WO2009122577A1 - Optical communication system, master station, and slave station - Google Patents

Optical communication system, master station, and slave station Download PDF

Info

Publication number
WO2009122577A1
WO2009122577A1 PCT/JP2008/056596 JP2008056596W WO2009122577A1 WO 2009122577 A1 WO2009122577 A1 WO 2009122577A1 JP 2008056596 W JP2008056596 W JP 2008056596W WO 2009122577 A1 WO2009122577 A1 WO 2009122577A1
Authority
WO
WIPO (PCT)
Prior art keywords
station device
wavelength
optical
signal
slave station
Prior art date
Application number
PCT/JP2008/056596
Other languages
French (fr)
Japanese (ja)
Inventor
聡 吉間
巨生 鈴木
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2008/056596 priority Critical patent/WO2009122577A1/en
Publication of WO2009122577A1 publication Critical patent/WO2009122577A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0226Fixed carrier allocation, e.g. according to service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0245Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
    • H04J14/0246Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU using one wavelength per ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0249Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU
    • H04J14/025Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU using one wavelength per ONU, e.g. for transmissions from-ONU-to-OLT or from-ONU-to-ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0282WDM tree architectures

Definitions

  • the present invention relates to an optical communication system for simultaneously transmitting optical signals of a plurality of wavelengths by wavelength division multiplexing.
  • wavelength division multiplexing passive optical network As one of optical networks for realizing optical communication.
  • one master station device OLT: Optical Line Terminal
  • ONU Optical Network Unit
  • Non-Patent Document 1 in a wavelength division multiplexing passive optical network, in order to realize single-core bidirectional communication, an arrayed waveguide grating is connected to a remote node installed between a master station device and each slave station device.
  • AWG Arrayed Waveguide Grating
  • FSR Free Spectral Range
  • the wavelength (band) of the uplink signal and the downlink signal is exclusively assigned to each slave station device, and therefore, the bandwidth is time-divided into a plurality of slave station devices.
  • the bandwidth of upstream and downstream signals is not limited even when the number of users increases.
  • an arrayed waveguide grating is used as a remote node, and a smaller number of slave station devices than the number of output ports of the arrayed waveguide grating and one parent station device are used. Perform bidirectional communication.
  • this method only one wavelength can be assigned to each slave station device for transmission of the downlink signal, so when a plurality of different types of downlink signals are transmitted simultaneously, the bandwidth allocated to each signal is limited. There was a problem of being.
  • the 1550 nm band is defined in the standardization standard (IEEE 802.3-2005) as a band for video distribution.
  • the present invention has been made in view of the above, and an optical communication system capable of simultaneously transmitting downlink signals of two or more wavelengths from a master station apparatus to one slave station apparatus by applying a wavelength division multiplexing system,
  • An object is to obtain a master station device and a slave station device constituting the same.
  • an optical communication system uses a single master station device, a plurality of slave station devices accommodated in the master station device, and an AWG.
  • a remote node that demultiplexes the optical signal transmitted from the master station device to each of the slave station devices and multiplexes the optical signal transmitted from each of the slave station devices to the master station device.
  • the master station device has a wavelength determined in advance based on the FSR of the AWG as a downlink signal to be transmitted to each of the slave station devices, and different wavelengths transmitted to the same slave station device.
  • the plurality of optical signals are generated for each slave station device.
  • the optical communication system uses an arrayed waveguide grating (AWC) as a remote node, and the master station device transmits a plurality of optical signals at wavelengths considering the wavelength period of the arrayed waveguide grating to each slave station device. Since the signal is transmitted, even if the number of users (slave station devices) increases, both the upstream and downstream signals are not subject to bandwidth limitations, and a wider bandwidth is available compared to the prior art. There exists an effect that it can allocate with respect to a station apparatus.
  • AWC arrayed waveguide grating
  • each slave station device since only the downstream signal that should be received by the connected slave station device flows through the transmission path between each slave station device and the remote node, each slave station device has a wavelength that it should receive. There is no need to provide a wavelength selection filter for extracting only the first signal, and the cost of the slave station apparatus can be reduced.
  • FIG. 1 is a diagram illustrating a configuration example of the optical communication system according to the first embodiment.
  • FIG. 2 is a diagram illustrating a configuration example of a transmission processing unit included in the master station device.
  • FIG. 3 is a diagram illustrating a configuration example of a reception processing unit included in the master station device.
  • FIG. 4 is a diagram illustrating an example of a wavelength arrangement of an optical signal used in the optical communication system according to the first embodiment.
  • FIG. 5 is a diagram illustrating a configuration example of the optical communication system according to the second embodiment.
  • FIG. 1 is a diagram illustrating a configuration example of a first embodiment of an optical communication system according to the present invention.
  • This optical communication system is composed of a master station device (OLT) 10, a remote node (RN) 20, and a plurality of slave station devices (ONU) 30 accommodated in the master station device 10, and the master station device 10 and each slave device.
  • Each of the station devices 30 is connected to the remote node 20 via a single optical fiber.
  • Each slave station device 30 has the same configuration. Further, in the following description, when a specific slave station device is described, the slave station devices # 1, # 2,.
  • the master station device 10 includes a transmission processing unit (Tx) 11, a reception processing unit (Rx) 12, and a multiplexing / demultiplexing unit 13.
  • the transmission processing unit 11 modulates a plurality of lights having different wavelengths allocated for downlink data transmission with different electrical signals, and generates a plurality of downlink optical signals.
  • the reception processing unit 12 demultiplexes a plurality of wavelength-division multiplexed upstream optical signals that are input signals, and demodulates the separated optical signals as different electrical signals.
  • the multiplexing / demultiplexing unit 13 separates the downstream optical signal and the upstream optical signal.
  • the multiplexing / demultiplexing unit 13 can be realized by using, for example, a wavelength division multiplexing (WDM) filter.
  • WDM wavelength division multiplexing
  • the remote node 20 is composed of an arrayed waveguide grating (AWG) 21.
  • ABG arrayed waveguide grating
  • each optical signal is demultiplexed. Are output (demultiplexed) to the corresponding slave station device 30.
  • receiving optical signals from each slave station device 30, they are multiplexed (combined) and output to the master station device 10.
  • the slave station device 30 includes a transmission processing unit (Tx) 31, reception processing units (Rx) 32-1 and 32-2, a multiplexing / demultiplexing unit 33, and a demultiplexing unit 34.
  • the transmission processing unit 31 (upstream signal generating means) converts the input upstream electrical signal into an upstream optical signal having a wavelength assigned in advance.
  • the reception processing units 32-1 and 32-2 (reception processing means) individually execute predetermined reception processing on each downstream optical signal output from the demultiplexing unit 34, and convert it into a downstream electrical signal.
  • the multiplexing / demultiplexing unit 33 separates the downlink signal and the uplink signal.
  • the downlink signal obtained by executing this separation process is a signal in which a plurality of downlink optical signals are multiplexed.
  • the demultiplexing unit 34 performs demultiplexing processing on the downlink signal received from the multiplexing / demultiplexing unit 33, and each of the obtained downlink optical signals corresponds to a corresponding reception processing unit (reception processing unit 32-1 or 32). -2).
  • the demultiplexing unit 34 is realized using a WDM filter.
  • FIG. 2 is a diagram illustrating a configuration example of the transmission processing unit 11 included in the master station device 10.
  • This transmission processing unit 11 includes optical signal generation units 111 1 to 111 2n (optical signal generation unit) and multiplexing unit 112 (multiplexing unit) corresponding to the number of downlink channels that can be used in the system (2n in the present embodiment).
  • Each optical signal generation unit generates light having a wavelength of ⁇ 1 to ⁇ 2n and modulates the generated light with the input downstream electrical signal to generate a plurality of downstream optical signals having different wavelengths.
  • the multiplexer 112 multiplexes (combines) the downlink optical signals generated by the optical signal generators and outputs the multiplexed signals as downlink signals.
  • FIG. 3 is a diagram illustrating a configuration example of the reception processing unit 12 included in the master station device 10.
  • This reception processing unit 12 includes photodetectors 121 1 to 121 n and demultiplexing units 122 corresponding to the number of uplink channels that can be used in the system (n in the present embodiment), and each of the photodetecting units includes demultiplexing units.
  • the upstream optical signal received from 122 is converted into an upstream electrical signal.
  • the demultiplexing unit 122 receives an uplink signal, which is a signal obtained by multiplexing the uplink optical signal, from the multiplexing / demultiplexing unit 13, demultiplexes, and outputs each uplink optical signal to the corresponding photodetector.
  • FIG. 4 is a diagram illustrating an example of the wavelength arrangement of an optical signal used in the optical communication system according to the present embodiment. Specifically, one upstream optical signal is transmitted to each slave station device 30 in the downstream direction. An example in which two optical signals are allocated is shown.
  • the wavelength ⁇ is the wavelength for the downstream signal.
  • the 2n-number of wavelengths from 1 up to a wavelength lambda 2n (light) assigning the n-number of wavelengths from the wavelength lambda 2n + 1 as a wavelength for an upstream signal to the wavelength lambda 3n (light).
  • the wavelength ⁇ 1 is located on the shortest wavelength side. This utilizes the characteristics of the arrayed waveguide grating, and utilizes the fact that signals having wavelengths separated by an integral multiple of the FSR are output from the same port.
  • a data signal and an audio signal for each slave station apparatus are allocated from wavelength ⁇ 1 to wavelength ⁇ n , and wavelength ⁇ Video signals for each slave station device are assigned from n + 1 to wavelength ⁇ 2n .
  • a data signal and an audio signal are transmitted from the remote node 20 to the slave station (ONU) # 1 using light having a wavelength of ⁇ 1 , and the wavelength is ⁇ n + 1.
  • the video signal is transmitted using the light of the light.
  • the upstream signal from the slave station apparatus # 1 is transmitted using light having a wavelength of ⁇ 2n + 1 .
  • the number of wavelengths of the downlink signal (light) assigned to each slave station device is not limited to two wavelengths, and if the wavelength band of the arrayed waveguide grating 21 permits, the number of wavelengths is three or more (array guides for a certain wavelength). A plurality of light beams having wavelengths separated by an integral multiple of the FSR of the waveguide grating 21 may be assigned. Further, the wavelength arrangement is not limited to that shown in FIG. For example, the wavelength arrangement of the downlink signal and the uplink signal may be switched so that the uplink signal is arranged on the short wavelength side and the downlink signal is arranged on the long wavelength side.
  • each downlink electrical signal is input to the corresponding optical signal generation unit.
  • each optical signal generation unit generates a downstream optical signal having a wavelength assigned to itself based on the input downstream electrical signal.
  • the wavelength ⁇ 1 and this and FSR only wavelengths distant lambda n + 1 of the downstream optical signal is an optical signal generating unit 111 1 and 111 n + Generated in 1 .
  • the optical signal generators 111 n and 111 2n generate the downstream optical signal having the wavelength ⁇ n and the wavelength ⁇ 2n that is separated from the wavelength ⁇ n by the FSR.
  • the multiplexing unit 112 receives downstream optical signals generated in each optical signal generation unit, wavelength-division multiplexes them, and generates a signal (downstream signal) in which each downstream optical signal is multiplexed.
  • the downlink signal generated by the transmission processing unit 11 is transmitted to the remote node 20 via the multiplexing / demultiplexing unit 13, and the arrayed waveguide grating 21 of the remote node 20 demultiplexes the input downlink signal and outputs each downlink signal.
  • the optical signal is output to a port (optical fiber) to which the corresponding slave station device 30 is connected. Specifically, as shown in FIG. 4, and outputs the downstream signal wavelength lambda n + 1 at a distance downstream signal and this and FSR fraction of the wavelength lambda 1 from port connected to the slave station apparatuses # 1 . Similarly, downstream signals of wavelengths ⁇ 2 and ⁇ n + 2 are transmitted from the port connected to slave station apparatus # 2, and downstream signals of wavelengths ⁇ n and ⁇ 2n are transmitted from the port connected to slave station apparatus #n. ,Output.
  • each slave station device 30 the signal received from the remote node 20 is first passed to the multiplexing / demultiplexing unit 33, and the multiplexing / demultiplexing unit 33 extracts the downlink signal and outputs it to the demultiplexing unit 34.
  • the demultiplexing unit 34 distributes a plurality of (two in the present embodiment) downstream optical signals that are signals received from the multiplexing / demultiplexing unit 33 to the corresponding reception processing units 32-1 or 32-2. .
  • Each reception processing unit executes predetermined reception processing including processing for converting the received downstream optical signal into an electrical signal.
  • each slave station device 30 transmits uplink data to the master station device 10 .
  • the transmission processing unit 31 generates an upstream optical signal with a wavelength ⁇ 2n + 1 that is separated from the downstream optical signal with ⁇ n + 1 by FSR.
  • the slave station device # 2 generates an upstream optical signal of ⁇ 2n + 2
  • the slave station device #n generates an upstream optical signal of ⁇ 3n .
  • each upstream optical signal received from each slave station device 30 is input to the arrayed waveguide grating 21.
  • each upstream optical signal has a wavelength separated from the downstream optical signal by FSR, and therefore each upstream optical signal is output to a port (optical fiber) to which the master station device 10 is connected.
  • a signal obtained by multiplexing a plurality of upstream optical signals is output to the master station device 10.
  • the upstream signal is passed to the reception processing unit 12 via the multiplexing / demultiplexing unit 13, and the reception processing unit 12.
  • the demultiplexing unit 122 demultiplexes and distributes each upstream optical signal to the corresponding optical detection unit.
  • Each optical detection unit converts the received upstream optical signal into an upstream electrical signal and outputs it.
  • the optical communication system includes a remote node that performs demultiplexing and multiplexing of an optical signal using an arrayed waveguide grating between a master station device and a plurality of slave station devices.
  • the master station device transmits downlink data to the slave station device using light having a certain wavelength and light having a wavelength separated from this light by an integral multiple of the wavelength period (FSR) of the arrayed waveguide grating. did. Thereby, two or more downstream signals can be simultaneously transmitted to one slave station device.
  • FSR wavelength period
  • each slave station device since only the downstream optical signal to be received by the connected slave station device is output to the transmission path (optical fiber) between the remote node and each slave station device, each slave station device A wavelength selection filter for extracting the downstream optical signal is not necessary, and the cost of the slave station apparatus can be reduced.
  • the demultiplexing unit 34 of the slave station device 30 is set according to the number of wavelengths.
  • the WDM filter used in the system is expanded, and the downlink signal wavelengths are cut out in order from the long wavelength side or the short wavelength side, so that all the multiplexed downlink signal wavelengths are received by different reception processing units (reception processing units corresponding to the respective wavelengths). ).
  • Embodiment 2 the optical communication system according to the second embodiment will be described.
  • the configuration in the case where the demultiplexing unit 34 of the slave station device 30 is realized by a WDM filter has been described.
  • the configuration can be realized without using a WDM filter. Therefore, in the present embodiment, an example in the case where the WDM filter is not used will be described.
  • FIG. 5 is a diagram illustrating a configuration example of the optical communication system according to the second embodiment.
  • the configurations of the master station device and the remote node are the same as those of the optical communication system according to the first embodiment described above, but only the configuration of the slave station device is different. Therefore, in the present embodiment, only the slave station device 30a that is different from the first embodiment will be described.
  • symbol is attached
  • the slave station device 30a includes a transmission processing unit 31, reception processing units 32-1 and 32-2, which have a common configuration with the slave station device 30 shown in the first embodiment.
  • a transmission processing unit 31 receives transmission signals from the base station.
  • reception processing units 32-1 and 32-2 receives transmission signals from the base station.
  • an optical power splitter 35 and bandpass filters 36-1 and 36-2 are provided.
  • the optical power splitter 35 When the optical power splitter 35 receives an optical signal in which a plurality of downstream optical signals are multiplexed from the multiplexing / demultiplexing unit 33, the optical power splitter 35 distributes them to the corresponding bandpass filter 36-1 or 36-2.
  • the wavelength of the optical signal to be transmitted is set in advance. For example, if the bandpass filters 36-1 and 36-2 are included in the slave station device # 1, the wavelength lambda 1 signal to the reception processing section 32-1, distributes as wavelength lambda n + 1 signal is supplied to a reception processing section 32-2.
  • variable bandpass filters that can change the transmission wavelength band may be used as the bandpass filters 36-1 and 36-2.
  • an optical power splitter that can divide the signal by the number of downlink signals in the slave station device 30a according to the number of wavelengths, and an downlink optical signal of a specific wavelength
  • all multiplexed downlink signal wavelengths are distributed to different reception processing units (reception processing units corresponding to the respective wavelengths).
  • the optical power splitter and the plurality of bandpass filters are used as a configuration for distributing a plurality of downstream optical signals to the reception processing unit in the slave station apparatus.
  • the same effect as the optical communication system shown in Embodiment 1 can be acquired.
  • the optical communication system according to the present invention is useful for an optical communication system to which the wavelength division multiplexing system is applied, and in particular, can transmit optical signals having a plurality of wavelengths simultaneously to one slave station device. Suitable for realizing the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

An optical communication system comprises a single master station (10), a plurality of slave stations (30) housed in the master station (10), and a remote node (20) which divides a wavelength division multiplex transmitted optical signal from the master station to each slave station and combines optical signals transmitted from each slave station to the master station, using the AWG. The master station (10) generates, for each slave station (30), a plurality of optical signals having different wavelengths determined in advance based on the FSR of the AWG which are to be transmitted toward one and the same slave station (30), as downstream signals to be transmitted to each slave station (30).

Description

光通信システム、親局装置および子局装置Optical communication system, master station device and slave station device
 本発明は、波長分割多重により複数波長の光信号を同時に伝送する光通信システムに関する。 The present invention relates to an optical communication system for simultaneously transmitting optical signals of a plurality of wavelengths by wavelength division multiplexing.
 光通信を実現する光ネットワークの一つとして波長分割多重型受動光ネットワークが存在する。この波長分割多重型受動光ネットワークは、1つの親局装置(OLT:Optical Line Terminal)と複数の子局装置(ONU:Optical Network Unit)が光ファイバ伝送路と光パワースプリッタなど介して接続され、親局装置から各子局装置へ送信する下り信号と各子局装置から親局装置へ送信する上り信号の波長帯域が重ならないようにして双方向通信を行うシステムである(例えば、下記特許文献1参照)。 There is a wavelength division multiplexing passive optical network as one of optical networks for realizing optical communication. In this wavelength division multiplexing passive optical network, one master station device (OLT: Optical Line Terminal) and a plurality of slave station devices (ONU: Optical Network Unit) are connected via an optical fiber transmission line, an optical power splitter, etc. This is a system that performs bidirectional communication so that the wavelength band of the downlink signal transmitted from the master station device to each slave station device and the uplink signal transmitted from each slave station device to the master station device do not overlap (for example, the following patent document) 1).
 また、下記非特許文献1では、波長分割多重型受動光ネットワークにおいて、一芯双方向通信を実現するために、親局装置と各子局装置との間に設置したリモートノードにアレイ導波路格子(AWG:Arrayed Waveguide Grating)を利用し、このアレイ導波路格子の波長周期(FSR:Free Spectral Range)だけ離れた2つの波長の光を下り信号および上り信号の送信用に割り当てる方式が提案されている。 Further, in the following Non-Patent Document 1, in a wavelength division multiplexing passive optical network, in order to realize single-core bidirectional communication, an arrayed waveguide grating is connected to a remote node installed between a master station device and each slave station device. Using AWG (Arrayed Waveguide Grating), a method has been proposed in which light of two wavelengths separated by the wavelength period (FSR: Free Spectral Range) of this arrayed waveguide grating is allocated for transmission of downstream and upstream signals. Yes.
 このように、波長分割多重型受動光ネットワークでは、各子局装置に対して、上り信号および下り信号の波長(帯域)を独占的に割り当てるため、帯域を時分割して複数の子局装置に割り当てるTDMA(Time Division Multiple Access)方式を用いた受動光ネットワークとは異なり、利用者数が増加した場合であっても上り信号および下り信号の帯域が制限されることがない、という特徴がある。 In this way, in the wavelength division multiplexing passive optical network, the wavelength (band) of the uplink signal and the downlink signal is exclusively assigned to each slave station device, and therefore, the bandwidth is time-divided into a plurality of slave station devices. Unlike passive optical networks that use the assigned TDMA (Time Division Multiple Access) method, the bandwidth of upstream and downstream signals is not limited even when the number of users increases.
特開2006-197489号公報JP 2006-197489 A
 上記非特許文献1に記載の波長分割多重型受動光ネットワークでは、リモートノードにアレイ導波路格子を用いており、アレイ導波路格子の出力ポート数より少ない数の子局装置と1つの親局装置間で双方向通信を行う。しかしながら、この方式では各子局装置に対して下り信号の送信用に1波長しか割り当てることが出来ないため、種類の異なる複数の下り信号を同時に送信する際には各信号に割り当てられる帯域が制限される、という問題があった。 In the wavelength division multiplexing passive optical network described in Non-Patent Document 1, an arrayed waveguide grating is used as a remote node, and a smaller number of slave station devices than the number of output ports of the arrayed waveguide grating and one parent station device are used. Perform bidirectional communication. However, in this method, only one wavelength can be assigned to each slave station device for transmission of the downlink signal, so when a plurality of different types of downlink signals are transmitted simultaneously, the bandwidth allocated to each signal is limited. There was a problem of being.
 例えば、データ通信と音声通信、映像配信など変調方式や帯域の異なる下り信号を同一の波長帯域で送信する場合、各信号間でクロストークが発生しやすく、また各信号に対して帯域制限がかかる。特に、データ通信が下り信号要求に応じて通信されるのに対して、映像配信はデータ量が多くかつデータ通信と比較して遅延時間の許容値が小さい。そのため、下り信号の帯域として常時映像配信用の帯域を確保しておくことが望ましい。参考までに、TDMA方式を採用した光アクセスネットワークについては、映像配信用の帯域として1550nm帯が標準化規格(IEEE 802.3-2005)にて規定されている。 For example, when downlink signals with different modulation methods and bands such as data communication, voice communication, and video distribution are transmitted in the same wavelength band, crosstalk is likely to occur between the signals, and band limitation is imposed on each signal. . In particular, data communication is performed in response to a downlink signal request, whereas video distribution has a large amount of data and has a smaller allowable delay time than data communication. For this reason, it is desirable to always secure a band for video distribution as the band of the downstream signal. For reference, in the optical access network adopting the TDMA system, the 1550 nm band is defined in the standardization standard (IEEE 802.3-2005) as a band for video distribution.
 本発明は、上記に鑑みてなされたものであって、波長分割多重方式を適用し、親局装置から1つの子局装置に対して2波長以上の下り信号を同時送信可能な光通信システム、これを構成する親局装置および子局装置を得ることを目的とする。 The present invention has been made in view of the above, and an optical communication system capable of simultaneously transmitting downlink signals of two or more wavelengths from a master station apparatus to one slave station apparatus by applying a wavelength division multiplexing system, An object is to obtain a master station device and a slave station device constituting the same.
 上述した課題を解決し、目的を達成するために、本発明にかかる光通信システムは、単一の親局装置と、前記親局装置に収容された複数の子局装置と、AWGを利用し、前記親局装置から前記各子局装置へ波長分割多重送信された光信号の分波および当該各子局装置から当該親局装置へ送信された光信号の合波を行うリモートノードと、を備え、前記親局装置は、前記各子局装置へ送信する下り信号として、前記AWGのFSRに基づいて予め決定しておいた波長を有し、同一子局装置に向けて送信する互いに異なる波長の複数の光信号、を当該子局装置ごとに生成することを特徴とする。 In order to solve the above-described problems and achieve the object, an optical communication system according to the present invention uses a single master station device, a plurality of slave station devices accommodated in the master station device, and an AWG. A remote node that demultiplexes the optical signal transmitted from the master station device to each of the slave station devices and multiplexes the optical signal transmitted from each of the slave station devices to the master station device. The master station device has a wavelength determined in advance based on the FSR of the AWG as a downlink signal to be transmitted to each of the slave station devices, and different wavelengths transmitted to the same slave station device. The plurality of optical signals are generated for each slave station device.
 本発明にかかる光通信システムは、リモートノードにアレイ導波路格子(AWC)を利用し、親局装置は各子局装置に対して、アレイ導波路格子の波長周期を考慮した波長で複数の光信号を送信することとしたので、利用者数(子局装置)が増加した場合であっても上り信号、下り信号ともに帯域制限を受けることがなくなり、かつ従来と比較してより広い帯域を子局装置に対して割り当てることができる、という効果を奏する。 The optical communication system according to the present invention uses an arrayed waveguide grating (AWC) as a remote node, and the master station device transmits a plurality of optical signals at wavelengths considering the wavelength period of the arrayed waveguide grating to each slave station device. Since the signal is transmitted, even if the number of users (slave station devices) increases, both the upstream and downstream signals are not subject to bandwidth limitations, and a wider bandwidth is available compared to the prior art. There exists an effect that it can allocate with respect to a station apparatus.
 また、各子局装置とリモートノードとの間の伝送路には接続された接続された子局装置が受信すべき下り信号のみが流れるため、各子局装置は、自装置が受信すべき波長の信号のみを抽出するための波長選択フィルタを備える必要がなくなり、子局装置の低コスト化を実現できる、という効果を奏する。 In addition, since only the downstream signal that should be received by the connected slave station device flows through the transmission path between each slave station device and the remote node, each slave station device has a wavelength that it should receive. There is no need to provide a wavelength selection filter for extracting only the first signal, and the cost of the slave station apparatus can be reduced.
図1は、実施の形態1の光通信システムの構成例を示す図である。FIG. 1 is a diagram illustrating a configuration example of the optical communication system according to the first embodiment. 図2は、親局装置が備える送信処理部の構成例を示す図である。FIG. 2 is a diagram illustrating a configuration example of a transmission processing unit included in the master station device. 図3は、親局装置が備える受信処理部の構成例を示す図である。FIG. 3 is a diagram illustrating a configuration example of a reception processing unit included in the master station device. 図4は、実施の形態1の光通信システムで使用する光信号の波長配置の一例を示す図である。FIG. 4 is a diagram illustrating an example of a wavelength arrangement of an optical signal used in the optical communication system according to the first embodiment. 図5は、実施の形態2の光通信システムの構成例を示す図である。FIG. 5 is a diagram illustrating a configuration example of the optical communication system according to the second embodiment.
符号の説明Explanation of symbols
 10 親局装置(OLT)
 11、31 送信処理部(Tx)
 12、32-1、32-2 受信処理部(Rx)
 13、33 合分波部
 20 リモートノード(RN)
 21 アレイ導波路格子(AWG)
 30、30a 子局装置(ONU)
 34、122 分波部
 35 光パワースプリッタ
 36-1、36-2 バンドパスフィルタ
 1111~1112n 光信号生成部
 112 合波部
 1211~121n 光検出部
10 Master station equipment (OLT)
11, 31 Transmission processing unit (Tx)
12, 32-1, 32-2 Reception processing unit (Rx)
13, 33 Multiplexing / demultiplexing unit 20 Remote node (RN)
21 Arrayed waveguide grating (AWG)
30, 30a Slave unit (ONU)
34, 122 Demultiplexing unit 35 Optical power splitter 36-1, 36-2 Band pass filter 111 1 to 111 2n Optical signal generation unit 112 Multiplexing unit 121 1 to 121 n Optical detection unit
 以下に、本発明にかかる光通信システムの実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, embodiments of an optical communication system according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 図1は、本発明にかかる光通信システムの実施の形態1の構成例を示す図である。この光通信システムは、親局装置(OLT)10、リモートノード(RN)20および当該親局装置10に収容された複数の子局装置(ONU)30により構成され、親局装置10および各子局装置30は、それぞれ、一芯の光ファイバを介してリモートノード20に接続されている。なお、各子局装置30は構成が同一である。また、以下の説明では、ある特定の子局装置について説明を行う場合、子局装置#1,#2,…,#nと記載して区別することとする。
Embodiment 1 FIG.
FIG. 1 is a diagram illustrating a configuration example of a first embodiment of an optical communication system according to the present invention. This optical communication system is composed of a master station device (OLT) 10, a remote node (RN) 20, and a plurality of slave station devices (ONU) 30 accommodated in the master station device 10, and the master station device 10 and each slave device. Each of the station devices 30 is connected to the remote node 20 via a single optical fiber. Each slave station device 30 has the same configuration. Further, in the following description, when a specific slave station device is described, the slave station devices # 1, # 2,.
 図1に示したように、親局装置10は、送信処理部(Tx)11と、受信処理部(Rx)12と、合分波部13と、を備える。 As shown in FIG. 1, the master station device 10 includes a transmission processing unit (Tx) 11, a reception processing unit (Rx) 12, and a multiplexing / demultiplexing unit 13.
 送信処理部11は、下りデータ伝送用に割り当てられた波長が異なる複数の光をそれぞれ異なる電気信号にて変調し複数の下り光信号を生成する。受信処理部12は、入力信号である波長分割多重された複数の上り光信号を分波し、分離された各光信号をそれぞれ異なる電気信号として復調する。合分波部13は、下り光信号と上り光信号とを分離させる。合分波部13は、たとえば波長分割多重(WDM:Wavelength Division Multiplexing)フィルタを利用して実現できる。 The transmission processing unit 11 modulates a plurality of lights having different wavelengths allocated for downlink data transmission with different electrical signals, and generates a plurality of downlink optical signals. The reception processing unit 12 demultiplexes a plurality of wavelength-division multiplexed upstream optical signals that are input signals, and demodulates the separated optical signals as different electrical signals. The multiplexing / demultiplexing unit 13 separates the downstream optical signal and the upstream optical signal. The multiplexing / demultiplexing unit 13 can be realized by using, for example, a wavelength division multiplexing (WDM) filter.
 リモートノード20は、アレイ導波路格子(AWG)21により構成され、アレイ導波路格子21は、親局装置10から波長分割多重送信された光信号を受け取ると、多重化を解いて、各光信号を対応する子局装置30に向けて出力する(分波する)。また、各子局装置30から光信号を受け取ると、それらを多重化し(合波して)、親局装置10に向けて出力する。 The remote node 20 is composed of an arrayed waveguide grating (AWG) 21. When the arrayed waveguide grating 21 receives the optical signal transmitted from the master station apparatus 10 by wavelength division multiplexing, each optical signal is demultiplexed. Are output (demultiplexed) to the corresponding slave station device 30. When receiving optical signals from each slave station device 30, they are multiplexed (combined) and output to the master station device 10.
 子局装置30は、送信処理部(Tx)31と、受信処理部(Rx)32-1および32-2と、合分波部33と、分波部34と、を備える。 The slave station device 30 includes a transmission processing unit (Tx) 31, reception processing units (Rx) 32-1 and 32-2, a multiplexing / demultiplexing unit 33, and a demultiplexing unit 34.
 送信処理部31(上り信号生成手段)は、入力された上り電気信号を予め割り当てられている波長の上り光信号に変換する。受信処理部32-1および32-2(受信処理手段)は、分波部34から出力された各下り光信号に対して所定の受信処理を個別に実行し、下り電気信号に変換する。合分波部33は、下り信号と上り信号とを分離させる。なお、この分離処理を実行して得られる下り信号は、複数の下り光信号が多重化された状態の信号である。分波部34は、合分波部33から受けとった下り信号に対して分波処理を実行し、得られた複数の下り光信号をそれぞれ対応する受信処理部(受信処理部32-1または32-2)へ振り分ける。なお、本実施の形態では、WDMフィルタを利用して分波部34を実現する。 The transmission processing unit 31 (upstream signal generating means) converts the input upstream electrical signal into an upstream optical signal having a wavelength assigned in advance. The reception processing units 32-1 and 32-2 (reception processing means) individually execute predetermined reception processing on each downstream optical signal output from the demultiplexing unit 34, and convert it into a downstream electrical signal. The multiplexing / demultiplexing unit 33 separates the downlink signal and the uplink signal. The downlink signal obtained by executing this separation process is a signal in which a plurality of downlink optical signals are multiplexed. The demultiplexing unit 34 performs demultiplexing processing on the downlink signal received from the multiplexing / demultiplexing unit 33, and each of the obtained downlink optical signals corresponds to a corresponding reception processing unit (reception processing unit 32-1 or 32). -2). In the present embodiment, the demultiplexing unit 34 is realized using a WDM filter.
 図2は、親局装置10が備える送信処理部11の構成例を示す図である。この送信処理部11は、システムで使用可能な下りチャネル数分(本実施の形態では2n)の光信号生成部1111~1112n(光信号生成手段)および合波部112(多重化手段)を備え、各光信号生成部は、波長がλ1~λ2nの光を生成し、生成した光を入力された下り電気信号で変調することにより、互いに波長が異なる複数の下り光信号を生成する。合波部112は、各光信号生成部で生成された下り光信号を多重化(合波)し、下り信号として出力する。 FIG. 2 is a diagram illustrating a configuration example of the transmission processing unit 11 included in the master station device 10. This transmission processing unit 11 includes optical signal generation units 111 1 to 111 2n (optical signal generation unit) and multiplexing unit 112 (multiplexing unit) corresponding to the number of downlink channels that can be used in the system (2n in the present embodiment). Each optical signal generation unit generates light having a wavelength of λ 1 to λ 2n and modulates the generated light with the input downstream electrical signal to generate a plurality of downstream optical signals having different wavelengths. To do. The multiplexer 112 multiplexes (combines) the downlink optical signals generated by the optical signal generators and outputs the multiplexed signals as downlink signals.
 図3は、親局装置10が備える受信処理部12の構成例を示す図である。この受信処理部12は、システムで使用可能な上りチャネル数分(本実施の形態ではn)の光検出部1211~121nおよび分波部122を備え、各光検出部は、分波部122から受け取った上り光信号を上り電気信号に変換する。分波部122は、上り光信号が多重化された信号である上り信号を合分波部13から受け取り、多重化を解いて、各上り光信号を対応する光検出部へ出力する。 FIG. 3 is a diagram illustrating a configuration example of the reception processing unit 12 included in the master station device 10. This reception processing unit 12 includes photodetectors 121 1 to 121 n and demultiplexing units 122 corresponding to the number of uplink channels that can be used in the system (n in the present embodiment), and each of the photodetecting units includes demultiplexing units. The upstream optical signal received from 122 is converted into an upstream electrical signal. The demultiplexing unit 122 receives an uplink signal, which is a signal obtained by multiplexing the uplink optical signal, from the multiplexing / demultiplexing unit 13, demultiplexes, and outputs each uplink optical signal to the corresponding photodetector.
 ここで、本実施の形態の光通信システムで扱う各光信号の波長について説明する。図4は、本実施の形態の光通信システムで使用する光信号の波長配置の一例を示す図であり、具体的には、各子局装置30に対して、上り光信号を1波、下り光信号を2波割り当てる場合の例を示している。 Here, the wavelength of each optical signal handled in the optical communication system of the present embodiment will be described. FIG. 4 is a diagram illustrating an example of the wavelength arrangement of an optical signal used in the optical communication system according to the present embodiment. Specifically, one upstream optical signal is transmitted to each slave station device 30 in the downstream direction. An example in which two optical signals are allocated is shown.
 図1で示したアレイ導波路格子21の各ポートにおける波長間隔をΔλとし、波長周期(FSR:Free Spectral Range)をn×Δλとした場合、本実施の形態では、下り信号用波長として波長λ1から波長λ2nまでの2n個の波長(光)を、上り信号用波長として波長λ2n+1から波長λ3nまでのn個の波長(光)を割り当てる。なお、波長λ1が最も短波側に位置するものとする。これは、アレイ導波路格子の特性を利用するものであり、FSRの整数倍だけ離れた波長の各信号が同じポートから出力されることを利用している。 When the wavelength interval at each port of the arrayed waveguide grating 21 shown in FIG. 1 is Δλ and the wavelength period (FSR: Free Spectral Range) is n × Δλ, in this embodiment, the wavelength λ is the wavelength for the downstream signal. the 2n-number of wavelengths from 1 up to a wavelength lambda 2n (light), assigning the n-number of wavelengths from the wavelength lambda 2n + 1 as a wavelength for an upstream signal to the wavelength lambda 3n (light). It is assumed that the wavelength λ 1 is located on the shortest wavelength side. This utilizes the characteristics of the arrayed waveguide grating, and utilizes the fact that signals having wavelengths separated by an integral multiple of the FSR are output from the same port.
 上記の波長配置を適用した本実施の形態の光通信システムでは、トリプルプレイを行う場合、たとえば、波長λ1から波長λnまでに各子局装置向けのデータ信号と音声信号を割り当て、波長λn+1から波長λ2nまでに各子局装置向けの映像信号を割り当てる。これにより、映像配信用の帯域が常に確保され、映像信号用の帯域を制限しないシステムが実現できる。図4に示した例では、リモートノード20から子局装置(ONU)#1に対しては、波長がλ1の光を利用してデータ信号および音声信号が伝送され、波長がλn+1の光を利用して映像信号が伝送される。またこのとき、子局装置#1からの上り信号は波長がλ2n+1の光を利用して伝送される。 In the optical communication system according to the present embodiment to which the above-described wavelength arrangement is applied, when performing triple play, for example, a data signal and an audio signal for each slave station apparatus are allocated from wavelength λ 1 to wavelength λ n , and wavelength λ Video signals for each slave station device are assigned from n + 1 to wavelength λ 2n . Thereby, it is possible to realize a system in which a band for video distribution is always ensured and a band for video signals is not limited. In the example shown in FIG. 4, a data signal and an audio signal are transmitted from the remote node 20 to the slave station (ONU) # 1 using light having a wavelength of λ 1 , and the wavelength is λ n + 1. The video signal is transmitted using the light of the light. At this time, the upstream signal from the slave station apparatus # 1 is transmitted using light having a wavelength of λ 2n + 1 .
 なお、各子局装置に割り当てる下り信号(光)の波長数は2波長に限るものではなく、アレイ導波路格子21の波長帯域が許すのであれば、3波長以上(ある波長に対してアレイ導波路格子21のFSRの整数倍だけ離れた波長の複数の光)を割り当てるようにしてもよい。また、波長配置は、図4で示したものに限定されない。たとえば、下り信号と上り信号の波長配置を入れ替え、上り信号を短波長側、下り信号を長波長側に配置するようにしてもよい。 Note that the number of wavelengths of the downlink signal (light) assigned to each slave station device is not limited to two wavelengths, and if the wavelength band of the arrayed waveguide grating 21 permits, the number of wavelengths is three or more (array guides for a certain wavelength). A plurality of light beams having wavelengths separated by an integral multiple of the FSR of the waveguide grating 21 may be assigned. Further, the wavelength arrangement is not limited to that shown in FIG. For example, the wavelength arrangement of the downlink signal and the uplink signal may be switched so that the uplink signal is arranged on the short wavelength side and the downlink signal is arranged on the long wavelength side.
 つづいて、図1~図4を参照しながら、上記構成の光通信システムにおいて親局装置10が各子局装置30へ下り信号を送信する場合の動作について説明する。 Next, an operation when the master station device 10 transmits a downlink signal to each slave station device 30 in the optical communication system having the above configuration will be described with reference to FIGS.
 親局装置10の送信処理部11(図2参照)に各子局装置30への複数の下りデータ(下り電気信号)が入力されると、各下り電気信号は対応する光信号生成部に入力され、各光信号生成部は、自身に割り当てられた波長の下り光信号を、入力された下り電気信号に基づいて生成する。なお、図4に示したように、子局装置#1に対しては、波長λ1およびこれとFSRだけ波長の離れたλn+1の下り光信号が光信号生成部1111および111n+1において生成される。同様に、子局装置#nに対しては、波長λnおよびこれとFSRだけ波長の離れたλ2nの下り光信号が光信号生成部111nおよび1112nにおいて生成される。合波部112は、各光信号生成部において生成された下り光信号を受け取り、それらを波長分割多重化し、各下り光信号が多重化された信号(下り信号)を生成する。 When a plurality of downlink data (downlink electrical signals) to each slave station device 30 is input to the transmission processing unit 11 (see FIG. 2) of the master station device 10, each downlink electrical signal is input to the corresponding optical signal generation unit. Then, each optical signal generation unit generates a downstream optical signal having a wavelength assigned to itself based on the input downstream electrical signal. Incidentally, as shown in FIG. 4, for the slave station apparatus # 1, the wavelength λ1 and this and FSR only wavelengths distant lambda n + 1 of the downstream optical signal is an optical signal generating unit 111 1 and 111 n + Generated in 1 . Similarly, for the slave station device #n, the optical signal generators 111 n and 111 2n generate the downstream optical signal having the wavelength λ n and the wavelength λ 2n that is separated from the wavelength λ n by the FSR. The multiplexing unit 112 receives downstream optical signals generated in each optical signal generation unit, wavelength-division multiplexes them, and generates a signal (downstream signal) in which each downstream optical signal is multiplexed.
 送信処理部11にて生成された下り信号は合分波部13を介してリモートノード20へ送信され、リモートノード20のアレイ導波路格子21では、入力された下り信号を分波し、各下り光信号を対応する子局装置30が接続されたポート(光ファイバ)へ出力する。具体的には、図4に示したように、子局装置#1に接続されたポートからは波長λの下り信号およびこれとFSR分だけ離れた波長λn+1の下り信号を出力する。同様に、子局装置#2に接続されたポートからは波長λ2およびλn+2の下り信号を、子局装置#nに接続されたポートからは波長λnおよびλ2nの下り信号を、出力する。 The downlink signal generated by the transmission processing unit 11 is transmitted to the remote node 20 via the multiplexing / demultiplexing unit 13, and the arrayed waveguide grating 21 of the remote node 20 demultiplexes the input downlink signal and outputs each downlink signal. The optical signal is output to a port (optical fiber) to which the corresponding slave station device 30 is connected. Specifically, as shown in FIG. 4, and outputs the downstream signal wavelength lambda n + 1 at a distance downstream signal and this and FSR fraction of the wavelength lambda 1 from port connected to the slave station apparatuses # 1 . Similarly, downstream signals of wavelengths λ 2 and λ n + 2 are transmitted from the port connected to slave station apparatus # 2, and downstream signals of wavelengths λ n and λ 2n are transmitted from the port connected to slave station apparatus #n. ,Output.
 各子局装置30では、リモートノード20から受け取った信号がまず合分波部33へ渡され、合分波部33は、下り信号を抽出して分波部34へ出力する。分波部34では、合分波部33から受け取った信号である複数(本実施の形態では2つ)の下り光信号を、それぞれに対応する受信処理部32-1または32-2へ分配する。そして、各受信処理部では、受け取った下り光信号を電気信号へ変換する処理を含む所定の受信処理を実行する。 In each slave station device 30, the signal received from the remote node 20 is first passed to the multiplexing / demultiplexing unit 33, and the multiplexing / demultiplexing unit 33 extracts the downlink signal and outputs it to the demultiplexing unit 34. The demultiplexing unit 34 distributes a plurality of (two in the present embodiment) downstream optical signals that are signals received from the multiplexing / demultiplexing unit 33 to the corresponding reception processing units 32-1 or 32-2. . Each reception processing unit executes predetermined reception processing including processing for converting the received downstream optical signal into an electrical signal.
 また、各子局装置30が親局装置10へ上りデータを送信する場合の動作について説明する。各子局装置30の送信処理部31は、自子局装置に割り当てられた複数の下り光信号の中の最も波長が長いものからFSR(=n×Δλ)だけ離れた波長の上り光信号を生成し、合分波部33を介してリモートノード20へ送信する。たとえば、子局装置#1では、λn+1の下り光信号からFSR分だけ離れた波長λ2n+1の上り光信号を送信処理部31が生成する。同様に、子局装置#2は、λ2n+2の上り光信号を生成し、子局装置#nは、λ3nの上り光信号を生成する。 The operation when each slave station device 30 transmits uplink data to the master station device 10 will be described. The transmission processing unit 31 of each slave station device 30 receives an upstream optical signal having a wavelength separated by FSR (= n × Δλ) from the longest wavelength among the plurality of downstream optical signals allocated to the local station device. It is generated and transmitted to the remote node 20 via the multiplexing / demultiplexing unit 33. For example, in the slave station device # 1, the transmission processing unit 31 generates an upstream optical signal with a wavelength λ 2n + 1 that is separated from the downstream optical signal with λ n + 1 by FSR. Similarly, the slave station device # 2 generates an upstream optical signal of λ 2n + 2 , and the slave station device #n generates an upstream optical signal of λ 3n .
 リモートノード20では、各子局装置30から受け取った上り光信号がアレイ導波路格子21へ入力される。そして、上述したように、各上り光信号は、下り光信号からFSRだけ離れた波長であるため、各上り光信号は、親局装置10が接続されたポート(光ファイバ)へ出力される。この結果、親局装置10へは複数の上り光信号が多重化された信号が出力される。 In the remote node 20, the upstream optical signal received from each slave station device 30 is input to the arrayed waveguide grating 21. As described above, each upstream optical signal has a wavelength separated from the downstream optical signal by FSR, and therefore each upstream optical signal is output to a port (optical fiber) to which the master station device 10 is connected. As a result, a signal obtained by multiplexing a plurality of upstream optical signals is output to the master station device 10.
 親局装置10では、複数の上り光信号が多重化された上り信号をリモートノード20から受け取ると、その上り信号は合分波部13を介して受信処理部12へ渡され、受信処理部12(図3参照)では、まず、分波部122が多重化を解いて、各上り光信号をそれぞれ対応する光検出部へ分配する。各光検出部では、受け取った上り光信号を上り電気信号に変換して出力する。 In the master station device 10, when an upstream signal in which a plurality of upstream optical signals are multiplexed is received from the remote node 20, the upstream signal is passed to the reception processing unit 12 via the multiplexing / demultiplexing unit 13, and the reception processing unit 12. In (see FIG. 3), first, the demultiplexing unit 122 demultiplexes and distributes each upstream optical signal to the corresponding optical detection unit. Each optical detection unit converts the received upstream optical signal into an upstream electrical signal and outputs it.
 このように、本実施の形態の光通信システムでは、親局装置と複数の子局装置との間にアレイ導波路格子を利用して光信号の分波および合波を行うリモートノードを備え、親局装置は、子局装置に対して、ある波長の光とこの光からアレイ導波路格子の波長周期(FSR)の整数倍だけ離れた波長の光を利用して下りデータを送信することとした。これにより、1つの子局装置に対して2波以上の下り信号を同時送信することができる。また、リモートノードと各子局装置との間の伝送路(光ファイバ)には接続された子局装置が受信すべき下り光信号のみが出力されるので、各子局装置は、自装置に対する下り光信号を抽出するための波長選択フィルタが不要となり、子局装置の低コスト化を実現できる。 As described above, the optical communication system according to the present embodiment includes a remote node that performs demultiplexing and multiplexing of an optical signal using an arrayed waveguide grating between a master station device and a plurality of slave station devices. The master station device transmits downlink data to the slave station device using light having a certain wavelength and light having a wavelength separated from this light by an integral multiple of the wavelength period (FSR) of the arrayed waveguide grating. did. Thereby, two or more downstream signals can be simultaneously transmitted to one slave station device. Further, since only the downstream optical signal to be received by the connected slave station device is output to the transmission path (optical fiber) between the remote node and each slave station device, each slave station device A wavelength selection filter for extracting the downstream optical signal is not necessary, and the cost of the slave station apparatus can be reduced.
 なお、上記説明では、下り信号が2波の場合について説明を行ったが、下り信号の波長数を3波長以上にする場合には、波長数に応じて、子局装置30の分波部34で利用するWDMフィルタを増設し、長波長側または短波長側から順番に下り信号波長を切り出すことによって、多重されたすべての下り信号波長をそれぞれ異なる受信処理部(各波長に対応した受信処理部)へ振り分けるようにする。 In the above description, the case where the downlink signal is two waves has been described. However, when the number of wavelengths of the downlink signal is three or more, the demultiplexing unit 34 of the slave station device 30 is set according to the number of wavelengths. The WDM filter used in the system is expanded, and the downlink signal wavelengths are cut out in order from the long wavelength side or the short wavelength side, so that all the multiplexed downlink signal wavelengths are received by different reception processing units (reception processing units corresponding to the respective wavelengths). ).
実施の形態2.
 つづいて、実施の形態2の光通信システムについて説明する。上述した実施の形態1では、子局装置30の分波部34をWDMフィルタで実現する場合の構成について説明したが、WDMフィルタを利用せずに実現することも可能である。そこで、本実施の形態では、WDMフィルタを利用しない場合の例について説明する。
Embodiment 2. FIG.
Next, the optical communication system according to the second embodiment will be described. In the first embodiment described above, the configuration in the case where the demultiplexing unit 34 of the slave station device 30 is realized by a WDM filter has been described. However, the configuration can be realized without using a WDM filter. Therefore, in the present embodiment, an example in the case where the WDM filter is not used will be described.
 図5は、実施の形態2の光通信システムの構成例を示す図である。本実施の形態の光通信システムは、上述した実施の形態1の光通信システムと比較して、親局装置およびリモートノードの構成は同一であり、子局装置の構成のみが異なる。そのため、本実施の形態では、実施の形態1と異なる部分である子局装置30aについてのみ説明する。なお、実施の形態1で示した子局装置30と同一部分については同じ符号を付与して説明を省略する。 FIG. 5 is a diagram illustrating a configuration example of the optical communication system according to the second embodiment. In the optical communication system according to the present embodiment, the configurations of the master station device and the remote node are the same as those of the optical communication system according to the first embodiment described above, but only the configuration of the slave station device is different. Therefore, in the present embodiment, only the slave station device 30a that is different from the first embodiment will be described. In addition, the same code | symbol is attached | subjected about the same part as the subunit | mobile_unit apparatus 30 shown in Embodiment 1, and description is abbreviate | omitted.
 図5に示したように、子局装置30aは、実施の形態1で示した子局装置30と共通の構成である送信処理部31と、受信処理部32-1および32-2と、合分波部33と、に加え、光パワースプリッタ35と、バンドパスフィルタ36-1および36-2と、を備える。 As shown in FIG. 5, the slave station device 30a includes a transmission processing unit 31, reception processing units 32-1 and 32-2, which have a common configuration with the slave station device 30 shown in the first embodiment. In addition to the demultiplexing unit 33, an optical power splitter 35 and bandpass filters 36-1 and 36-2 are provided.
 光パワースプリッタ35は、複数の下り光信号が多重化された状態の光信号を合分波部33から受け取ると、それらを対応するバンドパスフィルタ36-1または36-2へそれぞれ分配する。 When the optical power splitter 35 receives an optical signal in which a plurality of downstream optical signals are multiplexed from the multiplexing / demultiplexing unit 33, the optical power splitter 35 distributes them to the corresponding bandpass filter 36-1 or 36-2.
 バンドパスフィルタ36-1および36-2は、通過させる光信号の波長が予め設定されており、たとえば、子局装置#1を構成するバンドパスフィルタ36-1および36-2であれば、波長λ1の信号が受信処理部32-1へ、波長λn+1の信号が受信処理部32-2へ入力されるように分配する。 For the bandpass filters 36-1 and 36-2, the wavelength of the optical signal to be transmitted is set in advance. For example, if the bandpass filters 36-1 and 36-2 are included in the slave station device # 1, the wavelength lambda 1 signal to the reception processing section 32-1, distributes as wavelength lambda n + 1 signal is supplied to a reception processing section 32-2.
 なお、システムとしての拡張性を広げるために、バンドパスフィルタ36-1および36-2として、透過波長帯を変更可能な可変バンドパスフィルタを用いるようにしてもよい。また、下り信号の波長数を3波長以上にする場合には、波長数に応じて、子局装置30aにて下り信号数分だけ信号を分割可能な光パワースプリッタと、特定波長の下り光信号のみを通過させる複数のバンドパスフィルタと、を備えた構成として、多重されたすべての下り信号波長をそれぞれ異なる受信処理部(各波長に対応した受信処理部)へ振り分けるようにする。 In order to expand the expandability of the system, variable bandpass filters that can change the transmission wavelength band may be used as the bandpass filters 36-1 and 36-2. Further, when the number of wavelengths of the downlink signal is three or more, an optical power splitter that can divide the signal by the number of downlink signals in the slave station device 30a according to the number of wavelengths, and an downlink optical signal of a specific wavelength As a configuration including a plurality of band-pass filters that pass only the light, all multiplexed downlink signal wavelengths are distributed to different reception processing units (reception processing units corresponding to the respective wavelengths).
 このように、本実施の形態では、子局装置で複数の下り光信号を受信処理部へ振り分けるための構成として光パワースプリッタおよび複数のバンドパスフィルタを利用することとした。これにより、実施の形態1で示した光通信システムと同様の効果を得ることができる。 Thus, in this embodiment, the optical power splitter and the plurality of bandpass filters are used as a configuration for distributing a plurality of downstream optical signals to the reception processing unit in the slave station apparatus. Thereby, the same effect as the optical communication system shown in Embodiment 1 can be acquired.
 以上のように、本発明にかかる光通信システムは、波長分割多重方式を適用した光通信システムに有用であり、特に、1つの子局装置に対して複数波長の下り光信号を同時に送信可能なシステムを実現する場合に適している。 As described above, the optical communication system according to the present invention is useful for an optical communication system to which the wavelength division multiplexing system is applied, and in particular, can transmit optical signals having a plurality of wavelengths simultaneously to one slave station device. Suitable for realizing the system.

Claims (10)

  1.  単一の親局装置と、
     前記親局装置に収容された複数の子局装置と、
     AWGを利用し、前記親局装置から前記各子局装置へ波長分割多重送信された光信号の分波および当該各子局装置から当該親局装置へ送信された光信号の合波を行うリモートノードと、
     を備え、
     前記親局装置は、前記各子局装置へ送信する下り信号として、前記AWGのFSRに基づいて予め決定しておいた波長を有し、同一子局装置に向けて送信する互いに異なる波長の複数の光信号、を当該子局装置ごとに生成することを特徴とする光通信システム。
    A single master station device,
    A plurality of slave station devices accommodated in the master station device;
    Remote using AWG to demultiplex an optical signal wavelength-division-multiplexed and transmitted from the master station device to the slave station devices and to combine optical signals transmitted from the slave station devices to the master station device Nodes,
    With
    The master station device has a wavelength determined in advance based on the FSR of the AWG as a downlink signal to be transmitted to each slave station device, and a plurality of different wavelengths transmitted to the same slave station device. An optical communication system, wherein the optical signal is generated for each slave station device.
  2.  前記同一子局装置に向けて送信する互いに異なる波長の複数の光信号を、前記FSRの整数倍だけ離れた波長の複数の光信号とすることを特徴とする請求項1に記載の光通信システム。 2. The optical communication system according to claim 1, wherein a plurality of optical signals having different wavelengths transmitted toward the same slave station device are a plurality of optical signals having wavelengths separated by an integral multiple of the FSR. .
  3.  前記子局装置は、前記親局装置へ送信する上り信号として、当該親局装置から自装置に向けて送信される複数の光信号の中の最も波長が長い光信号または最も波長が短い光信号を基準信号とし、当該基準信号および前記FSRに基づいて予め決定しておいた波長の光信号を生成することを特徴とする請求項1または2に記載の光通信システム。 The slave station device has an optical signal having the longest wavelength or an optical signal having the shortest wavelength among a plurality of optical signals transmitted from the master station device to the own device as an upstream signal to be transmitted to the master station device. The optical communication system according to claim 1, wherein an optical signal having a wavelength determined in advance based on the reference signal and the FSR is generated.
  4.  前記子局装置は、前記基準信号を前記最も波長が長い光信号とした場合、当該最も波長が長い光信号から前記FSRだけ長波長側に離れた波長の光信号を前記上り信号として生成し、また、前記基準信号を前記最も波長が短い光信号とした場合には、当該最も波長が短い光信号から前記FSRだけ短波長側に離れた波長の光信号を前記上り信号として生成することを特徴とする請求項3に記載の光通信システム。 The slave station device, when the reference signal is the optical signal having the longest wavelength, generates an optical signal having a wavelength separated from the optical signal having the longest wavelength by the FSR to the long wavelength side as the upstream signal, Further, when the reference signal is the optical signal having the shortest wavelength, an optical signal having a wavelength separated from the optical signal having the shortest wavelength by the FSR to the short wavelength side is generated as the upstream signal. The optical communication system according to claim 3.
  5.  複数の子局装置と、AWGを利用し、当該複数の子局装置に向けて波長分割多重送信された光信号の分波および当該各子局装置から送信された光信号の合波を行うリモートノードと、ともに光通信システムを構成する親局装置であって、
     前記AWGのFSRに基づいて予め決定しておいた波長を有し、同一子局装置に向けて送信する互いに異なる波長の複数の光信号、を前記子局装置ごとに生成する光信号生成手段と、
     前記光信号生成手段により生成された各光信号を多重化する多重化手段と、
     を備えることを特徴とする親局装置。
    Remote using a plurality of slave station apparatuses and demultiplexing optical signals transmitted by wavelength division multiplexing toward the plurality of slave station apparatuses and combining optical signals transmitted from the respective slave station apparatuses. A master station device that constitutes an optical communication system together with a node,
    An optical signal generating means for generating, for each of the slave station devices, a plurality of optical signals having wavelengths that are determined in advance based on the FSR of the AWG and transmitted to the same slave station device; ,
    Multiplexing means for multiplexing each optical signal generated by the optical signal generating means;
    A master station device comprising:
  6.  前記同一子局装置に向けて送信する互いに異なる波長の複数の光信号を、前記FSRの整数倍だけ離れた波長の複数の光信号とすることを特徴とする請求項5に記載の親局装置。 6. The master station apparatus according to claim 5, wherein a plurality of optical signals having different wavelengths transmitted to the same slave station apparatus are a plurality of optical signals having wavelengths separated by an integral multiple of the FSR. .
  7.  親局装置と、AWGを利用し、当該親局装置から波長分割多重送信された光信号の分波および当該親局装置に向けて送信された光信号の合波を行うリモートノードと、を含んだ光通信システムを構成する子局装置であって、
     前記親局装置から波長分割多重送信され前記リモートノードを介して受信した信号である複数の光信号の中の最も波長が長い光信号または最も波長が短い光信号を基準信号とし、当該基準信号と前記AWGのFSRとに基づいて予め決定しておいた波長の光信号を前記親局装置へ送信する上り信号として生成する上り信号生成手段、
     を備えることを特徴とする子局装置。
    A master station device, and a remote node that uses AWG to demultiplex an optical signal transmitted from the master station device by wavelength division multiplexing and multiplex an optical signal transmitted to the master station device. A slave station device constituting an optical communication system,
    The optical signal having the longest wavelength or the optical signal having the shortest wavelength among a plurality of optical signals that are signals transmitted from the master station device through wavelength division multiplexing and received via the remote node is used as a reference signal, and the reference signal and Uplink signal generation means for generating an optical signal having a wavelength determined in advance based on the FSR of the AWG as an uplink signal to be transmitted to the master station device,
    A slave station device comprising:
  8.  前記上り信号生成手段は、前記基準信号を前記最も波長が長い光信号とした場合、当該最も波長が長い光信号から前記FSRだけ長波長側に離れた波長の光信号を前記上り信号として生成し、また、前記基準信号を前記最も波長が短い光信号とした場合には、当該最も波長が短い光信号から前記FSRだけ短波長側に離れた波長の光信号を、前記上り信号として生成することを特徴とする請求項7に記載の子局装置。 When the reference signal is the optical signal having the longest wavelength, the upstream signal generating means generates an optical signal having a wavelength separated from the optical signal having the longest wavelength by the FSR to the long wavelength side as the upstream signal. Further, when the reference signal is the optical signal having the shortest wavelength, an optical signal having a wavelength separated from the optical signal having the shortest wavelength by the FSR to the short wavelength side is generated as the upstream signal. The slave station apparatus according to claim 7.
  9.  さらに、
     前記親局装置から波長分割多重送信され前記リモートノードを介して受信した信号である、互いに異なる波長の複数の光信号、に対して波長分割多重フィルタを利用した分波処理を行う分波手段と、
     前記分波手段により分波された後の各光信号に対して所定の受信処理を個別に実行する受信処理手段と、
     を備えることを特徴とする請求項7または8に記載の子局装置。
    further,
    Demultiplexing means for performing demultiplexing processing using a wavelength division multiplexing filter on a plurality of optical signals having different wavelengths, which are signals that are wavelength division multiplexed transmitted from the master station device and received via the remote node; ,
    Receiving processing means for individually executing a predetermined receiving process on each optical signal after being demultiplexed by the demultiplexing means;
    The slave station apparatus according to claim 7 or 8, further comprising:
  10.  さらに、
     前記親局装置から送信され前記リモートノードを介して受信した信号である、互いに異なる波長の複数の光信号、に対して、光パワースプリッタおよび複数のバンドパスフィルタを利用した分波処理を行う分波手段と、
     前記分波手段により分波された後の各光信号に対して所定の受信処理を個別に実行する受信処理手段と、
     を備えることを特徴とする請求項7または8に記載の子局装置。
    further,
    A demultiplexing process using an optical power splitter and a plurality of bandpass filters for a plurality of optical signals having different wavelengths, which are signals transmitted from the master station device and received via the remote node. Wave means,
    Receiving processing means for individually executing a predetermined receiving process on each optical signal after being demultiplexed by the demultiplexing means;
    The slave station apparatus according to claim 7 or 8, further comprising:
PCT/JP2008/056596 2008-04-02 2008-04-02 Optical communication system, master station, and slave station WO2009122577A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/056596 WO2009122577A1 (en) 2008-04-02 2008-04-02 Optical communication system, master station, and slave station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/056596 WO2009122577A1 (en) 2008-04-02 2008-04-02 Optical communication system, master station, and slave station

Publications (1)

Publication Number Publication Date
WO2009122577A1 true WO2009122577A1 (en) 2009-10-08

Family

ID=41134997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/056596 WO2009122577A1 (en) 2008-04-02 2008-04-02 Optical communication system, master station, and slave station

Country Status (1)

Country Link
WO (1) WO2009122577A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013105466A1 (en) * 2012-01-13 2013-07-18 日本電信電話株式会社 Arrayed waveguide grating, optical module provided with said arrayed waveguide, and optical communications system
US11327255B1 (en) 2021-02-09 2022-05-10 Shunyun Technology (Zhong Shan) Limited High-efficiency optical communication module of reduced size

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004222304A (en) * 2003-01-15 2004-08-05 Samsung Electronics Co Ltd Wavelength division multiplexing light source, and passive optical subscriber network system using the same
JP2006025427A (en) * 2004-07-07 2006-01-26 Samsung Electronics Co Ltd Light source for wavelength division multiplexing optical communication, and optical communications system
JP2006113465A (en) * 2004-10-18 2006-04-27 Showa Electric Wire & Cable Co Ltd Waveguide type optical multiplexing/demultiplexing circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004222304A (en) * 2003-01-15 2004-08-05 Samsung Electronics Co Ltd Wavelength division multiplexing light source, and passive optical subscriber network system using the same
JP2006025427A (en) * 2004-07-07 2006-01-26 Samsung Electronics Co Ltd Light source for wavelength division multiplexing optical communication, and optical communications system
JP2006113465A (en) * 2004-10-18 2006-04-27 Showa Electric Wire & Cable Co Ltd Waveguide type optical multiplexing/demultiplexing circuit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013105466A1 (en) * 2012-01-13 2013-07-18 日本電信電話株式会社 Arrayed waveguide grating, optical module provided with said arrayed waveguide, and optical communications system
CN104350400A (en) * 2012-01-13 2015-02-11 日本电信电话株式会社 Arrayed waveguide grating, optical module provided with the arrayed waveguide, and optical communications system
JPWO2013105466A1 (en) * 2012-01-13 2015-05-11 日本電信電話株式会社 Array waveguide diffraction grating, optical module and optical communication system provided with the arrayed waveguide diffraction grating
US9116305B2 (en) 2012-01-13 2015-08-25 Nippon Telegraph And Telephone Corporation Arrayed waveguide grating, optical module provided with said arrayed waveguide grating, and optical communications system
US11327255B1 (en) 2021-02-09 2022-05-10 Shunyun Technology (Zhong Shan) Limited High-efficiency optical communication module of reduced size
TWI766661B (en) * 2021-02-09 2022-06-01 大陸商訊芸電子科技(中山)有限公司 Optical communication module

Similar Documents

Publication Publication Date Title
TWI625948B (en) Twdm passive network with extended reach and capacity
EP2211490B1 (en) Optical network unit, wavelength splitter and optical wavelength-division multiplexing access system
US7483633B2 (en) Optical communication network
US7389048B2 (en) Optical wavelength-division multiple access system and optical network unit
KR100724936B1 (en) Self-healing passive optical network
US20110158650A1 (en) Optical network
US20100021164A1 (en) Wdm pon rf/video broadcast overlay
JP2006217599A (en) Wavelength division multiplexed passive optical subscriber network without crosstalk and method for eliminating crosstalk
JP6034977B2 (en) Remote node device, optical network unit, and system and communication method thereof
JP2010245752A (en) Optical/radio transmitter
JP2009290594A (en) Optical line terminal device
KR20070078620A (en) Hybrid passive optical network
US20050259988A1 (en) Bi-directional optical access network
WO2009122577A1 (en) Optical communication system, master station, and slave station
JP4699413B2 (en) Wavelength multiplexer
JP5846007B2 (en) Subscriber side apparatus registration method and optical network system
JP4541053B2 (en) Optical transmission system
EP2637333B1 (en) Optical TDM Backhauling Network
JP3808464B2 (en) Optical network unit, wavelength splitter, and optical wavelength division multiplexing access system
JP2003234721A (en) Optical communication system
KR100584419B1 (en) Wavelength-division-multiplexing/time-division-multiplexing passive optical network
JP4553236B2 (en) Optical communication method and optical transmission apparatus
JP5255513B2 (en) Composite optical signal multiplexer / demultiplexer and passive optical subscriber system
JP3987447B2 (en) Optical carrier generator, optical modulator, optical signal transmitter / receiver, and optical communication system
KR100703409B1 (en) Broadband light source and passive optical network using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08739707

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 08739707

Country of ref document: EP

Kind code of ref document: A1