Formation of translucent cathode"
First, the translucent positive electrode 109 made of ITO is formed on the p-type contact layer 106b of the laminated semiconductor 10 in which each layer is formed by the above method.
A method for forming the translucent positive electrode 109 is not particularly limited, and the translucent positive electrode 109 can be provided by a common means well known in this technical field. Further, any structure including a conventionally known structure can be used without any limitation.
 また、上述したように、透光性正極109の材料は、ITOには限定されず、AZO、IZO、及びGZO等の材料を用いて形成することが可能である。また、透光性正極109を形成した後、合金化や透明化を目的とした熱アニールを施す場合もあるが、施さなくても構わない。 Further, as described above, the material of the translucent positive electrode 109 is not limited to ITO, and can be formed using materials such as AZO, IZO, and GZO. Further, after forming the translucent positive electrode 109, thermal annealing may be performed for the purpose of alloying or transparency, but it may not be performed.
「正極ボンディングパッド及び負極ボンディングパッドの形成」
 次いで、積層半導体10上に形成された透光性正極109上に、さらに、正極ボンディングパッド107を形成する。この正極ボンディングパッド107は、例えば、透光性正極109の表面側から順に、Ti、Al、及びAuの各材料を、従来公知の方法で積層することによって形成することができる。
“Formation of positive and negative bonding pads”
Next, a positive electrode bonding pad 107 is further formed on the translucent positive electrode 109 formed on the laminated semiconductor 10. The positive electrode bonding pad 107 can be formed, for example, by laminating Ti, Al, and Au materials in order from the surface side of the translucent positive electrode 109 by a conventionally known method.
 また、負極ボンディングパッド108を形成する際は、まず、基板101上に形成されたp型半導体層106、発光層105及びn型半導体層104の一部をドライエッチング等の方法によって除去することにより、n型コンタクト層104aの露出領域104cを形成する。そして、この露出領域104c上に、例えば、露出領域104c表面側から順に、Ni、Al、Ti、及びAuの各材料を従来公知の方法で積層することにより、詳細な図示を省略する4層構造の負極ボンディングパッド108を形成することができる。 Further, when forming the negative electrode bonding pad 108, first, a part of the p-type semiconductor layer 106, the light emitting layer 105, and the n-type semiconductor layer 104 formed on the substrate 101 is removed by a method such as dry etching. The exposed region 104c of the n-type contact layer 104a is formed. Then, on this exposed region 104c, for example, each material of Ni, Al, Ti, and Au is sequentially laminated from the surface side of the exposed region 104c by a conventionally known method, thereby omitting detailed illustration. The negative electrode bonding pad 108 can be formed.
 以上説明したような、本発明に係るIII族窒化物半導体発光素子の製造方法には、基板101の(0001)C面からなる平面部11上に、基部幅が0.05~1.5μmである複数の凸部12を形成することにより、基板101上に平面部11と凸部12とからなる主面10を形成する、基板加工工程と、基板101の主面10上にIII族窒化物半導体をエピタキシャル成長させることにより、平面部11及び凸部12を覆うようにして下地層を形成するエピタキシャル工程と、LED構造20を、前記発光波長が490~570nmの範囲であるLED構造20を形成するLED積層工程と、が備えられている。本発明に係るIII族窒化物半導体発光素子の製造方法によれば、結晶性が適正に制御された下地層103を形成することができ、この層の上に形成されるLED構造20、特に発光層105に備えられる井戸層105bとの間で格子不整合が生じるのが抑制され、歪み等を生じさせること無く井戸層105b(発光層105)を形成することが可能となる。これにより、緑色発光を呈するLED構造20を形成する場合においても、内部量子効率及び光取り出し効率に優れ、高い発光特性を有するIII族窒化物半導体発光素子を製造することが可能となる。 In the method for manufacturing a group III nitride semiconductor light-emitting device according to the present invention as described above, the base width is 0.05 to 1.5 μm on the planar portion 11 made of the (0001) C plane of the substrate 101. A substrate processing step of forming a plurality of convex portions 12 to form main surface 10 composed of flat portion 11 and convex portions 12 on substrate 101, and a group III nitride on main surface 10 of substrate 101 By epitaxially growing a semiconductor, an epitaxial process for forming a base layer so as to cover the planar portion 11 and the convex portion 12 and an LED structure 20 having the emission wavelength in the range of 490 to 570 nm are formed. LED lamination process. According to the method for manufacturing a group III nitride semiconductor light emitting device according to the present invention, it is possible to form the underlayer 103 with properly controlled crystallinity, and the LED structure 20 formed on this layer, particularly light emission. The occurrence of lattice mismatch with the well layer 105b provided in the layer 105 is suppressed, and the well layer 105b (light-emitting layer 105) can be formed without causing distortion or the like. As a result, even when the LED structure 20 exhibiting green light emission is formed, a group III nitride semiconductor light emitting device having excellent internal quantum efficiency and light extraction efficiency and having high light emission characteristics can be manufactured.
[ランプ]
 本発明のランプには、本発明のIII族窒化物半導体発光素子が用いられる。
 本発明のランプとしては、例えば、本発明のIII族窒化物半導体発光素子と蛍光体とを組み合わせたものを挙げることができる。III族窒化物半導体発光素子と蛍光体とを組み合わせたランプは、当業者周知の手段によって製造し、当業者周知の構成としても良い。また、従来より、III族窒化物半導体発光素子と蛍光体と組み合わせることによって発光色を変える技術が知られており、本発明のランプにおいてもこのような技術を何ら制限されることなく採用することが可能である。
[lamp]
The group III nitride semiconductor light-emitting device of the present invention is used for the lamp of the present invention.
Examples of the lamp of the present invention include a combination of the group III nitride semiconductor light emitting device of the present invention and a phosphor. A lamp in which a group III nitride semiconductor light emitting device and a phosphor are combined may be manufactured by means well known to those skilled in the art and may have a structure well known to those skilled in the art. Conventionally, a technique for changing the emission color by combining a group III nitride semiconductor light-emitting element and a phosphor is known, and such a technique should be adopted in the lamp of the present invention without any limitation. Is possible.
 図5は、本発明に係るIII族窒化物半導体発光素子を用いて構成したランプの一例を模式的に示した概略図である。図5に示すランプ3は、砲弾型のものであり、図3に示すIII族窒化物半導体発光素子1が用いられている。図5に示すようにIII族窒化物半導体発光素子1は実装される。すなわち、III族窒化物半導体発光素子1の正極ボンディングパッド107がワイヤー33により2本のフレーム31、32の内の一方(図5ではフレーム31)に接着されており、発光素子1の負極ボンディングパッド108がワイヤー34により他方のフレーム32に接着されている。また、III族窒化物半導体発光素子1の周辺は、透明な樹脂からなるモールド35で封止されている。 FIG. 5 is a schematic view schematically showing an example of a lamp configured using the group III nitride semiconductor light emitting device according to the present invention. The lamp 3 shown in FIG. 5 is a cannonball type, and the group III nitride semiconductor light emitting device 1 shown in FIG. 3 is used. As shown in FIG. 5, the group III nitride semiconductor light emitting device 1 is mounted. That is, the positive electrode bonding pad 107 of the group III nitride semiconductor light emitting device 1 is bonded to one of the two frames 31 and 32 (the frame 31 in FIG. 5) by the wire 33, and the negative electrode bonding pad of the light emitting device 1. 108 is bonded to the other frame 32 by a wire 34. Further, the periphery of the group III nitride semiconductor light emitting device 1 is sealed with a mold 35 made of a transparent resin.
 本発明のランプは、本発明のIII族窒化物半導体発光素子1が用いられているので、優れた発光特性を備えたものとなる。
 なお、本発明のランプは、形状や用途に制限はなく、一般用途の砲弾型、携帯のバックライト用途のサイドビュー型、表示器に用いられるトップビュー型等いかなる用途にも用いることができる。
Since the group III nitride semiconductor light emitting device 1 of the present invention is used, the lamp of the present invention has excellent light emission characteristics.
The lamp of the present invention is not limited in shape and use, and can be used for any use such as a general-use bullet type, a side view type for a portable backlight, and a top view type used for a display.
 次に、本発明のIII族窒化物半導体発光素子を、実施例及び比較例を示してより詳細に説明するが、本発明はこれらの実施例にのみ限定されるものではない。 Next, the group III nitride semiconductor light-emitting device of the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited only to these examples.
[実施例1~2、比較例1~2]
 複数の(0001)C面を有するサファイア基板を用意し、サファイア基板の(0001)C面上に、表1に示すような「基部幅」、「高さ」、「基部幅/4」、「隣接する凸部間の間隔」及び「凸部表面C面の有無」の条件を満たす複数の凸部を、以下に示す方法によって形成することにより、実施例1~2及び比較例1の基板を形成した(基板加工工程)。凸部は、直径2インチのC面サファイア基板に公知のフォトリソグラフィー法でマスクを形成し、ドライエッチング法でサファイア基板をエッチングすることにより、形成した。なお、露光法として、紫外光を用いたステッパー露光法を用いた。また、ドライエッチングにはBClとClの混合ガスを用いた。
[Examples 1 and 2, Comparative Examples 1 and 2]
A sapphire substrate having a plurality of (0001) C faces is prepared. On the (0001) C face of the sapphire substrate, “base width”, “height”, “base width / 4”, “ By forming a plurality of convex portions that satisfy the conditions of “interval between adjacent convex portions” and “presence / absence of convex surface C”, the substrates of Examples 1 and 2 and Comparative Example 1 are formed. Formed (substrate processing step). The convex portions were formed by forming a mask on a C-plane sapphire substrate having a diameter of 2 inches by a known photolithography method and etching the sapphire substrate by a dry etching method. As an exposure method, a stepper exposure method using ultraviolet light was used. In addition, a mixed gas of BCl 3 and Cl 2 was used for dry etching.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 このようにして得られた実施例1~2及び比較例1の基板の凸部は、凸部の基部の平面形状が円形で、上部に向かって徐々に外形(断面積)が小さくなる形状であり、側面が外側に向かって湾曲したお椀状(半球状)の形状であった。 The convex portions of the substrates of Examples 1 and 2 and Comparative Example 1 obtained in this way have a shape in which the planar shape of the base of the convex portion is circular and the outer shape (cross-sectional area) gradually decreases toward the top. Yes, it had a bowl-like (hemispherical) shape with side surfaces curved outward.
 また、上述のような基板加工工程を実施せず、凸部の無い、(0001)C面からなる主面を有するサファイア基板を準備し、比較例2の基板とした。 In addition, a sapphire substrate having a principal surface made of a (0001) C surface without a convex portion without carrying out the substrate processing step as described above was prepared and used as a substrate of Comparative Example 2.
 次に、以下に詳細に示す方法で、実施例1~2及び比較例1の複数の凸部が形成された基板の主面に、RFスパッタ法を用いて単結晶構造を有するAlNからなる厚さ50nmバッファ層を形成した(バッファ層形成工程)。この際、スパッタ成膜装置としては、高周波式の電源を備え、ターゲット内でマグネットの位置を動かすことが可能な機構を有するものを使用した。また、以下に述べる同様の手順を用いて、凸部の無い比較例2の基板の主面上にも、単結晶構造を有するAlNからなる厚さ50nmバッファ層を形成した。 Next, on the main surface of the substrate on which the plurality of convex portions of Examples 1 and 2 and Comparative Example 1 are formed by the method described in detail below, the thickness made of AlN having a single crystal structure using RF sputtering is used. A 50 nm buffer layer was formed (buffer layer forming step). At this time, as the sputtering film forming apparatus, an apparatus having a high-frequency power source and having a mechanism capable of moving the position of the magnet in the target was used. In addition, a 50 nm thick buffer layer made of AlN having a single crystal structure was also formed on the main surface of the substrate of Comparative Example 2 having no protrusions using the same procedure described below.
 まず、複数の凸部の形成された基板を、スパッタ成膜装置のチャンバ内へ導入して500℃まで加熱し、チャンバ内に窒素ガスだけを15sccmの流量で導入した。この後、チャンバ内の圧力を1Paに保持して、基板側に500Wの高周波バイアスを印加して基板を窒素プラズマに曝することで、基板の表面を洗浄した(前処理)。 First, a substrate having a plurality of convex portions was introduced into a chamber of a sputter deposition apparatus and heated to 500 ° C., and only nitrogen gas was introduced into the chamber at a flow rate of 15 sccm. Thereafter, the pressure in the chamber was maintained at 1 Pa, a high frequency bias of 500 W was applied to the substrate side, and the substrate was exposed to nitrogen plasma, thereby cleaning the surface of the substrate (pretreatment).
 続いて、基板の温度を500℃に保ったまま、チャンバ内にアルゴンおよび窒素ガスを導入し、チャンバ内の圧力を0.5Paに保ち、かつ、Arガスを5sccm、窒素ガスを15sccm流通させた条件(ガス全体に対する窒素の比は75%)で、2000Wの高周波バイアスを金属Alターゲット側に印加し、複数の凸部の形成された基板上に、AlNからなるバッファ層を成膜を開始させた。成長レートは0.08nm/sであった。なお、ターゲット内のマグネットは、基板洗浄の際もバッファ層成膜の際も揺動させておいた。そして、予め測定した成膜速度に従って規定した時間の間、成膜を行い、50nmのAlN層からなるバッファ層が複数の凸部の形成された基板上に堆積した後、プラズマを立てるのを止め、基板温度を低下させた。 Subsequently, while maintaining the substrate temperature at 500 ° C., argon and nitrogen gas were introduced into the chamber, the pressure in the chamber was maintained at 0.5 Pa, and Ar gas was circulated at 5 sccm and nitrogen gas was circulated at 15 sccm. Under the conditions (the ratio of nitrogen to the whole gas is 75%), a high frequency bias of 2000 W is applied to the metal Al target side to start the formation of a buffer layer made of AlN on the substrate on which a plurality of convex portions are formed. It was. The growth rate was 0.08 nm / s. Note that the magnet in the target was swung both when the substrate was cleaned and when the buffer layer was formed. Then, film formation is performed for a prescribed time according to a film formation rate measured in advance, and after the buffer layer made of a 50 nm AlN layer is deposited on the substrate on which the plurality of convex portions are formed, the plasma is stopped from being generated. The substrate temperature was lowered.
 次に、このようにして得られたバッファ層上に、以下に示す減圧MOCVD法を用いてIII族窒化物半導体からなる下地層をエピタキシャル成長させた(エピタキシャル工程)。
 まず、スパッタ成膜装置からバッファ層が形成された基板を取り出した。この基板を、MOCVD法によるIII族窒化物半導体層の成長のために使用されるステンレス鋼製の気相成長反応炉内に導入し、高周波(RF)誘導加熱式ヒータで成膜温度に加熱される、反応炉内の半導体用高純度グラファイト製のサセプタ(susceptor)上に前記基板を載置した。その後、前記反応炉内に窒素ガスを流通し、反応炉内をパージした。
Next, an underlying layer made of a group III nitride semiconductor was epitaxially grown on the buffer layer thus obtained by using the low pressure MOCVD method described below (epitaxial process).
First, the substrate on which the buffer layer was formed was taken out from the sputter deposition apparatus. This substrate is introduced into a stainless steel vapor phase growth reactor used for the growth of a group III nitride semiconductor layer by MOCVD, and heated to a film formation temperature by a high frequency (RF) induction heating heater. The substrate was placed on a susceptor made of high-purity graphite for semiconductor in a reaction furnace. Thereafter, nitrogen gas was circulated in the reaction furnace to purge the reaction furnace.
 そして、気相成長反応炉内に窒素ガスを8分間に亘って流通させた。この後、誘導加熱式ヒータを作動させて、サファイア基板の温度を約10分間で室温から500℃に昇温した。その後、基板の温度を500℃に保ち、NHガスおよび窒素ガスを反応炉内に流通させた。気相成長反応炉内の圧力は95kPaとした。続いて、基板の温度を約10分間かけて1000℃まで昇温させ、この温度及び圧力下で10分間放置して、基板の表面をサーマルクリーニング(thermal cleaning)した。サーマルクリーニングの終了後も、気相成長反応炉内への窒素ガスの供給は継続させた。 And nitrogen gas was distribute | circulated over 8 minutes in the vapor phase growth reaction furnace. Thereafter, the induction heater was activated to raise the temperature of the sapphire substrate from room temperature to 500 ° C. in about 10 minutes. Thereafter, the temperature of the substrate was kept at 500 ° C., and NH 3 gas and nitrogen gas were circulated in the reaction furnace. The pressure in the vapor growth reactor was 95 kPa. Subsequently, the temperature of the substrate was raised to 1000 ° C. over about 10 minutes, and the substrate surface was left under this temperature and pressure for 10 minutes to thermally clean the surface of the substrate. Even after the thermal cleaning was completed, the supply of nitrogen gas into the vapor phase growth reactor was continued.
 その後、NHガスの流通を続けながら水素雰囲気中で、基板の温度を1120℃に昇温させ、また、反応炉内の圧力は60kPaとした。そして、基板の温度が1120℃で安定したのを確認した後、気相成長反応炉内へのトリメチルガリウム(TMG)の供給を開始し、AlNバッファ層上にアンドープのGaN層を3μmの膜厚までエピタキシャル成長させた。このとき、アンモニアの量はV族(N)/III族(Ga)比が600となるように調節した。そして、3μmのGaN(III族窒化物半導体)からなる下地層を成長後、反応炉への原料の供給を停止し、基板の温度を低下させた。 Thereafter, the temperature of the substrate was raised to 1120 ° C. in a hydrogen atmosphere while continuing the flow of NH 3 gas, and the pressure in the reactor was 60 kPa. Then, after confirming that the temperature of the substrate was stabilized at 1120 ° C., supply of trimethylgallium (TMG) into the vapor phase growth reactor was started, and an undoped GaN layer having a thickness of 3 μm was formed on the AlN buffer layer. Until epitaxial growth. At this time, the amount of ammonia was adjusted so that the V group (N) / III group (Ga) ratio was 600. Then, after the growth of a base layer made of 3 μm of GaN (Group III nitride semiconductor), the supply of the raw material to the reaction furnace was stopped, and the temperature of the substrate was lowered.
 その後、反応炉からバッファ層及び下地層の形成された基板を取り出し、下地層の(10-10)面及び(0002)面のX線ロッキングカーブ(XRC)半値幅を測定し、上記表1に示した。なお(0002)面のX線ロッキングカーブ(XRC)は結晶の平坦性を表す。 Thereafter, the substrate on which the buffer layer and the underlayer were formed was taken out from the reaction furnace, and the X-ray rocking curve (XRC) half widths of the (10-10) plane and the (0002) plane of the underlayer were measured. Indicated. The X-ray rocking curve (XRC) on the (0002) plane represents the flatness of the crystal.
 表1に示すように、凸部の基部幅が2nmとされた基板の主面上にバッファ層を介して下地層が形成された比較例1のサンプルは、(10-10)面のXRC半値幅が121arcsec、(0002)面のXRC半値幅が38arcsecであり、下地層の結晶性が非常に高められていることがわかる。
 また、凸部の形成されていない基板の主面上にバッファ層を介して下地層が形成された比較例2のサンプルは、(10-10)面のXRC半値幅が220arcsec、(0002)面のXRC半値幅が36arcsecであり、下地層の結晶性が劣っていることがわかる。
As shown in Table 1, the sample of Comparative Example 1 in which the base layer was formed via the buffer layer on the main surface of the substrate having the base width of the protrusions of 2 nm is the XRC half of the (10-10) plane. It can be seen that the value width is 121 arcsec, the XRC half-value width of the (0002) plane is 38 arcsec, and the crystallinity of the underlayer is greatly enhanced.
Further, in the sample of Comparative Example 2 in which the base layer is formed on the main surface of the substrate on which the convex portion is not formed via the buffer layer, the XRC half-value width of the (10-10) plane is 220 arcsec and the (0002) plane. The XRC half-value width is 36 arcsec, indicating that the crystallinity of the underlayer is inferior.
 また、凸部の基部幅が1μmとされた基板の主面上に、バッファ層を介して凸部を覆うように下地層が形成された実施例1のサンプルは、(10-10)面のXRC半値幅が171arcsec、(0002)面のXRC半値幅が40arcsecであった。実施例1のサンプルは、凸部の形成されていない基板上に下地層が形成された比較例2に比べ、XRC半値幅が小さい、すなわち結晶性が高められている。一方、基部幅が2μmと大きな凸部が形成された基板上に下地層が形成された比較例1に比べると実施例1のサンプルは、XRC半値幅が大きい、すなわち結晶性が低めとなっており、基板に形成された凸部の寸法を制御することにより、下地層の結晶性が制御されることが明らかである。 In addition, the sample of Example 1 in which the base layer was formed on the main surface of the substrate with the base width of the convex portion being 1 μm so as to cover the convex portion through the buffer layer is the (10-10) plane The XRC half width was 171 arcsec, and the XRC half width of the (0002) plane was 40 arcsec. The sample of Example 1 has a smaller XRC half-value width, that is, improved crystallinity, as compared with Comparative Example 2 in which the base layer is formed on the substrate on which no convex portion is formed. On the other hand, the sample of Example 1 has a larger XRC half-value width, that is, lower crystallinity than Comparative Example 1 in which the base layer is formed on the substrate on which the base width is as large as 2 μm. It is apparent that the crystallinity of the underlayer is controlled by controlling the dimensions of the convex portions formed on the substrate.
 また、凸部の基部幅が1.5nmとされた基板の主面上に、バッファ層を介して凸部を覆うように下地層が形成された実施例2のサンプルにおいては、(10-10)面のXRC半値幅が152arcsec、(0002)面のXRC半値幅が36arcsecであった。実施例2のサンプルは、実施例1のサンプルに比べて(10-10)面のXRC半値幅が小さく、結晶性が高いことがわかるが、本発明の規定範囲(150arcsec以上)を満たすものであった。 In addition, in the sample of Example 2 in which the base layer was formed on the main surface of the substrate with the base width of the convex portion being 1.5 nm so as to cover the convex portion via the buffer layer, (10-10 ) Plane XRC half width was 152 arcsec, and (0002) plane XRC half width was 36 arcsec. The sample of Example 2 has a smaller (10-10) plane XRC half-value width and higher crystallinity than the sample of Example 1, but satisfies the specified range (150 arcsec or more) of the present invention. there were.
[実施例3~4、比較例3~4]
 次に、上記実施例1~2及び比較例1~2と同様の方法で作製したIII族窒化物半導体からなる下地層上に、以下に示す方法により、LED構造を構成するn型半導体層、発光層、p型半導体層の各層をこの順で積層して、図3(図4も参照)に示すような発光素子を作製した。さらに、発光素子を用いて、図5に示すような発光素子が用いられるランプ(発光ダイオード:LED)を作製した。
[Examples 3 to 4, Comparative Examples 3 to 4]
Next, an n-type semiconductor layer constituting an LED structure is formed on the base layer made of a group III nitride semiconductor produced by the same method as in Examples 1 and 2 and Comparative Examples 1 and 2 by the following method. The light emitting layer and the p-type semiconductor layer were laminated in this order to produce a light emitting element as shown in FIG. 3 (see also FIG. 4). Further, a lamp (light emitting diode: LED) using the light emitting element as shown in FIG. 5 was manufactured using the light emitting element.
「n型コンタクト層の形成」
 下地層103の形成に引き続いて、同じMOCVD装置によってGaNからなるn型コンタクト層104aを下地層103上に形成した。この際、n型コンタクト層104aにはSiをドープした。結晶成長は、Siのドーパント原料としてSiHを流通させた以外は、下地層と同じ条件によって行った。
“Formation of n-type contact layer”
Subsequent to the formation of the underlayer 103, an n-type contact layer 104a made of GaN was formed on the underlayer 103 by the same MOCVD apparatus. At this time, the n-type contact layer 104a was doped with Si. Crystal growth was performed under the same conditions as the underlayer except that SiH 4 was circulated as a Si dopant material.
 以上説明したような工程により、n型コンタクト層を形成した。すなわち、表面に逆スパッタを施したサファイアからなる基板101上に、単結晶組織を持つAlNのバッファ層102を形成し、その上にアンドープで8μmの膜厚のGaN層(下地層103)と、5×1018cm-3のキャリア濃度を持つ2μmのSiドープGaN層(n型コンタクト層104a)を形成した。
成膜後に装置内から取り出した基板は無色透明であり、GaN層(ここではn型コンタクト層104aをなす初期層)の表面は鏡面であった。
An n-type contact layer was formed by the process as described above. That is, an AlN buffer layer 102 having a single crystal structure is formed on a substrate 101 made of sapphire whose surface is reverse-sputtered, and an undoped GaN layer (underlayer 103) having a thickness of 8 μm is formed thereon. A 2 μm Si-doped GaN layer (n-type contact layer 104a) having a carrier concentration of 5 × 10 18 cm −3 was formed.
The substrate taken out from the apparatus after film formation was colorless and transparent, and the surface of the GaN layer (here, the initial layer forming the n-type contact layer 104a) was a mirror surface.
「n型クラッド層の形成」
 上記手順で作製したn型コンタクト層104a上に、MOCVD法により、n型クラッド層104bを積層した。
 まず、上記手順でn型コンタクト層104aを成長させた基板をMOCVD装置に導入した後、NHガスを流通させながら、キャリアガスを窒素として、基板温度を760℃へ低下させた。炉内の温度の変更を待つ間、NHガスはそのままの流量で炉内へ供給し続けた。
 この時、炉内の温度の変更を待つ間に、SiHの供給量を設定した。すなわち、流通させるSiHの量については事前に計算を行い、Siドープ層の電子濃度が4×1018cm-3となるようにSiHの量を調整した。
“Formation of n-type cladding layer”
An n-type cladding layer 104b was stacked on the n-type contact layer 104a produced by the above procedure by MOCVD.
First, the substrate on which the n-type contact layer 104a was grown by the above procedure was introduced into an MOCVD apparatus, and then the substrate temperature was lowered to 760 ° C. with nitrogen as the carrier gas while circulating the NH 3 gas. While waiting for the temperature change in the furnace, the NH 3 gas was continuously supplied into the furnace at the same flow rate.
At this time, the supply amount of SiH 4 was set while waiting for the temperature change in the furnace. That is, the amount of SiH 4 to be distributed was calculated in advance, and the amount of SiH 4 was adjusted so that the electron concentration of the Si-doped layer was 4 × 10 18 cm −3 .
 次いで、アンモニアをチャンバ内に流通させながら、計算された量のSiHガスと、バブリングによって発生させたTMI及びTEGの蒸気を炉内へ流通させ、Ga0.99In0.01Nからなる層を1.7nmの厚さで、またGaNからなる層を1.7nmの厚さで、各々成膜した。このような成膜処理を19サイクル繰り返した後、最後に、Ga0.99In0.01Nからなる層を1.7nmで成長させた。また、この工程処理を行なっている間は、SiHの流通を継続した。これにより、SiドープのGa0.99In0.01NとGaNの超格子構造からなるn型クラッド層104bを形成した。 Next, while ammonia is circulated in the chamber, a calculated amount of SiH 4 gas and TMI and TEG vapor generated by bubbling are circulated into the furnace, and a layer composed of Ga 0.99 In 0.01 N is formed. Was formed with a thickness of 1.7 nm and a layer made of GaN with a thickness of 1.7 nm. After 19 cycles of such a film forming process, finally, a layer made of Ga 0.99 In 0.01 N was grown at 1.7 nm. Further, the SiH 4 flow was continued during this process. As a result, an n-type cladding layer 104b having a superlattice structure of Si-doped Ga 0.99 In 0.01 N and GaN was formed.
「発光層の形成」
 次いで、上記手順で作製したn型クラッド層104b上に、MOCVD法によって発光層105を積層した。
 発光層105は、GaNからなる障壁層105aと、Ga0.85In0.15Nからなる井戸層105bとから構成される、多重量子井戸構造を有する。この発光層105の形成にあたっては、SiドープのGaInNとGaNの超格子構造からなるn型クラッド層104c上に、まず、障壁層105aを形成し、この障壁層105a上に、Ga0.85In0.15Nからなる井戸層105bを形成した。さらに、このような積層手順を6回繰り返した後、6番目に積層した井戸層105b上に、7番目の障壁層105aを形成し、多重量子井戸構造を有する発光層105の両側(上下)に、障壁層105aを配した構造とした。
 
`` Formation of light emitting layer ''
Subsequently, the light emitting layer 105 was laminated | stacked by MOCVD method on the n-type clad layer 104b produced in the said procedure.
The light emitting layer 105 has a multiple quantum well structure including a barrier layer 105a made of GaN and a well layer 105b made of Ga 0.85 In 0.15 N. In forming the light emitting layer 105, a barrier layer 105a is first formed on an n-type cladding layer 104c having a superlattice structure of Si-doped GaInN and GaN, and Ga 0.85 In is formed on the barrier layer 105a. A well layer 105b made of 0.15 N was formed. Further, after repeating such a stacking procedure six times, a seventh barrier layer 105a is formed on the sixth stacked well layer 105b, on both sides (upper and lower) of the light emitting layer 105 having a multiple quantum well structure. The barrier layer 105a is provided.
 詳細には、以下の方法によって発光層105を形成した。まず、発光層105の障壁層105aを次のように形成した。基板温度は760℃のままで、TEGとSiHの炉内への供給を開始し、所定の時間SiをドープしたGaNからなる初期障壁層を0.8nm形成し、その後、TEGとSiHの供給を停止した。その後、サセプタの温度を920℃に昇温した。そして、TEGとSiHの炉内への供給を再開し、基板温度920℃のままで、さらに、1.7nmの中間障壁層の成長を行い、その後、TEGとSiHの炉内供給を停止した。続いて、サセプタ温度を760℃に下げ、TEGとSiHの供給を開始し、さらに、3.5nmの最終障壁層の成長を行い、その後、再びTEGとSiHの供給を停止して、GaN障壁層の成長を終了した。上述のような3段階の成膜処理により、初期障壁層、中間障壁層、及び最終障壁層の3層からなる、総膜厚が6nmである、SiドープGaN障壁層(障壁層105a)を形成した。SiHの量は、Si濃度が1×1017cm-3になるように調整された。 Specifically, the light emitting layer 105 was formed by the following method. First, the barrier layer 105a of the light emitting layer 105 was formed as follows. With the substrate temperature kept at 760 ° C., supply of TEG and SiH 4 into the furnace was started, and an initial barrier layer made of GaN doped with Si for a predetermined time was formed to 0.8 nm, and then TEG and SiH 4 Supply was stopped. Thereafter, the temperature of the susceptor was raised to 920 ° C. Then, the supply of TEG and SiH 4 into the furnace was restarted, and the 1.7 nm intermediate barrier layer was grown while the substrate temperature remained at 920 ° C., and then the supply of TEG and SiH 4 into the furnace was stopped. did. Subsequently, the susceptor temperature is lowered to 760 ° C., the supply of TEG and SiH 4 is started, the final barrier layer of 3.5 nm is grown, and then the supply of TEG and SiH 4 is stopped again, and the GaN Finished the growth of the barrier layer. By the three-stage film forming process as described above, an Si-doped GaN barrier layer (barrier layer 105a) having a total film thickness of 6 nm, which is composed of an initial barrier layer, an intermediate barrier layer, and a final barrier layer, is formed. did. The amount of SiH 4 was adjusted so that the Si concentration was 1 × 10 17 cm −3 .
 発光層105の井戸層105bを次のように形成した。上記GaN障壁層(障壁層105a)の成長終了後、TEGとTMIを炉内へ供給して、井戸層の成膜処理を行ない、3nmの膜厚を成すGa0.85In0.15N層(井戸層105b)を障壁層105a上に形成した。井戸層105bの成膜処理の際、井戸層105bのIn濃度は8%とし、また、成長時の基板温度を750℃とした。
 そして、Ga0.85In0.15Nからなる井戸層105bの成長終了後は、TEGaの供給量の設定を変更した。
 引き続いて、TEGaおよびSiH4の供給を再開し、2層目の障壁層105aの形成を行なった。
The well layer 105b of the light emitting layer 105 was formed as follows. After the growth of the GaN barrier layer (barrier layer 105a) is completed, TEG and TMI are supplied into the furnace to form a well layer, and a Ga 0.85 In 0.15 N layer having a thickness of 3 nm is formed. (Well layer 105b) was formed on barrier layer 105a. During the deposition process of the well layer 105b, the In concentration of the well layer 105b was 8%, and the substrate temperature during growth was 750 ° C.
Then, after the growth of the well layer 105b made of Ga 0.85 In 0.15 N, the setting of the TEGa supply amount was changed.
Subsequently, the supply of TEGa and SiH 4 was restarted, and the second barrier layer 105a was formed.
 上述のような手順を6回繰り返すことにより、交互に積層された、6層のSiドープGaNからなる障壁層105aと、6層のGa0.85In0.15Nからなる井戸層105bを形成した。 By repeating the above procedure six times, six layers of barrier layers 105a made of Si-doped GaN and six layers of well layers 105b made of Ga 0.85 In 0.15 N are formed alternately. did.
 そして、6層目のGa0.92In0.08Nからなる井戸層105bを形成した後、引き続いて、7層目の障壁層の形成を行った。
 7層目の障壁層の形成処理においては、まず、SiHの供給を停止し、アンドープGaNからなる初期障壁層を形成した。この後、TEGの炉内への供給を続けたままで基板温度を920℃に昇温し、この基板温度920℃にて、規定の時間で中間障壁層の成長を行ない、その後、TEGの炉内への供給を停止した。続いて、基板温度を760℃に下げ、TEGの供給を開始し、最終障壁層の成長を行った。その後、再びTEGの供給を停止し、GaN障壁層の成長を終了した。
 これら方法により、初期障壁層、中間障壁層及び最終障壁層の3層からなり、総膜厚が4nmのアンドープGaNからなる7層目の障壁層を形成した(図4における発光層105の内の最上層の障壁層105aを参照。なお最上層の障壁層は同じ参照番号105aを使用しているものの、その他の障壁層と異なりドープされていない)。
Then, after forming a sixth well layer 105b made of Ga 0.92 In 0.08 N, a seventh barrier layer was formed.
In the formation process of the seventh barrier layer, first, the supply of SiH 4 was stopped, and an initial barrier layer made of undoped GaN was formed. Thereafter, the substrate temperature is raised to 920 ° C. while the supply of the TEG into the furnace is continued, and the intermediate barrier layer is grown at the substrate temperature of 920 ° C. for a specified time. The supply to was stopped. Subsequently, the substrate temperature was lowered to 760 ° C., the supply of TEG was started, and the final barrier layer was grown. Thereafter, the supply of TEG was stopped again, and the growth of the GaN barrier layer was completed.
By these methods, a seventh barrier layer made of undoped GaN having an initial barrier layer, an intermediate barrier layer, and a final barrier layer and having a total thickness of 4 nm was formed (in the light emitting layer 105 in FIG. 4). (See top barrier layer 105a, which uses the same reference number 105a but is not doped unlike the other barrier layers).
 以上の手順にて、厚さが不均一な井戸層(図4におけるn型半導体層104側から1~5層目の井戸層105b)と、厚さが均一な井戸層(図4におけるn型半導体層104側から6層目の井戸層105bを参照)を含んだ多重量子井戸構造の発光層105を形成した。 Through the above procedure, a well layer having a non-uniform thickness (the first to fifth well layers 105b from the n-type semiconductor layer 104 side in FIG. 4) and a well layer having a uniform thickness (the n-type in FIG. 4). A light emitting layer 105 having a multiple quantum well structure including a sixth well layer 105b from the semiconductor layer 104 side was formed.
「p型半導体層の形成」
 上述の各工程に引き続き、同じMOCVD装置を用いて、交互に積層された、4層のノンドープのAl0.06Ga0.94Nと、3層のMgをドープしたGaNと、からなる超格子構造を持つp型クラッド層106aを成膜し、更に、その上に膜厚が200nmのMgドープGaNからなるp型コンタクト層106bを成膜し、p型半導体層106とした。
“Formation of p-type semiconductor layer”
A superlattice composed of four layers of non-doped Al 0.06 Ga 0.94 N and three layers of Mg-doped GaN stacked alternately using the same MOCVD apparatus following the above-described steps. A p-type cladding layer 106 a having a structure was formed, and a p-type contact layer 106 b made of Mg-doped GaN having a thickness of 200 nm was formed thereon to form a p-type semiconductor layer 106.
 詳細には、p型半導体層106を以下の方法によって形成した。
 まずp型半導体層106のp型クラッド層106aを次のように形成した。
 NHガスを供給しながら基板温度を975℃へ昇温した後、この温度でキャリアガスを窒素から水素に切り替えた。続いて、基板温度を1050℃に変更した。そして、炉内へTMGとTMAを供給することにより、ノンドープのAl0.06Ga0.94Nからなる層2.5nmを成膜した。引き続き、インターバルを取らずに、TMAのバルブを閉じてCpMgのバルブを開け、MgをドープしたGaNの層を2.5nm成膜した。
 以上のような操作を3回繰り返し、最後にアンドープAl0.06Ga0.94Nの層を形成することにより、超格子構造よりなるp型クラッド層106aを形成した。
Specifically, the p-type semiconductor layer 106 was formed by the following method.
First, the p-type cladding layer 106a of the p-type semiconductor layer 106 was formed as follows.
The substrate temperature was raised to 975 ° C. while supplying NH 3 gas, and then the carrier gas was switched from nitrogen to hydrogen at this temperature. Subsequently, the substrate temperature was changed to 1050 ° C. Then, by supplying TMG and TMA into the furnace, a 2.5 nm layer made of non-doped Al 0.06 Ga 0.94 N was formed. Subsequently, without taking an interval, the TMA valve was closed and the Cp 2 Mg valve was opened, and a Mg-doped GaN layer was deposited to 2.5 nm.
The above operation was repeated three times, and finally a p-type cladding layer 106a having a superlattice structure was formed by forming an undoped Al 0.06 Ga 0.94 N layer.
 次にp型半導体層106のp型コンタクト層106bを以下のように形成した。p型クラッド層106aを形成した後、CpMgとTMGのみを炉内へ供給して、200nmのp型GaNよりなるp型コンタクト層106bを形成した。このp型コンタクト層は、p型キャリアを活性化するためのアニール処理を行なわなくてもp型特性を示した。 Next, the p-type contact layer 106b of the p-type semiconductor layer 106 was formed as follows. After forming the p-type cladding layer 106a, only Cp 2 Mg and TMG were supplied into the furnace to form a p-type contact layer 106b made of 200-nm p-type GaN. This p-type contact layer exhibited p-type characteristics even without annealing for activating p-type carriers.
 p型コンタクト層の気相成長を終了させた後には、直ちに基板を加熱するために利用していた高周波誘導加熱式ヒータへの通電を停止すると同時に、キャリアガスを水素から窒素へと切り替え、NHガスの流量を低下させた。具体的には、成長中には全流通ガス量のうち体積にして約14%を締めていたNHガスの量を0.2%まで下げた。更に、この状態で45秒保持した後、NHガスの流通を停止した。この状態で、基板温度が室温まで降温したのを確認して、各層が積層された基板を大気中に取り出した。
 このようにして、実施例1~2及び比較例1~2と同様の方法で作製した下地層上に、LED構造を構成するn型半導体層、発光層、p型半導体層の各層をこの順で形成した、実施例3~4及び比較例3~4のサンプル(エピタキシャルウェーハ)を作製した。
After completing the vapor phase growth of the p-type contact layer, the energization of the high-frequency induction heater used to heat the substrate is stopped immediately, and at the same time, the carrier gas is switched from hydrogen to nitrogen, and NH The flow rate of 3 gases was reduced. Specifically, during the growth, the amount of NH 3 gas that had been tightened by about 14% of the volume of the total circulation gas was reduced to 0.2%. Furthermore, after maintaining for 45 seconds in this state, the flow of NH 3 gas was stopped. In this state, it was confirmed that the substrate temperature was lowered to room temperature, and the substrate on which each layer was laminated was taken out into the atmosphere.
In this manner, the n-type semiconductor layer, the light-emitting layer, and the p-type semiconductor layer constituting the LED structure are arranged in this order on the base layer manufactured in the same manner as in Examples 1-2 and Comparative Examples 1-2. Samples (epitaxial wafers) of Examples 3 to 4 and Comparative Examples 3 to 4 formed in the above were produced.
 上述のようにして作製したLED用のエピタキシャルウェーハは、以下の積層構造を有する。すなわち、c面を有するサファイアからなる基板101上に、単結晶構造を有するAlN層(バッファ層102)を形成した後、基板101側から順に、8μmのアンドープGaN層(下地層103)、5×1018cm-3の電子濃度を持つ2μmのSiドープGaNn型コンタクト層104a、4×1018cm-3のSi濃度を有し、20層の1.7nmのGa0.99In0.01Nと19層の1.7nmのGaNからなる超格子構造を有するクラッド層(n型クラッド層104b)が積層される。またクラッド層上にはさらに、GaN障壁層に始まってGaN障壁層に終わり、かつ、層厚が6nmとされた6層のSiドープのGaN障壁層(障壁層105a)と、層厚が3nmとされた6層のノンドープのGa0.85In0.15N井戸層(井戸層105b)とが交互に積層されており、さらにノンドープのGaNからなる最上位障壁層(図4における発光層105の内、半導体層106と接する最上層の障壁層105aを参照)を有する、多重量子井戸構造(発光層105)が積層される。さらに発光層105上には、互いに交互に積層された、膜厚が2.5nmのノンドープAl0.06Ga0.94Nからなる4つの層と、膜厚が2.5nmのMgドープAl0.01Ga0.99Nからなり超格子構造を有する3つの層とから構成されるp型クラッド層106aと、及び、膜厚が200nmのMgドープGaNからなるp型コンタクト層106bとから構成されるp型半導体層106が積層されている。  The LED epitaxial wafer produced as described above has the following laminated structure. That is, after forming an AlN layer (buffer layer 102) having a single crystal structure on a substrate 101 made of sapphire having a c-plane, an 8 μm undoped GaN layer (underlayer 103), 5 × 10 18 cm -3 of 2μm with electron concentration Si-doped GaNn type contact layer 104a, 4 has a Si concentration of × 10 18 cm -3, the 20 layers of 1.7nm Ga 0.99 in 0.01 N And 19 layers of a cladding layer (n-type cladding layer 104b) having a superlattice structure made of 1.7 nm of GaN. Further, on the clad layer, a six-layer Si-doped GaN barrier layer (barrier layer 105a) that starts with the GaN barrier layer and ends with the GaN barrier layer and has a layer thickness of 6 nm, and a layer thickness of 3 nm 6 non-doped Ga 0.85 In 0.15 N well layers (well layers 105b) are alternately stacked, and the uppermost barrier layer made of non-doped GaN (the light emitting layer 105 in FIG. A multi-quantum well structure (light-emitting layer 105) having a top barrier layer 105a in contact with the semiconductor layer 106 is stacked. Furthermore, four layers of non-doped Al 0.06 Ga 0.94 N having a thickness of 2.5 nm and Mg-doped Al 0 having a thickness of 2.5 nm, which are alternately stacked on each other, are stacked on the light-emitting layer 105. A p-type cladding layer 106a composed of three layers made of 0.01 Ga 0.99 N and having a superlattice structure, and a p-type contact layer 106b composed of Mg-doped GaN with a thickness of 200 nm. A p-type semiconductor layer 106 is stacked.
 次いで、このようにして得られたLED構造となる各層が形成された基板を用いて、以下に示す手順で、半導体発光素子の一種である発光ダイオード(LED)を作製した(図3を参照)。
 まず、公知のフォトリソグラフィー技術によって、LED構造となる各層が形成された基板のp型コンタクト層上に、ITOからなる透光性正極と、この透光性正極上にTi、Al及びAuを順に積層した構造を持つ正極ボンディングパッドを形成した。
 続いて、正極ボンディングパッドが形成されていない部分にドライエッチングを行い、負極ボンディングパッドが形成される部分であるn型半導体層を露出させた。続いて、露出したn型半導体層上に、Ni、Al、Ti及びAuの4層よりなる負極ボンディングパッドを形成した。
Next, a light-emitting diode (LED), which is a kind of semiconductor light-emitting element, was fabricated by the following procedure using the substrate on which each layer to be an LED structure obtained in this way was formed (see FIG. 3). .
First, a light-transmitting positive electrode made of ITO is formed on a p-type contact layer of a substrate on which each layer to be an LED structure is formed by a known photolithography technique, and Ti, Al, and Au are sequentially formed on the light-transmitting positive electrode. A positive electrode bonding pad having a laminated structure was formed.
Subsequently, dry etching was performed on the portion where the positive electrode bonding pad was not formed to expose the n-type semiconductor layer where the negative electrode bonding pad was formed. Subsequently, a negative electrode bonding pad composed of four layers of Ni, Al, Ti, and Au was formed on the exposed n-type semiconductor layer.
 そして、正極ボンディングパッド及び負極ボンディングパッドが形成された基板の裏面を研削及び研磨してミラー状の面とした。次いで、この基板を350μm角の正方形のチップに切断し、LEDのチップとした。
 このチップを、正極ボンディングパッド及び負極ボンディングパッドが上になるようにリードフレーム上に載置し、金線でリードフレームに結線することによってランプ(図5参照)を作製した。
And the back surface of the board | substrate with which the positive electrode bonding pad and the negative electrode bonding pad were formed was ground and grind | polished, and it was set as the mirror-shaped surface. Next, the substrate was cut into 350 μm square chips to form LED chips.
This chip was placed on the lead frame so that the positive electrode bonding pad and the negative electrode bonding pad were on top, and was connected to the lead frame with a gold wire to produce a lamp (see FIG. 5).
 そして、上述のようにして作製したランプにおいて、p側電極およびn側電極の電極間に20mAの順方向電流を流した際の順方向電圧(駆動電圧Vf)を測定するとともに、p側の透光性正極を通して発光波長WD(nm)及び発光出力Po(mW)を測定し、結果を下記表2に示した。 In the lamp manufactured as described above, the forward voltage (driving voltage Vf) when a forward current of 20 mA was passed between the p-side electrode and the n-side electrode was measured, and the p-side transparency was measured. The emission wavelength WD (nm) and the emission output Po (mW) were measured through the photocathode, and the results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、本発明に係る製造方法によって作製された実施例3~4のサンプルは、駆動電圧Vfが3.27~3.30Vであり、また、発光波長WDが538nm~539nmで良好な緑色発光を呈するとともに、発光出力Poが8.4~8.7(mW)であった。 As shown in Table 2, the samples of Examples 3 to 4 manufactured by the manufacturing method according to the present invention have a drive voltage Vf of 3.27 to 3.30 V, and an emission wavelength WD of 538 nm to 539 nm. While exhibiting good green light emission, the light emission output Po was 8.4 to 8.7 (mW).
 これに対して、基板の凸部の基部幅が2μmとされた比較例3のサンプルは、駆動電圧Vfが3.37Vと、実施例3~4のサンプルに比べて高い駆動電圧を必要とし、また、発光出力Poが7.9mWと、実施例3~4のサンプルに比べて低出力となっている。
 また、基板に凸部を形成しなかった従来の構成を有する比較例4のサンプルは、駆動電圧Vfが3.35Vであり、また、発光出力Poが7.7mWと、実施例3~4のサンプルに比べて発光特性が劣っている。
In contrast, the sample of Comparative Example 3 in which the base width of the convex portion of the substrate is 2 μm requires a driving voltage Vf of 3.37 V, which is higher than the samples of Examples 3 to 4, Further, the light emission output Po is 7.9 mW, which is lower than the samples of Examples 3 to 4.
Further, in the sample of Comparative Example 4 having the conventional configuration in which the convex portion is not formed on the substrate, the driving voltage Vf is 3.35 V, and the light emission output Po is 7.7 mW. Luminous properties are inferior to the sample.
[実験例1及び2]
 上記実施例3~4と同様の方法で、350μm角の正方形とされたIII族窒化物半導体発光素子のチップを作製し、同様に、正極ボンディングパッド及び負極ボンディングパッドが上になるようにリードフレーム上に載置し、金線でリードフレームに結線し、発光素子サンプルを作製した。この際、基板の凸部の基部幅を1μmとしたサンプルを実験例1とし、また、凸部の基部幅を2μmとしたサンプルを実験例2として、各々5個のサンプルを作製した。
 そして、これら各サンプルの発光強度を、チップ上面に対して垂直方向に検知器を移動させながら測定し、この測定結果を図6A、6Bのグラフに示した。
[Experimental Examples 1 and 2]
In the same manner as in Examples 3 to 4, a 350 μm square Group III nitride semiconductor light emitting device chip was fabricated, and the lead frame was similarly placed so that the positive electrode bonding pad and the negative electrode bonding pad were on top. The sample was placed on top and connected to a lead frame with a gold wire to prepare a light emitting device sample. At this time, a sample in which the base width of the convex portion of the substrate was 1 μm was designated as Experimental Example 1, and a sample in which the base width of the convex portion was 2 μm was designated as Experimental Example 2, and five samples were produced.
The emission intensity of each sample was measured while moving the detector in the direction perpendicular to the top surface of the chip, and the measurement results are shown in the graphs of FIGS. 6A and 6B.
 図6Aのグラフに示すように、基板に形成された凸部間の間隔が1μmとされた実験例1の発光素子チップは、図6Bのグラフに示すような凸部間の間隔が2μmとされた実験例2の発光素子チップに比べ、発光出力が高くなっていることがわかる。この結果より、基板に形成される凸部間の間隔がより小さいほうが、発光素子の発光出力を向上できることが明らかとなった。 As shown in the graph of FIG. 6A, the light-emitting element chip of Experimental Example 1 in which the interval between the protrusions formed on the substrate is 1 μm has an interval between the protrusions of 2 μm as shown in the graph of FIG. 6B. It can be seen that the light emission output is higher than that of the light emitting element chip of Experimental Example 2. From this result, it was found that the light emission output of the light emitting element can be improved when the interval between the convex portions formed on the substrate is smaller.
 上記各実施例及び実験例の結果により、本発明のIII族窒化物半導体発光素子が、緑色発光を呈するLED構造の内部量子効率を低下させることなく、光取り出し効率に優れており、高い発光強度を備えていることが明らかである。 According to the results of the above examples and experimental examples, the group III nitride semiconductor light-emitting device of the present invention has excellent light extraction efficiency without reducing the internal quantum efficiency of the LED structure exhibiting green light emission, and high emission intensity. It is clear that
 本発明によれば、緑色発光を呈するLED構造の内部量子効率を低下させることなく、光取り出し効率に優れたIII族窒化物半導体発光素子及びその製造方法並びにランプを提供できる。 According to the present invention, it is possible to provide a group III nitride semiconductor light-emitting device having excellent light extraction efficiency, a method for manufacturing the same, and a lamp without reducing the internal quantum efficiency of the LED structure that emits green light.
1 III族窒化物半導体発光素子
 3 ランプ
 10 主面
 11 平面
 12 凸部
 12a 凸部の基部
 12b 凸部の側面
 12c 表面
 20 LED構造
 31、32 フレーム
 33、34 ワイヤー
 35 モールド
 101 基板
 102 バッファ層
 103 下地層(III族窒化物半導体層)
 103a 下地層103の表面
 104 n型半導体層
 104a n型コンタクト層
 104b n型クラッド層
 104c 露出領域
 105 発光層
 105a 障壁層
 105b 井戸層
 106 p型半導体層
 106a p型クラッド層
 106b p型コンタクト層
 107 正極ボンディングパッド
 108 負極ボンディングパッド
 109 透光性正極
DESCRIPTION OF SYMBOLS 1 Group III nitride semiconductor light emitting element 3 Lamp 10 Main surface 11 Plane 12 Convex part 12a Convex part base 12b Convex part side surface 12c Surface 20 LED structure 31, 32 Frame 33, 34 Wire 35 Mold 101 Substrate 102 Buffer layer 103 Bottom Formation (Group III nitride semiconductor layer)
103a Surface of the underlayer 103 104 n-type semiconductor layer 104a n-type contact layer 104b n-type cladding layer 104c exposed region 105 light-emitting layer 105a barrier layer 105b well layer 106 p-type semiconductor layer 106a p-type cladding layer 106b p-type contact layer 107 positive electrode Bonding pad 108 Negative electrode bonding pad 109 Translucent positive electrode

Claims (31)

  1.  基板上に形成された単結晶のIII族窒化物半導体層上にLED構造が形成されたIII族窒化物半導体発光素子であって、
     前記基板は、(0001)C面からなる平面部と複数の凸部とからなる主面と、裏面とを有し、前記凸部の基部幅が0.05~1.5μmであり、
     前記III族窒化物半導体層は、III族窒化物半導体がエピタキシャル成長することによって前記基板の主面上に、前記平面部及び前記凸部を覆い形成されたものであり、
     前記LED構造の発光波長は490~570nmの範囲であることを特徴とするIII族窒化物半導体発光素子。
    A group III nitride semiconductor light emitting device in which an LED structure is formed on a single crystal group III nitride semiconductor layer formed on a substrate,
    The substrate has a main surface composed of a flat portion made of a (0001) C plane and a plurality of convex portions, and a back surface, and the base width of the convex portion is 0.05 to 1.5 μm
    The group III nitride semiconductor layer is formed so as to cover the planar portion and the convex portion on the main surface of the substrate by epitaxial growth of the group III nitride semiconductor.
    The group III nitride semiconductor light-emitting device characterized in that the light emission wavelength of the LED structure is in the range of 490 to 570 nm.
  2.  前記凸部は、前記C面に非並行の表面により構成されることを特徴とする請求項1に記載のIII族窒化物半導体発光素子。 2. The group III nitride semiconductor light-emitting element according to claim 1, wherein the convex portion is configured by a surface non-parallel to the C-plane.
  3.  前記凸部は、前記基部幅が0.05~1μmであり、高さが0.05~1μmの範囲であり且つ前記基部幅の1/4以上であり、隣接する前記凸部間の間隔が前記基部幅の0.5~5倍であることを特徴とする請求項1記載のIII族窒化物半導体発光素子。 The convex portion has a base width of 0.05 to 1 μm, a height in the range of 0.05 to 1 μm and a quarter or more of the base width, and an interval between the adjacent convex portions. 2. The group III nitride semiconductor light emitting device according to claim 1, wherein the width is 0.5 to 5 times the base width.
  4.  前記凸部が上部に向かって徐々に外形が小さくなる形状であることを特徴とする請求項1に記載のIII族窒化物半導体発光素子。 The group III nitride semiconductor light-emitting device according to claim 1, wherein the convex portion has a shape in which an outer shape gradually decreases toward an upper portion.
  5.  前記凸部が略円錐状ないし略多角錐状であることを特徴とする請求項1に記載のIII族窒化物半導体発光素子。 2. The group III nitride semiconductor light emitting device according to claim 1, wherein the convex portion has a substantially conical shape or a substantially polygonal pyramid shape.
  6.  前記凸部が、前記基板のC面上に設けられた酸化物又は窒化物であることを特徴とする請求項1に記載のIII族窒化物半導体発光素子。 2. The group III nitride semiconductor light-emitting device according to claim 1, wherein the convex portion is an oxide or a nitride provided on a C-plane of the substrate.
  7.  前記凸部が、SiO、Al、SiN、ZnOの何れかからなることを特徴とする請求項6に記載のIII族窒化物半導体発光素子。 The group III nitride semiconductor light-emitting element according to claim 6, wherein the convex portion is made of any one of SiO 2 , Al 2 O 3 , SiN, and ZnO.
  8.  前記基板がサファイア基板であることを特徴とする請求項1に記載のIII族窒化物半導体発光素子。 The group III nitride semiconductor light-emitting device according to claim 1, wherein the substrate is a sapphire substrate.
  9.  前記LED構造は、前記基板の主面上に、III族窒化物半導体から各々がなる、n型半導体層、発光層及びp型半導体層をこの順で有することを特徴とする請求項1に記載のIII族窒化物半導体発光素子。 2. The LED structure according to claim 1, wherein an n-type semiconductor layer, a light-emitting layer, and a p-type semiconductor layer, each of which is made of a group III nitride semiconductor, are arranged in this order on the main surface of the substrate. Group III nitride semiconductor light-emitting device.
  10.  前記LED構造に備えられる発光層のIn濃度が7質量%以上であることを特徴とする請求項9に記載のIII族窒化物半導体発光素子。 The group III nitride semiconductor light-emitting device according to claim 9, wherein the light-emitting layer provided in the LED structure has an In concentration of 7% by mass or more.
  11.  前記基板の主面上に、多結晶のAlGa1-xN(0≦x≦1)からなり、厚さが0.01~0.5μmであるバッファ層がスパッタ法によって積層され、前記バッファ層上に前記III族窒化物半導体層が積層されていることを特徴とする請求項1に記載のIII族窒化物半導体発光素子。 A buffer layer made of polycrystalline Al x Ga 1-x N (0 ≦ x ≦ 1) and having a thickness of 0.01 to 0.5 μm is laminated on the main surface of the substrate by sputtering, The group III nitride semiconductor light-emitting device according to claim 1, wherein the group III nitride semiconductor layer is stacked on a buffer layer.
  12.  前記基板の主面上に、単結晶のAlGa1-xN(0≦x≦1)からなり、厚さが0.01~0.5μmであるバッファ層がスパッタ法によって積層され、前記バッファ層上に前記III族窒化物半導体層が積層されていることを特徴とする請求項1に記載のIII族窒化物半導体発光素子。 A buffer layer made of single-crystal Al x Ga 1-x N (0 ≦ x ≦ 1) and having a thickness of 0.01 to 0.5 μm is laminated on the main surface of the substrate by sputtering, The group III nitride semiconductor light-emitting device according to claim 1, wherein the group III nitride semiconductor layer is stacked on a buffer layer.
  13.  前記n型半導体層がn型クラッド層を含むとともに、前記p型半導体層がp型クラッド層を含んでおり、前記n型クラッド層及び前記p型クラッド層の少なくとも一つが、超格子構造を含むことを特徴とする請求項9に記載のIII族窒化物半導体発光素子。 The n-type semiconductor layer includes an n-type cladding layer, the p-type semiconductor layer includes a p-type cladding layer, and at least one of the n-type cladding layer and the p-type cladding layer includes a superlattice structure. The group III nitride semiconductor light-emitting device according to claim 9.
  14.  前記III族窒化物半導体層の(10-10)面におけるX線ロッキングカーブ(XRC)半値幅が150arcsec以上であることを特徴とする請求項1に記載のIII族窒化物半導体発光素子。 2. The group III nitride semiconductor light-emitting device according to claim 1, wherein an X-ray rocking curve (XRC) half-value width in the (10-10) plane of the group III nitride semiconductor layer is 150 arcsec or more.
  15. 前記 前記基板の(0001)C面からなる平面上に、基部幅が0.05~1.5μmである複数の凸部を形成することにより、前記基板上に平面部と凸部とからなる主面を形成する基板加工工程と、
     前記基板の主面上に、III族窒化物半導体をエピタキシャル成長させることにより、前記平面部及び前記凸部を覆う、単結晶のIII族窒化物半導体層を形成するエピタキシャル工程と、
     前記III族窒化物半導体層上に、発光波長が490~570nmの範囲であるLED構造を前記形成するLED積層工程と、を含むことを特徴とするIII族窒化物半導体発光素子の製造方法。
    A plurality of convex portions having a base width of 0.05 to 1.5 μm are formed on a plane composed of the (0001) C surface of the substrate, thereby forming a main portion composed of the planar portion and the convex portions on the substrate. A substrate processing step for forming a surface;
    An epitaxial step of forming a single crystal group III nitride semiconductor layer covering the planar portion and the convex portion by epitaxially growing a group III nitride semiconductor on the main surface of the substrate;
    A method of manufacturing a group III nitride semiconductor light emitting device, comprising: an LED stacking step of forming an LED structure having an emission wavelength in the range of 490 to 570 nm on the group III nitride semiconductor layer.
  16.  前記基板加工工程において、前記凸部の表面が、前記C面に非並行の表面により構成されるように形成することを特徴とする請求項15に記載のIII族窒化物半導体発光素子の製造方法。 The method of manufacturing a group III nitride semiconductor light-emitting device according to claim 15, wherein in the substrate processing step, the surface of the convex portion is formed by a surface non-parallel to the C-plane. .
  17.  前記基板加工工程において、前記基部幅が0.05~1μm、高さが0.05~1μmの範囲であって且つ前記基部幅の1/4以上であり、隣接する前記凸部間の間隔が前記基部幅の0.5~5倍である前記凸部を形成することを特徴とする請求項15に記載のIII族窒化物半導体発光素子の製造方法。 In the substrate processing step, the base width is in the range of 0.05 to 1 μm, the height is in the range of 0.05 to 1 μm, and is ¼ or more of the base width, and the spacing between the adjacent convex portions is The method of manufacturing a group III nitride semiconductor light-emitting device according to claim 15, wherein the convex part having a width of 0.5 to 5 times the base part width is formed.
  18. 前記基板加工工程において、前記凸部として、上部に向かって徐々にその外形が小さくなる形状が形成されることを特徴とする請求項15に記載のIII族窒化物半導体発光素子の製造方法。 16. The method for manufacturing a group III nitride semiconductor light-emitting device according to claim 15, wherein in the substrate processing step, a shape is formed as the convex portion, the outer shape of which gradually decreases toward the top.
  19.  前記基板加工工程において、前記凸部が、略円錐状ないし略多角錐状に形成されることを特徴とする請求項15に記載のIII族窒化物半導体発光素子の製造方法。 16. The method for manufacturing a group III nitride semiconductor light emitting device according to claim 15, wherein, in the substrate processing step, the convex portion is formed in a substantially conical shape or a substantially polygonal pyramid shape.
  20.  前記基板がサファイア基板であることを特徴とする請求項15に記載のIII族窒化物半導体発光素子の製造方法。 The method for manufacturing a group III nitride semiconductor light-emitting device according to claim 15, wherein the substrate is a sapphire substrate.
  21.  前記基板加工工程において、前記基板の(0001)C面上に、ステッパー露光法、ナノインプリント法、電子ビーム(EB)露光法、レーザー露光法の内の何れかを用いてマスクパターンを形成した後、前記基板をエッチングすることによって、前記凸部が形成されることを特徴とする請求項15に記載のIII族窒化物半導体発光素子の製造方法。 In the substrate processing step, on the (0001) C surface of the substrate, after forming a mask pattern using any one of a stepper exposure method, a nanoimprint method, an electron beam (EB) exposure method, and a laser exposure method, The method for manufacturing a group III nitride semiconductor light emitting device according to claim 15, wherein the convex portion is formed by etching the substrate.
  22.  前記凸部を、前記基板のC面上に、酸化物又は窒化物から形成することを特徴とする請求項15に記載のIII族窒化物半導体発光素子の製造方法。 The method for manufacturing a group III nitride semiconductor light-emitting device according to claim 15, wherein the convex portion is formed of an oxide or a nitride on the C-plane of the substrate.
  23.  前記凸部を、SiO、Al、SiN、及びZnOの何れかから形成することを特徴とする請求項22に記載のIII族窒化物半導体発光素子の製造方法。 23. The method for manufacturing a group III nitride semiconductor light-emitting element according to claim 22, wherein the convex portion is formed of any one of SiO 2 , Al 2 O 3 , SiN, and ZnO.
  24.  前記LED積層工程において、前記基板の主面上に、III族窒化物半導体から各々なるn型半導体層、発光層及びp型半導体層をこの順で積層して、前記LED構造が形成されることを特徴とする請求項15に記載のIII族窒化物半導体発光素子の製造方法。 In the LED stacking step, the LED structure is formed by stacking an n-type semiconductor layer, a light-emitting layer, and a p-type semiconductor layer made of a group III nitride semiconductor in this order on the main surface of the substrate. The method for producing a group III nitride semiconductor light-emitting device according to claim 15.
  25.  前記LED積層工程において、前記LED構造に備えられる発光層のIn濃度が7質量%以上であることを特徴とする請求項24に記載のIII族窒化物半導体発光素子の製造方法。 25. The method for manufacturing a group III nitride semiconductor light-emitting element according to claim 24, wherein, in the LED stacking step, an In concentration of a light-emitting layer provided in the LED structure is 7% by mass or more.
  26.  前記基板加工工程の後であって、前記エピタキシャル工程の前に、前記基板の主面上に多結晶のAlGa1-xN(0≦x≦1)からなる厚さ0.01~0.5μmのバッファ層を、スパッタ法によって積層するバッファ層形成工程が含まれることを特徴とする請求項15に記載のIII族窒化物半導体発光素子の製造方法。 After the substrate processing step and before the epitaxial step, a thickness of 0.01 to 0 made of polycrystalline Al x Ga 1-x N (0 ≦ x ≦ 1) is formed on the main surface of the substrate. 16. The method for manufacturing a group III nitride semiconductor light-emitting device according to claim 15, further comprising a buffer layer forming step of stacking a buffer layer of .5 μm by a sputtering method.
  27.  前記基板加工工程の後、前記エピタキシャル工程の前に、前記基板の主面上に単結晶のAlGa1-xN(0≦x≦1)からなる厚さ0.01~0.5μmのバッファ層を、スパッタ法によって積層するバッファ層形成工程が備えられていることを特徴とする請求項15に記載のIII族窒化物半導体発光素子の製造方法。 After the substrate processing step and before the epitaxial step, a thickness of 0.01 to 0.5 μm made of single crystal Al x Ga 1-x N (0 ≦ x ≦ 1) is formed on the main surface of the substrate. 16. The method for producing a group III nitride semiconductor light-emitting device according to claim 15, further comprising a buffer layer forming step of laminating the buffer layer by a sputtering method.
  28.  前記LED積層工程において、前記n型半導体層にn型クラッド層が含まれ、前記p型半導体層にp型クラッド層が含まれ、且つ、前記n型クラッド層及び前記p型クラッド層の少なくとも一つが超格子構造を含む層であることを特徴とする請求項24に記載のIII族窒化物半導体発光素子の製造方法。 In the LED stacking step, the n-type semiconductor layer includes an n-type cladding layer, the p-type semiconductor layer includes a p-type cladding layer, and at least one of the n-type cladding layer and the p-type cladding layer. 25. The method for manufacturing a group III nitride semiconductor light-emitting device according to claim 24, wherein one of the layers includes a superlattice structure.
  29.  前記エピタキシャル工程において、前記凸部を備えた前記基板の主面上に前記III族窒化物半導体層を形成した後の、前記III族窒化物半導体層の(10-10)面におけるX線ロッキングカーブ(XRC)半値幅が150arcsec以上であることを特徴とする請求項15に記載のIII族窒化物半導体発光素子の製造方法。 In the epitaxial step, an X-ray rocking curve on the (10-10) plane of the group III nitride semiconductor layer after forming the group III nitride semiconductor layer on the main surface of the substrate having the convex portion 16. The method for producing a group III nitride semiconductor light-emitting device according to claim 15, wherein the (XRC) half width is 150 arcsec or more.
  30.  請求項15に記載の製造方法によって得られるIII族窒化物半導体発光素子。 A group III nitride semiconductor light-emitting device obtained by the manufacturing method according to claim 15.
  31.  請求項1に記載のIII族窒化物半導体発光素子が用いられてなることを特徴とするランプ。 A lamp comprising the group III nitride semiconductor light-emitting device according to claim 1.
PCT/JP2009/059357 2008-05-21 2009-05-21 Iii nitride semiconductor light emitting element and method for manufacturing the same, and lamp WO2009142265A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-133199 2008-05-21
JP2008133199A JP2009283620A (en) 2008-05-21 2008-05-21 Group iii nitride semiconductor light emitting element, method for manufacturing thereof, and lamp

Publications (1)

Publication Number Publication Date
WO2009142265A1 true WO2009142265A1 (en) 2009-11-26

Family

ID=41340192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059357 WO2009142265A1 (en) 2008-05-21 2009-05-21 Iii nitride semiconductor light emitting element and method for manufacturing the same, and lamp

Country Status (2)

Country Link
JP (1) JP2009283620A (en)
WO (1) WO2009142265A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013084832A (en) * 2011-10-12 2013-05-09 Sharp Corp Method of manufacturing nitride semiconductor structure
WO2015189088A1 (en) * 2014-06-12 2015-12-17 Osram Opto Semiconductors Gmbh Semiconductor chip and method for producing a semiconductor chip

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4865047B2 (en) * 2010-02-24 2012-02-01 株式会社東芝 Crystal growth method
JP5376462B2 (en) * 2010-03-31 2013-12-25 国立大学法人山口大学 Semiconductor light emitting device and manufacturing method thereof
JP2012028495A (en) * 2010-07-22 2012-02-09 Showa Denko Kk Semiconductor light-emitting element manufacturing method and semiconductor light-emitting element, lamp, electronic equipment and machinery
JP6024533B2 (en) 2012-03-28 2016-11-16 日亜化学工業株式会社 Sapphire substrate, manufacturing method thereof, and nitride semiconductor light emitting device
JP2014038941A (en) * 2012-08-16 2014-02-27 Toyoda Gosei Co Ltd Semiconductor light-emitting element and light-emitting device
JP5880383B2 (en) 2012-10-11 2016-03-09 豊田合成株式会社 Semiconductor light emitting device, light emitting device
JP2018050063A (en) * 2017-11-02 2018-03-29 ローム株式会社 Semiconductor light-emitting element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007019318A (en) * 2005-07-08 2007-01-25 Sumitomo Chemical Co Ltd Semiconductor light emitting element, method for manufacturing substrate therefor, and method for manufacturing the same
JP2007273659A (en) * 2006-03-31 2007-10-18 Showa Denko Kk GaN BASED SEMICONDUCTOR LIGHT-EMITTING ELEMENT AND LAMP
JP2007329312A (en) * 2006-06-08 2007-12-20 Showa Denko Kk Method of manufacturing laminated layer structure of group iii nitride semiconductor
JP2008091608A (en) * 2006-10-02 2008-04-17 Sony Corp Light emitting diode and its manufacturing method, illumination source cell unit, light emitting diode backlight, light emitting diode lighting device, light emitting diode display, electronic instrument, electronic apparatus, and manufacturing method of the electronic apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007019318A (en) * 2005-07-08 2007-01-25 Sumitomo Chemical Co Ltd Semiconductor light emitting element, method for manufacturing substrate therefor, and method for manufacturing the same
JP2007273659A (en) * 2006-03-31 2007-10-18 Showa Denko Kk GaN BASED SEMICONDUCTOR LIGHT-EMITTING ELEMENT AND LAMP
JP2007329312A (en) * 2006-06-08 2007-12-20 Showa Denko Kk Method of manufacturing laminated layer structure of group iii nitride semiconductor
JP2008091608A (en) * 2006-10-02 2008-04-17 Sony Corp Light emitting diode and its manufacturing method, illumination source cell unit, light emitting diode backlight, light emitting diode lighting device, light emitting diode display, electronic instrument, electronic apparatus, and manufacturing method of the electronic apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013084832A (en) * 2011-10-12 2013-05-09 Sharp Corp Method of manufacturing nitride semiconductor structure
WO2015189088A1 (en) * 2014-06-12 2015-12-17 Osram Opto Semiconductors Gmbh Semiconductor chip and method for producing a semiconductor chip

Also Published As

Publication number Publication date
JP2009283620A (en) 2009-12-03

Similar Documents

Publication Publication Date Title
JP4908381B2 (en) Group III nitride semiconductor layer manufacturing method, group III nitride semiconductor light emitting device, and lamp
WO2009154215A1 (en) Iii-group nitride semiconductor light emitting element, method for manufacturing the element, and lamp
JP5521981B2 (en) Manufacturing method of semiconductor light emitting device
KR101067122B1 (en) Method of manufacturing group III nitride semiconductor, method of manufacturing group III nitride semiconductor light emitting device and group III nitride semiconductor light emitting device, and lamp
US8502254B2 (en) Group III nitride semiconductor light-emitting device and method of manufacturing the same, and lamp
WO2009142265A1 (en) Iii nitride semiconductor light emitting element and method for manufacturing the same, and lamp
KR101268139B1 (en) Method for manufacturing iii nitride semiconductor light emitting element, iii nitride semiconductor light emitting element and lamp
KR101071450B1 (en) Method for producing group iii nitride semiconductor layer, group iii nitride semiconductor light-emitting device, and lamp
WO2010032423A1 (en) Method for manufacturing iii nitride semiconductor light emitting element, iii nitride semiconductor light emitting element and lamp
WO2009139376A1 (en) Process for producing group iii nitride semiconductor light-emitting element, group iii nitride semiconductor light-emitting element, and lamp
JP6910341B2 (en) Vertical UV light emitting diode
JP5504618B2 (en) Group III nitride semiconductor light-emitting device and method for manufacturing the same
CN101558502A (en) Method for producing group III nitride semiconductor layer, group III nitride semiconductor light-emitting device, and lamp
JP2005268581A (en) Gallium nitride family compound semiconductor light emitting device
JP2008034444A (en) Group iii nitride semiconductor light emitting device, method of manufacturing same, and lamp
WO2010100900A1 (en) Group iii nitride semiconductor light-emitting element and method for manufacturing the same, and lamp
JP2010010444A (en) Semiconductor light emitting element, lamp and method of manufacturing semiconductor light emitting element
JP2011082248A (en) Semiconductor light emitting element and method of manufacturing the same, and lamp
JP5648446B2 (en) Manufacturing method of semiconductor light emitting device
JP2011091442A (en) Semiconductor light emitting diode of gallium nitride compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09750627

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09750627

Country of ref document: EP

Kind code of ref document: A1