WO2009113564A1 - Luciferase-binding aptamer - Google Patents

Luciferase-binding aptamer Download PDF

Info

Publication number
WO2009113564A1
WO2009113564A1 PCT/JP2009/054617 JP2009054617W WO2009113564A1 WO 2009113564 A1 WO2009113564 A1 WO 2009113564A1 JP 2009054617 W JP2009054617 W JP 2009054617W WO 2009113564 A1 WO2009113564 A1 WO 2009113564A1
Authority
WO
WIPO (PCT)
Prior art keywords
aptamer
luciferase
polynucleotide
ability
binding
Prior art date
Application number
PCT/JP2009/054617
Other languages
French (fr)
Japanese (ja)
Inventor
一典 池袋
広司 早出
直樹 梶山
恵子 黒澤
Original Assignee
国立大学法人東京農工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京農工大学 filed Critical 国立大学法人東京農工大学
Publication of WO2009113564A1 publication Critical patent/WO2009113564A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/115Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/16Aptamers

Definitions

  • the present invention relates to an aptamer that binds to luciferase.
  • the ELISA method is a method in which a trace amount of a target substance contained in a sample is quantitatively detected using an enzyme-labeled antibody or antigen and utilizing an antigen-antibody reaction.
  • Utilizes antigen-antibody reaction It can be measured in the crude extraction stage for detection, and sample preparation does not require complicated steps such as purification and pretreatment required by other inspection methods. (3) Large amount of sample in a short time There are advantages such as being able to measure.
  • ELISA has the following problems. First, since the antibody does not emit a signal when bound to the target, two types of antibodies that bind to different portions of the target molecule are required. It is difficult to produce two types of antibodies that bind to different parts of a single target molecule, and antibodies are time-consuming and laborious to produce, and are expensive. Secondly, since a signal is transmitted by modifying a molecule such as an enzyme in one antibody, a complicated B / F separation operation that removes the antibody that has not bound to the target molecule is essential. is there.
  • aptamers that are oligonucleotides that specifically bind to arbitrary molecules are known. Since aptamers can be chemically synthesized using a commercially available nucleic acid synthesizer, they are much cheaper than specific antibodies and can be easily modified. Therefore, aptamers are expected to be applied as sensing elements. Aptamers that specifically bind to a desired target molecule can be produced by a method called SELEX® (SystematicSystemEvolution of Ligands by EXponential Enrichment) (Non-patent Document 1).
  • a target molecule is immobilized on a carrier, a nucleic acid library consisting of nucleic acids having a large number of random base sequences is added to the target molecule, nucleic acids that bind to the target molecule are recovered, and this is amplified by PCR. Again, the target molecule is added to the immobilized carrier. By repeating this step about 10 times, aptamers having high binding power to the target molecule are concentrated, the base sequence thereof is determined, and the aptamer that recognizes the target molecule is obtained.
  • the nucleic acid library can be easily prepared by binding nucleotides at random using an automatic nucleic acid synthesizer. Thus, an aptamer that specifically binds to an arbitrary target substance can be produced by a method that actively uses chance by using a nucleic acid library having a random base sequence.
  • AES AdimerictaEnzyme Subunit
  • the detection principle is that when the molecule to be measured is present, the molecule binds to the recognition aptamer, which causes a change in the structure of the enzyme-controlled aptamer linked to it, resulting in the activity of the enzyme contained in AES.
  • the target molecule is detected by measuring the change in its activity.
  • the advantage of this detection method is that, unlike the detection by ELISA, the binding of the target molecule is detected directly as a signal of the enzyme activity, so that rapid and simple detection without requiring B / F separation is possible. It is done.
  • an aptamer that inhibits enzyme activity is acquired, an aptamer that binds to the target molecule to be detected can be arbitrarily selected to detect various target molecules. Furthermore, aptamers are easier to make and less expensive than antibodies.
  • AES described in Patent Documents 1 and 2 uses a thrombin aptamer as an enzyme-controlled aptamer, and detects a target molecule by a change in fibrin clotting time.
  • Such a detection method has a drawback in that it takes a relatively long time for measurement and thus lacks rapidity.
  • the aptamer creation method is a method that actively uses chance as described above, whether or not an aptamer having a high binding ability to a target substance can be obtained by actually conducting an enormous experiment. I don't know without it.
  • an aptamer having a binding ability with an enzyme used as a sensing element and having a high ability to inhibit or increase the activity of the bound enzyme must be created. Therefore, it is not easy to obtain an aptamer that can be used as an AES enzyme-controlled aptamer.
  • an object of the present invention is to provide a means capable of detecting a desired measurement object such as a disease marker easily, quickly and with high sensitivity without performing a B / F separation operation.
  • the inventors of the present application paid attention to luciferase as an enzyme applied to AES, and as a result of earnest research, obtained a new aptamer having binding ability to luciferase. Furthermore, an aptamer that can desirably inhibit the activity of luciferase was found out of the aptamers, and the present invention was completed.
  • the present invention provides an aptamer consisting of any of the following polynucleotides and having the ability to bind to luciferase: (a) a polynucleotide having the base sequence represented by any of SEQ ID NOs: 4 to 24, (b) a polynucleotide in which one or more than ten bases are substituted, deleted and / or inserted in the polynucleotide of (a), (c) A polynucleotide comprising the polynucleotide of (a) or (b).
  • the present invention has the ability to bind to luciferase, including a step of crossing and / or shuffling a plurality of aptamers, and a step of selecting an aptamer having the ability to bind to luciferase among the obtained aptamers.
  • this invention provides the manufacturing method of a luciferase binding aptamer including manufacturing the aptamer produced by this method.
  • the present invention provides for the first time a luciferase-binding aptamer that can also be used as an AES enzyme-controlled aptamer.
  • a very sensitive detection system using luminescence of luciferase can be constructed.
  • the enzymatic activity of luciferase can be easily measured by measuring the luminescence generated by the reaction with the substrate using a luminescence detector such as a commercially available luminometer, so that rapid detection is possible.
  • aptamers can be chemically synthesized using a DNA synthesizer, they require less labor and are less expensive than antibodies and can reduce the price of the measurement kit itself.
  • FIG. 2 is a secondary structure diagram of an aptamer Lap 1-6 having high ability to inhibit luciferase activity.
  • FIG. 3 is a secondary structure diagram of aptamer Lap 1-20 having high ability to inhibit luciferase activity.
  • Luciferase is a general term for enzymes that catalyze bioluminescence, such as fireflies, and is generally used as a reporter gene for gene expression assays and the like.
  • the luciferin / luciferase reaction can be roughly divided into two stages (T. Nakatsu, S Ichiyama, J Hiratake, A Saldanha, N Kobashi, K Sakata, H Kato: Structural basis for the spectral difference in luciferase bioluminescence. Nature. 2006 Mar 16; 440 (7082): 372-6)
  • the luminescent substrate luciferin reacts with ATP in the presence of Mg 2+ to produce a luciferyl AMP intermediate in luciferase.
  • the luciferyl AMP intermediate reacts with oxygen molecules and decomposes into excited oxyluciferin and CO 2 .
  • excited oxyluciferin bound to luciferase returns to the base low state, it emits light at 562 nm. Therefore, by measuring the amount of luminescence using a known luminescence detector such as a luminometer, the activity of luciferase can be measured using the amount of luminescence as an index.
  • a detection system using luciferase as a reporter in order to utilize this reaction, it is usually necessary to add luciferin as a substrate, ATP, and Mg.
  • a luminescence detector such as a luminometer is required. Note that assay systems themselves that use luciferase are already well known, and various reagents containing luciferase substrates that can be preferably used in such assay systems are commercially available.
  • the aptamer of the present invention has the ability to bind to luciferase and consists of any of the following polynucleotides (consists essentially of).
  • having a base sequence means that bases are arranged in the sequence in the polynucleotide.
  • a polynucleotide “having the base sequence shown in SEQ ID NO: 4” means that the polynucleotide Means that the base is composed of 66 bases arranged in the sequence shown in SEQ ID NO: 4.
  • the polynucleotide may be DNA or RNA, or may be an artificial nucleic acid such as PNA, but DNA is preferred from the viewpoint of stability.
  • the nucleotide sequences shown in SEQ ID NOs: 4 to 24 are the initial live sequences of SEQ ID NO: 1 in the binding ability evaluation by the aptamer blotting method among the ssDNA obtained by screening the ssDNA library (SEQ ID NO: 1) containing a 30-mer random region. This is a base sequence of ssDNA that has a higher binding ability to luciferase than rally (see Examples below).
  • the three-dimensional structure formed by these aptamers under predetermined conditions (folding conditions) can be easily determined by a conventional method using a computer.
  • Various programs for predicting the three-dimensional structure of nucleic acids are known. For example, m-fold (trade name, Nucleic® Acids® Res.
  • FIG. 3 and FIG. 4 show secondary structure prediction diagrams of aptamers having the base sequences shown in SEQ ID NOs: 5 and 9 by m-fold (trade name).
  • the “folding condition” is a condition in which a part of complementary regions of one molecule of aptamer forms a stem part consisting of a double strand by base pairing within the molecule. It is also a usage condition. Usually, it is in an aqueous buffer solution having a predetermined salt concentration at room temperature and optionally containing a surfactant.
  • TBS 10 mM Tris / HCl, pH 7.0, 100 mM NaCl
  • TBST TBS containing 0.05% v / v Tween 20
  • an aqueous solution containing 10 mM MOPS and 1 mM CaCl 2 an aqueous solution containing 10 mM MOPS and 1 mM CaCl 2
  • a buffer solution such as an aqueous solution containing 20 mM Tris-HCl and 150 mM NaCl can be used. After heat denaturation by heating to about 95 ° C. in these buffers, the solution gradually reaches room temperature (if the amount is about 100 ⁇ L). By cooling (over about 30 minutes), the aptamer molecule can be folded.
  • the term “folding” refers to the formation of a stem portion by pairing complementary bases within a molecule of one aptamer, as well as the split aptamer described later. In particular, it includes the formation of a desired three-dimensional structure by pairing complementary bases within and / or between a plurality of polynucleotide molecules constituting a split aptamer.
  • the binding ability of the aptamer of the present invention may be capable of binding to other proteins other than luciferase as long as it has the ability to bind to luciferase, but has high specificity and affinity for luciferase, and other proteins It is preferable that there is no binding, or if any, a relatively small amount of binding is possible (hereinafter, such binding ability may be expressed as “specifically bind”).
  • the specificity and affinity of the luciferase-binding aptamer can be evaluated by, for example, the aptamer blotting method described in the following examples.
  • luciferase and any other protein are immobilized on a support such as a nitrocellulose membrane by a conventional method, and the protein-immobilized support and aptamer such as TBS are immobilized.
  • a support such as a nitrocellulose membrane
  • aptamer such as TBS
  • the amount of aptamer molecule bound can be determined by, for example, aptamer molecules that have been labeled with biotin or FITC in advance, reacted with a protein-immobilized support, and then subjected to immunoassay using an antibody against the labeling substance in a conventional manner. The amount of binding can be examined.
  • Aptamers generally have the same aptamer activity (binding ability to a target molecule and, when the target molecule is an enzyme, an enzyme, as long as the positional relationship and size of the stem and loop portions are equal in the three-dimensional structure. Control ability). For example, even when a small number of bases are deleted from the terminal, the original aptamer activity can be maintained.
  • the base forming the stem part may have a base sequence in which the positions of the bases to be paired with each other are replaced with each other, or the base pair to be paired may be replaced with, for example, an at-t pair to a g-c pair.
  • the base forming the loop part other base sequences may be adopted as long as a loop of the same size is formed at that position.
  • the region is not important for aptamer binding ability, even if a small number of bases are inserted, the same aptamer activity as that of the original aptamer can usually be maintained. Therefore, in the polynucleotide (a), 1 to 10 or more (up to 19, preferably 1 or several (up to 9), more preferably 1 or 2) bases are as exemplified above. As long as the aptamer composed of the polynucleotide substituted, deleted and / or inserted (polynucleotide (b) above) also has the same aptamer activity as the aptamer having the original base sequence, the scope of the present invention Is included.
  • the luciferase-binding aptamer comprising the polynucleotide of (b), one to ten or more bases (preferably one or several (up to 9), more preferably, one or both ends of the polynucleotide of (a) Is preferably an aptamer comprising a deleted polynucleotide.
  • the activity of the original aptamer is often maintained even if a small number of bases at one or both ends of the aptamer are deleted.
  • Non-Patent Documents 2 to 4 when the substance to which the aptamer binds is a substance having an activity such as an enzyme, an aptamer that binds to the substance and inhibits the function of the substance can also be produced by this method.
  • the double-stranded part of the aptamer is changed to a double-stranded part composed of another base sequence (that is, the double-stranded part is maintained).
  • the base sequence can be changed without changing the three-dimensional structure of the aptamer, so that the binding activity of the aptamer can be maintained.
  • Such a polynucleotide is also included in the “polynucleotide with one or more than ten bases substituted, deleted and / or inserted” defined in (b) of the present invention.
  • the polynucleotide (c) is a polynucleotide containing the polynucleotide (a) or (b). This includes not only those containing the polynucleotide (a) or (b) as a continuous partial region, but also those containing a fragment obtained by dividing the polynucleotide (a) or (b) at any site as a partial region. Nucleotides are also included. When a fragmented fragment is included as a partial region, all fragments may be included as a partial region in one molecule of polynucleotide, or may be included separately in a plurality of polynucleotide molecules. Good.
  • the aptamer region can have the same aptamer activity as long as the positional relationship and size of the stem portion and the loop portion are equal in the aptamer region. Furthermore, as described in Patent Document 2, the aptamer is divided in a loop region that does not participate in the binding to the target molecule, and two complementary polynucleotide sequences are linked to the divided sites, respectively. Even if it is prepared, it is known that when it is used by being folded, aptamer activity similar to that of an aptamer consisting of one original molecule of polynucleotide can be exhibited.
  • the luciferase-binding aptamer of the present invention can be similarly divided into a loop region and used as a bimolecular aptamer.
  • the three-dimensional structure of a polynucleotide having a certain base sequence can be easily known by a conventional method using a known program, so which region becomes a loop region in a certain base sequence. Can know easily.
  • aptamers composed of the polynucleotide (c) are also included in the scope of the present invention, as are aptamers composed of the polynucleotides (a) and (b).
  • the polynucleotide (c) includes a polynucleotide having an arbitrary sequence added to one or both ends of the polynucleotide (a) or (b), and the polynucleotide (a) or (b) within the loop region. Two molecules of polynucleotide each containing a fragment fragmented in two is preferred. Among them, a polynucleotide in which an arbitrary sequence is added to one end or both ends of the polynucleotide (a) or (b) is more preferable.
  • the aptamer of the present invention when used as an enzyme-controlled aptamer of AES, two molecules of polynucleotide each containing the latter fragment are more preferable (described later).
  • the size of the sequence added to the polynucleotide (a) or (b) or a fragment thereof is not particularly limited. However, if the total length is too long, it takes time and cost for aptamer synthesis. Accordingly, the size of the additional sequence is generally 40 mer or less, preferably 10 mer or less, more preferably about 1 to 2 mer in total. The total length of the aptamer molecule is preferably about 100 mer or less.
  • the size of each molecule is preferably about 100 mer or less.
  • the additional sequence is another aptamer sequence, and the size is determined according to the chain length of the aptamer to be added.
  • the size of the aptamer molecule can be 100 mer or more depending on the chain length of the aptamer that recognizes the measurement target by AES.
  • Non-patent Document 5 a method of linking a plurality of aptamers to the same target molecule is known (Non-patent Document 5). Also in the luciferase-binding aptamer of the present invention, by linking two or three or more luciferase-binding aptamers (hereinafter sometimes referred to as “monomers”) comprising the polynucleotide of (a) or (b) above, The ability to bind to luciferase can be increased, and preferably the ability to control luciferase (described later) can also be enhanced.
  • Such a linked aptamer is also included in the scope of the present invention as an aptamer composed of the polynucleotide (c).
  • the size of the linked aptamer is determined according to the number of monomers to be linked, and can be 100 mer or larger.
  • luciferase is a monomeric protein
  • link monomers that bind to different sites on the luciferase protein.
  • the structure may be such that the monomers are directly linked, or may be linked via a linker consisting of, for example, only adenine or only thymine (preferably only thymine).
  • the chain length of the linker is not particularly limited, but is usually about 1 mer to 30 mer, particularly about 5 mer to 15 mer.
  • Xnt (X is a number) represents the Xth base from the 5 ′ end in the sequence.
  • “Mer” indicates the number of nucleotides.
  • the luciferase-binding aptamer of the present invention further has an ability to change the enzyme activity of the bound luciferase.
  • “change the enzyme activity” means that the enzyme activity of the luciferase to which the aptamer is bound is increased or decreased compared to the luciferase to which the aptamer is not bound, and is not particularly limited. Means that the enzyme activity decreases.
  • aptamers having the ability to control luciferase activity (hereinafter sometimes referred to as “luciferase-controlled aptamers”) can be preferably employed as enzyme-controlled aptamers in known AES.
  • Whether or not the aptamer has the ability to control luciferase activity is determined by, for example, mixing the aptamer with luciferase, luciferin as a substrate, and ATP and Mg necessary for the luciferase reaction, using a commercially available luminescence detector. It can be evaluated by measuring the amount of luminescence and examining how much the amount of luminescence has changed compared to the amount of luminescence when no aptamer is added.
  • the luciferase-binding aptamer obtained by screening a random ssDNA library has the ability to change luciferase activity.
  • aptamers having the base sequences shown in SEQ ID NOs: 5 and 9, respectively have a high ability to inhibit luciferase activity, and are particularly preferable as the luciferase-controlled aptamer of the present invention.
  • FIGS. 3 and 4 show secondary structure prediction diagrams based on m-fold (trade name) of aptamers having the base sequences shown in SEQ ID NOs: 5 and 9, respectively.
  • the aptamers of SEQ ID NOS: 5 and 9 Lap ⁇ ⁇ 1-6 and Lap91-20
  • stem loop structures of the same size exist in the region of 10nt to 20nt.
  • Exactly the same structure does not exist in other aptamers obtained in the following examples. Therefore, it is considered that the stem-loop structure having a 5-mer loop present at 10 nt to 20 nt is important for the high luciferase activity inhibiting ability of the aptamers of SEQ ID NOs: 5 and 9.
  • the aptamers of SEQ ID NOs: 5 and 9 are divided and used, it is preferable to divide at a loop site other than the loop part (13nt to 17nt loop part) existing in this region.
  • a loop site other than the loop part (13nt to 17nt loop part) existing in this region.
  • the aptamer Lap 1-6 of SEQ ID NO: 5 loops also exist in the region of 32 nt to 34 nt and the region of 49 nt to 53 nt, so that it is preferable to divide at any site in these regions.
  • the aptamer Lap 1-20 of SEQ ID NO: 9 since loops also exist in the 23nt to 26nt region and the 35nt to 39nt region, it is preferable to break at any site within these regions.
  • a method for constructing AES using a split aptamer is known as described in Patent Document 2. More specifically, for example, the luciferase-regulated aptamer of the present invention is divided into two at a loop site that is not important for aptamer activity, and an aptamer (recognition aptamer) for a desired measurement object at one fragmented site. Concatenate arrays. A complementary sequence of about half or less (or about 3 to 20 mer) of the total length of the recognition aptamer sequence is linked to the fragmentation site of the other fragment. It may be directly linked to the split site, or may be linked via a linker of about 1 mer to 10 mer consisting of only adenine or thymine, for example.
  • a so-called split AES as described in Patent Document 2 is prepared by mixing and folding two molecules of a polynucleotide having such a sequence, mixing this with luciferase, and binding the luciferase to a luciferase-regulated aptamer site. Can be built.
  • the recognition aptamer any aptamer that can specifically bind to a desired measurement object can be used. Examples of known aptamers include adenosine aptamers and IgE aptamers described in Patent Document 1 and Patent Document 2, for example.
  • the method for measuring (including detection, quantification, and semi-quantification) of a measurement target in a sample using AES employing the luciferase-controlled aptamer of the present invention can be performed as follows, for example. That is, AES that is folded and bound with luciferase is brought into contact with a specimen, luciferin serving as a luciferase substrate, and ATP and Mg necessary for the luciferase reaction are mixed, and the amount of luminescence is measured with a known luminescence detector. This amount of luminescence is compared with the amount of luminescence (control) when the substrate is reacted with AES alone that is not brought into contact with the specimen, and the amount of change in the amount of luminescence is examined.
  • the aptamers of SEQ ID NOs: 5 and 9 both have the effect of inhibiting luciferase
  • AES employing the aptamer as an enzyme control site reduces the luciferase inhibitory action of the aptamer due to the presence of the measurement object.
  • the luciferase activity is increased.
  • it is possible to measure the measurement object in the specimen by examining how much the light emission amount has increased from the light emission amount of the control. If a calibration curve is created using a solution having a known concentration of the measurement object, the measurement object can be quantified.
  • the luciferase-controlled aptamer has the ability to increase luciferase activity, naturally, in AES employing this as an enzyme-controlled aptamer, the activity of luciferase apparently decreases due to the presence of the measurement object.
  • Non-Patent Documents 2 to 4 by crossing or shuffling a plurality of aptamers capable of binding to a certain substance, it is possible to inhibit aptamers with higher binding ability or binding substances. It is known that aptamers that exhibit such functions can be created.
  • “intersection” and “shuffle” are to connect partial regions of different aptamer molecules, and are shuffled when the number of partial regions to be connected is large (although there is no particular rule, usually 3 or more).
  • an aptamer having the ability to inhibit luciferase can also be produced by selecting an aptamer that can inhibit the activity of luciferase. Once such an aptamer is obtained, such a desired aptamer can be produced by analyzing the base sequence and producing it by chemical synthesis using a DNA synthesizer or the like.
  • the aptamer of the present invention can be easily prepared by a conventional method using a commercially available nucleic acid synthesizer.
  • the AES polynucleotide adopting the aptamer of the present invention also adopts an aptamer whose sequence is specified as the recognition aptamer for the measurement target, and thus can be easily obtained by a conventional method using a commercially available nucleic acid synthesizer. Can be prepared.
  • the preferred use of the aptamer of the present invention is the use as a sensing element of a biosensor, specifically, the use for AES as described in Patent Documents 1 and 2.
  • the use of the aptamer of the present invention is not limited to this, and it can also be used for measurement of luciferase by a method known per se using the binding ability to luciferase.
  • Fluorescence scanner Typhoon 8600 quantitative software Image Quant (Amaersham Pharmacia Biotech), centrifuge, spectrophotometer UV-1200, UV-1600 (Shimadzu Corporation), high-speed shaker (EYELA), thermal cycler PC-700, PC-801-05 (Astech), ABI Prizm 3100 Genetic Analyzer (Applied Biosystem), Thermal cycler PC-700, PC-801-05 (Astech), Sequence Software (Genetics), Hybond-ECL Nitro Cellulose membrane (Amersham Biosciences), automatic fluorescence depolarizer (JASCO Corporation), BIAcore X (BIACORE), sensor chip SA (BIACORE), sensor chip CM5 (BIACORE), centrifuge, spectrophotometer UV-1200 , UV-1600 (Shimadzu Corporation), Thermal cycler PC-700, PC-801-05 (Astech), Fluorescence scanner Typhoon8600, Quantification software Image Quant (Amaersham Pharmacia Biotech)
  • a DNA library modified with FITC at the 5 ′ end was prepared to 1 nmol / 100 ⁇ L with TBS buffer, heated at 95 ° C. for 3 minutes, and then slowly cooled to 25 ° C. over 30 minutes to be folded.
  • This DNA library was prepared to a final concentration of 90 nM and incubated with the protein-immobilized membrane at room temperature for 1 hour. Then, repeat the operation of immersing the membrane in Binding buffer (TBST, 5 ml volume per 1 cm 2 of immobilized membrane) and gently washing it manually twice, and then wash with Binding buffer (TBST) for 10 minutes while stirring. Washing was performed twice for 5 minutes.
  • the same amount of 0.15 M NaOH was again added to the agarose and stirred for 10 minutes to elute ssDNA and collect the supernatant.
  • the supernatant containing ssDNA was neutralized with 2M HCl, and ssDNA was recovered by ethanol precipitation.
  • the obtained pellet was dissolved in 30 ⁇ l of TE buffer, and the absorbance at 260 nm was measured using a spectrophotometer to calculate the DNA concentration. All operations were performed at room temperature. The DNA obtained here was used as the library for the next round.
  • the base sequence of the insert fragment (that is, the DNA obtained by screening) was determined by the dideoxy method using a kit. In screening 1, 15 nucleotide sequences were obtained, and there was no overlap among them. In screening 2, 22 nucleotide sequences were obtained, of which two types of sequences were duplicated two by two. There was no nucleotide sequence overlap between Screens 1 and 2. That is, 35 types of base sequences were obtained by screening 1 and 2.
  • the secondary structure of the 66mer base sequence including the primer sequence was predicted using the secondary structure prediction program m-fold (trade name) for the 35 types of base sequences obtained as a result of the sequence analysis. As a result, 9 to 1 base sequences and 15 to 15 base sequences that were considered to have a stable secondary structure from the ⁇ G value and the Tm value were obtained. A total of 24 of these were evaluated for binding ability to luciferase by the aptamer blotting method. For aptamer blotting, a 66mer oligonucleotide whose 5 ′ end was modified with biotin or FITC was synthesized and used. Moreover, PQQGDH was used as a competitive protein as in the screening.
  • Luciferase (final concentration: 0.9 ⁇ M), each ssDNA (final concentration: 9 ⁇ M), Tris (10 ⁇ mM), NaCl (150 ⁇ mM), KCl (5 ⁇ mM) were mixed to make a total volume of 18 ⁇ L, and allowed to stand at room temperature for 10 minutes.
  • 75 ⁇ L of Picker Gene luminescent substrate (Toyo Benet) was added to 5 ⁇ L of this sample, allowed to stand for 1 minute, shaken for 10 seconds, and luminescence was measured for 1 second using a luminometer.
  • the luciferase activity control ability of each ssDNA was evaluated by relative evaluation of the luminescence amount of each ssDNA sample with the control luminescence amount being 100%.
  • the results are shown in Table 2 below.
  • the “ ⁇ spot intensity” in Table 2 is the result of digitizing the aptamer blotting spot shown in FIG. 1 using a fluorescence scanner Typhoon 8600 and quantitative software Image-Quant® (Amaersham-Pharmacia Biotech).
  • FIG. 3 and FIG. 4 show the secondary structure diagrams predicted by m-fold (trade name) for Lap 1-6 and Lap 1-20, which have a high ability to inhibit luciferase activity.
  • Lap 1-6 and Lap 1-20 which were confirmed to have a high ability to inhibit luciferase, the same stem-loop structure was present in the 10 nt to 20 nt region.
  • This stem-loop structure did not exist in any of the other aptamers obtained by the above screening, including other aptamers whose activity control ability was examined above (data not shown). Therefore, it is considered that this stem-loop structure existing at 10 nt to 20 nt is important for the high luciferase activity inhibiting ability of Lap 1-6 and Lap 1-20.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Disclosed is means for simply, promptly and sensitively detecting a disease marker without performing B/F separation. A novel aptamer molecule which has a specific nucleotide sequence and binds to luciferase, particularly, a novel aptamer molecule which binds to luciferase and also suppresses the enzymatic activity of luciferase is provided. For example, if an aptamer capable of suppressing luciferase activity is combined with another aptamer recognizing a desired target substance such as a disease marker, a detection system with very high sensitivity using luciferase luminescence can be constructed.

Description

ルシフェラーゼ結合性アプタマーLuciferase binding aptamer
 本発明は、ルシフェラーゼに結合するアプタマーに関する。 The present invention relates to an aptamer that binds to luciferase.
 様々な疾病の早期診断・早期治療を行う上で、疾病マーカーとなるタンパク質等の検出は極めて重要である。現在、最も一般的にこのような疾病マーカーを検出する技術として用いられているのが、抗体を利用したELISA(Enzyme Linked Immunosorbent Assay)である。ELISA法とは、サンプル中に含まれる微量の目的物質を、酵素標識した抗体または抗原を用い、抗原抗体反応を利用して定量的に検出する方法である。ELISA法は(1)目的物質を1 attomole(=10の18乗分の1モル)という高感度で検出することができ、定量性にも優れている、(2)抗原抗体反応を利用して検出するため粗抽出段階で測定が可能であり、試料の調製に関しては、他の検査法で必要とされる精製や前処理といった煩雑なステップを必要としない、(3)短時間で大量のサンプルを測定できる、などのメリットがある。 Detecting proteins that serve as disease markers is extremely important for early diagnosis and treatment of various diseases. Currently, the most commonly used technique for detecting such disease markers is ELISA (Enzyme Linked Immunosorbent Assay) using antibodies. The ELISA method is a method in which a trace amount of a target substance contained in a sample is quantitatively detected using an enzyme-labeled antibody or antigen and utilizing an antigen-antibody reaction. The ELISA method (1) can detect the target substance with a high sensitivity of 1 attomole (= 1 mol of 10 to the power of 18) and has excellent quantitative properties. (2) Utilizes antigen-antibody reaction. It can be measured in the crude extraction stage for detection, and sample preparation does not require complicated steps such as purification and pretreatment required by other inspection methods. (3) Large amount of sample in a short time There are advantages such as being able to measure.
 しかしながら、ELISAには次のような問題点がある。まず、一点目として、抗体は標的と結合した際に信号発信を行わないので、標的分子の異なる箇所に結合する二種類の抗体が必要となる点である。一つの標的分子の異なる箇所に結合する二種類の抗体を作製することは難しく、また抗体はそもそも作製に時間と労力がかかり、値段も高価である。二点目としては、一つの抗体に酵素などの分子を修飾することで信号発信を行うので、標的分子に結合しなかった抗体を除去する、煩雑なB/F分離の操作が必須な点である。 However, ELISA has the following problems. First, since the antibody does not emit a signal when bound to the target, two types of antibodies that bind to different portions of the target molecule are required. It is difficult to produce two types of antibodies that bind to different parts of a single target molecule, and antibodies are time-consuming and laborious to produce, and are expensive. Secondly, since a signal is transmitted by modifying a molecule such as an enzyme in one antibody, a complicated B / F separation operation that removes the antibody that has not bound to the target molecule is essential. is there.
 疾病を早期治療するためには、早期診断が必須であり、その為には採取した血液をその場で測定することが可能な簡便・迅速な検出システムが求められる。しかし、ELISAでは分離操作が必要であるため、その分時間がかかり、迅速な系とは言えない。 For early treatment of diseases, early diagnosis is essential, and for this purpose, a simple and rapid detection system capable of measuring collected blood on the spot is required. However, since ELISA requires a separation operation, it takes time and cannot be said to be a rapid system.
 一方、任意の分子と特異的に結合するオリゴヌクレオチドであるアプタマーが知られている。アプタマーは、市販の核酸合成機を用いて化学的に全合成できるので、特異抗体に比べてはるかに安価であり、修飾が容易であるため、センシング素子としての応用が期待されている。所望の標的分子と特異的に結合するアプタマーは、SELEX (Systematic Evolution of Ligands by EXponential Enrichment)と呼ばれる方法により作出可能である(非特許文献1)。この方法では、標的分子を担体に固定化し、これに膨大な種類のランダムな塩基配列を有する核酸から成る核酸ライブラリを添加し、標的分子に結合する核酸を回収し、これをPCRにより増幅して再び標的分子を固定化した担体に添加する。この工程を10回程度繰り返すことにより、標的分子に対して結合力の高いアプタマーを濃縮し、その塩基配列を決定して、標的分子を認識するアプタマーを取得する。なお、上記核酸ライブラリーは、核酸の自動化学合成装置により、ランダムにヌクレオチドを結合していくことにより容易に調製可能である。このように、ランダムな塩基配列を有する核酸ライブラリーを用いた、偶然を積極的に利用する方法により、任意の標的物質と特異的に結合するアプタマーを作出できる。 On the other hand, aptamers that are oligonucleotides that specifically bind to arbitrary molecules are known. Since aptamers can be chemically synthesized using a commercially available nucleic acid synthesizer, they are much cheaper than specific antibodies and can be easily modified. Therefore, aptamers are expected to be applied as sensing elements. Aptamers that specifically bind to a desired target molecule can be produced by a method called SELEX® (SystematicSystemEvolution of Ligands by EXponential Enrichment) (Non-patent Document 1). In this method, a target molecule is immobilized on a carrier, a nucleic acid library consisting of nucleic acids having a large number of random base sequences is added to the target molecule, nucleic acids that bind to the target molecule are recovered, and this is amplified by PCR. Again, the target molecule is added to the immobilized carrier. By repeating this step about 10 times, aptamers having high binding power to the target molecule are concentrated, the base sequence thereof is determined, and the aptamer that recognizes the target molecule is obtained. The nucleic acid library can be easily prepared by binding nucleotides at random using an automatic nucleic acid synthesizer. Thus, an aptamer that specifically binds to an arbitrary target substance can be produced by a method that actively uses chance by using a nucleic acid library having a random base sequence.
 本願発明者らは、B/F分離の操作が不要な疾病マーカー検出技術として、対象分子を認識する認識アプタマーと、酵素に結合してその酵素の活性に変化を及ぼす酵素制御アプタマーとを連結することで、アプタマーを酵素のサブユニットとして用いたセンシング技術であるAES(Aptameric Enzyme Subunit)を構築している(特許文献1、2)。検出原理は、測定対象の分子が存在した場合、その分子が認識アプタマーに結合することで、これに連結されている酵素制御アプタマーの構造に変化が生じ、その結果AES中に含まれる酵素の活性に変化が生じるので、その活性の変化を測定することにより対象分子を検出するというものである。この検出法の利点として、ELISAによる検出と異なり、標的分子の結合を直接、酵素活性のシグナルとして検出するため、B/F分離を必要としない、迅速で簡便な検出が可能である点が挙げられる。また、一度、酵素活性を阻害するアプタマーを獲得してしまえば、検出したい標的分子に結合するアプタマーを任意に選択し、様々な標的分子の検出が可能になる。さらに、アプタマーは抗体に比べ、作成が簡単で安価である。 As a disease marker detection technique that does not require a B / F separation operation, the inventors of the present application link a recognition aptamer that recognizes a target molecule and an enzyme-controlled aptamer that binds to an enzyme and changes the activity of the enzyme. Thus, AES (AptamerictaEnzyme Subunit), which is a sensing technique using aptamers as enzyme subunits, has been constructed (Patent Documents 1 and 2). The detection principle is that when the molecule to be measured is present, the molecule binds to the recognition aptamer, which causes a change in the structure of the enzyme-controlled aptamer linked to it, resulting in the activity of the enzyme contained in AES. Therefore, the target molecule is detected by measuring the change in its activity. The advantage of this detection method is that, unlike the detection by ELISA, the binding of the target molecule is detected directly as a signal of the enzyme activity, so that rapid and simple detection without requiring B / F separation is possible. It is done. In addition, once an aptamer that inhibits enzyme activity is acquired, an aptamer that binds to the target molecule to be detected can be arbitrarily selected to detect various target molecules. Furthermore, aptamers are easier to make and less expensive than antibodies.
 ただし、特許文献1及び2に記載のAESは、酵素制御アプタマーとしてトロンビンアプタマーを用いたものであって、標的分子をフィブリン凝固時間の変化により検出するものである。かかる検出方法は、測定に比較的時間がかかるため迅速性に欠けるという欠点がある。 However, AES described in Patent Documents 1 and 2 uses a thrombin aptamer as an enzyme-controlled aptamer, and detects a target molecule by a change in fibrin clotting time. Such a detection method has a drawback in that it takes a relatively long time for measurement and thus lacks rapidity.
 以上のように、安価で迅速な検出技術を提供するためには、AESにおいて酵素活性の測定を容易にすることが課題となっている。すなわち、活性の測定が容易な酵素を制御するアプタマーを創製することが課題となっている。 As described above, in order to provide an inexpensive and quick detection technique, it is a problem to facilitate measurement of enzyme activity in AES. That is, it has been a challenge to create an aptamer that controls an enzyme whose activity can be easily measured.
 しかしながら、アプタマーの創製方法は、上記した通り偶然を積極的に利用する方法であるので、標的物質に対して高い結合能を有するアプタマーが得られるかどうかは、実際に膨大な実験を行なってみなければわからない。特に、AESを構築する場合、酵素制御アプタマーとしては、センシング素子として利用する酵素との結合能を有し、かつ、結合した酵素の活性を阻害又は上昇させる能力が高いアプタマーを創製しなければならないため、AESの酵素制御アプタマーに利用し得るアプタマーを取得することは容易ではない。 However, since the aptamer creation method is a method that actively uses chance as described above, whether or not an aptamer having a high binding ability to a target substance can be obtained by actually conducting an enormous experiment. I don't know without it. In particular, when constructing AES, as an enzyme-controlled aptamer, an aptamer having a binding ability with an enzyme used as a sensing element and having a high ability to inhibit or increase the activity of the bound enzyme must be created. Therefore, it is not easy to obtain an aptamer that can be used as an AES enzyme-controlled aptamer.
国際公開WO2005/049826号公報International Publication WO2005 / 049826 国際公開WO2007/032359号公報International Publication WO2007 / 032359
 従って、本発明の目的は、B/F分離の操作をすることなく、疾病マーカー等の所望の測定対象物を簡便・迅速・高感度に検出し得る手段を提供することにある。 Therefore, an object of the present invention is to provide a means capable of detecting a desired measurement object such as a disease marker easily, quickly and with high sensitivity without performing a B / F separation operation.
 本願発明者らは、AESに適用する酵素としてルシフェラーゼに着目し、鋭意研究の結果、ルシフェラーゼへの結合能を有するアプタマーを新規に取得した。さらに、該アプタマーの中から、ルシフェラーゼの活性を望ましく阻害できるアプタマーを見出し、本願発明を完成した。 The inventors of the present application paid attention to luciferase as an enzyme applied to AES, and as a result of earnest research, obtained a new aptamer having binding ability to luciferase. Furthermore, an aptamer that can desirably inhibit the activity of luciferase was found out of the aptamers, and the present invention was completed.
 すなわち、本発明は、以下のいずれかのポリヌクレオチドから成り、ルシフェラーゼと結合する能力を有するアプタマーを提供する:
(a) 配列番号4ないし24のいずれかに示される塩基配列を有するポリヌクレオチド、
(b) (a)のポリヌクレオチドにおいて1個又は十数個の塩基が置換し、欠失し及び/又は挿入されたポリヌクレオチド、
(c) (a)又は(b)のポリヌクレオチドを含むポリヌクレオチド。
That is, the present invention provides an aptamer consisting of any of the following polynucleotides and having the ability to bind to luciferase:
(a) a polynucleotide having the base sequence represented by any of SEQ ID NOs: 4 to 24,
(b) a polynucleotide in which one or more than ten bases are substituted, deleted and / or inserted in the polynucleotide of (a),
(c) A polynucleotide comprising the polynucleotide of (a) or (b).
 また、本発明は、の複数のアプタマー同士を交差及び/又はシャッフルする工程と、得られたアプタマーのうち、ルシフェラーゼと結合する能力を有するアプタマーを選択する工程を含む、ルシフェラーゼと結合する能力を有するアプタマーの作出方法を提供する。さらに、本発明は、該方法により作出されたアプタマーを製造することを含む、ルシフェラーゼ結合性アプタマーの製造方法を提供する。 In addition, the present invention has the ability to bind to luciferase, including a step of crossing and / or shuffling a plurality of aptamers, and a step of selecting an aptamer having the ability to bind to luciferase among the obtained aptamers. Provide a method for producing aptamers. Furthermore, this invention provides the manufacturing method of a luciferase binding aptamer including manufacturing the aptamer produced by this method.
 本発明により、AESの酵素制御アプタマーとしても採用し得るルシフェラーゼ結合性アプタマーが初めて提供された。ルシフェラーゼ活性を制御できるアプタマーと、疾病マーカー等の所望の標的物質を認識する他のアプタマーとを組み合わせれば、ルシフェラーゼの発光を利用した非常に高感度な検出系を構築することができる。ルシフェラーゼの酵素活性は、基質との反応により生じる発光を市販のルミノメーター等の発光検出器を用いて測定することにより、容易に測定することができるので、迅速な検出が可能になる。アプタマーはDNA合成機を用いて化学的に合成することができるため、抗体に比べると作製に労力がかからず、費用も安価であり、測定キットそのものの価格を下げることができる。 The present invention provides for the first time a luciferase-binding aptamer that can also be used as an AES enzyme-controlled aptamer. By combining an aptamer that can control luciferase activity with another aptamer that recognizes a desired target substance such as a disease marker, a very sensitive detection system using luminescence of luciferase can be constructed. The enzymatic activity of luciferase can be easily measured by measuring the luminescence generated by the reaction with the substrate using a luminescence detector such as a commercially available luminometer, so that rapid detection is possible. Since aptamers can be chemically synthesized using a DNA synthesizer, they require less labor and are less expensive than antibodies and can reduce the price of the measurement kit itself.
スクリーニングにより取得したssDNAのうち、二次構造が安定していると考えられる24種類のssDNAについて、アプタマーブロッティングによりルシフェラーゼへの結合能を調べた結果を示す図である。It is a figure which shows the result of having investigated the binding ability to the luciferase by aptamer blotting about 24 types of ssDNA considered that the secondary structure is stabilized among ssDNA acquired by the screening. アプタマーLap 1-6の濃度を変えてルシフェラーゼ阻害効果を調べた結果を示す図である。It is a figure which shows the result of having investigated the luciferase inhibitory effect by changing the density | concentration of aptamer Lap 1-6. ルシフェラーゼ活性阻害能が高いアプタマーLap 1-6の二次構造図である。FIG. 2 is a secondary structure diagram of an aptamer Lap 1-6 having high ability to inhibit luciferase activity. ルシフェラーゼ活性阻害能が高いアプタマーLap 1-20の二次構造図である。FIG. 3 is a secondary structure diagram of aptamer Lap 1-20 having high ability to inhibit luciferase activity.
 ルシフェラーゼは、ホタルなどの生物発光を触媒する酵素の総称であり、遺伝子発現アッセイ等のレポーター遺伝子として一般的に用いられている。ルシフェリン/ルシフェラーゼ反応は大きく二段階に分けることができ(T. Nakatsu, S Ichiyama, J Hiratake, A Saldanha, N Kobashi, K Sakata, H Kato:  Structural basis for the spectral difference in luciferase bioluminescence. Nature. 2006 Mar 16;440(7082):372-6)、第一段階では、ルシフェラーゼの中で、発光基質ルシフェリンがMg2+存在下ATPと反応してルシフェリルAMP中間体が生成する。続く第二段階で、ルシフェリルAMP中間体と酸素分子が反応し、励起状態のオキシルシフェリンとCO2に分解する。ルシフェラーゼと結合した励起状態のオキシルシフェリンが基低状態に戻る時に562nmの光を発する。従って、公知のルミノメーター等の発光検出器を用いてこの発光量を測定することにより、該発光量を指標としてルシフェラーゼの活性を測定することができる。ルシフェラーゼをレポーターとして用いる検出系では、この反応を利用するため、通常、基質となるルシフェリン、およびATP、Mgの添加が必要となる。また、酵素活性は発光量を指標に測定するため、ルミノメーター等の発光検出器が必要である。なお、ルシフェラーゼを利用するアッセイ系自体は既に周知であり、そのようなアッセイ系に好ましく用いることができる、ルシフェラーゼ基質を含む試薬も、種々のものが市販されている。 Luciferase is a general term for enzymes that catalyze bioluminescence, such as fireflies, and is generally used as a reporter gene for gene expression assays and the like. The luciferin / luciferase reaction can be roughly divided into two stages (T. Nakatsu, S Ichiyama, J Hiratake, A Saldanha, N Kobashi, K Sakata, H Kato: Structural basis for the spectral difference in luciferase bioluminescence. Nature. 2006 Mar 16; 440 (7082): 372-6) In the first step, the luminescent substrate luciferin reacts with ATP in the presence of Mg 2+ to produce a luciferyl AMP intermediate in luciferase. In the subsequent second stage, the luciferyl AMP intermediate reacts with oxygen molecules and decomposes into excited oxyluciferin and CO 2 . When excited oxyluciferin bound to luciferase returns to the base low state, it emits light at 562 nm. Therefore, by measuring the amount of luminescence using a known luminescence detector such as a luminometer, the activity of luciferase can be measured using the amount of luminescence as an index. In a detection system using luciferase as a reporter, in order to utilize this reaction, it is usually necessary to add luciferin as a substrate, ATP, and Mg. In addition, since the enzyme activity is measured using the amount of luminescence as an index, a luminescence detector such as a luminometer is required. Note that assay systems themselves that use luciferase are already well known, and various reagents containing luciferase substrates that can be preferably used in such assay systems are commercially available.
 本発明のアプタマーは、ルシフェラーゼと結合する能力を有するものであり、下記いずれかのポリヌクレオチドから成る(consists essentially of)。
(a) 配列番号4ないし24のいずれかに示される塩基配列を有するポリヌクレオチド。
(b) (a)のポリヌクレオチドにおいて1個ないし十数個(最大19個)、好ましくは1個又は数個(最大9個)、さらに好ましくは1個又は2個の塩基が置換し、欠失し及び/又は挿入されたポリヌクレオチド。
(c) (a)又は(b)のポリヌクレオチドを含むポリヌクレオチド。
 なお、「塩基配列を有する」とは、そのポリヌクレオチドにおいて塩基がその配列で並んでいることを意味し、例えば、ポリヌクレオチドが「配列番号4に示す塩基配列を有する」とは、そのポリヌクレオチドにおいて、その塩基が、配列番号4に示される配列で並んでいる66個の塩基から構成されるという意味である。
The aptamer of the present invention has the ability to bind to luciferase and consists of any of the following polynucleotides (consists essentially of).
(a) A polynucleotide having the base sequence shown in any one of SEQ ID NOs: 4 to 24.
(b) In the polynucleotide of (a), 1 to a dozen (maximum 19), preferably 1 or several (maximum 9), more preferably 1 or 2 bases are substituted and missing. Lost and / or inserted polynucleotide.
(c) A polynucleotide comprising the polynucleotide of (a) or (b).
Note that “having a base sequence” means that bases are arranged in the sequence in the polynucleotide. For example, a polynucleotide “having the base sequence shown in SEQ ID NO: 4” means that the polynucleotide Means that the base is composed of 66 bases arranged in the sequence shown in SEQ ID NO: 4.
 ポリヌクレオチドは、DNAでもRNAでもよく、またPNA等の人工核酸でもよいが、安定性の観点からDNAが好ましい。 The polynucleotide may be DNA or RNA, or may be an artificial nucleic acid such as PNA, but DNA is preferred from the viewpoint of stability.
 配列番号4ないし24に示す塩基配列は、30merのランダム領域を含むssDNAライブラリー(配列番号1)のスクリーニングにより得られたssDNAのうち、アプタマーブロッティング法による結合能評価において、配列番号1のイニシャルライブラリーよりもルシフェラーゼへの結合能が高かったssDNAの塩基配列である(下記実施例参照)。これらのアプタマーが所定の条件下(フォールディング条件下)で形成する立体構造は、コンピューターを用いた常法により容易に決定することができる。核酸の立体構造予測に用いられるプログラムは種々のものが公知であり、例えば最近接塩基対法を用いた周知の核酸構造予測プログラムであるm-fold(商品名、Nucleic Acids Res. 31 (13), 3406-15, (2003)、The Bioinformatics Center at Rensselaer and Wadsworth のウェブサイトからダウンロード可能)を利用することができるが、これに限定されない。図3及び図4に、配列番号5及び9に示す塩基配列を有するアプタマーのm-fold(商品名)による二次構造予測図を示す。 The nucleotide sequences shown in SEQ ID NOs: 4 to 24 are the initial live sequences of SEQ ID NO: 1 in the binding ability evaluation by the aptamer blotting method among the ssDNA obtained by screening the ssDNA library (SEQ ID NO: 1) containing a 30-mer random region. This is a base sequence of ssDNA that has a higher binding ability to luciferase than rally (see Examples below). The three-dimensional structure formed by these aptamers under predetermined conditions (folding conditions) can be easily determined by a conventional method using a computer. Various programs for predicting the three-dimensional structure of nucleic acids are known. For example, m-fold (trade name, Nucleic® Acids® Res. 31 (13), which is a well-known nucleic acid structure prediction program using the closest base pair method. 3406-15, (2003), The Bioinformatics Center at Rensselaer and Wadsworth can be downloaded), but is not limited thereto. FIG. 3 and FIG. 4 show secondary structure prediction diagrams of aptamers having the base sequences shown in SEQ ID NOs: 5 and 9 by m-fold (trade name).
 なお、「フォールディング条件」とは、1分子のアプタマーの一部の相補的な領域同士が分子内で塩基対合して二本鎖から成るステム部を形成する条件であり、公知の通常のアプタマーの使用条件でもある。通常、室温下で、所定の塩濃度を有し、所望により界面活性剤を含む水系緩衝液中である。例えば、下記実施例で採用したTBS(10 mM Tris/HCl, pH 7.0, 100 mM NaCl)やTBST(0.05% v/v Tween 20を含むTBS)の他、10mM MOPS及び1mM CaCl2を含む水溶液、20mM Tris-HCl及び150mM NaClを含む水溶液などの緩衝液を用いることができ、これらの緩衝液中で95℃程度に加熱して熱変性した後、室温まで徐々に(100μL程度の量であれば30分間程度かけて)冷却することにより、アプタマー分子のフォールディングを行なうことができる。なお、本明細書において、「フォールディングする」という語は、1分子のアプタマーの分子内において相補的な塩基同士を対合させることによりステム部を形成させるという意味の他、後述する分割アプタマーにあっては、分割アプタマーを構成する複数のポリヌクレオチド分子の分子内及び/又は分子間において、相補的な塩基同士を対合させることにより、所期の立体構造を形成させることも包含する。 The “folding condition” is a condition in which a part of complementary regions of one molecule of aptamer forms a stem part consisting of a double strand by base pairing within the molecule. It is also a usage condition. Usually, it is in an aqueous buffer solution having a predetermined salt concentration at room temperature and optionally containing a surfactant. For example, in addition to TBS (10 mM Tris / HCl, pH 7.0, 100 mM NaCl) and TBST (TBS containing 0.05% v / v Tween 20) employed in the following examples, an aqueous solution containing 10 mM MOPS and 1 mM CaCl 2 , A buffer solution such as an aqueous solution containing 20 mM Tris-HCl and 150 mM NaCl can be used. After heat denaturation by heating to about 95 ° C. in these buffers, the solution gradually reaches room temperature (if the amount is about 100 μL). By cooling (over about 30 minutes), the aptamer molecule can be folded. In this specification, the term “folding” refers to the formation of a stem portion by pairing complementary bases within a molecule of one aptamer, as well as the split aptamer described later. In particular, it includes the formation of a desired three-dimensional structure by pairing complementary bases within and / or between a plurality of polynucleotide molecules constituting a split aptamer.
 本発明のアプタマーの結合能は、ルシフェラーゼへの結合能がある限り、ルシフェラーゼ以外の他のタンパク質にも結合し得るものであってよいが、ルシフェラーゼへの特異性及び親和性が高く、他のタンパク質への結合が全くないか、あるとしても相対的に無視できるほど少量しか結合しないことが好ましい(以下、このような結合能を「特異的に結合する」と表現することがある)。ルシフェラーゼ結合性アプタマーの特異性及び親和性は、例えば下記実施例に記載されるアプタマーブロッティング法により評価することができる。具体的には、例えば、ルシフェラーゼと、それ以外の任意のタンパク質(競合タンパク質)とを、ニトロセルロース膜等の支持体に常法により固定化し、このタンパク質固定化支持体とアプタマーとをTBS等の適当な緩衝液中で反応させ、ルシフェラーゼと競合タンパク質とのそれぞれにどの程度のアプタマー分子が結合しているかを調べることにより、アプタマーのルシフェラーゼに対する特異性及び親和性を評価することができる。アプタマー分子の結合量は、例えば、アプタマー分子を予めビオチンやFITC等で標識しておき、タンパク質固定化支持体との反応後、該標識物質に対する抗体を用いた常法による免疫測定法により、アプタマー結合量を調べることができる。 The binding ability of the aptamer of the present invention may be capable of binding to other proteins other than luciferase as long as it has the ability to bind to luciferase, but has high specificity and affinity for luciferase, and other proteins It is preferable that there is no binding, or if any, a relatively small amount of binding is possible (hereinafter, such binding ability may be expressed as “specifically bind”). The specificity and affinity of the luciferase-binding aptamer can be evaluated by, for example, the aptamer blotting method described in the following examples. Specifically, for example, luciferase and any other protein (competitive protein) are immobilized on a support such as a nitrocellulose membrane by a conventional method, and the protein-immobilized support and aptamer such as TBS are immobilized. By reacting in an appropriate buffer and examining how many aptamer molecules are bound to each of luciferase and the competitor protein, the specificity and affinity of the aptamer for luciferase can be evaluated. The amount of aptamer molecule bound can be determined by, for example, aptamer molecules that have been labeled with biotin or FITC in advance, reacted with a protein-immobilized support, and then subjected to immunoassay using an antibody against the labeling substance in a conventional manner. The amount of binding can be examined.
 アプタマーは、その立体構造において、ステム部及びループ部の位置関係及びサイズが等しいものであれば、通常、同様のアプタマー活性(標的分子に対する結合能、及び、標的分子が酵素である場合には酵素制御能)を発揮し得る。例えば、末端から少数の塩基を欠失させても、もとのアプタマー活性を維持し得る。ステム部を形成する塩基については、対合する塩基の位置を相互に入れ替えた塩基配列としてもよいし、また、対合する塩基対を例えばa-t対からg-c対に置き換えてもよい。また、ループ部を形成する塩基については、その位置に同じサイズのループが形成される限り、他の塩基配列を採用してもよい。また、アプタマーの結合能に重要ではない領域であれば、少数の塩基を挿入しても、通常、もとのアプタマーと同様のアプタマー活性を維持し得る。従って、上記(a)のポリヌクレオチドにおいて、1ないし十数個(最大19個、好ましくは1個又は数個(最大9個)、さらに好ましくは1又は2個)の塩基が上記に例示したように置換し、欠失し及び/又は挿入されたポリヌクレオチド(上記(b)のポリヌクレオチド)から成るアプタマーも、もとの塩基配列を有するアプタマーと同様のアプタマー活性を有する限り、本発明の範囲に包含される。 Aptamers generally have the same aptamer activity (binding ability to a target molecule and, when the target molecule is an enzyme, an enzyme, as long as the positional relationship and size of the stem and loop portions are equal in the three-dimensional structure. Control ability). For example, even when a small number of bases are deleted from the terminal, the original aptamer activity can be maintained. The base forming the stem part may have a base sequence in which the positions of the bases to be paired with each other are replaced with each other, or the base pair to be paired may be replaced with, for example, an at-t pair to a g-c pair. As for the base forming the loop part, other base sequences may be adopted as long as a loop of the same size is formed at that position. In addition, if the region is not important for aptamer binding ability, even if a small number of bases are inserted, the same aptamer activity as that of the original aptamer can usually be maintained. Therefore, in the polynucleotide (a), 1 to 10 or more (up to 19, preferably 1 or several (up to 9), more preferably 1 or 2) bases are as exemplified above. As long as the aptamer composed of the polynucleotide substituted, deleted and / or inserted (polynucleotide (b) above) also has the same aptamer activity as the aptamer having the original base sequence, the scope of the present invention Is included.
 (b)のポリヌクレオチドからなるルシフェラーゼ結合性アプタマーとしては、(a)のポリヌクレオチドの一端又は両端の塩基が1個ないし十数個(好ましくは1個又は数個(最大9個)、さらに好ましくは1個又は2個)欠失したポリヌクレオチドからなるアプタマーが好ましい。一般にアプタマーの一端又は両端の塩基が少数欠失しても元のアプタマーの活性が維持される場合が多い。 As the luciferase-binding aptamer comprising the polynucleotide of (b), one to ten or more bases (preferably one or several (up to 9), more preferably, one or both ends of the polynucleotide of (a) Is preferably an aptamer comprising a deleted polynucleotide. In general, the activity of the original aptamer is often maintained even if a small number of bases at one or both ends of the aptamer are deleted.
 また、本願発明者らは、ある物質に結合するアプタマーの一部の領域をランダム化し、物質との結合性を指標としてスクリーニングすることにより、元のアプタマーよりも該物質との結合性を高める方法を発明している(非特許文献2~4)。また、アプタマーが結合する物質が酵素等の活性を有する物質である場合には、該物質に結合するとともに該物質の機能を阻害するアプタマーもこの方法により作出することが可能である。従って、(a)のアプタマー内の一部の領域、好ましくは6個~十数個(最大19個)の領域の配列をランダム化して物質との結合能や阻害能を指標としてスクリーニングすることにより、もとのアプタマーよりも結合能又は阻害能に優れたアプタマーを作出することが可能である。特に、非特許文献2~4に具体的に記載されている通り、アプタマーの二本鎖部分を、他の塩基配列で構成される二本鎖(すなわち、二本鎖部分が維持されるように、それぞれ対合する他の塩基対によりその二本鎖領域を形成する)とすることにより、アプタマーの立体構造を変化させることなく、塩基配列を変更することができるので、アプタマーの結合活性を維持したままさらに高い結合能を有していたり阻害能を有するアプタマーが得られる確率が高い。本発明の上記(b)に規定される「1個又は十数個の塩基が置換し、欠失し及び/又は挿入されたポリヌクレオチド」にはこのようなポリヌクレオチドも包含される。 Further, the inventors of the present application randomize a partial region of an aptamer that binds to a certain substance, and perform screening using the binding property to the substance as an index, thereby increasing the binding ability to the substance compared to the original aptamer. (Non-Patent Documents 2 to 4). In addition, when the substance to which the aptamer binds is a substance having an activity such as an enzyme, an aptamer that binds to the substance and inhibits the function of the substance can also be produced by this method. Therefore, by randomizing the sequence of a part of the aptamer of (a), preferably 6 to a dozen (maximum 19), and screening with the ability to bind to or inhibit the substance as an indicator It is possible to produce an aptamer that is superior in binding ability or inhibition ability than the original aptamer. In particular, as specifically described in Non-Patent Documents 2 to 4, the double-stranded part of the aptamer is changed to a double-stranded part composed of another base sequence (that is, the double-stranded part is maintained). The base sequence can be changed without changing the three-dimensional structure of the aptamer, so that the binding activity of the aptamer can be maintained. In addition, there is a high probability that an aptamer having higher binding ability or inhibition ability will be obtained. Such a polynucleotide is also included in the “polynucleotide with one or more than ten bases substituted, deleted and / or inserted” defined in (b) of the present invention.
 上記(c)のポリヌクレオチドは、(a)又は(b)のポリヌクレオチドを含むポリヌクレオチドである。これには、(a)又は(b)のポリヌクレオチドを連続した部分領域として含むもののみならず、(a)又は(b)のポリヌクレオチドを任意の部位で分断した断片を部分領域として含むポリヌクレオチドも包含される。分断した断片を部分領域として含む場合には、1分子のポリヌクレオチド中に全ての断片が部分領域として含まれていてもよいし、また、複数のポリヌクレオチド分子中に分かれて含まれていてもよい。アプタマーの一端又は両端に任意の塩基配列を付加させても、アプタマー領域においてステム部及びループ部の位置関係及びサイズが等しい限り、同様のアプタマー活性を有し得る。さらに、特許文献2に記載されるように、アプタマーをその標的分子との結合に関与しないループ領域内で分断し、その分断部位に互いに相補な塩基配列をそれぞれ連結させて2分子のポリヌクレオチドを調製しても、これをフォールディングさせて用いると、もとの1分子のポリヌクレオチドから成るアプタマーと同様のアプタマー活性を発揮できることが知られている。従って、本発明のルシフェラーゼ結合性アプタマーも同様に、ループ領域内で分断して、2分子性のアプタマーとして用いることが可能である。なお、上述した通り、ある塩基配列を有するポリヌクレオチドがとる立体構造は、公知のプログラムを用いて常法により容易に知ることができるので、ある塩基配列中でいずれの領域がループ領域となるかは容易に知ることができる。従って、上記(c)のポリヌクレオチドから成るアプタマーも、(a)及び(b)のポリヌクレオチドから成るアプタマーと同様に、本発明の範囲に包含される。 The polynucleotide (c) is a polynucleotide containing the polynucleotide (a) or (b). This includes not only those containing the polynucleotide (a) or (b) as a continuous partial region, but also those containing a fragment obtained by dividing the polynucleotide (a) or (b) at any site as a partial region. Nucleotides are also included. When a fragmented fragment is included as a partial region, all fragments may be included as a partial region in one molecule of polynucleotide, or may be included separately in a plurality of polynucleotide molecules. Good. Even if an arbitrary base sequence is added to one end or both ends of the aptamer, the aptamer region can have the same aptamer activity as long as the positional relationship and size of the stem portion and the loop portion are equal in the aptamer region. Furthermore, as described in Patent Document 2, the aptamer is divided in a loop region that does not participate in the binding to the target molecule, and two complementary polynucleotide sequences are linked to the divided sites, respectively. Even if it is prepared, it is known that when it is used by being folded, aptamer activity similar to that of an aptamer consisting of one original molecule of polynucleotide can be exhibited. Therefore, the luciferase-binding aptamer of the present invention can be similarly divided into a loop region and used as a bimolecular aptamer. As described above, the three-dimensional structure of a polynucleotide having a certain base sequence can be easily known by a conventional method using a known program, so which region becomes a loop region in a certain base sequence. Can know easily. Accordingly, aptamers composed of the polynucleotide (c) are also included in the scope of the present invention, as are aptamers composed of the polynucleotides (a) and (b).
 (c)のポリヌクレオチドとしては、(a)又は(b)のポリヌクレオチドの一端又は両端に任意の配列が付加されたポリヌクレオチド、及び(a)又は(b)のポリヌクレオチドをループ領域内で2つに分断した断片をそれぞれ含む2分子のポリヌクレオチドが好ましい。中でも、(a)又は(b)のポリヌクレオチドの一端又は両端に任意の配列が付加されたポリヌクレオチドがより好ましい。ただし、本発明のアプタマーをAESの酵素制御アプタマーとして用いる場合には、後者の分断断片をそれぞれ含む2分子のポリヌクレオチドがより好ましい(後述)。(a)若しくは(b)のポリヌクレオチド又はその断片に付加する配列のサイズは、特に限定されないが、全長があまりに長くなるとアプタマー合成の手間とコストがかかる。従って、付加配列のサイズは、通常、合計で40mer以下、好ましくは10mer以下、より好ましくは1~2mer程度である。アプタマー分子全長のサイズとしては、100mer程度以下であることが好ましい。ルシフェラーゼ結合性アプタマーを分割して複数分子のポリヌクレオチドから成るアプタマーを作成する場合には、各分子のサイズが100mer程度以下であることが好ましい。ただし、付加配列が他のアプタマー配列である場合にはこの限りではなく、付加されるアプタマーの鎖長に応じてサイズが定まる。例えば、本発明のルシフェラーゼ結合性アプタマーを用いてAESを構築する場合には、アプタマー分子のサイズは、AESによる測定対象物を認識するアプタマーの鎖長に応じて100mer以上にもなり得る。 The polynucleotide (c) includes a polynucleotide having an arbitrary sequence added to one or both ends of the polynucleotide (a) or (b), and the polynucleotide (a) or (b) within the loop region. Two molecules of polynucleotide each containing a fragment fragmented in two is preferred. Among them, a polynucleotide in which an arbitrary sequence is added to one end or both ends of the polynucleotide (a) or (b) is more preferable. However, when the aptamer of the present invention is used as an enzyme-controlled aptamer of AES, two molecules of polynucleotide each containing the latter fragment are more preferable (described later). The size of the sequence added to the polynucleotide (a) or (b) or a fragment thereof is not particularly limited. However, if the total length is too long, it takes time and cost for aptamer synthesis. Accordingly, the size of the additional sequence is generally 40 mer or less, preferably 10 mer or less, more preferably about 1 to 2 mer in total. The total length of the aptamer molecule is preferably about 100 mer or less. When an aptamer composed of a plurality of molecules of polynucleotide is prepared by dividing a luciferase-binding aptamer, the size of each molecule is preferably about 100 mer or less. However, this is not the case when the additional sequence is another aptamer sequence, and the size is determined according to the chain length of the aptamer to be added. For example, when constructing AES using the luciferase-binding aptamer of the present invention, the size of the aptamer molecule can be 100 mer or more depending on the chain length of the aptamer that recognizes the measurement target by AES.
 また、例えば、アプタマーの結合能を上昇させる手法として、同一の標的分子に対するアプタマーを複数連結する方法が公知である(非特許文献5)。本発明のルシフェラーゼ結合性アプタマーにおいても、上記(a)又は(b)のポリヌクレオチドから成るルシフェラーゼ結合性アプタマー(以下、「モノマー」ということがある)を2個又は3個以上連結することで、ルシフェラーゼへの結合能を上昇させ、好ましくはルシフェラーゼ制御能(後述)も強化することができる。このような連結アプタマーも、上記(c)のポリヌクレオチドから成るアプタマーとして本発明の範囲に包含される。連結アプタマーのサイズは、連結するモノマーの個数に応じて定まり、100mer以上のサイズにもなり得る。 For example, as a technique for increasing the binding ability of aptamers, a method of linking a plurality of aptamers to the same target molecule is known (Non-patent Document 5). Also in the luciferase-binding aptamer of the present invention, by linking two or three or more luciferase-binding aptamers (hereinafter sometimes referred to as “monomers”) comprising the polynucleotide of (a) or (b) above, The ability to bind to luciferase can be increased, and preferably the ability to control luciferase (described later) can also be enhanced. Such a linked aptamer is also included in the scope of the present invention as an aptamer composed of the polynucleotide (c). The size of the linked aptamer is determined according to the number of monomers to be linked, and can be 100 mer or larger.
 ルシフェラーゼは単量体タンパク質なので、連結アプタマーを調製する場合には、ルシフェラーゼタンパク質上の異なる部位に結合するモノマー同士を連結することが好ましい。モノマー同士を直接連結した構造にしてもよいし、所望により例えばアデニンのみ又はチミンのみ(好ましくはチミンのみ)から成るリンカーを介して連結させてもよい。リンカーの鎖長は特に限定されないが、通常は1mer~30mer程度、特には5mer~15mer程度である。 Since luciferase is a monomeric protein, when preparing a linked aptamer, it is preferable to link monomers that bind to different sites on the luciferase protein. The structure may be such that the monomers are directly linked, or may be linked via a linker consisting of, for example, only adenine or only thymine (preferably only thymine). The chain length of the linker is not particularly limited, but is usually about 1 mer to 30 mer, particularly about 5 mer to 15 mer.
 なお、本発明において、「Xnt」(Xは数字)は、その配列における、5'末端からX番目の塩基を示す。また、「mer」はヌクレオチド数を示す。 In the present invention, “Xnt” (X is a number) represents the Xth base from the 5 ′ end in the sequence. “Mer” indicates the number of nucleotides.
 好ましくは、本発明のルシフェラーゼ結合性アプタマーは、結合したルシフェラーゼの酵素活性を変化させる能力をさらに有する。ここで、「酵素活性を変化させる」とは、アプタマーが結合したルシフェラーゼの酵素活性が、アプタマーが結合していない状態のルシフェラーゼと比較して上昇又は低下することを言い、特に限定されないが、通常は酵素活性が低下することを言う。このようなルシフェラーゼ活性制御能を有するアプタマー(以下、「ルシフェラーゼ制御アプタマー」ということがある)は、公知のAESにおける酵素制御アプタマーとして好ましく採用することができる。アプタマーがルシフェラーゼ活性制御能を有するか否かは、例えば、アプタマーをルシフェラーゼ、基質となるルシフェリン、並びに、ルシフェラーゼ反応に必要なATP及びMgと混合して、市販の発光検出器を用いて常法により発光量を測定し、アプタマー非添加の場合の発光量と比較してどの程度変化したかを調べることにより評価することができる。 Preferably, the luciferase-binding aptamer of the present invention further has an ability to change the enzyme activity of the bound luciferase. Here, “change the enzyme activity” means that the enzyme activity of the luciferase to which the aptamer is bound is increased or decreased compared to the luciferase to which the aptamer is not bound, and is not particularly limited. Means that the enzyme activity decreases. Such aptamers having the ability to control luciferase activity (hereinafter sometimes referred to as “luciferase-controlled aptamers”) can be preferably employed as enzyme-controlled aptamers in known AES. Whether or not the aptamer has the ability to control luciferase activity is determined by, for example, mixing the aptamer with luciferase, luciferin as a substrate, and ATP and Mg necessary for the luciferase reaction, using a commercially available luminescence detector. It can be evaluated by measuring the amount of luminescence and examining how much the amount of luminescence has changed compared to the amount of luminescence when no aptamer is added.
 下記実施例に記載される通り、ランダムssDNAライブラリーのスクリーニングにより得られたルシフェラーゼ結合性アプタマーは、ルシフェラーゼ活性を変化させる能力を有する。特に、配列番号5及び9にそれぞれ示される塩基配列を有するアプタマーは、ルシフェラーゼ活性を阻害する能力が高く、本発明のルシフェラーゼ制御アプタマーとして特に好ましい。 As described in the Examples below, the luciferase-binding aptamer obtained by screening a random ssDNA library has the ability to change luciferase activity. In particular, aptamers having the base sequences shown in SEQ ID NOs: 5 and 9, respectively, have a high ability to inhibit luciferase activity, and are particularly preferable as the luciferase-controlled aptamer of the present invention.
 配列番号5及び9にそれぞれ示される塩基配列を有するアプタマーのm-fold(商品名)による二次構造予測図を図3及び図4に示す。ルシフェラーゼ阻害能が特に高い配列番号5及び9のアプタマー(Lap 1-6及びLap 1-20)では、10nt~20ntの領域に同一サイズのステムループ構造が存在しているが、このステムループ構造と全く同一の構造は下記実施例で取得された他のアプタマーには存在しない。従って、配列番号5及び9のアプタマーが有する高いルシフェラーゼ活性阻害能には、この10nt~20ntに存在する、5merのループを有するステムループ構造が重要であると考えられる。そのため、配列番号5及び9のアプタマーを分割して用いる場合には、この領域に存在するループ部(13nt~17ntのループ部)以外のループ部位で分断することが好ましい。例えば、配列番号5のアプタマーLap 1-6であれば、32nt~34ntの領域と49nt~53ntの領域にもループが存在するので、これらの領域内のいずれかの部位で分断することが好ましい。また、配列番号9のアプタマーLap 1-20であれば、23nt~26ntの領域と35nt~39ntの領域にもループが存在するので、これらの領域内のいずれかの部位で分断することが好ましい。 FIGS. 3 and 4 show secondary structure prediction diagrams based on m-fold (trade name) of aptamers having the base sequences shown in SEQ ID NOs: 5 and 9, respectively. In the aptamers of SEQ ID NOS: 5 and 9 (Lap 高 い 1-6 and Lap91-20) with particularly high luciferase inhibitory ability, stem loop structures of the same size exist in the region of 10nt to 20nt. Exactly the same structure does not exist in other aptamers obtained in the following examples. Therefore, it is considered that the stem-loop structure having a 5-mer loop present at 10 nt to 20 nt is important for the high luciferase activity inhibiting ability of the aptamers of SEQ ID NOs: 5 and 9. Therefore, when the aptamers of SEQ ID NOs: 5 and 9 are divided and used, it is preferable to divide at a loop site other than the loop part (13nt to 17nt loop part) existing in this region. For example, in the case of the aptamer Lap 1-6 of SEQ ID NO: 5, loops also exist in the region of 32 nt to 34 nt and the region of 49 nt to 53 nt, so that it is preferable to divide at any site in these regions. Further, in the case of the aptamer Lap 1-20 of SEQ ID NO: 9, since loops also exist in the 23nt to 26nt region and the 35nt to 39nt region, it is preferable to break at any site within these regions.
 分割アプタマーを用いてAESを構築する方法は、特許文献2に記載されるように公知である。具体的に説明すると、例えば、本発明のルシフェラーゼ制御アプタマーを、アプタマー活性に重要ではないループ部位で2つに分断し、一方の断片の分断部位に、所望の測定対象物に対するアプタマー(認識アプタマー)配列を連結する。他方の断片の分断部位には、認識アプタマー配列の全長の半分以下程度(あるいは3mer~20mer程度)の相補配列を連結する。分断部位に直接連結してもよいし、例えばアデニンのみ又はチミンのみから成る1mer~10mer程度のリンカーを介して連結してもよい。このような配列から成る2分子のポリヌクレオチドを混合してフォールディングさせ、これとルシフェラーゼとを混合してルシフェラーゼ制御アプタマー部位にルシフェラーゼを結合させることにより、特許文献2に記載されるようないわゆる分割AESを構築することができる。なお、認識アプタマーとしては、所望の測定対象物に特異的に結合できるいかなるアプタマーをも用いることができる。公知のアプタマーの例を挙げると、例えば特許文献1及び特許文献2に記載されるアデノシンアプタマー、IgEアプタマー等がある。 A method for constructing AES using a split aptamer is known as described in Patent Document 2. More specifically, for example, the luciferase-regulated aptamer of the present invention is divided into two at a loop site that is not important for aptamer activity, and an aptamer (recognition aptamer) for a desired measurement object at one fragmented site. Concatenate arrays. A complementary sequence of about half or less (or about 3 to 20 mer) of the total length of the recognition aptamer sequence is linked to the fragmentation site of the other fragment. It may be directly linked to the split site, or may be linked via a linker of about 1 mer to 10 mer consisting of only adenine or thymine, for example. A so-called split AES as described in Patent Document 2 is prepared by mixing and folding two molecules of a polynucleotide having such a sequence, mixing this with luciferase, and binding the luciferase to a luciferase-regulated aptamer site. Can be built. As the recognition aptamer, any aptamer that can specifically bind to a desired measurement object can be used. Examples of known aptamers include adenosine aptamers and IgE aptamers described in Patent Document 1 and Patent Document 2, for example.
 本発明のルシフェラーゼ制御アプタマーを採用したAESを用いて、検体中の測定対象物を測定(検出、定量及び半定量を含む)する方法は、例えば以下のようにして行なうことができる。すなわち、フォールディングさせルシフェラーゼを結合させたAESを検体と接触させ、ルシフェラーゼの基質となるルシフェリン、及びルシフェラーゼ反応に必要なATP、Mgを混合し、公知の発光検出器で発光量を測定する。この発光量を、検体と接触させないAES単体で基質と反応させた際の発光量(コントロール)と比較し、発光量の変化量を調べる。例えば、配列番号5及び9のアプタマーは、いずれもルシフェラーゼを阻害する作用があるため、該アプタマーを酵素制御部位に採用したAESは、測定対象物の存在により、該アプタマーのルシフェラーゼ阻害作用が低下し、見かけ上ルシフェラーゼ活性が上昇することになる。この場合、コントロールの発光量からどの程度発光量が増大したかを調べることで、検体中の測定対象物を測定することができる。測定対象物の濃度が既知の溶液を用いて検量線を作成すれば、測定対象物の定量も可能である。なお、ルシフェラーゼ制御アプタマーがルシフェラーゼ活性上昇能を有する場合には、これを酵素制御アプタマーとして採用したAESでは、当然ながら、測定対象物の存在により見かけ上ルシフェラーゼの活性が低下することになる。 The method for measuring (including detection, quantification, and semi-quantification) of a measurement target in a sample using AES employing the luciferase-controlled aptamer of the present invention can be performed as follows, for example. That is, AES that is folded and bound with luciferase is brought into contact with a specimen, luciferin serving as a luciferase substrate, and ATP and Mg necessary for the luciferase reaction are mixed, and the amount of luminescence is measured with a known luminescence detector. This amount of luminescence is compared with the amount of luminescence (control) when the substrate is reacted with AES alone that is not brought into contact with the specimen, and the amount of change in the amount of luminescence is examined. For example, since the aptamers of SEQ ID NOs: 5 and 9 both have the effect of inhibiting luciferase, AES employing the aptamer as an enzyme control site reduces the luciferase inhibitory action of the aptamer due to the presence of the measurement object. Apparently, the luciferase activity is increased. In this case, it is possible to measure the measurement object in the specimen by examining how much the light emission amount has increased from the light emission amount of the control. If a calibration curve is created using a solution having a known concentration of the measurement object, the measurement object can be quantified. In addition, when the luciferase-controlled aptamer has the ability to increase luciferase activity, naturally, in AES employing this as an enzyme-controlled aptamer, the activity of luciferase apparently decreases due to the presence of the measurement object.
 また、非特許文献2~4に記載されているように、ある物質に対する結合能を有する複数のアプタマーを交差又はシャッフルすることにより、さらに結合能の高いアプタマーや、結合する物質に対して阻害能等の機能を発揮するアプタマーを作出できることが知られている。ここで、「交差」及び「シャッフル」は、異なるアプタマー分子の部分領域同士を連結することであり、連結する部分領域の数が多い場合(特に決まりはないが通常3以上)がシャッフルである。上記した本発明の複数のアプタマー交差又はシャッフルする工程と、得られたアプタマーのうち、ルシフェラーゼと結合する能力を有するアプタマーを選択することにより、ルシフェラーゼと結合する能力が元のアプタマーよりもさらに高いアプタマーを作出することが可能である。また、この方法において、ルシフェラーゼの活性を阻害できるアプタマーを選択することにより、ルシフェラーゼ阻害能を有するアプタマーを作出することも可能である。このようなアプタマーが一旦得られれば、その塩基配列を解析し、それをDNA合成機等を用いた化学合成等により製造することにより、このような望ましいアプタマーを製造することができる。 In addition, as described in Non-Patent Documents 2 to 4, by crossing or shuffling a plurality of aptamers capable of binding to a certain substance, it is possible to inhibit aptamers with higher binding ability or binding substances. It is known that aptamers that exhibit such functions can be created. Here, “intersection” and “shuffle” are to connect partial regions of different aptamer molecules, and are shuffled when the number of partial regions to be connected is large (although there is no particular rule, usually 3 or more). The aptamer having a higher ability to bind to luciferase than the original aptamer by selecting the aptamer having the ability to bind to luciferase among the obtained aptamers, the step of crossing or shuffling the aptamers of the present invention described above. Can be created. In this method, an aptamer having the ability to inhibit luciferase can also be produced by selecting an aptamer that can inhibit the activity of luciferase. Once such an aptamer is obtained, such a desired aptamer can be produced by analyzing the base sequence and producing it by chemical synthesis using a DNA synthesizer or the like.
 本発明のアプタマーは、市販の核酸合成機を用いて常法により容易に調製することができる。本発明のアプタマーを採用したAESのポリヌクレオチド部分も、測定対象物に対する認識アプタマーとしては配列が特定されたアプタマーを採用することになるため、同様に市販の核酸合成機を用いて常法により容易に調製することができる。 The aptamer of the present invention can be easily prepared by a conventional method using a commercially available nucleic acid synthesizer. The AES polynucleotide adopting the aptamer of the present invention also adopts an aptamer whose sequence is specified as the recognition aptamer for the measurement target, and thus can be easily obtained by a conventional method using a commercially available nucleic acid synthesizer. Can be prepared.
 本発明のアプタマーの好ましい用途は、バイオセンサーのセンシング素子としての利用であり、具体的には、特許文献1及び2に記載されるようなAESへの利用である。ただし、本発明のアプタマーの用途はこれに限定されず、ルシフェラーゼへの結合能を利用して、それ自体周知の方法により、ルシフェラーゼの測定に用いることもできる。 The preferred use of the aptamer of the present invention is the use as a sensing element of a biosensor, specifically, the use for AES as described in Patent Documents 1 and 2. However, the use of the aptamer of the present invention is not limited to this, and it can also be used for measurement of luciferase by a method known per se using the binding ability to luciferase.
 以下、実施例に基づき本発明をより具体的に説明する。もっとも、本発明は下記実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically based on examples. However, the present invention is not limited to the following examples.
1.ルシフェラーゼ結合性アプタマーのスクリーニング
[スクリーニングで用いたオリゴヌクレオチド]
ランダムライブラリー(5'末端にFITCが修飾):
5'-FITC-ATAGTCTATCCATCAATT-(N30)-AGATAGCAAGTGTATTCA-3'(配列番号1)
フォワードプライマー(5'末端にFITCが修飾):
5'-FITC-ATAGTCTATCCATCAATT-3'(配列番号2)
リバースプライマー(5'末端にBiotinが修飾):
5'-Biotin-TGAATACACTTGCTATCT-3'(配列番号3)
(以上のライブラリーおよびプライマーは全てInvitrogenで依託合成した)
1. Screening for luciferase-binding aptamers [oligonucleotides used in screening]
Random library (modified with FITC at the 5 'end):
5'-FITC-ATAGTCTATCCATCAATT- (N30) -AGATAGCAAGTGTATTCA-3 '(SEQ ID NO: 1)
Forward primer (modified at the 5 'end with FITC):
5'-FITC-ATAGTCTATCCATCAATT-3 '(SEQ ID NO: 2)
Reverse primer (5 'end modified with Biotin):
5'-Biotin-TGAATACACTTGCTATCT-3 '(SEQ ID NO: 3)
(All the above libraries and primers were commissioned by Invitrogen)
[用いた試薬]
グルコースデヒドロゲナーゼ(PQQGDH)、Hybond(商標)-ECL(商標) Nitrocellulose membrane (Amersham Bioscience)、精度管理用凍結プール血清L-コンセーラI EX(日水製薬(株))、2-アミノ-2-ヒドロキシエチル-1,3-プロパンジオール、NaCl、Tween21 (いずれも関東化学(株))、EDTA(同仁化学(株))、抗-FITC抗体HRP (Dako Cytomation)、Immobilon(商標) Western Chemiluminescent HRP Substrate (MILLIPORE)、尿素、クロロホルム(いずれも関東化学(株))、フェノール(和光純薬工業(株))、HCl、酢酸ナトリウム、イソプロパノール、エタノール、NaOH (いずれも関東化学(株))、グリコーゲン(Roche)、20bpラダー(Takara)、AmpliTaq Gold with Gene Amp(Applied Biosystems)、アガロース21(ニッポンジーン(株))、グリコーゲン(Roche)
[Reagent used]
Glucose dehydrogenase (PQQGDH), Hybond ™ -ECL ™ Nitrocellulose membrane (Amersham Bioscience), frozen pool serum L-Consera I EX for quality control (Nissui Pharmaceutical Co., Ltd.), 2-amino-2-hydroxyethyl 1,3-propanediol, NaCl, Tween21 (all Kanto Chemical Co., Ltd.), EDTA (Dojin Chemical Co., Ltd.), anti-FITC antibody HRP (Dako Cytomation), Immobilon (trademark) Western Chemiluminescent HRP Substrate (MILLIPORE ), Urea, chloroform (all Kanto Chemical Co., Ltd.), phenol (Wako Pure Chemical Industries, Ltd.), HCl, sodium acetate, isopropanol, ethanol, NaOH (all Kanto Chemical Co., Ltd.), glycogen (Roche) , 20 bp ladder (Takara), AmpliTaq Gold with Gene Amp (Applied Biosystems), Agarose 21 (Nippon Gene Co., Ltd.), Glycogen (Roche)
[用いた機器]
蛍光スキャナーTyphoon8600、定量ソフトImage Quant (Amaersham Pharmacia Biotech)、遠心分離機、分光光度計UV-1200、UV-1600(島津製作所(株))、高速振とう機(EYELA)、サーマルサイクラーPC-700、PC-801-05(アステック(株))、ABI Prizm 3100 Genetic Analyzer (Applied Biosystem)、サーマルサイクラーPC-700、PC-801-05(アステック(株))、Sequence Software (Genetics)、Hybond-ECL ニトロセルロースメンブレン(Amersham Biosciences)、自動蛍光偏光解消装置(日本分光(株))、BIAcore X (BIACORE)、センサーチップSA(BIACORE)、センサーチップCM5(BIACORE)、遠心分離機、分光光度計UV-1200、UV-1600(島津製作所(株))、サーマルサイクラーPC-700、PC-801-05(アステック(株))、蛍光スキャナーTyphoon8600、定量ソフトImage Quant (Amaersham Pharmacia Biotech)
[Devices used]
Fluorescence scanner Typhoon 8600, quantitative software Image Quant (Amaersham Pharmacia Biotech), centrifuge, spectrophotometer UV-1200, UV-1600 (Shimadzu Corporation), high-speed shaker (EYELA), thermal cycler PC-700, PC-801-05 (Astech), ABI Prizm 3100 Genetic Analyzer (Applied Biosystem), Thermal cycler PC-700, PC-801-05 (Astech), Sequence Software (Genetics), Hybond-ECL Nitro Cellulose membrane (Amersham Biosciences), automatic fluorescence depolarizer (JASCO Corporation), BIAcore X (BIACORE), sensor chip SA (BIACORE), sensor chip CM5 (BIACORE), centrifuge, spectrophotometer UV-1200 , UV-1600 (Shimadzu Corporation), Thermal cycler PC-700, PC-801-05 (Astech), Fluorescence scanner Typhoon8600, Quantification software Image Quant (Amaersham Pharmacia Biotech)
[方法及び結果]
 アプタマーのスクリーニングは、以下に記載の方法を用いて合計2回行なった(スクリーニング 1、スクリーニング 2)。ランダムライブラリーとして、30merのランダム配列の両端にプライマー結合領域を付加した、下記の66merのssDNA(配列番号1)を用いた。スクリーニングのBinding bufferにはTBS (10 mM Tris/HCl, pH 7.0, 100 mM NaCl) およびTBSに界面活性剤を添加したTBST (0.05% v/v Tween 20を含むTBS) を用いた。
[Method and results]
Aptamer screening was performed twice in total using the method described below (Screening 1, Screening 2). As a random library, the following 66-mer ssDNA (SEQ ID NO: 1) in which a primer binding region was added to both ends of a 30-mer random sequence was used. TBS (10 mM Tris / HCl, pH 7.0, 100 mM NaCl) and TBST (TBS containing 0.05% v / v Tween 20) with a surfactant added to TBS were used as the binding buffer for screening.
(a) ルシフェラーゼに結合するDNAの選択とDNAライブラリーの結合能評価
 ニトロセルロース膜の各面にルシフェラーゼ、PQQGDHをそれぞれ22.5 pmolずつ滴下し (直径2 mmのスポットになるように滴下)、自然乾燥させることで固定化した。TBSTにより10%に調製した血清中にタンパク質を固定した膜を浸し、室温で1時間インキュベートすることで膜をブロッキングした。その後、TBSTで10分間洗浄し、続いて5分の洗浄を2回行った。
(a) Selection of DNA that binds to luciferase and evaluation of DNA library binding ability 22.5 pmol of luciferase and PQQGDH are dropped on each side of the nitrocellulose membrane (dropping to form a spot with a diameter of 2 mm) and air-dried To fix. The membrane was blocked by immersing the membrane immobilizing the protein in serum prepared to 10% by TBST and incubating at room temperature for 1 hour. Thereafter, the plate was washed with TBST for 10 minutes, followed by washing for 5 minutes twice.
 5'末端にFITCが修飾されたDNAライブラリーをTBS bufferで1 nmol/100μLに調製し、95℃で3分間加熱した後、30分かけてゆっくり25℃まで冷却することで、フォールディングさせた。このDNAライブラリーを終濃度が90 nMになるよう調製し、上記タンパク質固定化膜と室温で1時間インキュベートした。その後、Binding buffer(TBST、固定化膜1 cm2当たり5 ml量)中に膜を浸し軽く手洗浄する操作を2回繰り返してから、Binding buffer(TBST)で10分間撹拌しながら洗浄し、続いて5分間の洗浄を2回行った。 A DNA library modified with FITC at the 5 ′ end was prepared to 1 nmol / 100 μL with TBS buffer, heated at 95 ° C. for 3 minutes, and then slowly cooled to 25 ° C. over 30 minutes to be folded. This DNA library was prepared to a final concentration of 90 nM and incubated with the protein-immobilized membrane at room temperature for 1 hour. Then, repeat the operation of immersing the membrane in Binding buffer (TBST, 5 ml volume per 1 cm 2 of immobilized membrane) and gently washing it manually twice, and then wash with Binding buffer (TBST) for 10 minutes while stirring. Washing was performed twice for 5 minutes.
(b) ルシフェラーゼに結合したDNAの抽出
 ライブラリーとインキュベートし洗浄した後のニトロセルロース膜において、ルシフェラーゼをブロットした部分を切り抜き、222μlの7 M尿素および666μlのフェノールクロロホルムを添加し、3分間攪拌した後に、30分間室温で静置した。ここへ111μlのMilliQを加え、3分間攪拌し、遠心分離(12000 rpm, 10~20℃)して得られた上清を新しいエッペンに移した。ここへ上清と同量のクロロホルムを加え、3分間攪拌した後に、遠心分離(12000 rpm, 10~20℃)し、上清を新しいエッペンに移し、この中に含まれるssDNA分子をエタノール沈殿により回収した。得られたペレットを30μlのTE buffer(10 mM Tris、1 mM EDTA)で溶解した。
(b) Extraction of DNA bound to luciferase In the nitrocellulose membrane after incubation with the library and washing, the portion where luciferase was blotted was cut out, 222 μl of 7 M urea and 666 μl of phenol chloroform were added and stirred for 3 minutes Later, it was left at room temperature for 30 minutes. To this, 111 μl of MilliQ was added, stirred for 3 minutes, and centrifuged (12000 rpm, 10-20 ° C.), and the resulting supernatant was transferred to a new eppen. Chloroform in the same amount as the supernatant was added here, stirred for 3 minutes, then centrifuged (12000 rpm, 10-20 ° C), the supernatant was transferred to a new eppen, and the ssDNA molecules contained therein were precipitated by ethanol precipitation. It was collected. The obtained pellet was dissolved in 30 μl of TE buffer (10 mM Tris, 1 mM EDTA).
(c) 抽出したDNAの増幅
 20 molのdNTP、0.1 nmolのプライマー(配列番号2及び3)、2.5 Uの Taq DNAポリメラーゼ、60 fmolのテンプレートDNAを含んだPCR反応液100μlを30本調製した。サーマルサイクラーで、95℃で30分加熱した後、95℃で1分、56℃で1分、72℃で1分を1サイクルとし、40サイクル繰り返した。各PCR産物は、3.5%アガロース21ゲルでTAE buffer中で電気泳動を行い、テンプレートとして用いた上記(b)で得られたDNAが増幅されていることを確認した。確認の際は、20bpラダーを電気泳動用のマーカーとした。
(c) Amplification of the extracted DNA Thirty PCR reactions (100 μl) containing 20 mol dNTP, 0.1 nmol primer (SEQ ID NOs: 2 and 3), 2.5 U Taq DNA polymerase, and 60 fmol template DNA were prepared. After heating at 95 ° C for 30 minutes with a thermal cycler, one cycle was 95 ° C for 1 minute, 56 ° C for 1 minute, 72 ° C for 1 minute, and 40 cycles were repeated. Each PCR product was subjected to electrophoresis in TAE buffer using a 3.5% agarose 21 gel, and it was confirmed that the DNA obtained in (b) used as a template was amplified. For confirmation, a 20 bp ladder was used as a marker for electrophoresis.
(d) 増幅したDNAの1本鎖化
 アビジン固定化アガロース75μlを5倍量のColumn buffer (30 mM HEPES、500 mM NaCl、5mM EDTA、pH7.0)で2回洗浄した。PCR産物に、その1/10倍量の×50 TE Bufferおよび1/5倍量の5 M NaClを添加し、この溶液を、洗浄したアビジン固定化アガロースに加え、30分インキュベートした。インキュベート後、上清を取り除き、アガロースを5倍量のColumn bufferで2回洗浄した後、アガロースの1.5倍量の0.15 M NaOHを加えて10分間攪拌した。上清を回収した後、再びアガロースに同量の0.15 M NaOHを加えて10分間攪拌し、ssDNAを溶出させ上清を回収した。ssDNAを含む上清を2M HClで中和し、エタノール沈殿によりssDNAを回収した。得られたペレットを30μlのTE bufferで溶解し、分光光度計を用いて260 nmの吸収を測定することで、DNA濃度を算出した。なお、操作はすべて室温で行った。ここで得られたDNAを次のラウンドのライブラリーとした。
(d) Single-stranded amplification of amplified DNA 75 μl of avidin-immobilized agarose was washed twice with a 5-fold amount of Column buffer (30 mM HEPES, 500 mM NaCl, 5 mM EDTA, pH 7.0). To the PCR product, 1/10 volume of x50 TE Buffer and 1/5 volume of 5 M NaCl were added, and this solution was added to the washed avidin-immobilized agarose and incubated for 30 minutes. After incubation, the supernatant was removed, and the agarose was washed twice with 5 times the amount of Column buffer. Then, 1.5 times the amount of 0.15 M NaOH of agarose was added and stirred for 10 minutes. After collecting the supernatant, the same amount of 0.15 M NaOH was again added to the agarose and stirred for 10 minutes to elute ssDNA and collect the supernatant. The supernatant containing ssDNA was neutralized with 2M HCl, and ssDNA was recovered by ethanol precipitation. The obtained pellet was dissolved in 30 μl of TE buffer, and the absorbance at 260 nm was measured using a spectrophotometer to calculate the DNA concentration. All operations were performed at room temperature. The DNA obtained here was used as the library for the next round.
 上記(a)~(d)の操作を1ラウンドとし、合計4ラウンドを行なって1回のスクリーニングとした。このスクリーニング操作を2回反復して行なった(スクリーニング1、スクリーニング2)。各ラウンドにおいて、タンパク質に結合したDNA量を確認するため、(a)の工程でライブラリーとインキュベートし洗浄した後のニトロセルロース膜と、HRP(セイヨウワサビペルオキシダーゼ)修飾された抗FITC抗体(1000倍希釈)とを、1000μlのBinding buffer(TBST)中で室温にて1時間インキュベートした。ライブラリーとのインキュベート後と同様の洗浄を行った後、ECL Plus Western blotting detection reagentsを膜に添加し、化学発光によりssDNA分子の蛋白質への結合を観察した。その結果、いずれのラウンドにおいても、ルシフェラーゼを固定化した部分からPQQGDHを固定化した部分よりも強いシグナルが検出された。また、ラウンドが進む毎にルシフェラーゼ固定化部位からのシグナルが強くなる傾向が認められた。 The above operations (a) to (d) were set as one round, and a total of four rounds were performed for one screening. This screening operation was repeated twice (screening 1, screening 2). In each round, in order to confirm the amount of DNA bound to the protein, the nitrocellulose membrane after incubation and washing with the library in the step (a) and an anti-FITC antibody modified with HRP (horseradish peroxidase) (1000 times) Diluted) was incubated in 1000 μl of Binding buffer (TBST) for 1 hour at room temperature. After the same washing as after incubation with the library, ECLEPlus Western blotting detection reagents was added to the membrane, and the binding of the ssDNA molecule to the protein was observed by chemiluminescence. As a result, in each round, a stronger signal was detected from the portion where luciferase was immobilized than the portion where PQQGDH was immobilized. Moreover, the tendency for the signal from the luciferase immobilization site to become stronger as the round progressed was observed.
2.スクリーニングにより得られたssDNAの塩基配列解析
[用いた試薬]
Marmaid kit(フナコシ(株))、アガロース21(ニッポンジーン(株))、EDTA(同仁化学(株))、pGEM T-Vector System (Promega)、アンピシリン(シグマ)、IPTG(Takara)、X-gal、培地用寒天〔INAAGAR(BA-10)〕(伊那食品工業(株))、バクトトリプシン、イーストエクストラクト(DIFCO)、NaCl、Tris、エタノール (いずれも関東化学(株))、ホルムアミド、RNase(ニッポンジーン(株))、DNA sequence kit、M13 primer(Applied Biosystem(株))、DH5αコンピテントセル
2. Base sequence analysis of ssDNA obtained by screening [Reagents used]
Marmaid kit (Funakoshi), Agarose 21 (Nippon Gene), EDTA (Dojin Chemical), pGEM T-Vector System (Promega), Ampicillin (Sigma), IPTG (Takara), X-gal, Agar for medium [INAAGAR (BA-10)] (Ina Food Industry Co., Ltd.), Bactotrypsin, East Extract (DIFCO), NaCl, Tris, Ethanol (all Kanto Chemical Co., Ltd.), Formamide, RNase (Nippon Gene) ), DNA sequence kit, M13 primer (Applied Biosystem), DH5α competent cell
[方法及び結果]
(a) TAクローニング
 1-(c)と同様の組成でPCR溶液を10本調製し、PCR増幅を行ったのちエタノール沈殿を行った(プライマーは修飾されていないものを用いた)。沈殿を溶解し、3 %アガロースXゲルを用いてTAE バッファー中で電気泳動し、MERmaid(登録商標) kitを用いてゲルから約66 bpのDNAを抽出し、10μlのDNA抽出液を得た。ゲルからのDNAの抽出についてはキット付属のプロトコールに従った。3μlのDNA抽出液、5μl Rapid Ligation バッファー、1μlのpGEM T-Vector(50 ng)、1μlのT4 DNA ligaseを加え、16℃で一時間かけてライゲーションを行った。ライゲーション反応液を用いてJM109コンピテントセルをヒートショック法により形質転換し、アンピシリン(Amp)およびX-gal(ともに終濃度100μg/ml)を含むLB寒天培地に播種し37℃で一晩培養した。
[Method and results]
(a) TA cloning Ten PCR solutions having the same composition as in 1- (c) were prepared, and after PCR amplification, ethanol precipitation was performed (primers were used without modification). The precipitate was dissolved, electrophoresed in TAE buffer using 3% agarose X gel, and about 66 bp DNA was extracted from the gel using MERmaid (registered trademark) kit to obtain 10 μl of DNA extract. The protocol attached to the kit was followed for DNA extraction from the gel. 3 μl of DNA extract, 5 μl Rapid Ligation buffer, 1 μl of pGEM T-Vector (50 ng) and 1 μl of T4 DNA ligase were added, and ligation was performed at 16 ° C. for 1 hour. JM109 competent cells were transformed with the ligation reaction solution by heat shock method, seeded on LB agar medium containing ampicillin (Amp) and X-gal (both final concentration 100 μg / ml) and cultured at 37 ° C overnight .
(b) シークエンス
 TAクローニングしたプレートより白色のコロニーを選択し、LB培地で一晩インキュベートした後、アルカリ-SDS法によりプラスミドを抽出した。抽出したプラスミドを制限酵素消化した後、上記と同様に電気泳動し、目的の断片が挿入されていることを確認した。
(b) Sequence White colonies were selected from the TA-cloned plate, incubated overnight in LB medium, and then the plasmid was extracted by the alkali-SDS method. The extracted plasmid was digested with restriction enzymes and then electrophoresed in the same manner as above to confirm that the target fragment was inserted.
 挿入断片が確認されたプラスミドについて、キットを用いたダイデオキシ法により挿入断片(すなわちスクリーニングにより得られたDNA)の塩基配列を決定した。スクリーニング1では15本の塩基配列が得られ、その中で重複はなかった。スクリーニング2では22本の塩基配列が得られ、その中で2種類の配列が2本ずつ重複していた。スクリーニング1と2との間で塩基配列の重複はなかった。すなわち、スクリーニング1及び2により35種類の塩基配列が得られた。 For the plasmid in which the insert fragment was confirmed, the base sequence of the insert fragment (that is, the DNA obtained by screening) was determined by the dideoxy method using a kit. In screening 1, 15 nucleotide sequences were obtained, and there was no overlap among them. In screening 2, 22 nucleotide sequences were obtained, of which two types of sequences were duplicated two by two. There was no nucleotide sequence overlap between Screens 1 and 2. That is, 35 types of base sequences were obtained by screening 1 and 2.
3.アプタマーブロッティング法による各ssDNAのルシフェラーゼに対する結合能とPQQGDHを用いた特異性の評価
[用いた試薬]
 グルコースデヒドロゲナーゼ、ヒトトロンビン(Sigma Aldrich)、Hybond(商標)-ECL(商標) Nitrocellulose membrane (Amersham Bioscience)、2-アミノ-2-ヒドロキシエチル-1,3-プロパンジオール、NaCl、Tween21 (いずれも関東化学(株))、EDTA(同仁化学(株))、抗-FITC抗体HRP (Dako Cytomation)、NeutrAvidin Horseradish Peroxidase Conjugated (PIERCE)、Immobilon(商標) Western Chemiluminescent HRP Substrate (MILLIPORE)、PQQGDH、NaCl、Tris、Tween21、尿素、クロロホルム、HCl、酢酸ナトリウム、イソプロパノール、エタノール、NaOH (いずれも関東化学(株))、EDTA(同仁化学(株))、Ponceau S (メルク)、グリコーゲン(Roche)、フェノール(和光純薬工業(株))、20 bp ladder (Takara)、AmpliTaq Gold with Gene Amp(Applied Biosystems)、アガロース21(ニッポンジーン(株))、ImmunoPure Immobilized Avidin (PIERCE)
3. Evaluation of binding ability of each ssDNA to luciferase by aptamer blotting method and specificity using PQQGDH [Reagent used]
Glucose dehydrogenase, human thrombin (Sigma Aldrich), Hybond ™ -ECL ™ Nitrocellulose membrane (Amersham Bioscience), 2-amino-2-hydroxyethyl-1,3-propanediol, NaCl, Tween21 (all Kanto Chemical) Co., Ltd.), EDTA (Dojindo), anti-FITC antibody HRP (Dako Cytomation), NeutrAvidin Horseradish Peroxidase Conjugated (PIERCE), Immobilon (trademark) Western Chemiluminescent HRP Substrate (MILLIPORE), PQQGDH, NaCl, Tris, Tween 21, urea, chloroform, HCl, sodium acetate, isopropanol, ethanol, NaOH (all Kanto Chemical Co., Ltd.), EDTA (Dojin Chemical Co., Ltd.), Ponceau S (Merck), glycogen (Roche), phenol (Wako Jun) Yakuhin Kogyo Co., Ltd.), 20 bp ladder (Takara), AmpliTaq Gold with Gene Amp (Applied Biosystems), Agarose 21 (Nippon Gene Co., Ltd.), ImmunoPure Immobilized Avidin (PIERCE)
[用いた機器]
 蛍光スキャナーTyphoon8600、定量ソフトImage Quant (Amaersham Pharmacia Biotech)、Mild Mixer SI-36 (TAITEC)、PLUS SHAKER EP-1 (TAITEC)
[Devices used]
Fluorescence scanner Typhoon8600, quantitative software Image Quant (Amaersham Pharmacia Biotech), Mild Mixer SI-36 (TAITEC), PLUS SHAKER EP-1 (TAITEC)
 上記シークエンス解析の結果得られた35種類の塩基配列について、二次構造予測プログラムm-fold(商品名)を用いて、プライマー配列を含む66merの塩基配列の二次構造を予測した。その結果、ΔG値およびTm値から二次構造が安定していると考えられる塩基配列がスクリーニング1から9本、スクリーニング2から15本得られた。これらの合計24本について、アプタマーブロッティング法によってルシフェラーゼに対する結合能の評価を行った。アプタマーブロッティングには、66merのオリゴヌクレオチドの5'末端をビオチン又はFITC修飾したものを合成して用いた。また、競合タンパク質として、スクリーニング時と同様にPQQGDHを用いた。 The secondary structure of the 66mer base sequence including the primer sequence was predicted using the secondary structure prediction program m-fold (trade name) for the 35 types of base sequences obtained as a result of the sequence analysis. As a result, 9 to 1 base sequences and 15 to 15 base sequences that were considered to have a stable secondary structure from the ΔG value and the Tm value were obtained. A total of 24 of these were evaluated for binding ability to luciferase by the aptamer blotting method. For aptamer blotting, a 66mer oligonucleotide whose 5 ′ end was modified with biotin or FITC was synthesized and used. Moreover, PQQGDH was used as a competitive protein as in the screening.
 アプタマーブロッティングの結果を図1に示す。評価を行った24種すべてのポリヌクレオチドのルシフェラーゼへの結合能を確認した。配列間でスポットの強度に差が見られたことから、結合能に差があると考えられる。24本のうちの21本(表1)でイニシャルライブラリーよりも高い結合能が確認された。これら21本の塩基配列を配列番号4~24に示す。 The results of aptamer blotting are shown in FIG. The binding ability of all 24 types of evaluated polynucleotides to luciferase was confirmed. Since a difference in spot intensity was observed between the arrays, it is considered that there is a difference in binding ability. 21 out of 24 (Table 1) were confirmed to have higher binding ability than the initial library. These 21 nucleotide sequences are shown in SEQ ID NOs: 4 to 24.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
4.アプタマーのルシフェラーゼ活性制御能の検討
 スクリーニング1及び2で得られたssDNAのうち、イニシャルライブラリーよりもルシフェラーゼへの結合能が高いもの(Lap 2-14、1-20、1-6)及びルシフェラーゼ結合能が低いもの(Lap 2-26、2-3)を選択し、ルシフェラーゼ活性制御能を検討した。Lap 2-26及びLap 2-3の塩基配列をそれぞれ配列番号25及び26に示す。
4). Examination of aptamer's ability to control luciferase activity Among the ssDNAs obtained in Screens 1 and 2, those that have higher binding ability to luciferase than the initial library (Lap 2-14, 1-20, 1-6) and luciferase binding Those having low ability (Lap 2-26, 2-3) were selected, and the ability to control luciferase activity was examined. The base sequences of Lap 2-26 and Lap 2-3 are shown in SEQ ID NOs: 25 and 26, respectively.
 ルシフェラーゼ(終濃度0.9μM)、各ssDNA(終濃度9μM)、Tris(10 mM)、NaCl(150 mM)、KCl(5 mM)を混合して全量18μLとし、室温で10分間静置した。このサンプル5μLに対してピッカジーン発光基質(東洋ビーネット)75μLを添加し、1分間静置後10秒間振とうし、発光量をルミノメータを用いて1秒間測定した。コントロールの発光量を100%として、各ssDNAサンプルの発光量を相対評価することにより、各ssDNAのルシフェラーゼ活性制御能を評価した。その結果を下記表2に示す。なお、表2中の「Δスポット強度」とは、図1に示すアプタマーブロッティングのスポットを、蛍光スキャナーTyphoon8600及び定量ソフトImage Quant (Amaersham Pharmacia Biotech)を用いて数値化した結果である。 Luciferase (final concentration: 0.9 μM), each ssDNA (final concentration: 9 μM), Tris (10 μmM), NaCl (150 μmM), KCl (5 μmM) were mixed to make a total volume of 18 μL, and allowed to stand at room temperature for 10 minutes. 75 μL of Picker Gene luminescent substrate (Toyo Benet) was added to 5 μL of this sample, allowed to stand for 1 minute, shaken for 10 seconds, and luminescence was measured for 1 second using a luminometer. The luciferase activity control ability of each ssDNA was evaluated by relative evaluation of the luminescence amount of each ssDNA sample with the control luminescence amount being 100%. The results are shown in Table 2 below. The “Δ spot intensity” in Table 2 is the result of digitizing the aptamer blotting spot shown in FIG. 1 using a fluorescence scanner Typhoon 8600 and quantitative software Image-Quant® (Amaersham-Pharmacia Biotech).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示される通り、ルシフェラーゼへの結合能が高いLap 1-20及びLap 1-6でルシフェラーゼ活性の大きな阻害が認められた。 As shown in Table 2, large inhibition of luciferase activity was observed with Lap 1-20 and Lap 1-6, which have high binding ability to luciferase.
 ルシフェラーゼ活性阻害能が最も高かったLap 1-6について、ssDNA濃度を0、0.9、9.0、45μMに変えて上記と同様に発光量を測定、評価したところ、Lap 1-6は濃度比1:1でもルシフェラーゼ活性を40%阻害した(図2)。 For Lap 1-6, which had the highest ability to inhibit luciferase activity, the amount of luminescence was measured and evaluated in the same manner as described above by changing the ssDNA concentration to 0, 0.9, 9.0, and 45 μM. However, it inhibited luciferase activity by 40% (FIG. 2).
 ルシフェラーゼ活性阻害能が高かったLap 1-6及びLap 1-20について、m-fold(商品名)により予測した二次構造図を図3及び図4に示す。高いルシフェラーゼ阻害能が確認されたLap 1-6及びLap 1-20では、10nt~20ntの領域に全く同一のステムループ構造が存在した。このステムループ構造は、上記で活性制御能を検討したこれ以外のアプタマーをはじめ、上記スクリーニングで取得されたその他のアプタマーのいずれにも存在しなかった(データ示さず)。従って、Lap 1-6及びLap 1-20が有する高いルシフェラーゼ活性阻害能には、10nt~20ntに存在するこのステムループ構造が重要であると考えられる。 FIG. 3 and FIG. 4 show the secondary structure diagrams predicted by m-fold (trade name) for Lap 1-6 and Lap 1-20, which have a high ability to inhibit luciferase activity. In Lap 1-6 and Lap 1-20, which were confirmed to have a high ability to inhibit luciferase, the same stem-loop structure was present in the 10 nt to 20 nt region. This stem-loop structure did not exist in any of the other aptamers obtained by the above screening, including other aptamers whose activity control ability was examined above (data not shown). Therefore, it is considered that this stem-loop structure existing at 10 nt to 20 nt is important for the high luciferase activity inhibiting ability of Lap 1-6 and Lap 1-20.

Claims (13)

  1.  以下のいずれかのポリヌクレオチドから成り、ルシフェラーゼと結合する能力を有するアプタマー。
    (a) 配列番号4ないし24のいずれかに示される塩基配列を有するポリヌクレオチド。
    (b) (a)のポリヌクレオチドにおいて1個ないし十数個の塩基が置換し、欠失し及び/又は挿入されたポリヌクレオチド。
    (c) (a)又は(b)のポリヌクレオチドを含むポリヌクレオチド。
    An aptamer consisting of any of the following polynucleotides and having the ability to bind to luciferase.
    (a) A polynucleotide having the base sequence shown in any one of SEQ ID NOs: 4 to 24.
    (b) A polynucleotide in which 1 to 10 or more bases are substituted, deleted and / or inserted in the polynucleotide of (a).
    (c) A polynucleotide comprising the polynucleotide of (a) or (b).
  2.  前記(b)のポリヌクレオチドが、前記(a)のポリヌクレオチドのうち1個又は数個の塩基が置換し、欠失し及び/又は挿入されたポリヌクレオチドである請求項1記載のアプタマー。 The aptamer according to claim 1, wherein the polynucleotide (b) is a polynucleotide in which one or several bases in the polynucleotide (a) are substituted, deleted and / or inserted.
  3.  前記(b)のポリヌクレオチドが、前記(a)のポリヌクレオチドのうち1個又は2個の塩基が置換し、欠失し及び/又は挿入されたポリヌクレオチドである請求項2記載のアプタマー。 The aptamer according to claim 2, wherein the polynucleotide (b) is a polynucleotide in which one or two bases in the polynucleotide (a) are substituted, deleted and / or inserted.
  4.  配列番号4ないし24のいずれかに示される塩基配列を有するポリヌクレオチド、又は該ポリヌクレオチドを含むポリヌクレオチドから成る請求項1記載のアプタマー。 The aptamer according to claim 1, comprising a polynucleotide having the base sequence shown in any one of SEQ ID NOs: 4 to 24 or a polynucleotide containing the polynucleotide.
  5.  前記ポリヌクレオチドのサイズが100mer以下である請求項4記載のアプタマー。 The aptamer according to claim 4, wherein the polynucleotide has a size of 100 mer or less.
  6.  配列番号4ないし24のいずれかに示される塩基配列を有するポリヌクレオチドから成る請求項5記載のアプタマー。 6. The aptamer according to claim 5, comprising a polynucleotide having a base sequence represented by any of SEQ ID NOs: 4 to 24.
  7.  結合したルシフェラーゼの酵素活性を変化させる能力をさらに有する請求項1ないし6のいずれか1項に記載のアプタマー。 The aptamer according to any one of claims 1 to 6, further having an ability to change the enzyme activity of the bound luciferase.
  8.  配列番号5又は9に示される塩基配列を有するポリヌクレオチド、又は該ポリヌクレオチドを含むポリヌクレオチドから成る請求項7記載のアプタマー。 The aptamer according to claim 7, which comprises a polynucleotide having the base sequence represented by SEQ ID NO: 5 or 9, or a polynucleotide containing the polynucleotide.
  9.  前記ポリヌクレオチドのサイズが100mer以下である請求項8記載のアプタマー。 The aptamer according to claim 8, wherein the size of the polynucleotide is 100 mer or less.
  10.  配列番号5又は9に示される塩基配列を有するポリヌクレオチドから成る請求項9記載のアプタマー。 10. The aptamer according to claim 9, comprising a polynucleotide having a base sequence represented by SEQ ID NO: 5 or 9.
  11.  請求項1記載の複数のアプタマー同士を交差又はシャッフルする工程と、得られたアプタマーのうち、ルシフェラーゼと結合する能力を有するアプタマーを選択する工程を含む、ルシフェラーゼと結合する能力を有するアプタマーの作出方法。 A method for producing an aptamer having the ability to bind to luciferase, comprising the steps of crossing or shuffling a plurality of aptamers according to claim 1 and selecting an aptamer having the ability to bind to luciferase among the obtained aptamers. .
  12.  ルシフェラーゼ活性を阻害する能力を有するアプタマーを選択することをさらに含む請求項11記載の方法。 The method according to claim 11, further comprising selecting an aptamer having an ability to inhibit luciferase activity.
  13.  請求項11又は12記載の方法により作出されたアプタマーを製造することを含む、ルシフェラーゼ結合性アプタマーの製造方法。 A method for producing a luciferase-binding aptamer, comprising producing an aptamer produced by the method according to claim 11 or 12.
PCT/JP2009/054617 2008-03-11 2009-03-11 Luciferase-binding aptamer WO2009113564A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008061730 2008-03-11
JP2008-061730 2008-03-11

Publications (1)

Publication Number Publication Date
WO2009113564A1 true WO2009113564A1 (en) 2009-09-17

Family

ID=41065225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054617 WO2009113564A1 (en) 2008-03-11 2009-03-11 Luciferase-binding aptamer

Country Status (2)

Country Link
JP (1) JP2009240306A (en)
WO (1) WO2009113564A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012024026A (en) * 2010-07-23 2012-02-09 Tdk Corp Sm BACILLUS SPECIFIC APTAMER, Sm BACILLUS PROLIFERATION INHIBITOR, AND METHOD FOR DETECTING Sm BACILLUS

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012070649A (en) * 2010-09-28 2012-04-12 Katayanagi Institute Dna aptamer binding to dapoxyl or analogue thereof and method for using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005049826A1 (en) * 2003-11-22 2005-06-02 Ultizyme International Ltd. Method of detecting target molecule by using aptamer
WO2007032359A1 (en) * 2005-09-12 2007-03-22 National University Corporation Tokyo University Of Agriculture And Technology Method for detecting target molecule using aptamer/probe complex
JP2007325546A (en) * 2006-06-08 2007-12-20 Kikkoman Corp Divided luciferase

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005049826A1 (en) * 2003-11-22 2005-06-02 Ultizyme International Ltd. Method of detecting target molecule by using aptamer
WO2007032359A1 (en) * 2005-09-12 2007-03-22 National University Corporation Tokyo University Of Agriculture And Technology Method for detecting target molecule using aptamer/probe complex
JP2007325546A (en) * 2006-06-08 2007-12-20 Kikkoman Corp Divided luciferase

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"88th Annual Meeting on Chemical Society of Japan in Spring Koen Yokoshu II, 12 March, 2008", 12 March 2008, article KAZUNORI IKEBUKURO ET AL.: "Luciferase ni Ketsugo suru DNA Aptamer no Tansaku", pages: 818 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012024026A (en) * 2010-07-23 2012-02-09 Tdk Corp Sm BACILLUS SPECIFIC APTAMER, Sm BACILLUS PROLIFERATION INHIBITOR, AND METHOD FOR DETECTING Sm BACILLUS

Also Published As

Publication number Publication date
JP2009240306A (en) 2009-10-22

Similar Documents

Publication Publication Date Title
Sharma et al. ABCs of DNA aptamer and related assay development
JP5596903B2 (en) Insulin-binding aptamer
Ilgu et al. Aptamers in analytics
Chen et al. R-ChIP for genome-wide mapping of R-loops by using catalytically inactive RNASEH1
Savory et al. Selection of DNA aptamer against prostate specific antigen using a genetic algorithm and application to sensing
Hasegawa et al. Selection of DNA aptamers against VEGF 165 using a protein competitor and the aptamer blotting method
US11125743B2 (en) Detection of norovirus using norovirus-specific toehold switches
US20080305957A1 (en) Method for Obtaining Structural Information Concerning an Encoded Molecule and Method for Selecting Compounds
US20160033495A1 (en) Detection of Non-Nucleic Acid Analytes Using Strand Displacement Exchange Reactions
WO2013161964A1 (en) Nucleic acid molecules for highly sensitive detection of ligands, screening method for nucleic acid molecules, and optimization method for sensitivity of nucleic acid molecules
JP5804304B2 (en) C-reactive protein-binding aptamer and use thereof
JP5223086B2 (en) Vascular endothelial growth factor binding aptamer
Zimmermann et al. Nucleic acid-cleaving catalytic DNA for sensing and therapeutics
Wang et al. Target-fueled catalytic hairpin assembly for sensitive and multiplex microRNA detection
Zhao et al. Exonuclease I aided enzyme-linked aptamer assay for small-molecule detection
CN110199030B (en) Cell-based high throughput aptamer screening
WO2009113564A1 (en) Luciferase-binding aptamer
KR100828936B1 (en) - Method for Analysis of Biological Molecule Using Single-Stranded Nucleic Acid Aptamer and Gold Nano-Particle
JP5495088B2 (en) PQQGDH controlled aptamer and its use
KR20070054485A (en) Single-stranded nucleic acid aptamer specifically binding to foods-borne pathogen
Yuan et al. Improving Spinach2-and Broccoli-based biosensors for single and double analytes
WO2012152711A1 (en) Methods for identifying aptamers
JP5783590B2 (en) Method for producing thyroglobulin-binding aptamer and aptamer multimer
Davydova et al. Reporter-recruiting bifunctional aptasensor for bioluminescent analytical assays
Hao et al. Using fluoro modified RNA aptamers as affinity ligands on magnetic beads for sensitive thrombin detection through affinity capture and thrombin catalysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09719799

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09719799

Country of ref document: EP

Kind code of ref document: A1