WO2009119605A1 - Hydrophilic member - Google Patents

Hydrophilic member Download PDF

Info

Publication number
WO2009119605A1
WO2009119605A1 PCT/JP2009/055854 JP2009055854W WO2009119605A1 WO 2009119605 A1 WO2009119605 A1 WO 2009119605A1 JP 2009055854 W JP2009055854 W JP 2009055854W WO 2009119605 A1 WO2009119605 A1 WO 2009119605A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrophilic
group
layer
composition
hydrophilic polymer
Prior art date
Application number
PCT/JP2009/055854
Other languages
French (fr)
Japanese (ja)
Inventor
智史 田中
純明 山崎
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2009119605A1 publication Critical patent/WO2009119605A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1606Antifouling paints; Underwater paints characterised by the anti-fouling agent
    • C09D5/1637Macromolecular compounds
    • C09D5/165Macromolecular compounds containing hydrolysable groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • F28F2245/02Coatings; Surface treatments hydrophilic

Definitions

  • the present invention relates to a hydrophilic member having excellent antifouling properties, abrasion resistance and hydrophilic sustainability.
  • organic materials such as resin films and inorganic materials such as glass and metal having high hydrophilicity.
  • the adhered water droplets spread uniformly on the substrate surface to form a uniform water film. It is useful for preventing devitrification due to moisture and ensuring visibility in rainy weather.
  • combustion products such as carbon black contained in exhaust gas from automobile dust, automobiles, etc., and hydrophobic pollutants such as oil and fat and sealant elution components are difficult to adhere. Therefore, it is useful for various applications.
  • Non-patent Document 1 A surface hydrophilic coating film using a hydrophilic graft polymer as one of hydrophilic resins has also been proposed (Non-patent Document 1). According to this report, although this coating film has a certain degree of hydrophilicity, it cannot be said that the compatibility with the substrate is sufficient, and higher durability is required.
  • Patent Document 1 discloses that when a photocatalyst-containing layer is formed on the surface of a substrate, the surface is highly hydrophilized in response to photoexcitation of the photocatalyst. This technique is disclosed in glass, lenses, mirrors, and exterior materials. It has been reported that when applied to various composite materials such as water-circulating members, these composite materials can be provided with excellent antifogging and antifouling functions. However, a hydrophilic film using titanium oxide does not have sufficient film strength, and a hydrophilic material having better wear resistance has been demanded.
  • the anti-fogging and anti-fogging properties of the hydrophilic surface with a cross-linked structure by hydrolyzing and condensation-polymerizing the hydrophilic polymer and the alkoxide are focused on the characteristics of the sol-gel organic-inorganic hybrid film. It has been found that it exhibits fouling and has good wear resistance (see Patent Document 2).
  • a hydrophilic surface layer having such a crosslinked structure can be easily obtained by combining a specific hydrophilic polymer having a reactive group at its terminal and a crosslinking agent.
  • Patent Document 3 The technique described in Patent Document 3 is known as a technique for imparting antifouling properties to the substrate surface.
  • a processing fin material is described.
  • further improvements in sustainability such as hydrophilicity and antifouling properties are desired.
  • An object of the present invention is to solve the conventional problems as described above, and to provide a hydrophilic member that is excellent in hydrophilicity, wear resistance, antifouling property, and excellent in sustainability thereof.
  • a hydrophilic layer formed from a hydrophilic composition containing a hydrophilic polymer having a silicon atom having at least one of a hydroxyl group and a hydrolyzable functional group, and further ( a) A hydrophilic member having a low elution layer formed from a composition for a low elution layer containing a hydrophilic polymer having a reactive group.
  • the hydrophilic polymer having a silicon atom having at least one of a hydroxyl group and a hydrolyzable functional group has a structural unit represented by the following general formula (a-2), and has a polymer chain terminal.
  • R 1 to R 13 each independently represents a hydrogen atom or a hydrocarbon group.
  • L 1 to L 4 each independently represents a single bond or a polyvalent organic linking group.
  • x and y represent composition ratios, where x is 0 ⁇ x ⁇ 100 and y is 0 ⁇ y ⁇ 100.
  • n and m each independently represents an integer of 1 to 3.
  • Y 1 and Y 2 are each independently —OH, —OR a , —COR a , —CO 2 R e , —CON (R a ) (R b ), —N (R a ) (R b ), —NHCOR d , —NHCO 2 R a , —OCON (R a ) (R b ), —NHCON (R a ) (R b ), —SO 3 R e , —OSO 3 R e , —SO 2 R d , —NHSO 2 R d , —SO 2 N (R a ) (R b ), —N (R a ) (R b ) (R c ), —N (R a ) (R b ) (R c ) (R c ) g ), —PO 3 (R e ) (R f ), —OPO 3 (R e ) (
  • R a , R b and R c each independently represent a hydrogen atom or an alkyl group
  • R d represents an alkyl group
  • R e and R f each independently represent a hydrogen atom or an alkyl group, an alkali group It represents a metal, an alkaline earth metal, or onium
  • R g represents an alkyl group, a halogen atom, an inorganic anion, or an organic anion. 5).
  • the above-mentioned 1 characterized in that the hydrophilic composition contains (B) a catalyst that promotes the reaction of the hydrophilic polymer having a silicon atom having at least one of the hydroxyl group and the hydrolyzable functional group (A). 5.
  • the hydrophilic member according to any one of 1 to 4. 6). 6. The hydrophilic member as described in 5 above, wherein the catalyst (B) contained in the hydrophilic composition is a non-volatile catalyst. 7). 7. The hydrophilic member as described in any one of 1 to 6 above, wherein the hydrophilic composition contains (C) an alkoxide compound of an element selected from Si, Ti, Zr, and Al. 8). 8. The hydrophilic member as described in any one of 1 to 7 above, wherein an undercoat layer is provided between the substrate and the hydrophilic layer. 9. 9. The hydrophilic member as described in 8 above, wherein the undercoat layer is formed by applying a composition containing (P) a catalyst. 10. 10.
  • the hydrophilic member according to any one of 10. 12 12.
  • the hydrophilic polymer (A1) and the hydrophilic polymer (A2) are included as the hydrophilic polymer having a silicon atom having at least one of a hydroxyl group and a hydrolyzable functional group, and the hydrophilic polymer (A1 ) And the hydrophilic polymer (A2) in a mass ratio (hydrophilic polymer (A1) / hydrophilic polymer (A2)) in the range of 5/95 to 50/50.
  • the hydrophilic member in any one. 14 14.
  • the hydrophilic member which concerns on this invention is provided with the low elution layer which consists of hydrophilic polymers, it has the outstanding hydrophilic property and antifouling property. That is, when a dirt substance adheres to the surface, excellent antifouling properties can be expressed by flowing the low elution layer together with dirt by running water or the like. However, if the low-elution layer elutes easily, long-term antifouling properties cannot be maintained. Forming a coating made of a hydrophilic polymer as such a low-elution layer is not usually used because the degree of cross-linking is not high and there is a concern that it will easily dissolve from the surface.
  • a hydroxyl group and hydrolysis are provided under a low-elution layer obtained from a composition containing a hydrophilic polymer having a reactive group (hereinafter referred to as (a) a hydrophilic polymer).
  • the hydrophilic layer formed from the hydrophilic composition containing the hydrophilic polymer (henceforth (A) hydrophilic polymer) which has a silicon atom which has at least any one of a functional functional group is provided. For this reason, said hydrophilic property and antifouling property can be maintained over a long period of time.
  • the hydrophilic member according to the present invention is (A) a hydrophilic polymer that can form a cross-linked structure, so that it becomes a high-strength film and is excellent in wear resistance.
  • the low elution layer as used in the field of this invention means the layer from which the formed film flows out slowly with flowing water etc., and the elution degree of this low elution layer is a constant temperature of 25 degreeC and 95% RH.
  • the amount of change in the weight of the coating is 1% or more and 50% or less.
  • the elution degree of the low elution layer is 2% or more and 45% or less, more preferably 5% or more and 40% or less.
  • the amount of change in the weight of the coating is determined by the weight of the hydrophilic member provided with the hydrophilic layer and the low-elution layer on the substrate after standing in the thermostatic bath, and the hydrophilic member measured before placing in the thermostatic bath. It is obtained by calculating the difference from the weight and determining the ratio of the low-elution layer to the total weight.
  • the total weight of the low elution layer can be determined from the difference between the weight of the member before forming the low elution layer and the weight of the member after forming the low elution layer.
  • a hydrophilic polymer is dissolved in a suitable solvent and stirred, whereby hydrolysis and polycondensation proceed to obtain a sol-like hydrophilic composition.
  • An organic-inorganic composite film (hydrophilic layer) having a hydrophilic functional group may be formed on the substrate surface by applying the hydrophilic composition to the substrate surface to form a film and drying. it can.
  • the composition for low elution layers containing (a) hydrophilic polymer is apply
  • the hydrophilic composition contains (C) an alkoxide compound of an element selected from Si, Ti, Zr, and Al (hereinafter referred to as (C) an alkoxide compound).
  • C an alkoxide compound
  • crosslinking increases in hydrolysis and polycondensation, and the organic-inorganic composite membrane
  • the hydrophilic member of the present invention can provide a hydrophilic member in which the substrate surface is excellent in hydrophilicity, abrasion resistance, antifouling property and sustainability thereof.
  • the present invention has a hydrophilic layer formed from a hydrophilic composition containing a hydrophilic polymer having a silicon atom having at least one of a hydroxyl group and a hydrolyzable functional group on a substrate, Furthermore, the present invention relates to a hydrophilic member characterized by having a low elution layer formed from a composition for a low elution layer containing a hydrophilic polymer having a reactive group (a).
  • the hydrophilic layer is formed from a hydrophilic composition containing at least (A) a hydrophilic polymer (that is, (A) a hydrophilic polymer having a silicon atom having at least one of a hydroxyl group and a hydrolyzable functional group). . More specifically, (A) the hydrophilic polymer is dissolved in a solvent and stirred well, so that these components are hydrolyzed and polycondensed to form a hydrophilic composition that is an organic-inorganic composite sol solution. can do. And, with this sol solution, a hydrophilic layer having high hydrophilicity and high film strength can be formed.
  • a hydrophilic polymer that is, (A) a hydrophilic polymer having a silicon atom having at least one of a hydroxyl group and a hydrolyzable functional group.
  • the hydrophilic polymer contains a silicon atom having at least one of a hydroxyl group and a hydrolyzable functional group. As such a structure, a silanol group or a hydrolyzable silyl group is preferable.
  • the hydrophilic polymer preferably has a silanol group or a hydrolyzable silyl group at the terminal portion and / or side chain of the polymer.
  • the hydrolyzable silyl group is a group that reacts with water to produce silanol (Si—OH). For example, one or more methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n- This refers to an alkoxy group such as a butoxy group, or a combination of chlorine and the like.
  • the hydrophilic polymer is preferably the following hydrophilic polymer (A1) and / or the following hydrophilic polymer (A2).
  • a hydrophilic polymer (A1) having a structural unit represented by the following general formula (a-2) and having a partial structure represented by the following general formula (a-1) at the end of the polymer chain.
  • a hydrophilic polymer (A2) having a structural unit represented by the following general formula (a-3) and a structural unit represented by the following general formula (a-4).
  • R 1 to R 13 each independently represents a hydrogen atom or a hydrocarbon group.
  • L 1 to L 4 each independently represents a single bond or a polyvalent organic linking group.
  • x and y represent composition ratios, where x is 0 ⁇ x ⁇ 100 and y is 0 ⁇ y ⁇ 100.
  • n and m each independently represents an integer of 1 to 3.
  • Y 1 and Y 2 are each independently —OH, —OR a , —COR a , —CO 2 R e , —CON (R a ) (R b ), —N (R a ) (R b ), —NHCOR d , —NHCO 2 R a , —OCON (R a ) (R b ), —NHCON (R a ) (R b ), —SO 3 R e , —OSO 3 R e , —SO 2 R d , —NHSO 2 R d , —SO 2 N (R a ) (R b ), —N (R a ) (R b ) (R c ), —N (R a ) (R b ) (R c ) (R c ) g ), —PO 3 (R e ) (R f ), —OPO 3 (R e ) (
  • R a , R b and R c each independently represent a hydrogen atom or an alkyl group
  • R d represents an alkyl group
  • R e and R f each independently represent a hydrogen atom or an alkyl group, an alkali group It represents a metal, an alkaline earth metal, or onium
  • R g represents an alkyl group, a halogen atom, an inorganic anion, or an organic anion.
  • R 1 to R 13 represent a hydrocarbon group
  • the hydrocarbon group is preferably a hydrocarbon group having 1 to 8 carbon atoms, and examples thereof include an alkyl group and an aryl group, and a straight chain having 1 to 8 carbon atoms.
  • a branched or cyclic alkyl group is preferred.
  • R 1 , R 2 , R 12 and R 13 are preferably a methyl group, an ethyl group, a propyl group or an isopropyl group from the viewpoints of effects and availability.
  • R 3 to R 5 and R 6 to R 11 are preferably a hydrogen atom, a methyl group or an ethyl group from the viewpoints of effects and availability.
  • hydrocarbon groups may further have a substituent.
  • the substituted alkyl group is composed of a bond between the substituent and the alkylene group.
  • the substituent a monovalent nonmetallic atomic group excluding hydrogen is used.
  • Preferred examples include halogen atoms (—F, —Br, —Cl, —I), hydroxyl groups, alkoxy groups, aryloxy groups, mercapto groups, alkylthio groups, arylthio groups, alkyldithio groups, aryldithio groups, amino groups, N-alkylamino group, N, N-diarylamino group, N-alkyl-N-arylamino group, acyloxy group, carbamoyloxy group, ⁇ ⁇ ⁇ -alkylcarbamoyloxy group, N-arylcarbamoyloxy group, N, N-dialkyl Carbamoyloxy group, N, N-diarylcarbamoyloxy group, N-alkyl-N-reelcarbamoyloxy group, alkylsulfoxy group, arylsulfoxy group, acylthio group, acylamino group, N
  • alkyl group in these substituents include the above-described alkyl groups
  • aryl group include a phenyl group, a biphenyl group, a naphthyl group, a tolyl group, a xylyl group, a mesityl group, Cumenyl group, chlorophenyl group, bromophenyl group, chloromethylphenyl group, hydroxyphenyl group, methoxyphenyl group, ethoxyphenyl group, phenoxyphenyl group, acetoxyphenyl group, benzoyloxyphenyl group, methylthiophenyl group, phenylthiophenyl group, Methylaminophenyl group, dimethylaminophenyl group, acetylaminophenyl group, carboxyphenyl group, methoxycarbonylphenyl group, ethoxyphenylcarbonyl group, phenoxycarbonylphenyl
  • alkenyl groups include vinyl, 1-propenyl, 1-butenyl, cinnamyl, 2-chloro-1-ethenyl, etc.
  • alkynyl examples include ethynyl, 1-butenyl, Examples include propynyl group, 1-butynyl group, trimethylsilylethynyl group and the like.
  • G 1 in the acyl group examples include hydrogen and the above alkyl groups and aryl groups.
  • halogen atoms (—F, —Br, —Cl, —I), alkoxy groups, aryloxy groups, alkylthio groups, arylthio groups, N-alkylamino groups, N, N-dialkyls.
  • acyloxy group N-alkylcarbamoyloxy group, N-arylcarbamoyloxy group, acylamino group, formyl group, acyl group, carboxyl group, alkoxycarbonyl group, aryloxycarbonyl group, carbamoyl group, N-alkylcarbamoyl group N, N-dialkylcarbamoyl group, N-arylcarbamoyl group, N-alkyl-N-arylcarbamoyl group, sulfo group, sulfonate group, sulfamoyl group, N-alkylsulfamoyl group, N, N-dialkylsulfamoyl group Group, N-arylsulfamo Group, N-alkyl-N-arylsulfamoyl group, phosphono group, phosphonate group, dialkyl phosphono group, diaryl phosphono group
  • examples of the alkylene group in the substituted alkyl group include divalent organic residues obtained by removing any one of the hydrogen atoms on the alkyl group having 1 to 20 carbon atoms.
  • Can include linear alkylene groups having 1 to 12 carbon atoms, branched chains having 3 to 12 carbon atoms, and cyclic alkylene groups having 5 to 10 carbon atoms.
  • Preferable specific examples of the substituted alkyl group obtained by combining the substituent and the alkylene group are chloromethyl group, bromomethyl group, 2-chloroethyl group, trifluoromethyl group, methoxymethyl group, methoxyethoxyethyl group, allyl group.
  • Chlorophenoxycarbonylmethyl group carbamoylmethyl group, N-methylcarbamoylethyl group, N, N-dipropylcarbamoylmethyl group, N- (methoxyphenyl) carbamoylethyl group, N-methyl-N- (sulfophenyl) carbamoylmethyl group , Sulfobutyl group, sulfonatobutyl group, sulfamoylbutyl group, N-ethylsulfamoylmethyl group, N, N-dipropylsulfamoylpropyl group, N-tolylsulfamoylpropyl group, N-methyl-N- (phos Phonophenyl) sulfamoyloctyl, phosphonobutyl, phosphonatohexyl, diethylphosphonobutyl, diphenylphosphonopropyl, methylphosphon
  • L 1 to L 4 each independently represents a single bond or a polyvalent organic linking group.
  • the single bond means that the main chain of the polymer and -SiR 1 3-n (OR 2 ) n , -SiR 13 3-m (OR 12 ) m , Y 1 , Y 2 are directly bonded without a linking chain.
  • the organic linking group is a linking group composed of a nonmetallic atom, preferably a divalent linking group composed of a nonmetallic atom, preferably 0 to 200 carbon atoms, 0 to 150 nitrogen atoms.
  • the linking group is selected from —O—, —S—, —CO—, —NH—, and combinations thereof. More specific examples of the linking group include the following linking groups or linking groups constituted by combining these.
  • L 1 to L 4 may be formed of a polymer or an oligomer, and specifically, preferably include polyacrylate, polymethacrylate, polyacrylonitrile, polyvinyl, polystyrene, and the like made of an unsaturated double bond monomer.
  • Other preferred examples include poly (oxyalkylene), polyurethane, polyurea, polyester, polyamide, polyimide, polycarbonate, polyamino acid, polysiloxane, etc., preferably polyacrylate, polymethacrylate, polyacrylonitrile, polyvinyl, polystyrene More preferred are polyacrylates and polymethacrylates.
  • the structural unit used for these polymers and oligomers may be one type or two or more types.
  • L 1 to L 4 are polymers or oligomers, the number of constituent elements is not particularly limited, and the molecular weight is preferably 1,000 to 1,000,000, more preferably 1,000 to 500,000. 000 to 200,000 is most preferred.
  • x and y represent composition ratios, where x is 0 ⁇ x ⁇ 100 and y is 0 ⁇ y ⁇ 100.
  • x is preferably in the range of 10 ⁇ x ⁇ 99, and more preferably in the range of 50 ⁇ x ⁇ 99.
  • y is preferably in the range of 1 ⁇ y ⁇ 90, more preferably in the range of 1 ⁇ y ⁇ 50.
  • n and m each independently represents an integer of 1 to 3.
  • Y 1 and Y 2 are each independently —OH, —OR a , —COR a , —CO 2 R e , —CON (R a ) (R b ), —N (R a ) (R b ), —NHCOR d , —NHCO 2 R a , —OCON (R a ) (R b ), —NHCON (R a ) (R b ), —SO 3 R e , —OSO 3 R e , —SO 2 R d , —NHSO 2 R d , —SO 2 N (R a ) (R b ), —N (R a ) (R b ) (R c ), —N (R a ) (R b ) (R c ) (R c ) (R g ), —PO 3 (R e ) (R f ), —OPO 3 (R e
  • R a , R b and R c each independently represent a hydrogen atom or an alkyl group (preferably a linear, branched or cyclic alkyl group having 1 to 8 carbon atoms), and R d represents an alkyl group ( Preferably represents a linear, branched or cyclic alkyl group having 1 to 8 carbon atoms, and R e and R f each independently represents a hydrogen atom or an alkyl group (preferably a linear, branched or branched group having 1 to 8 carbon atoms).
  • R a to R g may be bonded to each other to form a ring, and the formed ring is an oxygen atom, sulfur atom, nitrogen It may be a heterocycle containing a heteroatom such as an atom.
  • R a to R g may further have a substituent, and examples of the substituent that can be introduced here include those mentioned above as the substituents that can be introduced.
  • R a , R b or R c include a hydrogen atom, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, isopropyl group, isobutyl group, and s-butyl.
  • Preferred examples include a group, t-butyl group, isopentyl group, neopentyl group, 1-methylbutyl group, isohexyl group, 2-ethylhexyl group, 2-methylhexyl group, and cyclopentyl group.
  • R d examples include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, isopropyl, isobutyl, s-butyl, t-butyl, and isopentyl.
  • Preferred examples include a group, neopentyl group, 1-methylbutyl group, isohexyl group, 2-ethylhexyl group, 2-methylhexyl group, cyclopentyl group and the like.
  • R e specifically as R f, in addition to the alkyl groups mentioned R d, a hydrogen atom; lithium, sodium, alkali metals such as potassium, calcium, alkaline earth such as barium metal, or ammonium, Examples include onium such as iodonium and sulfonium.
  • R d to R f may be bonded to each other to form a ring, and the formed ring may be a hetero ring containing a hetero atom such as an oxygen atom, a sulfur atom, or a nitrogen atom.
  • R d to R f may further have a substituent, and examples of the substituent that can be introduced here include those mentioned above as the substituents that can be introduced.
  • R g include a hydrogen atom; a halogen atom such as a fluorine atom, a chlorine atom or a bromine atom; a nitrate anion, a sulfate anion, or a tetrafluoroborate anion, in addition to the alkyl groups listed as R a to R c
  • Inorganic anions such as hexafluorophosphate anion, and organic anions such as methanesulfonic acid anion, trifluoromethanesulfonic acid anion, nonafluorobutanesulfonic acid anion, and p-toluenesulfonic acid anion.
  • Y 1 and Y 2, -CO 2 - Na +, -CONH 2, -SO 3 - Na +, -SO 2 NH 2, -PO 3 H 2 and the like are preferable.
  • the molecular weight of the hydrophilic polymer is preferably 1,000 to 1,000,000, more preferably 1,000 to 500,000, and most preferably 1,000 to 200,000.
  • the aforementioned hydrophilic polymer (A) may be used alone or in combination of two or more.
  • the mass ratio of the hydrophilic polymer (A1) and the hydrophilic polymer (A2) contained in the hydrophilic composition (hydrophilic polymer (A1 ) / Hydrophilic polymer (A2)) is preferably in the range of 5/95 to 50/50.
  • the ratio is more preferably 8/92 to 45/55, and further preferably 10/90 to 40/60.
  • hydrophilic polymer (A1) and specific examples of the hydrophilic polymer (A2) are shown below together with their mass average molecular weights (MW), but the present invention is not limited thereto.
  • polymer of the specific example shown below means that it is a random copolymer in which each structural unit described is contained by the described molar ratio.
  • radical polymerization is performed using a radical-polymerizable monomer represented by the structural unit and a compound having a chain transfer ability in radical polymerization, or a radical initiator. Can be synthesized. That is, in the latter, since the compound having a reactive group has chain transfer ability or radical initiation ability, it is possible to synthesize a polymer having a reactive group introduced at the end of the polymer main chain in radical polymerization.
  • the polymerization method of the hydrophilic polymer (A2) any of the conventionally known methods can be used as the radical polymerization method. This reaction mode is not particularly limited, but bulk reaction, solution reaction, suspension reaction, etc.
  • radical polymerization methods include, for example, New Polymer Experimental Science 3, Polymer Synthesis and Reaction 1 (Edited by the Society of Polymer Science, Kyoritsu Shuppan), New Experimental Chemistry Course 19, Polymer Chemistry (I) (The Chemical Society of Japan, Maruzen), Materials Engineering, Synthetic Polymer Chemistry (Tokyo Denki University Press), etc., can be applied.
  • the hydrophilic polymer may be a copolymer with another monomer.
  • examples of other monomers include known acrylic esters, methacrylic esters, acrylamides, methacrylamides, vinyl esters, styrenes, acrylic acid, methacrylic acid, acrylonitrile, maleic anhydride, maleic imide, and the like. These monomers are also included.
  • By copolymerizing such monomers various physical properties such as film forming property, film strength, hydrophilicity, hydrophobicity, solubility, reactivity, and stability can be improved.
  • the total proportion of these other monomers used for the synthesis of the copolymer other than the structural unit represented by the general formula is preferably 80% by mass or less, and more preferably 50% by mass or less.
  • the hydrophilic polymer is preferably 5 to 95% by mass, more preferably 15 to 90% by mass, and most preferably 20% from the viewpoint of curability and hydrophilicity with respect to the non-volatile component of the hydrophilic composition. It is contained in the range of ⁇ 85% by mass.
  • a hydrophilic polymer may be used by 1 type, or may be used together 2 or more types. *
  • the hydrophilic composition preferably contains (B) a catalyst that promotes the reaction of the hydrophilic polymer (A).
  • B) a catalyst By containing a catalyst, in preparation of the above-mentioned organic-inorganic composite sol liquid, a hydrolysis and a polycondensation reaction are accelerated
  • the catalyst is preferably a non-volatile catalyst.
  • the non-volatile catalyst means a catalyst having a boiling point other than 125 ° C., in other words, a catalyst having a boiling point of 125 ° C. or higher, or a catalyst having no boiling point in the first place (such as thermal decomposition, phase change). Including things that do not wake up).
  • the (B) catalyst uses an acidic catalyst or a basic catalyst that promotes a reaction that hydrolyzes and polycondenses the (C) alkoxide compound described later, and (A) causes a bond with the hydrophilic polymer. it can.
  • the acidic catalyst or basic catalyst is an acid compound or basic compound used as it is, or in a state where the acidic compound or basic compound is dissolved in a solvent such as water or alcohol (hereinafter, these are all included, respectively)
  • An acidic catalyst or a basic catalyst may also be used.
  • the concentration at which the acidic compound or basic compound is dissolved in the solvent is not particularly limited, and may be appropriately selected according to the characteristics of the acidic compound or basic compound used, the desired content of the catalyst, and the like.
  • the concentration of the acidic compound or basic compound constituting the catalyst is high, the hydrolysis and polycondensation rates tend to increase.
  • a basic catalyst having a high concentration is used, a precipitate may be generated in the sol solution. Therefore, when a basic catalyst is used, the concentration is preferably 1 N or less in terms of concentration in an aqueous solution.
  • the kind of the acidic catalyst and the basic catalyst is not particularly limited. However, when it is necessary to use a catalyst having a high concentration, a catalyst composed of elements that hardly remain in the coating film after drying is preferable.
  • the acidic catalyst is represented by hydrogen halide such as hydrochloric acid, nitric acid, sulfuric acid, sulfurous acid, hydrogen sulfide, perchloric acid, hydrogen peroxide, carbonic acid, carboxylic acid such as formic acid or acetic acid, and its RCOOH. Examples thereof include substituted carboxylic acids in which R in the structural formula is substituted with other elements or substituents, and sulfonic acids such as benzenesulfonic acid.
  • the basic catalyst include ammoniacal bases such as aqueous ammonia and amines such as ethylamine and aniline.
  • a Lewis acid catalyst comprising a metal complex can also be preferably used.
  • Particularly preferred catalysts are metal complex catalysts, metal elements selected from groups 2A, 3B, 4A and 5A of the periodic table and ⁇ -diketones, ketoesters, hydroxycarboxylic acids or their esters, amino alcohols, enolic active hydrogen compounds It is a metal complex comprised from the oxo or hydroxy oxygen containing compound chosen from these.
  • 2A group elements such as Mg, Ca, Sr and Ba
  • 3B group elements such as Al and Ga
  • 4A group elements such as Ti and Zr
  • 5A group elements such as V, Nb and Ta are preferable.
  • the oxo or hydroxy oxygen-containing compound constituting the ligand of the above metal complex includes ⁇ diketones such as acetylacetone (2,4-pentanedione) and 2,4-heptanedione, methyl acetoacetate, ethyl acetoacetate, butyl acetoacetate
  • ketoesters such as lactic acid, methyl lactate, salicylic acid, ethyl salicylate, phenyl salicylate, malic acid, tartaric acid, methyl tartrate and the like
  • 4-hydroxy-4-methyl-2-pentanone 4-hydroxy- Ketoalcohols such as 2-pentanone, 4-hydroxy-4-methyl-2-heptanone, 4-hydroxy-2-heptanone, monoethanolamine, N, N-dimethylethanolamine, N-methyl-monoethanolamine, diethanolamine , Trietano Amino alcohols such as amines, methylol melamine, methylol urea
  • a preferred ligand is an acetylacetone derivative.
  • An acetylacetone derivative refers to a compound having a substituent on the methyl group, methylene group or carbonyl carbon of acetylacetone.
  • Substituents for substitution on the methyl group of acetylacetone are all straight-chain or branched alkyl groups having 1 to 3 carbon atoms, acyl groups, hydroxyalkyl groups, carboxyalkyl groups, alkoxy groups, alkoxyalkyl groups, and acetylacetone
  • the substituents that substitute for the methylene group are carboxyl groups, both straight-chain or branched carboxyalkyl groups and hydroxyalkyl groups having 1 to 3 carbon atoms, and the substituents that substitute for the carbonyl carbon of acetylacetone are carbon atoms.
  • acetylacetone derivatives include ethylcarbonylacetone, n-propylcarbonylacetone, i-propylcarbonylacetone, diacetylacetone, 1-acetyl-1-propionyl-acetylacetone, hydroxyethylcarbonylacetone, hydroxypropylcarbonylacetone, acetoacetic acid Acetopropionic acid, diacetacetic acid, 3,3-diacetpropionic acid, 4,4-diacetbutyric acid, carboxyethylcarbonylacetone, carboxypropylcarbonylacetone, diacetone alcohol.
  • acetylacetone and diacetylacetone are particularly preferred.
  • the complex of the above acetylacetone derivative and the above metal element is a mononuclear complex in which 1 to 4 molecules of the acetylacetone derivative are coordinated per metal element, and the coordinateable bond of the acetylacetone derivative is the coordinateable bond of the metal element.
  • ligands commonly used for ordinary complexes such as water molecules, halogen ions, nitro groups, and ammonio groups may coordinate.
  • Examples of preferred metal complexes include tris (acetylacetonato) aluminum complex, di (acetylacetonato) aluminum / aco complex, mono (acetylacetonato) aluminum / chloro complex, di (diacetylacetonato) aluminum complex, ethylacetate Acetate aluminum diisopropylate, aluminum tris (ethylacetoacetate), cyclic aluminum oxide isopropylate, tris (acetylacetonato) barium complex, di (acetylacetonato) titanium complex, tris (acetylacetonato) titanium complex, di-i -Propoxy bis (acetylacetonato) titanium complex salt, zirconium tris (ethyl acetoacetate), zirconium tris (benzoic acid) complex salt, etc.
  • ethyl acetoacetate aluminum diisopropylate aluminum tris (ethyl acetoacetate), di ( Acetylacetonato) titanium complex and zirconium tris (ethylacetoacetate) are preferred.
  • the type of the counter salt is arbitrary as long as it is a water-soluble salt that maintains the neutrality of the charge as the complex compound, such as nitrate, Salt forms such as halogenates, sulfates, phosphates, etc. that ensure stoichiometric neutrality are used.
  • nitrate nitrate
  • Salt forms such as halogenates, sulfates, phosphates, etc. that ensure stoichiometric neutrality are used.
  • the metal complex takes a coordination structure and is stable, and in the dehydration condensation reaction that starts in the heat drying process after coating, it is considered that crosslinking is promoted by a mechanism similar to an acid catalyst.
  • this metal complex it is possible to satisfy the improvement of coating solution aging stability and film surface quality, and high hydrophilicity and high durability.
  • the above-mentioned metal complex catalyst can be easily obtained as a commercial product, and can also be obtained by a known synthesis method, for example, reaction of each metal chloride with alcohol.
  • the catalyst is preferably used in the range of 0 to 50% by mass, more preferably 5 to 25% by mass with respect to the non-volatile component in the hydrophilic composition. Moreover, (B) catalyst may be used independently or may be used together 2 or more types.
  • the hydrophilic composition preferably contains (C) an alkoxide compound (that is, (C) an alkoxide compound of an element selected from Si, Ti, Zr, and Al).
  • the alkoxide compound is preferably a hydrolytic polymerizable compound having a polymerizable functional group in its structure and functioning as a crosslinking agent.
  • a (C) alkoxide compound is contained in the hydrophilic composition together with the (A) hydrophilic polymer, when the hydrophilic composition is applied to the substrate surface and heated and dried, (A) hydrophilic The polymerizable polymer and the (C) alkoxide compound can be polycondensed to form a firm film having a crosslinked structure.
  • the alkoxide compound is preferably a compound represented by the following general formula (3) or (4).
  • R 20 represents a hydrogen atom, an alkyl group or an aryl group
  • R 21 represents an alkyl group or an aryl group
  • Z represents Si, Ti or Zr
  • k represents 0 to Represents an integer of 2.
  • the number of carbon atoms when R 20 and R 21 represent an alkyl group is preferably 1 to 4.
  • the alkyl group or aryl group may have a substituent, and examples of the substituent that can be introduced include a halogen atom, an amino group, and a mercapto group.
  • This compound is a low molecular compound and preferably has a molecular weight of 1000 or less.
  • the specific alkoxide containing silicon includes, for example, trimethoxysilane, triethoxysilane, tripropoxysilane, tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, methyltrimethoxysilane, Ethyltrimethoxysilane, propyltrimethoxysilane, methyltriethoxysilane, ethyltriethoxysilane, propyltriethoxysilane, dimethyldimethoxysilane, diethyldiethoxysilane, ⁇ -chloropropyltriethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -mercaptopropyltriethoxysilane, ⁇ -a
  • tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, ethyltrimethoxysilane, methyltriethoxysilane, ethyltriethoxysilane, dimethyldiethoxysilane, phenyltrimethoxysilane, phenyltriethoxy are particularly preferable.
  • Examples include silane, diphenyldimethoxysilane, diphenyldiethoxysilane, and the like.
  • Z is Ti
  • those containing titanium include, for example, trimethoxy titanate, tetramethoxy titanate, triethoxy titanate, tetraethoxy titanate, tetrapropoxy titanate, chlorotrimethoxy titanate, chlorotriethoxy titanate, ethyl triethoxy titanate.
  • the one containing zirconium can include, for example, zirconates corresponding to the compounds exemplified as those containing titanium.
  • zirconates corresponding to the compounds exemplified as those containing titanium examples include trimethoxy aluminate, triethoxy aluminate, tripropoxy aluminate, tetraethoxy aluminate and the like. it can.
  • alkoxides in which Z is Si are preferable from the viewpoint of film properties.
  • the (C) alkoxide compound is used in the hydrophilic composition in an amount of preferably 5 to 80% by mass, more preferably 10 to 70% by mass, based on the nonvolatile component.
  • An alkoxide compound may be used independently or may be used together 2 or more types.
  • the alkoxide compound can be easily obtained as a commercial product, and can also be obtained by a known synthesis method, for example, reaction of each metal chloride with an alcohol.
  • hydrophilic composition various compounds can be used in combination with the essential components as long as the effects of the present invention are not impaired in addition to the essential components.
  • components that can be used in combination will be described.
  • surfactant It is preferable to use a surfactant in order to improve the surface state of the hydrophilic composition.
  • the surfactant include nonionic surfactants, anionic surfactants, cationic surfactants, amphoteric surfactants, and fluorosurfactants.
  • the nonionic surfactant used in the present invention is not particularly limited, and conventionally known nonionic surfactants can be used.
  • nonionic surfactants can be used.
  • polyoxyethylene alkyl ethers polyoxyethylene alkyl phenyl ethers, polyoxyethylene polystyryl phenyl ethers, polyoxyethylene polyoxypropylene alkyl ethers, glycerin fatty acid partial esters, sorbitan fatty acid partial esters, pentaerythritol Fatty acid partial esters, propylene glycol mono fatty acid esters, sucrose fatty acid partial esters, polyoxyethylene sorbitan fatty acid partial esters, polyoxyethylene sorbitol fatty acid partial esters, polyethylene glycol fatty acid esters, polyglycerin fatty acid partial esters, Polyoxyethylenated castor oil, polyoxyethylene glycerin fatty acid partial esters, fatty acid diethanolamides, N N- bis-2-hydroxyalky
  • the anionic surfactant used in the present invention is not particularly limited, and conventionally known anionic surfactants can be used.
  • anionic surfactants can be used.
  • the cationic surfactant used in the present invention is not particularly limited, and conventionally known cationic surfactants can be used. Examples thereof include alkylamine salts, quaternary ammonium salts, polyoxyethylene alkylamine salts, and polyethylene polyamine derivatives.
  • the amphoteric surfactant used in the present invention is not particularly limited, and conventionally known amphoteric surfactants can be used. Examples thereof include carboxybetaines, aminocarboxylic acids, sulfobetaines, aminosulfuric acid esters, and imidazolines.
  • polyoxyethylene can be read as “polyoxyalkylene” such as polyoxymethylene, polyoxypropylene, polyoxybutylene, etc. These surfactants can also be used.
  • More preferable surfactants include fluorine-based surfactants containing a perfluoroalkyl group in the molecule.
  • fluorosurfactants include anionic types such as perfluoroalkyl carboxylates, perfluoroalkyl sulfonates, and perfluoroalkyl phosphates; amphoteric types such as perfluoroalkyl betaines; Cation type such as trimethylammonium salt; perfluoroalkylamine oxide, perfluoroalkylethylene oxide adduct, oligomer containing perfluoroalkyl group and hydrophilic group, oligomer containing perfluoroalkyl group and lipophilic group, perfluoroalkyl Nonionic types such as an oligomer containing a group, a hydrophilic group and a lipophilic group, and a urethane containing a perfluoroalkyl group and a lipophilic group.
  • fluorine-based surfact
  • the surfactant is preferably used in the hydrophilic film forming composition in the range of 0.001 to 10% by mass, more preferably 0.01 to 5% by mass with respect to the nonvolatile component. Moreover, surfactant can be used individually or in combination of 2 or more types.
  • an antibacterial agent can be contained in the hydrophilic composition.
  • a hydrophilic / water-soluble antibacterial agent By including a hydrophilic / water-soluble antibacterial agent, a hydrophilic member having excellent antibacterial, antifungal and antialgal properties can be obtained without impairing surface hydrophilicity.
  • the antibacterial agent it is preferable to use a compound that does not lower the hydrophilicity of the hydrophilic member. Examples of such an antibacterial agent include inorganic antibacterial agents and water-soluble organic antibacterial agents.
  • antibacterial agent those exhibiting a bactericidal effect against fungi existing around us, such as bacteria represented by Staphylococcus aureus and Escherichia coli, fungi such as fungi and yeast, and the like are used.
  • organic antibacterial agents include phenol ether derivatives, imidazole derivatives, sulfone derivatives, N-haloalkylthio compounds, anilide derivatives, pyrrole derivatives, quaternary ammonium salts, pyridines, triazines, benzoisothiazolines, and isothiazolines. It is done.
  • organic antibacterial agents can be appropriately selected and used in consideration of hydrophilicity, water resistance, sublimation property, safety and the like.
  • organic antibacterial agents 2-bromo-2-nitro-1,3-propanediol, TBZ, BCM, OBPA, and ZPT are preferable from the viewpoint of hydrophilicity, antibacterial effect, and cost.
  • inorganic antibacterial agents include mercury, silver, copper, zinc, iron, lead, bismuth and the like in descending order of bactericidal action.
  • supported metals and metal ions such as silver, copper, zinc, nickel, on the silicate type
  • Natural antibacterial agents include chitosan, a basic polysaccharide obtained by hydrolyzing chitin contained in crabs and shrimp shells. Also, Nikko's “trade name Holon Killer Bees Sera” made of amino metal in which metal is compounded on both sides of amino acid is preferable. These are not transpirationable, easily interact with the polymer and crosslinker component of the hydrophilic layer, can be stably dispersed in a molecule or solid, and the antibacterial agent is easily exposed effectively on the hydrophilic layer surface. And even if it splashes with water, it does not elute, can maintain the effect for a long time, and does not affect the human body.
  • silver-based inorganic antibacterial agents and water-soluble organic antibacterial agents are most preferable because of their great antibacterial effects.
  • silver zeolite with silver supported on zeolite silicate carrier, antibacterial agent with silver supported on silica gel, 2-bromo-2-nitro-1,3-propanediol, TPN, TBZ, BCM, OBPA ZPT is preferred.
  • Particularly preferred commercially available silver zeolite antibacterial agents include “Zeomic” by Shinagawa Fuel, “Sylwell” by Fuji Silysia Chemical, and “Bactenone” by JEOL.
  • Novalon manufactured by Toa Gosei, in which silver is supported on an inorganic ion exchanger ceramic, “Atomy Ball” manufactured by Catalytic Chemical Industry, and “Sun Eyebac P” (manufactured by Sanai Oil), a triazine antibacterial agent are also preferable.
  • the content of the antibacterial agent is generally 0.001 to 10% by mass, preferably 0.005 to 5% by mass, based on the non-volatile component in the hydrophilic composition. Is more preferably from 3 to 3% by weight, particularly preferably from 0.02 to 1.5% by weight, most preferably from 0.05 to 1% by weight. If the content is 0.001% by mass or more, an effective antibacterial effect can be obtained. Further, if the content is 10% by mass or less, the hydrophilicity is not lowered, the aging is not deteriorated, and the antifouling property and the antifogging property are not adversely affected.
  • the hydrophilic composition may contain inorganic fine particles for the purpose of improving the cured film strength and hydrophilicity of the hydrophilic film to be formed.
  • inorganic fine particles for example, silica, alumina, magnesium oxide, titanium oxide, magnesium carbonate, calcium alginate, or a mixture thereof is preferably exemplified.
  • the inorganic fine particles preferably have an average particle diameter of 5 nm to 10 ⁇ m, more preferably 0.5 to 3 ⁇ m. Within the above range, it is possible to form a film that is stably dispersed in the hydrophilic layer, sufficiently retains the film strength of the hydrophilic layer, and is excellent in hydrophilicity.
  • the inorganic fine particles as described above can be easily obtained as a commercial product such as a colloidal silica dispersion.
  • the inorganic fine particles are used in the hydrophilic composition in an amount of preferably 20% by mass or less, more preferably 10% by mass or less, based on the nonvolatile components.
  • the inorganic fine particles can be used alone or in combination of two or more.
  • an ultraviolet absorber can be added to the hydrophilic composition.
  • the ultraviolet absorber are described in JP-A Nos. 58-185677, 61-190537, JP-A-2-782, JP-A-5-197075, JP-A-9-34057, and the like.
  • Benzotriazole compounds, benzophenone compounds described in JP-A-46-2784, JP-A-5-194443, US Pat. No.
  • JP-B-48-30492 JP-A-56-21141 Cinnamic acid compounds described in JP-A-10-88106, JP-A-4-298503, JP-A-8-53427, JP-A-8-239368, JP-A-10-182621, JP
  • the addition amount is appropriately selected according to the purpose, but generally it is preferably 0.5 to 15% by mass in terms of solid content.
  • an antioxidant can be added to the hydrophilic composition.
  • the antioxidant include European published patents, 223739, 309401, 309402, 310551, 310552, 359416, and 3435443.
  • the addition amount is appropriately selected according to the purpose, but is preferably 0.1 to 8% by mass in terms of solid content.
  • solvent examples include ketone solvents such as acetone, methyl ethyl ketone, and diethyl ketone, alcohol solvents such as methanol, ethanol, 2-propanol, 1-propanol, 1-butanol, and tert-butanol, and chlorine such as chloroform and methylene chloride.
  • ketone solvents such as acetone, methyl ethyl ketone, and diethyl ketone
  • alcohol solvents such as methanol, ethanol, 2-propanol, 1-propanol, 1-butanol, and tert-butanol
  • chlorine such as chloroform and methylene chloride.
  • Solvents aromatic solvents such as benzene and toluene, ester solvents such as ethyl acetate, butyl acetate and isopropyl acetate, ether solvents such as diethyl ether, tetrahydrofuran and dioxane, glycols such as ethylene glycol monomethyl ether and ethylene glycol dimethyl ether And ether solvents.
  • VOC volatile organic solvent
  • Polymer compound In order to adjust the film properties of the hydrophilic layer, various polymer compounds can be added to the hydrophilic composition as long as the hydrophilicity is not inhibited.
  • High molecular compounds include acrylic polymer, polyvinyl alcohol resin, polyvinyl butyral resin, polyurethane resin, polyamide resin, polyester resin, epoxy resin, phenol resin, polycarbonate resin, polyvinyl formal resin, shellac, vinyl resin, acrylic resin. Rubber resins, waxes and other natural resins can be used. Two or more of these may be used in combination. Of these, vinyl copolymer obtained by copolymerization of acrylic monomers is preferred. Furthermore, a copolymer containing “carboxyl group-containing monomer”, “methacrylic acid alkyl ester” or “acrylic acid alkyl ester” as a structural unit is also preferably used.
  • tackifier specifically, a high molecular weight adhesive polymer (for example, (meth) acrylic acid and an alkyl group having 1 to 20 carbon atoms) described in JP-A-2001-49200, 5-6p.
  • the hydrophilic composition can contain zirconia chlorides, nitrates, alkoxides and organic complexes from the viewpoints of wear resistance, acid resistance and alkali resistance.
  • zirconium nitrate include zirconium oxynitrate (dihydrate).
  • zirconium alkoxide examples include zirconium ethoxide, zirconium propoxide, zirconium isopropoxide, zirconium butoxide, zirconium t-butoxide and the like.
  • organic complex examples include acetylacetone derivatives, specifically tetrakis (acetylacetonato) zirconium, bis (acetylacetonato) zirconium dibutoxide, bis (acetylacetonato) zirconium dichloride.
  • the zirconium compound is preferably used in the hydrophilic composition as a non-volatile component in the range of 0 to 50% by mass, more preferably 5 to 25% by mass.
  • the hydrophilic composition can be prepared by dissolving (A) a hydrophilic polymer (preferably (B) a catalyst and (C) an alkoxide compound) in a solvent such as ethanol and stirring.
  • the reaction temperature is from room temperature to 80 ° C., and the reaction time, that is, the time during which stirring is continued is preferably in the range of 1 to 72 hours.
  • a composite sol solution can be obtained.
  • the solvent used in preparing the hydrophilic composition is not particularly limited as long as each component can be uniformly dissolved and dispersed, but for example, an aqueous solvent such as methanol, ethanol, water and the like is preferable.
  • the preparation of the organic-inorganic composite sol liquid (hydrophilic composition) for forming the hydrophilic layer can utilize a sol-gel method.
  • sol-gel method Sakuo Sakuo “Science of Sol-Gel Method”, Agne Jofusha Co., Ltd. (published) (1988), Satoshi Hirashima “Functional Thin Film Formation Technology Using the Latest Sol-Gel Method” It is described in detail in a book such as the Technical Center (published) (1992), and the methods described therein can be applied.
  • a hydrophilic layer can be formed by coating a hydrophilic composition on a suitable substrate and heating or drying.
  • the coating method can be a known method, and is not particularly limited. For example, spray coating, dip coating, flow coating, spin coating, roll coating, film applicator, screen printing, bar printing Methods such as a coater method, brush coating, and sponge coating can be applied.
  • the heating and drying conditions after coating with the hydrophilic composition are from 2 minutes in the temperature range of 50 to 200 ° C. from the viewpoint of efficiently forming a high-density crosslinked structure. It is preferably performed for about 1 hour, and more preferably dried at a temperature range of 80 to 160 ° C. for 5 to 30 minutes.
  • a heating means it is preferable to use a well-known means, for example, the dryer etc. which have a temperature control function.
  • the catalyst when the substrate is coated with a hydrophilic composition, can be mixed immediately before the coating. Specifically, the coating is preferably performed immediately after mixing the catalyst to within 1 hour. When the catalyst is mixed and left to stand for a long time, the hydrophilic composition increases in viscosity, and defects such as coating unevenness may occur. Other components are also preferably mixed immediately before coating, but may be stored for a long time after mixing.
  • the thickness of the hydrophilic layer is preferably 0.01 ⁇ m to 100 ⁇ m, more preferably 0.02 ⁇ m to 80 ⁇ m, and most preferably 0.05 ⁇ m to 50 ⁇ m.
  • the dry coating amount of the hydrophilic layer is preferably 0.01 g / m 2 to 100 g / m 2 , more preferably 0.02 g / m 2 to 80 g / m 2 , particularly preferably 0.05 g / m 2 to 50 g / m 2. with m 2, it is possible to obtain a film thickness of the.
  • the low elution layer is formed from a composition for a low elution layer containing (a) a hydrophilic polymer (that is, (a) a hydrophilic polymer having a reactive group).
  • a hydrophilic polymer that is, (a) a hydrophilic polymer having a reactive group.
  • the reactive group include a hydroxyl group, an amino group, a carboxylic acid group, a sulfonic acid group, a sulfinic acid group, a sulfenic acid group, a phosphoric acid group, and a phosphonic acid group. Is preferred.
  • a hydrophilic polymer a known polymer can be used.
  • hydrophilic polymer (a) examples include polyethylene glycol and polypropylene glycol.
  • Anionic polymers such as acids, polymaleic acid, polyitaconic acid, poly (meth) acrylates containing phosphoric acid groups and their salts, polyallylamine, polydimethylallylamine, poly ((meth) acryloylpropyltrimethylammonium chloride), poly (chlorinated) Cationic polymers such as (meth) acrylamidopropyltrimethylammonium), poly (4-vinylpyridine), poly (2-vinylpyridine), poly (2-vinylpyridine), poly (2-
  • hydrophilic polymers (a) from the viewpoint of interaction with the hydrophilic layer, polyethylene glycol, polypropylene glycol, polyvinyl alcohol, carboxydimethyl cellulose, and carboxymethyl cellulose are preferable, and polyethylene glycol, carboxydimethyl cellulose, and polyvinyl alcohol are more preferable. . (A) As long as the hydrophilicity of the hydrophilic polymer is not lowered, copolymers with other monomer components can also be used.
  • the hydrophilic polymer is preferably a copolymer with a monomer having a hydroxyl group.
  • the monomer having a hydroxyl group include 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxypentyl acrylate, trimethylolpropane monoacrylate, pentaerythritol monoacrylate, hydroxybenzyl acrylate, hydroxyphenethyl acrylate, dihydroxyphenethyl acrylate, hydroxyphenyl Acrylate, 2- (hydroxyphenylcarbonyloxy) ethyl acrylate, ⁇ -hydroxymethylmethyl acrylate, ⁇ -hydroxymethylethyl acrylate, ⁇ -hydroxymethyl n-propyl acrylate, ⁇ -hydroxymethylisopropyl acrylate, ⁇ -hydroxymethyl (n- I-, sec- or t-) butyl
  • 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, ⁇ -hydroxymethyl Methyl acrylate, N-hydroxyethyl acrylamide, and ⁇ -hydroxymethyl acrylamide are preferable, and 2-hydroxyethyl acrylate and N-hydroxyethyl acrylamide are more preferable.
  • the total proportion of monomers having a hydroxyl group is preferably 50% by mass or less, and more preferably 30% by mass or less.
  • the mass average molecular weight of the hydrophilic polymer is preferably 500 or more and 100,000 or less, more preferably 500 to 80,000, and most preferably 1,000 to 50,000. By being 500 or more, elution of the (a) hydrophilic polymer from the low elution layer can be delayed.
  • the hydrophilic polymer is preferably used in the low-elution layer composition in the range of 5 to 99% by mass, more preferably 10 to 98% by mass with respect to the nonvolatile component.
  • the composition for low elution layers contains (b) a crosslinking agent.
  • a crosslinking agent By containing a crosslinking agent, the effect which suppresses that (a) hydrophilic polymer elutes early is acquired.
  • a well-known thing can be used for a crosslinking agent. Specific examples of (b) the crosslinking agent are listed below, but are not limited thereto.
  • the organic crosslinking agent an isocyanate crosslinking agent or an epoxy crosslinking agent can be suitably used.
  • Isocyanate-based crosslinking agents include isophorone diisocyanate, 1,6-hexamethylene diisocyanate, 1,4-tetramethylene diisocyanate, 2,2,4-trimethyl-1,6-hexamethylene diisocyanate, 1,12-dodecamethylene diisocyanate, 1,3-trimethylene diisocyanate, 1,5-pentamethylene diisocyanate, ethylene diisocyanate, 2,3-dimethylethylene diisocyanate, 1-methyltrimethylene diisocyanate, lysine diisocyanate, 2,6-diisocyanatomethylcaproate, 1, 3-cyclohexylene diisocyanate, 1,4-cyclohexylene diisocyanate, 1-isocyanato-2-isocyanatomethylcyclopentane, bis- (4-isocyanato Hexyl) -methane, 1,3- and 1,4-bis- (isocyanatomethyl) -cyclo
  • diisocyanate-based crosslinking agents preferably, isophorone diisocyanate, 1,6-hexamethylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, and 4,4′-diphenylmethane diisocyanate are preferable. 1,6-hexamethylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate.
  • epoxy-based crosslinking agent examples include polyethylene glycol diglycidyl ether, ethylene-polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, propylene-polypropylene glycol diglycidyl ether, sorbitol-polyglycidyl ether, and preferably polyethylene glycol diglycidyl ether.
  • Ether and ethylene-polyethylene glycol diglycidyl ether are preferable, and polyethylene glycol diglycidyl ether is more preferable.
  • a compound having an alkoxysilyl group can be suitably used as the inorganic crosslinking agent.
  • the compound having an alkoxysilyl group include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, dimethoxydiethoxysilane, dimethyldimethoxysilane, diethyldimethoxysilane, propylmethyldimethoxysilane, dimethyldiethoxysilane, diethyldisilane.
  • Methoxysilane and ethyltrimethoxysilane are preferable, and tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, and ethyltrimethoxysilane can be more preferably used.
  • the content of the crosslinking agent in the composition for low elution layer is preferably in the range of 0.01 to 15% by mass, more preferably 0.02%, based on the hydrophilic polymer (a). It is in the range of ⁇ 10% by mass, more preferably 0.05 to 8% by mass.
  • a catalyst is preferably used.
  • the same catalyst as the above-mentioned (B) catalyst can be exemplified.
  • the catalyst is used in the low-elution layer composition in an amount of preferably 0.1 to 50% by mass, more preferably 1 to 25% by mass, based on the nonvolatile components.
  • the low elution layer is formed by dissolving and stirring at least the (a) hydrophilic polymer in an appropriate solvent to form a composition for the low elution layer.
  • the hydrophilic layer is formed from the low elution layer composition. It can be formed by coating and drying on the coated substrate. If necessary, the (b) crosslinking agent and the catalyst can be added to the composition for a low-elution layer.
  • the reaction temperature is room temperature to 80 ° C.
  • the reaction time that is, the time for continuing the stirring is preferably in the range of 1 to 72 hours.
  • the solvent used in preparing the composition for low elution layer is not particularly limited as long as each component can be uniformly dissolved and dispersed.
  • each component can be uniformly dissolved and dispersed.
  • the hydrophilic solvent is preferred.
  • the heating and drying conditions after coating the composition for the low-elution layer are from 50 to 200 ° C. from the viewpoint of efficiently evaporating the solvent and forming a crosslinked structure.
  • the drying is preferably performed for about 2 minutes to 1 hour, and more preferably for 5 to 30 minutes in the temperature range of 80 to 160 ° C.
  • a heating means it is preferable to use a well-known means, for example, the dryer etc. which have a temperature control function.
  • the thickness of the low elution layer is preferably 0.01 ⁇ m to 50 ⁇ m, more preferably 0.02 ⁇ m to 20 ⁇ m, and most preferably 0.05 ⁇ m to 10 ⁇ m.
  • the dry coating amount of the low-elution layer is preferably 0.01 g / m 2 to 50 g / m 2 , more preferably 0.02 g / m 2 to 20 g / m 2 , and particularly preferably 0.05 g / m 2 to 10 g / m 2. with m 2, it is possible to obtain a film thickness of the.
  • the undercoat layer preferably contains (P) a catalyst, and the (P) catalyst is preferably a non-volatile catalyst.
  • the cross-linking reaction can be further advanced over time, and the coating film has a very high strength. Furthermore, since the non-volatile catalyst exists at the interface with the substrate without losing activity, the reaction between the substrate and the hydrophilic layer proceeds with time, and high adhesion can be realized.
  • the nonvolatile catalyst include metal chelate compounds and silane coupling agents.
  • the metal chelate compound (hereinafter also referred to as a metal complex) is not particularly limited, but a metal element selected from groups 2A, 3B, 4A and 5A of the periodic table and ⁇ -diketone, ketoester, hydroxycarboxylic acid or the like
  • metal complexes composed of oxo or hydroxy oxygen-containing compounds selected from esters, amino alcohols, and enolic active hydrogen compounds.
  • 2A group elements such as Mg, Ca, Sr and Ba
  • 3B group elements such as Al and Ga
  • 4A group elements such as Ti and Zr
  • 5A group elements such as V, Nb and Ta are preferable.
  • complexes obtained from Zr, Al and Ti are excellent and preferred. Specific examples thereof include those similar to those shown for the metal complex described in the hydrophilic layer.
  • silane coupling agent Although it does not specifically limit as a silane coupling agent, What has the functional group which shows acidity or alkalinity is mentioned, More specifically, peroxo acid, carboxylic acid, carbohydrazone acid, carboxymidic acid, sulfonic acid, sulfinic acid , Silane coupling agents having a functional group showing acidity such as sulfenic acid, selenonic acid, selenic acid, selenic acid, telluronic acid, and the above alkali metal salts, or a basic functional group such as an amino group It is done.
  • the non-volatile catalyst is preferably used in the range of 0 to 50% by mass, more preferably 5 to 25% by mass with respect to the non-volatile component in the undercoat layer forming composition. Moreover, a non-volatile catalyst may be used independently or may be used together 2 or more types.
  • the undercoat layer preferably contains (Q) an alkoxide compound of an element selected from Si, Ti, Zr, and Al.
  • Examples of the alkoxide compound of an element selected from Si, Ti, Zr, and Al include the same alkoxide compounds as those described above.
  • the alkoxide compound of an element selected from Si, Ti, Zr, and Al is preferably 5 to 95% by mass, more preferably 10 to 90% by mass, based on the nonvolatile component in the undercoat layer forming composition. Used in the range of%.
  • the alkoxide compound of an element selected from Si, Ti, Zr, and Al may be used alone or in combination of two or more.
  • Such an undercoat layer is present in which a non-volatile catalyst is contained without losing its activity, especially when the hydrophilic layer is further provided on the undercoat layer due to its presence on the surface. Therefore, the adhesiveness at the interface between the undercoat layer and the hydrophilic layer is extremely high.
  • the undercoat layer can be further improved in adhesion at the interface between the undercoat layer and the hydrophilic layer by providing fine irregularities by mixing plasma etching or metal particles.
  • hydrophilic resins include polyvinyl alcohol (PVA), cellulosic resins (methyl cellulose (MC), hydroxyethyl cellulose (HEC), carboxymethyl cellulose (CMC), etc.), chitins, chitosans, starch, and ether bonds.
  • PVA polyvinyl alcohol
  • MC methyl cellulose
  • HEC hydroxyethyl cellulose
  • CMC carboxymethyl cellulose
  • chitins chitosans, starch, and ether bonds.
  • examples include resins [polyethylene oxide (PEO), polyethylene glycol (PEG), polyvinyl ether (PVE), etc.], resins having a carbamoyl group [polyacrylamide (PAAM), polyvinyl pyrrolidone (PVP), etc.], and the like.
  • the polyacrylic acid salt which has a carboxyl group, maleic acid resin, alginate, gelatins etc. can also be mentioned.
  • at least one selected from polyvinyl alcohol resins, cellulose resins, resins having an ether bond, resins having a carbamoyl group, resins having a carboxyl group, and gelatins is preferable, and in particular, polyvinyl alcohol (PVA) Of these, gelatin resins are preferred.
  • water-dispersible latex examples include acrylic latex, polyester latex, NBR resin, polyurethane latex, polyvinyl acetate latex, SBR resin, polyamide latex and the like. Among these, acrylic latex is preferable.
  • the above hydrophilic resin and water-dispersible latex may be used alone or in combination of two or more, or a hydrophilic resin and a water-dispersible latex may be used in combination.
  • a crosslinking agent the crosslinking agent which forms bridge
  • General thermal crosslinking agents include those described in “Crosslinking agent handbook” by Shinzo Yamashita, Tosuke Kaneko, published by Taiseisha (1981).
  • the number of functional groups of the crosslinking agent used in the present invention is not particularly limited as long as it is 2 or more and can be effectively crosslinked with a hydrophilic resin or water-dispersible latex.
  • thermal crosslinking agent examples include polycarboxylic acids such as polyacrylic acid, amine compounds such as polyethyleneimine, ethylene or propylene glycol diglycidyl ether, tetraethylene glycol diglycidyl ether, nonaethylene ethylene glycol diglycidyl ether, polyethylene or Polyepoxy compounds such as polypropylene glycol glycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, trimethylolpropane triglycidyl ether, sorbitol polyglycidyl ether, polyaldehyde compounds such as glyoxal, terephthalaldehyde, Range isocyanate, hexamethylene diisocyanate, diphenylmethane isocyanate, xylylene Polyisocyanate compounds such as isocyanate, polymethylene polyphenyl isocyanate,
  • a water-soluble cross-linking agent is preferable from the viewpoint of easy preparation of the coating solution and prevention of a decrease in hydrophilicity of the produced hydrophilic layer.
  • the hydrophilic resin and / or water-dispersible latex total amount of the undercoat layer is preferably from 0.01 ⁇ 20 g / m 2, more preferably 0.1 ⁇ 10g / m 2.
  • the undercoat layer composition can also be adjusted by the same method as that for the hydrophilic composition.
  • a plurality of undercoat layers may be provided.
  • the thickness of the undercoat layer is preferably 0.01 ⁇ m to 100 ⁇ m, more preferably 0.02 ⁇ m to 80 ⁇ m, and most preferably 0.05 ⁇ m to 50 ⁇ m.
  • the dry coating amount of the undercoat layer composition is preferably 0.01 g / m 2 to 100 g / m 2 , more preferably 0.02 g / m 2 to 80 g / m 2 , and particularly preferably 0.05 g / m 2 to By setting it to 50 g / m 2 , the above film thickness can be obtained.
  • the hydrophilic member of the present invention can be used by appropriately adding another layer depending on the purpose, form, and place of use.
  • the layer structure added as needed is described below.
  • a pressure-sensitive adhesive that is a pressure-sensitive adhesive is preferably used as an adhesive layer on the back surface of the substrate.
  • an adhesive what is generally used for an adhesive sheet, such as a rubber adhesive, an acrylic adhesive, a silicone adhesive, a vinyl ether adhesive, and a styrene adhesive, can be used.
  • an adhesive for optical use is selected.
  • a dye, organic or inorganic fine particles can be added to the adhesive to produce an effect.
  • a resin for example, a rosin-based resin, a terpene-based resin, a petroleum-based resin, a styrene-based resin, and an adhesion-imparting resin such as a hydrogenated product thereof can be used alone or in combination.
  • the adhesive strength of the adhesive is generally called strong adhesion, and is 200 g / 25 mm or more, preferably 300 g / 25 mm or more, and more preferably 400 g / 25 mm or more.
  • the adhesive force here is based on JIS Z 0237 and is a value measured by a 180 degree peel test.
  • a release layer When the hydrophilic member of the present invention has the adhesive layer, a release layer can be further added.
  • the release layer preferably contains a release agent in order to give release properties.
  • a silicone release agent composed of polyorganosiloxane, a fluorine compound, a long-chain alkyl modified product of polyvinyl alcohol, a long-chain alkyl modified product of polyethyleneimine, and the like can be used.
  • various release agents such as a hot melt type release agent, a monomer type release agent that cures a release monomer by radical polymerization, cationic polymerization, polycondensation reaction, etc., and other acrylic-silicone copolymer Resin, acrylic-fluorine-based copolymer resin, and copolymer-based resin such as urethane-silicone-fluorine-based copolymer resin, resin blend of silicone-based resin and acrylic resin, and fluorine-based resin and acrylic-based resin A resin blend is used.
  • a protective layer may be provided on the hydrophilic layer.
  • the protective layer has a function of preventing damage to the hydrophilic surface during handling, transportation, storage, and the like, and deterioration of hydrophilicity due to adhesion of dirt substances.
  • the hydrophilic polymer layer used in the release layer can be used as the protective layer.
  • the protective layer is peeled off after the hydrophilic member is attached to an appropriate substrate.
  • the substrate is not particularly limited, but any of glass, plastic, metal, tile, ceramics, wood, stone, cement, concrete, fiber, fabric, paper, leather, a combination thereof, and a laminate thereof can be suitably used. .
  • a substrate formed of glass, metal, ceramics or plastic is preferred. Particularly preferred substrates are glass substrates, plastic substrates, and aluminum substrates.
  • a metal plate such as magnesium oxide, magnesium fluoride, calcium fluoride, lanthanum fluoride, cerium fluoride, lithium fluoride, thorium fluoride, etc .; be able to.
  • float plate glass, mold plate glass, ground plate glass, mesh-filled glass, wire-filled glass, tempered glass, laminated glass, double-glazed glass, vacuum glass, security glass, highly heat-insulated Low-E double-glazed glass should be used. Can do.
  • the hydrophilic layer can be applied as it is with the base glass, but if necessary, surface hydrophilic treatment is performed on one or both sides by an oxidation method, a roughening method or the like for the purpose of improving the adhesion of the hydrophilic layer.
  • an oxidation method include corona discharge treatment, glow discharge treatment, chromic acid treatment (wet), flame treatment, hot air treatment, ozone / ultraviolet irradiation treatment, and the like.
  • the surface roughening method the surface can be mechanically roughened by sandblasting, brush polishing or the like.
  • the inorganic compound layer can have a single layer structure or a multilayer structure. Depending on the thickness of the inorganic compound layer, the light transmittance can be maintained, and the inorganic compound layer can also function as an antireflection layer.
  • the inorganic compound layer forming method include dip coating method, spin coating method, flow coating method, spray coating method, roll coating method, gravure coating method, etc., vacuum deposition method, reactive deposition method, ion beam Known methods such as a physical vapor deposition method (PVD) such as an assist method, a sputtering method, and an ion plating method, and a vapor phase method such as a chemical vapor deposition method (CVD) can be applied.
  • PVD physical vapor deposition method
  • CVD chemical vapor deposition method
  • the plastic substrate is not particularly limited, but a substrate used as an optical member is selected in consideration of optical characteristics such as transparency, refractive index, and dispersibility, and various physical properties such as resistance It is selected in consideration of physical properties such as strength such as impact and flexibility, heat resistance, weather resistance and durability.
  • Plastic substrates include polyester, polyethylene, polypropylene, cellophane, triacetyl cellulose, diacetyl cellulose, acetyl cellulose butyrate, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, ethylene vinyl alcohol, polystyrene, polycarbonate, polymethylpentene, polysulfone.
  • polyester films such as polyethylene terephthalate and polyethylene naphthalate are particularly preferred. These may be used alone or in combination of two or more in the form of a mixture, copolymer, laminate or the like, depending on the purpose of use.
  • the thickness of the plastic substrate varies depending on the mating partner. For example, in a portion with many curved surfaces, a thin one is preferred, and one having a thickness of about 6 to 50 ⁇ m is used. Further, 50 to 400 ⁇ m is used for a flat surface or where strength is required.
  • the inorganic compound layer described in description of the glass plate on the plastic plate can also be used.
  • the inorganic compound layer can also act as an antireflection layer.
  • a cycle of aeration with palmitic acid for 1 hour, washing with water for 30 minutes, drying for 30 minutes is one cycle, and the water contact angle after repeating the cycle for 5 cycles is 40 ° or less.
  • hydrophilic member according to the present invention is not particularly limited, and is not limited to building materials, building exteriors such as outer walls and roofs, building interiors, window frames, window glass, structural members, automobiles, railway vehicles, aircraft, ships, bicycles.
  • Exteriors and paintings of vehicles such as motorcycles, exteriors of machinery and equipment, dust covers and paintings, signboards, traffic signs, various display devices, advertising towers, sound barriers for roads, sound barriers for railways, bridges, guard rails And painting, tunnel interior and painting, insulator, solar battery cover, solar water heater heat collection cover, plastic house, tent material, vehicle lighting cover, vending machine, housing equipment, veranda, air conditioner indoor unit, air conditioner outdoor unit , Radiating fins for heat exchangers, outdoor benches, shutters, toilet bowls, bathtubs, bathroom mirrors, washstands, lighting fixtures, lighting covers, kitchenware, dishes, dishwashers, dish drying , Sinks, kitchen ranges, kitchen hoods, ventilation fans, (including film to be attached to and the surface of the above articles.) Window sash, and the like. Further, in the case of having a drying process in the process of manufacturing products used for these applications, the drying time can be shortened and the productivity can be expected to be improved.
  • the hydrophilic member according to the present invention is preferably applied to a fin material, and is preferably applied to an aluminum fin material.
  • Aluminum fin materials used for heat exchangers such as indoor air conditioners and automobile air conditioners have water droplets formed by condensed water generated during cooling and staying between the fins.
  • the adhering dust between the fins similarly reduces the cooling capacity.
  • the fin material according to the present invention preferably has a water contact angle of 40 ° or less after 5 cycles of 1 hour aeration, 30 minute water washing, and 30 minute drying for palmitic acid.
  • Examples of the aluminum used for the fin material include a degreased surface and an aluminum plate subjected to chemical conversion treatment as necessary. It is preferable that the fin material made of aluminum has a surface subjected to chemical conversion treatment from the viewpoint of adhesion of the hydrophilic treatment film, corrosion resistance, and the like.
  • Examples of the chemical conversion treatment include chromate treatment, and typical examples thereof include alkali salt-chromate method (BV method, MBV method, EW method, Al And a treatment method such as a chromic acid method, a chromate method, and a chromic phosphate method, and an anhydrous washing coating type treatment with a composition mainly composed of chromium chromate.
  • aluminum thin plates used for fin materials for heat exchangers are JIS standards such as pure aluminum plates such as 1100, 1050, 1200 and 1N30, Al—Cu alloy plates such as 2017 and 2014, 3003 and 3004, etc. Any of Al—Mn alloy plates, Al—Mg alloy plates such as 5052 and 5083, and Al—Mg—Si alloy plates such as 6061 may be used. But it ’s okay.
  • the fin material which concerns on this invention for a heat exchanger. Since the heat exchanger using the fin material according to the present invention has excellent hydrophilicity, antifouling properties and durability thereof, it is possible to prevent water droplets and dust from adhering between the fins. it can.
  • the heat exchanger include heat exchangers used for indoor coolers, air conditioners, oil coolers for construction machines, automobile radiators, capacitors, and the like.
  • the fin material according to the present invention has excellent hydrophilicity, antifouling property, and sustainability thereof, it is possible to provide an air conditioner in which problems such as a decrease in cooling capacity as described above are improved.
  • the air conditioner any of room air conditioner, packaged air conditioner, car air conditioner, etc. may be used.
  • publicly known techniques for example, JP 2002-106882 A, JP 2002-156135 A, etc.
  • JP 2002-106882 A, JP 2002-156135 A, etc. can be used for the heat exchanger and the air conditioner of the present invention, and are not particularly limited.
  • the obtained solid was washed with acetone to obtain the hydrophilic polymer (I-1) as the exemplified compound (I-1).
  • the mass after drying was 21.7 g. It was a polymer having a weight average molecular weight of 9,000 according to GPC (polyethylene oxide standard).
  • hydrophilic polymer (II-1) which is the exemplified compound (II-1).
  • the mass after drying was 65.6 g. It was a polymer having a mass average molecular weight of 22,000 according to GPC (polyethylene oxide standard).
  • Example 1 [Hydrophilic sol-gel solution] In 100 g of purified water, 10 g of hydrophilic polymer (I-1) as (A) hydrophilic polymer was mixed and stirred at room temperature for 2 hours to prepare. [Hydrophilic composition] A hydrophilic composition was prepared by mixing 120 g of the hydrophilic sol-gel solution with 2.5 g of a 5% by weight aqueous solution of the following anionic surfactant.
  • composition for low elution layer In 100 g of dimethylacetamide, (a) 10 g of polyethylene glycol (PEG, mass average molecular weight 20,000) as a hydrophilic polymer was mixed and stirred at room temperature for 1 hour to obtain a composition for a low elution layer. [Coating method] An alkali-degreased aluminum substrate (thickness: about 100 ⁇ m) is prepared, and the hydrophilic composition is bar-coated on the aluminum substrate and oven-dried at 150 ° C. for 30 minutes to obtain a dry coating amount of 0.7 g / m 2 . A hydrophilic layer was formed.
  • PEG polyethylene glycol
  • composition for a low elution layer was coated on the bar, and oven-dried at 150 ° C. for 30 minutes to form a low elution layer having a coating dry amount of 0.2 g / m 2.
  • the hydrophilic member was obtained.
  • the thickness of the hydrophilic layer was 0.7 ⁇ m, and the thickness of the low elution layer was 0.2 ⁇ m.
  • Example 2 A hydrophilic member of Example 2 was prepared in the same manner as in Example 1 except that the hydrophilic polymer (a) of Example 1 was changed to polyvinyl alcohol (PVA, mass average molecular weight 50,000, saponification degree 99%).
  • PVA polyvinyl alcohol
  • Example 3 The hydrophilic member of Example 3 was prepared in the same manner as in Example 1 except that 0.5 g of 1,4-tetramethylene diisocyanate was added as the crosslinking agent (b) to the composition for the low elution layer of Example 1. .
  • Example 4 In Example 3, a hydrophilic member was produced in the same manner as in Example 3 except that 0.1 g of acetylacetone and 0.1 g of tetraethyl orthotitanate were added as the (B) catalyst to the hydrophilic sol-gel solution.
  • Example 5 A hydrophilic member of Example 5 was produced in the same manner as in Example 4 except that the composition for the low elution layer of Example 4 was changed to the following composition.
  • dimethylacetamide and 20 g of purified water (a) 10 g of polyethylene glycol (mass average molecular weight 20,000) as a hydrophilic polymer, (b) 0.5 g of tetramethoxysilane (TMOS) as a crosslinking agent, (c) as a catalyst 0.05 g of acetylacetone and 0.05 g of tetraethyl orthotitanate were mixed and stirred at room temperature for 1 hour to obtain a composition for a low elution layer.
  • TMOS tetramethoxysilane
  • Example 6 A hydrophilic member of Example 6 was produced in the same manner as in Example 4 except that (a) the hydrophilic polymer of Example 4 was changed to polyvinyl alcohol (mass average molecular weight 50,000, saponification degree 99%).
  • Example 7 A hydrophilic member of Example 7 was produced in the same manner as in Example 5 except that (a) the hydrophilic polymer of Example 5 was changed to polyvinyl alcohol (mass average molecular weight 50,000, saponification degree 99%).
  • Example 8 The hydrophilic members of Examples 8 and 9 were prepared in the same manner as in Example 4 except that the (B) catalyst in the hydrophilic sol-gel solution of Example 4 was changed to the following.
  • Example 8 2 g of ethyl acetoacetate aluminum diisopropylate (manufactured by Kawaken Fine Chemical Co., Ltd., ALCH)
  • Example 9 Zirconium chelate compound 2g The zirconium chelate compound was obtained by adding 50 g of tetrabutoxyzirconium and 20 g of ethyl acetoacetate to a reactor equipped with a stirrer and stirring at room temperature for 1 hour.
  • Example 10 The hydrophilic members of Examples 10 and 11 were produced in the same manner as in Example 4 except that the hydrophilic polymer (I-1) in the hydrophilic sol-gel solution of Example 4 was changed to the following.
  • Example 10 Hydrophilic polymer (I-2) (: Using Exemplified Compound (I-2))
  • Example 11 Hydrophilic polymer (I-11) (: Using exemplified compound (I-11))
  • Example 12 [Hydrophilic sol-gel solution] Prepared by mixing 12 g of tetramethoxysilane as (C) alkoxide compound and 4 g of hydrophilic polymer (I-1) as (A) hydrophilic polymer in 20 g of ethyl alcohol and 100 g of purified water, and stirring at room temperature for 2 hours. did. [Hydrophilic composition] The hydrophilic sol-gel solution was mixed with 4 g of a 5% by weight aqueous solution of the anionic surfactant described in Example 1 and 60 g of purified water to obtain a hydrophilic composition.
  • Example 13 A hydrophilic member of Example 13 was prepared in the same manner as in Example 12 except that 1.0 g of acetylacetone and 1.0 g of tetraethyl orthotitanate were added as the (B) catalyst to the hydrophilic sol-gel solution of Example 12.
  • Example 14 [Sol-gel solution for undercoat] Into 200 g of ethyl alcohol, 10 g of acetylacetone as the (P) catalyst, 10 g of tetraethyl orthotitanate, and 100 g of purified water, 8 g of tetramethoxysilane as the (Q) alkoxide compound were mixed and stirred at room temperature for 2 hours to prepare. [Composition for undercoat layer] 30 g of a 5% by weight aqueous solution of the anionic surfactant described in Example 1 and 450 g of purified water were mixed with 500 g of the sol-gel solution for undercoat layer to obtain a coating solution.
  • Example 15 A hydrophilic member of Example 15 was obtained in the same manner as Example 14 except that the hydrophilic layer of Example 14 was changed to the hydrophilic layer of Example 12.
  • Example 16 A hydrophilic member of Example 16 was obtained in the same manner as Example 14 except that the hydrophilic layer of Example 14 was changed to the hydrophilic layer of Example 13.
  • Comparative Example 1 In Example 4, a member of Comparative Example 1 was obtained in the same manner as in Example 4 except that the low-elution layer was not formed.
  • Comparative Example 2 In Example 3, a member of Comparative Example 2 was obtained in the same manner as Example 3 except that the hydrophilic layer was not formed.
  • Example 17 [Hydrophilic sol-gel solution]
  • 10 g of hydrophilic polymer (II-1) as (A) hydrophilic polymer was mixed and stirred at room temperature for 2 hours to prepare.
  • a hydrophilic composition was prepared by mixing 120 g of the hydrophilic sol-gel solution with 2.5 g of a 5% by weight aqueous solution of the anionic surfactant of Example 1.
  • composition for low elution layer In 100 g of dimethylacetamide, 10 g of polyethylene glycol (mass average molecular weight 20,000) (a) as a hydrophilic polymer was mixed and stirred at room temperature for 1 hour to obtain a composition for a low elution layer.
  • [Coating method] Prepare the aluminum substrate to an alkali degreasing (thickness about 100 [mu] m), the hydrophilic composition on the aluminum substrate by bar coating, 0.99 ° C., and dried in an oven at 30 minutes, the dry coating amount 0.7 g / m 2 A hydrophilic layer was formed. Further, the above composition for a low elution layer was coated on a bar and oven-dried at 150 ° C.
  • a low elution layer having a coating dry amount of 0.2 g / m 2. 1 hydrophilic member.
  • the thickness of the hydrophilic layer was 0.7 ⁇ m, and the thickness of the low elution layer was 0.2 ⁇ m.
  • Example 18 A hydrophilic member of Example 18 was produced in the same manner as in Example 17 except that the hydrophilic polymer (a) in Example 17 was changed to polyvinyl alcohol (mass average molecular weight 50,000, saponification degree 99%).
  • Example 19 The hydrophilic member of Example 19 was prepared in the same manner as in Example 17 except that 0.5 g of 1,4-tetramethylene diisocyanate was added as the crosslinking agent (b) to the composition for low elution layer of Example 17. did.
  • Example 20 In Example 19, the hydrophilic member of Example 20 was produced in the same manner as in Example 19 except that 0.1 g of acetylacetone and 0.1 g of tetraethyl orthotitanate were added as the (B) catalyst to the hydrophilic sol-gel solution. .
  • Example 21 A hydrophilic member of Example 21 was produced in the same manner as in Example 20, except that the composition for low elution layer of Example 20 was changed to the following composition.
  • dimethylacetamide and 20 g of purified water (a) 10 g of polyethylene glycol (mass average molecular weight 20,000) as a hydrophilic polymer, (b) 0.5 g of tetramethoxysilane as a crosslinking agent, and (c) acetylacetone in an amount of 0. 05 g and 0.05 g of tetraethyl orthotitanate were mixed and stirred at room temperature for 1 hour to obtain a composition for a low elution layer.
  • Example 22 A hydrophilic member of Example 22 was produced in the same manner as in Example 20, except that (a) the hydrophilic polymer in Example 20 was changed to polyvinyl alcohol (mass average molecular weight 50,000, saponification degree 99%).
  • Example 23 A hydrophilic member of Example 23 was produced in the same manner as in Example 21 except that (a) the hydrophilic polymer of Example 21 was changed to polyvinyl alcohol (mass average molecular weight 50,000, saponification degree 99%).
  • Example 24 A hydrophilic member was produced in the same manner as in Example 20 except that the catalyst (B) in the hydrophilic sol-gel solution of Example 20 was changed to the following.
  • Example 24 Ethyl acetoacetate aluminum diisopropylate (manufactured by Kawaken Fine Chemical Co., Ltd., ALCH) 2 g
  • Example 25 Zirconium chelate compound 2g The zirconium chelate compound was obtained by adding 50 g of tetrabutoxyzirconium and 20 g of ethyl acetoacetate to a reactor equipped with a stirrer and stirring at room temperature for 1 hour.
  • Example 26 A hydrophilic member was produced in the same manner as in Example 20, except that the hydrophilic polymer (II-1) in the hydrophilic sol-gel solution of Example 20 was changed to the following.
  • Example 26 Hydrophilic polymer (II-6) (: Using Exemplified Compound (II-6))
  • Example 27 Hydrophilic polymer (II-21) (: Using Exemplified Compound (II-21))
  • Example 28 A hydrophilic member of Example 26 was obtained in the same manner as in Example 18 except that the hydrophilic layer of Example 18 was changed to the following.
  • [Hydrophilic sol-gel solution] Prepared by mixing 12 g of tetramethoxysilane (C) as an alkoxide compound and 4 g of hydrophilic polymer (II-1) as a hydrophilic polymer in 20 g of ethyl alcohol and 100 g of purified water and stirring at room temperature for 2 hours. did.
  • hydrophilic composition The hydrophilic sol-gel solution was mixed with 4 g of a 5% by weight aqueous solution of the anionic surfactant described in Example 1 and 60 g of purified water to obtain a hydrophilic composition.
  • Coating method An alkali degreased aluminum substrate (thickness: about 100 ⁇ m) is prepared, and the hydrophilic composition is bar-coated on the aluminum substrate and oven-dried at 150 ° C. for 30 minutes to obtain a dry coating amount of 0.1 g / m 2 . A hydrophilic layer was formed. Furthermore, the low-elution layer composition of Example 20 was bar-coated and oven-dried at 150 ° C.
  • Example 28 The hydrophilic member of Example 28 was obtained.
  • the thickness of the hydrophilic layer was 0.1 ⁇ m, and the thickness of the low elution layer was 0.2 ⁇ m.
  • Example 29 A hydrophilic member of Example 29 was produced in the same manner as in Example 28 except that 1.0 g of acetylacetone and 1.0 g of tetraethyl orthotitanate were added as the (B) catalyst to the hydrophilic sol-gel solution of Example 28.
  • Example 30 [Sol-gel solution for undercoat] Into 200 g of ethyl alcohol, 10 g of acetylacetone as the (P) catalyst, 10 g of tetraethyl orthotitanate, and 100 g of purified water, 8 g of tetramethoxysilane as the (Q) alkoxide compound was mixed and stirred at room temperature for 2 hours to prepare. [Composition for undercoat layer] 30 g of a 5% by weight aqueous solution of the anionic surfactant described in Example 1 and 450 g of purified water were mixed with 500 g of the sol-gel solution for undercoat layer to obtain a coating solution.
  • Example 31 A hydrophilic member of Example 31 was obtained in the same manner as Example 30 except that the hydrophilic layer of Example 30 was changed to the hydrophilic layer of Example 28.
  • Example 32 A hydrophilic member of Example 32 was obtained in the same manner as Example 30 except that the hydrophilic layer of Example 30 was changed to the hydrophilic layer of Example 29.
  • Example 32 a member of Comparative Example 3 was obtained in the same manner as in Example 32 except that the low-elution layer was not formed.
  • Comparative Example 4 Comparative Example 4 was carried out in the same manner as in Example 29 except that a hydrophilic polymer (comparative polymer (1)) having the following structure was used in place of (A) hydrophilic polymer (II-1) in the hydrophilic sol-gel solution. The hydrophilic member was obtained.
  • Example 5 JP, 2005-344144, paragraph 0046 (JP 2002-201289, Table 2, B1), 100 parts by weight of polyacrylic acid (average polymerization degree 400) and sodium carboxymethyl cellulose (average polymerization degree 500)
  • the low elution layer of Example 19 was formed on a mixed composition hydrophilic film (comparative hydrophilic film, film thickness 0.5 ⁇ m) consisting of 30 parts by weight to obtain a hydrophilic member of Comparative Example 5.
  • Example 33 [Hydrophilic sol-gel solution] In 100 g of purified water, (A) 2.5 g of hydrophilic polymer (I-1), 7.5 g of hydrophilic polymer (II-1) as hydrophilic polymer, (B) 0.1 g of acetylacetone as catalyst, orthotitanium The mixture was prepared by mixing 0.1 g of tetraethyl acid and stirring at room temperature for 2 hours. [Hydrophilic composition] A hydrophilic composition was prepared by mixing 120 g of the hydrophilic sol-gel solution with 2.5 g of a 5% by weight aqueous solution of the following anionic surfactant.
  • composition for low elution layer In 100 g of dimethylacetamide, (a) 10 g of polyethylene glycol (PEG, mass average molecular weight 20,000) as a hydrophilic polymer and (b) 0.5 g of 1,4-tetramethylene diisocyanate as a cross-linking agent are mixed. The mixture was stirred for a time to obtain a composition for a low elution layer.
  • PEG polyethylene glycol
  • 1,4-tetramethylene diisocyanate 1,4-tetramethylene diisocyanate
  • a hydrophilic layer was formed. Further, the above composition for a low elution layer was coated on a bar and oven-dried at 150 ° C. for 30 minutes to form a low elution layer having a coating dry amount of 0.2 g / m 2. 1 hydrophilic member. The thickness of the hydrophilic layer was 0.7 ⁇ m, and the thickness of the low elution layer was 0.2 ⁇ m.
  • Example 34 A hydrophilic member of Example 34 was produced in the same manner as in Example 33 except that (a) the hydrophilic polymer of Example 33 was changed to polyvinyl alcohol (PVA, mass average molecular weight 50,000, saponification degree 99%).
  • PVA polyvinyl alcohol
  • Example 35 A hydrophilic member of Example 35 was produced in the same manner as in Example 33 except that the composition for low elution layer of Example 33 was changed to the following composition.
  • dimethylacetamide and 20 g of purified water, (a) 10 g of polyethylene glycol (mass average molecular weight 20,000) as a hydrophilic polymer, (b) 0.5 g of tetramethoxysilane as a crosslinking agent, and (c) acetylacetone in an amount of 0. 05 g and 0.05 g of tetraethyl orthotitanate were mixed and stirred at room temperature for 1 hour to obtain a composition for a low elution layer.
  • Example 36 A hydrophilic member of Example 36 was produced in the same manner as in Example 35 except that the hydrophilic polymer (a) in Example 35 was changed to polyvinyl alcohol (mass average molecular weight 50,000, saponification degree 99%).
  • Example 37 A hydrophilic member was prepared in the same manner as in Example 33 except that (A) the hydrophilic polymer (I-1) in Example 33 was changed to the following.
  • Example 37 Hydrophilic polymer (I-2)
  • Example 38 hydrophilic polymer (I-11)
  • Example 39 A hydrophilic member was prepared in the same manner as in Example 33 except that (A) the hydrophilic polymer (II-1) in Example 33 was changed to the following.
  • Example 39 hydrophilic polymer (II-6)
  • Example 40 hydrophilic polymer (II-21)
  • Example 41 A hydrophilic member was prepared in the same manner as in Example 33 except that the addition amount of the hydrophilic polymer (I-1) and the hydrophilic polymer (II-1) in the hydrophilic sol-gel solution was changed to the following.
  • Example 41 0.5 g of hydrophilic polymer (I-1), 9.5 g of hydrophilic polymer (II-1)
  • Example 42 5.0 g of hydrophilic polymer (I-1), 5.0 g of hydrophilic polymer (II-1)
  • Example 43 [Hydrophilic sol-gel solution] In 20 g of ethyl alcohol and 100 g of purified water, (C) 12 g of tetramethoxysilane as alkoxide compound, (A) 1.0 g of hydrophilic polymer (I-1) as hydrophilic polymer, hydrophilic polymer (II-1) 3. 0 g, (B) 1.0 g of acetylacetone as a catalyst and 1.0 g of tetraethyl orthotitanate were mixed and stirred at room temperature for 2 hours to prepare.
  • hydrophilic polymer (I-1) as hydrophilic polymer
  • hydrophilic polymer (II-1) 3.0 g
  • B 1.0 g of acetylacetone as a catalyst and 1.0 g of tetraethyl orthotitanate were mixed and stirred at room temperature for 2 hours to prepare.
  • hydrophilic composition The hydrophilic sol-gel solution was mixed with 4 g of a 5% by weight aqueous solution of the anionic surfactant described in Example 1 and 60 g of purified water to obtain a hydrophilic composition.
  • Coating method An alkali degreased aluminum substrate (thickness: about 100 ⁇ m) is prepared, and the hydrophilic composition is bar-coated on the aluminum substrate and oven-dried at 150 ° C. for 30 minutes to obtain a dry coating amount of 0.1 g / m 2 . A hydrophilic layer was formed. Furthermore, the low-elution layer composition of Example 33 was bar-coated and oven-dried at 150 ° C.
  • Example 12 The hydrophilic member of Example 12 was obtained.
  • the thickness of the hydrophilic layer was 0.1 ⁇ m, and the thickness of the low elution layer was 0.2 ⁇ m.
  • Example 44 [Sol-gel solution for undercoat] Into 200 g of ethyl alcohol, 10 g of acetylacetone as the (P) catalyst, 10 g of tetraethyl orthotitanate, and 100 g of purified water, 8 g of tetramethoxysilane as the (Q) alkoxide compound were mixed and stirred at room temperature for 2 hours to prepare. [Composition for undercoat layer] 30 g of a 5% by weight aqueous solution of the anionic surfactant described in Example 1 and 450 g of purified water were mixed with 500 g of the sol-gel solution for undercoat layer to obtain a coating solution.
  • Example 45 A hydrophilic member of Example 45 was obtained in the same manner as in Example 44 except that the hydrophilic layer of Example 44 was changed to the hydrophilic layer of Example 43.
  • the hydrophilicity of the hydrophilic layer surface is generally measured with a water droplet contact angle (Kyowa Interface Science Co., Ltd., DropMaster 500). However, on a very hydrophilic surface such as the present invention, the water droplet contact angle may be 10 ° or less, and even 5 ° or less, and there is a limit to the mutual comparison of the hydrophilicity. .
  • a measurement of surface free energy there is a measurement of surface free energy. Various methods have been proposed. In the present invention, as an example, the surface free energy was measured using the Zisman plot method.
  • an aqueous solution of an inorganic electrolyte such as magnesium chloride uses the property that the surface tension increases with the concentration.
  • the horizontal axis indicates the surface of the aqueous solution.
  • Hydrophilic durability A hydrophilic member is immersed in ultrapure water for 5 days, taken out, air-dried, and when the contact angle is measured with pure water, the smaller the change in the contact angle, the better the hydrophilic durability.
  • the case where the change in contact angle after immersion is 2 ° or less is evaluated as ⁇
  • the case of 2 to 7 ° is evaluated as ⁇
  • the case of 7 ° or more is evaluated as ⁇ .
  • the hydrophilic member of the present invention can be used in various applications that require hydrophilicity, wear resistance, and antifouling properties, such as a fin material for a heat exchanger included in an air conditioner.
  • This application is based on a Japanese patent application (Japanese Patent Application No. 2008-79314) filed on Mar. 25, 2008, the contents of which are incorporated herein by reference.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Disclosed is a hydrophilic member comprising: a base material; a hydrophilic layer which is arranged on the base material and is formed from a hydrophilic composition that contains a hydrophilic polymer (A) having at least one of a hydroxy group and a hydrolyzable functional group and also having a silicon atom; and a slightly eluting layer which is arranged on the hydrophilic layer and comprises a hydrophilic polymer (a) having a reactive group. The hydrophilic member has excellent hydrophilicity, excellent wear resistance and excellent stain-proofing properties and can exhibit these properties for a long period.

Description

親水性部材Hydrophilic member
 本発明は、防汚性、耐摩耗性および親水持続性に優れた親水性部材に関する。 The present invention relates to a hydrophilic member having excellent antifouling properties, abrasion resistance and hydrophilic sustainability.
 樹脂フィルム等の有機材料や、ガラスや金属等の無機材料は、高い親水性を有するものは少ない。有機材料や無機材料などを用いた基材の表面が親水化されると、付着水滴が基材表面に一様に拡がり均一な水膜を形成するようになるので、ガラス、レンズ、鏡の曇りを有効に防止でき、湿分による失透防止、雨天時の視界性確保等に役立つ。さらに、都市媒塵、自動車等の排気ガスに含有されるカーボンブラック等の燃焼生成物、油脂、シーラント溶出成分等の疎水性汚染物質が付着しにくく、付着しても降雨や水洗により簡単に落せるようになるので、種々の用途に有用である。 There are few organic materials such as resin films and inorganic materials such as glass and metal having high hydrophilicity. When the surface of a substrate using organic or inorganic materials is made hydrophilic, the adhered water droplets spread uniformly on the substrate surface to form a uniform water film. It is useful for preventing devitrification due to moisture and ensuring visibility in rainy weather. In addition, combustion products such as carbon black contained in exhaust gas from automobile dust, automobiles, etc., and hydrophobic pollutants such as oil and fat and sealant elution components are difficult to adhere. Therefore, it is useful for various applications.
 従来提案されている親水化するための表面処理方法、例えば、エッチング処理、プラズマ処理等によれば、高度に親水化されるものの、その効果は一時的であり、親水化状態を長期間維持することができない。また、親水性樹脂の一つとして親水性グラフトポリマーを使用した表面親水性塗膜も提案されている(非特許文献1)。この報告によればこの塗膜はある程度の親水性を有するものの、基材との親和性が充分とはいえず、より高い耐久性が求められている。 Conventionally proposed surface treatment methods for hydrophilization, such as etching treatment and plasma treatment, are highly hydrophilized, but their effects are temporary and maintain the hydrophilized state for a long time. I can't. A surface hydrophilic coating film using a hydrophilic graft polymer as one of hydrophilic resins has also been proposed (Non-patent Document 1). According to this report, although this coating film has a certain degree of hydrophilicity, it cannot be said that the compatibility with the substrate is sufficient, and higher durability is required.
 また、その他の親水性に優れた表面としては、酸化チタンを使用した部材が知られている。例えば、特許文献1において、基材表面に光触媒含有層を形成すると、光触媒の光励起に応じて表面が高度に親水化されることが開示されており、この技術をガラス、レンズ、鏡、外装材、水回り部材等の種々の複合材に適用すれば、これら複合材に優れた防曇、防汚等の機能を付与できることが報告されている。しかしながら酸化チタンを用いた親水性フィルムは充分な膜強度を有さず、より良好な耐摩耗性を有する親水性材料が求められていた。 Also, as other surfaces having excellent hydrophilicity, members using titanium oxide are known. For example, Patent Document 1 discloses that when a photocatalyst-containing layer is formed on the surface of a substrate, the surface is highly hydrophilized in response to photoexcitation of the photocatalyst. This technique is disclosed in glass, lenses, mirrors, and exterior materials. It has been reported that when applied to various composite materials such as water-circulating members, these composite materials can be provided with excellent antifogging and antifouling functions. However, a hydrophilic film using titanium oxide does not have sufficient film strength, and a hydrophilic material having better wear resistance has been demanded.
 上記課題を達成するために、ゾルゲル有機無機ハイブリッド膜の特性に着眼し、親水性ポリマーとアルコキシドとを加水分解、縮重合することにより架橋構造を備えた親水性表面が優れた防曇性、防汚性を示し、且つ、良好な耐摩耗性を有することを見出されている(特許文献2参照)。このような架橋構造を有する親水性表面層は反応性基を末端に有する特定の親水性ポリマーと、架橋剤とを組合せることにより容易に得られる。しかし、防汚性の観点からは、様々な汚れ物質に対して不十分であった。 In order to achieve the above-mentioned problems, the anti-fogging and anti-fogging properties of the hydrophilic surface with a cross-linked structure by hydrolyzing and condensation-polymerizing the hydrophilic polymer and the alkoxide are focused on the characteristics of the sol-gel organic-inorganic hybrid film. It has been found that it exhibits fouling and has good wear resistance (see Patent Document 2). A hydrophilic surface layer having such a crosslinked structure can be easily obtained by combining a specific hydrophilic polymer having a reactive group at its terminal and a crosslinking agent. However, from the viewpoint of antifouling properties, it was insufficient for various soil substances.
 基材表面に防汚性を付与する技術としては、特許文献3に記載のものが知られている。特許文献3には、アルミニウム板上に、耐食性被膜及び親水性被膜を設け、さらにこの上にポリエーテルポリール化合物に有機系架橋剤を用いて架橋させた遅溶出性潤滑皮膜を有する親水性表面処理フィン材が記載されている。しかし、親水性及び防汚性等の持続性は、さらなる改善が望まれている。 The technique described in Patent Document 3 is known as a technique for imparting antifouling properties to the substrate surface. In Patent Document 3, a hydrophilic surface having a slow-eluting lubricating film in which a corrosion-resistant film and a hydrophilic film are provided on an aluminum plate, and a polyether polyol compound is crosslinked using an organic crosslinking agent on the aluminum plate. A processing fin material is described. However, further improvements in sustainability such as hydrophilicity and antifouling properties are desired.
国際公開第96/29375号パンフレットInternational Publication No. 96/29375 Pamphlet 特開2002-361800号公報JP 2002-361800 A 特開2005-344144号公報JP 2005-344144 A
 本発明は、上記のような従来の課題を解決し、親水性、耐摩耗性、防汚性に優れ、かつそれらの持続性にも優れた親水性部材を提供することを目的とする。 An object of the present invention is to solve the conventional problems as described above, and to provide a hydrophilic member that is excellent in hydrophilicity, wear resistance, antifouling property, and excellent in sustainability thereof.
1. 基板上に、(A)水酸基及び加水分解性官能基の少なくともいずれかを有する珪素原子を有する親水性ポリマーを含有する親水性組成物から形成された親水性層を有し、さらにその上に(a)反応性基を有する親水性ポリマーを含有する低溶出性層用組成物から形成された低溶出性層を有することを特徴とする親水性部材。
2. 前記低溶出性層用組成物中に、さらに(b)架橋剤を含有することを特徴とする上記1に記載の親水性部材。
3. 前記(b)架橋剤の含有量が、(a)親水性ポリマーに対して0.01~15質量%であることを特徴とする上記2に記載の親水性部材。
4. 前記(A)水酸基及び加水分解性官能基の少なくともいずれかを有する珪素原子を有する親水性ポリマーが、下記一般式(a-2)で表される構造単位を有し、且つ、ポリマー鎖の末端に下記一般式(a-1)で表される部分構造を有する親水性ポリマー(A1)、及び下記一般式(a-3)で表される構造単位と、下記一般式(a-4)で表される構造単位とを有する親水性ポリマー(A2)のうち少なくとも1種であることを特徴とする上記1~3のいずれかに記載の親水性部材。
1. On the substrate, (A) a hydrophilic layer formed from a hydrophilic composition containing a hydrophilic polymer having a silicon atom having at least one of a hydroxyl group and a hydrolyzable functional group, and further ( a) A hydrophilic member having a low elution layer formed from a composition for a low elution layer containing a hydrophilic polymer having a reactive group.
2. 2. The hydrophilic member as described in 1 above, further comprising (b) a crosslinking agent in the composition for low elution layer.
3. 3. The hydrophilic member as described in 2 above, wherein the content of the (b) crosslinking agent is 0.01 to 15% by mass with respect to (a) the hydrophilic polymer.
4). (A) The hydrophilic polymer having a silicon atom having at least one of a hydroxyl group and a hydrolyzable functional group has a structural unit represented by the following general formula (a-2), and has a polymer chain terminal. A hydrophilic polymer (A1) having a partial structure represented by the following general formula (a-1), a structural unit represented by the following general formula (a-3), and the following general formula (a-4): 4. The hydrophilic member as described in any one of 1 to 3 above, which is at least one of the hydrophilic polymers (A2) having a structural unit represented.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 一般式(a-1)、(a-2)、(a-3)および(a-4)中、R~R13はそれぞれ独立に水素原子又は炭化水素基を表す。L~Lは、それぞれ独立に単結合又は多価の有機連結基を表す。x及びyは組成比を表し、xは0<x<100、yは0<y<100である。nおよびmは、それぞれ独立に1~3の整数を表す。YおよびYは、それぞれ独立に、-OH、-OR、-COR、-CO、-CON(R)(R)、-N(R)(R)、-NHCOR、-NHCO、-OCON(R)(R)、-NHCON(R)(R)、-SO、-OSO、-SO、-NHSO、-SON(R)(R)、-N(R)(R)(R)、-N(R)(R)(R)(R)、-PO(R)(R)、-OPO(R)(R)、および-PO(R)(R)からなる群より選択される構造を1つ以上有する基を表す。ここで、R、R及びRは、それぞれ独立に水素原子またはアルキル基を表し、Rは、アルキル基を表し、R及びRは、それぞれ独立に水素原子またはアルキル基、アルカリ金属、アルカリ土類金属、またはオニウムを表し、Rは、アルキル基、ハロゲン原子、無機アニオン、または有機アニオンを表す。
5. 前記親水性組成物に、前記(A)水酸基及び加水分解性官能基の少なくともいずれかを有する珪素原子を有する親水性ポリマーの反応を促進する(B)触媒を含有することを特徴とする上記1~4のいずれかに記載の親水性部材。
6. 前記親水性組成物に含まれる(B)触媒が、不揮発性の触媒であることを特徴とする上記5に記載の親水性部材。
7. 前記親水性組成物に(C)Si、Ti、Zr、及びAlから選択される元素のアルコキシド化合物を含有することを特徴とする上記1~6のいずれかに記載の親水性部材。
8. 前記基板と前記親水性層との間に、下塗層を有することを特徴とする上記1~7のいずれかに記載の親水性部材。
9. 前記下塗層が、(P)触媒を含有する組成物を塗布することにより形成されたものであることを特徴とする上記8に記載の親水性部材。
10. 前記下塗層を形成する組成物に含まれる(P)触媒が、不揮発性の触媒であることを特徴とする上記9に記載の親水性部材。
11. 前記下塗層が、さらに(Q)Si、Ti、Zr、及びAlから選択される元素のアルコキシド化合物を含有する組成物を塗布することにより形成されたものであることを特徴とする上記8~10のいずれかに記載の親水性部材。
12. 前記基板が、ガラス、金属、セラミックス、またはプラスチックで形成されたものであることを特徴とする上記1~11のいずれかに記載の親水性部材。
13. 前記(A)水酸基及び加水分解性官能基の少なくともいずれかを有する珪素原子を有する親水性ポリマーとして、前記親水性ポリマー(A1)及び前記親水性ポリマー(A2)を含み、前記親水性ポリマー(A1)と前記親水性ポリマー(A2)の質量比(親水性ポリマー(A1)/親水性ポリマー(A2))が、5/95~50/50の範囲であることを特徴とする上記4~12のいずれかに記載の親水性部材。
14. パルミチン酸に一時間曝気、30分間水洗、30分間乾燥を1サイクルとし、該サイクルを5サイクル繰返した後の水接触角が40°以下である上記1~13のいずれかに記載の親水性部材。

15. 上記1~14のいずれかに記載の親水性部材を有するフィン材。
16. 上記15に記載のフィン材がアルミニウム製であるアルミニウム製フィン材。
17. 上記16に記載のアルミニウム製フィン材を有する熱交換器。
18. 上記17に記載の熱交換器を有するエアコン。
In the general formulas (a-1), (a-2), (a-3) and (a-4), R 1 to R 13 each independently represents a hydrogen atom or a hydrocarbon group. L 1 to L 4 each independently represents a single bond or a polyvalent organic linking group. x and y represent composition ratios, where x is 0 <x <100 and y is 0 <y <100. n and m each independently represents an integer of 1 to 3. Y 1 and Y 2 are each independently —OH, —OR a , —COR a , —CO 2 R e , —CON (R a ) (R b ), —N (R a ) (R b ), —NHCOR d , —NHCO 2 R a , —OCON (R a ) (R b ), —NHCON (R a ) (R b ), —SO 3 R e , —OSO 3 R e , —SO 2 R d , —NHSO 2 R d , —SO 2 N (R a ) (R b ), —N (R a ) (R b ) (R c ), —N (R a ) (R b ) (R c ) (R c ) g ), —PO 3 (R e ) (R f ), —OPO 3 (R e ) (R f ), and one structure selected from the group consisting of —PO 3 (R d ) (R e ) A group having the above is represented. Here, R a , R b and R c each independently represent a hydrogen atom or an alkyl group, R d represents an alkyl group, and R e and R f each independently represent a hydrogen atom or an alkyl group, an alkali group It represents a metal, an alkaline earth metal, or onium, and R g represents an alkyl group, a halogen atom, an inorganic anion, or an organic anion.
5). The above-mentioned 1 characterized in that the hydrophilic composition contains (B) a catalyst that promotes the reaction of the hydrophilic polymer having a silicon atom having at least one of the hydroxyl group and the hydrolyzable functional group (A). 5. The hydrophilic member according to any one of 1 to 4.
6). 6. The hydrophilic member as described in 5 above, wherein the catalyst (B) contained in the hydrophilic composition is a non-volatile catalyst.
7). 7. The hydrophilic member as described in any one of 1 to 6 above, wherein the hydrophilic composition contains (C) an alkoxide compound of an element selected from Si, Ti, Zr, and Al.
8). 8. The hydrophilic member as described in any one of 1 to 7 above, wherein an undercoat layer is provided between the substrate and the hydrophilic layer.
9. 9. The hydrophilic member as described in 8 above, wherein the undercoat layer is formed by applying a composition containing (P) a catalyst.
10. 10. The hydrophilic member as described in 9 above, wherein the (P) catalyst contained in the composition forming the undercoat layer is a non-volatile catalyst.
11. The above-mentioned 8 to 8, wherein the undercoat layer is formed by further applying (Q) a composition containing an alkoxide compound of an element selected from Si, Ti, Zr, and Al. The hydrophilic member according to any one of 10.
12 12. The hydrophilic member as described in any one of 1 to 11 above, wherein the substrate is made of glass, metal, ceramics, or plastic.
13. (A) The hydrophilic polymer (A1) and the hydrophilic polymer (A2) are included as the hydrophilic polymer having a silicon atom having at least one of a hydroxyl group and a hydrolyzable functional group, and the hydrophilic polymer (A1 ) And the hydrophilic polymer (A2) in a mass ratio (hydrophilic polymer (A1) / hydrophilic polymer (A2)) in the range of 5/95 to 50/50. The hydrophilic member in any one.
14 14. The hydrophilic member according to any one of 1 to 13 above, wherein one cycle of aeration with palmitic acid for 1 hour, washing with water for 30 minutes and drying for 30 minutes is one cycle, and the water contact angle after repeating the cycle for 5 cycles is 40 ° or less. .

15. 15. A fin material having the hydrophilic member according to any one of 1 to 14 above.
16. 16. An aluminum fin material, wherein the fin material according to 15 is made of aluminum.
17. 17. A heat exchanger having the aluminum fin material as described in 16 above.
18. 18. An air conditioner having the heat exchanger as described in 17 above.
 本発明に係る親水性部材は、親水性ポリマーからなる低溶出性層が設けられているので、優れた親水性と防汚性を有する。すなわち、表面に汚れ物質が付着した際に、流水等によって汚れとともに低溶出層も流れることで優れた防汚性を発現できる。しかし、低溶出性層が簡単に溶出してしまうと長期の防汚性を維持できない。このような低溶出性層として親水性ポリマーからなる被膜を形成することは、架橋度が高くなく容易に表面から溶け出す懸念があるため通常は用いられない。
 そこで本発明では、(a)反応性基を有する親水性ポリマー(以下、(a)親水性ポリマーという)を含有する組成物から得られる低溶出性層の下に、(A)水酸基及び加水分解性官能基の少なくともいずれかを有する珪素原子を有する親水性ポリマー(以下、(A)親水性ポリマーという)を含有する親水性組成物から形成された親水性層を設けている。このため、上記の親水性・防汚性を長期に渡って維持することができる。これは、(A)親水性ポリマーにより形成された親水性層上にあるシラノール基(SiOH)と(a)親水性ポリマーの反応性官能基(例えば、水酸基等)とが反応するために、優れた親水性・防汚性とその持続性を発現できたものと考えられる。
 また、本発明に係る親水性部材は、(A)親水性ポリマーが架橋構造を形成し得るため、高強度の皮膜となり、耐摩耗性に優れている。
Since the hydrophilic member which concerns on this invention is provided with the low elution layer which consists of hydrophilic polymers, it has the outstanding hydrophilic property and antifouling property. That is, when a dirt substance adheres to the surface, excellent antifouling properties can be expressed by flowing the low elution layer together with dirt by running water or the like. However, if the low-elution layer elutes easily, long-term antifouling properties cannot be maintained. Forming a coating made of a hydrophilic polymer as such a low-elution layer is not usually used because the degree of cross-linking is not high and there is a concern that it will easily dissolve from the surface.
Therefore, in the present invention, (A) a hydroxyl group and hydrolysis are provided under a low-elution layer obtained from a composition containing a hydrophilic polymer having a reactive group (hereinafter referred to as (a) a hydrophilic polymer). The hydrophilic layer formed from the hydrophilic composition containing the hydrophilic polymer (henceforth (A) hydrophilic polymer) which has a silicon atom which has at least any one of a functional functional group is provided. For this reason, said hydrophilic property and antifouling property can be maintained over a long period of time. This is excellent because (A) a silanol group (SiOH) on a hydrophilic layer formed of a hydrophilic polymer and (a) a reactive functional group (for example, a hydroxyl group) of the hydrophilic polymer react. It is thought that it was able to express its hydrophilicity, antifouling property and its sustainability.
In addition, the hydrophilic member according to the present invention is (A) a hydrophilic polymer that can form a cross-linked structure, so that it becomes a high-strength film and is excellent in wear resistance.
 なお、本発明でいう低溶出性層とは、形成された被膜が流水等によりゆっくりと流れ出して溶出する層を意味し、この低溶出性層の溶出度は、25℃、95%RHの恒温槽中で30分間静置したとき、被膜の重量の変化量が1%以上50%以下である。好ましくは、低溶出性層の溶出度が、2%以上45%以下であり、より好ましくは5%以上40%以下である。
 被膜の重量の変化量は、基板上に親水性層と低溶出性層を設けた親水性部材を前記恒温槽に静置した後の重量と、恒温槽に置く前に測定した親水性部材の重量との差を算出し、低溶出性層の全重量に対する割合を求めることにより得られる。低溶出性層の全重量は、低溶出性層を形成する前の部材の重量と、低溶出性層を形成した後の部材の重量との差から求めることができる。
In addition, the low elution layer as used in the field of this invention means the layer from which the formed film flows out slowly with flowing water etc., and the elution degree of this low elution layer is a constant temperature of 25 degreeC and 95% RH. When left standing in a bath for 30 minutes, the amount of change in the weight of the coating is 1% or more and 50% or less. Preferably, the elution degree of the low elution layer is 2% or more and 45% or less, more preferably 5% or more and 40% or less.
The amount of change in the weight of the coating is determined by the weight of the hydrophilic member provided with the hydrophilic layer and the low-elution layer on the substrate after standing in the thermostatic bath, and the hydrophilic member measured before placing in the thermostatic bath. It is obtained by calculating the difference from the weight and determining the ratio of the low-elution layer to the total weight. The total weight of the low elution layer can be determined from the difference between the weight of the member before forming the low elution layer and the weight of the member after forming the low elution layer.
 本発明のより具体的な態様の一例としては、(A)親水性ポリマーを適当な溶媒に溶解させ、攪拌することで、加水分解・重縮合が進行し、ゾル状の親水性組成物が得られ、この親水性組成物を基板表面に塗布して被膜を形成し、乾燥することにより、基板表面上に親水性の官能基を有する有機無機複合体皮膜(親水性層)を形成することができる。さらにその上に(a)親水性ポリマーを含む低溶出性層用組成物を塗布し、低溶出性層を形成する。
 好ましい態様としては、前記親水性組成物中に、(C)Si、Ti、Zr、及びAlから選択される元素のアルコキシド化合物(以下、(C)アルコキシド化合物という)を含むものである。(C)アルコキシド化合物を含むことで、加水分解・重縮合において、架橋を形成する反応サイトが増加し、より高密度で強固な架橋構造を有する有機無機複合体皮膜を形成することができる。この有機無機複合体皮膜による親水性層は、さらに高強度となり、優れた耐摩耗性が発現し、高い親水性を長期間保持し得るものと考えられる。
As an example of a more specific embodiment of the present invention, (A) a hydrophilic polymer is dissolved in a suitable solvent and stirred, whereby hydrolysis and polycondensation proceed to obtain a sol-like hydrophilic composition. An organic-inorganic composite film (hydrophilic layer) having a hydrophilic functional group may be formed on the substrate surface by applying the hydrophilic composition to the substrate surface to form a film and drying. it can. Furthermore, the composition for low elution layers containing (a) hydrophilic polymer is apply | coated on it, and a low elution layer is formed.
In a preferred embodiment, the hydrophilic composition contains (C) an alkoxide compound of an element selected from Si, Ti, Zr, and Al (hereinafter referred to as (C) an alkoxide compound). (C) By including an alkoxide compound, the reaction site which forms bridge | crosslinking increases in hydrolysis and polycondensation, and the organic-inorganic composite membrane | film | coat which has a higher density and firm bridge | crosslinking structure can be formed. It is considered that the hydrophilic layer made of this organic-inorganic composite film has higher strength, exhibits excellent wear resistance, and can maintain high hydrophilicity for a long period of time.
 本発明の親水性部材は、基板表面が親水性、耐摩耗性、防汚性及びそれらの持続性に優れた、親水性部材を提供することができる。 The hydrophilic member of the present invention can provide a hydrophilic member in which the substrate surface is excellent in hydrophilicity, abrasion resistance, antifouling property and sustainability thereof.
 以下、本発明に係る親水性部材の好適な実施形態について説明する。
 本発明は、基板上に、(A)水酸基及び加水分解性官能基の少なくともいずれかを有する珪素原子を有する親水性ポリマーを含有する親水性組成物から形成された親水性層を有し、さらにその上に(a)反応性基を有する親水性ポリマーを含有する低溶出性層用組成物から形成された低溶出性層を有することを特徴とする親水性部材に関する。
<親水性層>
[(A)親水性ポリマー]
 親水性層は、少なくとも(A)親水性ポリマー(すなわち、(A)水酸基及び加水分解性官能基の少なくともいずれかを有する珪素原子を有する親水性ポリマー)を含有する親水性組成物から形成される。
 より具体的には、(A)親水性ポリマーを溶媒に溶解し、よく攪拌することで、これらの成分が加水分解、重縮合し、有機-無機複合体ゾル液である親水性組成物を形成することができる。そして、このゾル溶液によって、高い親水性と高い膜強度を有する親水性層が形成することができる。
Hereinafter, preferred embodiments of the hydrophilic member according to the present invention will be described.
The present invention has a hydrophilic layer formed from a hydrophilic composition containing a hydrophilic polymer having a silicon atom having at least one of a hydroxyl group and a hydrolyzable functional group on a substrate, Furthermore, the present invention relates to a hydrophilic member characterized by having a low elution layer formed from a composition for a low elution layer containing a hydrophilic polymer having a reactive group (a).
<Hydrophilic layer>
[(A) hydrophilic polymer]
The hydrophilic layer is formed from a hydrophilic composition containing at least (A) a hydrophilic polymer (that is, (A) a hydrophilic polymer having a silicon atom having at least one of a hydroxyl group and a hydrolyzable functional group). .
More specifically, (A) the hydrophilic polymer is dissolved in a solvent and stirred well, so that these components are hydrolyzed and polycondensed to form a hydrophilic composition that is an organic-inorganic composite sol solution. can do. And, with this sol solution, a hydrophilic layer having high hydrophilicity and high film strength can be formed.
 (A)親水性ポリマーは、水酸基及び加水分解性官能基の少なくともいずれかを有する珪素原子を含む。このような構造としては、シラノール基または加水分解性シリル基が好ましい。
 (A)親水性ポリマーは、ポリマーの末端部及び/又は側鎖に、シラノール基または加水分解性シリル基を有するものであることが好ましい。加水分解性シリル基とは、水と反応してシラノール(Si-OH)生成するものであって、例えば、ケイ素に1以上のメトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、等のアルコキシ基、塩素等が結合したものを指す。
(A) The hydrophilic polymer contains a silicon atom having at least one of a hydroxyl group and a hydrolyzable functional group. As such a structure, a silanol group or a hydrolyzable silyl group is preferable.
(A) The hydrophilic polymer preferably has a silanol group or a hydrolyzable silyl group at the terminal portion and / or side chain of the polymer. The hydrolyzable silyl group is a group that reacts with water to produce silanol (Si—OH). For example, one or more methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n- This refers to an alkoxy group such as a butoxy group, or a combination of chlorine and the like.
 (A)親水性ポリマーは、好ましくは、下記親水性ポリマー(A1)及び/又は下記親水性ポリマー(A2)である。
・下記一般式(a-2)で表される構造単位を有し、且つ、ポリマー鎖の末端に下記一般式(a-1)で表される部分構造を有する親水性ポリマー(A1)。
・下記一般式(a-3)で表される構造単位と、下記一般式(a-4)で表される構造単位とを有する親水性ポリマー(A2)。
(A) The hydrophilic polymer is preferably the following hydrophilic polymer (A1) and / or the following hydrophilic polymer (A2).
A hydrophilic polymer (A1) having a structural unit represented by the following general formula (a-2) and having a partial structure represented by the following general formula (a-1) at the end of the polymer chain.
A hydrophilic polymer (A2) having a structural unit represented by the following general formula (a-3) and a structural unit represented by the following general formula (a-4).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 一般式(a-1)、(a-2)、(a-3)および(a-4)中、R~R13はそれぞれ独立に水素原子又は炭化水素基を表す。L~Lは、それぞれ独立に単結合又は多価の有機連結基を表す。x及びyは組成比を表し、xは0<x<100、yは0<y<100である。nおよびmは、それぞれ独立に1~3の整数を表す。YおよびYは、それぞれ独立に、-OH、-OR、-COR、-CO、-CON(R)(R)、-N(R)(R)、-NHCOR、-NHCO、-OCON(R)(R)、-NHCON(R)(R)、-SO、-OSO、-SO、-NHSO、-SON(R)(R)、-N(R)(R)(R)、-N(R)(R)(R)(R)、-PO(R)(R)、-OPO(R)(R)、および-PO(R)(R)からなる群より選択される構造を1つ以上有する基を表す。ここで、R、R及びRは、それぞれ独立に水素原子またはアルキル基を表し、Rは、アルキル基を表し、R及びRは、それぞれ独立に水素原子またはアルキル基、アルカリ金属、アルカリ土類金属、またはオニウムを表し、Rは、アルキル基、ハロゲン原子、無機アニオン、または有機アニオンを表す。 In the general formulas (a-1), (a-2), (a-3) and (a-4), R 1 to R 13 each independently represents a hydrogen atom or a hydrocarbon group. L 1 to L 4 each independently represents a single bond or a polyvalent organic linking group. x and y represent composition ratios, where x is 0 <x <100 and y is 0 <y <100. n and m each independently represents an integer of 1 to 3. Y 1 and Y 2 are each independently —OH, —OR a , —COR a , —CO 2 R e , —CON (R a ) (R b ), —N (R a ) (R b ), —NHCOR d , —NHCO 2 R a , —OCON (R a ) (R b ), —NHCON (R a ) (R b ), —SO 3 R e , —OSO 3 R e , —SO 2 R d , —NHSO 2 R d , —SO 2 N (R a ) (R b ), —N (R a ) (R b ) (R c ), —N (R a ) (R b ) (R c ) (R c ) g ), —PO 3 (R e ) (R f ), —OPO 3 (R e ) (R f ), and one structure selected from the group consisting of —PO 3 (R d ) (R e ) A group having the above is represented. Here, R a , R b and R c each independently represent a hydrogen atom or an alkyl group, R d represents an alkyl group, and R e and R f each independently represent a hydrogen atom or an alkyl group, an alkali group It represents a metal, an alkaline earth metal, or onium, and R g represents an alkyl group, a halogen atom, an inorganic anion, or an organic anion.
 R~R13が炭化水素基を表す場合の炭化水素基としては、炭素数1~8の炭化水素基が好ましく、例えばアルキル基、アリール基などが挙げられ、炭素数1~8の直鎖、分岐または環状のアルキル基が好ましい。具体的には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、イソプロピル基、イソブチル基、s-ブチル基、t-ブチル基、イソペンチル基、ネオペンチル基、1-メチルブチル基、イソヘキシル基、2-エチルヘキシル基、2-メチルヘキシル基、シクロペンチル基等が挙げられる。
 R、R、R12、R13は、効果および入手容易性の観点から、好ましくは、メチル基、エチル基、プロピル基またはイソプロピル基である。
 R~R、R~R11は、効果および入手容易性の観点から、好ましくは水素原子、メチル基またはエチル基である。
When R 1 to R 13 represent a hydrocarbon group, the hydrocarbon group is preferably a hydrocarbon group having 1 to 8 carbon atoms, and examples thereof include an alkyl group and an aryl group, and a straight chain having 1 to 8 carbon atoms. A branched or cyclic alkyl group is preferred. Specifically, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, isopropyl group, isobutyl group, s-butyl group, t-butyl group, isopentyl group, neopentyl group 1-methylbutyl group, isohexyl group, 2-ethylhexyl group, 2-methylhexyl group, cyclopentyl group and the like.
R 1 , R 2 , R 12 and R 13 are preferably a methyl group, an ethyl group, a propyl group or an isopropyl group from the viewpoints of effects and availability.
R 3 to R 5 and R 6 to R 11 are preferably a hydrogen atom, a methyl group or an ethyl group from the viewpoints of effects and availability.
 これらの炭化水素基は更に置換基を有していてもよい。
 アルキル基が置換基を有するとき、置換アルキル基は置換基とアルキレン基との結合により構成される。
 ここで、置換基としては、水素を除く一価の非金属原子団が用いられる。好ましい例としては、ハロゲン原子(-F、-Br、-Cl、-I)、ヒドロキシル基、アルコキシ基、アリーロキシ基、メルカプト基、アルキルチオ基、アリールチオ基、アルキルジチオ基、アリールジチオ基、アミノ基、N-アルキルアミノ基、N,N-ジアリールアミノ基、N-アルキル-N-アリールアミノ基、アシルオキシ基、カルバモイルオキシ基、Ν-アルキルカルバモイルオキシ基、N-アリールカルバモイルオキシ基、N,N-ジアルキルカルバモイルオキシ基、N,N-ジアリールカルバモイルオキシ基、N-アルキル-N-リールカルバモイルオキシ基、アルキルスルホキシ基、アリールスルホキシ基、アシルチオ基、アシルアミノ基、N-アルキルアシルアミノ基、N-アリールアシルアミノ基、ウレイド基、N’-アルキルウレイド基、N’,N’-ジアルキルウレイド基、N’-アリールウレイド基、N’,N’-ジアリールウレイド基、N’-アルキル-N’-アリールウレイド基、N-アルキルウレイド基、N-アリールウレイド基、N’-アルキル-N-アルキルウレイド基、N’-アルキル-N-アリールウレイド基、N’,N’-ジアルキル-N-アルキルウレイト基、N’,N’-ジアルキル-N-アリールウレイド基、N’-アリール-Ν-アルキルウレイド基、N’-アリール-N-アリールウレイド基、N’,N’-ジアリール-N-アルキルウレイド基、N’,N’-ジアリール-N-アリールウレイド基、N’-アルキル-N’-アリール-N-アルキルウレイド基、N’-アルキル-N’-アリール-N-アリールウレイド基、アルコキシカルボニルアミノ基、アリーロキシカルボニルアミノ基、N-アルキル-N-アルコキシカルボニルアミノ基、N-アルキル-N-アリーロキシカルボニルアミノ基、N-アリール-N-アルコキシカルボニルアミノ基、N-アリール-N-アリーロキシカルボニルアミノ基、ホルミル基、アシル基、カルボキシル基、アルコキシカルボニル基、
These hydrocarbon groups may further have a substituent.
When the alkyl group has a substituent, the substituted alkyl group is composed of a bond between the substituent and the alkylene group.
Here, as the substituent, a monovalent nonmetallic atomic group excluding hydrogen is used. Preferred examples include halogen atoms (—F, —Br, —Cl, —I), hydroxyl groups, alkoxy groups, aryloxy groups, mercapto groups, alkylthio groups, arylthio groups, alkyldithio groups, aryldithio groups, amino groups, N-alkylamino group, N, N-diarylamino group, N-alkyl-N-arylamino group, acyloxy group, carbamoyloxy group, ア ル キ ル -alkylcarbamoyloxy group, N-arylcarbamoyloxy group, N, N-dialkyl Carbamoyloxy group, N, N-diarylcarbamoyloxy group, N-alkyl-N-reelcarbamoyloxy group, alkylsulfoxy group, arylsulfoxy group, acylthio group, acylamino group, N-alkylacylamino group, N-aryl Acylamino group, ureido group, N'- Rukyureido group, N ′, N′-dialkylureido group, N′-arylureido group, N ′, N′-diarylureido group, N′-alkyl-N′-arylureido group, N-alkylureido group, N- Arylureido group, N′-alkyl-N-alkylureido group, N′-alkyl-N-arylureido group, N ′, N′-dialkyl-N-alkylureate group, N ′, N′-dialkyl-N -Arylureido group, N'-aryl-Ν-alkylureido group, N'-aryl-N-arylureido group, N ', N'-diaryl-N-alkylureido group, N', N'-diaryl-N An arylureido group, an N′-alkyl-N′-aryl-N-alkylureido group, an N′-alkyl-N′-aryl-N-arylureido group, an alkoxycarbonylamino group, Ryloxycarbonylamino group, N-alkyl-N-alkoxycarbonylamino group, N-alkyl-N-aryloxycarbonylamino group, N-aryl-N-alkoxycarbonylamino group, N-aryl-N-aryloxycarbonylamino group Group, formyl group, acyl group, carboxyl group, alkoxycarbonyl group,
アリーロキシカルボニル基、カルバモイル基、N-アルキルカルバモイル基、N,N-ジアルキルカルバモイル基、N-アリールカルバモイル基、N,N-ジアリールカルバモイル基、N-アルキル-N-アリールカルバモイル基、アルキルスルフィニル基、アリールスルフィニル基、アルキルスルホニル基、アリールスルホニル基、スルホ基(-SOH)およびその共役塩基基(以下、スルホナト基と称す)、アルコキシスルホニル基、アリーロキシスルホニル基、スルフィナモイル基、N-アルキルスルフィナモイル基、N,N-ジアルキルスルフィナモイル基、N-アリールスルフィナモイル基、N,N-ジアリールスルフィナモイル基、N-アルキル-N-アリールスルフィナモイル基、スルファモイル基、N-アルキルスルファモイル基、N,N-ジアルキルスルファモイル基、N-アリールスルファモイル基、N,N-ジアリールスルファモイル基、N-アルキル-N-アリールスルファモイル基ホスフォノ基(-PO)およびその共役塩基基(以下、ホスフォナト基と称す)、ジアルキルホスフォノ基(-PO(alkyl))、ジアリールホスフォノ基(-PO(aryl))、アルキルアリールホスフォノ基(-PO(alkyl)(aryl))、モノアルキルホスフォノ基(-POH(alkyl))およびその共役塩基基(以後、アルキルホスフォナト基と称す)、モノアリールホスフォノ基(-POH(aryl))およびその共役塩基基(以後、アリールホスフォナト基と称す)、ホスフォノオキシ基(-OPO)およびその共役塩基基(以後、ホスフォナトオキシ基と称す)、ジアルキルホスフォノオキシ基(-OPO(alkyl))、ジアリールホスフォノオキシ基(-OPO(aryl))、アルキルアリールホスフォノオキシ基(-OPO(alkyl)(aryl))、モノアルキルホスフォノオキシ基(-OPOH(alkyl))およびその共役塩基基(以後、アルキルホスフォナトオキシ基と称す)、モノアリールホスフォノオキシ基(-OPOH(aryl))およびその共役塩基基(以後、アリールフォスホナトオキシ基と称す)、モルホルノ基、シアノ基、ニトロ基、アリール基、アルケニル基、アルキニル基が挙げられる。 Aryloxycarbonyl group, carbamoyl group, N-alkylcarbamoyl group, N, N-dialkylcarbamoyl group, N-arylcarbamoyl group, N, N-diarylcarbamoyl group, N-alkyl-N-arylcarbamoyl group, alkylsulfinyl group, Arylsulfinyl group, alkylsulfonyl group, arylsulfonyl group, sulfo group (—SO 3 H) and its conjugate base group (hereinafter referred to as sulfonate group), alkoxysulfonyl group, aryloxysulfonyl group, sulfinamoyl group, N-alkyls Rufinamoyl group, N, N-dialkylsulfinamoyl group, N-arylsulfinamoyl group, N, N-diarylsulfinamoyl group, N-alkyl-N-arylsulfinamoyl group, sulfamoyl group, N-alkylsulfur group Sulfamoyl group, N, N- dialkylsulfamoyl group, N- aryl sulfamoyl group, N, N- diaryl sulfamoyl group, N- alkyl -N- arylsulfamoyl group phosphono group (-PO 3 H 2 ) And its conjugate base group (hereinafter referred to as phosphonate group), dialkyl phosphono group (—PO 3 (alkyl) 2 ), diaryl phosphono group (—PO 3 (aryl) 2 ), alkylaryl phosphono group (— PO 3 (alkyl) (aryl)), monoalkyl phosphono group (—PO 3 H (alkyl)) and its conjugate base group (hereinafter referred to as alkyl phosphonate group), monoaryl phosphono group (—PO 3 H (Aryl)) and its conjugate base group (hereinafter referred to as aryl phosphonate group), phosphonooxy group (—OPO 3 H 2 ) and its conjugate base group (hereinafter referred to as phosphonatooxy group), dialkylphosphonooxy group (—OPO 3 (alkyl) 2 ), diarylphosphonooxy group (—OPO 3 (aryl) 2 ), An alkylarylphosphonooxy group (—OPO (alkyl) (aryl)), a monoalkylphosphonooxy group (—OPO 3 H (alkyl)) and its conjugate base group (hereinafter referred to as an alkylphosphonatooxy group), mono Arylphosphonooxy group (—OPO 3 H (aryl)) and its conjugate base group (hereinafter referred to as arylphosphonateoxy group), morpholino group, cyano group, nitro group, aryl group, alkenyl group, alkynyl group It is done.
 これらの置換基における、アルキル基の具体例としては、前述のアルキル基が同様に挙げられ、アリール基の具体例としては、フェニル基、ビフェニル基、ナフチル基、トリル基、キシリル基、メシチル基、クメニル基、クロロフェニル基、ブロモフェニル基、クロロメチルフェニル基、ヒドロキシフェニル基、メトキシフェニル基、エトキシフェニル基、フェノキシフェニル基、アセトキシフェニル基、ベンゾイロキシフェニル基、メチルチオフェニル基、フェニルチオフェニル基、メチルアミノフェニル基、ジメチルアミノフェニル基、アセチルアミノフェニル基、カルボキシフェニル基、メトキシカルボニルフェニル基、エトキシフェニルカルボニル基、フェノキシカルボニルフェニル基、N-フェニルカルバモイルフェニル基、フェニル基、シアノフェニル基、スルホフェニル基、スルホナトフェニル基、ホスフォノフェニル基、ホスフォナトフェニル基等を挙げることができる。また、アルケニル基の例としては、ビニル基、1-プロペニル基、1-ブテニル基、シンナミル基、2-クロロ-1-エテニル基等が挙げられ、アルキニル基の例としては、エチニル基、1-プロピニル基、1-ブチニル基、トリメチルシリルエチニル基等が挙げられる。アシル基(GCO-)におけるGとしては、水素、ならびに上記のアルキル基、アリール基を挙げることができる。 Specific examples of the alkyl group in these substituents include the above-described alkyl groups, and specific examples of the aryl group include a phenyl group, a biphenyl group, a naphthyl group, a tolyl group, a xylyl group, a mesityl group, Cumenyl group, chlorophenyl group, bromophenyl group, chloromethylphenyl group, hydroxyphenyl group, methoxyphenyl group, ethoxyphenyl group, phenoxyphenyl group, acetoxyphenyl group, benzoyloxyphenyl group, methylthiophenyl group, phenylthiophenyl group, Methylaminophenyl group, dimethylaminophenyl group, acetylaminophenyl group, carboxyphenyl group, methoxycarbonylphenyl group, ethoxyphenylcarbonyl group, phenoxycarbonylphenyl group, N-phenylcarbamoylphenyl group, Group, cyanophenyl group, sulfophenyl group, sulfonatophenyl group, phosphonophenyl phenyl group, and a phosphonophenyl phenyl group. Examples of alkenyl groups include vinyl, 1-propenyl, 1-butenyl, cinnamyl, 2-chloro-1-ethenyl, etc. Examples of alkynyl include ethynyl, 1-butenyl, Examples include propynyl group, 1-butynyl group, trimethylsilylethynyl group and the like. Examples of G 1 in the acyl group (G 1 CO—) include hydrogen and the above alkyl groups and aryl groups.
 これら置換基のうち、より好ましいものとしてはハロゲン原子(-F、-Br、-Cl、-I)、アルコキシ基、アリーロキシ基、アルキルチオ基、アリールチオ基、N-アルキルアミノ基、N,N-ジアルキルアミノ基、アシルオキシ基、N-アルキルカルバモイルオキシ基、N-アリールカバモイルオキシ基、アシルアミノ基、ホルミル基、アシル基、カルボキシル基、アルコキシカルボニル基、アリーロキシカルボニル基、カルバモイル基、N-アルキルカルバモイル基、N,N-ジアルキルカルバモイル基、N-アリールカルバモイル基、N-アルキル-N-アリールカルバモイル基、スルホ基、スルホナト基、スルファモイル基、N-アルキルスルファモイル基、N,N-ジアルキルスルファモイル基、N-アリールスルファモイル基、N-アルキル-N-アリールスルファモイル基、ホスフォノ基、ホスフォナト基、ジアルキルホスフォノ基、ジアリールホスフォノ基、モノアルキルホスフォノ基、アルキルホスフォナト基、モノアリールホスフォノ基、アリールホスフォナト基、ホスフォノオキシ基、ホスフォナトオキシ基、アリール基、アルケニル基が挙げられる。 Of these substituents, more preferred are halogen atoms (—F, —Br, —Cl, —I), alkoxy groups, aryloxy groups, alkylthio groups, arylthio groups, N-alkylamino groups, N, N-dialkyls. Amino group, acyloxy group, N-alkylcarbamoyloxy group, N-arylcarbamoyloxy group, acylamino group, formyl group, acyl group, carboxyl group, alkoxycarbonyl group, aryloxycarbonyl group, carbamoyl group, N-alkylcarbamoyl group N, N-dialkylcarbamoyl group, N-arylcarbamoyl group, N-alkyl-N-arylcarbamoyl group, sulfo group, sulfonate group, sulfamoyl group, N-alkylsulfamoyl group, N, N-dialkylsulfamoyl group Group, N-arylsulfamo Group, N-alkyl-N-arylsulfamoyl group, phosphono group, phosphonate group, dialkyl phosphono group, diaryl phosphono group, monoalkyl phosphono group, alkyl phosphonate group, monoaryl phosphono group, aryl phosphine group Examples include an onato group, a phosphonooxy group, a phosphonateoxy group, an aryl group, and an alkenyl group.
 一方、置換アルキル基におけるアルキレン基としては前述の炭素数1から20までのアルキル基上の水素原子のいずれか1つを除し、2価の有機残基としたものを挙げることができ、好ましくは炭素原子数1から12までの直鎖状、炭素原子数3から12までの分岐状ならびに炭素原子数5から10までの環状のアルキレン基を挙げることができる。該置換基とアルキレン基を組み合わせる事により得られる置換アルキル基の、好ましい具体例としては、クロロメチル基、ブロモメチル基、2-クロロエチル基、トリフルオロメチル基、メトキシメチル基、メトキシエトキシエチル基、アリルオキシメチル基、フェノキシメチル基、メチルチオメチル基、トリルチオメチル基、エチルアミノエチル基、ジエチルアミノプロピル基、モルホリノプロピル基、アセチルオキシメチル基、ベンゾイルオキシメチル基、N-シクロヘキシルカルバモイルオキシエチル基、N-フェニルカルバモイルオキシエチル基、アセチルアミノエチル基、N-メチルベンゾイルアミノプロピル基、2-オキシエチル基、2-オキシプロピル基、カルボキシプロピル基、メトキシカルボニルエチル基、アリルオキシカルボニルブチル基、 On the other hand, examples of the alkylene group in the substituted alkyl group include divalent organic residues obtained by removing any one of the hydrogen atoms on the alkyl group having 1 to 20 carbon atoms. Can include linear alkylene groups having 1 to 12 carbon atoms, branched chains having 3 to 12 carbon atoms, and cyclic alkylene groups having 5 to 10 carbon atoms. Preferable specific examples of the substituted alkyl group obtained by combining the substituent and the alkylene group are chloromethyl group, bromomethyl group, 2-chloroethyl group, trifluoromethyl group, methoxymethyl group, methoxyethoxyethyl group, allyl group. Oxymethyl group, phenoxymethyl group, methylthiomethyl group, tolylthiomethyl group, ethylaminoethyl group, diethylaminopropyl group, morpholinopropyl group, acetyloxymethyl group, benzoyloxymethyl group, N-cyclohexylcarbamoyloxyethyl group, N- Phenylcarbamoyloxyethyl group, acetylaminoethyl group, N-methylbenzoylaminopropyl group, 2-oxyethyl group, 2-oxypropyl group, carboxypropyl group, methoxycarbonylethyl group, allyloxy Rubonirubuchiru group,
 クロロフェノキシカルボニルメチル基、カルバモイルメチル基、N-メチルカルバモイルエチル基、N,N-ジプロピルカルバモイルメチル基、N-(メトキシフェニル)カルバモイルエチル基、N-メチル-N-(スルホフェニル)カルバモイルメチル基、スルホブチル基、スルホナトブチル基、スルファモイルブチル基、N-エチルスルファモイルメチル基、N,N-ジプロピルスルファモイルプロピル基、N-トリルスルファモイルプロピル基、N-メチル-N-(ホスフォノフェニル)スルファモイルオクチル基、ホスフォノブチル基、ホスフォナトヘキシル基、ジエチルホスフォノブチル基、ジフェニルホスフォノプロピル基、メチルホスフォノブチル基、メチルホスフォナトブチル基、トリルホスフォノへキシル基、トリルホスフォナトヘキシル基、ホスフォノオキシプロピル基、ホスフォナトオキシブチル基、ベンジル基、フェネチル基、α-メチルベンジル基、1-メチル-1-フェニルエチル基、p-メチルベンジル基、シンナミル基、アリル基、1-プロペニルメチル基、2-ブテニル基、2-メチルアリル基、2-メチルプロペニルメチル基、2-プロピニル基、2-ブチニル基、3-ブチニル基等を挙げることができる。 Chlorophenoxycarbonylmethyl group, carbamoylmethyl group, N-methylcarbamoylethyl group, N, N-dipropylcarbamoylmethyl group, N- (methoxyphenyl) carbamoylethyl group, N-methyl-N- (sulfophenyl) carbamoylmethyl group , Sulfobutyl group, sulfonatobutyl group, sulfamoylbutyl group, N-ethylsulfamoylmethyl group, N, N-dipropylsulfamoylpropyl group, N-tolylsulfamoylpropyl group, N-methyl-N- (phos Phonophenyl) sulfamoyloctyl, phosphonobutyl, phosphonatohexyl, diethylphosphonobutyl, diphenylphosphonopropyl, methylphosphonobutyl, methylphosphonatobutyl, tolylphosphonohexyl, tolylpho Phonatohexyl group, phosphonooxypropyl group, phosphonatoxybutyl group, benzyl group, phenethyl group, α-methylbenzyl group, 1-methyl-1-phenylethyl group, p-methylbenzyl group, cinnamyl group, allyl group 1-propenylmethyl group, 2-butenyl group, 2-methylallyl group, 2-methylpropenylmethyl group, 2-propynyl group, 2-butynyl group, 3-butynyl group and the like.
 L~Lは、それぞれ独立に単結合又は多価の有機連結基を表す。
 ここで単結合とは、ポリマーの主鎖と-SiR 3-n(OR、-SiR13 3-m(OR12、Y、Yが連結鎖なしに直接結合していることを表す。
 有機連結基とは、非金属原子からなる連結基を示し、非金属原子からなる2価の連結基を示すことが好ましく、0個から200個までの炭素原子、0個から150個までの窒素原子、0個から200個までの酸素原子、0個から400個までの水素原子、および0個から100個までの硫黄原子から成り立つものであることが好ましい(ただし、炭素原子、窒素原子、酸素原子、水素原子および硫黄原子のすべてが0個であることはない)。-O-、-S-、-CO-、-NH-、-N<、脂肪族基、芳香族基、複素環基、およびそれらの組合せから選ばれることがより好ましい。連結基は、-O-、-S-、-CO-、-NH-、およびそれらの組合せから選ばれることがさらに好ましい。より具体的な連結基としては下記の連結基またはこれらが組み合わされて構成される連結基を挙げることができる。
L 1 to L 4 each independently represents a single bond or a polyvalent organic linking group.
Here, the single bond means that the main chain of the polymer and -SiR 1 3-n (OR 2 ) n , -SiR 13 3-m (OR 12 ) m , Y 1 , Y 2 are directly bonded without a linking chain. Represents that
The organic linking group is a linking group composed of a nonmetallic atom, preferably a divalent linking group composed of a nonmetallic atom, preferably 0 to 200 carbon atoms, 0 to 150 nitrogen atoms. It is preferably composed of atoms, 0 to 200 oxygen atoms, 0 to 400 hydrogen atoms, and 0 to 100 sulfur atoms (however, carbon atoms, nitrogen atoms, oxygen atoms) Not all atoms, hydrogen atoms and sulfur atoms are zero). More preferably, it is selected from —O—, —S—, —CO—, —NH—, —N <, an aliphatic group, an aromatic group, a heterocyclic group, and combinations thereof. More preferably, the linking group is selected from —O—, —S—, —CO—, —NH—, and combinations thereof. More specific examples of the linking group include the following linking groups or linking groups constituted by combining these.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 また、L~Lはポリマー又はオリゴマーから形成されていてもよく、具体的には不飽和二重結合系モノマーからなるポリアクリレート、ポリメタクリレート、ポリアクリロニトリル、ポリビニル、ポリスチレンなどを含むことが好ましく、その他の好ましい例として、ポリ(オキシアルキレン)、ポリウレタン、ポリウレア、ポリエステル、ポリアミド、ポリイミド、ポリカーボネート、ポリアミノ酸、ポリシロキサン等が挙げられ、好ましくは、ポリアクリレート、ポリメタクリレート、ポリアクリロニトリル、ポリビニル、ポリスチレンが挙げられ、より好ましくは、ポリアクリレート、ポリメタクリレートである。
 これらポリマー及びオリゴマーに用いられる構造単位は1種類でもよく、2種類以上であってもよい。また、L~Lがポリマーまたはオリゴマーの場合は構成する元素数に制限は特になく、分子量は1,000~1,000,000が好ましく、1,000~500,000がさらに好ましく、1,000~200,000が最も好ましい。
L 1 to L 4 may be formed of a polymer or an oligomer, and specifically, preferably include polyacrylate, polymethacrylate, polyacrylonitrile, polyvinyl, polystyrene, and the like made of an unsaturated double bond monomer. Other preferred examples include poly (oxyalkylene), polyurethane, polyurea, polyester, polyamide, polyimide, polycarbonate, polyamino acid, polysiloxane, etc., preferably polyacrylate, polymethacrylate, polyacrylonitrile, polyvinyl, polystyrene More preferred are polyacrylates and polymethacrylates.
The structural unit used for these polymers and oligomers may be one type or two or more types. When L 1 to L 4 are polymers or oligomers, the number of constituent elements is not particularly limited, and the molecular weight is preferably 1,000 to 1,000,000, more preferably 1,000 to 500,000. 000 to 200,000 is most preferred.
 x及びyは組成比を表し、xは0<x<100、yは0<y<100である。xは10<x<99の範囲であることが好ましく、50<x<99の範囲であることがさらに好ましい。yは1<y<90の範囲であることが好ましく1<y<50の範囲であることがさらに好ましい。
 nおよびmはそれぞれ独立に1~3の整数を表す。
x and y represent composition ratios, where x is 0 <x <100 and y is 0 <y <100. x is preferably in the range of 10 <x <99, and more preferably in the range of 50 <x <99. y is preferably in the range of 1 <y <90, more preferably in the range of 1 <y <50.
n and m each independently represents an integer of 1 to 3.
 Y及びYは、各々独立に、-OH、-OR、-COR、-CO、-CON(R)(R)、-N(R)(R)、-NHCOR、-NHCO、-OCON(R)(R)、-NHCON(R)(R)、-SO、-OSO、-SO、-NHSO、-SON(R)(R)、-N(R)(R)(R)、-N(R)(R)(R)(R)、-PO(R)(R)、-OPO(R)(R)、及び-PO(R)(R)からなる群より選択される構造を1つ以上有する基を表す。ここで、R、R及びRは、それぞれ独立に水素原子またはアルキル基(好ましくは炭素数1~8の直鎖、分岐または環状のアルキル基)を表し、Rは、アルキル基(好ましくは炭素数1~8の直鎖、分岐または環状のアルキル基)を表し、R及びRは、それぞれ独立に水素原子またはアルキル基(好ましくは炭素数1~8の直鎖、分岐または環状のアルキル基)、アルカリ金属、アルカリ土類金属、またはオニウムを表し、Rは、アルキル基(好ましくは炭素数1~8の直鎖、分岐または環状のアルキル基)、ハロゲン原子、無機アニオン、または有機アニオンを表す。
 また、-CON(R)(R)、-OCON(R)(R)、-NHCON(R)(R)、-SON(R)(R)-PO(R)(R)、-OPO(R)(R)、-PO(R)(R)、-N(R)(R)(R)又は-N(R)(R)(R)(R)についてR~Rが互いに結合して環を形成していてもよく、また、形成された環は酸素原子、硫黄原子、窒素原子などのヘテロ原子を含むヘテロ環であってもよい。R~Rはさらに置換基を有していてもよく、ここで導入可能な置換基としては、前述の導入可能な置換基として挙げたものを同様に挙げることができる。
Y 1 and Y 2 are each independently —OH, —OR a , —COR a , —CO 2 R e , —CON (R a ) (R b ), —N (R a ) (R b ), —NHCOR d , —NHCO 2 R a , —OCON (R a ) (R b ), —NHCON (R a ) (R b ), —SO 3 R e , —OSO 3 R e , —SO 2 R d , —NHSO 2 R d , —SO 2 N (R a ) (R b ), —N (R a ) (R b ) (R c ), —N (R a ) (R b ) (R c ) (R c ) (R g ), —PO 3 (R e ) (R f ), —OPO 3 (R e ) (R f ), and one structure selected from the group consisting of —PO 3 (R d ) (R e ) A group having the above is represented. Here, R a , R b and R c each independently represent a hydrogen atom or an alkyl group (preferably a linear, branched or cyclic alkyl group having 1 to 8 carbon atoms), and R d represents an alkyl group ( Preferably represents a linear, branched or cyclic alkyl group having 1 to 8 carbon atoms, and R e and R f each independently represents a hydrogen atom or an alkyl group (preferably a linear, branched or branched group having 1 to 8 carbon atoms). A cyclic alkyl group), an alkali metal, an alkaline earth metal, or onium, and R g is an alkyl group (preferably a linear, branched or cyclic alkyl group having 1 to 8 carbon atoms), a halogen atom, an inorganic anion Or an organic anion.
Further, -CON (R a) (R b), - OCON (R a) (R b), - NHCON (R a) (R b), - SO 2 N (R a) (R b) -PO 3 (R e ) (R f ), —OPO 3 (R e ) (R f ), —PO 2 (R d ) (R e ), —N (R a ) (R b ) (R c ) or —N Regarding (R a ) (R b ) (R c ) (R g ), R a to R g may be bonded to each other to form a ring, and the formed ring is an oxygen atom, sulfur atom, nitrogen It may be a heterocycle containing a heteroatom such as an atom. R a to R g may further have a substituent, and examples of the substituent that can be introduced here include those mentioned above as the substituents that can be introduced.
 R、R又はRとしては具体的には水素原子、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、イソプロピル基、イソブチル基、s-ブチル基、t-ブチル基、イソペンチル基、ネオペンチル基、1-メチルブチル基、イソヘキシル基、2-エチルヘキシル基、2-メチルヘキシル基、シクロペンチル基等が好適に挙げられる。 Specific examples of R a , R b or R c include a hydrogen atom, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, isopropyl group, isobutyl group, and s-butyl. Preferred examples include a group, t-butyl group, isopentyl group, neopentyl group, 1-methylbutyl group, isohexyl group, 2-ethylhexyl group, 2-methylhexyl group, and cyclopentyl group.
 Rとしては具体的には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、イソプロピル基、イソブチル基、s-ブチル基、t-ブチル基、イソペンチル基、ネオペンチル基、1-メチルブチル基、イソヘキシル基、2-エチルヘキシル基、2-メチルヘキシル基、シクロペンチル基等が好適に挙げられる。
 R、Rとしては具体的には、Rで挙げられるアルキル基の他に、水素原子;リチウム、ナトリウム、カリウム等のアルカリ金属;カルシウム、バリウム等のアルカリ土類金属、または、アンモニウム、ヨードニウム、スルホニウムなどのオニウムが挙げられる。
 R~Rがお互い結合して環を形成していてもよく、また、形成された環は酸素原子、硫黄原子、窒素原子などのヘテロ原子を含むヘテロ環であってもよい。R~Rはさらに置換基を有していてもよく、ここで導入可能な置換基としては、前述の導入可能な置換基として挙げたものを同様に挙げることができる。
Specific examples of R d include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, isopropyl, isobutyl, s-butyl, t-butyl, and isopentyl. Preferred examples include a group, neopentyl group, 1-methylbutyl group, isohexyl group, 2-ethylhexyl group, 2-methylhexyl group, cyclopentyl group and the like.
R e, specifically as R f, in addition to the alkyl groups mentioned R d, a hydrogen atom; lithium, sodium, alkali metals such as potassium, calcium, alkaline earth such as barium metal, or ammonium, Examples include onium such as iodonium and sulfonium.
R d to R f may be bonded to each other to form a ring, and the formed ring may be a hetero ring containing a hetero atom such as an oxygen atom, a sulfur atom, or a nitrogen atom. R d to R f may further have a substituent, and examples of the substituent that can be introduced here include those mentioned above as the substituents that can be introduced.
 Rとしては具体的には、R~Rで挙げられるアルキル基の他に、水素原子;フッ素原子、塩素原子、臭素原子等のハロゲン原子;硝酸アニオン、硫酸アニオン、テトラフルオロホウ酸アニオン、ヘキサフルオロリン酸アニオン等の無機アニオン、メタンスルホン酸アニオン、トリフルオロメタンスルホン酸アニオン、ノナフルオロブタンスルホン酸アニオン、p-トルエンスルホン酸アニオン等の有機アニオンが挙げられる。
 Y及びYは、-CO Na、-CONH、-SO Na、-SONH、-PO等が好ましい。 
Specific examples of R g include a hydrogen atom; a halogen atom such as a fluorine atom, a chlorine atom or a bromine atom; a nitrate anion, a sulfate anion, or a tetrafluoroborate anion, in addition to the alkyl groups listed as R a to R c Inorganic anions such as hexafluorophosphate anion, and organic anions such as methanesulfonic acid anion, trifluoromethanesulfonic acid anion, nonafluorobutanesulfonic acid anion, and p-toluenesulfonic acid anion.
Y 1 and Y 2, -CO 2 - Na +, -CONH 2, -SO 3 - Na +, -SO 2 NH 2, -PO 3 H 2 and the like are preferable.
 (A)親水性ポリマーの分子量としては、1,000~1,000,000が好ましく、1,000~500,000がさらに好ましく、1,000~200,000が最も好ましい。 (A) The molecular weight of the hydrophilic polymer is preferably 1,000 to 1,000,000, more preferably 1,000 to 500,000, and most preferably 1,000 to 200,000.
 前述した(A)親水性ポリマーは単独で用いても、2種以上併用してもよい。
 親水性ポリマー(A1)と親水性ポリマー(A2)を混合して用いる場合は親水性組成物中に含まれる親水性ポリマー(A1)と親水性ポリマー(A2)の質量比(親水性ポリマー(A1)/親水性ポリマー(A2))は5/95~50/50の範囲であることが好ましい。8/92~45/55であることがより好ましく、10/90~40/60であることがさらに好ましい。
 親水性ポリマー(A1)と親水性ポリマー(A2)の質量比率を上記範囲とすることで、良好な親水性を維持しつつ、密着性及び耐汚染性が優れたものとなる。
The aforementioned hydrophilic polymer (A) may be used alone or in combination of two or more.
When the hydrophilic polymer (A1) and the hydrophilic polymer (A2) are mixed and used, the mass ratio of the hydrophilic polymer (A1) and the hydrophilic polymer (A2) contained in the hydrophilic composition (hydrophilic polymer (A1 ) / Hydrophilic polymer (A2)) is preferably in the range of 5/95 to 50/50. The ratio is more preferably 8/92 to 45/55, and further preferably 10/90 to 40/60.
By making the mass ratio of the hydrophilic polymer (A1) and the hydrophilic polymer (A2) in the above range, the adhesiveness and stain resistance are excellent while maintaining good hydrophilicity.
 以下に、親水性ポリマー(A1)の具体例及び、親水性ポリマー(A2)の具体例をその質量平均分子量(M.W.)とともに以下に示すが、本発明はこれらに限定されない。なお、以下に示す具体例のポリマーは、記載される各構造単位が記載のモル比で含まれるランダム共重合体であることを意味する。 Hereinafter, specific examples of the hydrophilic polymer (A1) and specific examples of the hydrophilic polymer (A2) are shown below together with their mass average molecular weights (MW), but the present invention is not limited thereto. In addition, the polymer of the specific example shown below means that it is a random copolymer in which each structural unit described is contained by the described molar ratio.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 親水性ポリマー(A1)の重合方法としては、前記構造単位で表される、ラジカル重合可能なモノマーと、ラジカル重合において連鎖移動能を有する化合物、若しくは、ラジカル開始剤を用いてラジカル重合することにより合成することができる。即ち、後者においては、反応性基を有する化合物が連鎖移動能、若しくは、ラジカル開始能を有するため、ラジカル重合においてポリマー主鎖末端に反応性基が導入されたポリマーを合成することができる。
 親水性ポリマー(A2)の重合方法としては、については、ラジカル重合法としては、従来公知の方法の何れをも使用することができる。
 この反応様式は特に制限されるものではないが、ラジカル重合開始剤の存在下、或いは、高圧水銀灯の照射下において、バルク反応、溶液反応、懸濁反応などを行えばよい。具体的には、一般的なラジカル重合法は、例えば、新高分子実験学3、高分子の合成と反応1(高分子学会編、共立出版)、新実験化学講座19、高分子化学(I)(日本化学会編、丸善)、物質工学講座、高分子合成化学(東京電気大学出版局)等に記載されており、これらを適用することができる。
As a polymerization method of the hydrophilic polymer (A1), radical polymerization is performed using a radical-polymerizable monomer represented by the structural unit and a compound having a chain transfer ability in radical polymerization, or a radical initiator. Can be synthesized. That is, in the latter, since the compound having a reactive group has chain transfer ability or radical initiation ability, it is possible to synthesize a polymer having a reactive group introduced at the end of the polymer main chain in radical polymerization.
As the polymerization method of the hydrophilic polymer (A2), any of the conventionally known methods can be used as the radical polymerization method.
This reaction mode is not particularly limited, but bulk reaction, solution reaction, suspension reaction, etc. may be performed in the presence of a radical polymerization initiator or irradiation with a high-pressure mercury lamp. Specifically, general radical polymerization methods include, for example, New Polymer Experimental Science 3, Polymer Synthesis and Reaction 1 (Edited by the Society of Polymer Science, Kyoritsu Shuppan), New Experimental Chemistry Course 19, Polymer Chemistry (I) (The Chemical Society of Japan, Maruzen), Materials Engineering, Synthetic Polymer Chemistry (Tokyo Denki University Press), etc., can be applied.
 また、(A)親水性ポリマーは、他のモノマーとの共重合体であってもよい。他のモノマーとしては、例えば、アクリル酸エステル類、メタクリル酸エステル類、アクリルアミド類、メタクリルアミド類、ビニルエステル類、スチレン類、アクリル酸、メタクリル酸、アクリロニトリル、無水マレイン酸、マレイン酸イミド等の公知のモノマーも挙げられる。このようなモノマー類を共重合させることで、製膜性、膜強度、親水性、疎水性、溶解性、反応性、安定性等の諸物性を改善することができる。
 前記一般式で表される構造単位以外の、共重合体の合成に使用されるこれらの他のモノマーの総割合は80質量%以下であることが好ましく、さらに好ましくは50質量%以下である。
Further, (A) the hydrophilic polymer may be a copolymer with another monomer. Examples of other monomers include known acrylic esters, methacrylic esters, acrylamides, methacrylamides, vinyl esters, styrenes, acrylic acid, methacrylic acid, acrylonitrile, maleic anhydride, maleic imide, and the like. These monomers are also included. By copolymerizing such monomers, various physical properties such as film forming property, film strength, hydrophilicity, hydrophobicity, solubility, reactivity, and stability can be improved.
The total proportion of these other monomers used for the synthesis of the copolymer other than the structural unit represented by the general formula is preferably 80% by mass or less, and more preferably 50% by mass or less.
 (A)親水性ポリマーは、親水性組成物の不揮発性成分に対して、硬化性と親水性の観点から、好ましくは5~95質量%、更に好ましくは15~90質量%、最も好ましくは20~85質量%の範囲で含有される。(A)親水性ポリマーは、1種類で用いても2種以上併用してもよい。  (A) The hydrophilic polymer is preferably 5 to 95% by mass, more preferably 15 to 90% by mass, and most preferably 20% from the viewpoint of curability and hydrophilicity with respect to the non-volatile component of the hydrophilic composition. It is contained in the range of ~ 85% by mass. (A) A hydrophilic polymer may be used by 1 type, or may be used together 2 or more types. *
[(B)触媒]
 親水性組成物には、前記(A)親水性ポリマーの反応を促進する(B)触媒を含有することが好ましい。(B)触媒を含有することにより、前述の有機無機複合体ゾル液の調製においては、加水分解及び重縮合反応を促進し、実用上好ましい反応効率を得ることができる。
[(B) Catalyst]
The hydrophilic composition preferably contains (B) a catalyst that promotes the reaction of the hydrophilic polymer (A). (B) By containing a catalyst, in preparation of the above-mentioned organic-inorganic composite sol liquid, a hydrolysis and a polycondensation reaction are accelerated | stimulated and practically preferable reaction efficiency can be obtained.
 (B)触媒は、不揮発性の触媒であることが好ましい。ここで、不揮発性の触媒とは、沸点が125℃未満のもの以外の触媒を意味し、換言すれば、沸点が125℃以上のものや、そもそも沸点がないもの(熱分解など、相変化を起こさないものを含む)等が含まれる。
 好ましくは、(B)触媒は、後述の(C)アルコキシド化合物を加水分解、重縮合し、(A)親水性ポリマーと結合を生起させる反応を促進する、酸性触媒又は塩基性触媒を用いることができる。
(B) The catalyst is preferably a non-volatile catalyst. Here, the non-volatile catalyst means a catalyst having a boiling point other than 125 ° C., in other words, a catalyst having a boiling point of 125 ° C. or higher, or a catalyst having no boiling point in the first place (such as thermal decomposition, phase change). Including things that do not wake up).
Preferably, the (B) catalyst uses an acidic catalyst or a basic catalyst that promotes a reaction that hydrolyzes and polycondenses the (C) alkoxide compound described later, and (A) causes a bond with the hydrophilic polymer. it can.
 酸性触媒又は塩基性触媒は、酸性化合物もしくは塩基性化合物をそのまま用いるか、又は、酸性化合物もしくは塩基性化合物を水またはアルコールなどの溶媒に溶解させた状態のもの(以下、これらを包括してそれぞれ酸性触媒、塩基性触媒とも称する)を用いることができる。
 酸性化合物もしくは塩基性化合物を溶媒に溶解させる際の濃度については特に限定はなく、用いる酸性化合物もしくは塩基性化合物の特性、触媒の所望の含有量などに応じて適宜選択すればよい。ここで、触媒を構成する酸性化合物もしくは塩基性化合物の濃度が高い場合は、加水分解、重縮合速度が速くなる傾向がある。但し、濃度の高い塩基性触媒を用いると、ゾル溶液中で沈殿物が生成する場合があるため、塩基性触媒を用いる場合、その濃度は水溶液での濃度換算で1N以下であることが望ましい。
The acidic catalyst or basic catalyst is an acid compound or basic compound used as it is, or in a state where the acidic compound or basic compound is dissolved in a solvent such as water or alcohol (hereinafter, these are all included, respectively) An acidic catalyst or a basic catalyst may also be used.
The concentration at which the acidic compound or basic compound is dissolved in the solvent is not particularly limited, and may be appropriately selected according to the characteristics of the acidic compound or basic compound used, the desired content of the catalyst, and the like. Here, when the concentration of the acidic compound or basic compound constituting the catalyst is high, the hydrolysis and polycondensation rates tend to increase. However, if a basic catalyst having a high concentration is used, a precipitate may be generated in the sol solution. Therefore, when a basic catalyst is used, the concentration is preferably 1 N or less in terms of concentration in an aqueous solution.
 酸性触媒及び塩基性触媒の種類は特に限定されないが、濃度の濃い触媒を用いる必要がある場合には乾燥後に塗膜中にほとんど残留しないような元素から構成される触媒がよい。
 具体的には、酸性触媒としては、塩酸などのハロゲン化水素、硝酸、硫酸、亜硫酸、硫化水素、過塩素酸、過酸化水素、炭酸、蟻酸や酢酸などのカルボン酸、そのRCOOHで表される構造式のRを他元素または置換基によって置換した置換カルボン酸、ベンゼンスルホン酸などのスルホン酸などが挙げられる。塩基性触媒としては、アンモニア水などのアンモニア性塩基、エチルアミンやアニリンなどのアミン類などが挙げられる。
The kind of the acidic catalyst and the basic catalyst is not particularly limited. However, when it is necessary to use a catalyst having a high concentration, a catalyst composed of elements that hardly remain in the coating film after drying is preferable.
Specifically, the acidic catalyst is represented by hydrogen halide such as hydrochloric acid, nitric acid, sulfuric acid, sulfurous acid, hydrogen sulfide, perchloric acid, hydrogen peroxide, carbonic acid, carboxylic acid such as formic acid or acetic acid, and its RCOOH. Examples thereof include substituted carboxylic acids in which R in the structural formula is substituted with other elements or substituents, and sulfonic acids such as benzenesulfonic acid. Examples of the basic catalyst include ammoniacal bases such as aqueous ammonia and amines such as ethylamine and aniline.
 金属錯体からなるルイス酸触媒もまた好ましく使用できる。特に好ましい触媒は、金属錯体触媒であり、周期律表の2A,3B,4A及び5A族から選ばれる金属元素とβ-ジケトン、ケトエステル、ヒドロキシカルボン酸又はそのエステル、アミノアルコール、エノール性活性水素化合物の中から選ばれるオキソ又はヒドロキシ酸素含有化合物から構成される金属錯体である。
 構成金属元素の中では、Mg,Ca,Sr,Baなどの2A族元素、Al,Gaなどの3B族元素,Ti,Zrなどの4A族元素及びV,Nb及びTaなどの5A族元素が好ましく、それぞれ触媒効果の優れた錯体を形成する。その中でもZr、Al及びTiから得られる錯体が優れており、好ましい。
A Lewis acid catalyst comprising a metal complex can also be preferably used. Particularly preferred catalysts are metal complex catalysts, metal elements selected from groups 2A, 3B, 4A and 5A of the periodic table and β-diketones, ketoesters, hydroxycarboxylic acids or their esters, amino alcohols, enolic active hydrogen compounds It is a metal complex comprised from the oxo or hydroxy oxygen containing compound chosen from these.
Among constituent metal elements, 2A group elements such as Mg, Ca, Sr and Ba, 3B group elements such as Al and Ga, 4A group elements such as Ti and Zr, and 5A group elements such as V, Nb and Ta are preferable. , Each forming a complex with excellent catalytic effect. Of these, complexes obtained from Zr, Al and Ti are excellent and preferred.
 上記金属錯体の配位子を構成するオキソ又はヒドロキシ酸素含有化合物は、アセチルアセトン(2,4-ペンタンジオン)、2,4-ヘプタンジオンなどのβジケトン、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸ブチルなどのケトエステル類、乳酸、乳酸メチル、サリチル酸、サリチル酸エチル、サリチル酸フェニル、リンゴ酸,酒石酸、酒石酸メチルなどのヒドロキシカルボン酸及びそのエステル、4-ヒドロキシ-4-メチル-2-ペンタノン、4-ヒドロキシ-2-ペンタノン、4-ヒドロキシ-4-メチル-2-ヘプタノン、4-ヒドロキシ-2-ヘプタノンなどのケトアルコール類、モノエタノールアミン、N,N-ジメチルエタノールアミン、N-メチル-モノエタノールアミン、ジエタノールアミン、トリエタノールアミンなどのアミノアルコール類、メチロールメラミン、メチロール尿素、メチロールアクリルアミド、マロン酸ジエチルエステルなどのエノール性活性化合物、アセチルアセトン(2,4-ペンタンジオン)のメチル基、メチレン基またはカルボニル炭素に置換基を有する化合物が挙げられる。 The oxo or hydroxy oxygen-containing compound constituting the ligand of the above metal complex includes β diketones such as acetylacetone (2,4-pentanedione) and 2,4-heptanedione, methyl acetoacetate, ethyl acetoacetate, butyl acetoacetate Such as ketoesters such as lactic acid, methyl lactate, salicylic acid, ethyl salicylate, phenyl salicylate, malic acid, tartaric acid, methyl tartrate and the like, 4-hydroxy-4-methyl-2-pentanone, 4-hydroxy- Ketoalcohols such as 2-pentanone, 4-hydroxy-4-methyl-2-heptanone, 4-hydroxy-2-heptanone, monoethanolamine, N, N-dimethylethanolamine, N-methyl-monoethanolamine, diethanolamine , Trietano Amino alcohols such as amines, methylol melamine, methylol urea, methylol acrylamide, enol active compounds such as malonic acid diethyl ester, acetylacetone (2,4-pentanedione) methyl group, methylene group or carbonyl carbon has a substituent Compounds.
 好ましい配位子はアセチルアセトン誘導体である。アセチルアセトン誘導体とは、アセチルアセトンのメチル基、メチレン基またはカルボニル炭素に置換基を有する化合物を指す。アセチルアセトンのメチル基に置換する置換基としては、いずれも炭素数が1~3の直鎖又は分岐のアルキル基、アシル基、ヒドロキシアルキル基、カルボキシアルキル基、アルコキシ基、アルコキシアルキル基であり、アセチルアセトンのメチレン基に置換する置換基としてはカルボキシル基、いずれも炭素数が1~3の直鎖又は分岐のカルボキシアルキル基及びヒドロキシアルキル基であり、アセチルアセトンのカルボニル炭素に置換する置換基としては炭素数が1~3のアルキル基であってこの場合はカルボニル酸素には水素原子が付加して水酸基となる。 A preferred ligand is an acetylacetone derivative. An acetylacetone derivative refers to a compound having a substituent on the methyl group, methylene group or carbonyl carbon of acetylacetone. Substituents for substitution on the methyl group of acetylacetone are all straight-chain or branched alkyl groups having 1 to 3 carbon atoms, acyl groups, hydroxyalkyl groups, carboxyalkyl groups, alkoxy groups, alkoxyalkyl groups, and acetylacetone The substituents that substitute for the methylene group are carboxyl groups, both straight-chain or branched carboxyalkyl groups and hydroxyalkyl groups having 1 to 3 carbon atoms, and the substituents that substitute for the carbonyl carbon of acetylacetone are carbon atoms. Is an alkyl group of 1 to 3, in which case a hydrogen atom is added to the carbonyl oxygen to form a hydroxyl group.
 好ましいアセチルアセトン誘導体の具体例としては、エチルカルボニルアセトン、n-プロピルカルボニルアセトン、i-プロピルカルボニルアセトン、ジアセチルアセトン、1―アセチル-1-プロピオニル-アセチルアセトン、ヒドロキシエチルカルボニルアセトン、ヒドロキシプロピルカルボニルアセトン、アセト酢酸、アセトプロピオン酸、ジアセト酢酸、3,3-ジアセトプロピオン酸、4,4-ジアセト酪酸、カルボキシエチルカルボニルアセトン、カルボキシプロピルカルボニルアセトン、ジアセトンアルコールが挙げられる。 Specific examples of preferred acetylacetone derivatives include ethylcarbonylacetone, n-propylcarbonylacetone, i-propylcarbonylacetone, diacetylacetone, 1-acetyl-1-propionyl-acetylacetone, hydroxyethylcarbonylacetone, hydroxypropylcarbonylacetone, acetoacetic acid Acetopropionic acid, diacetacetic acid, 3,3-diacetpropionic acid, 4,4-diacetbutyric acid, carboxyethylcarbonylacetone, carboxypropylcarbonylacetone, diacetone alcohol.
 中でも、アセチルアセトン及びジアセチルアセトンがとくに好ましい。上記のアセチルアセトン誘導体と上記金属元素の錯体は、金属元素1個当たりにアセチルアセトン誘導体が1~4分子配位する単核錯体であり、金属元素の配位可能の手がアセチルアセトン誘導体の配位可能結合手の数の総和よりも多い場合には、水分子、ハロゲンイオン、ニトロ基、アンモニオ基など通常の錯体に汎用される配位子が配位してもよい。 Of these, acetylacetone and diacetylacetone are particularly preferred. The complex of the above acetylacetone derivative and the above metal element is a mononuclear complex in which 1 to 4 molecules of the acetylacetone derivative are coordinated per metal element, and the coordinateable bond of the acetylacetone derivative is the coordinateable bond of the metal element. When the number of hands is larger than the total number of hands, ligands commonly used for ordinary complexes such as water molecules, halogen ions, nitro groups, and ammonio groups may coordinate.
 好ましい金属錯体の例としては、トリス(アセチルアセトナト)アルミニウム錯塩、ジ(アセチルアセトナト)アルミニウム・アコ錯塩、モノ(アセチルアセトナト)アルミニウム・クロロ錯塩、ジ(ジアセチルアセトナト)アルミニウム錯塩、エチルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)、環状アルミニウムオキサイドイソプロピレート、トリス(アセチルアセトナト)バリウム錯塩、ジ(アセチルアセトナト)チタニウム錯塩、トリス(アセチルアセトナト)チタニウム錯塩、ジ-i-プロポキシ・ビス(アセチルアセトナト)チタニウム錯塩、ジルコニウムトリス(エチルアセトアセテート)、ジルコニウムトリス(安息香酸)錯塩、等が挙げられる。これらは水系塗布液での安定性及び、加熱乾燥時のゾルゲル反応でのゲル化促進効果に優れているが、中でも、特にエチルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)、ジ(アセチルアセトナト)チタニウム錯塩、ジルコニウムトリス(エチルアセトアセテート)が好ましい。 Examples of preferred metal complexes include tris (acetylacetonato) aluminum complex, di (acetylacetonato) aluminum / aco complex, mono (acetylacetonato) aluminum / chloro complex, di (diacetylacetonato) aluminum complex, ethylacetate Acetate aluminum diisopropylate, aluminum tris (ethylacetoacetate), cyclic aluminum oxide isopropylate, tris (acetylacetonato) barium complex, di (acetylacetonato) titanium complex, tris (acetylacetonato) titanium complex, di-i -Propoxy bis (acetylacetonato) titanium complex salt, zirconium tris (ethyl acetoacetate), zirconium tris (benzoic acid) complex salt, etc. These are excellent in stability in aqueous coating solutions and in gelation promotion effect in sol-gel reaction during heat drying, and among them, ethyl acetoacetate aluminum diisopropylate, aluminum tris (ethyl acetoacetate), di ( Acetylacetonato) titanium complex and zirconium tris (ethylacetoacetate) are preferred.
 上記した金属錯体の対塩の記載を本明細書においては省略しているが、対塩の種類は、錯体化合物としての電荷の中性を保つ水溶性塩である限り任意であり、例えば硝酸塩、ハロゲン酸塩、硫酸塩、燐酸塩などの化学量論的中性が確保される塩の形が用いられる。
 金属錯体のシリカゾルゲル反応での挙動については、J.Sol-Gel.Sci.and Tec.16.209(1999)に詳細な記載がある。反応メカニズムとしては以下のスキームを推定している。すなわち、塗布液中では、金属錯体は、配位構造を取って安定であり、塗布後の加熱乾燥過程に始まる脱水縮合反応では、酸触媒に似た機構で架橋を促進させるものと考えられる。いずれにしても、この金属錯体を用いたことにより塗布液経時安定性及び皮膜面質の改善と、高親水性、高耐久性の、いずれも満足させることができる。
Although the description of the counter salt of the metal complex described above is omitted in this specification, the type of the counter salt is arbitrary as long as it is a water-soluble salt that maintains the neutrality of the charge as the complex compound, such as nitrate, Salt forms such as halogenates, sulfates, phosphates, etc. that ensure stoichiometric neutrality are used.
For the behavior of the metal complex in the silica sol-gel reaction, see J.A. Sol-Gel. Sci. and Tec. There is a detailed description in 16.209 (1999). The following scheme is estimated as the reaction mechanism. That is, in the coating solution, the metal complex takes a coordination structure and is stable, and in the dehydration condensation reaction that starts in the heat drying process after coating, it is considered that crosslinking is promoted by a mechanism similar to an acid catalyst. In any case, by using this metal complex, it is possible to satisfy the improvement of coating solution aging stability and film surface quality, and high hydrophilicity and high durability.
 上記の金属錯体触媒は、市販品として容易に入手でき、また公知の合成方法、例えば各金属塩化物とアルコールとの反応によっても得られる。 The above-mentioned metal complex catalyst can be easily obtained as a commercial product, and can also be obtained by a known synthesis method, for example, reaction of each metal chloride with alcohol.
 (B)触媒は、親水性組成物中、不揮発性成分に対して、好ましくは0~50質量%、更に好ましくは5~25質量%の範囲で使用される。また、(B)触媒は、単独で用いても2種以上併用してもよい。 (B) The catalyst is preferably used in the range of 0 to 50% by mass, more preferably 5 to 25% by mass with respect to the non-volatile component in the hydrophilic composition. Moreover, (B) catalyst may be used independently or may be used together 2 or more types.
[(C)アルコキシド化合物]
 親水性組成物中には、(C)アルコキシド化合物(すなわち、(C)Si、Ti、Zr、及びAlから選択される元素のアルコキシド化合物)を含有することが好ましい。アルコキシド化合物としては、その構造中に重合性の官能基を有し、架橋剤としての機能を果たす加水分解重合性化合物であることが好ましい。このような(C)アルコキシド化合物が前記(A)親水性ポリマーとともに親水性組成物に含まれていると、基板表面に親水性組成物を塗布して加熱、乾燥したときに、(A)親水性ポリマーと(C)アルコキシド化合物とが縮重合して、架橋構造を有する強固な被膜を形成することができる。
 (C)アルコキシド化合物は、下記一般式(3)又は(4)で表される化合物であることが好ましい。
[(C) Alkoxide Compound]
The hydrophilic composition preferably contains (C) an alkoxide compound (that is, (C) an alkoxide compound of an element selected from Si, Ti, Zr, and Al). The alkoxide compound is preferably a hydrolytic polymerizable compound having a polymerizable functional group in its structure and functioning as a crosslinking agent. When such a (C) alkoxide compound is contained in the hydrophilic composition together with the (A) hydrophilic polymer, when the hydrophilic composition is applied to the substrate surface and heated and dried, (A) hydrophilic The polymerizable polymer and the (C) alkoxide compound can be polycondensed to form a firm film having a crosslinked structure.
(C) The alkoxide compound is preferably a compound represented by the following general formula (3) or (4).
 (R20-Z-(OR214-k        (3)
  Al-(OR21              (4)
(R 20 ) k -Z- (OR 21 ) 4-k (3)
Al- (OR 21 ) 3 (4)
 一般式(3)および(4)中、R20は水素原子、アルキル基又はアリール基を表し、R21はアルキル基又はアリール基を表し、ZはSi、Ti又はZrを表し、kは0~2の整数を表す。R20及びR21がアルキル基を表す場合の炭素数は好ましくは1から4である。アルキル基又はアリール基は置換基を有していてもよく、導入可能な置換基としては、ハロゲン原子、アミノ基、メルカプト基などが挙げられる。なお、この化合物は低分子化合物であり、分子量1000以下であることが好ましい。 In the general formulas (3) and (4), R 20 represents a hydrogen atom, an alkyl group or an aryl group, R 21 represents an alkyl group or an aryl group, Z represents Si, Ti or Zr, and k represents 0 to Represents an integer of 2. The number of carbon atoms when R 20 and R 21 represent an alkyl group is preferably 1 to 4. The alkyl group or aryl group may have a substituent, and examples of the substituent that can be introduced include a halogen atom, an amino group, and a mercapto group. This compound is a low molecular compound and preferably has a molecular weight of 1000 or less.
 以下に、一般式(3)又は(4)で表される特定アルコキシドの具体例を挙げるが、本発明はこれに限定されるものではない。
 ZがSiの場合、即ち、特定アルコキシド中にケイ素を含むものとしては、例えば、トリメトキシシラン、トリエトキシシラン、トリプロポキシシラン、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、メチルトリメトキシシラン、エチルトリメトキシシラン、プロピルトリメトキシシラン、メチルトリエトキシシラン、エチルトリエトキシシラン、プロピルトリエトキシシラン、ジメチルジメトキシシラン、ジエチルジエトキシシラン、γ-クロロプロピルトリエトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、γ-アミノプロピルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリプロポキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン等を挙げることができる。これらのうち特に好ましいものとしては、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、エチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン等を挙げることができる。
Specific examples of the specific alkoxide represented by the general formula (3) or (4) are given below, but the present invention is not limited to this.
In the case where Z is Si, that is, the specific alkoxide containing silicon includes, for example, trimethoxysilane, triethoxysilane, tripropoxysilane, tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, methyltrimethoxysilane, Ethyltrimethoxysilane, propyltrimethoxysilane, methyltriethoxysilane, ethyltriethoxysilane, propyltriethoxysilane, dimethyldimethoxysilane, diethyldiethoxysilane, γ-chloropropyltriethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropyltriethoxysilane, γ-aminopropyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyltripropoxysilane, diph Alkenyl dimethoxysilane, mention may be made of diphenyl diethoxy silane. Among these, tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, ethyltrimethoxysilane, methyltriethoxysilane, ethyltriethoxysilane, dimethyldiethoxysilane, phenyltrimethoxysilane, phenyltriethoxy are particularly preferable. Examples include silane, diphenyldimethoxysilane, diphenyldiethoxysilane, and the like.
 ZがTiである場合、即ち、チタンを含むものとしては、例えば、トリメトキシチタネート、テトラメトキシチタネート、トリエトキシチタネート、テトラエトキシチタネート、テトラプロポキシチタネート、クロロトリメトキシチタネート、クロロトリエトキシチタネート、エチルトリメトキシチタネート、メチルトリエトキシチタネート、エチルトリエトキシチタネート、ジエチルジエトキシチタネート、フェニルトリメトキシチタネート、フェニルトリエトキシチタネート等を挙げることができる。
 ZがZrである場合、即ち、ジルコニウムを含むものとしては、例えば、前記チタンを含むものとして例示した化合物に対応するジルコネートを挙げることができる。
 一般式(4)で表される化合物、即ち、特定アルコキシド中にアルミニウムを含むものとしては、例えば、トリメトキシアルミネート、トリエトキシアルミネート、トリプロポキシアルミネート、テトラエトキシアルミネート等を挙げることができる。
 これらの中でも、ZがSiであるアルコキシドが被膜性の観点から好ましい。
When Z is Ti, i.e., those containing titanium include, for example, trimethoxy titanate, tetramethoxy titanate, triethoxy titanate, tetraethoxy titanate, tetrapropoxy titanate, chlorotrimethoxy titanate, chlorotriethoxy titanate, ethyl triethoxy titanate. Examples thereof include methoxy titanate, methyl triethoxy titanate, ethyl triethoxy titanate, diethyl diethoxy titanate, phenyl trimethoxy titanate, and phenyl triethoxy titanate.
When Z is Zr, that is, the one containing zirconium can include, for example, zirconates corresponding to the compounds exemplified as those containing titanium.
Examples of the compound represented by the general formula (4), that is, those containing aluminum in the specific alkoxide include trimethoxy aluminate, triethoxy aluminate, tripropoxy aluminate, tetraethoxy aluminate and the like. it can.
Among these, alkoxides in which Z is Si are preferable from the viewpoint of film properties.
 (C)アルコキシド化合物は、親水性組成物中に、不揮発性成分に対して、好ましくは5~80質量%、更に好ましくは10~70質量%の範囲で使用される。(C)アルコキシド化合物は、単独で用いても2種以上併用してもよい。
 (C)アルコキシド化合物は市販品が容易に入手できるし、公知の合成方法、たとえば各金属塩化物とアルコールとの反応によっても得られる。
The (C) alkoxide compound is used in the hydrophilic composition in an amount of preferably 5 to 80% by mass, more preferably 10 to 70% by mass, based on the nonvolatile component. (C) An alkoxide compound may be used independently or may be used together 2 or more types.
(C) The alkoxide compound can be easily obtained as a commercial product, and can also be obtained by a known synthesis method, for example, reaction of each metal chloride with an alcohol.
[その他の添加剤]
 親水性組成物には、前記必須成分に加え、目的に応じて種々の化合物を、本発明の効果を損なわない限りにおいて併用することができる。以下、併用しうる成分について説明する。
[Other additives]
In the hydrophilic composition, various compounds can be used in combination with the essential components as long as the effects of the present invention are not impaired in addition to the essential components. Hereinafter, components that can be used in combination will be described.
〔界面活性剤〕
 親水性組成物の被膜面状を向上させるために界面活性剤を用いるのが好ましい。界面活性剤としては、ノニオン界面活性剤、アニオン界面活性剤、カチオン界面活性剤、両性界面活性剤、フッ素系界面活性剤等が挙げられる。
[Surfactant]
It is preferable to use a surfactant in order to improve the surface state of the hydrophilic composition. Examples of the surfactant include nonionic surfactants, anionic surfactants, cationic surfactants, amphoteric surfactants, and fluorosurfactants.
 本発明に用いられるノニオン界面活性剤は、特に限定されず、従来公知のものを用いることができる。例えば、ポリオキシエチレンアルキルエーテル類、ポリオキシエチレンアルキルフェニルエーテル類、ポリオキシエチレンポリスチリルフェニルエーテル類、ポリオキシエチレンポリオキシプロピレンアルキルエーテル類、グリセリン脂肪酸部分エステル類、ソルビタン脂肪酸部分エステル類、ペンタエリスリトール脂肪酸部分エステル類、プロピレングリコールモノ脂肪酸エステル類、ショ糖脂肪酸部分エステル類、ポリオキシエチレンソルビタン脂肪酸部分エステル類、ポリオキシエチレンソルビトール脂肪酸部分エステル類、ポリエチレングリコール脂肪酸エステル類、ポリグリセリン脂肪酸部分エステル類、ポリオキシエチレン化ひまし油類、ポリオキシエチレングリセリン脂肪酸部分エステル類、脂肪酸ジエタノールアミド類、N,N-ビス-2-ヒドロキシアルキルアミン類、ポリオキシエチレンアルキルアミン、トリエタノールアミン脂肪酸エステル、トリアルキルアミンオキシド、ポリエチレングリコール、ポリエチレングリコールとポリプロピレングリコールの共重合体が挙げられる。 The nonionic surfactant used in the present invention is not particularly limited, and conventionally known nonionic surfactants can be used. For example, polyoxyethylene alkyl ethers, polyoxyethylene alkyl phenyl ethers, polyoxyethylene polystyryl phenyl ethers, polyoxyethylene polyoxypropylene alkyl ethers, glycerin fatty acid partial esters, sorbitan fatty acid partial esters, pentaerythritol Fatty acid partial esters, propylene glycol mono fatty acid esters, sucrose fatty acid partial esters, polyoxyethylene sorbitan fatty acid partial esters, polyoxyethylene sorbitol fatty acid partial esters, polyethylene glycol fatty acid esters, polyglycerin fatty acid partial esters, Polyoxyethylenated castor oil, polyoxyethylene glycerin fatty acid partial esters, fatty acid diethanolamides, N N- bis-2-hydroxyalkylamines, polyoxyethylene alkylamines, triethanolamine fatty acid ester, trialkylamine oxide, polyethylene glycol, copolymers of polyethylene glycol and polypropylene glycol.
 本発明に用いられるアニオン界面活性剤は、特に限定されず、従来公知のものを用いることができる。例えば、脂肪酸塩類、アビエチン酸塩類、ヒドロキシアルカンスルホン酸塩類、アルカンスルホン酸塩類、ジアルキルスルホ琥珀酸エステル塩類、直鎖アルキルベンゼンスルホン酸塩類、分岐鎖アルキルベンゼンスルホン酸塩類、アルキルナフタレンスルホン酸塩類、アルキルフェノキシポリオキシエチレンプロピルスルホン酸塩類、ポリオキシエチレンアルキルスルホフェニルエーテル塩類、N-メチル-N-オレイルタウリンナトリウム塩、N-アルキルスルホコハク酸モノアミド二ナトリウム塩、石油スルホン酸塩類、硫酸化牛脂油、脂肪酸アルキルエステルの硫酸エステル塩類、アルキル硫酸エステル塩類、ポリオキシエチレンアルキルエーテル硫酸エステル塩類、脂肪酸モノグリセリド硫酸エステル塩類、ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩類、ポリオキシエチレンスチリルフェニルエーテル硫酸エステル塩類、アルキルリン酸エステル塩類、ポリオキシエチレンアルキルエーテルリン酸エステル塩類、ポリオキシエチレンアルキルフェニルエーテルリン酸エステル塩類、スチレン/無水マレイン酸共重合物の部分けん化物類、オレフィン/無水マレイン酸共重合物の部分けん化物類、ナフタレンスルホン酸塩ホルマリン縮合物類が挙げられる。 The anionic surfactant used in the present invention is not particularly limited, and conventionally known anionic surfactants can be used. For example, fatty acid salts, abietic acid salts, hydroxyalkane sulfonates, alkane sulfonates, dialkyl sulfosuccinate esters, linear alkyl benzene sulfonates, branched alkyl benzene sulfonates, alkyl naphthalene sulfonates, alkyl phenoxy poly Oxyethylenepropyl sulfonates, polyoxyethylene alkylsulfophenyl ether salts, N-methyl-N-oleyl taurine sodium salt, N-alkylsulfosuccinic acid monoamide disodium salt, petroleum sulfonates, sulfated beef oil, fatty acid alkyl esters Sulfates, alkyl sulfates, polyoxyethylene alkyl ether sulfates, fatty acid monoglyceride sulfates, polyoxyethylene alcohol Ruphenyl ether sulfates, polyoxyethylene styryl phenyl ether sulfates, alkyl phosphates, polyoxyethylene alkyl ether phosphates, polyoxyethylene alkyl phenyl ether phosphates, styrene / maleic anhydride Examples thereof include partial saponification products of polymers, partial saponification products of olefin / maleic anhydride copolymers, and naphthalene sulfonate formalin condensates.
 本発明に用いられるカチオン界面活性剤は、特に限定されず、従来公知のものを用いることができる。例えば、アルキルアミン塩類、第四級アンモニウム塩類、ポリオキシエチレンアルキルアミン塩類、ポリエチレンポリアミン誘導体が挙げられる。
 本発明に用いられる両性界面活性剤は、特に限定されず、従来公知のものを用いることができる。例えば、カルボキシベタイン類、アミノカルボン酸類、スルホベタイン類、アミノ硫酸エステル類、イミタゾリン類が挙げられる。
 なお、上記界面活性剤の中で、「ポリオキシエチレン」とあるものは、ポリオキシメチレン、ポリオキシプロピレン、ポリオキシブチレン等の「ポリオキシアルキレン」に読み替えることもでき、本発明においては、それらの界面活性剤も用いることができる。
The cationic surfactant used in the present invention is not particularly limited, and conventionally known cationic surfactants can be used. Examples thereof include alkylamine salts, quaternary ammonium salts, polyoxyethylene alkylamine salts, and polyethylene polyamine derivatives.
The amphoteric surfactant used in the present invention is not particularly limited, and conventionally known amphoteric surfactants can be used. Examples thereof include carboxybetaines, aminocarboxylic acids, sulfobetaines, aminosulfuric acid esters, and imidazolines.
Of the above surfactants, the term “polyoxyethylene” can be read as “polyoxyalkylene” such as polyoxymethylene, polyoxypropylene, polyoxybutylene, etc. These surfactants can also be used.
 更に好ましい界面活性剤としては、分子内にパーフルオロアルキル基を含有するフッ素系界面活性剤が挙げられる。このようなフッ素系界面活性剤としては、例えば、パーフルオロアルキルカルボン酸塩、パーフルオロアルキルスルホン酸塩、パーフルオロアルキルリン酸エステル等のアニオン型;パーフルオロアルキルベタイン等の両性型;パーフルオロアルキルトリメチルアンモニウム塩等のカチオン型;パーフルオロアルキルアミンオキサイド、パーフルオロアルキルエチレンオキシド付加物、パーフルオロアルキル基及び親水性基を含有するオリゴマー、パーフルオロアルキル基及び親油性基を含有するオリゴマー、パーフルオロアルキル基、親水性基及び親油性基を含有するオリゴマー、パーフルオロアルキル基及び親油性基を含有するウレタン等のノニオン型が挙げられる。また、特開昭62-170950号、同62-226143号及び同60-168144号の各公報に記載されているフッ素系界面活性剤も好適に挙げられる。 More preferable surfactants include fluorine-based surfactants containing a perfluoroalkyl group in the molecule. Examples of such fluorosurfactants include anionic types such as perfluoroalkyl carboxylates, perfluoroalkyl sulfonates, and perfluoroalkyl phosphates; amphoteric types such as perfluoroalkyl betaines; Cation type such as trimethylammonium salt; perfluoroalkylamine oxide, perfluoroalkylethylene oxide adduct, oligomer containing perfluoroalkyl group and hydrophilic group, oligomer containing perfluoroalkyl group and lipophilic group, perfluoroalkyl Nonionic types such as an oligomer containing a group, a hydrophilic group and a lipophilic group, and a urethane containing a perfluoroalkyl group and a lipophilic group. In addition, fluorine-based surfactants described in JP-A Nos. 62-170950, 62-226143, and 60-168144 are also preferred.
 界面活性剤は、親水性膜形成用組成物中に、不揮発性成分に対して、好ましくは0.001~10質量%、更に好ましくは0.01~5質量%の範囲で使用される。また、界面活性剤は、単独で又は2種以上を組み合わせて用いることができる。 The surfactant is preferably used in the hydrophilic film forming composition in the range of 0.001 to 10% by mass, more preferably 0.01 to 5% by mass with respect to the nonvolatile component. Moreover, surfactant can be used individually or in combination of 2 or more types.
 好ましい界面活性剤の具体例を以下に示すが、本発明はこれらに限定されない。 Specific examples of preferable surfactants are shown below, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
〔抗菌剤〕
 親水性部材に抗菌性、防カビ性、防藻性を付与するためには、親水性組成物に抗菌剤を含有させることができる。親水性層の形成において、親水性・水溶性の抗菌剤を含有させることが好ましい。親水性・水溶性の抗菌剤を含有させることにより、表面親水性を損なうことなく抗菌性、防カビ性、防藻性に優れた親水性部材が得られる。
 抗菌剤としては、親水性部材の親水性を低下させない化合物を用いることが好ましく、そのような抗菌剤としては、無機系抗菌剤または、水溶性の有機系抗菌剤が挙げられる。抗菌剤としては、黄色ブドウ球菌や大腸菌に代表される細菌類や、かび、酵母などの真菌類など、身の回りに存在する菌類に対して殺菌効果を発揮するものが用いられる。
[Antimicrobial agent]
In order to impart antibacterial, antifungal and antialgal properties to the hydrophilic member, an antibacterial agent can be contained in the hydrophilic composition. In forming the hydrophilic layer, it is preferable to contain a hydrophilic / water-soluble antibacterial agent. By including a hydrophilic / water-soluble antibacterial agent, a hydrophilic member having excellent antibacterial, antifungal and antialgal properties can be obtained without impairing surface hydrophilicity.
As the antibacterial agent, it is preferable to use a compound that does not lower the hydrophilicity of the hydrophilic member. Examples of such an antibacterial agent include inorganic antibacterial agents and water-soluble organic antibacterial agents. As the antibacterial agent, those exhibiting a bactericidal effect against fungi existing around us, such as bacteria represented by Staphylococcus aureus and Escherichia coli, fungi such as fungi and yeast, and the like are used.
 有機系の抗菌剤としては、フェノールエーテル誘導体,イミダゾール誘導体,スルホン誘導体,N・ハロアルキルチオ化合物,アニリド誘導体,ピロール誘導体,第4アンモニウム塩、ピリジン系、トリアジン系、ベンゾイソチアゾリン系、イソチアゾリン系などが挙げられる。
 例えば1,2-ベンズイソチアゾリン-3-オン、N-フルオルジクロロメチルチオ-フタルイミド、2,3,5,6-テトラクロロイソフタロニトリル、N-トリクロロメチルチオ-4-シクロヘキセン-1,2-ジカルボキシイミド、8-キノリン酸銅、ビス(トリブチル錫)オキシド、2-(4-チアゾリル)ベンズイミダゾール〈以後、TBZと表示〉、2-ベンズイミダゾールカルバミン酸メチル〈以後、BCMと表示〉、10,10’-オキシビスフェノキシアルシン〈以後、OBPAと表示〉、2,3,5,6-テトラクロロ-4-(メチルスルフォン)ピリジン、ビス(2-ピリジルチオ-1-オキシド)亜鉛〈以後、ZPTと表示〉、N,N-ジメチル-N’-(フルオロジクロロメチルチオ)-N’-フェニルスルファミド〈ジクロルフルアニド〉、ポリ-(ヘキサメチレンビグアニド)ハイドロクロライド、ジチオ-2-2’-ビス(ベンズメチルアミド)、2-メチル-4,5-トリメチレン-4-イソチアゾリン-3-オン、2-ブロモ-2-ニトロ-1,3-プロパンジオール、ヘキサヒドロ-1,3-トリス-(2-ヒドロキシエチル)-S-トリアジン、p-クロロ-m-キシレノール、1,2-ベンズイソチアゾリン-3-オン等が挙げられるが、これらに制限されるものではない。
 これら有機系の抗菌剤は、親水性、耐水性、昇華性、安全性等を考慮し、適宜選択して使用することができる。有機系抗菌剤中では、親水性、抗菌効果、コストの点から2-ブロモ-2-ニトロ-1,3-プロパンジオール、TBZ、BCM、OBPA、ZPTが好ましい。
Examples of organic antibacterial agents include phenol ether derivatives, imidazole derivatives, sulfone derivatives, N-haloalkylthio compounds, anilide derivatives, pyrrole derivatives, quaternary ammonium salts, pyridines, triazines, benzoisothiazolines, and isothiazolines. It is done.
For example, 1,2-benzisothiazolin-3-one, N-fluorodichloromethylthio-phthalimide, 2,3,5,6-tetrachloroisophthalonitrile, N-trichloromethylthio-4-cyclohexene-1,2-dicarboxy Imido, copper 8-quinolinate, bis (tributyltin) oxide, 2- (4-thiazolyl) benzimidazole (hereinafter referred to as TBZ), methyl 2-benzimidazole carbamate (hereinafter referred to as BCM), 10,10 '-Oxybisphenoxyarsine (hereinafter referred to as OBPA), 2,3,5,6-tetrachloro-4- (methylsulfone) pyridine, bis (2-pyridylthio-1-oxide) zinc (hereinafter referred to as ZPT) >, N, N-dimethyl-N ′-(fluorodichloromethylthio) -N′-phenylsulfamide Dichlorofuranide>, poly- (hexamethylene biguanide) hydrochloride, dithio-2-2′-bis (benzmethylamide), 2-methyl-4,5-trimethylene-4-isothiazolin-3-one, 2- Bromo-2-nitro-1,3-propanediol, hexahydro-1,3-tris- (2-hydroxyethyl) -S-triazine, p-chloro-m-xylenol, 1,2-benzisothiazolin-3-one However, it is not limited to these.
These organic antibacterial agents can be appropriately selected and used in consideration of hydrophilicity, water resistance, sublimation property, safety and the like. Among organic antibacterial agents, 2-bromo-2-nitro-1,3-propanediol, TBZ, BCM, OBPA, and ZPT are preferable from the viewpoint of hydrophilicity, antibacterial effect, and cost.
 無機系の抗菌剤としては、殺菌作用の高い順に、水銀、銀、銅、亜鉛、鉄、鉛、ビスマスなどが挙げられる。例えば、銀、銅、亜鉛、ニッケル等の金属や金属イオンをケイ酸塩系担体、リン酸塩系担体、酸化物、ガラスやチタン酸カリウム、アミノ酸等に担持させたものが挙げられる。たとえばゼオライト系抗菌剤、ケイ酸カルシウム系抗菌剤、リン酸ジルコニウム系抗菌剤、リン酸カルシウム抗菌剤、酸化亜鉛系抗菌剤、溶解性ガラス系抗菌剤、シリカゲル系抗菌剤、活性炭系抗菌剤、酸化チタン系抗菌剤、チタニア系抗菌剤、有機金属系抗菌剤、イオン交換体セラミックス系抗菌剤、層状リン酸塩-四級アンモニウム塩系抗菌剤、抗菌ステンレス等が挙げられるが、これらに制限されるものではない。 Examples of inorganic antibacterial agents include mercury, silver, copper, zinc, iron, lead, bismuth and the like in descending order of bactericidal action. For example, the thing which carry | supported metals and metal ions, such as silver, copper, zinc, nickel, on the silicate type | system | group support | carrier, phosphate type | system | group support, an oxide, glass, potassium titanate, an amino acid, etc. is mentioned. For example, zeolite antibacterial, calcium silicate antibacterial, zirconium phosphate antibacterial, calcium phosphate antibacterial, zinc oxide antibacterial, soluble glass antibacterial, silica gel antibacterial, activated carbon antibacterial, titanium oxide Antibacterial agent, titania antibacterial agent, organometallic antibacterial agent, ion exchanger ceramic antibacterial agent, layered phosphate-quaternary ammonium salt antibacterial agent, antibacterial stainless steel, etc. Absent.
 天然系抗菌剤としては、カニやエビの甲殻等に含まれるキチンを加水分解して得られる塩基性多糖類のキトサンがある。
 また、アミノ酸の両側に金属を複合させたアミノメタルからなる日鉱の「商品名ホロンキラービースセラ」が好ましい。
 これらは蒸散性ではなく、また、親水性層のポリマーや架橋剤成分と相互作用しやすく、安定に分子分散あるいは固体分散可能であり、親水性層表面に抗菌剤が効果的に露出しやすく、かつ、水がかかっても溶出することなく、効果を長期間持続させることができ、人体に影響を及ぼすこともない。また、親水性層や塗布液に対して安定に分散することができ、親水性層や塗布液の劣化もおこらない。
 上記抗菌剤の中では、抗菌効果が大きいことから、銀系無機抗菌剤と水溶性有機抗菌剤が最も好ましい。特にケイ酸塩系担体であるゼオライトに銀を担持させた銀ゼオライトやシリカゲルに銀を担持させた抗菌剤や2-ブロモ-2-ニトロ-1,3-プロパンジオール、TPN、TBZ、BCM、OBPA、ZPTが好ましい。特に好ましい市販の銀ゼオライト系抗菌剤としては、品川燃料の「ゼオミック」や富士シリシア化学の「シルウェル」や日本電子材料の「バクテノン」等がある。その他、銀を無機イオン交換体セラミックスに担持させた東亜合成の「ノバロン」や触媒化成工業の「アトミーボール」やトリアジン系抗菌剤の「サンアイバックP」(三愛石油製)も好ましい。
Natural antibacterial agents include chitosan, a basic polysaccharide obtained by hydrolyzing chitin contained in crabs and shrimp shells.
Also, Nikko's “trade name Holon Killer Bees Sera” made of amino metal in which metal is compounded on both sides of amino acid is preferable.
These are not transpirationable, easily interact with the polymer and crosslinker component of the hydrophilic layer, can be stably dispersed in a molecule or solid, and the antibacterial agent is easily exposed effectively on the hydrophilic layer surface. And even if it splashes with water, it does not elute, can maintain the effect for a long time, and does not affect the human body. Moreover, it can disperse | distribute stably with respect to a hydrophilic layer and a coating liquid, and deterioration of a hydrophilic layer and a coating liquid does not occur.
Among the antibacterial agents, silver-based inorganic antibacterial agents and water-soluble organic antibacterial agents are most preferable because of their great antibacterial effects. In particular, silver zeolite with silver supported on zeolite silicate carrier, antibacterial agent with silver supported on silica gel, 2-bromo-2-nitro-1,3-propanediol, TPN, TBZ, BCM, OBPA ZPT is preferred. Particularly preferred commercially available silver zeolite antibacterial agents include “Zeomic” by Shinagawa Fuel, “Sylwell” by Fuji Silysia Chemical, and “Bactenone” by JEOL. In addition, “Novalon” manufactured by Toa Gosei, in which silver is supported on an inorganic ion exchanger ceramic, “Atomy Ball” manufactured by Catalytic Chemical Industry, and “Sun Eyebac P” (manufactured by Sanai Oil), a triazine antibacterial agent are also preferable.
 抗菌剤の含有量は、一般的には、親水性組成物中に、不揮発性成分に対して、0.001~10質量%であるが、0.005~5質量%が好ましく、0.01~3質量%がより好ましく、0.02~1.5質量%が特に好ましく、0.05~1質量%が最も好ましい。含有量が0.001質量%以上であれば効果的な抗菌効果を得ることができる。また、含有量が10質量%以下であれば親水性も低下せず、かつ経時性も悪化せず、防汚性、防曇性に悪影響を及ぼさない。 The content of the antibacterial agent is generally 0.001 to 10% by mass, preferably 0.005 to 5% by mass, based on the non-volatile component in the hydrophilic composition. Is more preferably from 3 to 3% by weight, particularly preferably from 0.02 to 1.5% by weight, most preferably from 0.05 to 1% by weight. If the content is 0.001% by mass or more, an effective antibacterial effect can be obtained. Further, if the content is 10% by mass or less, the hydrophilicity is not lowered, the aging is not deteriorated, and the antifouling property and the antifogging property are not adversely affected.
〔無機微粒子〕
 親水性組成物には、形成される親水性膜の硬化被膜強度向上及び親水性向上のために無機微粒子を含有してもよい。無機微粒子としては、例えば、シリカ、アルミナ、酸化マグネシウム、酸化チタン、炭酸マグネシウム、アルギン酸カルシウムまたはこれらの混合物が好適に挙げられる。
 無機微粒子は、平均粒径が、好ましくは5nm~10μm、より好ましくは0.5~3μmであるのがよい。上記範囲であると、親水層中に安定に分散して、親水層の膜強度を十分に保持し、親水性に優れる膜を形成することができる。上述したような無機微粒子はコロイダルシリカ分散物等の市販品として容易に入手することができる。
[Inorganic fine particles]
The hydrophilic composition may contain inorganic fine particles for the purpose of improving the cured film strength and hydrophilicity of the hydrophilic film to be formed. As the inorganic fine particles, for example, silica, alumina, magnesium oxide, titanium oxide, magnesium carbonate, calcium alginate, or a mixture thereof is preferably exemplified.
The inorganic fine particles preferably have an average particle diameter of 5 nm to 10 μm, more preferably 0.5 to 3 μm. Within the above range, it is possible to form a film that is stably dispersed in the hydrophilic layer, sufficiently retains the film strength of the hydrophilic layer, and is excellent in hydrophilicity. The inorganic fine particles as described above can be easily obtained as a commercial product such as a colloidal silica dispersion.
 無機微粒子は、親水性組成物中に、不揮発性成分に対して、好ましくは20質量%以下、より好ましくは10質量%以下の範囲で使用される。また、無機微粒子は、単独で又は2種以上を組み合わせて用いることができる。 The inorganic fine particles are used in the hydrophilic composition in an amount of preferably 20% by mass or less, more preferably 10% by mass or less, based on the nonvolatile components. The inorganic fine particles can be used alone or in combination of two or more.
〔紫外線吸収剤〕
 親水性部材の耐候性向上、耐久性向上の観点から、親水性組成物には紫外線吸収剤を添加することができる。
 紫外線吸収剤としては、例えば、特開昭58-185677号公報、同61-190537号公報、特開平2-782号公報、同5-197075号公報、同9-34057号公報等に記載されたベンゾトリアゾール系化合物、特開昭46-2784号公報、特開平5-194483号公報、米国特許第3214463号等に記載されたベンゾフェノン系化合物、特公昭48-30492号公報、同56-21141号公報、特開平10-88106号公報等に記載された桂皮酸系化合物、特開平4-298503号公報、同8-53427号公報、同8-239368号公報、同10-182621号公報、特表平8-501291号公報等に記載されたトリアジン系化合物、リサーチディスクロージャーNo.24239号に記載された化合物やスチルベン系、ベンズオキサゾール系化合物に代表される紫外線を吸収して蛍光を発する化合物、いわゆる蛍光増白剤、などが挙げられる。
 添加量は目的に応じて適宜選択されるが、一般的には、固形分換算で0.5~15質量%であることが好ましい。
[Ultraviolet absorber]
From the viewpoint of improving the weather resistance and durability of the hydrophilic member, an ultraviolet absorber can be added to the hydrophilic composition.
Examples of the ultraviolet absorber are described in JP-A Nos. 58-185677, 61-190537, JP-A-2-782, JP-A-5-197075, JP-A-9-34057, and the like. Benzotriazole compounds, benzophenone compounds described in JP-A-46-2784, JP-A-5-194443, US Pat. No. 3,214,463, etc., JP-B-48-30492, JP-A-56-21141 Cinnamic acid compounds described in JP-A-10-88106, JP-A-4-298503, JP-A-8-53427, JP-A-8-239368, JP-A-10-182621, JP The triazine compounds described in JP-A-8-501291, Research Disclosure No. Examples thereof include compounds described in No. 24239, compounds that emit ultraviolet light by absorbing ultraviolet rays typified by stilbene and benzoxazole compounds, so-called fluorescent brighteners, and the like.
The addition amount is appropriately selected according to the purpose, but generally it is preferably 0.5 to 15% by mass in terms of solid content.
〔酸化防止剤〕
 親水性部材の安定性向上のため、親水性組成物に酸化防止剤を添加することができる。酸化防止剤としては、ヨーロッパ公開特許、同第223739号公報、同309401号公報、同第309402号公報、同第310551号公報、同第310552号公報、同第459416号公報、ドイツ公開特許第3435443号公報、特開昭54-48535号公報、同62-262047号公報、同63-113536号公報、同63-163351号公報、特開平2-262654号公報、特開平2-71262号公報、特開平3-121449号公報、特開平5-61166号公報、特開平5-119449号公報、米国特許第4814262号明細書、米国特許第4980275号明細書等に記載のものを挙げることができる。
 添加量は目的に応じて適宜選択されるが、固形分換算で0.1~8質量%であることが好ましい。
〔Antioxidant〕
In order to improve the stability of the hydrophilic member, an antioxidant can be added to the hydrophilic composition. Examples of the antioxidant include European published patents, 223739, 309401, 309402, 310551, 310552, 359416, and 3435443. JP, 54-85535, 62-262447, 63-113536, 63-163351, JP-A-2-262654, JP-A-2-71262, Examples thereof include those described in Kaihei 3-121449, JP-A-5-61166, JP-A-5-119449, US Pat. No. 4,814,262, US Pat. No. 4,980,275, and the like.
The addition amount is appropriately selected according to the purpose, but is preferably 0.1 to 8% by mass in terms of solid content.
〔溶剤〕
 親水性層形成時に均一な塗膜の形成性を確保するために、親水性組成物に適度に有機溶剤を添加することも有効である。
 溶剤としては、例えば、アセトン、メチルエチルケトン、ジエチルケトン等のケトン系溶剤、メタノール、エタノール、2-プロパノール、1-プロパノール、1-ブタノール、tert-ブタノール等のアルコール系溶剤、クロロホルム、塩化メチレン等の塩素系溶剤、ベンゼン、トルエン等の芳香族系溶剤、酢酸エチル、酢酸ブチル、酢酸イソプロピルなどのエステル系溶剤、ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル系溶剤、エチレングリコールモノメチルエーテル、エチレングリコールジメチルエーテル等のグリコールエーテル系溶剤、などが挙げられる。
 この場合、VOC(揮発性有機溶剤)の関連から問題が起こらない範囲での添加が有効であり、その量は親水性部材形成時の塗布液全体に対し0~50質量%が好ましく、より好ましくは0~30質量%の範囲である。
〔solvent〕
In order to ensure the formation of a uniform coating film during the formation of the hydrophilic layer, it is also effective to appropriately add an organic solvent to the hydrophilic composition.
Examples of the solvent include ketone solvents such as acetone, methyl ethyl ketone, and diethyl ketone, alcohol solvents such as methanol, ethanol, 2-propanol, 1-propanol, 1-butanol, and tert-butanol, and chlorine such as chloroform and methylene chloride. Solvents, aromatic solvents such as benzene and toluene, ester solvents such as ethyl acetate, butyl acetate and isopropyl acetate, ether solvents such as diethyl ether, tetrahydrofuran and dioxane, glycols such as ethylene glycol monomethyl ether and ethylene glycol dimethyl ether And ether solvents.
In this case, it is effective to add VOC (volatile organic solvent) in a range that does not cause a problem, and the amount is preferably 0 to 50% by mass, more preferably based on the entire coating solution when forming the hydrophilic member. Is in the range of 0-30% by weight.
〔高分子化合物〕
 親水性組成物には、親水性層の膜物性を調整するため、親水性を阻害しない範囲で各種高分子化合物を添加することができる。高分子化合物としては、アクリル系重合体、ポリビニルアルコール樹脂、ポリビニルブチラール樹脂、ポリウレタン樹脂、ポリアミド樹脂、ポリエステル樹脂、エポキシ樹脂、フェノール樹脂、ポリカーボネート樹脂、ポリビニルホルマール樹脂、シェラック、ビニル系樹脂、アクリル系樹脂、ゴム系樹脂、ワックス類、その他の天然樹脂等が使用できる。また、これらは2種以上併用してもかまわない。これらのうち、アクリル系のモノマーの共重合によって得られるビニル系共重合が好ましい。更に、「カルボキシル基含有モノマー」、「メタクリル酸アルキルエステル」、又は「アクリル酸アルキルエステル」を構造単位として含む共重合体も好ましく用いられる。
[Polymer compound]
In order to adjust the film properties of the hydrophilic layer, various polymer compounds can be added to the hydrophilic composition as long as the hydrophilicity is not inhibited. High molecular compounds include acrylic polymer, polyvinyl alcohol resin, polyvinyl butyral resin, polyurethane resin, polyamide resin, polyester resin, epoxy resin, phenol resin, polycarbonate resin, polyvinyl formal resin, shellac, vinyl resin, acrylic resin. Rubber resins, waxes and other natural resins can be used. Two or more of these may be used in combination. Of these, vinyl copolymer obtained by copolymerization of acrylic monomers is preferred. Furthermore, a copolymer containing “carboxyl group-containing monomer”, “methacrylic acid alkyl ester” or “acrylic acid alkyl ester” as a structural unit is also preferably used.
〔その他〕
 さらにこの他にも、必要に応じて、例えば、レベリング添加剤、マット剤、膜物性を調整するためのワックス類、基板への密着性を改善するために、親水性を阻害しない範囲でタッキファイヤーなどを含有させることができる。
 タッキファイヤーとしては、具体的には、特開2001-49200号公報の5~6pに記載されている高分子量の粘着性ポリマー(例えば、(メタ)アクリル酸と炭素数1~20のアルキル基を有するアルコールとのエステル、(メタ)アクリル酸と炭素数3~14の脂環族アルコールとのエステル、(メタ)アクリル酸と炭素数6~14の芳香族アルコールとのエステルからなる共重合物)や、重合性不飽和結合を有する低分子量粘着付与性樹脂などである。
[Others]
In addition to this, if necessary, for example, leveling additives, matting agents, waxes for adjusting film physical properties, and tackifiers within the range that does not impair hydrophilicity in order to improve adhesion to the substrate. Etc. can be contained.
As the tackifier, specifically, a high molecular weight adhesive polymer (for example, (meth) acrylic acid and an alkyl group having 1 to 20 carbon atoms) described in JP-A-2001-49200, 5-6p. An ester of an alcohol having a copolymer, an ester of (meth) acrylic acid and an alicyclic alcohol having 3 to 14 carbon atoms, a copolymer comprising an ester of (meth) acrylic acid and an aromatic alcohol having 6 to 14 carbon atoms) And a low molecular weight tackifying resin having a polymerizable unsaturated bond.
 親水性組成物には、耐摩耗性、耐酸性及び耐アルカリ性の観点から、ジルコニアの塩化物、硝酸塩、アルコキシド類および有機錯体を含有することができる。ジルコニアの塩化物としては、塩化ジルコニウム、オキシ塩化ジルコニウム(8水和物)、塩素含有ジルコニウムアルコキシドZr(OC2m+1Cl(m、x、y:整数、x+y=4)などが挙げられ、ジルコニウムの硝酸塩としては、オキシ硝酸ジルコニウム(2水和物)が挙げられ、ジルコニウムのアルコキシドとしては、ジルコニウムエトキシド,ジルコニウムプロポキシド、ジルコニウムイソプロポキシド、ジルコニウムブトキシド、ジルコニウムt-ブトキシドなどが挙げられ、有機錯体としては、アセチルアセトン誘導体が挙げられ、具体的にはテトラキス(アセチルアセトナト)ジルコニウム、ビス(アセチルアセトナト)ジルコニウムジブトキシド、ビス(アセチルアセトナト)ジルコニウムジクロリド、テトラキス(3,5-ヘプタンジオネート)ジルコニウム、テトラキス(2,2,6,6-テトラメチル-3,5-ヘプタンジオネート)ジルコニウム、ビス(2,2,6,6-テトラメチル-3,5-ヘプタンジオネート)ジルコニウムジイソプロポキシドなどが挙げられる。
 上記ジルコニウム化合物は、親水性組成物中に、不揮発性成分として、好ましくは0~50質量%、より好ましくは5~25質量%の範囲で使用される。
The hydrophilic composition can contain zirconia chlorides, nitrates, alkoxides and organic complexes from the viewpoints of wear resistance, acid resistance and alkali resistance. Examples of zirconia chloride include zirconium chloride, zirconium oxychloride (octahydrate), chlorine-containing zirconium alkoxide Zr (OC m H 2m + 1 ) x Cl y (m, x, y: integer, x + y = 4). Examples of the zirconium nitrate include zirconium oxynitrate (dihydrate). Examples of the zirconium alkoxide include zirconium ethoxide, zirconium propoxide, zirconium isopropoxide, zirconium butoxide, zirconium t-butoxide and the like. Examples of the organic complex include acetylacetone derivatives, specifically tetrakis (acetylacetonato) zirconium, bis (acetylacetonato) zirconium dibutoxide, bis (acetylacetonato) zirconium dichloride. Tetrakis (3,5-heptanedionate) zirconium, tetrakis (2,2,6,6-tetramethyl-3,5-heptanedionate) zirconium, bis (2,2,6,6-tetramethyl-3, 5-heptanedionate) zirconium diisopropoxide and the like.
The zirconium compound is preferably used in the hydrophilic composition as a non-volatile component in the range of 0 to 50% by mass, more preferably 5 to 25% by mass.
[親水性組成物の調製]
 親水性組成物は、(A)親水性ポリマー(好ましくは、さらに(B)触媒及び(C)アルコキシド化合物)をエタノールなどの溶媒に溶解後、攪拌することで調製できる。
 反応温度は室温~80℃であり、反応時間、即ち攪拌を継続する時間は1~72時間の範囲であることが好ましく、この攪拌により両成分の加水分解・重縮合を進行させて、有機無機複合体ゾル液を得ることができる。
[Preparation of hydrophilic composition]
The hydrophilic composition can be prepared by dissolving (A) a hydrophilic polymer (preferably (B) a catalyst and (C) an alkoxide compound) in a solvent such as ethanol and stirring.
The reaction temperature is from room temperature to 80 ° C., and the reaction time, that is, the time during which stirring is continued is preferably in the range of 1 to 72 hours. A composite sol solution can be obtained.
 親水性組成物を調製する際に用いる溶媒としては、各成分を均一に、溶解、分散し得るものであれば特に制限はないが、例えば、メタノール、エタノール、水等の水系溶媒が好ましい。 The solvent used in preparing the hydrophilic composition is not particularly limited as long as each component can be uniformly dissolved and dispersed, but for example, an aqueous solvent such as methanol, ethanol, water and the like is preferable.
 前述のように、親水性層を形成するための有機無機複合体ゾル液(親水性組成物)の調製は、ゾル-ゲル法を利用することができる。ゾル-ゲル法については、作花済夫「ゾル-ゲル法の科学」(株)アグネ承風社(刊)(1988年)、平島硯「最新ゾル-ゲル法による機能性薄膜作成技術」総合技術センター(刊)(1992年)等の成書等に詳細に記述され、それらに記載の方法を適用することができる。 As described above, the preparation of the organic-inorganic composite sol liquid (hydrophilic composition) for forming the hydrophilic layer can utilize a sol-gel method. Regarding the sol-gel method, Sakuo Sakuo “Science of Sol-Gel Method”, Agne Jofusha Co., Ltd. (published) (1988), Satoshi Hirashima “Functional Thin Film Formation Technology Using the Latest Sol-Gel Method” It is described in detail in a book such as the Technical Center (published) (1992), and the methods described therein can be applied.
[親水性層の形成]
 親水性組成物を、適切な基板上に被膜し、加熱ないしは乾燥することで、親水性層を形成することができる。
 被膜の方法は公知の方法を用いることが可能であり、特に限定がなく、例えばスプレーコーティング法、ディップコーティング法、フローコーティング法、スピンコーティング法、ロールコーティング法、フィルムアプリケーター法、スクリーン印刷法、バーコーター法、刷毛塗り、スポンジ塗り等の方法が適用できる。
 親水性層の形成において、親水性組成物で被膜した後の加熱、乾燥条件としては、高密度の架橋構造を効率よく形成するといった観点からは、50~200℃の温度範囲において、2分~1時間程度行うことが好ましく、80~160℃の温度範囲で、5~30分間乾燥することがより好ましい。また、加熱手段としては、公知の手段、例えば、温度調整機能を有する乾燥機などを用いることが好ましい。
[Formation of hydrophilic layer]
A hydrophilic layer can be formed by coating a hydrophilic composition on a suitable substrate and heating or drying.
The coating method can be a known method, and is not particularly limited. For example, spray coating, dip coating, flow coating, spin coating, roll coating, film applicator, screen printing, bar printing Methods such as a coater method, brush coating, and sponge coating can be applied.
In the formation of the hydrophilic layer, the heating and drying conditions after coating with the hydrophilic composition are from 2 minutes in the temperature range of 50 to 200 ° C. from the viewpoint of efficiently forming a high-density crosslinked structure. It is preferably performed for about 1 hour, and more preferably dried at a temperature range of 80 to 160 ° C. for 5 to 30 minutes. Moreover, as a heating means, it is preferable to use a well-known means, for example, the dryer etc. which have a temperature control function.
 また、親水性組成物で基板を被膜する場合、触媒を被膜直前に混合することができる。具体的には触媒混合直後~1時間以内で塗設することが好ましい。触媒を混合し、長時間放置したのちに塗設すると親水性組成物の粘度があがり、塗布むら等の欠陥を生じることがある。その他の成分も塗設直前に混合することが好ましいが混合後、長時間保存してもかまわない。 Also, when the substrate is coated with a hydrophilic composition, the catalyst can be mixed immediately before the coating. Specifically, the coating is preferably performed immediately after mixing the catalyst to within 1 hour. When the catalyst is mixed and left to stand for a long time, the hydrophilic composition increases in viscosity, and defects such as coating unevenness may occur. Other components are also preferably mixed immediately before coating, but may be stored for a long time after mixing.
 親水性層の厚さは、0.01μm~100μmが好ましく、0.02μm~80μmがさらに好ましく、0.05μm~50μmが最も好ましい。膜厚が0.01μm以上の場合は、十分な親水性、耐久性が得られるため好ましく、膜厚が100μm以下の場合は、クラックが入るなど製膜性に問題を来たすことがなく、好ましい。
 親水性層の乾燥塗布量を、好ましくは0.01g/m~100g/m、より好ましくは0.02g/m~80g/m、特に好ましくは0.05g/m~50g/mとすることで、上記の膜厚を得ることができる。
The thickness of the hydrophilic layer is preferably 0.01 μm to 100 μm, more preferably 0.02 μm to 80 μm, and most preferably 0.05 μm to 50 μm. When the film thickness is 0.01 μm or more, it is preferable because sufficient hydrophilicity and durability can be obtained. When the film thickness is 100 μm or less, there is no problem in film forming properties such as cracking, which is preferable.
The dry coating amount of the hydrophilic layer is preferably 0.01 g / m 2 to 100 g / m 2 , more preferably 0.02 g / m 2 to 80 g / m 2 , particularly preferably 0.05 g / m 2 to 50 g / m 2. with m 2, it is possible to obtain a film thickness of the.
<低溶出性層>
[(a)親水性ポリマー]
 低溶出性層は、(a)親水性ポリマー(すなわち、(a)反応性基を有する親水性ポリマー)を含有する低溶出性層用組成物から形成される。反応性基としては、具体的には、水酸基、アミノ基、カルボン酸基、スルホン酸基、スルフィン酸基、スルフェン酸基、リン酸基、ホスホン酸基が挙げられ、中でも、水酸基、カルボン酸基が好ましい。
 このような(a)親水性ポリマーとしては、公知のものを用いることができる。以下に、(a)親水性ポリマーの具体例を挙げるが、これらに限定されない。
 ポリエチレングリコール、ポリプロピレングリコール等のポリエーテル。ポリ(メタ)アクリル酸、ポリアクリルアミド-2-メチルプロパンスルホン酸、ポリ(3-スルホプロピル(メタ)アクリレート)、ポリ(2-スルホエチル(メタ)アクリレート)、ポリスチレンスルホン酸、ポリビニルスルホン酸、ポリビニルホスホン酸、ポリマレイン酸、ポリイタコン酸、リン酸基含有ポリ(メタ)アクリレート等のアニオン性のポリマーおよびこれらの塩、ポリアリルアミン、ポリジメチルアリルアミン、ポリ(塩化(メタ)アクリロイルプロピルトリメチルアンモニウム)、ポリ(塩化(メタ)アクリルアミドプロピルトリメチルアンモニウム)、ポリ(4-ビニルピリジン)、ポリ(2-ビニルピリジン)等のカチオン性のポリマー、ポリ(メタ)アクリルアミド、ポリジメチル(メタ)アクリルアミド、ポリイソプロピル(メタ)アクリルアミド、ポリビニルアルコール、ポリビニルピロリドン、ポリビニルアセトアミド、ポリビニルモルホリン等のノニオン性のポリマー、カルボキシジメチルセルロース、ヒドロキシプロピルメチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、メチルセルロース等のセルロース誘導体等。
<Low elution layer>
[(A) Hydrophilic polymer]
The low elution layer is formed from a composition for a low elution layer containing (a) a hydrophilic polymer (that is, (a) a hydrophilic polymer having a reactive group). Specific examples of the reactive group include a hydroxyl group, an amino group, a carboxylic acid group, a sulfonic acid group, a sulfinic acid group, a sulfenic acid group, a phosphoric acid group, and a phosphonic acid group. Is preferred.
As such (a) hydrophilic polymer, a known polymer can be used. Specific examples of the hydrophilic polymer (a) are listed below, but are not limited thereto.
Polyethers such as polyethylene glycol and polypropylene glycol. Poly (meth) acrylic acid, polyacrylamide-2-methylpropanesulfonic acid, poly (3-sulfopropyl (meth) acrylate), poly (2-sulfoethyl (meth) acrylate), polystyrene sulfonic acid, polyvinyl sulfonic acid, polyvinyl phosphone Anionic polymers such as acids, polymaleic acid, polyitaconic acid, poly (meth) acrylates containing phosphoric acid groups and their salts, polyallylamine, polydimethylallylamine, poly ((meth) acryloylpropyltrimethylammonium chloride), poly (chlorinated) Cationic polymers such as (meth) acrylamidopropyltrimethylammonium), poly (4-vinylpyridine), poly (2-vinylpyridine), poly (meth) acrylamide, polydimethyl (meth) acrylamide, poly Isopropyl (meth) acrylamide, polyvinyl alcohol, polyvinyl pyrrolidone, polyvinyl acetamide, nonionic polymers polyvinyl morpholine, carboxymethyl dimethyl cellulose, hydroxypropyl methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, and cellulose derivatives such as methyl cellulose.
 上記(a)親水性ポリマーの中でも、親水性層と相互作用の観点から、ポリエチレングリコール、ポリプロピレングリコール、ポリビニルアルコール、カルボキシジメチルセルロース、カルボキシメチルセルロースが好ましく、ポリエチレングリコール、カルボキシジメチルセルロース、ポリビニルアルコールがより好ましい。
 (a)親水性ポリマーの親水性を低下させない限りにおいて、その他のモノマー成分との共重合体も用いることができる。
Among the hydrophilic polymers (a), from the viewpoint of interaction with the hydrophilic layer, polyethylene glycol, polypropylene glycol, polyvinyl alcohol, carboxydimethyl cellulose, and carboxymethyl cellulose are preferable, and polyethylene glycol, carboxydimethyl cellulose, and polyvinyl alcohol are more preferable. .
(A) As long as the hydrophilicity of the hydrophilic polymer is not lowered, copolymers with other monomer components can also be used.
 その他のモノマー成分としては、水酸基を有するモノマーが好ましい。すなわち、(a)親水性ポリマーは、水酸基を有するモノマーとの共重合体であることが好ましい。水酸基を有するモノマーとしては、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、2-ヒドロキシペンチルアクリレート、トリメチロールプロパンモノアクリレート、ペンタエリスリトールモノアクリレート、ヒドロキシベンジルアクリレート、ヒドロキシフェネチルアクリレート、ジヒドロキシフェネチルアクリレート、ヒドロキシフェニルアクリレート、2-(ヒドロキシフェニルカルボニルオキシ)エチルアクリレート、α-ヒドロキシメチルメチルアクリレート、α-ヒドロキシメチルエチルアクリレート、α-ヒドロキシメチルn-プロピルアクリレート、α-ヒドロキシメチルイソプロピルアクリレート、α-ヒドロキシメチル(n-、i-、sec-またはt-)ブチルアクリレート、α-ヒドロキシメチルシクロヘキシルアクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルメタクリレート、2-ヒドロキシペンチルメタクリレート、トリメチロールプロパンモノメタクリレート、ペンタエリスリトールモノメタクリレート、ヒドロキシベンジルメタクリレート、ヒドロキシフェネチルメタクリレート、ジヒドロキシフェネチルメタクリレート、ヒドロキシフェニルメタクリレート、2-(ヒドロキシフェニルカルボニルオキシ)エチルメタクリレート、N-ヒドロキシメチルアクリルアミド、N-ヒドロキシエチルアクリルアミド、N-(ヒドロキシフェニル)アクリルアミド、α-ヒドロキシメチルアクリルアミド、α-ヒドロキシメチル-N、N-ジメチルアクリルアミド、α-ヒドロキシメチル-N-イソプロピルアクリルアミド、N-ヒドロキシエチル-N-メチルアクリルアミド、N-[トリス(ヒドロキシメチル)メチル]アクリルアミド、N-ヒドロキシメチルメタクリルアミド、N-ヒドロキシエチルメタクリルアミド、N-(ヒドロキシフェニル)メタクリルアミド、N-ヒドロキシエチル-N-メチルメタクリルアミド、N-[トリス(ヒドロキシメチル)メチル]メタクリルアミド等が挙げられ、親水性を維持する観点から、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート、α-ヒドロキシメチルメチルアクリレート、N-ヒドロキシエチルアクリルアミド、α-ヒドロキシメチルアクリルアミドが好ましく、2-ヒドロキシエチルアクリレート、N-ヒドロキシエチルアクリルアミドがより好ましい。
 水酸基を有するモノマーの総割合は50質量%以下であることが好ましく、さらに好ましくは30質量%以下である。
As the other monomer component, a monomer having a hydroxyl group is preferable. That is, (a) the hydrophilic polymer is preferably a copolymer with a monomer having a hydroxyl group. Examples of the monomer having a hydroxyl group include 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxypentyl acrylate, trimethylolpropane monoacrylate, pentaerythritol monoacrylate, hydroxybenzyl acrylate, hydroxyphenethyl acrylate, dihydroxyphenethyl acrylate, hydroxyphenyl Acrylate, 2- (hydroxyphenylcarbonyloxy) ethyl acrylate, α-hydroxymethylmethyl acrylate, α-hydroxymethylethyl acrylate, α-hydroxymethyl n-propyl acrylate, α-hydroxymethylisopropyl acrylate, α-hydroxymethyl (n- I-, sec- or t-) butyl acrylate, α-hydroxy Methylcyclohexyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 2-hydroxypentyl methacrylate, trimethylolpropane monomethacrylate, pentaerythritol monomethacrylate, hydroxybenzyl methacrylate, hydroxyphenethyl methacrylate, dihydroxyphenethyl methacrylate, hydroxyphenyl methacrylate, 2 -(Hydroxyphenylcarbonyloxy) ethyl methacrylate, N-hydroxymethylacrylamide, N-hydroxyethylacrylamide, N- (hydroxyphenyl) acrylamide, α-hydroxymethylacrylamide, α-hydroxymethyl-N, N-dimethylacrylamide, α- Hydroxymethyl-N-i Propylacrylamide, N-hydroxyethyl-N-methylacrylamide, N- [tris (hydroxymethyl) methyl] acrylamide, N-hydroxymethylmethacrylamide, N-hydroxyethylmethacrylamide, N- (hydroxyphenyl) methacrylamide, N- Examples include hydroxyethyl-N-methylmethacrylamide, N- [tris (hydroxymethyl) methyl] methacrylamide, etc. From the viewpoint of maintaining hydrophilicity, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, α-hydroxymethyl Methyl acrylate, N-hydroxyethyl acrylamide, and α-hydroxymethyl acrylamide are preferable, and 2-hydroxyethyl acrylate and N-hydroxyethyl acrylamide are more preferable. .
The total proportion of monomers having a hydroxyl group is preferably 50% by mass or less, and more preferably 30% by mass or less.
 (a)親水性ポリマーの質量平均分子量としては、500以上100,000以下が好ましく、500~80,000がさらに好ましく、1,000~50,000が最も好ましい。500以上であることにより、低溶出性層からの(a)親水性ポリマーの溶出を遅らせることができる。 (A) The mass average molecular weight of the hydrophilic polymer is preferably 500 or more and 100,000 or less, more preferably 500 to 80,000, and most preferably 1,000 to 50,000. By being 500 or more, elution of the (a) hydrophilic polymer from the low elution layer can be delayed.
 (a)親水性ポリマーは、低溶出性層用組成物中に、不揮発性成分に対して、好ましくは5~99質量%、更に好ましくは10~98質量%の範囲で使用される。 (A) The hydrophilic polymer is preferably used in the low-elution layer composition in the range of 5 to 99% by mass, more preferably 10 to 98% by mass with respect to the nonvolatile component.
[(b)架橋剤]
 また、低溶出性層用組成物は(b)架橋剤を含有することが好ましい。(b)架橋剤を含有することにより、(a)親水性ポリマーが早く溶出してしまうのを抑制する効果が得られる。
 (b)架橋剤は公知のものを用いることができる。以下に、(b)架橋剤の具体例を挙げるが、これらに限定されない。
 有機架橋剤としては、イソシアネート系架橋剤、エポキシ系架橋剤を好適に用いることができる。イソシアネート系架橋剤としては、イソホロンジイソシアネート、1,6-ヘキサメチレンジイソシアネート、1,4-テトラメチレンジイソシアネート、2,2,4-トリメチル-1,6-ヘキサメチレンジイソシアネート、1,12-ドデカメチレンジイソシアネート、1,3-トリメチレンジイソシアネート、1,5-ペンタメチレンジイソシアネート、エチレンジイソシアネート、2,3-ジメチルエチレンジイソシアネート、1-メチルトリメチレンジイソシアネート、リジンジイソシアネート、2,6-ジイソシアナトメチルカプロエート、1,3-シクロヘキシレンジイソシアネート、1,4-シクロヘキシレンジイソシアネート、1-イソシアナト-2-イソシアナトメチルシクロペンタン、ビス-(4-イソシアナトシクロへキシル)-メタン、1,3-および1,4-ビス-(イソシアナトメチル)-シクロヘキサン、ビス-(4-イソシアナトシクロへキシル)-メタン、2,4’-ジイソシアナトジシクロへキシルメタン、ビス-(4-イソシアナト-3-メチルシクロへキシル)-メタン、1-イソシアナト-1-メチル-4(3)-イソシアナトメチルシクロヘキサン、1,3-シクロペンチレンジイソシアネート、1,2-シクロヘキシレンジイソシアネート、水素添加トリレンジイソシアネート、水素添加キシレンジイソシアネート、水素添加ジフェニルメタンジイソシアネート、3,3’-ジメチル-4,4’-ジシクロヘキシルメタンジイソシアネート、2,3-(ビス-(8-イソシアナトオクチル)-4-オクチル-5-ヘキシルシクロヘキサン、3(4)-イソシアナトメチル-1-メチルシクロヘキシルイソシアネート等の脂肪族、脂環式のものが挙げられ、
[(B) Crosslinking agent]
Moreover, it is preferable that the composition for low elution layers contains (b) a crosslinking agent. (B) By containing a crosslinking agent, the effect which suppresses that (a) hydrophilic polymer elutes early is acquired.
(B) A well-known thing can be used for a crosslinking agent. Specific examples of (b) the crosslinking agent are listed below, but are not limited thereto.
As the organic crosslinking agent, an isocyanate crosslinking agent or an epoxy crosslinking agent can be suitably used. Isocyanate-based crosslinking agents include isophorone diisocyanate, 1,6-hexamethylene diisocyanate, 1,4-tetramethylene diisocyanate, 2,2,4-trimethyl-1,6-hexamethylene diisocyanate, 1,12-dodecamethylene diisocyanate, 1,3-trimethylene diisocyanate, 1,5-pentamethylene diisocyanate, ethylene diisocyanate, 2,3-dimethylethylene diisocyanate, 1-methyltrimethylene diisocyanate, lysine diisocyanate, 2,6-diisocyanatomethylcaproate, 1, 3-cyclohexylene diisocyanate, 1,4-cyclohexylene diisocyanate, 1-isocyanato-2-isocyanatomethylcyclopentane, bis- (4-isocyanato Hexyl) -methane, 1,3- and 1,4-bis- (isocyanatomethyl) -cyclohexane, bis- (4-isocyanatocyclohexyl) -methane, 2,4'-diisocyanatodicyclo Xylmethane, bis- (4-isocyanato-3-methylcyclohexyl) -methane, 1-isocyanato-1-methyl-4 (3) -isocyanatomethylcyclohexane, 1,3-cyclopentylene diisocyanate, 1,2-cyclohexyl Sylene diisocyanate, hydrogenated tolylene diisocyanate, hydrogenated xylene diisocyanate, hydrogenated diphenylmethane diisocyanate, 3,3'-dimethyl-4,4'-dicyclohexylmethane diisocyanate, 2,3- (bis- (8-isocyanatooctyl)- 4-octyl-5-hexylcyclohex Down, 3 (4) - aliphatic, such as isocyanatomethyl-1-methylcyclohexyl isocyanate, include those of cycloaliphatic,
2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、2,2’-ジフェニルメタンジイソシアネート、4,4′-ジフェニルエーテルジイソシアネート、2-ニトロジフェニル-4,4′-ジイソシアネート、2,2′-ジフェニルプロパン-4,4′-ジイソシアネート、3,3′-ジメチルジフェニルメタン-4,4′-ジイソシアネート、4,4′-ジフェニルプロパンジイソシアネート、ナフチレン-1,4-ジイソシアネート、ナフチレン-1,5-ジイソシアネート、3,3′-ジメトキシジフェニル-4,4′-ジイソシアネート、2,4-ジイソシアナトトルエン2,6-ジイソシアナトトルエン、1,3-キシリレンジイソシアネート、1,4-キシリレンジイソシアネート、1,5-ナフタレンジイソシアネート、3,3’-ジメチル-4,4’-ビフェニレンジイソシアネート、3,3’-ジメトキシ-4,4’-ビフェニレンジイソシアネート、2,3’-ジクロロ-4,4’-ビフェニレンジイソシアネート、1,5-ナフタレンジイソシアネート、ビス-(4-イソシアナトフェニル)メタン、ノルボルナンジイソシアネート、1,5-ジブチルペンタメチレンジイソシアネート等の芳香族のものが挙げられる。
 これらジイソシアネート系架橋剤のうち、好ましくはイソホロンジイソシアネート、1,6-ヘキサメチレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネートが挙げられ、より好ましくは1,6-ヘキサメチレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネートが挙げられる。
2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, 2,2'-diphenylmethane diisocyanate, 4,4'-diphenyl ether diisocyanate, 2- Nitrodiphenyl-4,4'-diisocyanate, 2,2'-diphenylpropane-4,4'-diisocyanate, 3,3'-dimethyldiphenylmethane-4,4'-diisocyanate, 4,4'-diphenylpropane diisocyanate, naphthylene 1,4-diisocyanate, naphthylene-1,5-diisocyanate, 3,3'-dimethoxydiphenyl-4,4'-diisocyanate, 2,4-diisocyanatotoluene 2,6-diisocyanatotoluene, 1,3 - Silylene diisocyanate, 1,4-xylylene diisocyanate, 1,5-naphthalene diisocyanate, 3,3′-dimethyl-4,4′-biphenylene diisocyanate, 3,3′-dimethoxy-4,4′-biphenylene diisocyanate, 2, Aromatic compounds such as 3'-dichloro-4,4'-biphenylene diisocyanate, 1,5-naphthalene diisocyanate, bis- (4-isocyanatophenyl) methane, norbornane diisocyanate, 1,5-dibutylpentamethylene diisocyanate It is done.
Of these diisocyanate-based crosslinking agents, preferably, isophorone diisocyanate, 1,6-hexamethylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, and 4,4′-diphenylmethane diisocyanate are preferable. 1,6-hexamethylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate.
 エポキシ系架橋剤としてはポリエチレングリコールジグリシジルエーテル、エチレン-ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、プロピレン-ポリプロピレングリコールジグリシジルエーテル、ソルビトール-ポリグリシジルエーテル等が挙げられ、好ましくはポリエチレングリコールジグリシジルエーテル、エチレン-ポリエチレングリコールジグリシジルエーテルが挙げられ、より好ましくはポリエチレングリコールジグリシジルエーテルが挙げられる。 Examples of the epoxy-based crosslinking agent include polyethylene glycol diglycidyl ether, ethylene-polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, propylene-polypropylene glycol diglycidyl ether, sorbitol-polyglycidyl ether, and preferably polyethylene glycol diglycidyl ether. Ether and ethylene-polyethylene glycol diglycidyl ether are preferable, and polyethylene glycol diglycidyl ether is more preferable.
 無機架橋剤としては、アルコキシシリル基を有する化合物を好適に用いることができる。アルコキシシリル基を有する化合物としては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシラン、ジメトキシジエトキシシラン、ジメチルジメトキシシラン、ジエチルジメトキシシラン、プロピルメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジエトキシシラン、ジプロピルジエトキシシラン、γ-クロロプロピルメチルジエトキシシラン、γ-クロロプロピルジメチルジメトキシシラン、クロロジメチルジエトキシシラン、(p-クロロメチル)フェニルメチルジメトキシシラン、γ-ブロモプロピルメチルジメトキシシラン、アセトキシメチルメチルジエトキシシラン、アセトキシメチルメチルジメトキシシラン、アセトキシプロピルメチルジメトキシシラン、ベンゾイロキシプロピルメチルジメトキシシラン、2-(カルボメトキシ)エチルメチルジメトキシシラン、フェニルメチルジメトキシシラン、フェニルエチルジエトキシシラン、フェニルメチルジプロポキシシラン、ヒドロキシメチルメチルジエトキシシラン、N-(メチルジエトキシシリルプロピル)-O-ポリエチレンオキシドウレタン、N-(3-メチルジエチキシシリルプロピル)-4-ヒドロキシブチルアミド、N-(3-メチルジエトキシシリルプロピル)グルコンアミド、ビニルメチルジメトキシシラン、ビニルメチルジエトキシシラン、ビニルメチルジブトキシシラン、イソプロペニルメチルジメトキシシラン、イソプロペニルメチルジエトキシシラン、イソプロペニルメチルジブトキシシラン、ビニルメチルビス(2-メトキシエトキシ)シラン、アリルメチルジメトキシシラン、ビニルデシルメチルジメトキシシラン、ビニルオクチルメチルジメトキシシラン、ビニルフェニルメチルジメトキシシラン、イソプロペニルフェニルメチルジメトキシシラン、2-(メタ)アクリロキシエチルメチルジメトキシシラン、2-(メタ)アクリロキシエチルメチルジエトキシシラン、3-(メタ)アクリロキシプロピルメチルジメトキシシラン、3-(メタ)アクリロキシプロピルメチルジメトキシシラン、3-(メタ)-アクリロキシプロピルメチルジス(2-メトキシエトキシ)シラン、3-[2-(アリルオキシカルボニル)フェニルカルボニルオキシ]プロピルメチルジメトキシシラン、3-(ビニルフェニルアミノ)プロピルメチルジメトキシシラン、3-(ビニルフェニルアミノ)プロピルメチルジエトキシシラン、3-(ビニルベンジルアミノ)プロピルメチルジエトキシシラン、3-(ビニルベンジルアミノ)プロピルメチルジエトキシシラン、3-[2-(N-ビニルフェニルメチルアミノ)エチルアミノ]プロピルメチルジメトキシシラン、3-[2-(N-イソプロペニルフェニルメチルアミノ)エチルアミノ]プロピルメチルジメトキシシラン、2-(ビニルオキシ)エチルメチルジメトキシシラン、3-(ビニルオキシ)プロピルメチルジメトキシシラン、4-(ビニルオキシ)ブチルメチルジエトキシシラン、2-(イソプロペニルオキシ)エチルメチルジメトキシシラン、3-(アリルオキシ)プロピルメチルジメトキシシラン、10-(アリルオキシカルボニル)デシルメチルジメトキシシラン、3-(イソプロペニルメチルオキシ)プロピルメチルジメトキシシラン、10-(イソプロペニルメチルオキシカルボニル)デシルメチルジメトキシシラン、3-[(メタ)アクリロキプロピル]メチルジメトキシシラン、3-[(メタ)アクリロキシプロピル]メチルジエトキシシラン、3-[(メタ)アクリロキメチル]メチルジメトキシシラン、3-[(メタ)アクリロキシメチル]メチルジエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、N-[3-(メタ)アクリロキシ-2-ヒドロキシプロピル]-3-アミノプロピルメチルジエトキシシラン、O-「(メタ)アクリロキシエチル」-N-(メチルジエトキシシリルプロピル)ウレタン、γ-グリシドキシプロピルメチルジエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルメチルジメトキシシラン、γ-アミノプロピルメチルジエトキシシラン、γ-アミノプロピルメチルジメトキシシラン、4-アミノブチルメチルジエトキシシラン、11-アミノウンデシルメチルジエトキシシラン、m-アミノフェニルメチルジメトキシシラン、p-アミノフェニルメチルジメトキシシラン、3-アミノプロピルメチルジス(メトキシエトキシエトキシ)シラン、2-(4-ピリジルエチル)メチルジエトキシシラン、2-(メチルジメトキシシリルエチル)ピリジン、N-(3-メチルジメトキシシリルプロピル)ピロール、3-(m-アミノフェノキシ)プロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジエトキシシラン、N-(6-アミノヘキシル)アミノメチルメチルジエトキシシラン、N-(6-アミノヘキシル)アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-11-アミノウンデシルメチルジメトキシシラン、(アミノエチルアミノメチル)フェネチルメチルジメトキシシラン、N-3-[(アミノ(ポリプロピレンオキシ))]アミノプロピルメチルジメトキシシラン、n-ブチルアミノプロピルメチルジメトキシシラン、N-エチルアミノイソブチルメチルジメトキシシラン、N-メチルアミノプロピルメチルジメトキシシラン、N-フェニル-γ-アミノプロピルメチルジメトキシシラン、N-フェニル-γ-アミノメチルメチルジエトキシシラン、(シクロヘキシルアミノメチル)メチルジエトキシシラン、N-シクロヘキシルアミノプロピルメチルジメトキシシラン、ビス(2-ヒドロキシエチル)-3-アミノプロピルメチルジエトキシシラン、ジエチルアミノメチルメチルジエトキシシラン、ジエチルアミノプロピルメチルジメトキシシラン、ジメチルアミノプロピルメチルジメトキシシラン、N-3-メチルジメトキシシリルプロピル-m-フェニレンジアミン、N,N-ビス[3-(メチルジメトキシシリル)プロピル]エチレンジアミン、ビス(メチルジエトキシシリルプロピル)アミン、ビス(メチルジメトキシシリルプロピル)アミン、ビス[(3-メチルジメトキシシリル)プロピル]-エチレンジアミン、ビス[3-(メチルジエトキシシリル)プロピル]ウレア、ビス(メチルジメトキシシリルプロピル)ウレア、N-(3-メチルジエトキシシリルプロピル)-4,5-ジヒドロイミダゾール、ウレイドプロピルメチルジエトキシシラン、ウレイドプロピルメチルジメトキシシラン、アセトアミドプロピルメチルジメトキシシラン、2-(2-ピリジルエチル)チオプロピルメチルジメトキシシラン、2-(4-ピリジルエチル)チオプロピルメチルジメトキシシラン、ビス[3-(メチルジエトキシシリル)プロピル]ジスルフィド、3-(メチルジエトキシシリル)プロピルコハク酸無水物、γ-メルカプトプロピルメチルジメトキシシラン、γ-メルカプトプロピルメチルジエトキシシラン、イソシアナトプロピルメチルジメトキシシラン、イソシアナトプロピルメチルジエトキシシラン、イソシアナトエチルメチルジエトキシシラン、イソシアナトメチルメチルジエトキシシラン、カルボキシエチルメチルシランジオールナトリウム塩、N-(メチルジメトキシシリルプロピル)エチレンジアミン三酢酸三ナトリウム塩、3-(メチルジヒドロキシシリル)-1-プロパンスルホン酸、ジエチルホスフェートエチルメチルジエトキシシラン、3-メチルジヒドロキシシリルプロピルメチルホスホネートナトリウム塩、ビス(メチルジエトキシシリル)エタン、ビス(メチルジメトキシシリル)エタン、ビス(メチルジエトキシシリル)メタン、1,6-ビス(メチルジエトキシシリル)ヘキサン、1,8-ビス(メチルジエトキシシリル)オクタン、p-ビス(メチルジメトキシシリルエチル)ベンゼン、p-ビス(メチルジメトキシシリルメチル)ベンゼン、3-メトキシプロピルメチルジメトキシシラン、2-[メトキシ(ポリエチレンオキシ)プロピル]メチルジメトキシシラン、メトキシトリエチレンオキシプロピルメチルジメトキシシラン、トリス(3-メチルジメトキシシリルプロピル)イソシアヌレート、[ヒドロキシ(ポリエチレンオキシ)プロピル]メチルジエトキシシラン、N,N‘-ビス(ヒドロキシエチル)-N,N’-ビス(メチルジメトキシシリルプロピル)エチレンジアミン、ビス-[3-(メチルジエトキシシリルプロピル)-2-ヒドロキシプロポキシ]ポリエチレンオキシド、ビス[N,N‘-(メチルジエトキシシリルプロピル)アミノカルボニル]ポリエチレンオキシド、ビス(メチルジエトキシシリルプロピル)ポリエチレンオキシド、 As the inorganic crosslinking agent, a compound having an alkoxysilyl group can be suitably used. Examples of the compound having an alkoxysilyl group include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, dimethoxydiethoxysilane, dimethyldimethoxysilane, diethyldimethoxysilane, propylmethyldimethoxysilane, dimethyldiethoxysilane, diethyldisilane. Ethoxysilane, dipropyldiethoxysilane, γ-chloropropylmethyldiethoxysilane, γ-chloropropyldimethyldimethoxysilane, chlorodimethyldiethoxysilane, (p-chloromethyl) phenylmethyldimethoxysilane, γ-bromopropylmethyldimethoxysilane , Acetoxymethylmethyldiethoxysilane, acetoxymethylmethyldimethoxysilane, acetoxypropylmethyldimethoxysilane, benzoyloxy Propylmethyldimethoxysilane, 2- (carbomethoxy) ethylmethyldimethoxysilane, phenylmethyldimethoxysilane, phenylethyldiethoxysilane, phenylmethyldipropoxysilane, hydroxymethylmethyldiethoxysilane, N- (methyldiethoxysilylpropyl)- O-polyethylene oxide urethane, N- (3-methyldiethylsilylpropyl) -4-hydroxybutyramide, N- (3-methyldiethoxysilylpropyl) gluconamide, vinylmethyldimethoxysilane, vinylmethyldiethoxysilane, Vinylmethyldibutoxysilane, isopropenylmethyldimethoxysilane, isopropenylmethyldiethoxysilane, isopropenylmethyldibutoxysilane, vinylmethylbis (2-methoxyeth Si) silane, allylmethyldimethoxysilane, vinyldecylmethyldimethoxysilane, vinyloctylmethyldimethoxysilane, vinylphenylmethyldimethoxysilane, isopropenylphenylmethyldimethoxysilane, 2- (meth) acryloxyethylmethyldimethoxysilane, 2- (meta ) Acryloxyethylmethyldiethoxysilane, 3- (meth) acryloxypropylmethyldimethoxysilane, 3- (meth) acryloxypropylmethyldimethoxysilane, 3- (meth) -acryloxypropylmethyldis (2-methoxyethoxy) Silane, 3- [2- (allyloxycarbonyl) phenylcarbonyloxy] propylmethyldimethoxysilane, 3- (vinylphenylamino) propylmethyldimethoxysilane, 3- (vinylphenol Nylamino) propylmethyldiethoxysilane, 3- (vinylbenzylamino) propylmethyldiethoxysilane, 3- (vinylbenzylamino) propylmethyldiethoxysilane, 3- [2- (N-vinylphenylmethylamino) ethylamino] Propylmethyldimethoxysilane, 3- [2- (N-isopropenylphenylmethylamino) ethylamino] propylmethyldimethoxysilane, 2- (vinyloxy) ethylmethyldimethoxysilane, 3- (vinyloxy) propylmethyldimethoxysilane, 4- ( Vinyloxy) butylmethyldiethoxysilane, 2- (isopropenyloxy) ethylmethyldimethoxysilane, 3- (allyloxy) propylmethyldimethoxysilane, 10- (allyloxycarbonyl) decylmethyldimethoxy Silane, 3- (isopropenylmethyloxy) propylmethyldimethoxysilane, 10- (isopropenylmethyloxycarbonyl) decylmethyldimethoxysilane, 3-[(meth) acryloxypropyl] methyldimethoxysilane, 3-[(meth) acrylic Roxypropyl] methyldiethoxysilane, 3-[(meth) acryloxymethyl] methyldimethoxysilane, 3-[(meth) acryloxymethyl] methyldiethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, N- [ 3- (meth) acryloxy-2-hydroxypropyl] -3-aminopropylmethyldiethoxysilane, O-“(meth) acryloxyethyl” -N- (methyldiethoxysilylpropyl) urethane, γ-glycidoxypropyl Methyldiethoxysilane, β- 3,4-epoxycyclohexyl) ethylmethyldimethoxysilane, γ-aminopropylmethyldiethoxysilane, γ-aminopropylmethyldimethoxysilane, 4-aminobutylmethyldiethoxysilane, 11-aminoundecylmethyldiethoxysilane, m- Aminophenylmethyldimethoxysilane, p-aminophenylmethyldimethoxysilane, 3-aminopropylmethyldis (methoxyethoxyethoxy) silane, 2- (4-pyridylethyl) methyldiethoxysilane, 2- (methyldimethoxysilylethyl) pyridine, N- (3-methyldimethoxysilylpropyl) pyrrole, 3- (m-aminophenoxy) propylmethyldimethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, N- (2- Minoethyl) -3-aminopropylmethyldiethoxysilane, N- (6-aminohexyl) aminomethylmethyldiethoxysilane, N- (6-aminohexyl) aminopropylmethyldimethoxysilane, N- (2-aminoethyl)- 11-aminoundecylmethyldimethoxysilane, (aminoethylaminomethyl) phenethylmethyldimethoxysilane, N-3-[(amino (polypropyleneoxy))] aminopropylmethyldimethoxysilane, n-butylaminopropylmethyldimethoxysilane, N- Ethylaminoisobutylmethyldimethoxysilane, N-methylaminopropylmethyldimethoxysilane, N-phenyl-γ-aminopropylmethyldimethoxysilane, N-phenyl-γ-aminomethylmethyldiethoxysilane, (cyclohexane Silaminomethyl) methyldiethoxysilane, N-cyclohexylaminopropylmethyldimethoxysilane, bis (2-hydroxyethyl) -3-aminopropylmethyldiethoxysilane, diethylaminomethylmethyldiethoxysilane, diethylaminopropylmethyldimethoxysilane, dimethylamino Propylmethyldimethoxysilane, N-3-methyldimethoxysilylpropyl-m-phenylenediamine, N, N-bis [3- (methyldimethoxysilyl) propyl] ethylenediamine, bis (methyldiethoxysilylpropyl) amine, bis (methyldimethoxy) Silylpropyl) amine, bis [(3-methyldimethoxysilyl) propyl] -ethylenediamine, bis [3- (methyldiethoxysilyl) propyl] urea, bis (methyl Dimethoxysilylpropyl) urea, N- (3-methyldiethoxysilylpropyl) -4,5-dihydroimidazole, ureidopropylmethyldiethoxysilane, ureidopropylmethyldimethoxysilane, acetamidopropylmethyldimethoxysilane, 2- (2-pyridyl) Ethyl) thiopropylmethyldimethoxysilane, 2- (4-pyridylethyl) thiopropylmethyldimethoxysilane, bis [3- (methyldiethoxysilyl) propyl] disulfide, 3- (methyldiethoxysilyl) propylsuccinic anhydride, γ-mercaptopropylmethyldimethoxysilane, γ-mercaptopropylmethyldiethoxysilane, isocyanatopropylmethyldimethoxysilane, isocyanatopropylmethyldiethoxysilane, isocyanatoethyl Methyldiethoxysilane, isocyanatomethylmethyldiethoxysilane, carboxyethylmethylsilanediol sodium salt, N- (methyldimethoxysilylpropyl) ethylenediaminetriacetic acid trisodium salt, 3- (methyldihydroxysilyl) -1-propanesulfonic acid, Diethyl phosphate ethylmethyldiethoxysilane, 3-methyldihydroxysilylpropylmethylphosphonate sodium salt, bis (methyldiethoxysilyl) ethane, bis (methyldimethoxysilyl) ethane, bis (methyldiethoxysilyl) methane, 1,6-bis (Methyldiethoxysilyl) hexane, 1,8-bis (methyldiethoxysilyl) octane, p-bis (methyldimethoxysilylethyl) benzene, p-bis (methyldimethoxysilylmethyl) Benzene, 3-methoxypropylmethyldimethoxysilane, 2- [methoxy (polyethyleneoxy) propyl] methyldimethoxysilane, methoxytriethyleneoxypropylmethyldimethoxysilane, tris (3-methyldimethoxysilylpropyl) isocyanurate, [hydroxy (polyethyleneoxy ) Propyl] methyldiethoxysilane, N, N′-bis (hydroxyethyl) -N, N′-bis (methyldimethoxysilylpropyl) ethylenediamine, bis- [3- (methyldiethoxysilylpropyl) -2-hydroxypropoxy ] Polyethylene oxide, bis [N, N '-(methyldiethoxysilylpropyl) aminocarbonyl] polyethylene oxide, bis (methyldiethoxysilylpropyl) polyethylene oxide,
 メチルトリメトキシシラン、エチルトリメトキシシラン、プロピルトリメトキシシラン、メチルトリエトキシシラン、エチルトリエトキシシラン、プロピルトリエトキシシラン、γ-クロロプロピルトリエトキシシラン、γ-クロロプロピルトリメトキシシラン、クロロメチルトリエトキシシラン、(p-クロロメチル)フェニルトリメトキシシラン、γ-ブロモプロピルトリメトキシシラン、アセトキシメチルトリエトキシシラン、アセトキシメチルトリメトキシシラン、アセトキシプロピルトリメトキシシラン、ベンゾイロキシプロピルトリメトキシシラン、2-(カルボメトキシ)エチルトリメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリプロポキシシラン、ヒドロキシメチルトリエトキシシラン、N-(トリエトキシシリルプロピル)-O-ポリエチレンオキシドウレタン、N-(3-トリエチキシシリルプロピル)-4-ヒドロキシブチルアミド、N-(3-トリエトキシシリルプロピル)グルコンアミド、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリブトキシシラン、イソプロペニルトリメトキシシラン、イソプロペニルトリエトキシシラン、イソプロペニルトリブトキシシラン、ビニルトリス(2-メトキシエトキシ)シラン、アリルトリメトキシシラン、ビニルデシルトリメトキシシラン、ビニルオクチルトリメトキシシラン、ビニルフェニルトリメトキシシラン、イソプロペニルフェニルトリメトキシシラン、2-(メタ)アクリロキシエチルトリメトキシシラン、2-(メタ)アクリロキシエチルトリエトキシシラン、3-(メタ)アクリロキシプロピルトリメトキシシラン、3-(メタ)アクリロキシプロピルトリメトキシシラン、3-(メタ)-アクリロキシプロピルトリス(2-メトキシエトキシ)シラン、3-[2-(アリルオキシカルボニル)フェニルカルボニルオキシ]プロピルトリメトキシシラン、3-(ビニルフェニルアミノ)プロピルトリメトキシシラン、3-(ビニルフェニルアミノ)プロピルトリエトキシシラン、3-(ビニルベンジルアミノ)プロピルトリエトキシシラン、3-(ビニルベンジルアミノ)プロピルトリエトキシシラン、3-[2-(N-ビニルフェニルメチルアミノ)エチルアミノ]プロピルトリメトキシシラン、3-[2-(N-イソプロペニルフェニルメチルアミノ)エチルアミノ]プロピルトリメトキシシラン、2-(ビニルオキシ)エチルトリメトキシシラン、3-(ビニルオキシ)プロピルトリメトキシシラン、4-(ビニルオキシ)ブチルトリエトキシシラン、2-(イソプロペニルオキシ)エチルトリメトキシシラン、3-(アリルオキシ)プロピルトリメトキシシラン、10-(アリルオキシカルボニル)デシルトリメトキシシラン、3-(イソプロペニルメチルオキシ)プロピルトリメトキシシラン、10-(イソプロペニルメチルオキシカルボニル)デシルトリメトキシシラン、3-[(メタ)アクリロキプロピル]トリメトキシシラン、3-[(メタ)アクリロキシプロピル]トリエトキシシラン、3-[(メタ)アクリロキメチル]トリメトキシシラン、3-[(メタ)アクリロキシメチル]トリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、N-[3-(メタ)アクリロキシ-2-ヒドロキシプロピル]-3-アミノプロピルトリエトキシシラン、O-「(メタ)アクリロキシエチル」-N-(トリエトキシシリルプロピル)ウレタン、γ-グリシドキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、4-アミノブチルトリエトキシシラン、11-アミノウンデシルトリエトキシシラン、m-アミノフェニルトリメトキシシラン、p-アミノフェニルトリメトキシシラン、3-アミノプロピルトリス(メトキシエトキシエトキシ)シラン、2-(4-ピリジルエチル)トリエトキシシラン、2-(トリメトキシシリルエチル)ピリジン、N-(3-トリメトキシシリルプロピル)ピロール、3-(m-アミノフェノキシ)プロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、N-(6-アミノヘキシル)アミノメチルトリエトキシシラン、N-(6-アミノヘキシル)アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-11-アミノウンデシルトリメトキシシラン、(アミノエチルアミノメチル)フェネチルトリメトキシシラン、N-3-[(アミノ(ポリプロピレンオキシ))]アミノプロピルトリメトキシシラン、n-ブチルアミノプロピルトリメトキシシラン、N-エチルアミノイソブチルトリメトキシシラン、N-メチルアミノプロピルトリメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、N-フェニル-γ-アミノメチルトリエトキシシラン、(シクロヘキシルアミノメチル)トリエトキシシラン、N-シクロヘキシルアミノプロピルトリメトキシシラン、ビス(2-ヒドロキシエチル)-3-アミノプロピルトリエトキシシラン、ジエチルアミノメチルトリエトキシシラン、ジエチルアミノプロピルトリメトキシシラン、ジメチルアミノプロピルトリメトキシシラン、N-3-トリメトキシシリルプロピル-m-フェニレンジアミン、N,N-ビス[3-(トリメトキシシリル)プロピル]エチレンジアミン、ビス(トリエトキシシリルプロピル)アミン、ビス(トリメトキシシリルプロピル)アミン、ビス[(3-トリメトキシシリル)プロピル]-エチレンジアミン、ビス[3-(トリエトキシシリル)プロピル]ウレア、ビス(トリメトキシシリルプロピル)ウレア、N-(3-トリエトキシシリルプロピル)-4,5-ジヒドロイミダゾール、ウレイドプロピルトリエトキシシラン、ウレイドプロピルトリメトキシシラン、アセトアミドプロピルトリメトキシシラン、2-(2-ピリジルエチル)チオプロピルトリメトキシシラン、2-(4-ピリジルエチル)チオプロピルトリメトキシシラン、ビス[3-(トリエトキシシリル)プロピル]ジスルフィド、3-(トリエトキシシリル)プロピルコハク酸無水物、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、イソシアナトプロピルトリメトキシシラン、イソシアナトプロピルトリエトキシシラン、イソシアナトエチルトリエトキシシラン、イソシアナトメチルトリエトキシシラン、カルボキシエチルシラントリオールナトリウム塩、N-(トリメトキシシリルプロピル)エチレンジアミン三酢酸三ナトリウム塩、3-(トリヒドロキシシリル)-1-プロパンスルホン酸、ジエチルホスフェートエチルトリエトキシシラン、3-トリヒドロキシシリルプロピルメチルホスホネートナトリウム塩、ビス(トリエトキシシリル)エタン、ビス(トリメトキシシリル)エタン、ビス(トリエトキシシリル)メタン、1,6-ビス(トリエトキシシリル)ヘキサン、1,8-ビス(トリエトキシシリル)オクタン、p-ビス(トリメトキシシリルエチル)ベンゼン、p-ビス(トリメトキシシリルメチル)ベンゼン、3-メトキシプロピルトリメトキシシラン、2-[メトキシ(ポリエチレンオキシ)プロピル]トリメトキシシラン、メトキシトリエチレンオキシプロピルトリメトキシシラン、トリス(3-トリメトキシシリルプロピル)イソシアヌレート、[ヒドロキシ(ポリエチレンオキシ)プロピル]トリエトキシシラン、N,N’-ビス(ヒドロキシエチル)-N,N’-ビス(トリメトキシシリルプロピル)エチレンジアミン、ビス-[3-(トリエトキシシリルプロピル)-2-ヒドロキシプロポキシ]ポリエチレンオキシド、ビス[N,N’-(トリエトキシシリルプロピル)アミノカルボニル]ポリエチレンオキシド、ビス(トリエトキシシリルプロピル)ポリエチレンオキシドを挙げることができる。 Methyltrimethoxysilane, ethyltrimethoxysilane, propyltrimethoxysilane, methyltriethoxysilane, ethyltriethoxysilane, propyltriethoxysilane, γ-chloropropyltriethoxysilane, γ-chloropropyltrimethoxysilane, chloromethyltriethoxy Silane, (p-chloromethyl) phenyltrimethoxysilane, γ-bromopropyltrimethoxysilane, acetoxymethyltriethoxysilane, acetoxymethyltrimethoxysilane, acetoxypropyltrimethoxysilane, benzoyloxypropyltrimethoxysilane, 2- ( Carbomethoxy) ethyltrimethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyltripropoxysilane, hydroxymethyltriethoxy Silane, N- (triethoxysilylpropyl) -O-polyethylene oxide urethane, N- (3-triethysilylsilylpropyl) -4-hydroxybutyramide, N- (3-triethoxysilylpropyl) gluconamide, vinyltri Methoxysilane, vinyltriethoxysilane, vinyltributoxysilane, isopropenyltrimethoxysilane, isopropenyltriethoxysilane, isopropenyltributoxysilane, vinyltris (2-methoxyethoxy) silane, allyltrimethoxysilane, vinyldecyltrimethoxysilane , Vinyloctyltrimethoxysilane, vinylphenyltrimethoxysilane, isopropenylphenyltrimethoxysilane, 2- (meth) acryloxyethyltrimethoxysilane, 2- (meth) acryloxy Ethyl triethoxysilane, 3- (meth) acryloxypropyltrimethoxysilane, 3- (meth) acryloxypropyltrimethoxysilane, 3- (meth) -acryloxypropyltris (2-methoxyethoxy) silane, 3- [ 2- (allyloxycarbonyl) phenylcarbonyloxy] propyltrimethoxysilane, 3- (vinylphenylamino) propyltrimethoxysilane, 3- (vinylphenylamino) propyltriethoxysilane, 3- (vinylbenzylamino) propyltriethoxy Silane, 3- (vinylbenzylamino) propyltriethoxysilane, 3- [2- (N-vinylphenylmethylamino) ethylamino] propyltrimethoxysilane, 3- [2- (N-isopropenylphenylmethylamino) ethyl amino ] Propyltrimethoxysilane, 2- (vinyloxy) ethyltrimethoxysilane, 3- (vinyloxy) propyltrimethoxysilane, 4- (vinyloxy) butyltriethoxysilane, 2- (isopropenyloxy) ethyltrimethoxysilane, 3- (Allyloxy) propyltrimethoxysilane, 10- (allyloxycarbonyl) decyltrimethoxysilane, 3- (isopropenylmethyloxy) propyltrimethoxysilane, 10- (isopropenylmethyloxycarbonyl) decyltrimethoxysilane, 3- [ (Meth) acryloxypropyl] trimethoxysilane, 3-[(meth) acryloxypropyl] triethoxysilane, 3-[(meth) acryloxymethyl] trimethoxysilane, 3-[(meth) acryloxymethyl] trie Xysilane, γ-glycidoxypropyltrimethoxysilane, N- [3- (meth) acryloxy-2-hydroxypropyl] -3-aminopropyltriethoxysilane, O-“(meth) acryloxyethyl” -N— ( Triethoxysilylpropyl) urethane, γ-glycidoxypropyltriethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, 4- Aminobutyltriethoxysilane, 11-aminoundecyltriethoxysilane, m-aminophenyltrimethoxysilane, p-aminophenyltrimethoxysilane, 3-aminopropyltris (methoxyethoxyethoxy) silane, 2- (4-pyridylethyl) ) Triethoxy Lan, 2- (trimethoxysilylethyl) pyridine, N- (3-trimethoxysilylpropyl) pyrrole, 3- (m-aminophenoxy) propyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyl Trimethoxysilane, N- (2-aminoethyl) -3-aminopropyltriethoxysilane, N- (6-aminohexyl) aminomethyltriethoxysilane, N- (6-aminohexyl) aminopropyltrimethoxysilane, N -(2-aminoethyl) -11-aminoundecyltrimethoxysilane, (aminoethylaminomethyl) phenethyltrimethoxysilane, N-3-[(amino (polypropyleneoxy))] aminopropyltrimethoxysilane, n-butyl Aminopropyltrimethoxysilane, N-ethylamino Sobutyltrimethoxysilane, N-methylaminopropyltrimethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, N-phenyl-γ-aminomethyltriethoxysilane, (cyclohexylaminomethyl) triethoxysilane, N- Cyclohexylaminopropyltrimethoxysilane, bis (2-hydroxyethyl) -3-aminopropyltriethoxysilane, diethylaminomethyltriethoxysilane, diethylaminopropyltrimethoxysilane, dimethylaminopropyltrimethoxysilane, N-3-trimethoxysilylpropyl -M-phenylenediamine, N, N-bis [3- (trimethoxysilyl) propyl] ethylenediamine, bis (triethoxysilylpropyl) amine, bis (trimethoxysilylpro L) amine, bis [(3-trimethoxysilyl) propyl] -ethylenediamine, bis [3- (triethoxysilyl) propyl] urea, bis (trimethoxysilylpropyl) urea, N- (3-triethoxysilylpropyl) -4,5-dihydroimidazole, ureidopropyltriethoxysilane, ureidopropyltrimethoxysilane, acetamidopropyltrimethoxysilane, 2- (2-pyridylethyl) thiopropyltrimethoxysilane, 2- (4-pyridylethyl) thiopropyl Trimethoxysilane, bis [3- (triethoxysilyl) propyl] disulfide, 3- (triethoxysilyl) propyl succinic anhydride, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropyltriethoxysilane, isocyanato Propyltrimethoxysilane, isocyanatopropyltriethoxysilane, isocyanatoethyltriethoxysilane, isocyanatomethyltriethoxysilane, carboxyethylsilanetriol sodium salt, N- (trimethoxysilylpropyl) ethylenediaminetriacetic acid trisodium salt, 3 -(Trihydroxysilyl) -1-propanesulfonic acid, diethyl phosphate ethyltriethoxysilane, 3-trihydroxysilylpropylmethylphosphonate sodium salt, bis (triethoxysilyl) ethane, bis (trimethoxysilyl) ethane, bis (tri Ethoxysilyl) methane, 1,6-bis (triethoxysilyl) hexane, 1,8-bis (triethoxysilyl) octane, p-bis (trimethoxysilylethyl) benzene, p-bi (Trimethoxysilylmethyl) benzene, 3-methoxypropyltrimethoxysilane, 2- [methoxy (polyethyleneoxy) propyl] trimethoxysilane, methoxytriethyleneoxypropyltrimethoxysilane, tris (3-trimethoxysilylpropyl) isocyanate Nurate, [Hydroxy (polyethyleneoxy) propyl] triethoxysilane, N, N′-bis (hydroxyethyl) -N, N′-bis (trimethoxysilylpropyl) ethylenediamine, bis- [3- (triethoxysilylpropyl) -2-hydroxypropoxy] polyethylene oxide, bis [N, N '-(triethoxysilylpropyl) aminocarbonyl] polyethylene oxide, bis (triethoxysilylpropyl) polyethylene oxide. Kill.
 これらのアルコキシシリル基を有する化合物のなかで、テトラメトキシシラン、テトラエトキシシラン、ジメトキシジエトキシシラン、ジメチルジメトキシシラン、ジエチルジメトキシシラン、プロピルメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジエトキシシラン、メチルトリメトキシシラン、エチルトリメトキシシランが好ましく、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、エチルトリメトキシシランがより好ましく使用できる。 Among these compounds having an alkoxysilyl group, tetramethoxysilane, tetraethoxysilane, dimethoxydiethoxysilane, dimethyldimethoxysilane, diethyldimethoxysilane, propylmethyldimethoxysilane, dimethyldiethoxysilane, diethyldiethoxysilane, methyltrimethylsilane. Methoxysilane and ethyltrimethoxysilane are preferable, and tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, and ethyltrimethoxysilane can be more preferably used.
 (b)架橋剤の低溶出性層用組成物中の含有量としては、(a)親水性ポリマーに対して0.01~15質量%の範囲であることが好ましく、より好ましくは0.02~10質量%、さらに好ましくは0.05~8質量%の範囲である。 (B) The content of the crosslinking agent in the composition for low elution layer is preferably in the range of 0.01 to 15% by mass, more preferably 0.02%, based on the hydrophilic polymer (a). It is in the range of ˜10% by mass, more preferably 0.05 to 8% by mass.
 (b)架橋剤としてアルコキシシリル基を有する化合物を用いる場合、(c)触媒を用いることが好ましい。好ましい触媒としては、前述の(B)触媒と同様のものを挙げることができる。
 (c)触媒は、低溶出性層用組成物中に、不揮発性成分に対して、好ましくは0.1~50質量%、更に好ましくは1~25質量%の範囲で使用される。
(B) When a compound having an alkoxysilyl group is used as the crosslinking agent, (c) a catalyst is preferably used. As a preferable catalyst, the same catalyst as the above-mentioned (B) catalyst can be exemplified.
(C) The catalyst is used in the low-elution layer composition in an amount of preferably 0.1 to 50% by mass, more preferably 1 to 25% by mass, based on the nonvolatile components.
[低溶出性層の形成]
 低溶出性層は、少なくとも前記(a)親水性ポリマーを適宜の溶媒に溶解、攪拌して低溶出性層用組成物を形成し、この低溶出性層用組成物を、親水性層が形成された基板上に被膜し乾燥することで、形成することができる。
 低溶出性層用組成物には、所望により前記(b)架橋剤及び前記触媒を添加することができる。この場合は、反応温度として室温~80℃であり、反応時間、即ち攪拌を継続する時間は1~72時間の範囲であることが好ましい。この攪拌により(a)親水性ポリマーと(b)架橋剤の反応を進行させることができる。
[Formation of low-elution layer]
The low elution layer is formed by dissolving and stirring at least the (a) hydrophilic polymer in an appropriate solvent to form a composition for the low elution layer. The hydrophilic layer is formed from the low elution layer composition. It can be formed by coating and drying on the coated substrate.
If necessary, the (b) crosslinking agent and the catalyst can be added to the composition for a low-elution layer. In this case, the reaction temperature is room temperature to 80 ° C., and the reaction time, that is, the time for continuing the stirring is preferably in the range of 1 to 72 hours. By this stirring, the reaction between (a) the hydrophilic polymer and (b) the crosslinking agent can be advanced.
 低溶出性層用組成物を調製する際に用いる溶媒としては、各成分を均一に、溶解、分散し得るものであれば特に制限はないが、例えば、メタノール、エタノール、水、アセトン、メチルエチルケトン等の親水性溶媒が好ましい。 The solvent used in preparing the composition for low elution layer is not particularly limited as long as each component can be uniformly dissolved and dispersed. For example, methanol, ethanol, water, acetone, methyl ethyl ketone, etc. The hydrophilic solvent is preferred.
 低溶出性層の形成において、低溶出性層用組成物を被膜した後の加熱、乾燥条件としては、溶剤の蒸発、架橋構造の形成を効率よく行う観点からは、50~200℃の温度範囲において、2分~1時間程度行うことが好ましく、80~160℃の温度範囲で、5~30分間乾燥することがより好ましい。また、加熱手段としては、公知の手段、例えば、温度調整機能を有する乾燥機などを用いることが好ましい。 In the formation of the low-elution layer, the heating and drying conditions after coating the composition for the low-elution layer are from 50 to 200 ° C. from the viewpoint of efficiently evaporating the solvent and forming a crosslinked structure. In this case, the drying is preferably performed for about 2 minutes to 1 hour, and more preferably for 5 to 30 minutes in the temperature range of 80 to 160 ° C. Moreover, as a heating means, it is preferable to use a well-known means, for example, the dryer etc. which have a temperature control function.
 低溶出性層の厚さは、0.01μm~50μmが好ましく、0.02μm~20μmがさらに好ましく、0.05μm~10μmが最も好ましい。膜厚が0.01μm以上の場合は、十分な溶出性が得られるため好ましく、膜厚が100μm以下の場合は、親水性に問題を来たすことがなく、好ましい。
 低溶出性層の乾燥塗布量を好ましくは0.01g/m~50g/m、より好ましくは0.02g/m~20g/m、特に好ましくは0.05g/m~10g/mとすることで、上記の膜厚を得ることができる。
The thickness of the low elution layer is preferably 0.01 μm to 50 μm, more preferably 0.02 μm to 20 μm, and most preferably 0.05 μm to 10 μm. When the film thickness is 0.01 μm or more, it is preferable because sufficient elution is obtained, and when the film thickness is 100 μm or less, there is no problem in hydrophilicity, which is preferable.
The dry coating amount of the low-elution layer is preferably 0.01 g / m 2 to 50 g / m 2 , more preferably 0.02 g / m 2 to 20 g / m 2 , and particularly preferably 0.05 g / m 2 to 10 g / m 2. with m 2, it is possible to obtain a film thickness of the.
<下塗層>
 基板と親水性層との間には下塗層を設けることが好ましい。基板と親水性層の密着性は、基板表面と親水性層の反応性基同士が反応することにより実現される。実際には基板上にはそれほどの反応性基が無い場合、反応性基の豊富な下塗層を介して親水性層を密着させることができる。
 下塗層は、(P)触媒を含有することが好ましく、(P)触媒は、不揮発性の触媒であることが好ましい。下塗層に不揮発性の触媒を用いることで、下塗層や親水性層を形成する際の乾燥過程においても、揮発せずに活性を維持したまま膜中に存在することができる。これにより経時においてさらに架橋反応を進めることが可能となり、非常に高強度な塗膜となる。さらに基板との界面においても、不揮発性の触媒が活性を失わずに存在するために、基板と親水性層との反応が経時により進行し、高い密着性を実現することが可能である。
<Undercoat layer>
It is preferable to provide an undercoat layer between the substrate and the hydrophilic layer. The adhesion between the substrate and the hydrophilic layer is realized by the reaction between the substrate surface and the reactive groups of the hydrophilic layer. Actually, when there are not so many reactive groups on the substrate, the hydrophilic layer can be adhered through an undercoat layer rich in reactive groups.
The undercoat layer preferably contains (P) a catalyst, and the (P) catalyst is preferably a non-volatile catalyst. By using a non-volatile catalyst in the undercoat layer, it can be present in the film while maintaining its activity without volatilization even in the drying process when forming the undercoat layer or the hydrophilic layer. As a result, the cross-linking reaction can be further advanced over time, and the coating film has a very high strength. Furthermore, since the non-volatile catalyst exists at the interface with the substrate without losing activity, the reaction between the substrate and the hydrophilic layer proceeds with time, and high adhesion can be realized.
 不揮発性の触媒としては、具体的には、金属のキレート化合物やシランカップリング剤が挙げられる。
 前記金属のキレート化合物(以下、金属錯体とも称する)としては、特に限定されないが、周期律表の2A,3B,4A及び5A族から選ばれる金属元素とβ-ジケトン、ケトエステル、ヒドロキシカルボン酸又はそのエステル、アミノアルコール、エノール性活性水素化合物の中から選ばれるオキソ又はヒドロキシ酸素含有化合物から構成される金属錯体がある。
 構成金属元素の中では、Mg、Ca、Sr、Baなどの2A族元素、Al、Gaなどの3B族元素、Ti、Zrなどの4A族元素及びV、Nb及びTaなどの5A族元素が好ましく、それぞれ触媒効果の優れた錯体を形成する。その中でもZr、Al及びTiから得られる錯体が優れており、好ましい。
 具体的は、親水性層で述べた金属錯体で示されたものと同様のものが挙げられる。
Specific examples of the nonvolatile catalyst include metal chelate compounds and silane coupling agents.
The metal chelate compound (hereinafter also referred to as a metal complex) is not particularly limited, but a metal element selected from groups 2A, 3B, 4A and 5A of the periodic table and β-diketone, ketoester, hydroxycarboxylic acid or the like There are metal complexes composed of oxo or hydroxy oxygen-containing compounds selected from esters, amino alcohols, and enolic active hydrogen compounds.
Among the constituent metal elements, 2A group elements such as Mg, Ca, Sr and Ba, 3B group elements such as Al and Ga, 4A group elements such as Ti and Zr, and 5A group elements such as V, Nb and Ta are preferable. , Each forming a complex with excellent catalytic effect. Of these, complexes obtained from Zr, Al and Ti are excellent and preferred.
Specific examples thereof include those similar to those shown for the metal complex described in the hydrophilic layer.
 シランカップリング剤としては、特に限定されないが、酸性またはアルカリ性を示す官能基を有するものが挙げられ、さらに詳細には、ペルオキソ酸、カルボン酸、カルボヒドラゾン酸、カルボキシミド酸、スルホン酸、スルフィン酸、スルフェン酸、セレノン酸、セレニン酸、セレネン酸、テルロン酸、及び上記のアルカリ金属塩などといった酸性を示す官能基、或いは、アミノ基などといった塩基性を示す官能基を有するシランカップリング剤が挙げられる。 Although it does not specifically limit as a silane coupling agent, What has the functional group which shows acidity or alkalinity is mentioned, More specifically, peroxo acid, carboxylic acid, carbohydrazone acid, carboxymidic acid, sulfonic acid, sulfinic acid , Silane coupling agents having a functional group showing acidity such as sulfenic acid, selenonic acid, selenic acid, selenic acid, telluronic acid, and the above alkali metal salts, or a basic functional group such as an amino group It is done.
 不揮発性の触媒は、下塗層形成組成物中、不揮発性成分に対して、好ましくは0~50質量%、更に好ましくは5~25質量%の範囲で使用される。また、不揮発性の触媒は、単独で用いても2種以上併用してもよい。 The non-volatile catalyst is preferably used in the range of 0 to 50% by mass, more preferably 5 to 25% by mass with respect to the non-volatile component in the undercoat layer forming composition. Moreover, a non-volatile catalyst may be used independently or may be used together 2 or more types.
 また、下塗層は(Q)Si、Ti、Zr、Alから選択される元素のアルコキシド化合物を含有することが好ましい。(Q)Si、Ti、Zr、Alから選択される元素のアルコキシド化合物とは前述のアルコキシド化合物と同様のものが挙げられる。
 (Q)Si、Ti、Zr、Alから選択される元素のアルコキシド化合物は、下塗層形成組成物中、不揮発性成分に対して、好ましくは5~95質量%、更に好ましくは10~90質量%の範囲で使用される。また、(Q)Si、Ti、Zr、Alから選択される元素のアルコキシド化合物は、単独で用いても2種以上併用してもよい。
The undercoat layer preferably contains (Q) an alkoxide compound of an element selected from Si, Ti, Zr, and Al. (Q) Examples of the alkoxide compound of an element selected from Si, Ti, Zr, and Al include the same alkoxide compounds as those described above.
(Q) The alkoxide compound of an element selected from Si, Ti, Zr, and Al is preferably 5 to 95% by mass, more preferably 10 to 90% by mass, based on the nonvolatile component in the undercoat layer forming composition. Used in the range of%. (Q) The alkoxide compound of an element selected from Si, Ti, Zr, and Al may be used alone or in combination of two or more.
 このような下塗層は、その中に不揮発性の触媒が活性を失わずに含有されて存在し、特にその表面にも存在することにより、下塗層上にさらに親水性層を設けた場合には、該下塗層と親水性層の界面における密着性が極めて高いものとなる。 Such an undercoat layer is present in which a non-volatile catalyst is contained without losing its activity, especially when the hydrophilic layer is further provided on the undercoat layer due to its presence on the surface. Therefore, the adhesiveness at the interface between the undercoat layer and the hydrophilic layer is extremely high.
 さらに、下塗層は、プラズマエッチングまたは金属粒子を混入させて微細凹凸を設けることにより、下塗層と親水性層の界面における密着性をさらに高いものとすることができる。 In addition, the undercoat layer can be further improved in adhesion at the interface between the undercoat layer and the hydrophilic layer by providing fine irregularities by mixing plasma etching or metal particles.
 下塗層を形成する組成物には、親水性樹脂や水分散性ラテックスを用いることができる。
 親水性樹脂としては、たとえば、ポリビニルアルコール(PVA)、セルロース系樹脂〔メチルセルロース(MC)、ヒドロキシエチルセルロース(HEC)、カルボキシメチルセルロース(CMC)、等〕、キチン類、キトサン類、デンプン、エーテル結合を有する樹脂〔ポリエチレンオキサイド(PEO)、ポリエチレングリコール(PEG)、ポリビニルエーテル(PVE)等〕、カルバモイル基を有する樹脂〔ポリアクリルアミド(PAAM)、ポリビニルピロリドン(PVP)、等〕等が挙げられる。また、カルボキシル基を有するポリアクリル酸塩、マレイン酸樹脂、アルギン酸塩、ゼラチン類等も挙げることができる。
 上記の中でも、ポリビニルアルコール系樹脂、セルロース系樹脂、エーテル結合を有する樹脂、カルバモイル基を有する樹脂、カルボキシル基を有する樹脂、及びゼラチン類から選ばれる少なくとも1種が好ましく、特に、ポリビニルアルコール(PVA)系樹脂、ゼラチン類が好ましい。
For the composition forming the undercoat layer, a hydrophilic resin or a water-dispersible latex can be used.
Examples of hydrophilic resins include polyvinyl alcohol (PVA), cellulosic resins (methyl cellulose (MC), hydroxyethyl cellulose (HEC), carboxymethyl cellulose (CMC), etc.), chitins, chitosans, starch, and ether bonds. Examples include resins [polyethylene oxide (PEO), polyethylene glycol (PEG), polyvinyl ether (PVE), etc.], resins having a carbamoyl group [polyacrylamide (PAAM), polyvinyl pyrrolidone (PVP), etc.], and the like. Moreover, the polyacrylic acid salt which has a carboxyl group, maleic acid resin, alginate, gelatins etc. can also be mentioned.
Among these, at least one selected from polyvinyl alcohol resins, cellulose resins, resins having an ether bond, resins having a carbamoyl group, resins having a carboxyl group, and gelatins is preferable, and in particular, polyvinyl alcohol (PVA) Of these, gelatin resins are preferred.
 水分散性ラテックスとしては、アクリル系ラテックス、ポリエステル系ラテックス、NBR樹脂、ポリウレタン系ラテックス、ポリ酢酸ビニル系ラテックス、SBR樹脂、ポリアミド系ラテックス等が挙げられる。中でも、アクリル系ラテックスが好ましい。
 上記の親水性樹脂及び水分散性ラテックスは、各々一種単独で用いるほか二種以上を併用してもよく、親水性樹脂と水分散性ラテックスとを併用してもよい。
 また、上記親水性樹脂や水分散性ラテックスを架橋する架橋剤を用いても良い。
 架橋剤としては、公知の熱により架橋を形成する架橋剤を用いることができる。一般的な熱架橋剤としては、「架橋剤ハンドブック」山下晋三、金子東助著、大成社刊(1981)に記載されているものがある。本発明に用いられる架橋剤の官能基数は2個以上で、且つ、親水性樹脂や水分散性ラテックスと有効に架橋可能ならば特に制限はない。具体的な熱架橋剤としては、ポリアクリル酸等のポリカルボン酸、ポリエチレンイミン等のアミン化合物、エチレンまたはプロピレングリコールジグリシジルエーテル、テトラエチレングリコールジグリシジルエーテル、ノナエチレンチレングリコールジグリシジルエーテル、ポリエチレンまたはポリプロピレングリコールグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ソルビトールポリグリシジルエーテル等のポリエポキシ化合物、グリオキザル、テレフタルアルデヒドなどのポリアルデヒド化合物、トリレンジイソシアネート、ヘキサメチレンジイソシアネート、ジフェニルメタンイソシアネート、キシリレンジイソシアネート、ポリメチレンポリフェニルイソシアネート、シクロヘキシルジイソシアネート、シクロヘキサンフェニレンジイソシアネート、ナフタレン-1,5-ジイソシアネート、イソプロピルベンゼン-2,4-ジイソシアネート、ポリプロピレングリコール/トリレンジイソシアネート付加反応物などのポリイソシアネート化合物、ブロックポリイソシアネート化合物、テトラアルコキンシランなどのシランカップリング剤、アルミニウム、銅、鉄(III)のアセチルアセトナートなどの金属架橋剤、トリメチロールメラミン、ペンタエリスリトールなどのポリメチロール化合物、などが挙げられる。これらの熱架橋剤のなかでも、塗布溶液の調液のしやすさ、作製した親水性層の親水性低下を防止するという観点から水溶性の架橋剤であることが好ましい。
 前記親水性樹脂及び/又は水分散性ラテックスの、下塗層中における総量としては、0.01~20g/m2 が好ましく、0.1~10g/m2 がより好ましい。
Examples of the water-dispersible latex include acrylic latex, polyester latex, NBR resin, polyurethane latex, polyvinyl acetate latex, SBR resin, polyamide latex and the like. Among these, acrylic latex is preferable.
The above hydrophilic resin and water-dispersible latex may be used alone or in combination of two or more, or a hydrophilic resin and a water-dispersible latex may be used in combination.
Moreover, you may use the crosslinking agent which bridge | crosslinks the said hydrophilic resin and water-dispersible latex.
As a crosslinking agent, the crosslinking agent which forms bridge | crosslinking by well-known heat can be used. General thermal crosslinking agents include those described in “Crosslinking agent handbook” by Shinzo Yamashita, Tosuke Kaneko, published by Taiseisha (1981). The number of functional groups of the crosslinking agent used in the present invention is not particularly limited as long as it is 2 or more and can be effectively crosslinked with a hydrophilic resin or water-dispersible latex. Specific examples of the thermal crosslinking agent include polycarboxylic acids such as polyacrylic acid, amine compounds such as polyethyleneimine, ethylene or propylene glycol diglycidyl ether, tetraethylene glycol diglycidyl ether, nonaethylene ethylene glycol diglycidyl ether, polyethylene or Polyepoxy compounds such as polypropylene glycol glycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, trimethylolpropane triglycidyl ether, sorbitol polyglycidyl ether, polyaldehyde compounds such as glyoxal, terephthalaldehyde, Range isocyanate, hexamethylene diisocyanate, diphenylmethane isocyanate, xylylene Polyisocyanate compounds such as isocyanate, polymethylene polyphenyl isocyanate, cyclohexyl diisocyanate, cyclohexane phenylene diisocyanate, naphthalene-1,5-diisocyanate, isopropylbenzene-2,4-diisocyanate, polypropylene glycol / tolylene diisocyanate addition reaction product, block polyisocyanate Examples thereof include compounds, silane coupling agents such as tetraalkoxysilane, metal cross-linking agents such as acetylacetonate of aluminum, copper and iron (III), and polymethylol compounds such as trimethylolmelamine and pentaerythritol. Among these thermal cross-linking agents, a water-soluble cross-linking agent is preferable from the viewpoint of easy preparation of the coating solution and prevention of a decrease in hydrophilicity of the produced hydrophilic layer.
Wherein the hydrophilic resin and / or water-dispersible latex total amount of the undercoat layer is preferably from 0.01 ~ 20 g / m 2, more preferably 0.1 ~ 10g / m 2.
[下塗層用組成物の調液・下塗層の形成]
 下塗層用組成物についても、上記親水性組成物と同様の方法により調整可能である。下塗層は、複数層設けてもよい。
 下塗り層の厚さは0.01μm~100μmが好ましく、0.02μm~80μmがさらに好ましく、0.05μm~50μmが最も好ましい。
 下塗層用組成物の乾燥塗布量を好ましくは0.01g/m~100g/m、より好ましくは0.02g/m~80g/m、特に好ましくは0.05g/m~50g/mとすることで、上記の膜厚を得ることができる。 
[Preparation of composition for undercoat layer and formation of undercoat layer]
The undercoat layer composition can also be adjusted by the same method as that for the hydrophilic composition. A plurality of undercoat layers may be provided.
The thickness of the undercoat layer is preferably 0.01 μm to 100 μm, more preferably 0.02 μm to 80 μm, and most preferably 0.05 μm to 50 μm.
The dry coating amount of the undercoat layer composition is preferably 0.01 g / m 2 to 100 g / m 2 , more preferably 0.02 g / m 2 to 80 g / m 2 , and particularly preferably 0.05 g / m 2 to By setting it to 50 g / m 2 , the above film thickness can be obtained.
<その他の層>
 本発明の親水性部材は、その目的、形態、使用場所に応じ、適宜別の層を付加して使用することができる。以下に必要に応じ付加される層構成について述べる。
1)接着層
 本発明の親水性部材を、別の基板上に貼り付けて使用する場合、基板の裏面に、接着層として、感圧接着剤である粘着剤が好ましく用いられる。粘着剤としては、ゴム系粘着剤、アクリル系粘着剤、シリコーン系粘着剤、ビニルエーテル系、スチレン系粘着剤などの一般的に粘着シートに用いられるものが使用できる。
 光学的に透明なものが必要な場合は光学用途向けの粘着剤が選ばれる。着色、半透明、マット調などの模様が必要な場合は、基板における模様付けのほかに粘着剤に、染料、有機や無機の微粒子を添加して効果を出すことも行うことができる。
 粘着付与剤が必要な場合、樹脂、例えば、ロジン系樹脂、テルペン系樹脂、石油系樹脂、スチレン系樹脂及びこれらの水素添加物などの接着付与樹脂を1種類または混合して用いることができる。
 粘着剤の粘着力は一般に言われる強粘着であり、200g/25mm以上、好ましくは300g/25mm以上、さらに好ましくは400g/25mm以上である。なお、ここでいう粘着力はJIS Z 0237 に準拠し、180度剥離試験によって測定した値である。
<Other layers>
The hydrophilic member of the present invention can be used by appropriately adding another layer depending on the purpose, form, and place of use. The layer structure added as needed is described below.
1) Adhesive layer When the hydrophilic member of the present invention is used by being attached to another substrate, a pressure-sensitive adhesive that is a pressure-sensitive adhesive is preferably used as an adhesive layer on the back surface of the substrate. As an adhesive, what is generally used for an adhesive sheet, such as a rubber adhesive, an acrylic adhesive, a silicone adhesive, a vinyl ether adhesive, and a styrene adhesive, can be used.
When an optically transparent material is required, an adhesive for optical use is selected. When a pattern such as coloring, semi-transparency, or matte is required, in addition to patterning on the substrate, a dye, organic or inorganic fine particles can be added to the adhesive to produce an effect.
When a tackifier is required, a resin, for example, a rosin-based resin, a terpene-based resin, a petroleum-based resin, a styrene-based resin, and an adhesion-imparting resin such as a hydrogenated product thereof can be used alone or in combination.
The adhesive strength of the adhesive is generally called strong adhesion, and is 200 g / 25 mm or more, preferably 300 g / 25 mm or more, and more preferably 400 g / 25 mm or more. In addition, the adhesive force here is based on JIS Z 0237 and is a value measured by a 180 degree peel test.
2)離型層
 本発明の親水性部材が前記接着層を有する場合には、さらに離型層を付加することができる。離型層には、離型性をもたせるために、離型剤を含有させることが好ましい。離型剤としては、一般的に、ポリオルガノシロキサンからなるシリコーン系離型剤、フッ素系化合物、ポリビニルアルコールの長鎖アルキル変性物、ポリエチレンイミンの長鎖アルキル変性物等が用いることができる。また、ホットメルト型離型剤、ラジカル重合、カチオン重合、重縮合反応等により離型性モノマーを硬化させるモノマー型離型剤などの各種の離型剤や、この他、アクリル-シリコーン系共重合樹脂、アクリル-フッ素系共重合樹脂、及びウレタン-シリコーン-フッ素系共重合樹脂などの共重合系樹脂、並びに、シリコーン系樹脂とアクリル系樹脂との樹脂ブレンド、フッ素系樹脂とアクリル系樹脂との樹脂ブレンドが用いられる。また、フッ素原子及び/又はケイ素原子のいずれかの原子と、活性エネルギー線重合性基含有化合物を含む硬化性組成物を、硬化して得られるハードコート離型層としてもよい。
2) Release layer When the hydrophilic member of the present invention has the adhesive layer, a release layer can be further added. The release layer preferably contains a release agent in order to give release properties. As the release agent, generally, a silicone release agent composed of polyorganosiloxane, a fluorine compound, a long-chain alkyl modified product of polyvinyl alcohol, a long-chain alkyl modified product of polyethyleneimine, and the like can be used. In addition, various release agents such as a hot melt type release agent, a monomer type release agent that cures a release monomer by radical polymerization, cationic polymerization, polycondensation reaction, etc., and other acrylic-silicone copolymer Resin, acrylic-fluorine-based copolymer resin, and copolymer-based resin such as urethane-silicone-fluorine-based copolymer resin, resin blend of silicone-based resin and acrylic resin, and fluorine-based resin and acrylic-based resin A resin blend is used. Moreover, it is good also as a hard-coat release layer obtained by hardening | curing the curable composition containing either an atom of a fluorine atom and / or a silicon atom, and an active energy ray polymeric group containing compound.
3)その他の層
 親水性層の上に、保護層を設けてもよい。保護層は、ハンドリング時や輸送時、保管時などの親水性表面の傷つきや、汚れ物質の付着による親水性の低下を防止する機能を有する。保護層としては、上記離型層に用いた親水性ポリマー層を使用することができる。保護層は、親水性部材を適切な基板へ貼り付けた後には剥がされる。
3) Other layers A protective layer may be provided on the hydrophilic layer. The protective layer has a function of preventing damage to the hydrophilic surface during handling, transportation, storage, and the like, and deterioration of hydrophilicity due to adhesion of dirt substances. As the protective layer, the hydrophilic polymer layer used in the release layer can be used. The protective layer is peeled off after the hydrophilic member is attached to an appropriate substrate.
<基板>
 基板は、特に限定されないが、ガラス、プラスチック、金属、タイル、セラミックス、木、石、セメント、コンクリート、繊維、布帛、紙、皮革、それらの組合せ、それらの積層体が、いずれも好適に利用できる。ガラス、金属、セラミックス、またはプラスチックで形成された基板が好ましい。特に好ましい基板は、ガラス基板、プラスチック基板、アルミニウム基板である。
 ガラス板としては、酸化ケイ素、酸化アルミニウム、酸化マグネシウム、酸化チタン、酸化スズ、酸化ジルコニウム、酸化ナトリウム、酸化アンチモン、酸化インジウム、酸化ビスマス、酸化イットリウム、酸化セリウム、酸化亜鉛、ITO(Indium Tin Oxide)等の金属性酸化物;フッ化マグネシウム、フッ化カルシウム、フッ化ランタン、フッ化セリウム、フッ化リチウム、フッ化トリウム等の金属ハロゲン化物;などで形成した無機化合物層を備えたガラス板を挙げることができる。また目的に応じ、フロート板ガラス、型板ガラス、スリ板ガラス、網入ガラス、線入ガラス、強化ガラス、合わせガラス、複層ガラス、真空ガラス、防犯ガラス、高断熱Low-E複層ガラスを使用することができる。また素板ガラスのまま、前記親水層を塗設できるが、必要に応じ、親水層の密着性を向上させる目的で、片面又は両面に、酸化法や粗面化法等により表面親水化処理を施すことができる。上記酸化法としては、例えばコロナ放電処理、グロー放電処理、クロム酸処理(湿式)、火炎処理、熱風処理、オゾン・紫外線照射処理等が挙げられる。粗面化法としては、サンドブラスト、ブラシ研磨等により機械的に粗面化することもできる。
<Board>
The substrate is not particularly limited, but any of glass, plastic, metal, tile, ceramics, wood, stone, cement, concrete, fiber, fabric, paper, leather, a combination thereof, and a laminate thereof can be suitably used. . A substrate formed of glass, metal, ceramics or plastic is preferred. Particularly preferred substrates are glass substrates, plastic substrates, and aluminum substrates.
As the glass plate, silicon oxide, aluminum oxide, magnesium oxide, titanium oxide, tin oxide, zirconium oxide, sodium oxide, antimony oxide, indium oxide, bismuth oxide, yttrium oxide, cerium oxide, zinc oxide, ITO (Indium Tin Oxide) A metal plate such as magnesium oxide, magnesium fluoride, calcium fluoride, lanthanum fluoride, cerium fluoride, lithium fluoride, thorium fluoride, etc .; be able to. Depending on the purpose, float plate glass, mold plate glass, ground plate glass, mesh-filled glass, wire-filled glass, tempered glass, laminated glass, double-glazed glass, vacuum glass, security glass, highly heat-insulated Low-E double-glazed glass should be used. Can do. In addition, the hydrophilic layer can be applied as it is with the base glass, but if necessary, surface hydrophilic treatment is performed on one or both sides by an oxidation method, a roughening method or the like for the purpose of improving the adhesion of the hydrophilic layer. be able to. Examples of the oxidation method include corona discharge treatment, glow discharge treatment, chromic acid treatment (wet), flame treatment, hot air treatment, ozone / ultraviolet irradiation treatment, and the like. As the surface roughening method, the surface can be mechanically roughened by sandblasting, brush polishing or the like.
 無機化合物層は、単層あるいは多層構成とすることができる。無機化合物層はその厚みによって、光透過性を維持させることもでき、また、反射防止層として作用させることもできる。無機化合物層の形成方法としては、例えば、ディップコーティング法、スピンコーティング法、フローコーティング法、スプレーコーティング法、ロールコーティング法、グラビアコーティング法などの塗布法、真空蒸着法、反応性蒸着法、イオンビームアシスト法、スパッタリング法、イオンプレーティング法等の物理蒸着法(PVD)、化学蒸着法(CVD)をはじめとする気相法など公知の方法を適用することができる。 The inorganic compound layer can have a single layer structure or a multilayer structure. Depending on the thickness of the inorganic compound layer, the light transmittance can be maintained, and the inorganic compound layer can also function as an antireflection layer. Examples of the inorganic compound layer forming method include dip coating method, spin coating method, flow coating method, spray coating method, roll coating method, gravure coating method, etc., vacuum deposition method, reactive deposition method, ion beam Known methods such as a physical vapor deposition method (PVD) such as an assist method, a sputtering method, and an ion plating method, and a vapor phase method such as a chemical vapor deposition method (CVD) can be applied.
 プラスチック基板としては、特に制限はないが、光学部材として使用される基板は、透明性、屈折率、分散性などの光学特性を考慮して選択され、使用目的により、種々の物性、例えば、耐衝撃性、可撓性など強度をはじめとする物理的特性や、耐熱性、耐候性、耐久性などを考慮して選択される。
 プラスチック基板としては、ポリエステル、ポリエチレン、ポリプロピレン、セロファン、トリアセチルセルロース、ジアセチルセルロース、アセチルセルロースブチレート、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、エチレンビニルアルコール、ポリスチレン、ポリカーボネート、ポリメチルペンテン、ポリスルフォン、ポリエーテルケトン、アクリル、ナイロン、フッ素樹脂、ポリイミド、ポリエーテルイミド、ポリエーテルスルフォン等のフィルムもしくはシートを挙げることができる。その中でも特にポリエチレンテレフタレート,ポリエチレンナフタレート等のポリエステフィルムが好ましい。これらは、使用目的に応じて、単独で用いられてもよく、或いは、2種以上を混合物、共重合体、積層体などの形態で組み合わせて用いることもできる。
 プラスチック基板の厚みは、積層する相手によってさまざまである。例えば曲面の多い部分では、薄いものが好まれ、6~50μm程度のものが用いられる。また平面に用いられ、あるいは、強度を要求されるところでは50~400μmが用いられる。
The plastic substrate is not particularly limited, but a substrate used as an optical member is selected in consideration of optical characteristics such as transparency, refractive index, and dispersibility, and various physical properties such as resistance It is selected in consideration of physical properties such as strength such as impact and flexibility, heat resistance, weather resistance and durability.
Plastic substrates include polyester, polyethylene, polypropylene, cellophane, triacetyl cellulose, diacetyl cellulose, acetyl cellulose butyrate, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, ethylene vinyl alcohol, polystyrene, polycarbonate, polymethylpentene, polysulfone. And films or sheets of polyether ketone, acrylic, nylon, fluororesin, polyimide, polyether imide, polyether sulfone and the like. Of these, polyester films such as polyethylene terephthalate and polyethylene naphthalate are particularly preferred. These may be used alone or in combination of two or more in the form of a mixture, copolymer, laminate or the like, depending on the purpose of use.
The thickness of the plastic substrate varies depending on the mating partner. For example, in a portion with many curved surfaces, a thin one is preferred, and one having a thickness of about 6 to 50 μm is used. Further, 50 to 400 μm is used for a flat surface or where strength is required.
 プラスチック基板として、ガラス板の説明において記載した無機化合物層をプラスチック板上に形成したものを用いることもできる。この場合、無機化合物層は反射防止層として作用させることもできる。無機化合物層をプラスチック板上に形成する場合も、前述した無機基板におけるのと同様の手法で形成することができる。
 本発明の親水性部材は、パルミチン酸に一時間曝気、30分間水洗、30分間乾燥を1サイクルとし、該サイクルを5サイクル繰返した後の水接触角が40°以下であることが好ましい。
As a plastic substrate, what formed the inorganic compound layer described in description of the glass plate on the plastic plate can also be used. In this case, the inorganic compound layer can also act as an antireflection layer. Even when the inorganic compound layer is formed on the plastic plate, it can be formed by the same method as in the inorganic substrate described above.
In the hydrophilic member of the present invention, it is preferable that a cycle of aeration with palmitic acid for 1 hour, washing with water for 30 minutes, drying for 30 minutes is one cycle, and the water contact angle after repeating the cycle for 5 cycles is 40 ° or less.
<用途>
 本発明に係る親水性部材の用途としては、特に限定されず、建材、外壁や屋根のような建物外装、建物内装、窓枠、窓ガラス、構造部材、自動車、鉄道車両、航空機、船舶、自転車、オートバイのような乗物の外装及び塗装、機械装置や物品の外装、防塵カバー及び塗装、看板、交通標識、各種表示装置、広告塔、道路用防音壁、鉄道用防音壁、橋梁、ガードレールの外装及び塗装、トンネル内装及び塗装、碍子、太陽電池カバー、太陽熱温水器集熱カバー、ビニールハウス、テント材、車両用照明灯のカバー、自動販売機、住宅設備、ベランダ、エアコン室内機、エアコン室外機、熱交換器用放熱フィン、屋外ベンチ、シャッター、便器、浴槽、浴室用洗面所用鏡、洗面台、照明器具、照明カバー、台所用品、食器、食器洗浄器、食器乾燥器、流し、調理レンジ、キッチンフード、換気扇、窓サッシ(及び上記物品表面に貼付するためのフィルムを含む。)等が挙げられる。
 またこれらの用途に使用される製品を製造する工程において乾燥工程を有する場合は乾燥時間が短縮でき生産性が向上する効果も期待できる。
<Application>
The use of the hydrophilic member according to the present invention is not particularly limited, and is not limited to building materials, building exteriors such as outer walls and roofs, building interiors, window frames, window glass, structural members, automobiles, railway vehicles, aircraft, ships, bicycles. , Exteriors and paintings of vehicles such as motorcycles, exteriors of machinery and equipment, dust covers and paintings, signboards, traffic signs, various display devices, advertising towers, sound barriers for roads, sound barriers for railways, bridges, guard rails And painting, tunnel interior and painting, insulator, solar battery cover, solar water heater heat collection cover, plastic house, tent material, vehicle lighting cover, vending machine, housing equipment, veranda, air conditioner indoor unit, air conditioner outdoor unit , Radiating fins for heat exchangers, outdoor benches, shutters, toilet bowls, bathtubs, bathroom mirrors, washstands, lighting fixtures, lighting covers, kitchenware, dishes, dishwashers, dish drying , Sinks, kitchen ranges, kitchen hoods, ventilation fans, (including film to be attached to and the surface of the above articles.) Window sash, and the like.
Further, in the case of having a drying process in the process of manufacturing products used for these applications, the drying time can be shortened and the productivity can be expected to be improved.
 上記の中でも、本発明に係る親水性部材は、フィン材に適用することが好ましく、アルミニウム製フィン材に適用することが好ましい。
 室内エアコンや自動車エアコン等の熱交換器等に用いられるアルミニウム製フィン材は、冷房時に発生する凝集水が水滴となりフィン間にとどまることで水のブリッジが発生し、冷房能力が低下する。またフィン間に埃などが付着することでも、同様に冷房能力が低下する。これらの問題に対し、本発明の親水性部材をフィン材に適用することで、親水性、防汚性、及びそれらの持続性に優れたフィン材が得られる。
 本発明に係るフィン材は、パルミチン酸に1時間曝気、30分水洗、30分乾燥を5サイクル繰返した後の水接触角が40°以下であることが好ましい。
Among these, the hydrophilic member according to the present invention is preferably applied to a fin material, and is preferably applied to an aluminum fin material.
Aluminum fin materials used for heat exchangers such as indoor air conditioners and automobile air conditioners have water droplets formed by condensed water generated during cooling and staying between the fins. In addition, the adhering dust between the fins similarly reduces the cooling capacity. With respect to these problems, by applying the hydrophilic member of the present invention to the fin material, a fin material excellent in hydrophilicity, antifouling property, and sustainability thereof can be obtained.
The fin material according to the present invention preferably has a water contact angle of 40 ° or less after 5 cycles of 1 hour aeration, 30 minute water washing, and 30 minute drying for palmitic acid.
 フィン材に用いられるアルミニウムとしては、表面が脱脂されたもの、必要に応じて化成処理されたアルミニウム板を挙げることができる。アルミニウム製のフィン材は、表面が化成処理されていることが親水化処理皮膜の付着性、耐食性などの点から好適である。上記化成処理としては、例えば、クロメート処理を挙げることができ、その代表例として、アルカリ塩-クロム酸塩法(B.V.法、M.B.V.法、E.W.法、アルロック法、ピルミン法)、クロム酸法、クロメート法、リン酸クロム酸法などの処理法、及びクロム酸クロムを主体とした組成物による無水洗塗布型処理法などが挙げられる。 Examples of the aluminum used for the fin material include a degreased surface and an aluminum plate subjected to chemical conversion treatment as necessary. It is preferable that the fin material made of aluminum has a surface subjected to chemical conversion treatment from the viewpoint of adhesion of the hydrophilic treatment film, corrosion resistance, and the like. Examples of the chemical conversion treatment include chromate treatment, and typical examples thereof include alkali salt-chromate method (BV method, MBV method, EW method, Al And a treatment method such as a chromic acid method, a chromate method, and a chromic phosphate method, and an anhydrous washing coating type treatment with a composition mainly composed of chromium chromate.
 例えば、熱交換器用フィン材に用いられるアルミニウム等薄板としては、JIS規格で、1100、1050、1200、1N30等の純アルミニウム板、2017、2014等のAl-Cu系合金板、3003、3004等のAl-Mn系合金板、5052、5083等のAl-Mg系合金板、さらには6061等のAl-Mg-Si系合金板等のいずれを用いても良く、またその形状はシートおよびコイルのいずれでも良い。 For example, aluminum thin plates used for fin materials for heat exchangers are JIS standards such as pure aluminum plates such as 1100, 1050, 1200 and 1N30, Al—Cu alloy plates such as 2017 and 2014, 3003 and 3004, etc. Any of Al—Mn alloy plates, Al—Mg alloy plates such as 5052 and 5083, and Al—Mg—Si alloy plates such as 6061 may be used. But it ’s okay.
 また、本発明に係るフィン材は、熱交換器に用いることが好ましい。本発明に係るフィン材を用いた熱交換器は、優れた親水性、防汚性及びそれらの持続性を有しているので、フィン間に水滴や埃などが付着するのを防止することができる。熱交換器としては、例えば、室内用クーラーやエアコン、建設機械用オイルクーラー、自動車のラジエーター、キャパシタ等に使用される熱交換器が挙げられる。
 また、本発明に係るフィン材を用いた熱交換器をエアコンに使用することが好ましい。本発明に係るフィン材は、優れた親水性、防汚性及びそれらの持続性を有しているので、前述のような冷房能力の低下等の問題が改善されたエアコンを提供することができる。エアコンとしては、ルームエアコン、パッケージエアコン、カーエアコン等、いずれのものでもよい。
 その他、本発明の熱交換器、エアコンには公知の技術(例えば特開2002-106882号公報、特開2002-156135号公報など)を用いることができ、特に制限されない。
Moreover, it is preferable to use the fin material which concerns on this invention for a heat exchanger. Since the heat exchanger using the fin material according to the present invention has excellent hydrophilicity, antifouling properties and durability thereof, it is possible to prevent water droplets and dust from adhering between the fins. it can. Examples of the heat exchanger include heat exchangers used for indoor coolers, air conditioners, oil coolers for construction machines, automobile radiators, capacitors, and the like.
Moreover, it is preferable to use the heat exchanger using the fin material according to the present invention for an air conditioner. Since the fin material according to the present invention has excellent hydrophilicity, antifouling property, and sustainability thereof, it is possible to provide an air conditioner in which problems such as a decrease in cooling capacity as described above are improved. . As the air conditioner, any of room air conditioner, packaged air conditioner, car air conditioner, etc. may be used.
In addition, publicly known techniques (for example, JP 2002-106882 A, JP 2002-156135 A, etc.) can be used for the heat exchanger and the air conditioner of the present invention, and are not particularly limited.
 以下本発明を実施例によって詳細に説明するが、本発明はこれらに限定されるものではない。
(親水性ポリマー(I-1)の合成)
 200ml三口フラスコにアクリルアミド25g、3-メルカプトプロピルトリメトキシシラン3.5g、ジメチルホルムアミド51.3gを入れて65℃窒素気流下、2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.25g添加し、反応を開始した。6時間攪拌した後、室温まで戻し、メタノール1.5L中に投入したところ固体が析出した。得られた固体をアセトンにて洗浄後、前記例示化合物(I-1)である親水性ポリマー(I-1)を得た。乾燥後の質量は21.7gであった。GPC(ポリエチレンオキシド標準)により質量平均分子量9,000のポリマーであった。
EXAMPLES Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited thereto.
(Synthesis of hydrophilic polymer (I-1))
In a 200 ml three-necked flask, add 25 g of acrylamide, 3.5 g of 3-mercaptopropyltrimethoxysilane, and 51.3 g of dimethylformamide, and 0.25 g of 2,2′-azobis (2,4-dimethylvaleronitrile) under a nitrogen stream at 65 ° The reaction was started by adding. After stirring for 6 hours, the solution was returned to room temperature and poured into 1.5 L of methanol, and a solid precipitated. The obtained solid was washed with acetone to obtain the hydrophilic polymer (I-1) as the exemplified compound (I-1). The mass after drying was 21.7 g. It was a polymer having a weight average molecular weight of 9,000 according to GPC (polyethylene oxide standard).
(親水性ポリマー(II-1)の合成)
 500ml三口フラスコにアクリルアミド56.9g、アクリルアミド-3-(エトキシシリル)プロピル11.6g、及び1-メトキシ-2-プロパノール280gを入れ、80℃窒素気流下、2,2’-アゾビス(2-メチルプロピオン酸)ジメチル2.3gを加えた。6時間攪拌しながら同温度に保った後、室温まで冷却した。アセトン2リットル中に投入し、析出した固体をろ取した。得られた固体をアセトンにて洗浄後、前記例示化合物(II-1)である親水性ポリマー(II-1)を得た。乾燥後の質量は65.6gであった。GPC(ポリエチレンオキシド標準)により質量平均分子量22,000のポリマーであった。
(Synthesis of hydrophilic polymer (II-1))
A 500 ml three-necked flask is charged with 56.9 g of acrylamide, 11.6 g of acrylamide-3- (ethoxysilyl) propyl, and 280 g of 1-methoxy-2-propanol, and 2,2′-azobis (2-methyl) under a nitrogen stream at 80 ° C. 2.3 g of dimethyl propionate) was added. The mixture was kept at the same temperature with stirring for 6 hours, and then cooled to room temperature. The mixture was put into 2 liters of acetone, and the precipitated solid was collected by filtration. The obtained solid was washed with acetone to obtain hydrophilic polymer (II-1) which is the exemplified compound (II-1). The mass after drying was 65.6 g. It was a polymer having a mass average molecular weight of 22,000 according to GPC (polyethylene oxide standard).
(実施例1)
〔親水性ゾルゲル液〕
 精製水100g中に、(A)親水性ポリマーとして、親水性ポリマー(I-1)10gを混合し、室温で2時間撹拌して、調製した。
〔親水性組成物〕
 前記親水性ゾルゲル液120gに下記アニオン系界面活性剤の5質量%水溶液2.5gを混合し、親水性組成物を作製した。
〔低溶出性層用組成物〕
 ジメチルアセトアミド100g中に、(a)親水性ポリマーとしてポリエチレングリコール(PEG、質量平均分子量20,000)10gを混合し、室温で1時間撹拌し、低溶出性層用組成物とした。
〔塗布方法〕
 アルカリ脱脂されたアルミ基板(厚み約100μm)を準備し、該アルミ基板に前記親水性組成物をバー塗布し、150℃、30分でオーブン乾燥して、乾燥塗布量0.7g/mの親水性層を形成した。さらにその上に、前記低溶出性層用組成物をバー塗布し、150℃、30分でオーブン乾燥して、塗布乾燥量0.2g/mの低溶出性層を形成し、実施例1の親水性部材とした。親水性層の厚みは0.7μm、低溶出性層の厚みは0.2μmとした。
Example 1
[Hydrophilic sol-gel solution]
In 100 g of purified water, 10 g of hydrophilic polymer (I-1) as (A) hydrophilic polymer was mixed and stirred at room temperature for 2 hours to prepare.
[Hydrophilic composition]
A hydrophilic composition was prepared by mixing 120 g of the hydrophilic sol-gel solution with 2.5 g of a 5% by weight aqueous solution of the following anionic surfactant.
[Composition for low elution layer]
In 100 g of dimethylacetamide, (a) 10 g of polyethylene glycol (PEG, mass average molecular weight 20,000) as a hydrophilic polymer was mixed and stirred at room temperature for 1 hour to obtain a composition for a low elution layer.
[Coating method]
An alkali-degreased aluminum substrate (thickness: about 100 μm) is prepared, and the hydrophilic composition is bar-coated on the aluminum substrate and oven-dried at 150 ° C. for 30 minutes to obtain a dry coating amount of 0.7 g / m 2 . A hydrophilic layer was formed. Furthermore, the composition for a low elution layer was coated on the bar, and oven-dried at 150 ° C. for 30 minutes to form a low elution layer having a coating dry amount of 0.2 g / m 2. The hydrophilic member was obtained. The thickness of the hydrophilic layer was 0.7 μm, and the thickness of the low elution layer was 0.2 μm.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
(実施例2)
 実施例1の(a)親水性ポリマーをポリビニルアルコール(PVA、質量平均分子量50,000、けん化度99%)に変更した以外は実施例1と同様に実施例2の親水性部材を作製した。
(Example 2)
A hydrophilic member of Example 2 was prepared in the same manner as in Example 1 except that the hydrophilic polymer (a) of Example 1 was changed to polyvinyl alcohol (PVA, mass average molecular weight 50,000, saponification degree 99%).
(実施例3)
 実施例1の低溶出性層用組成物に、(b)架橋剤として1,4-テトラメチレンジイソシアネート0.5gを添加した以外は実施例1と同様に実施例3の親水性部材を作製した。
(Example 3)
The hydrophilic member of Example 3 was prepared in the same manner as in Example 1 except that 0.5 g of 1,4-tetramethylene diisocyanate was added as the crosslinking agent (b) to the composition for the low elution layer of Example 1. .
(実施例4)
 実施例3において、親水性ゾルゲル液に(B)触媒としてアセチルアセトン0.1g、オルトチタン酸テトラエチル0.1gを添加した以外は実施例3と同様にして、親水性部材を作製した。
Example 4
In Example 3, a hydrophilic member was produced in the same manner as in Example 3 except that 0.1 g of acetylacetone and 0.1 g of tetraethyl orthotitanate were added as the (B) catalyst to the hydrophilic sol-gel solution.
(実施例5)
 実施例4の低溶出性層用組成物を以下の組成物に変更した以外は実施例4と同様にして、実施例5の親水性部材を作製した。
 ジメチルアセトアミド80g、精製水20g中に、(a)親水性ポリマーとしてポリエチレングリコール(質量平均分子量20,000)10g、(b)架橋剤としてテトラメトキシシラン(TMOS)0.5g、(c)触媒としてアセチルアセトン0.05g、オルトチタン酸テトラエチル0.05gを混合し、室温で1時間撹拌し、低溶出性層用組成物とした。
(Example 5)
A hydrophilic member of Example 5 was produced in the same manner as in Example 4 except that the composition for the low elution layer of Example 4 was changed to the following composition.
In 80 g of dimethylacetamide and 20 g of purified water, (a) 10 g of polyethylene glycol (mass average molecular weight 20,000) as a hydrophilic polymer, (b) 0.5 g of tetramethoxysilane (TMOS) as a crosslinking agent, (c) as a catalyst 0.05 g of acetylacetone and 0.05 g of tetraethyl orthotitanate were mixed and stirred at room temperature for 1 hour to obtain a composition for a low elution layer.
(実施例6)
 実施例4の(a)親水性ポリマーをポリビニルアルコール(質量平均分子量50,000、けん化度99%)に変更した以外は実施例4と同様にして、実施例6の親水性部材を作製した。
(Example 6)
A hydrophilic member of Example 6 was produced in the same manner as in Example 4 except that (a) the hydrophilic polymer of Example 4 was changed to polyvinyl alcohol (mass average molecular weight 50,000, saponification degree 99%).
(実施例7)
 実施例5の(a)親水性ポリマーをポリビニルアルコール(質量平均分子量50,000、けん化度99%)に変更した以外は実施例5と同様にして、実施例7の親水性部材を作製した。
(Example 7)
A hydrophilic member of Example 7 was produced in the same manner as in Example 5 except that (a) the hydrophilic polymer of Example 5 was changed to polyvinyl alcohol (mass average molecular weight 50,000, saponification degree 99%).
(実施例8、9)
 実施例4の親水性ゾルゲル液における(B)触媒を下記のものに変更した以外は実施例4と同様にして、実施例8、9の親水性部材を作製した。
 実施例8:エチルアセトアセテートアルミニウムジイソプロピレート(川研ファインケミカル(株)製、ALCH)2g
 実施例9:ジルコニウムキレート化合物2g
 ジルコニウムキレート化合物は、撹拌器を備えた反応機に、テトラブトキシジルコニウム50g、アセト酢酸エチル20gを加え、室温で1時間撹拌して得た。
(Examples 8 and 9)
The hydrophilic members of Examples 8 and 9 were prepared in the same manner as in Example 4 except that the (B) catalyst in the hydrophilic sol-gel solution of Example 4 was changed to the following.
Example 8: 2 g of ethyl acetoacetate aluminum diisopropylate (manufactured by Kawaken Fine Chemical Co., Ltd., ALCH)
Example 9: Zirconium chelate compound 2g
The zirconium chelate compound was obtained by adding 50 g of tetrabutoxyzirconium and 20 g of ethyl acetoacetate to a reactor equipped with a stirrer and stirring at room temperature for 1 hour.
(実施例10、11)
 実施例4の親水性ゾルゲル液における親水性ポリマー(I-1)を下記のものに変更した以外は実施例4と同様にして、実施例10、11の親水性部材を作製した。
 実施例10:親水性ポリマー(I-2)(:例示化合物(I-2)を使用)
 実施例11:親水性ポリマー(I-11)(:例示化合物(I-11)を使用)
(Examples 10 and 11)
The hydrophilic members of Examples 10 and 11 were produced in the same manner as in Example 4 except that the hydrophilic polymer (I-1) in the hydrophilic sol-gel solution of Example 4 was changed to the following.
Example 10: Hydrophilic polymer (I-2) (: Using Exemplified Compound (I-2))
Example 11: Hydrophilic polymer (I-11) (: Using exemplified compound (I-11))
(実施例12)
〔親水性ゾルゲル液〕
 エチルアルコール20g、精製水100g中に、(C)アルコキシド化合物としてテトラメトキシシラン12g、(A)親水性ポリマーとして親水性ポリマー(I-1)4gを混合し、室温で2時間撹拌して、調製した。
〔親水性組成物〕
 前記親水性ゾルゲル液に実施例1に記載のアニオン系界面活性剤の5質量%水溶液4g、精製水60gを混合し、親水性組成物とした。
〔塗布方法〕
 アルカリ脱脂されたアルミ基板(厚み約100μm)を準備し、該アルミ基板に前記親水性組成物をバー塗布し、150℃、30分でオーブン乾燥して、乾燥塗布量0.1g/mの親水性層を形成した。さらにその上に、実施例4の低溶出性層用組成物をバー塗布し、150℃、30分でオーブン乾燥して、塗布乾燥量0.2g/mの低溶出性層を形成し、実施例12の親水性部材とした。親水性層の厚みは0.1μm、低溶出性層の厚みは0.2μmとした。
Example 12
[Hydrophilic sol-gel solution]
Prepared by mixing 12 g of tetramethoxysilane as (C) alkoxide compound and 4 g of hydrophilic polymer (I-1) as (A) hydrophilic polymer in 20 g of ethyl alcohol and 100 g of purified water, and stirring at room temperature for 2 hours. did.
[Hydrophilic composition]
The hydrophilic sol-gel solution was mixed with 4 g of a 5% by weight aqueous solution of the anionic surfactant described in Example 1 and 60 g of purified water to obtain a hydrophilic composition.
[Coating method]
An alkali degreased aluminum substrate (thickness: about 100 μm) is prepared, and the hydrophilic composition is bar-coated on the aluminum substrate and oven-dried at 150 ° C. for 30 minutes to obtain a dry coating amount of 0.1 g / m 2 . A hydrophilic layer was formed. Furthermore, the low-elution layer composition of Example 4 was bar-coated and oven-dried at 150 ° C. for 30 minutes to form a low-elution layer with a coating dry amount of 0.2 g / m 2 . The hydrophilic member of Example 12 was obtained. The thickness of the hydrophilic layer was 0.1 μm, and the thickness of the low elution layer was 0.2 μm.
(実施例13)
 実施例12の親水性ゾルゲル液に(B)触媒としてアセチルアセトン1.0g、オルトチタン酸テトラエチル1.0gを添加した以外は実施例12と同様にして、実施例13の親水性部材を作製した。
(Example 13)
A hydrophilic member of Example 13 was prepared in the same manner as in Example 12 except that 1.0 g of acetylacetone and 1.0 g of tetraethyl orthotitanate were added as the (B) catalyst to the hydrophilic sol-gel solution of Example 12.
(実施例14)
〔下塗層用ゾルゲル液〕
 エチルアルコール200g、(P)触媒としてアセチルアセトン10g、オルトチタン酸テトラエチル10g、精製水100g中に、(Q)アルコキシド化合物としてテトラメトキシシラン8gを混合し、室温で2時間撹拌して、調製した。
〔下塗層用組成物〕
 上記下塗層用ゾルゲル液500gに実施例1に記載のアニオン系界面活性剤の5質量%水溶液30g、精製水450gを混合し、塗布液とした。
〔塗布方法〕
 アルカリ脱脂されたアルミ基板(厚み約100μm)を準備し、該アルミ基板に下塗層用組成物をバー塗布し、100℃、30分でオーブン乾燥して、乾燥塗布量0.1g/mの下塗層を形成した。下塗層の厚みは、0.1μmであった。室温で十分冷却した後に、下塗層上に実施例4の親水性層、低溶出性層を形成し、実施例14の親水性部材を得た。
(Example 14)
[Sol-gel solution for undercoat]
Into 200 g of ethyl alcohol, 10 g of acetylacetone as the (P) catalyst, 10 g of tetraethyl orthotitanate, and 100 g of purified water, 8 g of tetramethoxysilane as the (Q) alkoxide compound were mixed and stirred at room temperature for 2 hours to prepare.
[Composition for undercoat layer]
30 g of a 5% by weight aqueous solution of the anionic surfactant described in Example 1 and 450 g of purified water were mixed with 500 g of the sol-gel solution for undercoat layer to obtain a coating solution.
[Coating method]
An alkali degreased aluminum substrate (thickness: about 100 μm) is prepared, and the undercoat layer composition is bar-coated on the aluminum substrate and oven-dried at 100 ° C. for 30 minutes to obtain a dry coating amount of 0.1 g / m 2. An undercoat layer was formed. The thickness of the undercoat layer was 0.1 μm. After sufficiently cooling at room temperature, the hydrophilic layer and the low-elution layer of Example 4 were formed on the undercoat layer to obtain the hydrophilic member of Example 14.
(実施例15)
 実施例14の親水性層を実施例12の親水性層に変更した以外は実施例14と同様にして、実施例15の親水性部材を得た。
(Example 15)
A hydrophilic member of Example 15 was obtained in the same manner as Example 14 except that the hydrophilic layer of Example 14 was changed to the hydrophilic layer of Example 12.
(実施例16)
 実施例14の親水性層を実施例13の親水性層に変更した以外は実施例14と同様にして、実施例16の親水性部材を得た。
(Example 16)
A hydrophilic member of Example 16 was obtained in the same manner as Example 14 except that the hydrophilic layer of Example 14 was changed to the hydrophilic layer of Example 13.
(比較例1)
 実施例4において、低溶出性層を形成しなかった以外は実施例4と同様にして、比較例1の部材を得た。
(Comparative Example 1)
In Example 4, a member of Comparative Example 1 was obtained in the same manner as in Example 4 except that the low-elution layer was not formed.
(比較例2)
 実施例3において、親水性層を形成しなかった以外は実施例3と同様にして、比較例2の部材を得た。
(Comparative Example 2)
In Example 3, a member of Comparative Example 2 was obtained in the same manner as Example 3 except that the hydrophilic layer was not formed.
(実施例17)
〔親水性ゾルゲル液〕
 精製水100g中に、(A)親水性ポリマーとして、親水性ポリマー(II-1)10gを混合し、室温で2時間撹拌して、調製した。
〔親水性組成物〕
 前記親水性ゾルゲル液120gに実施例1のアニオン系界面活性剤の5質量%水溶液2.5gを混合し、親水性組成物とした。
〔低溶出性層用組成物〕
 ジメチルアセトアミド100g中に、(a)親水性ポリマーとしてポリエチレングリコール(質量平均分子量20,000)10gを混合し、室温で1時間撹拌し、低溶出性層用組成物とした。
〔塗布方法〕
 アルカリ脱脂されたアルミ基板(厚み約100μm)を準備し、該アルミ基板に前記親水性組成物をバー塗布し、150℃、30分でオーブン乾燥して、乾燥塗布量0.7g/mの親水性層を形成した。さらにその上に、上記の低溶出性層用組成物をバー塗布し、150℃、30分でオーブン乾燥して、塗布乾燥量0.2g/mの低溶出性層を形成し、実施例1の親水性部材とした。親水性層の厚みは0.7μm、低溶出性層の厚みは0.2μmとした。
(Example 17)
[Hydrophilic sol-gel solution]
In 100 g of purified water, 10 g of hydrophilic polymer (II-1) as (A) hydrophilic polymer was mixed and stirred at room temperature for 2 hours to prepare.
[Hydrophilic composition]
A hydrophilic composition was prepared by mixing 120 g of the hydrophilic sol-gel solution with 2.5 g of a 5% by weight aqueous solution of the anionic surfactant of Example 1.
[Composition for low elution layer]
In 100 g of dimethylacetamide, 10 g of polyethylene glycol (mass average molecular weight 20,000) (a) as a hydrophilic polymer was mixed and stirred at room temperature for 1 hour to obtain a composition for a low elution layer.
[Coating method]
Prepare the aluminum substrate to an alkali degreasing (thickness about 100 [mu] m), the hydrophilic composition on the aluminum substrate by bar coating, 0.99 ° C., and dried in an oven at 30 minutes, the dry coating amount 0.7 g / m 2 A hydrophilic layer was formed. Further, the above composition for a low elution layer was coated on a bar and oven-dried at 150 ° C. for 30 minutes to form a low elution layer having a coating dry amount of 0.2 g / m 2. 1 hydrophilic member. The thickness of the hydrophilic layer was 0.7 μm, and the thickness of the low elution layer was 0.2 μm.
(実施例18)
 実施例17の(a)親水性ポリマーをポリビニルアルコール(質量平均分子量50,000、けん化度99%)に変更した以外は実施例17と同様にして、実施例18の親水性部材を作製した。
(Example 18)
A hydrophilic member of Example 18 was produced in the same manner as in Example 17 except that the hydrophilic polymer (a) in Example 17 was changed to polyvinyl alcohol (mass average molecular weight 50,000, saponification degree 99%).
(実施例19)
 実施例17の低溶出性層用組成物に(b)架橋剤として1,4-テトラメチレンジイソシアネート0.5gを添加した以外は実施例17と同様にして、実施例19の親水性部材を作製した。
(Example 19)
The hydrophilic member of Example 19 was prepared in the same manner as in Example 17 except that 0.5 g of 1,4-tetramethylene diisocyanate was added as the crosslinking agent (b) to the composition for low elution layer of Example 17. did.
(実施例20)
 実施例19において、親水性ゾルゲル液に(B)触媒としてアセチルアセトン0.1g、オルトチタン酸テトラエチル0.1gを添加した以外は実施例19と同様にして、実施例20の親水性部材を作製した。
(Example 20)
In Example 19, the hydrophilic member of Example 20 was produced in the same manner as in Example 19 except that 0.1 g of acetylacetone and 0.1 g of tetraethyl orthotitanate were added as the (B) catalyst to the hydrophilic sol-gel solution. .
(実施例21)
 実施例20の低溶出性層用組成物を以下の組成物に変更した以外は実施例20と同様にして、実施例21の親水性部材を作製した。
 ジメチルアセトアミド80g、精製水20g中に、(a)親水性ポリマーとしてポリエチレングリコール(質量平均分子量20,000)10g、(b)架橋剤としてテトラメトキシシラン0.5g、(c)触媒としてアセチルアセトン0.05g、オルトチタン酸テトラエチル0.05gを混合し、室温で1時間撹拌し、低溶出性層用組成物とした。
(Example 21)
A hydrophilic member of Example 21 was produced in the same manner as in Example 20, except that the composition for low elution layer of Example 20 was changed to the following composition.
In 80 g of dimethylacetamide and 20 g of purified water, (a) 10 g of polyethylene glycol (mass average molecular weight 20,000) as a hydrophilic polymer, (b) 0.5 g of tetramethoxysilane as a crosslinking agent, and (c) acetylacetone in an amount of 0. 05 g and 0.05 g of tetraethyl orthotitanate were mixed and stirred at room temperature for 1 hour to obtain a composition for a low elution layer.
(実施例22)
 実施例20の(a)親水性ポリマーをポリビニルアルコール(質量平均分子量50,000、けん化度99%)に変更した以外は実施例20と同様にして、実施例22の親水性部材を作製した。
(Example 22)
A hydrophilic member of Example 22 was produced in the same manner as in Example 20, except that (a) the hydrophilic polymer in Example 20 was changed to polyvinyl alcohol (mass average molecular weight 50,000, saponification degree 99%).
(実施例23)
 実施例21の(a)親水性ポリマーをポリビニルアルコール(質量平均分子量50,000、けん化度99%)に変更した以外は実施例21と同様にして、実施例23の親水性部材を作製した。
(Example 23)
A hydrophilic member of Example 23 was produced in the same manner as in Example 21 except that (a) the hydrophilic polymer of Example 21 was changed to polyvinyl alcohol (mass average molecular weight 50,000, saponification degree 99%).
(実施例24、25)
 実施例20の親水性ゾルゲル液における(B)触媒を下記のものに変更した以外は実施例20と同様にして、親水性部材を作製した。
 実施例24:エチルアセトアセテートアルミニウムジイソプロピレート(川研ファインケミカル(株)製、ALCH)2g
 実施例25:ジルコニウムキレート化合物2g
 ジルコニウムキレート化合物は、撹拌器を備えた反応機に、テトラブトキシジルコニウム50g、アセト酢酸エチル20gを加え、室温で1時間撹拌して得た。
(Examples 24 and 25)
A hydrophilic member was produced in the same manner as in Example 20 except that the catalyst (B) in the hydrophilic sol-gel solution of Example 20 was changed to the following.
Example 24: Ethyl acetoacetate aluminum diisopropylate (manufactured by Kawaken Fine Chemical Co., Ltd., ALCH) 2 g
Example 25: Zirconium chelate compound 2g
The zirconium chelate compound was obtained by adding 50 g of tetrabutoxyzirconium and 20 g of ethyl acetoacetate to a reactor equipped with a stirrer and stirring at room temperature for 1 hour.
(実施例26、27)
 実施例20の親水性ゾルゲル液における親水性ポリマー(II-1)を下記のものに変更した以外は実施例20と同様にして、親水性部材を作製した。
 実施例26:親水性ポリマー(II-6)(:例示化合物(II-6)を使用)
 実施例27:親水性ポリマー(II-21)(:例示化合物(II-21)を使用)
(Examples 26 and 27)
A hydrophilic member was produced in the same manner as in Example 20, except that the hydrophilic polymer (II-1) in the hydrophilic sol-gel solution of Example 20 was changed to the following.
Example 26: Hydrophilic polymer (II-6) (: Using Exemplified Compound (II-6))
Example 27: Hydrophilic polymer (II-21) (: Using Exemplified Compound (II-21))
(実施例28)
 実施例18の親水性層を以下のものに変更した以外は実施例18と同様にして、実施例26の親水性部材を得た。
〔親水性ゾルゲル液〕
 エチルアルコール20g、精製水100g中に、(C)アルコキシド化合物としてテトラメトキシシラン12g、(A)親水性ポリマーとして親水性ポリマー(II-1)4gを混合し、室温で2時間撹拌して、調製した。
〔親水性組成物〕
 前記親水性ゾルゲル液に実施例1に記載のアニオン系界面活性剤の5質量%水溶液4g、精製水60gを混合し、親水性組成物とした。
〔塗布方法〕
 アルカリ脱脂されたアルミ基板(厚み約100μm)を準備し、該アルミ基板に前記親水性組成物をバー塗布し、150℃、30分でオーブン乾燥して、乾燥塗布量0.1g/mの親水性層を形成した。さらにその上に、実施例20の低溶出性層用組成物をバー塗布し、150℃、30分でオーブン乾燥して、塗布乾燥量0.2g/mの低溶出性層を形成し、実施例28の親水性部材とした。親水性層の厚みは0.1μm、低溶出性層の厚みは0.2μmとした。
(Example 28)
A hydrophilic member of Example 26 was obtained in the same manner as in Example 18 except that the hydrophilic layer of Example 18 was changed to the following.
[Hydrophilic sol-gel solution]
Prepared by mixing 12 g of tetramethoxysilane (C) as an alkoxide compound and 4 g of hydrophilic polymer (II-1) as a hydrophilic polymer in 20 g of ethyl alcohol and 100 g of purified water and stirring at room temperature for 2 hours. did.
[Hydrophilic composition]
The hydrophilic sol-gel solution was mixed with 4 g of a 5% by weight aqueous solution of the anionic surfactant described in Example 1 and 60 g of purified water to obtain a hydrophilic composition.
[Coating method]
An alkali degreased aluminum substrate (thickness: about 100 μm) is prepared, and the hydrophilic composition is bar-coated on the aluminum substrate and oven-dried at 150 ° C. for 30 minutes to obtain a dry coating amount of 0.1 g / m 2 . A hydrophilic layer was formed. Furthermore, the low-elution layer composition of Example 20 was bar-coated and oven-dried at 150 ° C. for 30 minutes to form a low-elution layer having a coating dry amount of 0.2 g / m 2 . The hydrophilic member of Example 28 was obtained. The thickness of the hydrophilic layer was 0.1 μm, and the thickness of the low elution layer was 0.2 μm.
(実施例29)
 実施例28の親水性ゾルゲル液に(B)触媒としてアセチルアセトン1.0g、オルトチタン酸テトラエチル1.0gを添加した以外は実施例28と同様にして、実施例29の親水性部材を作製した。
(Example 29)
A hydrophilic member of Example 29 was produced in the same manner as in Example 28 except that 1.0 g of acetylacetone and 1.0 g of tetraethyl orthotitanate were added as the (B) catalyst to the hydrophilic sol-gel solution of Example 28.
(実施例30)
〔下塗層用ゾルゲル液〕
 エチルアルコール200g、(P)触媒としてアセチルアセトン10g、オルトチタン酸テトラエチル10g、精製水100g中に、(Q)アルコキシド化合物としてテトラメトキシシラン8gを混合し、室温で2時間撹拌して、調製した。
〔下塗層用組成物〕
 上記下塗層用ゾルゲル液500gに実施例1に記載のアニオン系界面活性剤の5質量%水溶液30g、精製水450gを混合し、塗布液とした。
〔塗布方法〕
 アルカリ脱脂されたアルミ基板(厚み約100μm)を準備し、該アルミ基板に下塗層用組成物をバー塗布し、100℃、30分でオーブン乾燥して、乾燥塗布量0.1g/mの下塗層を形成した。下塗層の厚みは、0.1μmであった。室温で十分冷却した後に、下塗層上に実施例20の親水性層、低溶出性層を形成し、実施例30の親水性部材を得た。
(Example 30)
[Sol-gel solution for undercoat]
Into 200 g of ethyl alcohol, 10 g of acetylacetone as the (P) catalyst, 10 g of tetraethyl orthotitanate, and 100 g of purified water, 8 g of tetramethoxysilane as the (Q) alkoxide compound was mixed and stirred at room temperature for 2 hours to prepare.
[Composition for undercoat layer]
30 g of a 5% by weight aqueous solution of the anionic surfactant described in Example 1 and 450 g of purified water were mixed with 500 g of the sol-gel solution for undercoat layer to obtain a coating solution.
[Coating method]
An alkali degreased aluminum substrate (thickness: about 100 μm) is prepared, and the undercoat layer composition is bar-coated on the aluminum substrate and oven-dried at 100 ° C. for 30 minutes to obtain a dry coating amount of 0.1 g / m 2. An undercoat layer was formed. The thickness of the undercoat layer was 0.1 μm. After sufficiently cooling at room temperature, the hydrophilic layer and the low-elution layer of Example 20 were formed on the undercoat layer to obtain the hydrophilic member of Example 30.
(実施例31)
 実施例30の親水性層を実施例28の親水性層に変更した以外は実施例30と同様にして、実施例31の親水性部材を得た。
(Example 31)
A hydrophilic member of Example 31 was obtained in the same manner as Example 30 except that the hydrophilic layer of Example 30 was changed to the hydrophilic layer of Example 28.
(実施例32)
 実施例30の親水性層を実施例29の親水性層に変更した以外は実施例30と同様にして、実施例32の親水性部材を得た。
(Example 32)
A hydrophilic member of Example 32 was obtained in the same manner as Example 30 except that the hydrophilic layer of Example 30 was changed to the hydrophilic layer of Example 29.
(比較例3)
 実施例32において、低溶出性層を形成しなかった以外は実施例32と同様にして、比較例3の部材を得た。
(Comparative Example 3)
In Example 32, a member of Comparative Example 3 was obtained in the same manner as in Example 32 except that the low-elution layer was not formed.
(比較例4)
 実施例29において、親水性ゾルゲル液における(A)親水性ポリマー(II-1)の代わりに下記構造を有する親水性ポリマー(比較ポリマー(1))を用いた他は、同様にして比較例4の親水性部材を得た。
(Comparative Example 4)
Comparative Example 4 was carried out in the same manner as in Example 29 except that a hydrophilic polymer (comparative polymer (1)) having the following structure was used in place of (A) hydrophilic polymer (II-1) in the hydrophilic sol-gel solution. The hydrophilic member was obtained.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
(比較例5)
 特開2005-344144号公報の段落0046(特開2002-201289号公報の表2・B1)に記載の、ポリアクリル酸(平均重合度400)100重量部と、カルボキシメチルセルロースナトリウム(平均重合度500)30重量部からなる混合組成親水性皮膜(比較親水性膜、膜厚0.5μm)上に、実施例19の低溶出性層を形成し、比較例5の親水性部材を得た。
(Comparative Example 5)
JP, 2005-344144, paragraph 0046 (JP 2002-201289, Table 2, B1), 100 parts by weight of polyacrylic acid (average polymerization degree 400) and sodium carboxymethyl cellulose (average polymerization degree 500) The low elution layer of Example 19 was formed on a mixed composition hydrophilic film (comparative hydrophilic film, film thickness 0.5 μm) consisting of 30 parts by weight to obtain a hydrophilic member of Comparative Example 5.
(実施例33)
〔親水性ゾルゲル液〕
 精製水100g中に、(A)親水性ポリマーとして、親水性ポリマー(I-1)2.5g、親水性ポリマー(II-1)7.5g、(B)触媒としてアセチルアセトン0.1g、オルトチタン酸テトラエチル0.1gを混合し、室温で2時間撹拌して、調製した。
〔親水性組成物〕
 前記親水性ゾルゲル液120gに下記アニオン系界面活性剤の5質量%水溶液2.5gを混合し、親水性組成物を作製した。
〔低溶出性層用組成物〕
 ジメチルアセトアミド100g中に、(a)親水性ポリマーとしてポリエチレングリコール(PEG、質量平均分子量20,000)10g、(b)架橋剤として1,4-テトラメチレンジイソシアネート0.5gを混合し、室温で1時間撹拌し、低溶出性層用組成物とした。
〔塗布方法〕
 アルカリ脱脂されたアルミ基板(厚み約100μm)を準備し、該アルミ基板に上記の親水性組成物をバー塗布し、150℃、30分でオーブン乾燥して、乾燥塗布量0.7g/mの親水性層を形成した。さらにその上に、上記の低溶出性層用組成物をバー塗布し、150℃、30分でオーブン乾燥して、塗布乾燥量0.2g/mの低溶出性層を形成し、実施例1の親水性部材とした。親水性層の厚みは0.7μm、低溶出性層の厚みは0.2μmとした。
(Example 33)
[Hydrophilic sol-gel solution]
In 100 g of purified water, (A) 2.5 g of hydrophilic polymer (I-1), 7.5 g of hydrophilic polymer (II-1) as hydrophilic polymer, (B) 0.1 g of acetylacetone as catalyst, orthotitanium The mixture was prepared by mixing 0.1 g of tetraethyl acid and stirring at room temperature for 2 hours.
[Hydrophilic composition]
A hydrophilic composition was prepared by mixing 120 g of the hydrophilic sol-gel solution with 2.5 g of a 5% by weight aqueous solution of the following anionic surfactant.
[Composition for low elution layer]
In 100 g of dimethylacetamide, (a) 10 g of polyethylene glycol (PEG, mass average molecular weight 20,000) as a hydrophilic polymer and (b) 0.5 g of 1,4-tetramethylene diisocyanate as a cross-linking agent are mixed. The mixture was stirred for a time to obtain a composition for a low elution layer.
[Coating method]
An alkali degreased aluminum substrate (thickness: about 100 μm) is prepared, and the above hydrophilic composition is bar-coated on the aluminum substrate and oven-dried at 150 ° C. for 30 minutes to obtain a dry coating amount of 0.7 g / m 2. A hydrophilic layer was formed. Further, the above composition for a low elution layer was coated on a bar and oven-dried at 150 ° C. for 30 minutes to form a low elution layer having a coating dry amount of 0.2 g / m 2. 1 hydrophilic member. The thickness of the hydrophilic layer was 0.7 μm, and the thickness of the low elution layer was 0.2 μm.
(実施例34)
 実施例33の(a)親水性ポリマーをポリビニルアルコール(PVA、質量平均分子量50,000、けん化度99%)に変更した以外は実施例33と同様に実施例34の親水性部材を作製した。
(Example 34)
A hydrophilic member of Example 34 was produced in the same manner as in Example 33 except that (a) the hydrophilic polymer of Example 33 was changed to polyvinyl alcohol (PVA, mass average molecular weight 50,000, saponification degree 99%).
(実施例35)
 実施例33の低溶出性層用組成物を以下の組成物に変更した以外は実施例33と同様にして、実施例35の親水性部材を作製した。
 ジメチルアセトアミド80g、精製水20g中に、(a)親水性ポリマーとしてポリエチレングリコール(質量平均分子量20,000)10g、(b)架橋剤としてテトラメトキシシラン0.5g、(c)触媒としてアセチルアセトン0.05g、オルトチタン酸テトラエチル0.05gを混合し、室温で1時間撹拌し、低溶出性層用組成物とした。
(Example 35)
A hydrophilic member of Example 35 was produced in the same manner as in Example 33 except that the composition for low elution layer of Example 33 was changed to the following composition.
In 80 g of dimethylacetamide and 20 g of purified water, (a) 10 g of polyethylene glycol (mass average molecular weight 20,000) as a hydrophilic polymer, (b) 0.5 g of tetramethoxysilane as a crosslinking agent, and (c) acetylacetone in an amount of 0. 05 g and 0.05 g of tetraethyl orthotitanate were mixed and stirred at room temperature for 1 hour to obtain a composition for a low elution layer.
(実施例36)
 実施例35の(a)親水性ポリマーをポリビニルアルコール(質量平均分子量50,000、けん化度99%)に変更した以外は実施例35と同様にして、実施例36の親水性部材を作製した。
(Example 36)
A hydrophilic member of Example 36 was produced in the same manner as in Example 35 except that the hydrophilic polymer (a) in Example 35 was changed to polyvinyl alcohol (mass average molecular weight 50,000, saponification degree 99%).
(実施例37、38)
 実施例33における(A)親水性ポリマー(I-1)を下記のものに変更した以外は実施例33と同様に親水性部材を作成した。
 実施例37:親水性ポリマー(I-2)
 実施例38:親水性ポリマー(I-11)
(Examples 37 and 38)
A hydrophilic member was prepared in the same manner as in Example 33 except that (A) the hydrophilic polymer (I-1) in Example 33 was changed to the following.
Example 37: Hydrophilic polymer (I-2)
Example 38: hydrophilic polymer (I-11)
(実施例39、40)
 実施例33における(A)親水性ポリマー(II-1)を下記のものに変更した以外は実施例33と同様に親水性部材を作成した。
 実施例39:親水性ポリマー(II-6)
 実施例40:親水性ポリマー(II-21)
(Examples 39 and 40)
A hydrophilic member was prepared in the same manner as in Example 33 except that (A) the hydrophilic polymer (II-1) in Example 33 was changed to the following.
Example 39: hydrophilic polymer (II-6)
Example 40: hydrophilic polymer (II-21)
(実施例41、42)
 親水性ゾルゲル液中の親水性ポリマー(I-1)、親水性ポリマー(II-1)の添加量を下記のものに変更した以外は実施例33と同様に親水性部材を作成した。
 実施例41:親水性ポリマー(I-1)0.5g、親水性ポリマー(II-1)9.5g
 実施例42:親水性ポリマー(I-1)5.0g、親水性ポリマー(II-1)5.0g
(Examples 41 and 42)
A hydrophilic member was prepared in the same manner as in Example 33 except that the addition amount of the hydrophilic polymer (I-1) and the hydrophilic polymer (II-1) in the hydrophilic sol-gel solution was changed to the following.
Example 41: 0.5 g of hydrophilic polymer (I-1), 9.5 g of hydrophilic polymer (II-1)
Example 42: 5.0 g of hydrophilic polymer (I-1), 5.0 g of hydrophilic polymer (II-1)
(実施例43)
〔親水性ゾルゲル液〕
 エチルアルコール20g、精製水100g中に、(C)アルコキシド化合物としてテトラメトキシシラン12g、(A)親水性ポリマーとして親水性ポリマー(I-1)1.0g、親水性ポリマー(II-1)3.0g、(B)触媒としてアセチルアセトン1.0g、オルトチタン酸テトラエチル1.0gを混合し、室温で2時間撹拌して、調製した。
〔親水性組成物〕
 前記親水性ゾルゲル液に実施例1に記載のアニオン系界面活性剤の5質量%水溶液4g、精製水60gを混合し、親水性組成物とした。
〔塗布方法〕
 アルカリ脱脂されたアルミ基板(厚み約100μm)を準備し、該アルミ基板に前記親水性組成物をバー塗布し、150℃、30分でオーブン乾燥して、乾燥塗布量0.1g/mの親水性層を形成した。さらにその上に、実施例33の低溶出性層用組成物をバー塗布し、150℃、30分でオーブン乾燥して、塗布乾燥量0.2g/mの低溶出性層を形成し、実施例12の親水性部材とした。親水性層の厚みは0.1μm、低溶出性層の厚みは0.2μmとした。
(Example 43)
[Hydrophilic sol-gel solution]
In 20 g of ethyl alcohol and 100 g of purified water, (C) 12 g of tetramethoxysilane as alkoxide compound, (A) 1.0 g of hydrophilic polymer (I-1) as hydrophilic polymer, hydrophilic polymer (II-1) 3. 0 g, (B) 1.0 g of acetylacetone as a catalyst and 1.0 g of tetraethyl orthotitanate were mixed and stirred at room temperature for 2 hours to prepare.
[Hydrophilic composition]
The hydrophilic sol-gel solution was mixed with 4 g of a 5% by weight aqueous solution of the anionic surfactant described in Example 1 and 60 g of purified water to obtain a hydrophilic composition.
[Coating method]
An alkali degreased aluminum substrate (thickness: about 100 μm) is prepared, and the hydrophilic composition is bar-coated on the aluminum substrate and oven-dried at 150 ° C. for 30 minutes to obtain a dry coating amount of 0.1 g / m 2 . A hydrophilic layer was formed. Furthermore, the low-elution layer composition of Example 33 was bar-coated and oven-dried at 150 ° C. for 30 minutes to form a low-elution layer having a coating dry amount of 0.2 g / m 2 . The hydrophilic member of Example 12 was obtained. The thickness of the hydrophilic layer was 0.1 μm, and the thickness of the low elution layer was 0.2 μm.
(実施例44)
〔下塗層用ゾルゲル液〕
 エチルアルコール200g、(P)触媒としてアセチルアセトン10g、オルトチタン酸テトラエチル10g、精製水100g中に、(Q)アルコキシド化合物としてテトラメトキシシラン8gを混合し、室温で2時間撹拌して、調製した。
〔下塗層用組成物〕
 上記下塗層用ゾルゲル液500gに実施例1に記載のアニオン系界面活性剤の5質量%水溶液30g、精製水450gを混合し、塗布液とした。
〔塗布方法〕
 アルカリ脱脂されたアルミ基板(厚み約100μm)を準備し、該アルミ基板に下塗層用組成物をバー塗布し、100℃、30分でオーブン乾燥して、乾燥塗布量0.1g/mの下塗層を形成した。下塗層の厚みは、0.1μmであった。室温で十分冷却した後に、下塗層上に実施例33の親水性層、低溶出性層を形成し、実施例44の親水性部材を得た。
(Example 44)
[Sol-gel solution for undercoat]
Into 200 g of ethyl alcohol, 10 g of acetylacetone as the (P) catalyst, 10 g of tetraethyl orthotitanate, and 100 g of purified water, 8 g of tetramethoxysilane as the (Q) alkoxide compound were mixed and stirred at room temperature for 2 hours to prepare.
[Composition for undercoat layer]
30 g of a 5% by weight aqueous solution of the anionic surfactant described in Example 1 and 450 g of purified water were mixed with 500 g of the sol-gel solution for undercoat layer to obtain a coating solution.
[Coating method]
An alkali degreased aluminum substrate (thickness: about 100 μm) is prepared, and the undercoat layer composition is bar-coated on the aluminum substrate and oven-dried at 100 ° C. for 30 minutes to obtain a dry coating amount of 0.1 g / m 2. An undercoat layer was formed. The thickness of the undercoat layer was 0.1 μm. After sufficiently cooling at room temperature, the hydrophilic layer and the low-elution layer of Example 33 were formed on the undercoat layer to obtain the hydrophilic member of Example 44.
(実施例45)
 実施例44の親水性層を実施例43の親水性層に変更した以外は実施例44と同様にして、実施例45の親水性部材を得た。
(Example 45)
A hydrophilic member of Example 45 was obtained in the same manner as in Example 44 except that the hydrophilic layer of Example 44 was changed to the hydrophilic layer of Example 43.
 以上の構成を表1~3にまとめる。 The above configuration is summarized in Tables 1-3.
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
(親水性部材の評価)
〔表面自由エネルギー〕
 親水性層表面の親水性度は、汎用的に、水滴接触角(協和界面科学(株)製、DropMaster500)で測定される。しかし、本発明のような非常に親水性の高い表面においては、水滴接触角が10°以下、さらには5°以下になることがあり、親水性度の相互比較を行うには、限界がある。一方、固体表面の親水性度をより詳細に評価する方法として、表面自由エネルギーの測定がある。種々の方法が提案されているが、本発明では、一例として、Zismanプロット法を用いて表面自由エネルギーを測定した。具体的には、塩化マグネシウムなどの無機電解質の水溶液が濃度とともに表面張力が大きくなる性質を利用し、その水溶液を用いて空中、室温条件で接触角を測定した後、横軸にその水溶液の表面張力、縦軸に接触角をcosθに換算した値をとり、種々の濃度の水溶液の点をプロットして直線関係を得、cosθ=1すなわち、接触角=0°になるときの表面張力を、固体の表面自由エネルギーと定義する測定方法である。水の表面張力は72mN/mであり、表面自由エネルギーの値が大きいほど親水性が高いといえる。
(Evaluation of hydrophilic member)
[Surface free energy]
The hydrophilicity of the hydrophilic layer surface is generally measured with a water droplet contact angle (Kyowa Interface Science Co., Ltd., DropMaster 500). However, on a very hydrophilic surface such as the present invention, the water droplet contact angle may be 10 ° or less, and even 5 ° or less, and there is a limit to the mutual comparison of the hydrophilicity. . On the other hand, as a method for evaluating the hydrophilicity of the solid surface in more detail, there is a measurement of surface free energy. Various methods have been proposed. In the present invention, as an example, the surface free energy was measured using the Zisman plot method. Specifically, an aqueous solution of an inorganic electrolyte such as magnesium chloride uses the property that the surface tension increases with the concentration. After measuring the contact angle in air and at room temperature using the aqueous solution, the horizontal axis indicates the surface of the aqueous solution. Take the tension, the value obtained by converting the contact angle into cos θ on the vertical axis, plot the points of aqueous solutions of various concentrations to obtain a linear relationship, and the surface tension when cos θ = 1, that is, contact angle = 0 °, It is a measurement method defined as the surface free energy of a solid. The surface tension of water is 72 mN / m, and it can be said that the higher the surface free energy value, the higher the hydrophilicity.
〔親水持続性〕
 親水性部材を超純水に5日間浸漬し、取り出した後に風乾し、純水で接触角を測定したときに接触角の変化が少ないほど親水持続性が良好とする。浸漬後の接触角の変化が2°以下の場合を○、2~7°の場合を△、7°以上の場合を×と評価する。
[Hydrophilic durability]
A hydrophilic member is immersed in ultrapure water for 5 days, taken out, air-dried, and when the contact angle is measured with pure water, the smaller the change in the contact angle, the better the hydrophilic durability. The case where the change in contact angle after immersion is 2 ° or less is evaluated as ◯, the case of 2 to 7 ° is evaluated as Δ, and the case of 7 ° or more is evaluated as ×.
〔耐摩擦性の評価〕
 得られた親水性部材表面を30mm×30mm角の不織布(BEMCOT、旭化学繊維社製)で200gの負荷をかけ250往復擦り、その前後の見た目の変化を目視により観察する。
 ○:擦り前後の表面に傷なし
 △:1本程度傷あり
 ×:傷が多数存在
[Evaluation of friction resistance]
The surface of the obtained hydrophilic member is rubbed 250 reciprocally under a load of 200 g with a 30 mm × 30 mm square nonwoven fabric (BEMCOT, manufactured by Asahi Chemical Fiber Co., Ltd.), and the appearance change before and after that is visually observed.
○: No scratches on the surface before and after rubbing △: About one scratch ×: Many scratches exist
〔防汚性の評価〕
 50mlガラス容器の中にパルミチン酸0.2gを入れ、そのガラス容器の口を上記で得られた50mm角の親水性部材にて蓋をし、オーブンにて100℃で1時間曝気した。その後、30分間流水に浸漬し、80℃で30分乾燥した。これを1サイクルとし、5サイクル行った後、水滴接触角(協和界面科学(株)製、DropMaster500)を測定した。
 ○:20°未満
 △:20°以上、40°未満
 ×:40°以上
 以上の評価結果を下記表4~6に示す。
[Evaluation of antifouling properties]
0.2 g of palmitic acid was placed in a 50 ml glass container, the mouth of the glass container was covered with the hydrophilic member of 50 mm square obtained above, and aerated at 100 ° C. for 1 hour in an oven. Then, it was immersed in running water for 30 minutes and dried at 80 ° C. for 30 minutes. This was defined as one cycle, and after 5 cycles, the water droplet contact angle (Kyowa Interface Science Co., Ltd., DropMaster 500) was measured.
○: Less than 20 ° Δ: 20 ° or more, less than 40 ° ×: 40 ° or more The evaluation results above are shown in Tables 4 to 6 below.
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
 以上より、本発明の組み合わせにより、親水性・防汚性、及びそれらの持続性に優れた親水性部材が得られることがわかる。 From the above, it can be seen that a hydrophilic member excellent in hydrophilicity / antifouling property and sustainability thereof can be obtained by the combination of the present invention.
 本発明の親水性部材は、例えば、エアコンに含まれる熱交換器用フィン材など、親水性、耐摩耗性、防汚性が求められる様々な用途に用いることができる。
 本出願は、2008年3月25日出願の日本特許出願(特願2008-79314)に基づくものであり、それらの内容はここに参照して組み込まれる。
The hydrophilic member of the present invention can be used in various applications that require hydrophilicity, wear resistance, and antifouling properties, such as a fin material for a heat exchanger included in an air conditioner.
This application is based on a Japanese patent application (Japanese Patent Application No. 2008-79314) filed on Mar. 25, 2008, the contents of which are incorporated herein by reference.

Claims (18)

  1.  基板上に、(A)水酸基及び加水分解性官能基の少なくともいずれかを有する珪素原子を有する親水性ポリマーを含有する親水性組成物から形成された親水性層を有し、さらにその上に(a)反応性基を有する親水性ポリマーを含有する低溶出性層用組成物から形成された低溶出性層を有することを特徴とする親水性部材。 On the substrate, (A) a hydrophilic layer formed from a hydrophilic composition containing a hydrophilic polymer having a silicon atom having at least one of a hydroxyl group and a hydrolyzable functional group, and further ( a) A hydrophilic member having a low elution layer formed from a composition for a low elution layer containing a hydrophilic polymer having a reactive group.
  2.  前記低溶出性層用組成物中に、さらに(b)架橋剤を含有することを特徴とする請求項1に記載の親水性部材。 The hydrophilic member according to claim 1, further comprising (b) a crosslinking agent in the composition for a low-elution layer.
  3.  前記(b)架橋剤の含有量が、(a)親水性ポリマーに対して0.01~15質量%であることを特徴とする請求項2に記載の親水性部材。 The hydrophilic member according to claim 2, wherein the content of the (b) cross-linking agent is 0.01 to 15% by mass with respect to (a) the hydrophilic polymer.
  4.  前記(A)水酸基及び加水分解性官能基の少なくともいずれかを有する珪素原子を有する親水性ポリマーが、下記一般式(a-2)で表される構造単位を有し、且つ、ポリマー鎖の末端に下記一般式(a-1)で表される部分構造を有する親水性ポリマー(A1)、及び下記一般式(a-3)で表される構造単位と、下記一般式(a-4)で表される構造単位とを有する親水性ポリマー(A2)のうち少なくとも1種であることを特徴とする請求項1~3のいずれかに記載の親水性部材。
    Figure JPOXMLDOC01-appb-C000001

     一般式(a-1)、(a-2)、(a-3)および(a-4)中、R~R13はそれぞれ独立に水素原子又は炭化水素基を表す。L~Lは、それぞれ独立に単結合又は多価の有機連結基を表す。x及びyは組成比を表し、xは0<x<100、yは0<y<100である。nおよびmは、それぞれ独立に1~3の整数を表す。YおよびYは、それぞれ独立に、-OH、-OR、-COR、-CO、-CON(R)(R)、-N(R)(R)、-NHCOR、-NHCO、-OCON(R)(R)、-NHCON(R)(R)、-SO、-OSO、-SO、-NHSO、-SON(R)(R)、-N(R)(R)(R)、-N(R)(R)(R)(R)、-PO(R)(R)、-OPO(R)(R)、および-PO(R)(R)からなる群より選択される構造を1つ以上有する基を表す。ここで、R、R及びRは、それぞれ独立に水素原子またはアルキル基を表し、Rは、アルキル基を表し、R及びRは、それぞれ独立に水素原子またはアルキル基、アルカリ金属、アルカリ土類金属、またはオニウムを表し、Rは、アルキル基、ハロゲン原子、無機アニオン、または有機アニオンを表す。
    (A) The hydrophilic polymer having a silicon atom having at least one of a hydroxyl group and a hydrolyzable functional group has a structural unit represented by the following general formula (a-2), and has a polymer chain terminal. A hydrophilic polymer (A1) having a partial structure represented by the following general formula (a-1), a structural unit represented by the following general formula (a-3), and the following general formula (a-4): The hydrophilic member according to any one of claims 1 to 3, wherein the hydrophilic member is at least one of hydrophilic polymers (A2) having a structural unit represented.
    Figure JPOXMLDOC01-appb-C000001

    In the general formulas (a-1), (a-2), (a-3) and (a-4), R 1 to R 13 each independently represents a hydrogen atom or a hydrocarbon group. L 1 to L 4 each independently represents a single bond or a polyvalent organic linking group. x and y represent composition ratios, where x is 0 <x <100 and y is 0 <y <100. n and m each independently represents an integer of 1 to 3. Y 1 and Y 2 are each independently —OH, —OR a , —COR a , —CO 2 R e , —CON (R a ) (R b ), —N (R a ) (R b ), —NHCOR d , —NHCO 2 R a , —OCON (R a ) (R b ), —NHCON (R a ) (R b ), —SO 3 R e , —OSO 3 R e , —SO 2 R d , —NHSO 2 R d , —SO 2 N (R a ) (R b ), —N (R a ) (R b ) (R c ), —N (R a ) (R b ) (R c ) (R c ) g ), —PO 3 (R e ) (R f ), —OPO 3 (R e ) (R f ), and one structure selected from the group consisting of —PO 3 (R d ) (R e ) A group having the above is represented. Here, R a , R b and R c each independently represent a hydrogen atom or an alkyl group, R d represents an alkyl group, and R e and R f each independently represent a hydrogen atom or an alkyl group, an alkali group It represents a metal, an alkaline earth metal, or onium, and R g represents an alkyl group, a halogen atom, an inorganic anion, or an organic anion.
  5.  前記親水性組成物に、前記(A)水酸基及び加水分解性官能基の少なくともいずれかを有する珪素原子を有する親水性ポリマーの反応を促進する(B)触媒を含有することを特徴とする請求項1~4のいずれかに記載の親水性部材。 The said hydrophilic composition contains the catalyst (B) which accelerates | stimulates the reaction of the hydrophilic polymer which has a silicon atom which has at least any one of the said (A) hydroxyl group and a hydrolysable functional group, It is characterized by the above-mentioned. The hydrophilic member according to any one of 1 to 4.
  6.  前記親水性組成物に含まれる(B)触媒が、不揮発性の触媒であることを特徴とする請求項5に記載の親水性部材。 The hydrophilic member according to claim 5, wherein the catalyst (B) contained in the hydrophilic composition is a non-volatile catalyst.
  7.  前記親水性組成物に(C)Si、Ti、Zr、及びAlから選択される元素のアルコキシド化合物を含有することを特徴とする請求項1~6のいずれかに記載の親水性部材。 The hydrophilic member according to any one of claims 1 to 6, wherein the hydrophilic composition contains an alkoxide compound of an element selected from (C) Si, Ti, Zr, and Al.
  8.  前記基板と前記親水性層との間に、下塗層を有することを特徴とする請求項1~7のいずれかに記載の親水性部材。 The hydrophilic member according to any one of claims 1 to 7, further comprising an undercoat layer between the substrate and the hydrophilic layer.
  9.  前記下塗層が、(P)触媒を含有する組成物を塗布することにより形成されたものであることを特徴とする請求項8に記載の親水性部材。 The hydrophilic member according to claim 8, wherein the undercoat layer is formed by applying a composition containing (P) a catalyst.
  10.  前記下塗層を形成する組成物に含まれる(P)触媒が、不揮発性の触媒であることを特徴とする請求項9に記載の親水性部材。 The hydrophilic member according to claim 9, wherein the (P) catalyst contained in the composition forming the undercoat layer is a non-volatile catalyst.
  11.  前記下塗層が、さらに(Q)Si、Ti、Zr、及びAlから選択される元素のアルコキシド化合物を含有する組成物を塗布することにより形成されたものであることを特徴とする請求項8~10のいずれかに記載の親水性部材。 9. The undercoat layer is formed by applying a composition containing an alkoxide compound of an element selected from (Q) Si, Ti, Zr, and Al. The hydrophilic member according to any one of 1 to 10.
  12.  前記基板が、ガラス、金属、セラミックス、またはプラスチックで形成されたものであることを特徴とする請求項1~11のいずれかに記載の親水性部材。 The hydrophilic member according to any one of claims 1 to 11, wherein the substrate is made of glass, metal, ceramics, or plastic.
  13.  前記(A)水酸基及び加水分解性官能基の少なくともいずれかを有する珪素原子を有する親水性ポリマーとして、前記親水性ポリマー(A1)及び前記親水性ポリマー(A2)を含み、前記親水性ポリマー(A1)と前記親水性ポリマー(A2)の質量比(親水性ポリマー(A1)/親水性ポリマー(A2))が、5/95~50/50の範囲であることを特徴とする請求項4~12のいずれかに記載の親水性部材。 (A) The hydrophilic polymer (A1) and the hydrophilic polymer (A2) are included as the hydrophilic polymer having a silicon atom having at least one of a hydroxyl group and a hydrolyzable functional group, and the hydrophilic polymer (A1 ) And the hydrophilic polymer (A2) in a mass ratio (hydrophilic polymer (A1) / hydrophilic polymer (A2)) in the range of 5/95 to 50/50, The hydrophilic member according to any one of the above.
  14.  パルミチン酸に一時間曝気、30分間水洗、30分間乾燥を1サイクルとし、該サイクルを5サイクル繰返した後の水接触角が40°以下である請求項1~13のいずれかに記載の親水性部材。 The hydrophilic property according to any one of claims 1 to 13, wherein a cycle of aeration with palmitic acid for 1 hour, washing with water for 30 minutes and drying for 30 minutes is one cycle, and the water contact angle after repeating the cycle for 5 cycles is 40 ° or less. Element.
  15.  請求項1~14のいずれかに記載の親水性部材を有するフィン材。 A fin material having the hydrophilic member according to any one of claims 1 to 14.
  16.  請求項15に記載のフィン材がアルミニウム製であるアルミニウム製フィン材。 An aluminum fin material, wherein the fin material according to claim 15 is made of aluminum.
  17.  請求項16に記載のアルミニウム製フィン材を有する熱交換器。 A heat exchanger having the aluminum fin material according to claim 16.
  18.  請求項17に記載の熱交換器を有するエアコン。 An air conditioner having the heat exchanger according to claim 17.
PCT/JP2009/055854 2008-03-25 2009-03-24 Hydrophilic member WO2009119605A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-079314 2008-03-25
JP2008079314A JP2009233872A (en) 2008-03-25 2008-03-25 Hydrophilic member

Publications (1)

Publication Number Publication Date
WO2009119605A1 true WO2009119605A1 (en) 2009-10-01

Family

ID=41113797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055854 WO2009119605A1 (en) 2008-03-25 2009-03-24 Hydrophilic member

Country Status (2)

Country Link
JP (1) JP2009233872A (en)
WO (1) WO2009119605A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2977417A4 (en) * 2013-03-21 2016-11-09 Nihon Parkerizing Hydrophilic surface treatment agent for aluminum-containing metal heat exchangers having excellent drainage

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5654844B2 (en) * 2010-11-11 2015-01-14 三菱アルミニウム株式会社 Alkali-resistant aluminum fin material for heat exchanger and heat exchanger
JP6374219B2 (en) * 2014-05-23 2018-08-15 三菱アルミニウム株式会社 Fin material for heat exchanger and manufacturing method thereof
JP6887366B2 (en) * 2017-12-07 2021-06-16 株式会社Uacj Pre-coated fin material
KR102189357B1 (en) * 2018-06-01 2020-12-11 엘지전자 주식회사 Refrigerator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10323619A (en) * 1997-03-28 1998-12-08 Jsr Corp Cured body
JP2000336233A (en) * 1999-05-27 2000-12-05 Hitachi Chem Co Ltd Hydrophilic resin composition and production of hydrophilic coating film
JP2002361800A (en) * 2001-06-11 2002-12-18 Fuji Photo Film Co Ltd Surface hydrophilic member
JP2005344144A (en) * 2004-06-01 2005-12-15 Kobe Steel Ltd Hydrophilic surface-treated fin member for heat exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10323619A (en) * 1997-03-28 1998-12-08 Jsr Corp Cured body
JP2000336233A (en) * 1999-05-27 2000-12-05 Hitachi Chem Co Ltd Hydrophilic resin composition and production of hydrophilic coating film
JP2002361800A (en) * 2001-06-11 2002-12-18 Fuji Photo Film Co Ltd Surface hydrophilic member
JP2005344144A (en) * 2004-06-01 2005-12-15 Kobe Steel Ltd Hydrophilic surface-treated fin member for heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2977417A4 (en) * 2013-03-21 2016-11-09 Nihon Parkerizing Hydrophilic surface treatment agent for aluminum-containing metal heat exchangers having excellent drainage

Also Published As

Publication number Publication date
JP2009233872A (en) 2009-10-15

Similar Documents

Publication Publication Date Title
JP5124496B2 (en) Hydrophilic member
JP5427382B2 (en) Hydrophilic member, fin material, aluminum fin material, heat exchanger and air conditioner
JP2009256564A (en) Composition for formation of hydrophilic film, and hydrophilic member
WO2010044443A1 (en) Hydrophilic composition and hydrophilic member having antifungal activity
JP2008279736A (en) Hydrophilic member and its manufacturing method
JP2009256568A (en) Hydrophilic film-forming composition, spray composition, and hydrophilic member using the same
JP2008308659A (en) Composition for forming hydrophilic film, hydrophilic member and method for producing hydrophilic member
JP2010070735A (en) Hydrophilic composition, hydrophilic member, fin material, heat exchanger, and air conditioner
WO2009119605A1 (en) Hydrophilic member
JP2008088260A (en) Hydrophilic film-forming composition and hydrophilic member
JP2009235128A (en) Composition for forming hydrophilic film, and hydrophilic member
JP2010047739A (en) Hydrophilic composition, and hydrophilic member using the same, heat exchanger, air conditioner
JP2008308658A (en) Composition for forming hydrophilic film, hydrophilic member and method for producing hydrophilic member
WO2009116598A1 (en) Hydrophilic composition
JP2011051266A (en) Hydrophilic member
JP2011073359A (en) Hydrophilic member
JP2008225466A (en) Anti-fogging and anti-reflection optical product
JP2009079889A (en) Fin material
JP2008253985A (en) Hydrophilic member and process for producing the same
JP2008222998A (en) Hydrophilic composition and hydrophilic member
JP2008214507A (en) Composition for forming hydrophilic membrane and hydrophilic member
JP2010057690A (en) Goggle
JP2008285530A (en) Composition for forming hydrophilic film and hydrophilic member
JP2009256578A (en) Hydrophilic composition and hydrophilic member using the same
JP2009227869A (en) Composition for forming hydrophilic film, and hydrophilic member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09724122

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09724122

Country of ref document: EP

Kind code of ref document: A1