WO2009133851A1 - Device for measuring oxygen saturation degree - Google Patents

Device for measuring oxygen saturation degree Download PDF

Info

Publication number
WO2009133851A1
WO2009133851A1 PCT/JP2009/058280 JP2009058280W WO2009133851A1 WO 2009133851 A1 WO2009133851 A1 WO 2009133851A1 JP 2009058280 W JP2009058280 W JP 2009058280W WO 2009133851 A1 WO2009133851 A1 WO 2009133851A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
oxygen saturation
spo
stability
determination
Prior art date
Application number
PCT/JP2009/058280
Other languages
French (fr)
Japanese (ja)
Inventor
典浩 舘田
晃宏 鵜飼
繁 大崎
Original Assignee
コニカミノルタセンシング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタセンシング株式会社 filed Critical コニカミノルタセンシング株式会社
Publication of WO2009133851A1 publication Critical patent/WO2009133851A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases

Definitions

  • the present invention relates to an oxygen saturation measuring apparatus for measuring the oxygen saturation of arterial blood.
  • a pulse oximeter oxygen saturation measuring device
  • the pulse oximeter is attached to a predetermined living body part of a subject, outputs light toward the living body part, measures a change in the amount of light transmitted or reflected through the living body part as a signal, Saturation (hereinafter referred to as SpO 2 value) or the like is obtained.
  • Saturation hereinafter referred to as SpO 2 value
  • the SpO 2 value may be measured by a pulse oximeter in the same manner as body temperature measurement.
  • in-patients may be equipped with a pulse oximeter to measure the patient's SpO 2 value as a daily health check.
  • the SpO 2 value temporarily decreases abruptly just by walking. Be measured SpO 2 value in this state, SpO 2 value has changed from time to time, it is impossible to measure the correct value. Therefore, after mounting the pulse oximeter to the patient, until the SpO 2 value is stabilized, it is necessary to visually confirm the SpO 2 value displayed. In this way, the read SpO 2 value is the correct value while the SpO 2 value is stable. This operation is usually performed by a nurse or the like, but since it is confirmed visually, other operations cannot be performed during this period.
  • Patent Document 1 the SpO 2 value displayed at any time, determined the stability of the SpO 2 values, when the SpO 2 value is judged to be stable, without subsequent measurements, at that time
  • An oximeter that displays the displayed SpO 2 value as it is is described.
  • Formula 1 shown below is used for the determination of the stability of the oximeter.
  • DS is a determination value
  • W (I) is a weighting factor.
  • S (0) represents the currently displayed SpO 2 value
  • S (-1) represents the previous SpO 2 value
  • S (-2) displayed the previous two. It represents the SpO 2 value.
  • W (I) is a value determined by I.
  • the determination value DS obtained by Equation 1 indicates that the smaller the value, the less the change in the display SpO 2 value and the higher the stability. Therefore, oximeter described in Patent Document 1, the judgment value DS is equal to or smaller than the predetermined threshold value SpO 2 value is determined to be stable, and fixed displays the SpO 2 values displayed at that time.
  • the display SpO 2 value displayed on the oximeter is a value obtained by, for example, averaging a plurality of consecutive SpO 2 values (instantaneous SpO 2 values) obtained from the optical signal obtained by measurement, It differs from the value obtained by one measurement. Therefore, just because the displayed SpO 2 value does not seem to change much, there is a problem that it cannot be said that the patient's SpO 2 value is actually stable. For example, even if the instantaneous SpO 2 value is unstable, the display SpO 2 value obtained by performing arithmetic processing such as averaging the instantaneous SpO 2 value may be determined to be stable. For this reason, the oximeter described in Patent Document 1 has a problem that although the stability of the SpO 2 value is actually low, it is determined that the SpO 2 value is stable and the SpO 2 value is fixedly displayed. .
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide an oxygen saturation measuring device that performs a determination of whether or not the SpO 2 value is stable by a more reliable method. It is to be.
  • the oxygen saturation measurement apparatus of the present invention includes a stability determination unit that determines the stability of oxygen saturation based on a signal component.
  • the stability determination unit evaluates the signal component, and the signal component has a predetermined evaluation. When the standard is satisfied, it is determined that the oxygen saturation is stable.
  • FIG. 1 is a diagram showing an external configuration of a pulse oximeter according to an embodiment.
  • FIG. 2 is a block diagram showing the configuration of the pulse oximeter according to the embodiment.
  • the pulse oximeter 100 includes a device main body 1 and a measuring unit 2 electrically connected to the device main body 1 via a cable 16.
  • the pulse oximeter 100 is used by being attached to a hand 300 of a subject (patient).
  • the apparatus main body 1 has a mounting belt 17, and the apparatus main body 1 is fixed to the wrist of the subject by, for example, winding the mounting belt 17 around the wrist of the subject.
  • the apparatus body 1 further includes a display unit 6 and an operation unit 8.
  • the display unit 6 is for displaying biological information such as measurement results, that is, blood oxygen saturation (SpO 2 value).
  • the operation unit 8 is, for example, a switch circuit and the like, and is used for instructing reading of measurement results and instructions for starting or ending measurement.
  • the biological information is information serving as an index representing biological information such as the SpO 2 value and pulse of the subject obtained by analyzing an electrical signal obtained from the living body by the pulse oximeter.
  • the measuring unit 2 is attached to the fingertip of the subject, for example. Specifically, it has a shape like a finger sack and is worn by being fitted to the fingertip of the subject. Although not shown in FIG. 1, measurement is performed by the light emitting unit 21 and the light receiving unit 22 installed inside the measuring unit 2 (see FIG. 2).
  • the pulse oximeter 100 includes an apparatus main body 1 and a measurement unit 2.
  • the measuring unit 2 includes a light emitting unit 21 and a light receiving unit 22, and in a state where a measurement site (for example, a fingertip) is fitted in the measuring unit 2, that is, in a measurement state, the light emitting unit 21 and the light receiving unit 22 are interposed between the fingertips. It is arranged so as to face each other. Thereby, biological information can be measured based on the transmitted light of the measurement site. In addition, biological information can also be measured based on the reflected light of the measurement site, and in this case, the light emitting unit 21 and the light receiving unit 22 are arranged adjacent to each other.
  • the light emitting unit 21 is a light source including, for example, a light emitting diode that emits red light having a wavelength in the red region and a light emitting diode that emits infrared light having a wavelength in the infrared region.
  • a light emitting diode that emits red light having a wavelength in the red region
  • a light emitting diode that emits infrared light having a wavelength in the infrared region.
  • the amount of irradiation light can be adjusted within a certain range during measurement. It is preferable to do.
  • the light receiving unit 22 includes a photoelectric conversion element such as a silicon photodiode that generates a current having a magnitude corresponding to the intensity of the received light.
  • the light receiving unit 22 receives light from the light emitting unit 21 that has passed through the fingertip of the subject as the measurement site. Therefore, this photoelectric conversion element has sensitivity to red light and infrared light emitted from the light emitting unit 21.
  • the light receiving unit 22 converts optical signals of red light and infrared light into electrical signals that are biological information signals and outputs the electrical signals.
  • the biological information signal is an electrical signal that depends on the living body of the subject obtained by measurement. More specifically, the biological information can be obtained by analyzing the biological information signal.
  • the apparatus body 1 includes a control unit 4, a storage unit 5, a display unit 6, a power supply unit 7, an operation unit 8, an I / V conversion unit 31, and an A / D conversion unit 32.
  • the storage unit 5 includes a ROM (Read Only Memory) that stores a control program of the pulse oximeter 100, an EEPROM (Electrically Erasable Programmable ROM) that temporarily stores data such as arithmetic processing and control processing, and a RAM (Random Access). Memory) and flash memory.
  • ROM Read Only Memory
  • EEPROM Electrical Erasable Programmable ROM
  • RAM Random Access Memory
  • flash memory flash memory
  • the biological information signal obtained by the measurement unit 2 is analyzed by the analysis processing unit 42, and the light amount and pulse wave amplitude of each light received by the light receiving unit 22, infrared light and red color are obtained.
  • the amplitude ratio with light, the instantaneous SpO 2 value (instantaneous blood oxygen saturation), the display SpO 2 value (displayed blood oxygen saturation), and the like are stored in association with the timing information.
  • the instantaneous SpO 2 value is an SpO 2 value calculated from a biological information signal obtained by one measurement operation.
  • the display SpO 2 value is an average value or a moving average value of a plurality of instantaneous SpO 2 values calculated in a predetermined period, and is a value to be displayed on the display unit 6. Since the instantaneous SpO 2 value is the same value obtained by one measurement, when the instantaneous SpO 2 value is displayed on the display unit 6 for each measurement, the display is displayed when the instantaneous SpO 2 value slightly changes. Flicker. Therefore, it is difficult for the operator to read the displayed value.
  • the average value or the moving average value of the instantaneous SpO 2 values measured in a certain period is displayed on the display unit 6 as the display SpO 2 value.
  • the determination of the stability of the SpO binary value uses data going back for a certain period from the present, but the stored data is stored in association with the timing information in this way, so that past data can be read out. Can be easily performed.
  • the time measurement information may be time from the start of measurement or time.
  • the display unit 6 includes a display device such as an LCD (Liquid Crystal Display), a 7-segment LED (Light Emitting Diode), an organic electroluminescence display device, or a CRT (Cathode Ray Tube) display device.
  • the display unit 6 displays, for example, SpO 2 value, which is measured biological information, and information indicating that the measurement is being performed or a fixed display.
  • the display unit 6 may display lighting, blinking, characters, numbers, symbols, pictorial symbols, characters, and the like.
  • the power supply unit 7 supplies power to the pulse oximeter 100, that is, the measurement unit 2 and the apparatus main body 1. Considering the troublesomeness when the pulse oximeter 100 is mounted, it is desirable to eliminate the need for a power supply cable. Therefore, the power supply unit 7 may include a button battery, a secondary battery, and the like. In addition, it is preferable that the power supply part 7 is provided with the power supply circuit which has a power-off function which stops a power supply automatically, if a measurement is not made for a fixed time.
  • the operation unit 8 is configured with switches and buttons for operating the pulse oximeter 100. Specifically, a switch for turning on / off the power, a switch for instructing measurement start, measurement extension, and various other operations are provided. In addition, a button that can instruct to change the level of the stability determination condition, a stability determination mode in which stability determination is performed and the SpO 2 value is determined to be stable, and continuous measurement that continues measurement A switch or the like for switching the measurement mode is provided.
  • the I / V conversion unit 31 converts a current signal output from the light receiving unit 22 into a voltage signal at a predetermined cycle, and outputs the voltage signal to the A / D conversion unit 32 as a photoelectric pulse wave signal.
  • the A / D conversion unit 32 ⁇ ⁇ converts the photoelectric pulse wave signal, which is an analog biological information signal output from the I / V conversion unit 31, into a digital photoelectric pulse wave signal and outputs it to the control unit 4.
  • the control unit 4 includes various electronic components, integrated circuit components, a CPU (Central Processing Unit), and the like, and controls the operation of each unit of the pulse oximeter 100. Functionally, the measurement control unit 41, the analysis processing unit 42, A stability determination unit 43 and a display control unit 44 are provided.
  • a CPU Central Processing Unit
  • the measurement control unit 41 controls the measurement operation of biological information by the measurement unit 2 according to a predetermined measurement program. Specifically, red light and infrared light are alternately emitted from the light emitting unit 21 at each sampling period, and a photoelectric conversion signal is acquired from the light receiving unit 22 in synchronization with the light emission timing.
  • the display control unit 44 displays the display SpO 2 value and the like calculated by analyzing the biological information signal obtained by the display representing the state under measurement or the measurement by the analysis processing unit 42 in a predetermined display form. Controls the display operation to be displayed.
  • the display control unit 44 causes the display unit 6 to display the SpO 2 value fixedly.
  • the fixed display means that the currently displayed value is continuously displayed (the display is not updated), that is, the display of the displayed blood oxygen saturation is not updated. Accordingly, after being fixed display is performed actual measurement operation, even as different SpO 2 value has been calculated and thereby the displayed value, the SpO 2 value displayed on the display unit 6 does not change .
  • the fixedly displayed value is a value when the SpO 2 value is stabilized
  • the fixedly displayed value is a correct value without variation as the SpO 2 value of the subject.
  • the SpO 2 value is fixed display may be used a display SpO 2 values of arbitrary timing in the period of SpO 2 value is determined to be stable, also, SpO 2 value to be stable determination it may be using the average value of all the listed display SpO 2 values in period.
  • the analysis processing unit 42 performs predetermined data analysis based on the biological information signal obtained by the measurement unit 2, and the light amount and pulse wave amplitude of each light received by the light receiving unit 22, the infrared light and the red light. An amplitude ratio, an instantaneous SpO 2 value, and the like are obtained. Further, an average value or moving average value of instantaneous SpO 2 values in a predetermined period is calculated, and a display SpO 2 value that is a value to be displayed on the display unit 6 is obtained.
  • Oxygen is supplied to each part in the living body by being transported by blood. More specifically, oxygen is transported by oxidation and reduction of hemoglobin in blood. When this hemoglobin is oxidized, the absorption of red light decreases and the absorption of infrared light increases. Conversely, when it is reduced, the absorption of red light increases and the absorption of infrared light decreases. It has characteristics.
  • the analysis processing unit 42 calculates the SpO 2 value using this characteristic. Specifically, first, the variation in the amount of transmitted light of red light and infrared light received by the light receiving unit 22 is measured, and the instantaneous SpO 2 value for each sampling period is calculated based on the amplitude ratio of the red light and infrared light. To do.
  • an average value or a moving average value in a predetermined range of the calculated instantaneous SpO 2 value is obtained, and this is set as a display SpO 2 value.
  • the display SpO 2 value is displayed on the display unit 6 by the display control unit 44. Note that the display SpO 2 value may be calculated every sampling cycle, or may be calculated every predetermined period, for example, every second.
  • the stability determination unit 43 sets at least one of the light amount and pulse wave amplitude of each light received by the light receiving unit 22, the amplitude ratio between infrared light and red light, the instantaneous SpO 2 value, and the display SpO 2 value. Based on this, it is determined whether the SpO 2 value is stable. Specifically, the stability determination unit 43 reads from the storage unit 5 and evaluates the current value and the data obtained by the measurement from the present to the past for a certain period of time. Specifically, the determination value is obtained by substituting the data read from the storage unit 5 into a predetermined calculation formula. The calculation formula is set so that the determination value decreases as the stability of the SpO 2 value increases. Thereby, when this determination value is below a predetermined threshold value, that is, when a predetermined evaluation criterion is satisfied, it is determined that the SpO 2 value is stable.
  • the stability determination unit 43 includes at least the light amount and pulse wave amplitude of each light received by the light receiving unit 22 that is a signal component, the amplitude ratio between infrared light and red light, and the instantaneous SpO 2 value.
  • signal stability is stability of the SpO 2 value is determined on the basis of either stable SpO 2 value is determined based on the display SpO 2 value displayed on the display section 6 that is calculated from the instantaneous SpO 2 value
  • the stability of the SpO 2 value is determined using both the display stability, which is a degree.
  • the pulse oximeter 100 according to the embodiment, the display not only stability, since determining the stability of the signal stability be used SpO 2 value, stability of more reliable SpO 2 value Degree determination can be performed.
  • the signal component for obtaining the signal stability has a plurality of parameters. Therefore, the stability determination unit 43 may evaluate all these parameters to determine the stability of the SpO 2 value, or may evaluate at least one of the parameters to determine the stability of the SpO 2 value. You may judge. A method for evaluating each parameter will be described below. Specifically, each value to be evaluated is individually evaluated, and if each value satisfies a predetermined evaluation criterion, it is determined that the SpO 2 value is stable. More specifically, a determination value is obtained, and when the value is equal to or smaller than a predetermined threshold, it is determined that the SpO 2 value is stable.
  • the determination value may be the reciprocal of the average value of the amount of transmitted light between m points (m is an integer of 1 or more) including the value measured at present. Note that m may be about 10.
  • the determination value DS 11 is expressed by Equation 2 shown below.
  • n (n is an integer of 1 or more) is the number of measurement values from the start of measurement to the present. That is, from the start of measurement, the analysis processing unit 42 has received the biological information signal n times to the present and performs analysis processing.
  • L (k) represents the amount of transmitted light in the kth measurement (m is an integer of 1 or more) from the start of measurement. It is noted that the reason why the determination value DS 11 is the reciprocal of the mean value, the case where the determination value DS 11 is small in order to the high stability of the SpO 2 values.
  • the previously determined a predetermined threshold value, determination value DS 11 is in the following cases the threshold is determined to be high stability of SpO 2 values.
  • a value obtained by the current measurement and a value obtained by the past measurement from the current time are used. Specifically, obtaining a present time, the determination value DS 11 and the value with the m while going back from the current time in the past.
  • the period during which the values used for these determinations are measured is referred to as a determination target period. That is, the measurement unit 2 performs m measurements within the determination target period, and the analysis processing unit 42 receives m pieces of biological signal information from the light receiving unit 22.
  • stability judging unit 43 obtains the determination value DS 11, may determine these the higher stability of the SpO 2 values when more than a predetermined threshold value.
  • the stability determination unit 43 can change the determination target period in accordance with the amount of transmitted light. And the stability determination part 43 should just make the determination object period short, specifically, so that the transmitted light amount is large. In the case of a pulse oximeter that receives reflected light by the light receiving unit 22, the reflected light amount may be used instead of the transmitted light amount.
  • the pulse wave amplitude is evaluated to determine the stability of the SpO 2 value.
  • the pulse wave amplitude also has a poor SN ratio (Signal to Noise Ratio) when the amplitude level is not sufficient. Therefore, the stability of the SpO 2 value can be determined using the average value of the pulse wave amplitude as well as the transmitted light amount.
  • a standard deviation may be used when evaluating the pulse wave amplitude and determining the stability of the SpO 2 value.
  • variation in the magnitude of the pulse wave amplitude may be used as the determination value.
  • the determination value DS 12 when the average value of the pulse wave amplitude is used is expressed by the following Expression 3
  • the determination value DS 13 when the standard deviation of the pulse wave amplitude is used is the following expression: It is represented by 4.
  • Equation 4 l is the same value as k.
  • a (k) and A (l) represent pulse wave amplitudes from the k-th and l-th measurements from the start of measurement. From these equations, the stability determination unit 43 may determine the determination values DS 12 and DS 13 and determine that the stability of the SpO 2 value is high when they are equal to or less than a predetermined threshold.
  • the stability determination unit 43 can change the determination target period according to the magnitude of the pulse wave amplitude. And specifically, the stability determination part 43 should just shorten a determination object period, so that a pulse wave amplitude is large.
  • the determination value DS 14 in this case is represented by Equation 5 shown below.
  • s (k) and s (l) represent instantaneous SpO 2 values obtained by the k-th and l-th measurements from the start of measurement.
  • the stability determination unit 43 may determine the determination value DS 14 and determine that the stability of the SpO 2 value is high when the value is equal to or less than a predetermined threshold.
  • the stability determination unit 43 may determine that the stability of the SpO 2 value is high when the determination value is equal to or less than a predetermined threshold.
  • the threshold value may be about 0.5% of the instantaneous SpO 2 value.
  • the stability determination unit 43 obtains an average value of instantaneous SpO 2 values within a predetermined period, and determines an abnormal value if the value deviates by about ⁇ 5 to 20% or more from the average value, and calculates a determination value. Should not be used.
  • the stability determination unit 43 performs approximation of the linear line using the least square method for each instantaneous SpO 2 value (for m points) within the determination target period, and determines the absolute value of the slope in the linear approximate line. It may be obtained as a value.
  • the determination value calculated in this way indicates a continuous change in the instantaneous SpO 2 value. That is, when the instantaneous SpO 2 value continuously decreases or increases, this determination value becomes relatively large. In such a case, the SpO 2 value is not stable, and the smaller the slope of the approximate line, the higher the stability of the SpO 2 value. Therefore, the stability determination unit 43 may determine that the SpO 2 value is stable when the calculated determination value is equal to or less than a predetermined threshold value. Note that, in the determination based on the instantaneous SpO 2 value, the stability determination unit 43 may use the equation 1 described in Patent Document 1 described above.
  • Stability judging unit 43 in the judgment of the stability of the SpO 2 value according to the instantaneous SpO 2 values, determined the determination value, it is determined that the SpO 2 value when their value is less than the predetermined threshold value is stable Good.
  • the stability determination unit 43 may determine that the SpO 2 value is not stable when the abnormal value is included in a predetermined ratio or more within the determination target period.
  • the abnormal value may be a value that deviates by about ⁇ 5 to 20% or more from the average value of the instantaneous SpO 2 values within a predetermined period, as described above.
  • the instantaneous SpO 2 values since those determined by the amplitude ratio of the infrared light and red light, in the calculation of the decision value using the instantaneous SpO 2 value, infrared light instead of the instantaneous SpO 2 value Alternatively, the amplitude ratio of red light may be used, and a similar determination value can be obtained. Therefore, the above description, in the determination using the instantaneous SpO 2 values may be used amplitude ratio of the infrared light and red light, instead of the instantaneous SpO 2 value. Specifically, the stability determination unit 43 may determine that the SpO 2 value is stable when the standard deviation of the amplitude ratio of infrared light and red light is equal to or less than a predetermined threshold value.
  • the stability determination unit 43 has high stability of the SpO 2 value when the determination value is equal to or less than a predetermined threshold value. May be determined.
  • the threshold value may be about 0.5% of the amplitude ratio of infrared light and red light.
  • the stability determination unit 43 obtains an average value of the amplitude ratio of infrared light and red light within a predetermined period, and determines that it is an abnormal value if the value is more than about ⁇ 5 to 20% or more from the average value. It is sufficient not to use it for calculation of the judgment value.
  • the stability determination unit 43 may determine that the stability of the SpO 2 value is high when the determination value is equal to or less than a predetermined threshold value.
  • the stability determination unit 43 may determine that the SpO 2 value is not stable when the abnormal value is included in a predetermined ratio or more in the determination target period.
  • the abnormal value may be a value that deviates by about ⁇ 5 to 20% or more from the average value of the amplitude ratio of infrared light and red light within a predetermined period.
  • Stability judging unit 43 when determining the stability of the SpO 2 values by the display SpO 2 values, as in the formula 4 or formula 5 may be determined using the standard deviation. Specifically, the stability determination unit 43 replaces s (k) and s (l) indicating the value of the pulse wave amplitude in Equation 5 with the display SpO 2 values obtained by the k-th and l-th measurements from the start of measurement. And the determination value may be obtained.
  • the Stability judging unit 43 Further, as with the determination of the stability of the SpO 2 value according to the instantaneous SpO 2 values, the difference between the maximum value and the minimum value among the measured values within the determination period of these values It is good also as a judgment value.
  • the abnormal value should be deleted from the maximum value and the minimum value. For example, a value that deviates by about ⁇ 5 to 20% or more from the average value of the displayed SpO 2 values within a predetermined determination period may be determined as an abnormal value and not used for calculation of the determination value.
  • the stability determination unit 43 performs approximation of the linear line using the least square method for each display SpO 2 value (for m points) within the determination target period, and determines the absolute value of the slope in the linear approximate line. It may be obtained as a value.
  • stability judging unit 43 similarly to the determination of the stability of the SpO 2 value according to the instantaneous SpO 2 value, calculated determination value, SpO 2 values when more than a predetermined threshold value is stable Can be judged. Note that the determination based on the display SpO 2 value may be performed using Equation 1 described in Patent Document 1 described above.
  • Stability judging unit 43 in the judgment of the stability of the SpO 2 value according to display SpO 2 values, determined the determination value, it is determined that the SpO 2 value when their value is less than the predetermined threshold value is stable Good. Further, the stability determination unit 43 may determine that the SpO 2 value is not stable when the abnormal value is included in a predetermined ratio or more within the determination target period. As the abnormal value, the average value of the display SpO 2 values within a predetermined period may be obtained as described above, and the average value may be a value deviated by about ⁇ 5 to 20% or more.
  • the stability decision unit 43, the signal component and the display SpO 2 values determined the stability of the SpO 2 values, when there is a high both stability, i.e. the signal components and the display SpO 2 value When both are evaluated and both satisfy the predetermined evaluation criteria, it is determined that the SpO 2 value is stable, and the display control unit 44 causes the display unit 6 to display the latest display SpO 2 value in a fixed manner. Specifically, it is represented by the flowchart shown in FIG. FIG. 3 is a flowchart showing stability determination. First, the measurement unit 2 performs measurement (S1).
  • the control unit 4 performs an analysis process on the biological information signal acquired by the measurement unit 2, and the light amount and pulse wave amplitude of each light that is a signal component received by the light receiving unit 22, the amplitude ratio of infrared light and red light. Then, the instantaneous SpO 2 value and the like are calculated (S2). Further, the display SpO 2 value is calculated based on the instantaneous SpO 2 value (S3), and the display SpO 2 value is displayed on the display unit 6 (S4).
  • the stability determination unit 43 determines at least one of the light amount and pulse wave amplitude of each light received by the light receiving unit 22 as a signal component, the amplitude ratio between infrared light and red light, and the instantaneous SpO 2 value.
  • SpO 2 value stability determination is performed based on the determination value DS 1 used. Specifically, first, stability judging unit 43 reads the data while going back the current value and the current in a predetermined period past from the storage unit 5, and calculates the determination value DS 1 based on them (S5) . The stability judging unit 43, the determination value DS 1 To assess whether a predetermined threshold TH 1 or less (S6).
  • the process returns to step S1 again. If the determination value DS 1 is less than or equal to the threshold value TH 1 , the stability determination unit 43 determines the determination value DS 2 using the display SpO 2 value. SpO 2 value stability determination based on Specifically, first, stability judging unit 43 reads the data while going back the current value and the current in a predetermined period past from the storage unit 5, to calculate a decision value DS 2 based on them (S7) . The stability judging unit 43, the determination value DS 2 To assess whether a predetermined threshold TH 2 below (S8).
  • step S1 If the determination value DS 2 is not the threshold TH 2 or less, process returns to step S1, if the determination value DS 2 the threshold TH 2 or less, on the display unit 6 is a display control unit 44, the latest display value i.e. currently displayed The SpO 2 value is fixed and displayed (S9). Note that after the fixed display, the measurement is not performed.
  • the pulse oximeter 100 includes a buzzer, a vibration device, an LED (Light Emitting Diode), or the like. When the pulse oximeter 100 is fixedly displayed, SpO 2 is transmitted to the operator by sound, vibration, or light. The fact that the value is stable is notified (S10).
  • stability judging unit 43 may be used at least one determination method of the determination method indicated above. Moreover, the stability determination part 43 may perform by using one determination value, and may perform determination using a some determination value. Furthermore, when using a plurality of determination values, the stability determination unit 43 may determine that the SpO 2 value is not stable unless all of the plurality of determination values used for the determination are equal to or less than the threshold. It is also possible to determine that the SpO 2 value is stable if the number or the determination value of a predetermined ratio is equal to or less than the threshold value.
  • the degree of the determination level may be changed stepwise. That is, it is preferable that the stability determination unit 43 can change the threshold stepwise. It should be noted that the stricter the determination level, the smaller the measurement value used for the determination, and the lower the determination level, the more the measurement value used for the determination.
  • the determination target period may be shortened as the determination level is stricter (the threshold value is small). Thereby, when the stability of the SpO 2 value is high, since the determination target period is short by setting the determination level to be strict, measurement can be performed in a short time.
  • the pulse oximeter 100 is attached to the subject's hand 300, and the operation unit 8 is operated to start measurement.
  • the operation unit 8 is operated to start measurement.
  • stability determination is performed and if it is determined that the SpO 2 value is stable, a stability determination mode in which the display is fixed, and continuous measurement is continued regardless of the value of the SpO 2 value. It is preferable that one of the measurement modes can be selected.
  • the measurement control unit 41 controls the light emitting unit 21, the light receiving unit 22, the I / V conversion unit 31, and the A / D conversion unit 32 to perform SpO 2. Measurement of biological information such as values is performed.
  • the measurement control unit 41 causes the light emitting unit 21 to emit light and causes the light receiving unit 22 to acquire a photoelectric conversion signal that is a biological information signal in synchronization with the light emission timing. Further, the photoelectric conversion signal acquired by the light receiving unit 22 is a current signal, is converted into a voltage signal by the I / V conversion unit 31, and is output to the A / D conversion unit 32 as a photoelectric pulse wave signal.
  • the measurement control unit 41 causes the A / D conversion unit 32 to convert the photoelectric pulse wave signal from analog to digital.
  • the analysis processing unit 42 performs a predetermined analysis based on the digital photoelectric pulse wave signal output from the A / D conversion unit 32, and the light amount and pulse wave amplitude of each light received by the light receiving unit 22 and infrared light. An amplitude ratio with red light, an instantaneous SpO 2 value, a display SpO 2 value, and the like are calculated.
  • the display control unit 44 causes the display unit 6 to display the display SpO 2 value calculated by the analysis processing unit 42.
  • the analysis processing unit 42 stores the calculated various parameters in the storage unit 5 together with the timing information.
  • the parameters stored in the storage unit 5 may be only those used for stability determination.
  • the stability determination unit 43 When the stability determination mode is selected by the operation unit 8, the stability determination unit 43 reads the parameters in the past measurement used for the stability determination from the storage unit 5, and stabilizes the SpO 2 value by the method described above. Judge the degree. Note that, as described above, in the case of having multi-level determination levels, the operator may select a desired determination level using the operation unit 8. Thereby, the stability determination part 43 performs the stability determination of a predetermined determination level within a predetermined determination target period.
  • the stability determination unit 43 may extend the determination target period and continue the determination. Specifically, for example, the stability determination unit 43 may change the determination level, and the determination level may be changed to a stricter determination level than the initially set determination level. That is, if it is not determined that the SpO 2 value is stable within the determination target period, it can be determined that the degree of instability of the SpO 2 value is high, and therefore the determination of the stability of the SpO 2 value is further continued. By making the conditions stricter, it is possible to realize a more reliable determination of the stability of the SpO 2 value.
  • the stability determination unit 43 determines that the SpO 2 value is stable, the stability determination unit 43 sends an instruction to that effect to the display control unit 44. Therefore, the display control unit 44 causes the display unit 6 to display the latest display SpO 2 value in a fixed manner.
  • the pulse oximeter 100 may be provided with a buzzer, a vibration device, an LED, or the like, and when fixedly displayed, the pulse oximeter 100 may be configured to notify the operator of the fixed display by sound, vibration, or light. . In this way, by notifying that the SpO 2 value has stabilized, the operator can know that the SpO 2 value has been stabilized and the fixed display has been made without looking at the display unit 6.
  • the measurement control unit 41 may stop the measurement. Moreover, the power supply part 7 should just stop a power supply automatically, if measurement for a fixed time is not made. As a result, the power source of the pulse oximeter 100 is automatically turned off after a fixed time has elapsed since the fixed display has been made, thus providing an energy saving effect.
  • the display control unit 44 displays the display SpO 2 value that is fixedly displayed when the display unit 6 is automatically turned off. The unit 6 may be controlled.
  • the operator can read the value when the SpO 2 value is stable without continuing to look at the display of the pulse oximeter. Moreover, since the reliability of the determination of the stability of the SpO 2 value is high, it can be said that the fixedly displayed value is a value in a state where the fluctuation of the SpO 2 value is small and is a correct measured value. Therefore, the pulse oximeter 100 according to the present embodiment allows the operator to correctly measure the SpO 2 value.
  • the determination of the stability of the SpO 2 value may be performed by another method other than the determination based on the display stability and the signal stability as described above.
  • the determination of the stability of the SpO 2 value may be performed only based on the signal stability.
  • the signal component is the value obtained by the measurement, since determining the stability of the SpO 2 values, reliable in stability judgment.
  • at least two values are included among the light amount and pulse wave amplitude of each light received by the light receiving unit 22, the amplitude ratio of infrared light and red light, the instantaneous SpO 2 value, the display SpO 2 value, and the like.
  • the SpO 2 value may be determined to be stable. More specifically, when evaluation is performed on at least two values of the signal component calculated by the analysis processing unit 42 without performing evaluation based on the display SpO 2 value, and all of these satisfy a predetermined evaluation criterion, The SpO 2 value may be determined to be stable. Further, signals calculated by the analysis processing unit 42, such as the light amount and pulse wave amplitude of each light received by the light receiving unit 22, the amplitude ratio of the infrared light and the red light, the instantaneous SpO 2 value, the display SpO 2 value, and the like. If only one value is evaluated among the components and this value satisfies a predetermined evaluation criterion, the SpO 2 value may be determined to be stable. This increases the degree of freedom in determining the stability of the SpO 2 value.
  • FIG. 4 is a flowchart showing an example of the operation of the pulse oximeter according to the embodiment.
  • the pulse oximeter 100 based on the stability and display SpO 2 value of the instantaneous SpO 2 value to determine the stability of the SpO 2 values.
  • the evaluation of the instantaneous SpO 2 value is performed based on the difference between the maximum value and the minimum value.
  • the measurement unit 2 performs measurement (S11).
  • the determination time T is measured by a timer function provided in the CPU. Therefore, the determination time T is set to 0 at the start of measurement, and measurement of the determination time is started.
  • the analysis processing unit 42 performs an analysis process on the biological information signal acquired by the measurement unit 2 and calculates an instantaneous SpO 2 value (S12).
  • the predetermined determination target period T 0 is compared with the determination time T (S13). If T is equal to or less than T 0 , that is, if the determination target period T 0 has not elapsed, the process returns to step S11 again.
  • the stability determination unit 43 reads the instantaneous SpO 2 value calculated in the determination target period T 0 and stored in the storage unit 5. An abnormal value is deleted from them (S14). Furthermore, the stability determination unit 43 calculates the difference between the maximum value and the minimum value in the instantaneous SpO 2 value from which the abnormal value is deleted (S15). Here, the difference between the maximum value and the minimum value is the determination value DS 1 at the instant SpO 2 value. Further, stability judging unit 43, a judgment value DS 2 of the display SpO 2 values within the determination target period T 0 is calculated by the above method (S16). The determination value DS 2 is, for example, like the instantaneous SpO 2 value may be a difference between the maximum value and the minimum value of the display SpO 2 values.
  • stability judging unit 43 the calculated determination value DS 1 To assess whether a predetermined threshold TH 1 or less (S17). If the determination value DS 1 is the threshold TH 1 or less, the stability determination unit 43 performs evaluation based on the determination value DS 2 using the display SpO 2 values. Specifically, stability judging unit 43, the determination value DS 2 To assess whether a predetermined threshold TH 2 or less (S18).
  • the display control unit 44 on the display unit 6 the latest display value ie is fixed displays the SpO 2 value currently displayed, comprising a pulse oximeter 100, a buzzer, vibration The operator notifies the operator that the SpO 2 value has been stabilized by sound, vibration, or light from the device or the LED (S19), and the process ends.
  • step S17 in a case and S18 determination value DS 1 is not the threshold TH 1 or less, if the determination value DS 2 is not the threshold TH 2 below, fixed display is not performed, the display control unit 44 The latest display SpO 2 value is updated and displayed on the display unit 6 (S20). Furthermore, the control unit 4 measures the time from the start of measurement using, for example, a timer function provided in the CPU, and determines whether or not a predetermined time has elapsed since the start of measurement (S21). The predetermined time may be about 30 seconds, for example. Further, the determination of the elapse of the predetermined time (step S21) may be omitted. In this case, if it is not determined to be stable, the determination target period is extended each time.
  • the measurement unit 2 returns to step S11 and continues measurement. If the predetermined time has not elapsed, the stability determination unit 43 extends the determination target period by ⁇ (S22), and the extended determination target period is applied in the next stability determination. Also, the determination condition is changed. Specifically, stability judging unit 43 changes the threshold value TH 1 and the threshold TH 2 values of the threshold TH 12 and the threshold value TH 22, respectively (S23). And it returns to step S11 again and repeats the above-mentioned operation.
  • the pulse oximeter according to the embodiment of the present invention, it is possible to determine whether or not the SpO 2 value is stable by a more reliable method.
  • the oxygen saturation measuring apparatus is an apparatus for measuring oxygen saturation in blood, which irradiates a living body with infrared light and red light and emits light that has passed through the living body.
  • a measurement unit that obtains a biological information signal by receiving light
  • an analysis processing unit that analyzes the biological information signal and calculates a signal component from the biological information signal, and the oxygen based on the calculated signal component
  • a stability determination unit that determines the stability of the saturation, and the stability determination unit evaluates the signal component, and the oxygen saturation is stabilized when the signal component satisfies a predetermined evaluation criterion. It is determined that
  • the stability of the oxygen saturation in the blood is determined based on the signal component that is the measured value, not the average value of the measured value, as in the displayed blood oxygen saturation. High reliability.
  • the signal component includes a light amount component of the received light, a pulse wave amplitude of the received light, and infrared light and red light of the received light. It is preferable to include at least one of the amplitude ratio and the instantaneous blood oxygen saturation.
  • the analysis processing unit calculates a plurality of signal components from the biological information signal, and the stability determination unit calculates at least two values of the plurality of signal components. It is preferable to evaluate each individually and determine that the oxygen saturation is stable when all of them satisfy a predetermined evaluation criterion.
  • the stability of the oxygen saturation level in the blood is determined based on at least two values of the plurality of signal components, the reliability in the stability determination is high.
  • the analysis processing unit further analyzes the biological information signal to calculate a displayed blood oxygen saturation
  • the stability determination unit includes at least one of the above-described stability determination units. It is preferable to individually evaluate the signal component and the displayed blood oxygen saturation, and determine that the oxygen saturation is stable when all of them satisfy a predetermined evaluation criterion.
  • the stability of the oxygen saturation level in the blood is determined based on both the signal component and the displayed blood oxygen saturation level, the reliability in the stability determination is high.
  • the oxygen saturation measurement apparatus further includes a display unit that displays the displayed blood oxygen saturation, and the display unit determines that the oxygen saturation is stable when the oxygen saturation is stable. Is determined, it is preferable not to update the display of the displayed blood oxygen saturation.
  • the display of the displayed blood oxygen saturation is not updated, so that the operator can display the displayed blood oxygen saturation fixedly. Therefore, it can be easily recognized that the oxygen saturation level in the blood is stable. Further, by reading the value, the display blood oxygen saturation with high reliability can be read.
  • the oxygen saturation measuring apparatus further includes a display unit that displays the displayed blood oxygen saturation, and the display unit is configured so that any one of the evaluated values is a predetermined evaluation criterion. If not, it is preferable to keep displaying the displayed blood oxygen saturation calculated by the analysis processing unit as needed.
  • the displayed blood oxygen saturation displayed on the display unit is updated as needed based on the value obtained by the measurement. Therefore, the operator can easily recognize that the oxygen saturation level in the blood is not stable by looking at the display unit.
  • the stability determination unit may evaluate each value of the amplitude ratio of the infrared light and the red light or the instantaneous blood oxygen saturation in the received light. The evaluation is preferably performed based on the difference between the maximum value and the minimum value of the respective values within the determination target period. In the evaluation of each value, the value obtained by the current measurement and the value obtained by the past measurement from the current time are used, and the period during which the value used for the evaluation is measured is referred to as a determination target period.
  • the maximum value and the minimum value are selected from among abnormal values deleted from the respective values within the determination target period.
  • the abnormal value is deleted from the value for evaluating each value, thereby realizing a more reliable determination of the stability of oxygen saturation in blood.
  • the abnormal value is determined based on an average value of the respective values within the determination target period.
  • the stability determination unit may include the pulse wave amplitude of the received light, the amplitude ratio of infrared light and red light of the received light, or the instantaneous In the evaluation of each value of blood oxygen saturation, it is preferable to perform the evaluation based on the standard deviation value of each value within the determination target period.
  • the stability determination unit determines the amplitude ratio of infrared light and red light or the instantaneous blood oxygen saturation value in the received light. It is preferable to determine that the oxygen saturation is not stable if the ratio of abnormal values is equal to or greater than a predetermined ratio among the values within the target period.
  • the stability determination unit may evaluate each value of the amplitude ratio of the infrared light and the red light or the instantaneous blood oxygen saturation in the received light. It is preferable that a primary approximate line is obtained from the respective values in the determination target period by a least square method and the evaluation is performed based on the absolute value of the slope of the primary approximate line.
  • the stability determination unit extends the determination target period when any of the plurality of signal components does not satisfy a predetermined evaluation criterion within the determination target period. In addition, it is preferable to change the evaluation criteria.
  • the evaluation standard can be changed and the evaluation target period can be extended to continue the evaluation. For example, if any of the plurality of signal components does not meet the predetermined evaluation criteria within the determination target period, it can be determined that the degree of instability of the oxygen saturation in the blood is high, and the evaluation is continued further.
  • the evaluation criteria should be made stricter. Thereby, a more reliable determination of the stability of the oxygen saturation in the blood is realized.
  • the evaluation criterion includes a plurality of evaluation criteria that are different in stages, and there are determination target periods corresponding to the respective stages of the evaluation criterion
  • the stability determination unit includes: Preferably, the evaluation is performed within the determination target period corresponding to the evaluation criterion by using any one of the evaluation criteria.
  • the level of reliability in determining the stability of the oxygen saturation can be maintained. For example, when the evaluation standard is strict, the determination target period may be shortened. Therefore, when the stability of oxygen saturation in the blood is high, the evaluation criteria are stricter, thereby shortening the determination target period, so that the measurement time can be shortened without lowering the reliability of stability determination.
  • the stability determination unit may determine the magnitude of each value in the evaluation of each value of the light amount component of the received light and the pulse wave amplitude of the received light. Accordingly, it is preferable to change the determination target period.
  • the determination target period may be shortened as each value increases.
  • the stability determination unit determines that the blood oxygen saturation is stable, it is preferable to notify that the oxygen saturation is stable. .

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Optics & Photonics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

A device for measuring oxygen saturation degree for measuring the oxygen saturation degree in the blood which comprises: a measurement part in which a living body is irradiated with an infrared light and a red light and the light passing through the living body is received to thereby obtain data signals concerning the living body; an analysis and processing part in which the data signals concerning the living body are analyzed and processed to thereby compute signal components; and a stability determination part in which the stability of the oxygen saturation degree is determined based on the signal components thus computed; wherein, in the stability determination part, the signal components are evaluated so that the oxygen saturation degree is referred to as stable in the case where the signal components satisfy definite evaluation criteria.

Description

酸素飽和度測定装置Oxygen saturation measuring device
 本発明は、動脈血の酸素飽和度を測定する酸素飽和度測定装置に関するものである。 The present invention relates to an oxygen saturation measuring apparatus for measuring the oxygen saturation of arterial blood.
 パルスオキシメータ(酸素飽和度測定装置)は、患者の状態を知る上で、重要な測定装置である。具体的には、パルスオキシメータは、被験者の所定の生体部位に装着され、生体部位に向けて光を出力し、生体部位を透過又は反射した光の光量変化を信号として測定し、血中酸素飽和度(以下、SpO値)等を求める。例えば病院の外来の受付時等に、体温測定等と同様に、パルスオキシメータによるSpO値の測定が行われることがある。また、特に循環器科の病棟では毎日の健康チェックとして、入院患者にパルスオキシメータを装着し、患者のSpO値を測定している場合もある。 A pulse oximeter (oxygen saturation measuring device) is an important measuring device for knowing the patient's condition. Specifically, the pulse oximeter is attached to a predetermined living body part of a subject, outputs light toward the living body part, measures a change in the amount of light transmitted or reflected through the living body part as a signal, Saturation (hereinafter referred to as SpO 2 value) or the like is obtained. For example, when receiving an outpatient in a hospital, the SpO 2 value may be measured by a pulse oximeter in the same manner as body temperature measurement. In particular, in the cardiovascular ward, in-patients may be equipped with a pulse oximeter to measure the patient's SpO 2 value as a daily health check.
 例えば、呼吸不全の患者は、歩行するだけでも一時的にSpO値が急激に低下する。このような状態でSpO値を測定しても、SpO値が随時変化しており、正しい値を測定することはできない。そこで、患者にパルスオキシメータを装着後、SpO値が安定するまで、表示されているSpO値を目視にて確認しておく必要がある。このようにして、SpO値が安定した状態で、読み取ったSpO値が正しい値である。この作業は、通常、看護師等が行うが、目視にて確認しているため、この間は他の作業ができない。 For example, in a patient with respiratory failure, the SpO 2 value temporarily decreases abruptly just by walking. Be measured SpO 2 value in this state, SpO 2 value has changed from time to time, it is impossible to measure the correct value. Therefore, after mounting the pulse oximeter to the patient, until the SpO 2 value is stabilized, it is necessary to visually confirm the SpO 2 value displayed. In this way, the read SpO 2 value is the correct value while the SpO 2 value is stable. This operation is usually performed by a nurse or the like, but since it is confirmed visually, other operations cannot be performed during this period.
 例えば、特許文献1には、随時表示されるSpO値から、SpO値の安定度を求め、SpO値が安定したと判定した場合には、それ以降の測定を行わず、そのときに表示されているSpO値をそのまま固定表示するオキシメータが記載されている。ここで、このオキシメータの安定度の判定には、以下に示す式1を用いる。なお、式1において、DSは判定値であり、W(I)は重み係数である。また、S(0)は現在表示されているSpO値を表し、S(-1)は1つ前に表示されていたSpO値を表し、S(-2)は2つ前に表示されていたSpO値を表す。また、W(I)はIによって決まる値である。
Figure JPOXMLDOC01-appb-I000001
For example, Patent Document 1, the SpO 2 value displayed at any time, determined the stability of the SpO 2 values, when the SpO 2 value is judged to be stable, without subsequent measurements, at that time An oximeter that displays the displayed SpO 2 value as it is is described. Here, Formula 1 shown below is used for the determination of the stability of the oximeter. In Equation 1, DS is a determination value, and W (I) is a weighting factor. S (0) represents the currently displayed SpO 2 value, S (-1) represents the previous SpO 2 value, and S (-2) displayed the previous two. It represents the SpO 2 value. W (I) is a value determined by I.
Figure JPOXMLDOC01-appb-I000001
 式1により求められた判定値DSは、値が小さいほど表示SpO値の変動が少なく、安定度が高いことを示す。したがって、特許文献1に記載のオキシメータは、判定値DSが所定の閾値以下であればSpO値は安定していると判定し、そのとき表示しているSpO値を固定表示とする。 The determination value DS obtained by Equation 1 indicates that the smaller the value, the less the change in the display SpO 2 value and the higher the stability. Therefore, oximeter described in Patent Document 1, the judgment value DS is equal to or smaller than the predetermined threshold value SpO 2 value is determined to be stable, and fixed displays the SpO 2 values displayed at that time.
 しかし、オキシメータにおいて表示される表示SpO値は、測定により得られた光信号から求めたSpO値(瞬時SpO値)の連続した複数回分を平均する等して求めた値であり、1回の測定により得られた値とは異なる。そのため、表示SpO値があまり変化していないように見えるからといって、患者のSpO値が実際に安定しているとは必ずしもいえないという問題があった。例えば、瞬時SpO値は不安定であっても、瞬時SpO値を平均化する等の演算処理を施して求められた表示SpO値は安定と判定される場合がある。このため、特許文献1に記載のオキシメータにおいては、実際にはSpO値の安定度が低いにもかかわらず、安定していると判定し、SpO値を固定表示としてしまうという問題がある。 However, the display SpO 2 value displayed on the oximeter is a value obtained by, for example, averaging a plurality of consecutive SpO 2 values (instantaneous SpO 2 values) obtained from the optical signal obtained by measurement, It differs from the value obtained by one measurement. Therefore, just because the displayed SpO 2 value does not seem to change much, there is a problem that it cannot be said that the patient's SpO 2 value is actually stable. For example, even if the instantaneous SpO 2 value is unstable, the display SpO 2 value obtained by performing arithmetic processing such as averaging the instantaneous SpO 2 value may be determined to be stable. For this reason, the oximeter described in Patent Document 1 has a problem that although the stability of the SpO 2 value is actually low, it is determined that the SpO 2 value is stable and the SpO 2 value is fixedly displayed. .
特公平7-32767号公報Japanese Patent Publication No. 7-32767
 本発明は、上述の事情に鑑みて為された発明であり、その目的は、SpO値が安定しているか否かの判定を、より信頼性の高い方法により行う酸素飽和度測定装置を提供することである。 The present invention has been made in view of the above circumstances, and an object thereof is to provide an oxygen saturation measuring device that performs a determination of whether or not the SpO 2 value is stable by a more reliable method. It is to be.
 本発明の酸素飽和度測定装置は、信号成分に基づいて、酸素飽和度の安定度を判定する安定度判定部を備え、安定度判定部は、信号成分を評価し、信号成分が所定の評価基準を満たす場合に、酸素飽和度が安定していると判定する。 The oxygen saturation measurement apparatus of the present invention includes a stability determination unit that determines the stability of oxygen saturation based on a signal component. The stability determination unit evaluates the signal component, and the signal component has a predetermined evaluation. When the standard is satisfied, it is determined that the oxygen saturation is stable.
 これにより、実際の測定により得られた信号成分に基づいて、酸素飽和度の安定度を判定するので、安定度判定における信頼性が高い酸素飽和度測定装置を提供できる。 Thereby, since the stability of the oxygen saturation is determined based on the signal component obtained by the actual measurement, it is possible to provide an oxygen saturation measuring device with high reliability in the stability determination.
実施の形態に係るパルスオキシメータの外観構成を示す図である。It is a figure which shows the external appearance structure of the pulse oximeter which concerns on embodiment. 実施の形態に係るパルスオキシメータの構成を示すブロック図である。It is a block diagram which shows the structure of the pulse oximeter which concerns on embodiment. 安定度判定を示すフローチャートである。It is a flowchart which shows stability determination. 実施の形態に係るパルスオキシメータの動作の一例を示すフローチャートである。It is a flowchart which shows an example of operation | movement of the pulse oximeter which concerns on embodiment.
 以下、本発明に係る実施の形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、その説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the structure which attached | subjected the same code | symbol in each figure shows that it is the same structure, The description is abbreviate | omitted.
 本発明の実施の形態に係る酸素飽和度測定装置であるパルスオキシメータについて説明する。まず、実施の形態に係るパルスオキシメータの構成について説明する。図1は実施の形態に係るパルスオキシメータの外観構成を示す図である。図2は実施の形態に係るパルスオキシメータの構成を示すブロック図である。 A pulse oximeter that is an oxygen saturation measuring apparatus according to an embodiment of the present invention will be described. First, the configuration of the pulse oximeter according to the embodiment will be described. FIG. 1 is a diagram showing an external configuration of a pulse oximeter according to an embodiment. FIG. 2 is a block diagram showing the configuration of the pulse oximeter according to the embodiment.
 図1に示すように、パルスオキシメータ100は、装置本体1と、ケーブル16を介して装置本体1と電気的に接続された測定部2とを備えて構成されている。パルスオキシメータ100は被験者(患者)の手300に装着されて使用される。装置本体1は装着ベルト17を有しており、例えば被験者の手首に装着ベルト17が巻回されることで、装置本体1は被験者の手首に固定される。装置本体1はさらに表示部6および操作部8を有している。表示部6は測定結果すなわち血中酸素飽和度(SpO値)等の生体情報を表示するためのものである。また、操作部8は、例えば、スイッチ回路等であり測定結果の読み出し指示や測定開始または終了の指示を行うためのものである。なお、生体情報とは、パルスオキシメータが生体から得た電気信号を解析して得られる被験者のSpO値や脈拍等の、生体の情報を表す指標となる情報である。 As shown in FIG. 1, the pulse oximeter 100 includes a device main body 1 and a measuring unit 2 electrically connected to the device main body 1 via a cable 16. The pulse oximeter 100 is used by being attached to a hand 300 of a subject (patient). The apparatus main body 1 has a mounting belt 17, and the apparatus main body 1 is fixed to the wrist of the subject by, for example, winding the mounting belt 17 around the wrist of the subject. The apparatus body 1 further includes a display unit 6 and an operation unit 8. The display unit 6 is for displaying biological information such as measurement results, that is, blood oxygen saturation (SpO 2 value). Further, the operation unit 8 is, for example, a switch circuit and the like, and is used for instructing reading of measurement results and instructions for starting or ending measurement. The biological information is information serving as an index representing biological information such as the SpO 2 value and pulse of the subject obtained by analyzing an electrical signal obtained from the living body by the pulse oximeter.
 測定部2は、例えば被験者の指先に装着される。具体的には、指サックのような形状を有しており、被験者の指先に嵌めることで装着される。図1には図示されていないが、測定部2の内側に設置された発光部21および受光部22により測定が行われる(図2参照)。 The measuring unit 2 is attached to the fingertip of the subject, for example. Specifically, it has a shape like a finger sack and is worn by being fitted to the fingertip of the subject. Although not shown in FIG. 1, measurement is performed by the light emitting unit 21 and the light receiving unit 22 installed inside the measuring unit 2 (see FIG. 2).
 さらに、特に図2を参照して、実施の形態に係るパルスオキシメータ100の電気的な構成について説明する。パルスオキシメータ100は、装置本体1および測定部2を備えて構成されている。測定部2は、発光部21および受光部22を備えていて、測定部位(例えば指先)が測定部2に嵌まり込んだ状態、すなわち測定状態において、発光部21および受光部22が間に指先を介して対向するような配置とされる。これにより、測定部位の透過光に基づいて、生体情報を測定することができる。なお、測定部位の反射光に基づいて、生体情報を測定することもでき、その場合は発光部21と受光部22とは隣接配置とされる。 Furthermore, with reference to FIG. 2 in particular, the electrical configuration of the pulse oximeter 100 according to the embodiment will be described. The pulse oximeter 100 includes an apparatus main body 1 and a measurement unit 2. The measuring unit 2 includes a light emitting unit 21 and a light receiving unit 22, and in a state where a measurement site (for example, a fingertip) is fitted in the measuring unit 2, that is, in a measurement state, the light emitting unit 21 and the light receiving unit 22 are interposed between the fingertips. It is arranged so as to face each other. Thereby, biological information can be measured based on the transmitted light of the measurement site. In addition, biological information can also be measured based on the reflected light of the measurement site, and in this case, the light emitting unit 21 and the light receiving unit 22 are arranged adjacent to each other.
 発光部21は、例えば、赤色領域の波長を有する赤色光を発光する発光ダイオードと、赤外線領域の波長を有する赤外光を発光する発光ダイオードとを備えた光源である。なお、測定部位である指先の太さや受光部22の受光感度が異なっていても、適正なレベルの出力が得られるようにするために、測定時において照射光量を一定の範囲内で調整可能とすることが好ましい。 The light emitting unit 21 is a light source including, for example, a light emitting diode that emits red light having a wavelength in the red region and a light emitting diode that emits infrared light having a wavelength in the infrared region. In order to obtain an appropriate level of output even if the thickness of the fingertip that is the measurement site or the light receiving sensitivity of the light receiving unit 22 is different, the amount of irradiation light can be adjusted within a certain range during measurement. It is preferable to do.
 受光部22は、受光した光の強度に応じた大きさの電流を生成する、例えばシリコンフォトダイオード等の光電変換素子を備えて構成されている。受光部22は、測定部位である被験者の指先を透過した発光部21からの光を受光する。したがって、この光電変換素子は、発光部21が発光する赤色光および赤外光に対して感度を有する。受光部22では、具体的には、赤色光および赤外光の光信号を生体情報信号である電気信号へと変換して出力する。なお、生体情報信号とは、測定により得られた被験者の生体に依存する電気信号である。より具体的には、生体情報信号を解析等することで生体情報が得られる。 The light receiving unit 22 includes a photoelectric conversion element such as a silicon photodiode that generates a current having a magnitude corresponding to the intensity of the received light. The light receiving unit 22 receives light from the light emitting unit 21 that has passed through the fingertip of the subject as the measurement site. Therefore, this photoelectric conversion element has sensitivity to red light and infrared light emitted from the light emitting unit 21. Specifically, the light receiving unit 22 converts optical signals of red light and infrared light into electrical signals that are biological information signals and outputs the electrical signals. The biological information signal is an electrical signal that depends on the living body of the subject obtained by measurement. More specifically, the biological information can be obtained by analyzing the biological information signal.
 装置本体1は、制御部4と、記憶部5と、表示部6と、電源部7と、操作部8と、I/V変換部31と、A/D変換部32とを備えている。 The apparatus body 1 includes a control unit 4, a storage unit 5, a display unit 6, a power supply unit 7, an operation unit 8, an I / V conversion unit 31, and an A / D conversion unit 32.
 記憶部5は、パルスオキシメータ100の制御プログラム等を記憶するROM(Read Only Memory)や、演算処理や制御処理などのデータを一時的に格納するEEPROM(Electrically Erasable Programmable ROM)やRAM(Random Access Memory)やフラッシュメモリ等の不揮発性メモリを備えている。記憶部5には、測定部2により得られた生体情報信号を解析処理部42において解析処理して求めた、受光部22において受光された各光の光量や脈波振幅、赤外光と赤色光との振幅比率、瞬時SpO値(瞬時血中酸素飽和度)および表示SpO値(表示血中酸素飽和度)等が、計時情報に関連付けられて格納されている。ここで、瞬時SpO値とは、1回の測定動作により得られた生体情報信号から算出されたSpO値である。また、表示SpO値とは、所定期間において算出された複数の瞬時SpO値の平均値あるいは移動平均値であって、表示部6に表示するための値である。瞬時SpO値は、1回の測定により得られたそのままの値なので、瞬時SpO値を測定毎に表示部6に表示すると、瞬時SpO値が微妙に変化している場合には表示がちらつく。そのため、表示された値を読み取ることは、操作者にとって困難である。そこで、一定期間において測定された瞬時SpO値の平均値あるいは移動平均値が、表示SpO値として表示部6に表示される。なお、SpO値の安定度の判定には、現在から一定期間過去にさかのぼったデータを用いるが、格納されるデータは、このように計時情報に関連付けて格納されることで、過去データの読み出しを容易に行うことができる。なお、計時情報としては、測定開始からの時間としてもよいし、時刻としてもよい。 The storage unit 5 includes a ROM (Read Only Memory) that stores a control program of the pulse oximeter 100, an EEPROM (Electrically Erasable Programmable ROM) that temporarily stores data such as arithmetic processing and control processing, and a RAM (Random Access). Memory) and flash memory. In the storage unit 5, the biological information signal obtained by the measurement unit 2 is analyzed by the analysis processing unit 42, and the light amount and pulse wave amplitude of each light received by the light receiving unit 22, infrared light and red color are obtained. The amplitude ratio with light, the instantaneous SpO 2 value (instantaneous blood oxygen saturation), the display SpO 2 value (displayed blood oxygen saturation), and the like are stored in association with the timing information. Here, the instantaneous SpO 2 value is an SpO 2 value calculated from a biological information signal obtained by one measurement operation. The display SpO 2 value is an average value or a moving average value of a plurality of instantaneous SpO 2 values calculated in a predetermined period, and is a value to be displayed on the display unit 6. Since the instantaneous SpO 2 value is the same value obtained by one measurement, when the instantaneous SpO 2 value is displayed on the display unit 6 for each measurement, the display is displayed when the instantaneous SpO 2 value slightly changes. Flicker. Therefore, it is difficult for the operator to read the displayed value. Therefore, the average value or the moving average value of the instantaneous SpO 2 values measured in a certain period is displayed on the display unit 6 as the display SpO 2 value. The determination of the stability of the SpO binary value uses data going back for a certain period from the present, but the stored data is stored in association with the timing information in this way, so that past data can be read out. Can be easily performed. Note that the time measurement information may be time from the start of measurement or time.
 表示部6は、例えばLCD(Liquid Crystal Display)、7セグメントLED(Light Emitting Diode)や有機エレクトロルミネッセンス表示装置やCRT(Cathode Ray Tube)表示装置等の表示装置からなる。表示部6は、例えば測定された生体情報であるSpO値等および測定中あるいは固定表示であることを示す情報等を表示する。例えば、表示部6は、点灯、点滅、文字、数字、記号、絵記号およびキャラクタ等の表示を行えばよい。 The display unit 6 includes a display device such as an LCD (Liquid Crystal Display), a 7-segment LED (Light Emitting Diode), an organic electroluminescence display device, or a CRT (Cathode Ray Tube) display device. The display unit 6 displays, for example, SpO 2 value, which is measured biological information, and information indicating that the measurement is being performed or a fixed display. For example, the display unit 6 may display lighting, blinking, characters, numbers, symbols, pictorial symbols, characters, and the like.
 電源部7は、パルスオキシメータ100、すなわち測定部2および装置本体1に電力を供給する。パルスオキシメータ100装着時の煩わしさを考慮すると、電源供給用のケーブルを不要とすることが望ましい。したがって、電源部7はボタン電池や2次電池等を備えることとすればよい。なお、電源部7は、一定時間測定がなされないと、自動的に電源供給を停止する、パワーオフ機能を有する電源回路を備えることが好ましい。 The power supply unit 7 supplies power to the pulse oximeter 100, that is, the measurement unit 2 and the apparatus main body 1. Considering the troublesomeness when the pulse oximeter 100 is mounted, it is desirable to eliminate the need for a power supply cable. Therefore, the power supply unit 7 may include a button battery, a secondary battery, and the like. In addition, it is preferable that the power supply part 7 is provided with the power supply circuit which has a power-off function which stops a power supply automatically, if a measurement is not made for a fixed time.
 操作部8は、パルスオキシメータ100を操作するためのスイッチやボタンが設置されて構成されている。具体的には、電源をON/OFFするためのスイッチや、測定開始、測定延長およびそれら以外の各種操作を指示するスイッチ等を備える。また、安定度判定条件のレベルを変化させるよう指示できるボタンや、安定度判定を行い、SpO値が安定と判定された場合は固定表示とする安定度判定モードおよび連続して測定を続ける連続測定モードの切り替えを行うスイッチ等を備える。 The operation unit 8 is configured with switches and buttons for operating the pulse oximeter 100. Specifically, a switch for turning on / off the power, a switch for instructing measurement start, measurement extension, and various other operations are provided. In addition, a button that can instruct to change the level of the stability determination condition, a stability determination mode in which stability determination is performed and the SpO 2 value is determined to be stable, and continuous measurement that continues measurement A switch or the like for switching the measurement mode is provided.
 I/V変換部31は、所定の周期で受光部22から出力される電流信号を電圧信号に変換し、この電圧信号を光電脈波信号としてA/D変換部32に出力するものである。 The I / V conversion unit 31 converts a current signal output from the light receiving unit 22 into a voltage signal at a predetermined cycle, and outputs the voltage signal to the A / D conversion unit 32 as a photoelectric pulse wave signal.
 A/D変換部32 は、I/V変換部31から出力されたアナログの生体情報信号である光電脈波信号をデジタルの光電脈波信号に変換し、制御部4に出力するものである。 The A / D conversion unit 32 変 換 converts the photoelectric pulse wave signal, which is an analog biological information signal output from the I / V conversion unit 31, into a digital photoelectric pulse wave signal and outputs it to the control unit 4.
 制御部4は、各種電子部品や集積回路部品、CPU(Central Processing Unit)等からなり、パルスオキシメータ100の各部の動作制御を行うもので、機能的に測定制御部41、解析処理部42、安定度判定部43および表示制御部44を備えて構成されている。 The control unit 4 includes various electronic components, integrated circuit components, a CPU (Central Processing Unit), and the like, and controls the operation of each unit of the pulse oximeter 100. Functionally, the measurement control unit 41, the analysis processing unit 42, A stability determination unit 43 and a display control unit 44 are provided.
 測定制御部41は、所定の測定プログラムにより測定部2による生体情報の測定動作を制御する。具体的には、サンプリング周期毎に発光部21から、赤色光と赤外光とを交互に射出させると共に、その発光タイミングに同期させて受光部22から光電変換信号を取得する。 The measurement control unit 41 controls the measurement operation of biological information by the measurement unit 2 according to a predetermined measurement program. Specifically, red light and infrared light are alternately emitted from the light emitting unit 21 at each sampling period, and a photoelectric conversion signal is acquired from the light receiving unit 22 in synchronization with the light emission timing.
 表示制御部44は、測定中の状態を表す表示または測定により得られた生体情報信号を解析処理部42にて解析されて算出された表示SpO値等を、所定の表示形態で表示部6へ表示させる表示動作等を制御する。また、安定度判定部43においてSpO値が安定したと判定された場合は、表示制御部44はSpO値を表示部6に固定表示とさせる。なお、固定表示とは、現在表示されている値をそのまま表示し続ける(表示を更新しない)こと、すなわち、表示血中酸素飽和度の表示を更新しないことをいう。したがって、固定表示された後には、実際の測定動作が行われ、それにより表示された値とは異なるSpO値が算出されていたとしても、表示部6に表示されるSpO値は変化しない。ここで、固定表示されている値は、SpO値が安定したときの値であるから、被験者のSpO値としては、この固定表示されている値がばらつきのない正しい値である。なお、固定表示されるSpO値としては、SpO値が安定であると判定された期間における任意のタイミングの表示SpO値を用いてもよく、また、SpO値が安定であると判定された期間において表示されたすべての表示SpO値の平均値を用いてもよい。 The display control unit 44 displays the display SpO 2 value and the like calculated by analyzing the biological information signal obtained by the display representing the state under measurement or the measurement by the analysis processing unit 42 in a predetermined display form. Controls the display operation to be displayed. When the stability determination unit 43 determines that the SpO 2 value is stable, the display control unit 44 causes the display unit 6 to display the SpO 2 value fixedly. The fixed display means that the currently displayed value is continuously displayed (the display is not updated), that is, the display of the displayed blood oxygen saturation is not updated. Accordingly, after being fixed display is performed actual measurement operation, even as different SpO 2 value has been calculated and thereby the displayed value, the SpO 2 value displayed on the display unit 6 does not change . Here, since the fixedly displayed value is a value when the SpO 2 value is stabilized, the fixedly displayed value is a correct value without variation as the SpO 2 value of the subject. As the SpO 2 value is fixed display may be used a display SpO 2 values of arbitrary timing in the period of SpO 2 value is determined to be stable, also, SpO 2 value to be stable determination it may be using the average value of all the listed display SpO 2 values in period.
 解析処理部42は、測定部2にて得られた生体情報信号に基づき所定のデータ解析を行い、受光部22において受光された各光の光量や脈波振幅、赤外光と赤色光との振幅比率、および瞬時SpO値等を求める。また、所定期間における瞬時SpO値の平均値あるいは移動平均値を算出し、表示部6に表示するための値である表示SpO値を求める。 The analysis processing unit 42 performs predetermined data analysis based on the biological information signal obtained by the measurement unit 2, and the light amount and pulse wave amplitude of each light received by the light receiving unit 22, the infrared light and the red light. An amplitude ratio, an instantaneous SpO 2 value, and the like are obtained. Further, an average value or moving average value of instantaneous SpO 2 values in a predetermined period is calculated, and a display SpO 2 value that is a value to be displayed on the display unit 6 is obtained.
 酸素は、血液により運搬されることで生体内の各部に供給される。より具体的には、酸素は、血液中のヘモグロビンの酸化、還元によって運搬されている。このヘモグロビンは、酸化されると赤色光の吸収が減少して赤外光の吸収が増加し、逆に還元されると赤色光の吸収が増加して赤外光の吸収が減少するという光学的特性を有している。解析処理部42は、この特性を利用してSpO値を算出する。具体的には、まず、受光部22で受光された赤色光および赤外光の透過光量の変動を計測し、さらに赤色光および赤外光の振幅比率によりサンプリング周期ごとにおける瞬時SpO値を算出する。また、算出した瞬時SpO値の、例えば所定範囲における平均値あるいは移動平均値を求め、これを表示SpO値とする。表示SpO値は、表示制御部44により表示部6に表示される。なお、表示SpO値は、サンプリング周期ごとに算出されることとしてもよいし、例えば1秒ごと等、所定の期間ごとに算出されることとしてもよい。 Oxygen is supplied to each part in the living body by being transported by blood. More specifically, oxygen is transported by oxidation and reduction of hemoglobin in blood. When this hemoglobin is oxidized, the absorption of red light decreases and the absorption of infrared light increases. Conversely, when it is reduced, the absorption of red light increases and the absorption of infrared light decreases. It has characteristics. The analysis processing unit 42 calculates the SpO 2 value using this characteristic. Specifically, first, the variation in the amount of transmitted light of red light and infrared light received by the light receiving unit 22 is measured, and the instantaneous SpO 2 value for each sampling period is calculated based on the amplitude ratio of the red light and infrared light. To do. Further, for example, an average value or a moving average value in a predetermined range of the calculated instantaneous SpO 2 value is obtained, and this is set as a display SpO 2 value. The display SpO 2 value is displayed on the display unit 6 by the display control unit 44. Note that the display SpO 2 value may be calculated every sampling cycle, or may be calculated every predetermined period, for example, every second.
 安定度判定部43は、受光部22において受光された各光の光量や脈波振幅、赤外光と赤色光との振幅比率および瞬時SpO値等の少なくともいずれか、および表示SpO値に基づいて、SpO値が安定しているか否かを判定する。具体的には、安定度判定部43は、現在の値および現在から一定期間過去にさかのぼった間の測定により得られたデータを記憶部5から読み出し、評価する。具体的には、記憶部5から読み出したデータを所定の計算式に代入することで判定値を求める。なお、SpO値の安定度が高いほど判定値は小さくなるように前記計算式は設定される。それにより、この判定値が所定の閾値以下である場合、すなわち所定の評価基準を満たす場合は、SpO値は安定していると判定される。 The stability determination unit 43 sets at least one of the light amount and pulse wave amplitude of each light received by the light receiving unit 22, the amplitude ratio between infrared light and red light, the instantaneous SpO 2 value, and the display SpO 2 value. Based on this, it is determined whether the SpO 2 value is stable. Specifically, the stability determination unit 43 reads from the storage unit 5 and evaluates the current value and the data obtained by the measurement from the present to the past for a certain period of time. Specifically, the determination value is obtained by substituting the data read from the storage unit 5 into a predetermined calculation formula. The calculation formula is set so that the determination value decreases as the stability of the SpO 2 value increases. Thereby, when this determination value is below a predetermined threshold value, that is, when a predetermined evaluation criterion is satisfied, it is determined that the SpO 2 value is stable.
 安定度判定部43では、具体的には、信号成分である受光部22において受光された各光の光量や脈波振幅、赤外光と赤色光との振幅比率および瞬時SpO値等の少なくともいずれかに基づいて判定されるSpO値の安定度である信号安定度と、瞬時SpO値より算出した表示部6に表示される表示SpO値に基づいて判定されるSpO値の安定度である表示安定度との両方を用いてSpO値の安定度を判定する。このように、実施の形態に係るパルスオキシメータ100は、表示安定度だけでなく、信号安定度も用いてSpO値の安定度を判定することから、より信頼性の高いSpO値の安定度判定を行うことができる。なお、信号安定度を求めるための信号成分には、複数のパラメータがある。そこで、安定度判定部43は、これらすべてのパラメータを評価して、SpO値の安定度を判定してもよいし、少なくともいずれか一つのパラメータを評価して、SpO値の安定度を判定してもよい。各パラメータの評価方法について、以下に説明する。具体的には、評価対象である各値のそれぞれを個別に評価し、各値が所定の評価基準を満たす場合は、SpO値は安定であると判定される。より、具体的には、判定値が求められ、その値が所定の閾値以下の場合にはSpO値は安定であると判定される。 Specifically, the stability determination unit 43 includes at least the light amount and pulse wave amplitude of each light received by the light receiving unit 22 that is a signal component, the amplitude ratio between infrared light and red light, and the instantaneous SpO 2 value. and signal stability is stability of the SpO 2 value is determined on the basis of either stable SpO 2 value is determined based on the display SpO 2 value displayed on the display section 6 that is calculated from the instantaneous SpO 2 value The stability of the SpO 2 value is determined using both the display stability, which is a degree. Thus, the pulse oximeter 100 according to the embodiment, the display not only stability, since determining the stability of the signal stability be used SpO 2 value, stability of more reliable SpO 2 value Degree determination can be performed. The signal component for obtaining the signal stability has a plurality of parameters. Therefore, the stability determination unit 43 may evaluate all these parameters to determine the stability of the SpO 2 value, or may evaluate at least one of the parameters to determine the stability of the SpO 2 value. You may judge. A method for evaluating each parameter will be described below. Specifically, each value to be evaluated is individually evaluated, and if each value satisfies a predetermined evaluation criterion, it is determined that the SpO 2 value is stable. More specifically, a determination value is obtained, and when the value is equal to or smaller than a predetermined threshold, it is determined that the SpO 2 value is stable.
 まず、透過光量を評価して、SpO値の安定度を判定する場合について説明する。透過光量の光量の大きさが十分ではない場合はSN比(Signal to Noise Ratio:信号対雑音比)が悪くなることから、現在および現在から過去数点における透過光量の平均値から、安定度合いを知ることができる。例えば、現在の測定による値を含むm点間(mは1以上の整数)の透過光量の平均値の逆数を判定値とすればよい。なお、mは10程度とすればよい。具体的には、判定値DS11は以下で示す式2で表される。
Figure JPOXMLDOC01-appb-I000002
First, a case where the amount of transmitted light is evaluated to determine the stability of the SpO 2 value will be described. If the amount of transmitted light is not sufficient, the signal-to-noise ratio (SNR) will deteriorate, so the degree of stability can be determined from the average value of the transmitted light at the current and present several points. I can know. For example, the determination value may be the reciprocal of the average value of the amount of transmitted light between m points (m is an integer of 1 or more) including the value measured at present. Note that m may be about 10. Specifically, the determination value DS 11 is expressed by Equation 2 shown below.
Figure JPOXMLDOC01-appb-I000002
 式2において、n(nは1以上の整数)は測定開始から現在までの測定値の個数である。すなわち、測定開始から、解析処理部42では現在までn回、生体情報信号を受信し、解析処理を行っている。また、L(k)は、測定開始からk(mは1以上の整数)回目の測定による、透過光量を表す。なお、判定値DS11を平均値の逆数としているのは、判定値DS11が小さい場合をSpO値の安定度が高いこととするためである。そして、所定の閾値を決めておき、判定値DS11がその閾値以下の場合にはSpO値の安定度が高いと判定される。ここで、SpO値の安定度の判定においては、現時点の測定により得られた値と、現時点より過去の測定により得られた値を用いる。具体的には、現時点と、現時点から過去にさかのぼった間の値とをm個用いて判定値DS11を求める。なお、これら判定に用いる値が測定された期間を判定対象期間という。すなわち、判定対象期間内において、測定部2はm回測定を行い、解析処理部42はm個の生体信号情報を受光部22から受信している。式2により、安定度判定部43は、判定値DS11を求め、これらが所定の閾値以下の場合にSpO値の安定度が高いと判定すればよい。 In Equation 2, n (n is an integer of 1 or more) is the number of measurement values from the start of measurement to the present. That is, from the start of measurement, the analysis processing unit 42 has received the biological information signal n times to the present and performs analysis processing. L (k) represents the amount of transmitted light in the kth measurement (m is an integer of 1 or more) from the start of measurement. It is noted that the reason why the determination value DS 11 is the reciprocal of the mean value, the case where the determination value DS 11 is small in order to the high stability of the SpO 2 values. The previously determined a predetermined threshold value, determination value DS 11 is in the following cases the threshold is determined to be high stability of SpO 2 values. Here, in determining the stability of the SpO 2 value, a value obtained by the current measurement and a value obtained by the past measurement from the current time are used. Specifically, obtaining a present time, the determination value DS 11 and the value with the m while going back from the current time in the past. The period during which the values used for these determinations are measured is referred to as a determination target period. That is, the measurement unit 2 performs m measurements within the determination target period, and the analysis processing unit 42 receives m pieces of biological signal information from the light receiving unit 22. By Equation 2, stability judging unit 43 obtains the determination value DS 11, may determine these the higher stability of the SpO 2 values when more than a predetermined threshold value.
 なお、透過光量が大きいほど、SN比が良くなりSpO値の安定度が高くなることから、透過光量が大きい場合は判定対象期間を短くしても、信頼度の高い判定を行うことができる。したがって、透過光量が小さいほど、判定対象期間を長くすることが好ましい。そこで、安定度判定部43は、透過光量の大きさに応じて判定対象期間を変更できることが好ましい。そして、安定度判定部43は、具体的には、透過光量が大きいほど、判定対象期間を短くすることとすればよい。なお、反射光を受光部22で受光するタイプのパルスオキシメータであれば、前記透過光量の代わりに反射光量を用いればよい。 Note that the greater the amount of transmitted light, the better the SN ratio and the higher the stability of the SpO 2 value. Therefore, when the amount of transmitted light is large, a highly reliable determination can be made even if the determination target period is shortened. . Therefore, it is preferable to lengthen the determination target period as the transmitted light amount is smaller. Therefore, it is preferable that the stability determination unit 43 can change the determination target period in accordance with the amount of transmitted light. And the stability determination part 43 should just make the determination object period short, specifically, so that the transmitted light amount is large. In the case of a pulse oximeter that receives reflected light by the light receiving unit 22, the reflected light amount may be used instead of the transmitted light amount.
 次に脈波振幅を評価して、SpO値の安定度を判定する場合について説明する。脈波振幅も、透過光量と同様に振幅レベルが十分ではない場合はSN比(Signal to Noise Ratio:信号対雑音比)が悪くなる。したがって、透過光量と同様に、脈波振幅についても平均値を用いてSpO値の安定度を判定することができる。また、脈波振幅を評価して、SpO値の安定度を判定する場合には、標準偏差を用いてもよい。具体的には、脈波振幅の大きさのバラツキを判定値としてもよい。これにより、脈波が大きく乱れていてSpO値が安定でない場合には、判定値が比較的大きくなる。具体的には、脈波振幅の平均値を用いる場合の判定値DS12は、以下に示す式3で表され、脈波振幅の標準偏差を用いる場合の判定値DS13は、以下に示す式4で表される。
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000004
Next, the case where the pulse wave amplitude is evaluated to determine the stability of the SpO 2 value will be described. Similarly to the transmitted light amount, the pulse wave amplitude also has a poor SN ratio (Signal to Noise Ratio) when the amplitude level is not sufficient. Therefore, the stability of the SpO 2 value can be determined using the average value of the pulse wave amplitude as well as the transmitted light amount. Further, when evaluating the pulse wave amplitude and determining the stability of the SpO 2 value, a standard deviation may be used. Specifically, variation in the magnitude of the pulse wave amplitude may be used as the determination value. Thereby, when the pulse wave is greatly disturbed and the SpO 2 value is not stable, the determination value becomes relatively large. Specifically, the determination value DS 12 when the average value of the pulse wave amplitude is used is expressed by the following Expression 3, and the determination value DS 13 when the standard deviation of the pulse wave amplitude is used is the following expression: It is represented by 4.
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000004
 なお、式4において、lはkと同じ値である。A(k)およびA(l)は測定開始からk回目およびl回目の測定による脈波振幅を表す。これらの式により、安定度判定部43は、判定値DS12、DS13を求め、これらが所定の閾値以下の場合にSpO値の安定度が高いと判定すればよい。 In Equation 4, l is the same value as k. A (k) and A (l) represent pulse wave amplitudes from the k-th and l-th measurements from the start of measurement. From these equations, the stability determination unit 43 may determine the determination values DS 12 and DS 13 and determine that the stability of the SpO 2 value is high when they are equal to or less than a predetermined threshold.
 また、透過光量と同様に脈波振幅が大きいほど、SN比が良くなりSpO値の安定度が高くなることから、脈波振幅が大きい場合には判定対象期間を短くしても、信頼度の高い判定を行うことができる。そこで、安定度判定部43は、脈波振幅の大きさに応じて判定対象期間を変更できることが好ましい。そして、安定度判定部43は、具体的には、脈波振幅が大きいほど、判定対象期間を短くすることとすればよい。 Further, as the pulse wave amplitude is larger as in the transmitted light amount, the SN ratio is improved and the stability of the SpO 2 value is increased. Therefore, if the pulse wave amplitude is large, the reliability can be reduced even if the determination target period is shortened. A high determination can be made. Therefore, it is preferable that the stability determination unit 43 can change the determination target period according to the magnitude of the pulse wave amplitude. And specifically, the stability determination part 43 should just shorten a determination object period, so that a pulse wave amplitude is large.
 また、瞬時SpO値を評価して、SpO値の安定度を判定する場合について説明する。瞬時SpO値により判定する場合は、脈波振幅の場合と同様に、標準偏差を用いて判定すればよい。具体的には、この場合の判定値DS14は、以下に示す式5により表される。
Figure JPOXMLDOC01-appb-I000005
A case will be described in which the instantaneous SpO 2 value is evaluated to determine the stability of the SpO 2 value. When the determination is made based on the instantaneous SpO 2 value, the determination may be made using the standard deviation as in the case of the pulse wave amplitude. Specifically, the determination value DS 14 in this case is represented by Equation 5 shown below.
Figure JPOXMLDOC01-appb-I000005
 なお、式5において、s(k)およびs(l)は測定開始からk回目およびl回目の測定による瞬時SpO値を表す。式5により、安定度判定部43は判定値DS14を求め、その値が所定の閾値以下の場合にSpO値の安定度が高いと判定すればよい。 In Equation 5, s (k) and s (l) represent instantaneous SpO 2 values obtained by the k-th and l-th measurements from the start of measurement. According to Equation 5, the stability determination unit 43 may determine the determination value DS 14 and determine that the stability of the SpO 2 value is high when the value is equal to or less than a predetermined threshold.
 また、瞬時SpO値の判定対象期間内における値のうち最大値と最小値との差を判定値としてもよい。この場合も、安定度判定部43は判定値が所定の閾値以下の場合にSpO値の安定度が高いと判定すればよい。この判定値においては、例えば、閾値は瞬時SpO値の0.5%程度とすればよい。なお、この判定値を算出する場合は、最大値および最小値のうちから、異常値は削除しておくことが好ましい。安定度判定部43は、例えば、所定の期間内における瞬時SpO値の平均値を求め、平均値より±5~20%程度以上外れた値であれば異常値と判断し、判定値の算出には用いないこととすればよい。 Further, the difference between the maximum value and the minimum value among the values within the determination target period of the instantaneous SpO 2 value may be used as the determination value. Also in this case, the stability determination unit 43 may determine that the stability of the SpO 2 value is high when the determination value is equal to or less than a predetermined threshold. In this determination value, for example, the threshold value may be about 0.5% of the instantaneous SpO 2 value. When calculating the determination value, it is preferable to delete the abnormal value from the maximum value and the minimum value. For example, the stability determination unit 43 obtains an average value of instantaneous SpO 2 values within a predetermined period, and determines an abnormal value if the value deviates by about ± 5 to 20% or more from the average value, and calculates a determination value. Should not be used.
 また、安定度判定部43は、判定対象期間内における各瞬時SpO値(m点分)について、最小二乗法を用いて一次直線の近似を行い、その一次近似直線における傾きの絶対値を判定値として求めてもよい。このようにして算出された判定値は、瞬時SpO値の連続的な変化を示すものである。つまり、連続的に瞬時SpO値が降下または上昇している場合は、この判定値は比較的大きくなる。そして、このような場合は、SpO値は安定ではなく、前記近似直線の傾きが小さいほどSpO値の安定度が高い。したがって、安定度判定部43は、算出された判定値が、所定の閾値以下の場合にSpO値が安定であると判定すればよい。なお、瞬時SpO値による判定においては、安定度判定部43は、上述の特許文献1に記載の式1を用いて行ってもよい。 In addition, the stability determination unit 43 performs approximation of the linear line using the least square method for each instantaneous SpO 2 value (for m points) within the determination target period, and determines the absolute value of the slope in the linear approximate line. It may be obtained as a value. The determination value calculated in this way indicates a continuous change in the instantaneous SpO 2 value. That is, when the instantaneous SpO 2 value continuously decreases or increases, this determination value becomes relatively large. In such a case, the SpO 2 value is not stable, and the smaller the slope of the approximate line, the higher the stability of the SpO 2 value. Therefore, the stability determination unit 43 may determine that the SpO 2 value is stable when the calculated determination value is equal to or less than a predetermined threshold value. Note that, in the determination based on the instantaneous SpO 2 value, the stability determination unit 43 may use the equation 1 described in Patent Document 1 described above.
 安定度判定部43は、瞬時SpO値によるSpO値の安定度の判定において、上記判定値を求め、それらの値が所定の閾値以下の場合にSpO値が安定であると判定すればよい。また、安定度判定部43は、判定対象期間内において、異常値が所定の割合以上含まれる場合は、SpO値が安定していないと判定してもよい。なお、異常値は、上述と同様に、所定の期間内における瞬時SpO値の平均値より±5~20%程度以上外れた値とすればよい。 Stability judging unit 43, in the judgment of the stability of the SpO 2 value according to the instantaneous SpO 2 values, determined the determination value, it is determined that the SpO 2 value when their value is less than the predetermined threshold value is stable Good. In addition, the stability determination unit 43 may determine that the SpO 2 value is not stable when the abnormal value is included in a predetermined ratio or more within the determination target period. Note that the abnormal value may be a value that deviates by about ± 5 to 20% or more from the average value of the instantaneous SpO 2 values within a predetermined period, as described above.
 なお、瞬時SpO値は、赤外光および赤色光の振幅比率により求めるものであることから、上記瞬時SpO値を用いた各判定値の算出において、瞬時SpO値の代わりに赤外光および赤色光の振幅比率を用いてもよく、同様の判定値を得ることができる。したがって、上記説明した、瞬時SpO値を用いた判定においては、瞬時SpO値の代わりに赤外光および赤色光の振幅比率を用いてもよい。具体的には、安定度判定部43は、赤外光および赤色光の振幅比率の標準偏差が所定の閾値以下の場合にSpO値が安定であると判定すればよい。また、赤外光および赤色光の振幅比率の最大値と最小値との差を判定値とし、安定度判定部43はこの判定値が所定の閾値以下の場合にSpO値の安定度が高いと判定してもよい。なお、この判定値においては、例えば、閾値は赤外光および赤色光の振幅比率の0.5%程度とすればよい。なお、この判定値を算出する場合は、最大値および最小値のうちから、異常値は削除しておくことが好ましい。安定度判定部43は、例えば、所定の期間内における赤外光および赤色光の振幅比率の平均値を求め、平均値より±5~20%程度以上外れた値であれば異常値と判断し、判定値の算出には用いないこととすればよい。 Incidentally, the instantaneous SpO 2 values, since those determined by the amplitude ratio of the infrared light and red light, in the calculation of the decision value using the instantaneous SpO 2 value, infrared light instead of the instantaneous SpO 2 value Alternatively, the amplitude ratio of red light may be used, and a similar determination value can be obtained. Therefore, the above description, in the determination using the instantaneous SpO 2 values may be used amplitude ratio of the infrared light and red light, instead of the instantaneous SpO 2 value. Specifically, the stability determination unit 43 may determine that the SpO 2 value is stable when the standard deviation of the amplitude ratio of infrared light and red light is equal to or less than a predetermined threshold value. Further, the difference between the maximum value and the minimum value of the amplitude ratio of infrared light and red light is used as a determination value, and the stability determination unit 43 has high stability of the SpO 2 value when the determination value is equal to or less than a predetermined threshold value. May be determined. In this determination value, for example, the threshold value may be about 0.5% of the amplitude ratio of infrared light and red light. When calculating the determination value, it is preferable to delete the abnormal value from the maximum value and the minimum value. For example, the stability determination unit 43 obtains an average value of the amplitude ratio of infrared light and red light within a predetermined period, and determines that it is an abnormal value if the value is more than about ± 5 to 20% or more from the average value. It is sufficient not to use it for calculation of the judgment value.
 また、判定対象期間内における、赤外光および赤色光の振幅比率(m点分)について、最小二乗法を用いて一次直線の近似を行い、その一次近似直線における傾きの絶対値を判定値とし、安定度判定部43はこの判定値が所定の閾値以下の場合にSpO値の安定度が高いと判定してもよい。 In addition, for the amplitude ratio (m points) of infrared light and red light within the determination target period, approximation of the linear line is performed using the least square method, and the absolute value of the slope of the linear approximation line is used as the determination value. The stability determination unit 43 may determine that the stability of the SpO 2 value is high when the determination value is equal to or less than a predetermined threshold value.
 なお、安定度判定部43は、上述の判定と合わせて、判定対象期間内において異常値が所定の割合以上含まれる場合は、SpO値が安定していないと判定してもよい。なお、異常値は、上述と同様に、所定の期間内における赤外光および赤色光の振幅比率の平均値より±5~20%程度以上外れた値とすればよい。 In addition to the above determination, the stability determination unit 43 may determine that the SpO 2 value is not stable when the abnormal value is included in a predetermined ratio or more in the determination target period. As described above, the abnormal value may be a value that deviates by about ± 5 to 20% or more from the average value of the amplitude ratio of infrared light and red light within a predetermined period.
 次に、表示SpO値を評価して、SpO値の安定度を判定する場合について説明する。表示SpO値によるSpO値の安定度の判定は、瞬時SpO値によるSpO値の安定度の判定と同様に行えばよい。安定度判定部43は、表示SpO値によりSpO値の安定度を判定する場合は、式4または式5と同様に、標準偏差を用いて判定すればよい。具体的には、安定度判定部43は、式5において脈波振幅の値を示すs(k)およびs(l)の代わりに、測定開始からk回目およびl回目の測定による表示SpO値を用い、判定値を求めればよい。安定度判定部43は、さらに、瞬時SpO値によるSpO値の安定度の判定の場合と同様に、これらの値の判定対象期間内における測定値のうち最大値と最小値との差を判定値としてもよい。なお、この場合は、最大値および最小値のうちから、異常値は削除しておくべきである。例えば、所定の判定期間内における表示SpO値の平均値より±5~20%程度以上外れた値であれば異常値と判断し、判定値の算出には用いないこととすればよい。 Next, a case where the display SpO 2 value is evaluated to determine the stability of the SpO 2 value will be described. Determination of stability of SpO 2 value according to display SpO 2 values may be performed in the same manner as the determination of the stability of the SpO 2 value according to the instantaneous SpO 2 value. Stability judging unit 43, when determining the stability of the SpO 2 values by the display SpO 2 values, as in the formula 4 or formula 5 may be determined using the standard deviation. Specifically, the stability determination unit 43 replaces s (k) and s (l) indicating the value of the pulse wave amplitude in Equation 5 with the display SpO 2 values obtained by the k-th and l-th measurements from the start of measurement. And the determination value may be obtained. Stability judging unit 43, Further, as with the determination of the stability of the SpO 2 value according to the instantaneous SpO 2 values, the difference between the maximum value and the minimum value among the measured values within the determination period of these values It is good also as a judgment value. In this case, the abnormal value should be deleted from the maximum value and the minimum value. For example, a value that deviates by about ± 5 to 20% or more from the average value of the displayed SpO 2 values within a predetermined determination period may be determined as an abnormal value and not used for calculation of the determination value.
 また、安定度判定部43は、判定対象期間内における各表示SpO値(m点分)について、最小二乗法を用いて一次直線の近似を行い、その一次近似直線における傾きの絶対値を判定値として求めてもよい。具体的には、安定度判定部43は、瞬時SpO値によるSpO値の安定度の判定と同様に、算出した判定値が、所定の閾値以下の場合にSpO値が安定であると判定できる。なお、表示SpO値による判定においては、上述の特許文献1に記載の式1を用いて行ってもよい。 In addition, the stability determination unit 43 performs approximation of the linear line using the least square method for each display SpO 2 value (for m points) within the determination target period, and determines the absolute value of the slope in the linear approximate line. It may be obtained as a value. And specifically, stability judging unit 43, similarly to the determination of the stability of the SpO 2 value according to the instantaneous SpO 2 value, calculated determination value, SpO 2 values when more than a predetermined threshold value is stable Can be judged. Note that the determination based on the display SpO 2 value may be performed using Equation 1 described in Patent Document 1 described above.
 安定度判定部43は、表示SpO値によるSpO値の安定度の判定において、上記判定値を求め、それらの値が所定の閾値以下の場合にSpO値が安定であると判定すればよい。また、安定度判定部43は、判定対象期間内において、異常値が所定の割合以上含まれる場合は、SpO値は安定ではないと判定してもよい。なお、異常値としては、上述と同様に、所定の期間内における表示SpO値の平均値を求め、平均値より±5~20%程度以上外れた値とすればよい。 Stability judging unit 43, in the judgment of the stability of the SpO 2 value according to display SpO 2 values, determined the determination value, it is determined that the SpO 2 value when their value is less than the predetermined threshold value is stable Good. Further, the stability determination unit 43 may determine that the SpO 2 value is not stable when the abnormal value is included in a predetermined ratio or more within the determination target period. As the abnormal value, the average value of the display SpO 2 values within a predetermined period may be obtained as described above, and the average value may be a value deviated by about ± 5 to 20% or more.
 上述した判定値を用いて、安定度判定部43は、信号成分および表示SpO値によりSpO値の安定度を判定し、両方の安定度が高い場合、すなわち信号成分および表示SpO値の両方を評価し、それらが共に所定の評価基準を満たす場合に、SpO値が安定したと判定して、表示制御部44は表示部6に最新の表示SpO値を固定表示させる。具体的には、図3に示すフローチャートで表される。図3は、安定度判定を示すフローチャートである。まず、測定部2が測定を行う(S1)。制御部4は測定部2で取得された生体情報信号を解析処理し、受光部22において受光された、信号成分である各光の光量や脈波振幅、赤外光と赤色光との振幅比率、瞬時SpO値等を算出する(S2)。さらに、瞬時SpO値を基に、表示SpO値を算出し(S3)、表示部6に表示SpO値を表示させる(S4)。 Using the determination value as described above, the stability decision unit 43, the signal component and the display SpO 2 values determined the stability of the SpO 2 values, when there is a high both stability, i.e. the signal components and the display SpO 2 value When both are evaluated and both satisfy the predetermined evaluation criteria, it is determined that the SpO 2 value is stable, and the display control unit 44 causes the display unit 6 to display the latest display SpO 2 value in a fixed manner. Specifically, it is represented by the flowchart shown in FIG. FIG. 3 is a flowchart showing stability determination. First, the measurement unit 2 performs measurement (S1). The control unit 4 performs an analysis process on the biological information signal acquired by the measurement unit 2, and the light amount and pulse wave amplitude of each light that is a signal component received by the light receiving unit 22, the amplitude ratio of infrared light and red light. Then, the instantaneous SpO 2 value and the like are calculated (S2). Further, the display SpO 2 value is calculated based on the instantaneous SpO 2 value (S3), and the display SpO 2 value is displayed on the display unit 6 (S4).
 次に、安定度判定部43は、信号成分である受光部22において受光された各光の光量や脈波振幅、赤外光と赤色光との振幅比率および瞬時SpO値の少なくともいずれかを用いた判定値DSに基づくSpO値の安定度判定を行う。具体的には、まず、安定度判定部43は、現在の値および現在から一定期間過去にさかのぼった間のデータを記憶部5から読み出し、それらを基に判定値DSを算出する(S5)。そして、安定度判定部43は、判定値DSが所定の閾値TH以下であるか否かを評価する(S6)。判定値DSが閾値TH以下でなければ、再びステップS1に戻り、判定値DSが閾値TH以下であれば、安定度判定部43は、表示SpO値を用いた判定値DSに基づくSpO値の安定度判定を行う。具体的には、まず、安定度判定部43は、現在の値および現在から一定期間過去にさかのぼった間のデータを記憶部5から読み出し、それらを基に判定値DSを算出する(S7)。そして、安定度判定部43は、判定値DSが所定の閾値TH以下であるか否かを評価する(S8)。判定値DSが閾値TH以下でなければ、再びステップS1に戻り、判定値DSが閾値TH以下であれば、表示制御部44は表示部6に、最新の表示値すなわち現在表示中のSpO値を固定して表示させる(S9)。なお、固定表示とした後は、測定を行わないこととすればよい。ここで、パルスオキシメータ100が、ブザー、振動装置またはLED(Light Emitting Diode:発光ダイオード)等を備えておくこととし、固定表示された場合は、音、振動、光により、操作者にSpO値が安定したことを報知する(S10)。 Next, the stability determination unit 43 determines at least one of the light amount and pulse wave amplitude of each light received by the light receiving unit 22 as a signal component, the amplitude ratio between infrared light and red light, and the instantaneous SpO 2 value. SpO 2 value stability determination is performed based on the determination value DS 1 used. Specifically, first, stability judging unit 43 reads the data while going back the current value and the current in a predetermined period past from the storage unit 5, and calculates the determination value DS 1 based on them (S5) . The stability judging unit 43, the determination value DS 1 To assess whether a predetermined threshold TH 1 or less (S6). If the determination value DS 1 is not less than or equal to the threshold value TH 1 , the process returns to step S1 again. If the determination value DS 1 is less than or equal to the threshold value TH 1 , the stability determination unit 43 determines the determination value DS 2 using the display SpO 2 value. SpO 2 value stability determination based on Specifically, first, stability judging unit 43 reads the data while going back the current value and the current in a predetermined period past from the storage unit 5, to calculate a decision value DS 2 based on them (S7) . The stability judging unit 43, the determination value DS 2 To assess whether a predetermined threshold TH 2 below (S8). If the determination value DS 2 is not the threshold TH 2 or less, process returns to step S1, if the determination value DS 2 the threshold TH 2 or less, on the display unit 6 is a display control unit 44, the latest display value i.e. currently displayed The SpO 2 value is fixed and displayed (S9). Note that after the fixed display, the measurement is not performed. Here, it is assumed that the pulse oximeter 100 includes a buzzer, a vibration device, an LED (Light Emitting Diode), or the like. When the pulse oximeter 100 is fixedly displayed, SpO 2 is transmitted to the operator by sound, vibration, or light. The fact that the value is stable is notified (S10).
 なお、判定値DSによる判定においては、安定度判定部43は、例えば、上記で示した判定方法のうち少なくとも1つの判定方法を用いればよい。また、安定度判定部43は、1つの判定値を用いることにより行ってもよいし、複数の判定値を用いて判定を行ってもよい。さらに、複数の判定値を用いる場合は、安定度判定部43は、判定に用いた複数の判定値のすべてが閾値以下でなければSpO値が安定ではないと判定してもよいし、所定の数または所定の割合の判定値が閾値以下であればSpO値が安定であると判断することとしてもよい。 In the determination by the determination value DS 1, stability judging unit 43, for example, may be used at least one determination method of the determination method indicated above. Moreover, the stability determination part 43 may perform by using one determination value, and may perform determination using a some determination value. Furthermore, when using a plurality of determination values, the stability determination unit 43 may determine that the SpO 2 value is not stable unless all of the plurality of determination values used for the determination are equal to or less than the threshold. It is also possible to determine that the SpO 2 value is stable if the number or the determination value of a predetermined ratio is equal to or less than the threshold value.
 また、信号成分安定度および表示安定度のどちらの安定度判定においても、上述したように、各判定値が、設定された所定の閾値以下である場合にはSpO値が安定していると判定される。したがって、この閾値が小さいほど厳しい判定であり、閾値が大きいほど緩い判定であるといえる。実施の形態に係るパルスオキシメータ100において、判定レベル(評価基準)の度合いを段階的に変化させることができることとすればよい。すなわち、安定度判定部43は、この閾値を段階的に変化させることが可能であることが好ましい。なお、判定レベルが厳しいほど判定に用いる測定値が少なく、判定レベルが緩いほど判定に用いる測定値を多くすればよい。つまり、判定レベルが厳しい(閾値が小さい)ほど、判定対象期間を短くすればよい。これにより、SpO値の安定度が高い場合には、判定レベルを厳しくした設定としておくことで、判定対象期間が短いため、短時間で測定ができる。 Also, in both stability determinations of signal component stability and display stability, as described above, if each determination value is equal to or less than a predetermined threshold value, the SpO 2 value is stable. Determined. Therefore, it can be said that the smaller the threshold value, the more severe the determination, and the larger the threshold value, the gentler the determination. In the pulse oximeter 100 according to the embodiment, the degree of the determination level (evaluation standard) may be changed stepwise. That is, it is preferable that the stability determination unit 43 can change the threshold stepwise. It should be noted that the stricter the determination level, the smaller the measurement value used for the determination, and the lower the determination level, the more the measurement value used for the determination. That is, the determination target period may be shortened as the determination level is stricter (the threshold value is small). Thereby, when the stability of the SpO 2 value is high, since the determination target period is short by setting the determination level to be strict, measurement can be performed in a short time.
 次に、パルスオキシメータ100の動作について説明する。まず、被験者の手300にパルスオキシメータ100を装着し、操作部8を操作して測定を開始する。測定を開始する際には、安定度判定を行いSpO値が安定したと判定した場合には固定表示とする安定度判定モードと、SpO値の値にかかわらず連続して測定を続ける連続測定モードとのいずれかを選択できることが好ましい。 Next, the operation of the pulse oximeter 100 will be described. First, the pulse oximeter 100 is attached to the subject's hand 300, and the operation unit 8 is operated to start measurement. When starting measurement, stability determination is performed and if it is determined that the SpO 2 value is stable, a stability determination mode in which the display is fixed, and continuous measurement is continued regardless of the value of the SpO 2 value. It is preferable that one of the measurement modes can be selected.
 測定開始の指示が操作部8から制御部4になされると、測定制御部41が、発光部21、受光部22、I/V変換部31およびA/D変換部32を制御してSpO値等の生体情報の測定が行われる。測定制御部41は発光部21を発光させて、その発光タイミングに同期させて受光部22に、生体情報信号である光電変換信号を取得させる。さらに、受光部22で取得された光電変換信号は電流信号であって、I/V変換部31により電圧信号に変換され、光電脈波信号としてA/D変換部32に出力される。測定制御部41はA/D変換部32に、この光電脈波信号をアナログからデジタルに変換させる。 When an instruction to start measurement is given from the operation unit 8 to the control unit 4, the measurement control unit 41 controls the light emitting unit 21, the light receiving unit 22, the I / V conversion unit 31, and the A / D conversion unit 32 to perform SpO 2. Measurement of biological information such as values is performed. The measurement control unit 41 causes the light emitting unit 21 to emit light and causes the light receiving unit 22 to acquire a photoelectric conversion signal that is a biological information signal in synchronization with the light emission timing. Further, the photoelectric conversion signal acquired by the light receiving unit 22 is a current signal, is converted into a voltage signal by the I / V conversion unit 31, and is output to the A / D conversion unit 32 as a photoelectric pulse wave signal. The measurement control unit 41 causes the A / D conversion unit 32 to convert the photoelectric pulse wave signal from analog to digital.
 解析処理部42は、A/D変換部32から出力されたデジタルの光電脈波信号に基づき所定の解析を行い、受光部22において受光された各光の光量や脈波振幅、赤外光と赤色光との振幅比率、瞬時SpO値および表示SpO値等を算出する。表示制御部44は、解析処理部42により算出された表示SpO値等を表示部6に表示させる。また、解析処理部42は、算出した前記各種パラメータを計時情報と共に記憶部5に保存する。なお、記憶部5に保存しておくパラメータは、安定度判定に用いるもののみとすればよい。 The analysis processing unit 42 performs a predetermined analysis based on the digital photoelectric pulse wave signal output from the A / D conversion unit 32, and the light amount and pulse wave amplitude of each light received by the light receiving unit 22 and infrared light. An amplitude ratio with red light, an instantaneous SpO 2 value, a display SpO 2 value, and the like are calculated. The display control unit 44 causes the display unit 6 to display the display SpO 2 value calculated by the analysis processing unit 42. In addition, the analysis processing unit 42 stores the calculated various parameters in the storage unit 5 together with the timing information. The parameters stored in the storage unit 5 may be only those used for stability determination.
 操作部8により安定度判定モードが選択されている場合には、安定度判定部43は、安定度判定に用いる過去の測定におけるパラメータを記憶部5から読み出し、上述した方法によりSpO値の安定度の判定を行う。なお、上述したように、多段階の判定レベルを有することとする場合には、操作者は操作部8により所望とする判定レベルを選択することとすればよい。それにより、安定度判定部43は所定の判定対象期間内において所定の判定レベルの安定度判定を行う。 When the stability determination mode is selected by the operation unit 8, the stability determination unit 43 reads the parameters in the past measurement used for the stability determination from the storage unit 5, and stabilizes the SpO 2 value by the method described above. Judge the degree. Note that, as described above, in the case of having multi-level determination levels, the operator may select a desired determination level using the operation unit 8. Thereby, the stability determination part 43 performs the stability determination of a predetermined determination level within a predetermined determination target period.
 また、複数の判定レベルを有しないこととした場合には、所定の判定レベルおよび判定対象期間が初期設定されているが、この判定期間内にSpO値が安定であると判定されなかった場合には、安定度判定部43は判定対象期間を延長し、判定を継続することとすればよい。具体的には、例えば、安定度判定部43が判定レベルを変更することとすればよく、初期設定された判定レベルよりも厳しい判定レベルに変更すればよい。つまり、判定対象期間内にSpO値が安定であると判定されない場合は、SpO値が不安定の度合いが高いと判断できるため、さらにSpO値の安定度の判定を続けることとし、判定条件をより厳しくすることで、より信頼性の高いSpO値の安定度の判定が実現できる。 In addition, when it is determined that there are not a plurality of determination levels, a predetermined determination level and a determination target period are initially set, but the SpO 2 value is not determined to be stable within the determination period. The stability determination unit 43 may extend the determination target period and continue the determination. Specifically, for example, the stability determination unit 43 may change the determination level, and the determination level may be changed to a stricter determination level than the initially set determination level. That is, if it is not determined that the SpO 2 value is stable within the determination target period, it can be determined that the degree of instability of the SpO 2 value is high, and therefore the determination of the stability of the SpO 2 value is further continued. By making the conditions stricter, it is possible to realize a more reliable determination of the stability of the SpO 2 value.
 安定度判定部43は、SpO値が安定していると判定した場合には、その旨、表示制御部44に指示を送る。そこで、表示制御部44は表示部6に最新の表示SpO値を固定表示させる。なお、パルスオキシメータ100は、ブザー、振動装置またはLED等を備えておくこととし、固定表示された場合は、音、振動、光により、操作者に固定表示されたことを知らせる構成としてもよい。このように、SpO値が安定したことを報知することで、操作者は表示部6を見ずとも、SpO値が安定し、固定表示がなされたことを知ることができる。 If the stability determination unit 43 determines that the SpO 2 value is stable, the stability determination unit 43 sends an instruction to that effect to the display control unit 44. Therefore, the display control unit 44 causes the display unit 6 to display the latest display SpO 2 value in a fixed manner. The pulse oximeter 100 may be provided with a buzzer, a vibration device, an LED, or the like, and when fixedly displayed, the pulse oximeter 100 may be configured to notify the operator of the fixed display by sound, vibration, or light. . In this way, by notifying that the SpO 2 value has stabilized, the operator can know that the SpO 2 value has been stabilized and the fixed display has been made without looking at the display unit 6.
 また、表示部6が固定表示を行うと、測定制御部41は測定を停止することとすればよい。また、電源部7は、一定時間測定がなされないと、自動的に電源供給を停止することとすればよい。これにより、固定表示となってから、一定時間経過した場合には、パルスオキシメータ100の電源は自動的にオフされるので、省エネルギー効果を有する。なお、自動的に電源がオフされた後に再び使用する場合には、表示部6は自動的にオフした際に固定表示していた表示SpO値を表示するように、表示制御部44が表示部6を制御することとすればよい。 Further, when the display unit 6 performs fixed display, the measurement control unit 41 may stop the measurement. Moreover, the power supply part 7 should just stop a power supply automatically, if measurement for a fixed time is not made. As a result, the power source of the pulse oximeter 100 is automatically turned off after a fixed time has elapsed since the fixed display has been made, thus providing an energy saving effect. When the display unit 6 is used again after the power is automatically turned off, the display control unit 44 displays the display SpO 2 value that is fixedly displayed when the display unit 6 is automatically turned off. The unit 6 may be controlled.
 このように、本実施の形態のパルスオキシメータ100によれば、操作者はパルスオキシメータの表示を見続けることなく、SpO値が安定した場合の値を読み取ることができる。また、SpO値の安定度の判定の信頼性が高いことから、固定表示された値はSpO値の変動が少ない状態での値であって、正しい測定値であるといえる。したがって、本実施の形態のパルスオキシメータ100により、操作者はSpO値を正しく測定することができる。 Thus, according to the pulse oximeter 100 of the present embodiment, the operator can read the value when the SpO 2 value is stable without continuing to look at the display of the pulse oximeter. Moreover, since the reliability of the determination of the stability of the SpO 2 value is high, it can be said that the fixedly displayed value is a value in a state where the fluctuation of the SpO 2 value is small and is a correct measured value. Therefore, the pulse oximeter 100 according to the present embodiment allows the operator to correctly measure the SpO 2 value.
 なお、SpO値の安定度の判定は、上記のように表示安定度および信号安定度に基づいて行う以外に、他の方法でもよい。例えば、SpO値の安定度の判定を、信号安定度に基づいてのみ行ってもよい。これにより、測定により得られた値である信号成分に基づいて、SpO値の安定度を判定するので、安定度判定における信頼性が高い。具体的には、受光部22において受光された各光の光量や脈波振幅、赤外光と赤色光との振幅比率および瞬時SpO値および表示SpO値等のうち、少なくとも2つの値が所定の評価基準を満たすか否かを個別に評価し、これらのすべてが評価基準を満たす場合には、SpO値は安定であると判定してもよい。より具体的には、表示SpO値による評価を行わずに、解析処理部42により算出した信号成分の内、少なくとも2つの値において評価し、これらのすべてが所定の評価基準を満たす場合は、SpO値は安定であると判定してもよい。また、解析処理部42により算出した、受光部22において受光された各光の光量や脈波振幅、赤外光と赤色光との振幅比率および瞬時SpO値および表示SpO値等である信号成分のうち、1つの値においてのみ評価し、この値が所定の評価基準を満たす場合は、SpO値は安定であると判定してもよい。これにより、SpO値の安定度の判定における自由度が増す。 The determination of the stability of the SpO 2 value may be performed by another method other than the determination based on the display stability and the signal stability as described above. For example, the determination of the stability of the SpO 2 value may be performed only based on the signal stability. Thus, based on the signal component is the value obtained by the measurement, since determining the stability of the SpO 2 values, reliable in stability judgment. Specifically, at least two values are included among the light amount and pulse wave amplitude of each light received by the light receiving unit 22, the amplitude ratio of infrared light and red light, the instantaneous SpO 2 value, the display SpO 2 value, and the like. Whether or not a predetermined evaluation criterion is satisfied is evaluated individually, and if all of these satisfy the evaluation criterion, it may be determined that the SpO 2 value is stable. More specifically, when evaluation is performed on at least two values of the signal component calculated by the analysis processing unit 42 without performing evaluation based on the display SpO 2 value, and all of these satisfy a predetermined evaluation criterion, The SpO 2 value may be determined to be stable. Further, signals calculated by the analysis processing unit 42, such as the light amount and pulse wave amplitude of each light received by the light receiving unit 22, the amplitude ratio of the infrared light and the red light, the instantaneous SpO 2 value, the display SpO 2 value, and the like. If only one value is evaluated among the components and this value satisfies a predetermined evaluation criterion, the SpO 2 value may be determined to be stable. This increases the degree of freedom in determining the stability of the SpO 2 value.
 ここで、本発明の実施の形態に係るパルスオキシメータ100の動作の一例について図4を用いて説明する。図4は実施の形態に係るパルスオキシメータの動作の一例を示すフローチャートである。なお、このパルスオキシメータ100は、瞬時SpO値の安定度および表示SpO値に基づいて、SpO値の安定度を判定する。また、瞬時SpO値の評価については、その最大値と最小値の差に基づいて行う。 Here, an example of the operation of the pulse oximeter 100 according to the embodiment of the present invention will be described with reference to FIG. FIG. 4 is a flowchart showing an example of the operation of the pulse oximeter according to the embodiment. Incidentally, the pulse oximeter 100, based on the stability and display SpO 2 value of the instantaneous SpO 2 value to determine the stability of the SpO 2 values. The evaluation of the instantaneous SpO 2 value is performed based on the difference between the maximum value and the minimum value.
 まず、測定部2が測定を行う(S11)。この際に、例えばCPUに備えられているタイマー機能により、判定時間Tを計測する。そこで、測定開始時に判定時間Tは0に設定され、判定時間の計時が開始される。解析処理部42は測定部2で取得された生体情報信号を解析処理し、瞬時SpO値を算出する(S12)。予め設定された判定対象期間Tと判定時間Tを比較し(S13)、TがT以下の場合、すなわち判定対象期間Tが経過していない場合は再びステップS11に戻る。また、判定時間Tが判定対象期間Tよりも大きい場合は、安定度判定部43が、記憶部5に格納されている、判定対象期間T内に算出された瞬時SpO値を読み出し、それらから異常値を削除する(S14)。さらに、安定度判定部43は、異常値が削除された瞬時SpO値における最大値と最小値との差を算出する(S15)。なお、瞬時SpO値における最大値と最小値との差が判定値DSである。また、安定度判定部43は、判定対象期間T内における表示SpO値の判定値DSを上述方法により算出する(S16)。なお、判定値DSは、例えば、瞬時SpO値と同様に、表示SpO値の最大値と最小値の差としてもよい。 First, the measurement unit 2 performs measurement (S11). At this time, for example, the determination time T is measured by a timer function provided in the CPU. Therefore, the determination time T is set to 0 at the start of measurement, and measurement of the determination time is started. The analysis processing unit 42 performs an analysis process on the biological information signal acquired by the measurement unit 2 and calculates an instantaneous SpO 2 value (S12). The predetermined determination target period T 0 is compared with the determination time T (S13). If T is equal to or less than T 0 , that is, if the determination target period T 0 has not elapsed, the process returns to step S11 again. When the determination time T is longer than the determination target period T 0 , the stability determination unit 43 reads the instantaneous SpO 2 value calculated in the determination target period T 0 and stored in the storage unit 5. An abnormal value is deleted from them (S14). Furthermore, the stability determination unit 43 calculates the difference between the maximum value and the minimum value in the instantaneous SpO 2 value from which the abnormal value is deleted (S15). Here, the difference between the maximum value and the minimum value is the determination value DS 1 at the instant SpO 2 value. Further, stability judging unit 43, a judgment value DS 2 of the display SpO 2 values within the determination target period T 0 is calculated by the above method (S16). The determination value DS 2 is, for example, like the instantaneous SpO 2 value may be a difference between the maximum value and the minimum value of the display SpO 2 values.
 次に、安定度判定部43は、算出した判定値DSが所定の閾値TH以下であるか否かを評価する(S17)。判定値DSが閾値TH以下であれば、安定度判定部43は、表示SpO値を用いた判定値DSに基づく評価を行う。具体的には、安定度判定部43は、判定値DSが所定の閾値TH以下であるか否かを評価する(S18)。判定値DSが閾値TH以下であれば、表示制御部44は表示部6に、最新の表示値すなわち現在表示中のSpO値を固定表示させ、パルスオキシメータ100が備える、ブザー、振動装置またはLED等の音、振動、光により、操作者にSpO値が安定したことを報知し(S19)、終了する。 Next, stability judging unit 43, the calculated determination value DS 1 To assess whether a predetermined threshold TH 1 or less (S17). If the determination value DS 1 is the threshold TH 1 or less, the stability determination unit 43 performs evaluation based on the determination value DS 2 using the display SpO 2 values. Specifically, stability judging unit 43, the determination value DS 2 To assess whether a predetermined threshold TH 2 or less (S18). If the determination value DS 2 the threshold TH 2 or less, the display control unit 44 on the display unit 6, the latest display value ie is fixed displays the SpO 2 value currently displayed, comprising a pulse oximeter 100, a buzzer, vibration The operator notifies the operator that the SpO 2 value has been stabilized by sound, vibration, or light from the device or the LED (S19), and the process ends.
 また、ステップS17において、判定値DSが閾値TH以下でなかった場合およびステップS18において、判定値DSが閾値TH以下でなかった場合は、固定表示は行われず、表示制御部44は表示部6に最新の表示SpO値を更新して表示させる(S20)。さらに、制御部4は、例えばCPUに備えられているタイマー機能により、測定開始からの時間を計測しておき、測定開始から所定時間が経過しているか否かを判断する(S21)。なお、所定時間は、例えば30秒程度とすればよい。また、この所定時間経過の判断(ステップS21)は省略してもよく、その場合は、安定と判断されなければ、その都度、判定対象期間の延長がなされることとなる。 Further, in step S17, in a case and S18 determination value DS 1 is not the threshold TH 1 or less, if the determination value DS 2 is not the threshold TH 2 below, fixed display is not performed, the display control unit 44 The latest display SpO 2 value is updated and displayed on the display unit 6 (S20). Furthermore, the control unit 4 measures the time from the start of measurement using, for example, a timer function provided in the CPU, and determines whether or not a predetermined time has elapsed since the start of measurement (S21). The predetermined time may be about 30 seconds, for example. Further, the determination of the elapse of the predetermined time (step S21) may be omitted. In this case, if it is not determined to be stable, the determination target period is extended each time.
 測定開始から所定時間が経過している場合は、再びステップS11に戻って測定部2は測定を継続する。また、所定時間が経過していない場合は、安定度判定部43は判定対象期間をαだけ延長し(S22)、次回の安定度判定においては延長された判定対象期間が適用される。また、判定条件も変更される。具体的には、安定度判定部43は、閾値THおよび閾値THの値をそれぞれ閾値TH12および閾値TH22に変更する(S23)。そして、再び、ステップS11に戻り、上述の動作を繰り返す。 When the predetermined time has elapsed from the start of measurement, the measurement unit 2 returns to step S11 and continues measurement. If the predetermined time has not elapsed, the stability determination unit 43 extends the determination target period by α (S22), and the extended determination target period is applied in the next stability determination. Also, the determination condition is changed. Specifically, stability judging unit 43 changes the threshold value TH 1 and the threshold TH 2 values of the threshold TH 12 and the threshold value TH 22, respectively (S23). And it returns to step S11 again and repeats the above-mentioned operation.
 このように、本発明の実施の形態に係るパルスオキシメータによれば、より信頼性の高い方法により、SpO値が安定しているか否かの判定を行うことができる。 Thus, according to the pulse oximeter according to the embodiment of the present invention, it is possible to determine whether or not the SpO 2 value is stable by a more reliable method.
 本発明者は、種々検討した結果、上記目的は、以下の本発明により達成されることを見出した。すなわち、本発明に係る一態様に係る酸素飽和度測定装置は、血中の酸素飽和度を測定する装置であって、生体に赤外光および赤色光を照射し、前記生体を経由した光を受光することで生体情報信号を得る測定部と、前記生体情報信号を解析処理して、前記生体情報信号から信号成分を算出する解析処理部と、算出された前記信号成分に基づいて、前記酸素飽和度の安定度を判定する安定度判定部とを備え、前記安定度判定部は、前記信号成分を評価し、前記信号成分が所定の評価基準を満たす場合に、前記酸素飽和度が安定していると判定する。 As a result of various studies, the present inventor has found that the above object can be achieved by the following present invention. That is, the oxygen saturation measuring apparatus according to one aspect of the present invention is an apparatus for measuring oxygen saturation in blood, which irradiates a living body with infrared light and red light and emits light that has passed through the living body. A measurement unit that obtains a biological information signal by receiving light, an analysis processing unit that analyzes the biological information signal and calculates a signal component from the biological information signal, and the oxygen based on the calculated signal component A stability determination unit that determines the stability of the saturation, and the stability determination unit evaluates the signal component, and the oxygen saturation is stabilized when the signal component satisfies a predetermined evaluation criterion. It is determined that
 これにより、表示血中酸素飽和度のように、測定値の平均値等ではなく、測定値である信号成分に基づいて、血中の酸素飽和度の安定度を判定するので、安定度判定における信頼性が高い。 As a result, the stability of the oxygen saturation in the blood is determined based on the signal component that is the measured value, not the average value of the measured value, as in the displayed blood oxygen saturation. High reliability.
 また、上述の酸素飽和度測定装置において、前記信号成分は、前記受光された光の光量成分、前記受光された光の脈波振幅、前記受光された光のうち赤外光と赤色光との振幅比率および瞬時血中酸素飽和度のうち、少なくとも1つを含むことが好ましい。 Further, in the above-described oxygen saturation measuring apparatus, the signal component includes a light amount component of the received light, a pulse wave amplitude of the received light, and infrared light and red light of the received light. It is preferable to include at least one of the amplitude ratio and the instantaneous blood oxygen saturation.
 これにより、測定により得られた値を用いて、血中の酸素飽和度の安定度を判定するので、安定度判定における信頼性が高い。 Thereby, since the stability of the oxygen saturation in the blood is determined using the value obtained by the measurement, the reliability in the stability determination is high.
 また、上述の酸素飽和度測定装置において、前記解析処理部は、前記生体情報信号から複数の信号成分を算出し、前記安定度判定部は、前記複数の信号成分のうち、少なくとも2つの値をそれぞれ個別に評価し、それらのすべてが、所定の評価基準を満たす場合に、前記酸素飽和度が安定していると判定することが好ましい。 In the above-described oxygen saturation measuring apparatus, the analysis processing unit calculates a plurality of signal components from the biological information signal, and the stability determination unit calculates at least two values of the plurality of signal components. It is preferable to evaluate each individually and determine that the oxygen saturation is stable when all of them satisfy a predetermined evaluation criterion.
 これにより、複数の信号成分のうち少なくとも2つの値に基づいて、血中の酸素飽和度の安定度を判定するので、安定度判定における信頼性が高い。 Thereby, since the stability of the oxygen saturation level in the blood is determined based on at least two values of the plurality of signal components, the reliability in the stability determination is high.
 また、上述の酸素飽和度測定装置において、前記解析処理部は、さらに、前記生体情報信号を解析処理して、表示血中酸素飽和度を算出し、前記安定度判定部は、少なくとも1つの前記信号成分および前記表示血中酸素飽和度をそれぞれ個別に評価し、それらのすべてが、所定の評価基準を満たす場合に、前記酸素飽和度が安定していると判定することが好ましい。 In the above oxygen saturation measuring apparatus, the analysis processing unit further analyzes the biological information signal to calculate a displayed blood oxygen saturation, and the stability determination unit includes at least one of the above-described stability determination units. It is preferable to individually evaluate the signal component and the displayed blood oxygen saturation, and determine that the oxygen saturation is stable when all of them satisfy a predetermined evaluation criterion.
 このように、信号成分および表示血中酸素飽和度の両方に基づいて、血中の酸素飽和度の安定度を判定するので、安定度判定における信頼性が高い。 Thus, since the stability of the oxygen saturation level in the blood is determined based on both the signal component and the displayed blood oxygen saturation level, the reliability in the stability determination is high.
 また、上述の酸素飽和度測定装置によれば、さらに、前記表示血中酸素飽和度を表示する表示部を備え、前記表示部は、前記酸素飽和度が安定していると前記安定度判定部が判定した場合に、前記表示血中酸素飽和度の表示を更新しないことが好ましい。 In addition, according to the above-described oxygen saturation measurement apparatus, the oxygen saturation measurement apparatus further includes a display unit that displays the displayed blood oxygen saturation, and the display unit determines that the oxygen saturation is stable when the oxygen saturation is stable. Is determined, it is preferable not to update the display of the displayed blood oxygen saturation.
 このように、血中の酸素飽和度が安定していると判定された場合に、表示血中酸素飽和度の表示を更新しないので、操作者は、表示血中酸素飽和度が固定表示されていることにより、血中の酸素飽和度が安定したことを容易に認識できる。また、その値を読み取ることで、信頼度の高い表示血中酸素飽和度を読み取ることができる。 As described above, when it is determined that the blood oxygen saturation is stable, the display of the displayed blood oxygen saturation is not updated, so that the operator can display the displayed blood oxygen saturation fixedly. Therefore, it can be easily recognized that the oxygen saturation level in the blood is stable. Further, by reading the value, the display blood oxygen saturation with high reliability can be read.
 また、上述の酸素飽和度測定装置によれば、さらに、前記表示血中酸素飽和度を表示する表示部を備え、前記表示部は、前記評価された値のうち、いずれかが所定の評価基準を満たさない場合には、前記解析処理部で算出される前記表示血中酸素飽和度を随時表示し続けることが好ましい。 Further, according to the above-described oxygen saturation measuring apparatus, the oxygen saturation measuring apparatus further includes a display unit that displays the displayed blood oxygen saturation, and the display unit is configured so that any one of the evaluated values is a predetermined evaluation criterion. If not, it is preferable to keep displaying the displayed blood oxygen saturation calculated by the analysis processing unit as needed.
 これにより、血中の酸素飽和度が安定していない場合には、表示部に表示される表示血中酸素飽和度は、測定により得られた値に基づいて随時更新されていく。したがって、操作者は、表示部を見ることで、血中の酸素飽和度が安定していないことを容易に認識できる。 Thereby, when the blood oxygen saturation is not stable, the displayed blood oxygen saturation displayed on the display unit is updated as needed based on the value obtained by the measurement. Therefore, the operator can easily recognize that the oxygen saturation level in the blood is not stable by looking at the display unit.
 また、上述の酸素飽和度測定装置において、前記安定度判定部は、前記受光された光のうち赤外光と赤色光との前記振幅比率または前記瞬時血中酸素飽和度の各値の評価において、判定対象期間内における該各値の最大値と最小値との差に基づいて評価を行うことが好ましい。なお、各値の評価においては、現時点の測定により得られた値と、現時点より過去の測定により得られた値を用いるが、これら評価に用いる値が測定された期間を判定対象期間という。 Moreover, in the above-described oxygen saturation measurement apparatus, the stability determination unit may evaluate each value of the amplitude ratio of the infrared light and the red light or the instantaneous blood oxygen saturation in the received light. The evaluation is preferably performed based on the difference between the maximum value and the minimum value of the respective values within the determination target period. In the evaluation of each value, the value obtained by the current measurement and the value obtained by the past measurement from the current time are used, and the period during which the value used for the evaluation is measured is referred to as a determination target period.
 これにより、より信頼性の高い、血中の酸素飽和度の安定度判定が実現される。 This realizes more reliable determination of the stability of oxygen saturation in blood.
 また、上述の酸素飽和度測定装置において、前記最大値および前記最小値は、前記判定対象期間内における前記各値のうち、異常値を削除した中から選択されることが好ましい。 Further, in the above-described oxygen saturation measuring apparatus, it is preferable that the maximum value and the minimum value are selected from among abnormal values deleted from the respective values within the determination target period.
 このように、各値を評価するための値から異常値が削除されることで、より信頼性の高い、血中の酸素飽和度の安定度判定が実現される。 As described above, the abnormal value is deleted from the value for evaluating each value, thereby realizing a more reliable determination of the stability of oxygen saturation in blood.
 また、上述の酸素飽和度測定装置において、前記異常値は、前記判定対象期間内における前記各値の平均値を基準として定められることが好ましい。 In the above-described oxygen saturation measuring apparatus, it is preferable that the abnormal value is determined based on an average value of the respective values within the determination target period.
 これにより、異常値の判断基準が明確であって、より信頼性の高い、血中の酸素飽和度の安定度判定が実現される。 This makes it possible to realize the determination of the stability of oxygen saturation in the blood with a clear criteria for judging abnormal values and higher reliability.
 また、上述の酸素飽和度測定装置において、前記安定度判定部は、前記受光された光の前記脈波振幅、前記受光された光のうち赤外光と赤色光との前記振幅比率または前記瞬時血中酸素飽和度の各値の評価において、判定対象期間内における該各値の標準偏差の値に基づいて評価を行うことが好ましい。 In the above-described oxygen saturation measurement apparatus, the stability determination unit may include the pulse wave amplitude of the received light, the amplitude ratio of infrared light and red light of the received light, or the instantaneous In the evaluation of each value of blood oxygen saturation, it is preferable to perform the evaluation based on the standard deviation value of each value within the determination target period.
 これにより、より信頼性の高い、血中の酸素飽和度の安定度判定が実現される。 This realizes more reliable determination of the stability of oxygen saturation in blood.
 また、上述の酸素飽和度測定装置において、前記安定度判定部は、前記受光された光のうち赤外光と赤色光との前記振幅比率または前記瞬時血中酸素飽和度の各値において、判定対象期間内における前記各値のうち、異常値の割合が所定の割合以上であれば、前記酸素飽和度は安定していないと判定することが好ましい。 Further, in the above-described oxygen saturation measurement apparatus, the stability determination unit determines the amplitude ratio of infrared light and red light or the instantaneous blood oxygen saturation value in the received light. It is preferable to determine that the oxygen saturation is not stable if the ratio of abnormal values is equal to or greater than a predetermined ratio among the values within the target period.
 これにより、より信頼性の高い、血中の酸素飽和度の安定度判定が実現される。 This realizes more reliable determination of the stability of oxygen saturation in blood.
 また、上述の酸素飽和度測定装置において、前記安定度判定部は、前記受光された光のうち赤外光と赤色光との前記振幅比率または前記瞬時血中酸素飽和度の各値の評価において、判定対象期間内における前記各値から最小二乗法により一次近似直線を求め、前記一次近似直線の傾きの絶対値に基づいて評価を行うことが好ましい。 Moreover, in the above-described oxygen saturation measuring apparatus, the stability determination unit may evaluate each value of the amplitude ratio of the infrared light and the red light or the instantaneous blood oxygen saturation in the received light. It is preferable that a primary approximate line is obtained from the respective values in the determination target period by a least square method and the evaluation is performed based on the absolute value of the slope of the primary approximate line.
 これにより、より信頼性の高い、血中の酸素飽和度の安定度判定が実現される。 This realizes more reliable determination of the stability of oxygen saturation in blood.
 また、上述の酸素飽和度測定装置において、前記安定度判定部は、判定対象期間内に、前記複数の信号成分のいずれかが所定の評価基準を満たさない場合には、前記判定対象期間を延長すると共に、前記評価基準を変更することが好ましい。 In the oxygen saturation measuring apparatus described above, the stability determination unit extends the determination target period when any of the plurality of signal components does not satisfy a predetermined evaluation criterion within the determination target period. In addition, it is preferable to change the evaluation criteria.
 これにより、判定対象期間内に、複数の信号成分のいずれかが所定の評価基準を満たさない場合には評価基準を変更して、判定対象期間を延長して評価を継続することができる。例えば、判定対象期間内に複数の信号成分のいずれかが所定の評価基準を満たさない場合は、血中の酸素飽和度が不安定の度合いが高いと判断できるため、さらに評価を続けることとし、評価基準をより厳しくすればよい。それにより、より信頼性の高い、血中の酸素飽和度の安定度判定が実現される。 Thus, if any of the plurality of signal components does not satisfy the predetermined evaluation standard within the determination target period, the evaluation standard can be changed and the evaluation target period can be extended to continue the evaluation. For example, if any of the plurality of signal components does not meet the predetermined evaluation criteria within the determination target period, it can be determined that the degree of instability of the oxygen saturation in the blood is high, and the evaluation is continued further. The evaluation criteria should be made stricter. Thereby, a more reliable determination of the stability of the oxygen saturation in the blood is realized.
 また、上述の酸素飽和度測定装置において、前記評価基準は、段階的に異なる複数の評価基準を含み、前記評価基準のそれぞれの段階に対応した判定対象期間が存在し、前記安定度判定部は、前記いずれかの評価基準を用いて、該評価基準に対応した前記判定対象期間内に評価することが好ましい。 Further, in the above-described oxygen saturation measuring apparatus, the evaluation criterion includes a plurality of evaluation criteria that are different in stages, and there are determination target periods corresponding to the respective stages of the evaluation criterion, and the stability determination unit includes: Preferably, the evaluation is performed within the determination target period corresponding to the evaluation criterion by using any one of the evaluation criteria.
 これにより、安定度の状況に応じて操作者が判定条件を厳しくまたは緩くできる。なお、評価基準に応じて判定対象期間の長さが変化するので、酸素飽和度の安定度判定における信頼性のレベルは維持できる。例えば、評価基準が厳しい場合は、判定対象期間を短くすればよい。したがって、血中の酸素飽和度の安定度が高い場合は評価基準を厳しくし、それにより判定対象期間が短くなることから、安定度の判定の信頼性が低下することなく測定時間を短縮できる。 This allows the operator to tighten or loosen the judgment conditions depending on the stability situation. In addition, since the length of the determination target period changes according to the evaluation criterion, the level of reliability in determining the stability of the oxygen saturation can be maintained. For example, when the evaluation standard is strict, the determination target period may be shortened. Therefore, when the stability of oxygen saturation in the blood is high, the evaluation criteria are stricter, thereby shortening the determination target period, so that the measurement time can be shortened without lowering the reliability of stability determination.
 また、上述の酸素飽和度測定装置において、前記安定度判定部は、前記受光された光の光量成分および前記受光された光の脈波振幅の各値の評価において、前記各値の大きさに応じて、判定対象期間を変更することが好ましい。 Further, in the above-described oxygen saturation measurement apparatus, the stability determination unit may determine the magnitude of each value in the evaluation of each value of the light amount component of the received light and the pulse wave amplitude of the received light. Accordingly, it is preferable to change the determination target period.
 これにより、SN比を考慮して、より信頼性の高い、血中の酸素飽和度の安定度判定が実現される。例えば、受光された光の光量成分および受光された光の脈波振幅の各値が大きいほどSN比が良くなり、血中の酸素飽和度の安定度は高いと判定される。そこで、各値が大きいほど、判定対象期間を短くすればよい。 This makes it possible to determine the stability of oxygen saturation in the blood with higher reliability in consideration of the S / N ratio. For example, it is determined that the greater the respective values of the light intensity component of the received light and the pulse wave amplitude of the received light, the better the S / N ratio and the higher the stability of oxygen saturation in the blood. Therefore, the determination target period may be shortened as each value increases.
 また、上述の酸素飽和度測定装置において、前記安定度判定部が、前記血中酸素飽和度が安定であると判定した場合は、前記酸素飽和度が安定であることの報知を行うことが好ましい。 Moreover, in the above-mentioned oxygen saturation measuring apparatus, when the stability determination unit determines that the blood oxygen saturation is stable, it is preferable to notify that the oxygen saturation is stable. .
 これにより、操作者は血中の酸素飽和度が安定したことを容易に認識できる。 Thereby, the operator can easily recognize that the oxygen saturation in the blood is stable.
 この出願は、2008年4月30日に出願された日本国特許出願特願2008-118772を基礎とするものであり、その内容は、本願に含まれるものである。 This application is based on Japanese Patent Application No. 2008-118772 filed on Apr. 30, 2008, the contents of which are included in this application.
 本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been properly and fully described through the embodiments with reference to the drawings. However, those skilled in the art can easily change and / or improve the above-described embodiments. It should be recognized that this is possible. Therefore, unless the modifications or improvements implemented by those skilled in the art are at a level that departs from the scope of the claims recited in the claims, the modifications or improvements are not covered by the claims. To be construed as inclusive.

Claims (16)

  1.  血中の酸素飽和度を測定する装置であって、
     生体に赤外光および赤色光を照射し、前記生体を経由した光を受光することで生体情報信号を得る測定部と、
     前記生体情報信号を解析処理して、前記生体情報信号から信号成分を算出する解析処理部と、
     算出された前記信号成分に基づいて、前記酸素飽和度の安定度を判定する安定度判定部とを備え、
     前記安定度判定部は、前記信号成分を評価し、前記信号成分が所定の評価基準を満たす場合に、前記酸素飽和度が安定していると判定することを特徴とする、酸素飽和度測定装置。
    A device for measuring oxygen saturation in blood,
    A measurement unit that irradiates a living body with infrared light and red light, and receives a light via the living body to obtain a biological information signal;
    Analyzing the biological information signal and calculating a signal component from the biological information signal;
    A stability determination unit that determines the stability of the oxygen saturation based on the calculated signal component;
    The stability determination unit evaluates the signal component, and determines that the oxygen saturation is stable when the signal component satisfies a predetermined evaluation criterion. .
  2.  前記信号成分は、前記受光された光の光量成分、前記受光された光の脈波振幅、前記受光された光のうち赤外光と赤色光との振幅比率および瞬時血中酸素飽和度のうち、少なくとも1つを含むことを特徴とする、請求項1に記載の酸素飽和度測定装置。 The signal component includes a light amount component of the received light, a pulse wave amplitude of the received light, an amplitude ratio between infrared light and red light of the received light, and an instantaneous blood oxygen saturation level. The oxygen saturation measuring device according to claim 1, comprising at least one.
  3.  前記解析処理部は、前記生体情報信号から複数の信号成分を算出し、
     前記安定度判定部は、前記複数の信号成分のうち、少なくとも2つの値をそれぞれ個別に評価し、それらのすべてが、所定の評価基準を満たす場合に、前記酸素飽和度が安定していると判定することを特徴とする、請求項1に記載の酸素飽和度測定装置。
    The analysis processing unit calculates a plurality of signal components from the biological information signal,
    The stability determination unit individually evaluates at least two values of the plurality of signal components, and when all of them satisfy a predetermined evaluation criterion, the oxygen saturation is stable. The oxygen saturation measuring device according to claim 1, wherein the oxygen saturation measuring device is determined.
  4.  前記解析処理部は、さらに、前記生体情報信号を解析処理して、表示血中酸素飽和度を算出し、
     前記安定度判定部は、少なくとも1つの前記信号成分および前記表示血中酸素飽和度をそれぞれ個別に評価し、それらのすべてが、所定の評価基準を満たす場合に、前記酸素飽和度が安定していると判定することを特徴とする、請求項1に記載の酸素飽和度測定装置。
    The analysis processing unit further analyzes the biological information signal to calculate a displayed blood oxygen saturation level,
    The stability determination unit individually evaluates at least one of the signal components and the displayed blood oxygen saturation, and when all of them satisfy a predetermined evaluation criterion, the oxygen saturation is stable. The oxygen saturation measuring device according to claim 1, wherein the oxygen saturation measuring device is determined to be.
  5.  さらに、前記表示血中酸素飽和度を表示する表示部を備え、
     前記表示部は、前記酸素飽和度が安定していると前記安定度判定部が判定した場合に、前記表示血中酸素飽和度の表示を更新しないことを特徴とする、請求項4に記載の酸素飽和度測定装置。
    And a display unit for displaying the displayed blood oxygen saturation level.
    5. The display unit according to claim 4, wherein the display unit does not update the display of the displayed blood oxygen saturation when the stability determination unit determines that the oxygen saturation is stable. 6. Oxygen saturation measuring device.
  6.  さらに、前記表示血中酸素飽和度を表示する表示部を備え、
     前記表示部は、前記評価された値のうち、いずれかが所定の評価基準を満たさない場合には、前記解析処理部で算出される前記表示血中酸素飽和度を随時表示し続けることを特徴とする、請求項4に記載の酸素飽和度測定装置。
    And a display unit for displaying the displayed blood oxygen saturation level.
    The display unit continues to display the displayed blood oxygen saturation calculated by the analysis processing unit as needed when any of the evaluated values does not satisfy a predetermined evaluation criterion. The oxygen saturation measuring apparatus according to claim 4.
  7.  前記安定度判定部は、前記受光された光のうち赤外光と赤色光との前記振幅比率または前記瞬時血中酸素飽和度の各値の評価において、判定対象期間内における該各値の最大値と最小値との差に基づいて評価を行うことを特徴とする、請求項2に記載の酸素飽和度測定装置。 In the evaluation of each value of the amplitude ratio of the infrared light and the red light or the instantaneous blood oxygen saturation in the received light, the stability determination unit determines the maximum of each value within the determination target period. 3. The oxygen saturation measuring apparatus according to claim 2, wherein the evaluation is performed based on a difference between the value and the minimum value.
  8.  前記最大値および前記最小値は、前記判定対象期間内における前記各値のうち、異常値を削除した中から選択されることを特徴とする、請求項7に記載の酸素飽和度測定装置。 The oxygen saturation measuring apparatus according to claim 7, wherein the maximum value and the minimum value are selected from among the respective values within the determination target period from which abnormal values are deleted.
  9.  前記異常値は、前記判定対象期間内における前記各値の平均値を基準として定められることを特徴とする、請求項8に記載の酸素飽和度測定装置。 The oxygen saturation measuring apparatus according to claim 8, wherein the abnormal value is determined with reference to an average value of the values in the determination target period.
  10.  前記安定度判定部は、前記受光された光の前記脈波振幅、前記受光された光のうち赤外光と赤色光との前記振幅比率または前記瞬時血中酸素飽和度の各値の評価において、判定対象期間内における該各値の標準偏差の値に基づいて評価を行うことを特徴とする、請求項2に記載の酸素飽和度測定装置。 In the evaluation of the pulse wave amplitude of the received light, the amplitude ratio of infrared light to red light of the received light, or each value of the instantaneous blood oxygen saturation, the stability determination unit 3. The oxygen saturation measuring apparatus according to claim 2, wherein the evaluation is performed based on a standard deviation value of each value within the determination target period.
  11.  前記安定度判定部は、前記受光された光のうち赤外光と赤色光との前記振幅比率または前記瞬時血中酸素飽和度の各値において、判定対象期間内における前記各値のうち、異常値の割合が所定の割合以上であれば、前記酸素飽和度は安定していないと判定することを特徴とする、請求項2に記載の酸素飽和度測定装置。 The stability determination unit is configured to determine whether the amplitude ratio of infrared light and red light or the instantaneous blood oxygen saturation value among the received light is abnormal among the values in the determination target period. The oxygen saturation measuring apparatus according to claim 2, wherein if the value ratio is equal to or greater than a predetermined ratio, it is determined that the oxygen saturation is not stable.
  12.  前記安定度判定部は、前記受光された光のうち赤外光と赤色光との前記振幅比率または前記瞬時血中酸素飽和度の各値の評価において、判定対象期間内における前記各値から最小二乗法により一次近似直線を求め、前記一次近似直線の傾きの絶対値に基づいて評価を行うことを特徴とする、請求項2に記載の酸素飽和度測定装置。 In the evaluation of each value of the amplitude ratio of the infrared light and the red light or the instantaneous blood oxygen saturation level among the received light, the stability determination unit determines the minimum from each value in the determination target period. The oxygen saturation measuring apparatus according to claim 2, wherein a primary approximate line is obtained by a square method, and evaluation is performed based on an absolute value of a slope of the primary approximate line.
  13.  前記安定度判定部は、判定対象期間内に、前記複数の信号成分のいずれかが所定の評価基準を満たさない場合には、前記判定対象期間を延長すると共に、前記評価基準を変更することを特徴とする、請求項1に記載の酸素飽和度測定装置。 The stability determination unit extends the determination target period and changes the evaluation reference when any of the plurality of signal components does not satisfy a predetermined evaluation reference within the determination target period. The oxygen saturation measuring device according to claim 1, characterized in that it is characterized in that
  14.  前記評価基準は、段階的に異なる複数の評価基準を含み、
     前記評価基準のそれぞれの段階に対応した判定対象期間が存在し、
     前記安定度判定部は、前記いずれかの評価基準を用いて、該評価基準に対応した前記判定対象期間内に評価することを特徴とする、請求項1に記載の酸素飽和度測定装置。
    The evaluation criteria includes a plurality of evaluation criteria that differ in stages,
    There is a determination target period corresponding to each stage of the evaluation criteria,
    The oxygen saturation measurement apparatus according to claim 1, wherein the stability determination unit performs evaluation within the determination target period corresponding to the evaluation criterion using any one of the evaluation criteria.
  15.  前記安定度判定部は、前記受光された光の光量成分および前記受光された光の脈波振幅の各値の評価において、前記各値の大きさに応じて、判定対象期間を変更することを特徴とする、請求項2に記載の酸素飽和度測定装置。 The stability determination unit may change a determination target period according to the magnitude of each value in the evaluation of each value of the light amount component of the received light and the pulse wave amplitude of the received light. The oxygen saturation measuring device according to claim 2, characterized in that it is characterized in that
  16.  前記安定度判定部が、前記血中酸素飽和度が安定であると判定した場合は、前記酸素飽和度が安定であることの報知を行うことを特徴とする、請求項1に記載の酸素飽和度測定装置。 2. The oxygen saturation according to claim 1, wherein when the stability determination unit determines that the blood oxygen saturation is stable, the oxygen saturation according to claim 1 is notified that the oxygen saturation is stable. Degree measuring device.
PCT/JP2009/058280 2008-04-30 2009-04-27 Device for measuring oxygen saturation degree WO2009133851A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-118772 2008-04-30
JP2008118772 2008-04-30

Publications (1)

Publication Number Publication Date
WO2009133851A1 true WO2009133851A1 (en) 2009-11-05

Family

ID=41255067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058280 WO2009133851A1 (en) 2008-04-30 2009-04-27 Device for measuring oxygen saturation degree

Country Status (1)

Country Link
WO (1) WO2009133851A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050945A1 (en) * 2012-09-28 2014-04-03 シスメックス株式会社 Non-invasive living body measurement device
EP3473171A4 (en) * 2016-06-15 2020-06-17 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Method for calculating physiological parameters and corresponding medical equipment
CN112399819A (en) * 2018-07-02 2021-02-23 3M创新有限公司 Sensing system and method for monitoring a time-dependent process
JP7458869B2 (en) 2020-04-09 2024-04-01 日本光電工業株式会社 Biosignal processing device, biosignal processing program, and biosignal processing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60176624A (en) * 1984-02-23 1985-09-10 ミノルタ株式会社 Artery blood oxygen saturation degree measuring apparatus
JPH02237544A (en) * 1989-03-10 1990-09-20 Minolta Camera Co Ltd Oximeter
JPH0732767B2 (en) * 1986-03-19 1995-04-12 ミノルタ株式会社 Oximeter
JP2007117601A (en) * 2005-10-31 2007-05-17 Konica Minolta Sensing Inc Sleep apnea index measuring device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60176624A (en) * 1984-02-23 1985-09-10 ミノルタ株式会社 Artery blood oxygen saturation degree measuring apparatus
JPH0732767B2 (en) * 1986-03-19 1995-04-12 ミノルタ株式会社 Oximeter
JPH02237544A (en) * 1989-03-10 1990-09-20 Minolta Camera Co Ltd Oximeter
JP2007117601A (en) * 2005-10-31 2007-05-17 Konica Minolta Sensing Inc Sleep apnea index measuring device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050945A1 (en) * 2012-09-28 2014-04-03 シスメックス株式会社 Non-invasive living body measurement device
CN104661595A (en) * 2012-09-28 2015-05-27 希森美康株式会社 Non-invasive living body measurement device
JPWO2014050945A1 (en) * 2012-09-28 2016-08-22 シスメックス株式会社 Non-invasive living body measurement device
EP3473171A4 (en) * 2016-06-15 2020-06-17 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Method for calculating physiological parameters and corresponding medical equipment
US11154250B2 (en) 2016-06-15 2021-10-26 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Methods and systems for calculating physiological parameters
US11872060B2 (en) 2016-06-15 2024-01-16 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Methods and systems for calculating physiological parameters
CN112399819A (en) * 2018-07-02 2021-02-23 3M创新有限公司 Sensing system and method for monitoring a time-dependent process
JP7458869B2 (en) 2020-04-09 2024-04-01 日本光電工業株式会社 Biosignal processing device, biosignal processing program, and biosignal processing method

Similar Documents

Publication Publication Date Title
US10959652B2 (en) Low power pulse oximeter
KR102415906B1 (en) Wearable device and method for operating thereof
US6912413B2 (en) Pulse oximeter
US8496595B2 (en) Method and device for measuring the pulse by means of light waves with two wavelengths
JP4639321B2 (en) Biological information measuring device
US7313426B2 (en) Apparatus for determining concentrations of light absorbing substances in blood
JP6447703B2 (en) Pulse data detection device, pulse data detection method, and pulse data detection program
JP5687994B2 (en) Biological signal measuring apparatus and biological signal measuring method
US9380969B2 (en) Systems and methods for varying a sampling rate of a signal
JP2005040608A (en) Training adjusting method and device in sport
WO2009133851A1 (en) Device for measuring oxygen saturation degree
JP6431697B2 (en) Wrist-mounted pulse oximeter
US20140107442A1 (en) Fingertip Oximeter and a Method for Observing a Measurement Result Thereon
US20170265794A1 (en) Blood oxygenation sensor with led current modulation
JP4385677B2 (en) Biological information measuring device
JP5299079B2 (en) Biological information measuring device
JP6385070B2 (en) Pulse wave sensor
US20170049344A1 (en) Pulse wave sensor and pulse wave measurement module
JP5958222B2 (en) Biological information measuring apparatus and parameter setting method in the apparatus
JP3815119B2 (en) Biological signal detector
JP2009261463A (en) Oxygen saturation measurement apparatus
JP2008167868A (en) Biological information measuring machine
JP2013212320A (en) Bioinformation measuring device
JP4962234B2 (en) Pulse oximeter
US20090270699A1 (en) Device for Determining Physiological Variables

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09738788

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09738788

Country of ref document: EP

Kind code of ref document: A1