WO2009110064A1 - Optical sensor and optical waveguide prism - Google Patents

Optical sensor and optical waveguide prism Download PDF

Info

Publication number
WO2009110064A1
WO2009110064A1 PCT/JP2008/053845 JP2008053845W WO2009110064A1 WO 2009110064 A1 WO2009110064 A1 WO 2009110064A1 JP 2008053845 W JP2008053845 W JP 2008053845W WO 2009110064 A1 WO2009110064 A1 WO 2009110064A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical sensor
detected
light source
light guide
Prior art date
Application number
PCT/JP2008/053845
Other languages
French (fr)
Japanese (ja)
Inventor
孝明 小西
Original Assignee
グローリー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by グローリー株式会社 filed Critical グローリー株式会社
Priority to PCT/JP2008/053845 priority Critical patent/WO2009110064A1/en
Publication of WO2009110064A1 publication Critical patent/WO2009110064A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/16Housings; Caps; Mountings; Supports, e.g. with counterweight
    • G02B23/18Housings; Caps; Mountings; Supports, e.g. with counterweight for binocular arrangements
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/06Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
    • G07D7/12Visible light, infrared or ultraviolet radiation
    • G07D7/121Apparatus characterised by sensor details
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms

Definitions

  • the present invention relates to an optical sensor that irradiates light to a detected object such as a paper sheet or a card that moves relative to the sensor main body, and detects light from the detected object.
  • the present invention relates to a configuration of an optical sensor that can detect information from a plurality of positions that are not in the vicinity of an object to be detected that moves relative to a main body.
  • the present invention also relates to a light guide prism used in such an optical sensor.
  • a bar code is displayed on a part of it, or a part is printed with special ink.
  • the special ink include an ink that emits infrared rays (causes a fluorescent reaction) when irradiated with visible light, as disclosed in Patent Document 1, for example.
  • FIG. 18 is a schematic diagram showing a configuration of an optical system of a conventional optical sensor. Note that FIG. 18 also shows a transport path for transporting an object to be detected for convenience of explanation.
  • the conventional optical sensor 100 includes a light source 101, a first filter 102 that transmits only light having a specific wavelength out of light emitted from the light source 101, and a first filter 102.
  • a light transmissive / reflective mirror 103 that transmits and reflects the light that has passed therethrough and applies light that is orthogonal to the transport path 110 that transports the object to be detected, and a light transmissive / reflective mirror 103 that is emitted from the light source 101.
  • Fluorescence emitted from the object to be detected by irradiation of the light reflected by the light receiving element 104 is received between the light receiving element 104 that receives the light through the light transmitting / reflecting mirror, and between the light receiving element 104 and the light transmitting / reflecting mirror 103, And a second filter 105 that cuts light of a specific wavelength that passes through the first filter 102.
  • the optical sensor 100 When the optical sensor 100 is configured in this way, the light to be detected is irradiated from the light source 101 to the object to be transported, and the fluorescence emitted from the object to be detected can be detected by the light receiving element 104. For this reason, the fluorescent substance which a to-be-detected object has can be detected, for example, it can be judged whether a gift certificate etc. are genuine or a fake (determination of authenticity).
  • Patent Document 4 shows a configuration in which a plurality of light sources arranged in a line and a plurality of light receiving elements are arranged.
  • the present invention has been made in view of the above problems, and is an optical that can detect information at a low cost from a plurality of positions that are not in the vicinity of an object to be detected that moves relative to the sensor body.
  • the purpose is to provide sensors. Moreover, it aims at provision of the light guide prism used for such an optical sensor.
  • the present invention provides an optical sensor for irradiating light to a detected object that moves relative to the sensor body and detecting light from the detected object, A plurality of light sources for separately illuminating a plurality of remote positions, a single light receiving element that receives light from the plurality of positions of the detection object and performs photoelectric conversion, and each of the plurality of light sources A light guide unit that transmits light emitted from the plurality of positions and guides the light from the plurality of positions to the single light receiving element using different reflection paths. It is characterized by providing.
  • the light from the plurality of positions away from the object to be detected can be guided to a single light receiving element by using different reflection paths. For this reason, when information is detected from a plurality of positions that are not in the vicinity of the detected object that moves relative to the sensor body, the number of light sources is plural, but the number of light receiving elements can be one. That is, the number of light receiving elements can be reduced as compared with the conventional configuration, and information can be detected at a low cost from a plurality of positions that are not in the vicinity of the object to be detected.
  • this structure is the structure which guides the light from the several position of a to-be-detected object to a single light receiving element with a light guide part, The distance between several positions is changed freely by the design of a light guide part. It is possible.
  • the light guide unit may be formed of a single member. According to this configuration, the number of parts of the light guide unit can be reduced, and the assembly work of the optical sensor becomes easy.
  • the single member is provided for each of the plurality of light sources and transmits a light emitted from the plurality of light sources, and the detection target.
  • the light guide prism may include a plurality of total reflection surfaces for totally reflecting the light from the object.
  • the light guide part can be produced by resin molding, and the cost required for producing the light guide part can be reduced. For this reason, it is easy to implement
  • the light guide section includes a plurality of mirrors, and the plurality of mirrors are incident on the plurality of first mirrors that transmit a part of incident light and reflect the remaining part.
  • a plurality of second mirrors that reflect all of the light may be included.
  • the wavelength of light emitted from the light source may be different from the wavelength of light received by the single light receiving element. According to this configuration, for example, it is possible to provide an optical sensor capable of detecting the presence of special ink that emits fluorescence when irradiated with light.
  • the light emitted from the light source may be visible light
  • the light received by the single light receiving element may be infrared light
  • the plurality of light sources may emit light having different wavelengths. According to this configuration, it is possible to detect information with a single light receiving element for an object to be detected having different characteristics at a plurality of positions.
  • the plurality of light sources may be alternately lit. According to this configuration, for example, it is possible to grasp which position the information is detected from among a plurality of positions of the detected object. In addition, when a plurality of light sources emit light having different wavelengths, information can be individually detected for each wavelength.
  • the plurality of light sources and the single light receiving element may be disposed on the same side as viewed from the object to be detected.
  • the optical sensor can be easily downsized. It can also be used for objects to be detected such as cards that are difficult to transmit light.
  • the plurality of light sources includes two light sources, a first light source and a second light source
  • the light guide prism is formed of resin
  • the first light source and the light guide prism Between the second light source and the light guide prism, and between the light guide prism and the single light receiving element, a filter that restricts light that can pass through to the light of a specific wavelength region. May be arranged.
  • the light guide prism of the present invention functions as a light exit surface and an entrance surface, and has a plurality of entrance / exit surfaces on the same plane, and the plurality of entrance / exit surfaces. And a plurality of first inclined surfaces that function as total reflection surfaces, and are provided for further total reflection of light totally reflected by the plurality of first inclined surfaces. A plurality of second inclined surfaces; and an emission surface that emits light totally reflected by the plurality of second inclined surfaces, wherein each of the plurality of incident / exit surfaces is provided on the first inclined surface. And a plane portion that is formed by providing a partial plane on a part of each of the plurality of first inclined surfaces and functions as a transmission surface. And
  • the light guide prism can input light from a plurality of distant positions from any one of the plurality of incident / exit surfaces and guide the light to one output surface through different reflection paths.
  • the light guide prism can transmit light incident from the plane portion without being totally reflected. For this reason, if the light guide prism of this configuration is used, the light from the plurality of light sources is transmitted to the detected object, and the light from the plurality of positions of the detected object is used using different reflection paths. It becomes possible to lead to a single light receiving element. That is, according to this structure, the light guide prism used for the optical sensor which can detect the information of the detected object moving relatively with respect to the sensor main body at a low cost from a plurality of positions separated from each other can be provided.
  • an optical sensor capable of detecting information at a low cost from a plurality of positions that are not in the vicinity of an object to be detected that moves relative to the sensor body.
  • the light guide prism used for such an optical sensor can be provided.
  • Second light source 25
  • Light guide prism (light guide) 27
  • Planar portion (transmission surface) 82
  • First inclined surface (total reflection surface) 83
  • Second inclined surface (total reflection surface) 251 Input / output surface (a) 252 Input / output surface (b) 253
  • Output surface 254
  • First inclined surface a) (total reflection surface) 255 1st inclined surface (b) (total reflection surface) 256
  • the optical sensor of the present invention is an optical sensor that irradiates light to a detected object that moves relative to the sensor body and detects light from the detected object.
  • the detected object include paper sheets such as gift certificates, stock certificates, bonds, and bills, and cards such as prepaid cards and credit cards.
  • the optical sensor of the first embodiment is configured as an optical sensor capable of detecting special ink that emits fluorescence having a wavelength in the infrared region when irradiated with light in the visible region.
  • FIG. 1 is a schematic perspective view showing the appearance of the optical sensor of the first embodiment.
  • the optical sensor 1 of the present embodiment includes a housing 11 and a sensor cover 12.
  • a sensor unit (to be described later) is accommodated in the housing 11.
  • the first window portion 12a and the second window portion 12b of the sensor cover 12 formed of a transparent resin emit light from the sensor portion to the outside, and incident light from the outside to the sensor portion. It is provided to make it.
  • FIG. 2 is a schematic cross-sectional view showing a configuration of a sensor unit included in the optical sensor 1 of the first embodiment.
  • the sensor unit 20 includes a first light source 21, a second light source 22, a first light projecting filter 23, a second light projecting filter 24, and a light guide prism (light guide unit). 25, a light receiving side filter 26, a light receiving photodiode 27, a first light quantity monitor 28, a second light quantity monitor 29, and a circuit board 30.
  • each of the first light source 21 and the second light source 22 is configured by an LED (Light emitting diode) that emits light with a wavelength of 590 nm (amber light). ing.
  • LED Light emitting diode
  • the reason why the two light sources of the first light source 21 and the second light source 22 are provided is that the two information are not in the vicinity of the object to be detected 70 (the two positions are separated by, for example, several centimeters). It is for detecting.
  • LED is used as a light source in this embodiment, it is not limited to this, For example, other light emitting elements, such as a semiconductor laser, may be used.
  • the first light projecting side filter 23 and the second light projecting side filter 24 are both high-pass filters that transmit visible light and cut infrared light with respect to light emitted from the first light source 21 or the second light source 22.
  • Infrared cut filter In this embodiment, for example, the transmittance of light with a wavelength of 400 to 580 nm is 60% or more, the transmittance of light with a wavelength of 580 to 600 nm is 40% or more, and the transmittance of light with a wavelength of 750 to 800 nm is 0.6%.
  • a filter having a light transmittance of 0.2% or less for light having a wavelength of 800 to 1000 nm is used.
  • the light guide prism 25 transmits most of the light emitted from the first light source 21 and the second light source 22 through the flat portion 258 and guides it to the detected object 70.
  • most of the light from the detected object 70 entering through the first window portion 12a of the sensor cover 12 is guided to the light receiving photodiode 27 while being totally reflected.
  • most of the light from the detected object 70 incident through the second window portion 12b of the sensor cover 12 is entirely reflected by a reflection path different from the light incident through the first window portion 12a. The light is guided to the light receiving photodiode 27 while being reflected.
  • the light guide prism 25 of the present embodiment is formed by resin-molding, for example, Acrypet (registered trademark; a methacrylic resin molding material of Mitsubishi Rayon, a colorless transparent resin), and is composed of a single member.
  • FIG. 3A is a schematic perspective view of the light guide prism 25 according to the first embodiment as viewed obliquely from above.
  • FIG. 3B is a schematic perspective view of the light guide prism 25 according to the first embodiment viewed obliquely from below.
  • the light guide prism 25 includes an incident / exit surface (a) 251 and an incident / exit surface (b) 252 formed in a substantially circular shape, and an output surface 253 formed in a substantially rectangular shape. And comprising.
  • the incident / exit surface (a) 251 is a light exit surface for guiding light from the first light source 21 to the detected object 70 and an incident surface on which light from the detected object 70 is incident.
  • the incident / exit surface (b) 252 is a light exit surface for guiding the light from the second light source 22 to the detected object 70 and an incident surface on which the light from the detected object 70 is incident.
  • the emission surface 253 is an emission surface of light when the light from the detected object 70 is guided to the light receiving photodiode 27.
  • the light guide prism 25 has a bilaterally symmetric structure with respect to a plane that includes the central portion of the emission surface 253 and is orthogonal to the emission surface 253.
  • the inclined surface facing the input / output surface (a) 251 or the input / output surface (b) 252 is the same as the first inclined surface (a) 254 (inclination angle: about 36 °, see FIG. 5) having different inclination angles.
  • 1 inclined surface (b) 255 (inclination angle: about 45 °, see FIG. 5).
  • the first inclined surface (a) 254 and the first inclined surface (b) 255 are opposed to the second inclined surface 256 (inclination angle: about 32 °, see FIG. 5).
  • the first inclined surface (a) 254 and the first inclined surface (b) 255 have a groove 257 formed in a part thereof, and the bottom surface of the groove 257 includes an incident / exit surface (a) 251 and an incident / exit surface ( b) and a plane portion 258 parallel to the emission surface 253.
  • FIG. 4 is a diagram for explaining the operation of the flat portion 258 included in the light guide prism 25 of the first embodiment.
  • FIG. 5 is a diagram for explaining the operation of the first inclined surfaces 254 and 255 and the second inclined surface 256 included in the light guide prism 25 of the first embodiment.
  • the light emitted from the first light source 21 or the second light source 22 and incident on the flat surface portion 258 passes through the flat surface portion 258 and reaches the detected object 70. That is, the flat portion 258 functions as a transmission surface. However, since the light emitted from the first light source 21 and the second light source 22 has some extent, there is also light that hits the first inclined surface 254 or the second inclined surface 255 instead of the flat portion 258. Such light is reflected and lost, but this amount is relatively small and does not cause a problem. Note that the plane portion 258 also transmits light from the detected object 70.
  • FIG. 5 is a diagram for explaining the operation of the first inclined surface (a) 254 and the second inclined surface 256, and the right diagram in FIG. 5 is the first inclined surface (b) 255 and It is a figure for demonstrating the effect
  • the light incident on the light guide prism 25 from the detected object 70 is totally reflected by the first inclined surface (a) 254 or the first inclined surface (b) 255. Thereafter, the light is further totally reflected by the second inclined surface 256 and guided to the light receiving photodiode 27. That is, the first inclined surface (a) 254, the first inclined surface (b) 255, and the second inclined surface 256 function as a total reflection surface.
  • the light incident on the light guide prism 25 from the detected object 70 is finally totally reflected by the second inclined surface 256 and guided to the light receiving photodiode 27. It has become.
  • the first inclined surface (a) 254 and the first inclined surface (b) 255 having different inclination angles are provided.
  • the inclination angle of the first inclined surface (a) 254 is appropriately designed according to the length of the light guide prism 25 in the left-right direction (the left-right direction is the direction when referring to FIG. 2). is there.
  • the light from the detected object 70 is scattered light, most of the light from the detected object 70 is the first inclined surface (a) 254 or the first inclined surface (b) 255. , Either incident. However, some of the light is incident on the plane portion 258. Since such light is transmitted through the flat portion 258, light loss occurs. However, the ratio of the light incident on the flat portion 258 is small and does not cause a problem.
  • the light-receiving side filter 26 cuts visible light and transmits only infrared light with respect to the light guided to the light-receiving photodiode 27 by the light guide prism 25 (infrared transmission).
  • Filter In the present embodiment, for example, a filter having a light transmittance of 80% or more at a wavelength of 950 nm and a light transmittance of 1% or less at a wavelength of 800 nm is used.
  • the light receiving photodiode 27 receives the light that has passed through the light receiving side filter 26, photoelectrically converts it, and outputs an electrical signal.
  • a silicon_pin photodiode having a sensitivity wavelength range of 320 to 1100 nm and a peak sensitivity wavelength of 960 nm is used.
  • the first light quantity monitor 28 is used to receive a part of the light emitted from the first light source 21 and detect the light quantity level of the light emitted from the first light source 21.
  • the second light quantity monitor 29 is used to receive a part of the light emitted from the second light source 22 and detect the light quantity level of the light emitted from the second light source 22.
  • the LEDs used for the first light source 21 and the second light source 22 may vary in the amount of light even when driven with the same setting conditions due to temperature changes and deterioration. For this reason, in the optical sensor 1 of the present embodiment, the first light amount monitor 28 and the second light amount monitor 29 are provided so that the amount of light emitted from the first light source 21 and the second light source 22 can be constant. Provided.
  • the first light quantity monitor 28 and the second light quantity monitor 29 for example, a photo IC diode having a sensitivity wavelength range of 300 to 1000 nm is used.
  • the light receiving portion of the first light quantity monitor 28 or the second light quantity monitor 29 is disposed at substantially the same height as the light emitting surface of the first light source 21 or the second light source 22. It has a configuration. In this case, due to the directivity of the LEDs used as the light sources 21 and 22, the light amount monitors 28 and 29 are provided in a place where the light emission amount is small. However, since the light quantity monitors 28 and 29 are provided at positions very close to the first light source 21 or the second light source 22, respectively, sufficient output as a light quantity monitor can be obtained. Of course, the positions of the light quantity monitors 28 and 29 may be arranged at positions where the amount of emitted light is larger.
  • FIG. 6 is a block diagram illustrating a circuit configuration of the optical sensor 1 according to the first embodiment.
  • the light source driving unit 31 is electrically connected to the first light source 21 and the second light source 22 and adjusts the output level of light emitted from them.
  • the adjustment of the output levels of the light sources 21 and 22 during operation is performed by monitoring monitor signals obtained from the first light quantity monitor 28 and the second light quantity monitor 29, as will be described later, and assuming that the monitor output is constant at a predetermined value. It is adjusted to become.
  • the identification signal processing unit 32 is electrically connected to the light receiving photodiode 27. Then, the gain adjustment of the electric signal output from the light receiving photodiode 27 is performed by the variable gain unit 32a.
  • the filter / amplifier unit 32b removes noise contained in the signal whose gain has been adjusted and amplifies the signal.
  • the identification signal processing unit 32 inputs the identification signal obtained by processing to the CPU 35. Details of the CPU 35 will be described later.
  • the first monitor signal processing unit 33 is electrically connected to the first light quantity monitor 28. Then, the gain adjustment of the electric signal output from the first light quantity monitor 28 is performed by the variable gain unit 33a.
  • the filter / amplifier unit 33b removes noise and amplifies the signal included in the signal whose gain has been adjusted.
  • the first monitor signal processing unit 33 inputs a monitor signal obtained by processing to the CPU 35.
  • the second monitor signal processing unit 34 is electrically connected to the second light quantity monitor 29. Then, the gain adjustment of the electric signal output from the second light quantity monitor 29 is performed by the variable gain unit 34a.
  • the filter / amplifier unit 34b removes noise contained in the signal whose gain has been adjusted and amplifies the signal.
  • the second monitor signal processing unit 34 inputs the monitor signal obtained by processing to the CPU 35.
  • the CPU 35 includes a built-in AD converter, and converts the received identification signal and monitor signal into digital signals. Then, the CPU 35 processes the identification signal based on the received identification signal and data stored in advance in a memory (not shown) to detect characteristics such as color tone and shading on the object 70 to be detected. Classification of the detected object 70, authenticity determination, and the like are performed. In addition, the CPU 35 confirms the outputs from the first light amount monitor 28 and the second light amount monitor 29 based on the received monitor signal, and outputs a signal to the light source driving unit 31 based on the confirmation result, so that the first light source 21 and the second light source 22 Adjust the drive current.
  • a built-in AD converter converts the received identification signal and monitor signal into digital signals. Then, the CPU 35 processes the identification signal based on the received identification signal and data stored in advance in a memory (not shown) to detect characteristics such as color tone and shading on the object 70 to be detected. Classification of the detected object 70, authenticity determination, and the like are performed. In addition, the CPU 35 confirm
  • FIG. 7 is a flowchart showing a flow of initial adjustment in the optical sensor 1 of the first embodiment.
  • gain adjustment on the light receiving photodiode 27 side is performed using the reference light (step S1).
  • the reference light is prepared in advance as a jig, and the adjustment value adjusted here is used as a fixed value thereafter.
  • Gain adjustment is performed by adjusting the variable gain section 32a.
  • the first light source 21 and the second light source 22 are set so that the output level from the light-receiving photodiode 27 becomes a target value using the reference detection object.
  • the LED light amount (LED light emission amount) is adjusted separately (step S2).
  • the reference object to be detected is coated with the same special ink that is to be detected using the optical sensor 1 during operation.
  • the LED light amount is adjusted by adjusting the light source driving unit 31.
  • the output level of the first light amount monitor 28 and the output level of the second light amount monitor 29 are set to target values under the determined LED light amount.
  • Gain adjustment is performed (step S3).
  • the adjustment value adjusted here is used as a fixed value thereafter.
  • FIG. 8 is a flowchart showing an operation during operation of the optical sensor 1 of the first embodiment.
  • step S11 the first light source 21 and the second light source 22 of the optical sensor 1 are turned on. Then, it is confirmed whether or not the monitor outputs from the first light quantity monitor 28 and the second light quantity monitor 29 are within a target range (step S12).
  • This confirmation is performed by the CPU 35. Specifically, the confirmation is performed by comparing the target value stored in advance in the memory with the output value obtained from the monitor signal.
  • the output of the light source (LED) whose monitor output is not within the target range is output.
  • a change is made (step S13).
  • the output change amount may be determined with reference to an amount by which the monitor output deviates from the target range.
  • the monitor output is within the target range for both the first light source 21 and the second light source 22
  • the measurement of the detected object 70 is performed with both the light sources turned on. That is, the output from the light receiving photodiode 27 is taken into the CPU 35 (step S14).
  • the CPU 35 performs classification of the detected object 70, authenticity determination, and the like based on the acquired information and information stored in advance in the memory.
  • step S15 it is confirmed whether or not the measurement by the optical sensor 1 is finished.
  • the operations from step S12 to step S14 are repeated.
  • FIG. 9 is a schematic plan view showing a state in which the optical sensor 1 of the first embodiment is attached to a gift certificate carrying device.
  • the transport device is provided with an upper guide plate 61 and a lower guide plate 62, and a portion sandwiched between the upper guide plate 61 and the lower guide plate 62 serves as a transport path 63.
  • the conveyance direction of the gift certificate 70 in FIG. 9 is a direction perpendicular
  • the optical sensor 1 is disposed on the upper side of the upper guide plate 61, and is attached so that the sensor cover 12 side faces downward (the sensor cover 12 faces the transport path). And only the truncated cone 12c part (there are two) of the front-end
  • FIG. The reason for projecting only the portion of the truncated cone 12 c is to prevent the conveyed gift certificate 70 from hitting the sensor cover 12 of the optical sensor 1 and causing a jam.
  • the optical sensor 1 is attached to the transport device so that the window portion 12a and the window portion 12b of the sensor cover 12 are aligned in a direction substantially perpendicular to the transport direction of the gift certificate 70. For this reason, it is possible to obtain information of two regions separated in the direction non-parallel to the conveyance direction of the gift certificate 70 by the optical sensor 1.
  • FIG. 10 is a schematic diagram for explaining a configuration example of a gift certificate.
  • the gift certificate 70 has a bar code 71 printed with special ink in a portion surrounded by a broken line.
  • the barcode 71 is printed with special ink that emits fluorescence having a wavelength in the infrared region when irradiated with visible light (in this embodiment, amber light with a wavelength of 590 nm). For this reason, the barcode 71 cannot be visually observed.
  • the use of the bar code 71 that cannot be seen in this way has an advantage that the appearance of the gift certificate is not impaired and an advantage that information for preventing forgery is provided.
  • FIG. 11 is a figure which shows the state which the direction of the gift certificate conveyed by a conveying apparatus is upside down compared with the case of FIG.
  • the optical sensor 1 of the first embodiment light is separately irradiated to two regions that are separated from each other. Then, fluorescence (infrared light) generated in each of the two regions can be detected by the single light receiving photodiode 27 by the light guide prism 25. For this reason, the barcode 71 can be detected regardless of the orientation of the gift certificate 70 in the vertical direction.
  • the optical sensor 1 of the first embodiment information on two areas away from the object to be detected 70 (the two areas are separated in a direction non-parallel to the transport direction) 22 and a single light receiving photodiode 27. That is, unlike the conventional configuration, it is not necessary to increase the number of light receiving elements in accordance with the increase in the number of light sources, and the use of the optical sensor 1 of this embodiment is advantageous in terms of cost (the signal received by the light receiving element). Including the advantage that only one processing circuit is required.
  • the light guide prism 25 can be manufactured by resin molding, and the introduction of the light guide prism 25 can be reduced in cost compared to the increase in the number of light receiving elements.
  • the optical sensor 1 according to the first embodiment if the distance between the two light sources 21 and 21 and the size design of the light guide prism 25 are changed, the separation distance between the two points where the detection target 70 is to be detected can be set. You can change it freely.
  • the application example of the optical sensor 1 of the first embodiment may be as follows, for example.
  • the optical sensor 1 according to the first embodiment is applied so that the presence of the special ink included in the detected object 70 is not lost due to a shift in the transfer position of the detected object 70 conveyed through the conveying device. Also good.
  • the width of the detected object 70 may differ depending on the type.
  • the optical sensor 1 of the present embodiment may be applied to detect the presence of the special ink for any type of the detected object 70 so as not to be damaged.
  • the optical sensor 1 of the first embodiment may be applied to detect the special ink at these two positions.
  • light from a plurality of positions can be combined and received by the light receiving element, and the presence of special ink can be easily confirmed.
  • FIG. 12 is a schematic cross-sectional view illustrating a configuration of a sensor unit included in the optical sensor according to the second embodiment.
  • the object to be detected is also shown for convenience of explanation.
  • the optical sensor 2 according to the second embodiment is different from the optical sensor according to the first embodiment in that the light guide unit 41 included in the sensor unit 40 includes a plurality of mirrors instead of the prism as in the first embodiment. Different from 1. Therefore, only the configuration of the light guide unit 41 is basically described, and the other parts are denoted by the same reference numerals as those in the first embodiment, and the description thereof is omitted unless particularly necessary.
  • the appearance configuration of the optical sensor 2 of the second embodiment is the same as that of the first embodiment.
  • the light guide unit 41 includes a first half mirror 41a, a second half mirror 41b, a first reflection mirror 41c, and a second reflection mirror 41d.
  • the first half mirror 41a and the second half mirror 41b, and the first reflection mirror 41c and the second reflection mirror 41d are arranged at symmetrical positions, respectively.
  • the first half mirror 41a and the second half mirror 41b are both configured to transmit a part of incident light and reflect the remaining part.
  • a half mirror may be a metal half mirror formed by, for example, forming a metal reflective film very thinly on a transparent member.
  • a dielectric half mirror (dichroic mirror) formed by laminating a plurality of substances extremely thinly on a transparent member may be used.
  • the light projecting filters 23 and 24 and the light receiving filter 26 can be omitted.
  • the first reflection mirror 41c and the second reflection mirror 41d are formed so as to reflect all incident light.
  • Such a reflection mirror can be produced by providing a metal film on a transparent member.
  • FIG. 12 shows a configuration in which the mirrors 41a to 41d are arranged as separate members.
  • a resin molded body having a plurality of (four in this embodiment) inclined surfaces serving as reflecting surfaces is formed, and the first half mirror 41a, the second half mirror 41b, the first reflecting mirror 41c, and the first reflecting mirrors are formed on the inclined surfaces.
  • the light guide portion 41 can be a single member, the number of parts can be reduced, and it can be manufactured at low cost. Therefore, it can be said that it is a more preferable aspect.
  • the operation of the optical sensor 2 including the light guide unit 41 configured as described above will be described.
  • the half mirror is a metal half mirror
  • the light emitted from the first light source 21 is cut from infrared light by the first light-projecting filter 23, partially transmitted by the first half mirror 41a, and partially reflected.
  • the light transmitted through the first half mirror 41 a reaches the detection object 70 via the first window portion 12 a of the sensor cover 12.
  • the light from the detected object 70 generated by the light irradiation from the first light source 21 reaches the first half mirror 41a via the first window portion 12a.
  • the first half mirror 41a transmits part of the light and reflects part of the light.
  • the light reflected by the first half mirror 41a is all reflected by the first reflection mirror 41c, and only the infrared light of the reflected light reflected here passes through the light receiving side filter 27 and receives the light receiving photodiode 27. It leads to.
  • the optical sensor 2 of the second embodiment irradiates two separate areas that are not in the vicinity of the detected object 70 separately, and thereby separate positions.
  • the light generated in (1) is guided to a single light-receiving photodiode 27 using different reflection paths depending on the light guide unit 41.
  • the optical sensor 2 of the second embodiment can obtain the same effects as those of the first embodiment.
  • the optical sensor 2 of 2nd Embodiment can be used by the method similar to the optical sensor 1 of 1st Embodiment.
  • FIG. 13 is a schematic diagram for explaining a configuration example of a gift certificate different from the gift certificate of FIG. 10.
  • information is printed with special inks having different properties in two areas (first area 72 and second area 73) separated in a direction non-parallel to the conveyance direction of the gift certificate 70.
  • special inks having different properties in two areas (first area 72 and second area 73) separated in a direction non-parallel to the conveyance direction of the gift certificate 70.
  • light sources having different wavelengths are required.
  • the optical sensor of the third embodiment has a configuration that assumes such a gift certificate 70.
  • FIG. 14 is a schematic cross-sectional view illustrating a configuration of a sensor unit included in the optical sensor of the third embodiment.
  • an object to be detected gift certificate
  • the external configuration of the optical sensor 3 of the third embodiment is the same as that of the first embodiment.
  • the sensor unit 50 of the optical sensor 3 of the third embodiment includes a first light source 21, a second light source 22, a first light projecting filter 23, and a second light projecting filter 24.
  • the configurations of the first light source 21, the first light projecting side filter 23, the light receiving photodiode 27, the first light amount monitor 28, and the second light amount monitor 29 are the same as the configurations of the first embodiment. Then, explanation is omitted.
  • the second light source 22 is an LED that emits ultraviolet light having a wavelength of 370 nm.
  • the second light projecting side filter 24 is a blue filter that passes ultraviolet light and cuts visible light.
  • the blue filter is, for example, a filter having a maximum transmittance with respect to light having a wavelength of 370 nm.
  • the light guide portion 51 has a structure in which a plurality of mirrors 51a to 51d are formed on a transparent resin member 51e that is integrally formed. Specifically, a first half mirror 51a, a second half mirror 51b, a first reflection mirror 51c, and a second reflection mirror 51d are formed on four inclined surfaces of the transparent resin member 51e.
  • the first half mirror 51a and the second half mirror 51b are metal half mirrors in this embodiment, and have a configuration in which a thin metal film is formed on the inclined surface of the transparent resin member 51e.
  • these may be a dielectric half mirror formed by forming a dielectric multilayer film on the inclined surface of the transparent resin member 51e.
  • the first reflection mirror 51c and the second reflection mirror 51d are metal mirrors formed by forming a metal film on the inclined surface of the transparent resin member 51e so as to reflect all incident light.
  • a first light receiving side filter 52 is disposed between the first half mirror 51a and the first reflecting mirror 51c.
  • the first light-receiving side filter 52 is an infrared transmission filter that cuts visible light and transmits only infrared light.
  • a filter having a light transmittance of 80% or more for a wavelength of 950 nm and a light transmittance of 1% or less for a light having a wavelength of 800 nm is used as the first light receiving side filter 52.
  • a second light receiving side filter 53 is disposed between the second half mirror 51b and the second reflecting mirror 51d.
  • the second light receiving side filter 53 is a visible transmission filter that cuts ultraviolet light and transmits visible light.
  • a filter that transmits light of a red component (wavelength of about 640 nm to about 770 nm) is used.
  • different filters may be used according to the color of light (fluorescence) to be detected (for example, orange, yellow, etc.).
  • the operation of the light guide 51 configured as described above will be described. First, the light emitted from the first light source 21 will be described. A part of the light incident on the light guide 51 is reflected by the first half mirror 51 a, but the remaining part is transmitted and reaches the object 70 to be detected. Then, a part of the light from the detected object 70 generated thereby is transmitted through the first half mirror 51a, but the remaining part is reflected. The light reflected by the first half mirror 51 a passes through the first light receiving side filter 52 (note that the visible light component is cut), and is totally reflected by the first reflecting mirror 51 c to the light receiving photodiode 27. It reaches.
  • the first light receiving side filter 52 note that the visible light component is cut
  • the light emitted from the second light source 22 will be described.
  • a part of the light incident on the light guide 51 is reflected by the second half mirror 51 b, but the remaining part is transmitted and reaches the object 70 to be detected.
  • a part of the light generated from the detected object 70 is transmitted through the second half mirror 51b, but the remaining part is reflected.
  • the light reflected by the second half mirror 51b passes through the second light-receiving side filter 53 (note that the ultraviolet light component is cut), and is totally reflected by the first reflecting mirror 51c to the light-receiving photodiode 27. It reaches.
  • FIG. 15 is a block diagram illustrating a circuit configuration of the optical sensor 3 according to the third embodiment.
  • the circuit configuration of the optical sensor 3 of the third embodiment is basically the same as that of the optical sensor 1 of the first embodiment.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the difference from the first embodiment is that an alternating lighting control unit 36 is provided.
  • the alternating lighting control unit 36 controls the operation of the light source driving unit 31 so that the first light source 21 and the second light source 22 are switched in order at predetermined time intervals and turned on (alternate lighting).
  • the object is to detect two pieces of information having different properties printed at different positions of the detected object 70.
  • the optical sensor 3 has two light sources 21 and 22 that irradiate different positions and emit light having different wavelengths.
  • the optical sensor 3 according to the third embodiment is also configured to detect information of two different areas with only the single light receiving photodiode 27. Therefore, unless the first light source 21 and the second light source 22 are turned on separately, the two special inks having different properties printed on the detection target 70 cannot be detected. For this reason, it is necessary to alternately turn on the first light source 21 and the second light source 22, and an alternating lighting control unit 36 is provided.
  • the time interval at which the alternating lighting control unit 36 alternately turns on the first light source 21 and the second light source 22 is measured in consideration of, for example, the speed at which the detected object 70 is conveyed, the size at which the special ink is printed, and the like. Or by performing a simulation or the like.
  • the wavelength of the fluorescence received by the light receiving photodiode 27 differs depending on whether the first light source 21 is turned on or the second light source 22 is turned on. In this case, the sensitivity of the light receiving photodiode may be different. In consideration of such points, the gain adjustment value of the light receiving photodiode 27 is separately determined when the first light source 21 is used and when the second light source 22 is used at the initial adjustment stage of the optical sensor 3. The setting condition of the identification signal processing unit 32 may be changed in accordance with alternating lighting of the light sources 21 and 22.
  • the optical sensor 3 of the third embodiment configured as described above is attached to the transport device, special inks having different properties in the two areas of the transported gift certificate 70 are separately detected, and the gift certificate classification and It is possible to perform authenticity determination.
  • the two regions of the detected object 70 are separately irradiated with light, thereby causing the light generated at different positions to be single by using different reflection paths by the light guide unit 51.
  • the light receiving photodiode 27 is guided. That is, the number of light receiving elements can be reduced to one without increasing the number of light receiving elements in accordance with the increase in the number of light sources. Therefore, even when two special inks having different properties are printed at a plurality of positions that are not in the vicinity of the detected object 70, it is possible to detect such information at a low cost.
  • the light guide portions 25, 41, and 51 have a symmetrical structure.
  • the present invention is not limited to this configuration. It suffices if information of two areas separated in a direction non-parallel to the conveyance direction of the detected object 70 can be detected, and the light guides 25, 41, 51 may of course have an asymmetric structure.
  • the first light source 21 and the second light source 22 are not alternately lit.
  • the present invention is not limited to this, and the first light source 21 and the second light source 22 may be alternately turned on. In this way, it is possible to distinguish whether the information detected by the light receiving photodiode 27 is based on when the first light source 21 is turned on or when the second light source 22 is turned on. That is, it can be grasped where information (for example, bar code information) printed with special ink is located in the gift certificate 70 to be conveyed.
  • the S / N ratio of the signal when the special ink (bar code 71) of the gift certificate 70 is detected can be improved. That is, when alternating lighting is not performed, there is a possibility that unnecessary light enters the light receiving photodiode 27 by turning on one of the light sources, and the S / N may be deteriorated. This point can be eliminated by alternating lighting.
  • the optical sensor of the present invention is a sensor that detects information of three or more regions that are not in the vicinity of the detected object 70 by using one light receiving element with three or more light sources. Can be applied.
  • the configuration of the light guide unit in the case of detecting information on three separate areas that are not in the vicinity of the detected object 70 is shown in FIG.
  • FIG. 16 is a diagram illustrating a configuration example of the light guide prism when the number of light sources is three.
  • FIG. 16 is a plan view showing a modified configuration of the light guide prism shown in FIG. 3A.
  • the configuration illustrated in FIG. 16 is a configuration that can detect information of a portion surrounded by a broken-line circle.
  • 81 is a plane part (transmission surface) for transmitting light emitted from the light source
  • 82 is a first inclined surface (total reflection surface) for totally reflecting light from the object to be detected.
  • Reference numeral 83 denotes a second inclined surface (total reflection surface) that further totally reflects the light reflected by the first inclined surface 82.
  • the first inclined surface 82 indicates the outer surface of the light guide prism
  • the second inclined surface 83 indicates the inner surface of the light guide prism.
  • the light guide prism configured in this way also transmits light emitted from a plurality of light sources and guides it to a detected object, and uses different reflection paths for light from a plurality of positions of the detected object. To a single light receiving element.
  • the light sources 21 and 22 and the light receiving photodiode 27 are arranged on the same side when viewed from the object 70 to be detected.
  • the present invention is not limited to this configuration. That is, for example, as shown in FIG. 17, the light sources 21 and 22 are arranged on one side with the detected object 70 conveyed on the conveyance path 63 interposed therebetween, and the light guide unit (for example, the light guide prism 25) is arranged on the other side.
  • the arrangement as in the first to third embodiments is preferable because the optical sensor can be reduced in size and can be applied to an object to be detected that does not transmit light.
  • the configuration in which the detected object is transported by the transport device is shown as the configuration in which the detected object moves relative to the optical sensor.
  • the optical sensor of the present invention can be applied even when the object to be detected moves relative to the optical sensor by moving the optical sensor itself.
  • the present invention uses, for example, an optical method to classify paper sheets such as gift certificates, stock certificates, receivables, and banknotes, and prepaid cards, cards such as credit cards, and the like. It can be suitably used as a sensor for performing authenticity determination or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Optics & Photonics (AREA)
  • Inspection Of Paper Currency And Valuable Securities (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

An optical sensor irradiates a light onto an object to be detected which is moving relatively to the sensor itself to detect a light from the object to be detected. The optical sensor includes a plurality of light sources for irradiating lights onto a plurality of separate locations on the object to be detected independently, a single optical receiver element to receive lights from a plurality of locations on the object to be detected for performing photoelectric conversion, and an optical waveguide section which transmits a light outgoing from each of a plurality of light sources for guiding to the object to be detected, while guiding lights from a plurality of locations to the single optical receiver element using each different reflective path.

Description

光学センサ及び導光プリズムOptical sensor and light guide prism
 本発明は、センサ本体に対して相対的に移動する紙葉類やカード類等の被検出物に光を照射し、被検出物からの光を検出する光学センサに関し、より詳細には、センサ本体に対して相対的に移動する被検出物の近傍でない複数の位置から情報を検出することができる光学センサの構成に関する。また、本発明は、そのような光学センサに用いられる導光プリズムに関する。 The present invention relates to an optical sensor that irradiates light to a detected object such as a paper sheet or a card that moves relative to the sensor main body, and detects light from the detected object. The present invention relates to a configuration of an optical sensor that can detect information from a plurality of positions that are not in the vicinity of an object to be detected that moves relative to a main body. The present invention also relates to a light guide prism used in such an optical sensor.
 従来、商品券、証券、債権、紙幣等の紙葉類や、プリペードカード、クレジッドカード等のカード類等に対して、例えば、それらを分類する目的や、それらが真正品であるかどうかを判定する(真偽の判定を行う)目的で、その一部にバーコードを表示させたり、一部を特殊インクで印刷したりすることが行われている。そして、このような紙葉類やカード類等に対しては、光学的な手法を用いて、その分類や真偽の判定等が行われるのが一般的である。なお、特殊インクとしては、例えば特許文献1に示されるような、可視光を照射した場合に赤外線を発光する(蛍光反応を起こす)ようなインク等が挙げられる。 Conventionally, for paper sheets such as gift certificates, securities, receivables, banknotes, cards such as prepaid cards, credit cards, etc., for example, the purpose of classifying them and whether they are genuine products For the purpose of making a determination (determining authenticity), a bar code is displayed on a part of it, or a part is printed with special ink. For such paper sheets, cards, and the like, it is common to classify or authenticate them using an optical method. Examples of the special ink include an ink that emits infrared rays (causes a fluorescent reaction) when irradiated with visible light, as disclosed in Patent Document 1, for example.
 光学的な手法により、被検出物(紙葉類やカード類等)から発生する蛍光を検出するセンサとしては、例えば、特許文献2や3に開示される光学センサがある。図18は、従来の光学センサの光学系の構成を示す概略図である。なお、図18には、説明の便宜のために被検出物を搬送する搬送路についても示している。 Examples of sensors that detect fluorescence generated from an object to be detected (such as paper sheets and cards) by an optical technique include optical sensors disclosed in Patent Documents 2 and 3. FIG. 18 is a schematic diagram showing a configuration of an optical system of a conventional optical sensor. Note that FIG. 18 also shows a transport path for transporting an object to be detected for convenience of explanation.
 図18に示されるように、従来の光学センサ100は、光源101と、光源101から出射された光のうち、特定の波長の光のみ透過させる第1のフィルタ102と、第1のフィルタ102を通過した光を透過及び反射させ、被検出物を搬送する搬送路110に対して直交するような光を当てる光透過/反射型ミラー103と、光源101から出射されて光透過/反射型ミラー103によって反射された光の照射により被検出物から発する蛍光を、光透過/反射型ミラーを介して受光する受光素子104と、受光素子104と光透過/反射型ミラー103との間に配置され、第1のフィルタ102を透過する特定の波長の光をカットする第2のフィルタ105と、を備える。 As shown in FIG. 18, the conventional optical sensor 100 includes a light source 101, a first filter 102 that transmits only light having a specific wavelength out of light emitted from the light source 101, and a first filter 102. A light transmissive / reflective mirror 103 that transmits and reflects the light that has passed therethrough and applies light that is orthogonal to the transport path 110 that transports the object to be detected, and a light transmissive / reflective mirror 103 that is emitted from the light source 101. Fluorescence emitted from the object to be detected by irradiation of the light reflected by the light receiving element 104 is received between the light receiving element 104 that receives the light through the light transmitting / reflecting mirror, and between the light receiving element 104 and the light transmitting / reflecting mirror 103, And a second filter 105 that cuts light of a specific wavelength that passes through the first filter 102.
 光学センサ100をこのように構成した場合、搬送される被検出物に対して光源101から光を照射し、その際に被検出物が発する蛍光を受光素子104で検出できる。このために、被検出物が有する蛍光物質を検出でき、例えば、商品券等が本物であるか、偽物であるかの判定(真偽の判定)等を行える。 When the optical sensor 100 is configured in this way, the light to be detected is irradiated from the light source 101 to the object to be transported, and the fluorescence emitted from the object to be detected can be detected by the light receiving element 104. For this reason, the fluorescent substance which a to-be-detected object has can be detected, for example, it can be judged whether a gift certificate etc. are genuine or a fake (determination of authenticity).
 ところで、搬送される被検出物の近傍でない離れた複数の位置(搬送方向と非平行な方向に離れた複数の位置)にそれぞれ光を照射して、被検出物の複数箇所の情報を検出したい場合がある。このような場合、従来においては、上述のような光学センサを複数配置するのが一般的である。例えば特許文献4に、ライン状に並べられた複数の光源と、複数の受光素子と、を配置する構成が示されている。
米国特許第6,985,607明細書 特開2002-197506号公報 特開2003-296792号公報 特開2000-307819号公報
By the way, it is desired to detect information on a plurality of locations of a detected object by irradiating light to a plurality of separated positions (a plurality of positions separated in a direction non-parallel to the transport direction) that is not in the vicinity of the detected object to be conveyed. There is a case. In such a case, conventionally, a plurality of optical sensors as described above are generally arranged. For example, Patent Document 4 shows a configuration in which a plurality of light sources arranged in a line and a plurality of light receiving elements are arranged.
US Pat. No. 6,985,607 JP 2002-197506 A JP 2003-296792 A JP 2000-307819 A
 しかしながら、従来の手法では、搬送される被検出物の近傍でない複数の位置(搬送方向と平行でない方向に離れた複数の位置)から情報を検出しようとすると、光源及び受光素子の数を増やす必要がある。そして、光源や受光素子の数が増えると、電気回路の構成も複雑となる。このために、搬送される被検出物の近傍でない複数の位置から情報を得ようとすると、コストが高くなるといった問題があった。 However, in the conventional method, if information is to be detected from a plurality of positions that are not in the vicinity of the object to be detected (a plurality of positions separated in a direction not parallel to the conveyance direction), it is necessary to increase the number of light sources and light receiving elements. There is. As the number of light sources and light receiving elements increases, the configuration of the electric circuit also becomes complicated. For this reason, when information is obtained from a plurality of positions that are not in the vicinity of the object to be detected, there is a problem that the cost increases.
 本発明は、上記問題に鑑みてなされたものであって、センサ本体に対して相対的に移動する被検出物の近傍でない複数の位置から、低コストで情報の検出を行うことが可能な光学センサの提供を目的とする。また、そのような光学センサに使用される導光プリズムの提供を目的とする。 The present invention has been made in view of the above problems, and is an optical that can detect information at a low cost from a plurality of positions that are not in the vicinity of an object to be detected that moves relative to the sensor body. The purpose is to provide sensors. Moreover, it aims at provision of the light guide prism used for such an optical sensor.
 上記目的を達成するため本発明は、センサ本体に対して相対的に移動する被検出物に光を照射し、前記被検出物からの光を検出する光学センサであって、前記被検出物の離れた複数の位置を別々に照射するための複数の光源と、前記被検出物の前記複数の位置からの光を受光して光電変換を行う単一の受光素子と、前記複数の光源の各々から出射される光を透過して前記被検出物へと導く共に、前記複数の位置からの光について、各々異なる反射経路を利用して前記単一の受光素子へと導く導光部と、を備えることを特徴とする。 In order to achieve the above object, the present invention provides an optical sensor for irradiating light to a detected object that moves relative to the sensor body and detecting light from the detected object, A plurality of light sources for separately illuminating a plurality of remote positions, a single light receiving element that receives light from the plurality of positions of the detection object and performs photoelectric conversion, and each of the plurality of light sources A light guide unit that transmits light emitted from the plurality of positions and guides the light from the plurality of positions to the single light receiving element using different reflection paths. It is characterized by providing.
 本構成によれば、導光部によって、被検出物の離れた複数の位置からの光について、各々異なる反射経路を利用して単一の受光素子に導くことができる。このために、センサ本体に対して相対的に移動する被検出物の近傍でない複数の位置から情報の検出を行うにあたって、光源の数は複数となるも、受光素子の数を1つとできる。すなわち、従来の構成に比べて受光素子の数の削減を図れ、被検出物の近傍でない複数の位置から、低コストで情報の検出を行うことが可能となる。また、本構成では、導光部によって被検出物の複数の位置からの光を単一の受光素子へと導く構成であり、導光部の設計によって複数の位置間の距離を自由に変更することが可能である。 According to this configuration, the light from the plurality of positions away from the object to be detected can be guided to a single light receiving element by using different reflection paths. For this reason, when information is detected from a plurality of positions that are not in the vicinity of the detected object that moves relative to the sensor body, the number of light sources is plural, but the number of light receiving elements can be one. That is, the number of light receiving elements can be reduced as compared with the conventional configuration, and information can be detected at a low cost from a plurality of positions that are not in the vicinity of the object to be detected. Moreover, in this structure, it is the structure which guides the light from the several position of a to-be-detected object to a single light receiving element with a light guide part, The distance between several positions is changed freely by the design of a light guide part. It is possible.
 また上記構成において、前記導光部は、単一の部材からなることとしてもよい。本構成によれば、導光部の部品点数の削減を図れ、光学センサの組み立て作業が容易となる。 In the above configuration, the light guide unit may be formed of a single member. According to this configuration, the number of parts of the light guide unit can be reduced, and the assembly work of the optical sensor becomes easy.
 また上記構成のより具体的な構成として、前記単一の部材は、前記複数の光源に対して各々設けられて前記複数の光源から出射される光を透過するための透過面と、前記被検出物からの光について、全反射するための複数の全反射面と、を備える導光プリズムであることとしてもよい。 Further, as a more specific configuration of the above configuration, the single member is provided for each of the plurality of light sources and transmits a light emitted from the plurality of light sources, and the detection target. The light guide prism may include a plurality of total reflection surfaces for totally reflecting the light from the object.
 本構成によれば、被検出物の複数の位置からの光について、全反射を利用して単一の受光素子へと導く構成であり、光の損失の低減を図り易い。このために、光学センサを用いた分類や判定を正確なものとし易い。また、本構成によれば、導光部を樹脂成形によって作製でき、導光部の作製に要するコストを安価なものとできる。このため、被検出物の近傍でない複数の位置から、低コストで情報の検出を行う構成を実現し易い。 According to this configuration, light from a plurality of positions of the detection target is guided to a single light receiving element using total reflection, and it is easy to reduce light loss. For this reason, it is easy to make classification and determination using an optical sensor accurate. Moreover, according to this structure, the light guide part can be produced by resin molding, and the cost required for producing the light guide part can be reduced. For this reason, it is easy to implement | achieve the structure which detects information at low cost from the several position which is not the vicinity of a to-be-detected object.
 また上記構成において、前記導光部は複数のミラーを備え、前記複数のミラーには、入射する光の一部を透過し、残りの一部を反射する複数の第1のミラーと、入射する光を全て反射する複数の第2のミラーと、が含まれることとしてもよい。この構成でも、受光素子の数の削減を図れるため、被検出物の近傍でない複数の位置から、低コストで情報の検出を行うことが可能となる。 In the above configuration, the light guide section includes a plurality of mirrors, and the plurality of mirrors are incident on the plurality of first mirrors that transmit a part of incident light and reflect the remaining part. A plurality of second mirrors that reflect all of the light may be included. Even in this configuration, since the number of light receiving elements can be reduced, information can be detected at a low cost from a plurality of positions that are not in the vicinity of the detection object.
 また上記構成において、前記光源から出射される光の波長と、前記単一の受光素子で受光される光の波長とが異なるように形成されることとしてもよい。本構成によれば、例えば光の照射によって蛍光を発する特殊インクの存在を検出することが可能な光学センサの提供が可能となる。 In the above configuration, the wavelength of light emitted from the light source may be different from the wavelength of light received by the single light receiving element. According to this configuration, for example, it is possible to provide an optical sensor capable of detecting the presence of special ink that emits fluorescence when irradiated with light.
 また上記構成のより具体的な構成として、前記光源から出射される光が可視光であり、前記単一の受光素子で受光される光が赤外光であることとしてもよい。 As a more specific configuration of the above configuration, the light emitted from the light source may be visible light, and the light received by the single light receiving element may be infrared light.
 また上記構成において、前記複数の光源は、各々異なる波長の光を出射することとしてもよい。本構成によれば、複数の位置に異なる特徴を有する被検出物について、単一の受光素子で情報の検出を行うことが可能となる。 In the above configuration, the plurality of light sources may emit light having different wavelengths. According to this configuration, it is possible to detect information with a single light receiving element for an object to be detected having different characteristics at a plurality of positions.
 また上記構成において、前記複数の光源が交番点灯することとしてもよい。本構成によれば、例えば、被検出物の複数の位置のうち、いずれの位置から情報が検出されたのかを把握することが可能となる。また、複数の光源が各々異なる波長の光を出射する場合に、各波長について個別に情報を検出することが可能となる。 In the above configuration, the plurality of light sources may be alternately lit. According to this configuration, for example, it is possible to grasp which position the information is detected from among a plurality of positions of the detected object. In addition, when a plurality of light sources emit light having different wavelengths, information can be individually detected for each wavelength.
 また上記構成において、前記複数の光源と前記単一の受光素子とは、前記被検出物から見て同一側に配置されることとしてもよい。本構成によれば、光学センサを小型化しやすい。また、カード類等の光を透過させにくい被検出物に対しても利用できる。 In the above configuration, the plurality of light sources and the single light receiving element may be disposed on the same side as viewed from the object to be detected. According to this configuration, the optical sensor can be easily downsized. It can also be used for objects to be detected such as cards that are difficult to transmit light.
 また、上記構成において、前記複数の光源は、第1の光源と第2の光源との2つの光源から成り、前記導光プリズムは樹脂で形成され、前記第1の光源と前記導光プリズムとの間、前記第2の光源と前記導光プリズムとの間、及び前記導光プリズムと前記単一の受光素子との間には、各々通過できる光を特定の波長領域の光に制限するフィルタが配置されることとしてもよい。 Further, in the above configuration, the plurality of light sources includes two light sources, a first light source and a second light source, the light guide prism is formed of resin, and the first light source and the light guide prism Between the second light source and the light guide prism, and between the light guide prism and the single light receiving element, a filter that restricts light that can pass through to the light of a specific wavelength region. May be arranged.
 また、上記目的を達成するために本発明の導光プリズムは、光の出射面及び入射面として機能し、位置的に同一の平面上にある複数の入出射面と、前記複数の入出射面の各々について傾斜した状態で対向配置されて、全反射面として機能する複数の第1の傾斜面と、前記複数の第1の傾斜面で全反射された光を更に全反射するために設けられる複数の第2の傾斜面と、前記複数の第2の傾斜面で全反射された光を出射する出射面と、を備え、前記第1の傾斜面には、前記複数の入出射面の各々に対して1つずつ平行に対向配置され、前記複数の第1の傾斜面の各々の一部に部分的な平面を設けることによって形成されて透過面として機能する平面部が設けられることを特徴とする。 In order to achieve the above object, the light guide prism of the present invention functions as a light exit surface and an entrance surface, and has a plurality of entrance / exit surfaces on the same plane, and the plurality of entrance / exit surfaces. And a plurality of first inclined surfaces that function as total reflection surfaces, and are provided for further total reflection of light totally reflected by the plurality of first inclined surfaces. A plurality of second inclined surfaces; and an emission surface that emits light totally reflected by the plurality of second inclined surfaces, wherein each of the plurality of incident / exit surfaces is provided on the first inclined surface. And a plane portion that is formed by providing a partial plane on a part of each of the plurality of first inclined surfaces and functions as a transmission surface. And
 本構成によれば、導光プリズムは、離れた複数の位置からの光を複数の入出射面のいずれかから入射して、それぞれ異なる反射経路で1つの出射面へと導くことができる。また、導光プリズムは平面部から入射する光については、全反射することなく透過させることができる。このため、本構成の導光プリズムを用いれば、複数の光源からの光をそれぞれ透過して被検出物へと導き、被検出物の複数の位置からの光を別々の反射経路を利用して単一の受光素子へと導くことが可能となる。すなわち、本構成によれば、センサ本体に対して相対的に移動する被検出物の情報を離れた複数の位置から低コストで検出することが可能な光学センサに用いる導光プリズムを提供できる。 According to this configuration, the light guide prism can input light from a plurality of distant positions from any one of the plurality of incident / exit surfaces and guide the light to one output surface through different reflection paths. In addition, the light guide prism can transmit light incident from the plane portion without being totally reflected. For this reason, if the light guide prism of this configuration is used, the light from the plurality of light sources is transmitted to the detected object, and the light from the plurality of positions of the detected object is used using different reflection paths. It becomes possible to lead to a single light receiving element. That is, according to this structure, the light guide prism used for the optical sensor which can detect the information of the detected object moving relatively with respect to the sensor main body at a low cost from a plurality of positions separated from each other can be provided.
 本発明によると、センサ本体に対して相対的に移動する被検出物の近傍でない複数の位置から、低コストで情報の検出を行うことが可能な光学センサを提供できる。また、本発明によると、そのような光学センサに用いる導光プリズムを提供できる。 According to the present invention, it is possible to provide an optical sensor capable of detecting information at a low cost from a plurality of positions that are not in the vicinity of an object to be detected that moves relative to the sensor body. Moreover, according to this invention, the light guide prism used for such an optical sensor can be provided.
本発明の第1実施形態の光学センサの外観を示す概略斜視図である。It is a schematic perspective view which shows the external appearance of the optical sensor of 1st Embodiment of this invention. 第1実施形態の光学センサが備えるセンサ部の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the sensor part with which the optical sensor of 1st Embodiment is provided. 第1実施形態の導光プリズムを斜め上方から見た場合の概略斜視図である。It is a schematic perspective view at the time of seeing the light guide prism of 1st Embodiment from diagonally upward. 第1実施形態の導光プリズムを斜め下方から見た場合の概略斜視図である。It is a schematic perspective view at the time of seeing the light guide prism of 1st Embodiment from diagonally downward. 第1実施形態の導光プリズムが有する平面部の作用を説明するための図である。It is a figure for demonstrating the effect | action of the plane part which the light guide prism of 1st Embodiment has. 第1実施形態の導光プリズムが有する第1から第3の傾斜面の作用を説明するための図である。It is a figure for demonstrating the effect | action of the 1st-3rd inclined surface which the light guide prism of 1st Embodiment has. 第1実施形態の光学センサにおける回路構成を示すブロック図である。It is a block diagram which shows the circuit structure in the optical sensor of 1st Embodiment. 第1実施形態の光学センサにおける初期調整のフローを示すフローチャートである。It is a flowchart which shows the flow of the initial adjustment in the optical sensor of 1st Embodiment. 第1実施形態の光学センサの運用時の動作を示すフローチャートである。It is a flowchart which shows the operation | movement at the time of operation | use of the optical sensor of 1st Embodiment. 第1実施形態の光学センサが商品券搬送用の搬送装置に取り付けられた状態を示す概略平面図である。It is a schematic plan view which shows the state in which the optical sensor of 1st Embodiment was attached to the conveying apparatus for gift certificate conveyance. 商品券の構成例を説明するための模式図である。It is a schematic diagram for demonstrating the structural example of a gift certificate. 搬送装置を搬送される商品券の向きが図10の場合と比べて上下逆となっている状態を示す図である。It is a figure which shows the state in which the direction of the gift certificate conveyed by a conveying apparatus is upside down compared with the case of FIG. 本発明の第2実施形態の光学センサが備えるセンサ部の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the sensor part with which the optical sensor of 2nd Embodiment of this invention is provided. 図10の商品券と異なる商品券の構成例を説明するための模式図である。It is a schematic diagram for demonstrating the structural example of the gift certificate different from the gift certificate of FIG. 本発明の第3実施形態の光学センサが備えるセンサ部の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the sensor part with which the optical sensor of 3rd Embodiment of this invention is provided. 第3実施形態の光学センサにおける回路構成を示すブロック図である。It is a block diagram which shows the circuit structure in the optical sensor of 3rd Embodiment. 本発明の変形例を示す図で、光源の数が3つとされた場合の導光プリズムの構成例を示す図である。It is a figure which shows the modification of this invention, and is a figure which shows the structural example of the light guide prism in case the number of light sources is three. 本発明の変形例を示す図で、光源と受光素子とが被検出物から見て互いに反対面側に配置される構成を示す図である。It is a figure which shows the modification of this invention, and is a figure which shows the structure by which a light source and a light receiving element are arrange | positioned on a mutually opposing surface side seeing from a to-be-detected object. 従来の光学センサの光学系の構成を示す概略図である。It is the schematic which shows the structure of the optical system of the conventional optical sensor.
符号の説明Explanation of symbols
   1、2、3   光学センサ
   21   第1光源
   22   第2光源
   25   導光プリズム(導光体)
   27   受光用フォトダイオード(受光素子)
   41、51   導光部
   41a、51a   第1ハーフミラー
   41b、51b   第2ハーフミラー
   41c、51c   第1反射ミラー
   41d、51d   第2反射ミラー
   70   被検出物
   81   平面部(透過面)
   82   第1の傾斜面(全反射面)
   83   第2の傾斜面(全反射面)
   251   入出射面(a)
   252   入出射面(b)
   253   出射面
   254   第1の傾斜面(a)(全反射面)
   255   第1の傾斜面(b)(全反射面)
   256   第2の傾斜面(全反射面)
   257   溝
   258   平面部(透過面)
1, 2, 3 Optical sensor 21 First light source 22 Second light source 25 Light guide prism (light guide)
27 Light-receiving photodiode (light-receiving element)
41, 51 Light guide portion 41a, 51a First half mirror 41b, 51b Second half mirror 41c, 51c First reflection mirror 41d, 51d Second reflection mirror 70 Detected object 81 Planar portion (transmission surface)
82 First inclined surface (total reflection surface)
83 Second inclined surface (total reflection surface)
251 Input / output surface (a)
252 Input / output surface (b)
253 Output surface 254 First inclined surface (a) (total reflection surface)
255 1st inclined surface (b) (total reflection surface)
256 Second inclined surface (total reflection surface)
257 groove 258 flat surface (transmission surface)
 以下、本発明の光学センサの実施形態について、図面を参照しながら説明する。なお、本発明の光学センサは、センサ本体に対して相対的に移動する被検出物に光を照射し、被検出物からの光を検出する光学センサである。ここで、被検出物としては、例えば、商品券、株券、債権、紙幣等の紙葉類や、プリペードカード、クレジットカード等のカード類等が該当する。 Hereinafter, embodiments of the optical sensor of the present invention will be described with reference to the drawings. The optical sensor of the present invention is an optical sensor that irradiates light to a detected object that moves relative to the sensor body and detects light from the detected object. Here, examples of the detected object include paper sheets such as gift certificates, stock certificates, bonds, and bills, and cards such as prepaid cards and credit cards.
(第1実施形態)
 まず、第1実施形態の光学センサについて説明する。第1実施形態の光学センサは、可視領域の光を照射した場合に、赤外領域の波長を有する蛍光を発する特殊インクを検出できる光学センサとして構成されている。
(First embodiment)
First, the optical sensor of the first embodiment will be described. The optical sensor of the first embodiment is configured as an optical sensor capable of detecting special ink that emits fluorescence having a wavelength in the infrared region when irradiated with light in the visible region.
 図1は、第1実施形態の光学センサの外観を示す概略斜視図である。図1に示すように、本実施形態の光学センサ1は、筐体11と、センサカバー12と、を備える。筐体11内には、後述するセンサ部が収容される。透明樹脂で形成されるセンサカバー12の第1の窓部12aと第2の窓部12bとは、センサ部からの光を外部へと出射し、また、外部からの光をセンサ部へと入射させるために設けられている。 FIG. 1 is a schematic perspective view showing the appearance of the optical sensor of the first embodiment. As shown in FIG. 1, the optical sensor 1 of the present embodiment includes a housing 11 and a sensor cover 12. A sensor unit (to be described later) is accommodated in the housing 11. The first window portion 12a and the second window portion 12b of the sensor cover 12 formed of a transparent resin emit light from the sensor portion to the outside, and incident light from the outside to the sensor portion. It is provided to make it.
 図2は、第1実施形態の光学センサ1が備えるセンサ部の構成を示す概略断面図である。なお、図2においては説明の都合上、被検出物も示している。図2に示すように、センサ部20は、第1光源21と、第2光源22と、第1投光側フィルタ23と、第2投光側フィルタ24と、導光プリズム(導光部)25と、受光側フィルタ26と、受光用フォトダイオード27と、第1光量モニタ28と、第2光量モニタ29と、回路基板30と、を備える。 FIG. 2 is a schematic cross-sectional view showing a configuration of a sensor unit included in the optical sensor 1 of the first embodiment. In FIG. 2, the object to be detected is also shown for convenience of explanation. As shown in FIG. 2, the sensor unit 20 includes a first light source 21, a second light source 22, a first light projecting filter 23, a second light projecting filter 24, and a light guide prism (light guide unit). 25, a light receiving side filter 26, a light receiving photodiode 27, a first light quantity monitor 28, a second light quantity monitor 29, and a circuit board 30.
 第1実施形態の光学センサ1においては、第1光源21と第2光源22とは、いずれも波長590nmの光(琥珀色の光)を出射するLED(Light emitting diode;発光ダイオード)で構成されている。第1光源21と第2光源22との2つの光源を備える理由は、被検出物70の近傍でない離れた2つの位置(この2つの位置は、例えば数センチのオーダーで離間する)から、情報を検出するためである。なお、本実施形態では光源としてLEDを用いているが、これに限定されず、例えば半導体レーザ等、他の発光素子でも構わない。 In the optical sensor 1 of the first embodiment, each of the first light source 21 and the second light source 22 is configured by an LED (Light emitting diode) that emits light with a wavelength of 590 nm (amber light). ing. The reason why the two light sources of the first light source 21 and the second light source 22 are provided is that the two information are not in the vicinity of the object to be detected 70 (the two positions are separated by, for example, several centimeters). It is for detecting. In addition, although LED is used as a light source in this embodiment, it is not limited to this, For example, other light emitting elements, such as a semiconductor laser, may be used.
 第1投光側フィルタ23と第2投光側フィルタ24とは、いずれも第1光源21或いは第2光源22から出射される光について、可視光を透過させ、赤外光をカットするハイパスフィルタ(赤外カットフィルタ)である。本実施形態においては、例えば、波長400~580nmの光の透過率が60%以上、波長580~600nmの光の透過率が40%以上、波長750~800nmの光の透過率が0.6%以下、波長800~1000nmの光の透過率が0.2%以下のフィルタが用いられる。 The first light projecting side filter 23 and the second light projecting side filter 24 are both high-pass filters that transmit visible light and cut infrared light with respect to light emitted from the first light source 21 or the second light source 22. (Infrared cut filter). In this embodiment, for example, the transmittance of light with a wavelength of 400 to 580 nm is 60% or more, the transmittance of light with a wavelength of 580 to 600 nm is 40% or more, and the transmittance of light with a wavelength of 750 to 800 nm is 0.6%. Hereinafter, a filter having a light transmittance of 0.2% or less for light having a wavelength of 800 to 1000 nm is used.
 導光プリズム25は、第1光源21及び第2光源22から出射された光の大部分を平面部258を通じて透過させ、被検出物70へと導く。一方、センサカバー12の第1の窓部12aを経由して入射する被検出物70からの光の大部分について、全反射しながら受光用フォトダイオード27へと導く。また、センサカバー12の第2の窓部12bを経由して入射する被検出物70からの光の大部分について、第1の窓部12aを経由して入射する光とは異なる反射経路で全反射しながら受光用フォトダイオード27へと導く。 The light guide prism 25 transmits most of the light emitted from the first light source 21 and the second light source 22 through the flat portion 258 and guides it to the detected object 70. On the other hand, most of the light from the detected object 70 entering through the first window portion 12a of the sensor cover 12 is guided to the light receiving photodiode 27 while being totally reflected. Further, most of the light from the detected object 70 incident through the second window portion 12b of the sensor cover 12 is entirely reflected by a reflection path different from the light incident through the first window portion 12a. The light is guided to the light receiving photodiode 27 while being reflected.
 本実施形態の導光プリズム25は、例えばアクリペット(登録商標;三菱レイヨンのメタクリル樹脂成形材料で、無色透明の樹脂)を樹脂成形することによって形成され、単一の部材から成る。図3Aは、第1実施形態の導光プリズム25を斜め上方から見た場合の概略斜視図である。図3Bは、第1実施形態の導光プリズム25を斜め下方から見た場合の概略斜視図である。 The light guide prism 25 of the present embodiment is formed by resin-molding, for example, Acrypet (registered trademark; a methacrylic resin molding material of Mitsubishi Rayon, a colorless transparent resin), and is composed of a single member. FIG. 3A is a schematic perspective view of the light guide prism 25 according to the first embodiment as viewed obliquely from above. FIG. 3B is a schematic perspective view of the light guide prism 25 according to the first embodiment viewed obliquely from below.
 図3A及び図3Bに示すように、導光プリズム25は、略円形状に形成される入出射面(a)251及び入出射面(b)252と、略矩形状に形成される出射面253と、を備える。入出射面(a)251は、第1光源21からの光を被検出物70へと導く際の光の出射面であるとともに、被検出物70からの光を入射する入射面である。入出射面(b)252は、第2光源22からの光を被検出物70へと導く際の光の出射面であるとともに、被検出物70からの光を入射する入射面である。出射面253は、被検出物70からの光を受光用フォトダイオード27へと導く際の光の出射面である。導光プリズム25は、出射面253の中心部を含んで出射面253に対して直交する面に対して左右対称な構造となっている。 As shown in FIGS. 3A and 3B, the light guide prism 25 includes an incident / exit surface (a) 251 and an incident / exit surface (b) 252 formed in a substantially circular shape, and an output surface 253 formed in a substantially rectangular shape. And comprising. The incident / exit surface (a) 251 is a light exit surface for guiding light from the first light source 21 to the detected object 70 and an incident surface on which light from the detected object 70 is incident. The incident / exit surface (b) 252 is a light exit surface for guiding the light from the second light source 22 to the detected object 70 and an incident surface on which the light from the detected object 70 is incident. The emission surface 253 is an emission surface of light when the light from the detected object 70 is guided to the light receiving photodiode 27. The light guide prism 25 has a bilaterally symmetric structure with respect to a plane that includes the central portion of the emission surface 253 and is orthogonal to the emission surface 253.
 入出射面(a)251或いは入出射面(b)252と対向する傾斜面は、互いに傾斜角が異なる第1の傾斜面(a)254(傾斜角;約36°、図5参照)と第1の傾斜面(b)255(傾斜角;約45°、図5参照)とで構成される。第1の傾斜面(a)254と第1の傾斜面(b)255とは、第2の傾斜面256(傾斜角;約32°、図5参照)と対向する。第1の傾斜面(a)254と第1の傾斜面(b)255とは、その一部に溝257が形成され、溝257の底面は、入出射面(a)251、入出射面(b)、及び出射面253と平行な平面部258となっている。 The inclined surface facing the input / output surface (a) 251 or the input / output surface (b) 252 is the same as the first inclined surface (a) 254 (inclination angle: about 36 °, see FIG. 5) having different inclination angles. 1 inclined surface (b) 255 (inclination angle: about 45 °, see FIG. 5). The first inclined surface (a) 254 and the first inclined surface (b) 255 are opposed to the second inclined surface 256 (inclination angle: about 32 °, see FIG. 5). The first inclined surface (a) 254 and the first inclined surface (b) 255 have a groove 257 formed in a part thereof, and the bottom surface of the groove 257 includes an incident / exit surface (a) 251 and an incident / exit surface ( b) and a plane portion 258 parallel to the emission surface 253.
 このように形成される導光プリズム25の作用について、図4及び図5を参照しながら説明する。図4は、第1実施形態の導光プリズム25が有する平面部258の作用を説明するための図である。図5は、第1実施形態の導光プリズム25が有する第1の傾斜面254、255及び第2の傾斜面256の作用を説明するための図である。 The operation of the light guide prism 25 formed in this way will be described with reference to FIGS. FIG. 4 is a diagram for explaining the operation of the flat portion 258 included in the light guide prism 25 of the first embodiment. FIG. 5 is a diagram for explaining the operation of the first inclined surfaces 254 and 255 and the second inclined surface 256 included in the light guide prism 25 of the first embodiment.
 図4に示すように、第1光源21或いは第2光源22から出射され、平面部258に入射した光は、平面部258を全透過して被検出物70へと至る。すなわち、平面部258は透過面として機能する。ただし、第1光源21及び第2光源22から出射される光は幾分広がりを有するため、平面部258ではなく第1の傾斜面254或いは第2の傾斜面255に当たる光もある。このような光は、反射して損失となるが、この量は比較的少なく問題とならない。なお、平面部258は、被検出物70からの光についても透過する。 As shown in FIG. 4, the light emitted from the first light source 21 or the second light source 22 and incident on the flat surface portion 258 passes through the flat surface portion 258 and reaches the detected object 70. That is, the flat portion 258 functions as a transmission surface. However, since the light emitted from the first light source 21 and the second light source 22 has some extent, there is also light that hits the first inclined surface 254 or the second inclined surface 255 instead of the flat portion 258. Such light is reflected and lost, but this amount is relatively small and does not cause a problem. Note that the plane portion 258 also transmits light from the detected object 70.
 図5の左側の図は第1の傾斜面(a)254及び第2の傾斜面256の作用を説明するための図で、図5の右側の図は第1の傾斜面(b)255及び第2の傾斜面256の作用を説明するための図である。図5に示すように、被検出物70から導光プリズム25に入射する光は、第1の傾斜面(a)254或いは第1の傾斜面(b)255で全反射される。その後、更に第2の傾斜面256で全反射されて、受光用フォトダイオード27へと導かれる。すなわち、第1の傾斜面(a)254、第1の傾斜面(b)255、及び第2の傾斜面256は、全反射面として機能する。 5 is a diagram for explaining the operation of the first inclined surface (a) 254 and the second inclined surface 256, and the right diagram in FIG. 5 is the first inclined surface (b) 255 and It is a figure for demonstrating the effect | action of the 2nd inclined surface. As shown in FIG. 5, the light incident on the light guide prism 25 from the detected object 70 is totally reflected by the first inclined surface (a) 254 or the first inclined surface (b) 255. Thereafter, the light is further totally reflected by the second inclined surface 256 and guided to the light receiving photodiode 27. That is, the first inclined surface (a) 254, the first inclined surface (b) 255, and the second inclined surface 256 function as a total reflection surface.
 上述のように、本実施形態においては、被検出物70から導光プリズム25に入射する光を、最終的に第2の傾斜面256で全反射して受光用フォトダイオード27へと導く構成となっている。そして、この際における光の損失を少なくできるように、互いに異なる傾斜角を有する第1の傾斜面(a)254と第1の傾斜面(b)255と、を設ける構成としている。なお、この第1の傾斜面(a)254の傾き角は、導光プリズム25の左右方向(この左右方向は図2を参照した場合の方向である)の長さにより適宜設計されるものである。 As described above, in the present embodiment, the light incident on the light guide prism 25 from the detected object 70 is finally totally reflected by the second inclined surface 256 and guided to the light receiving photodiode 27. It has become. In order to reduce light loss at this time, the first inclined surface (a) 254 and the first inclined surface (b) 255 having different inclination angles are provided. The inclination angle of the first inclined surface (a) 254 is appropriately designed according to the length of the light guide prism 25 in the left-right direction (the left-right direction is the direction when referring to FIG. 2). is there.
 なお、被検出物70からの光は散乱光であるために、被検出物70からの光の大部分は、第1の傾斜面(a)254か、第1の傾斜面(b)255か、のいずれかに入射する。しかし、その一部において平面部258に入射する光もある。このような光は平面部258を透過するため、光の損失が生じる。ただし、平面部258に入射する光の比率は少なく、問題とならない。 Since the light from the detected object 70 is scattered light, most of the light from the detected object 70 is the first inclined surface (a) 254 or the first inclined surface (b) 255. , Either incident. However, some of the light is incident on the plane portion 258. Since such light is transmitted through the flat portion 258, light loss occurs. However, the ratio of the light incident on the flat portion 258 is small and does not cause a problem.
 図2に戻って、受光側フィルタ26は、導光プリズム25によって受光用フォトダイオード27へと導かれた光について、可視光をカットして、赤外光のみを透過させるローパスフィルタ(赤外透過フィルタ)である。本実施形態においては、例えば、波長950nmの光の透過率80%以上、波長800nmの光の透過率が1%以下のフィルタが用いられる。 Returning to FIG. 2, the light-receiving side filter 26 cuts visible light and transmits only infrared light with respect to the light guided to the light-receiving photodiode 27 by the light guide prism 25 (infrared transmission). Filter). In the present embodiment, for example, a filter having a light transmittance of 80% or more at a wavelength of 950 nm and a light transmittance of 1% or less at a wavelength of 800 nm is used.
 受光用フォトダイオード27は、受光側フィルタ26を通過した光を受光し、光電変換して電気信号を出力する。受光用フォトダイオード27としては、例えば、感度波長域が320~1100nmで、ピーク感度波長が960nmのシリコン_ピンフォトダイオードが用いられる。 The light receiving photodiode 27 receives the light that has passed through the light receiving side filter 26, photoelectrically converts it, and outputs an electrical signal. As the light receiving photodiode 27, for example, a silicon_pin photodiode having a sensitivity wavelength range of 320 to 1100 nm and a peak sensitivity wavelength of 960 nm is used.
 第1光量モニタ28は、第1光源21から出射される光の一部を受光して、第1光源21から出射される光の光量レベルの検出を行うために使用される。また、第2光量モニタ29は、第2光源22から出射される光の一部を受光して、第2光源22から出射される光の光量レベルの検出を行うために使用される。第1光源21や第2光源22に用いられるLEDは、温度変化や劣化によって、設定条件を同一として駆動しても光の光量が変動する場合がある。このために、本実施形態の光学センサ1では、第1光源21及び第2光源22から出射される光の光量を一定量とできるように、第1光量モニタ28と第2光量モニタ29とを設けている。 The first light quantity monitor 28 is used to receive a part of the light emitted from the first light source 21 and detect the light quantity level of the light emitted from the first light source 21. The second light quantity monitor 29 is used to receive a part of the light emitted from the second light source 22 and detect the light quantity level of the light emitted from the second light source 22. The LEDs used for the first light source 21 and the second light source 22 may vary in the amount of light even when driven with the same setting conditions due to temperature changes and deterioration. For this reason, in the optical sensor 1 of the present embodiment, the first light amount monitor 28 and the second light amount monitor 29 are provided so that the amount of light emitted from the first light source 21 and the second light source 22 can be constant. Provided.
 なお、第1光量モニタ28及び第2光量モニタ29としては、例えば、感度波長域が300~1000nmのフォトICダイオードが用いられる。また、本実施形態の光学センサ1においては、第1光源21或いは第2光源22の発光面とほぼ同一の高さに、第1光量モニタ28或いは第2光量モニタ29の受光部分が配置される構成となっている。この場合、光源21、22として用いられるLEDの指向性のために、発光量が少ない場所に光量モニタ28、29を設けることになる。しかし、光量モニタ28、29は、それぞれ第1光源21或いは第2光源22に非常に近い位置に設けられるために、光量モニタとして十分な出力を得られる。光量用モニタ28、29の位置は、もっと発光量の多い位置に配置しても勿論構わない。 As the first light quantity monitor 28 and the second light quantity monitor 29, for example, a photo IC diode having a sensitivity wavelength range of 300 to 1000 nm is used. In the optical sensor 1 of the present embodiment, the light receiving portion of the first light quantity monitor 28 or the second light quantity monitor 29 is disposed at substantially the same height as the light emitting surface of the first light source 21 or the second light source 22. It has a configuration. In this case, due to the directivity of the LEDs used as the light sources 21 and 22, the light amount monitors 28 and 29 are provided in a place where the light emission amount is small. However, since the light quantity monitors 28 and 29 are provided at positions very close to the first light source 21 or the second light source 22, respectively, sufficient output as a light quantity monitor can be obtained. Of course, the positions of the light quantity monitors 28 and 29 may be arranged at positions where the amount of emitted light is larger.
 回路基板30は、第1光源21及び第2光源22の駆動の制御や、受光用フォトダイオード27、第1光量モニタ28及び第2光量モニタ29からの電気信号の処理を行うために設けられる。図6は、第1実施形態の光学センサ1における回路構成を示すブロック図である。 The circuit board 30 is provided to control the driving of the first light source 21 and the second light source 22 and to process electrical signals from the light receiving photodiode 27, the first light amount monitor 28, and the second light amount monitor 29. FIG. 6 is a block diagram illustrating a circuit configuration of the optical sensor 1 according to the first embodiment.
 光源駆動部31は、第1光源21及び第2光源22と電気的に接続され、それらが出射する光の出力レベルの調整を行う。なお、運用時における光源21、22の出力レベルの調整は、後述するように、第1光量モニタ28及び第2光量モニタ29から得られるモニタ信号を監視し、モニタ出力が所定の値で一定となるように調整される。 The light source driving unit 31 is electrically connected to the first light source 21 and the second light source 22 and adjusts the output level of light emitted from them. The adjustment of the output levels of the light sources 21 and 22 during operation is performed by monitoring monitor signals obtained from the first light quantity monitor 28 and the second light quantity monitor 29, as will be described later, and assuming that the monitor output is constant at a predetermined value. It is adjusted to become.
 識別信号用処理部32は、受光用フォトダイオード27と電気的に接続される。そして、受光用フォトダイオード27から出力される電気信号のゲイン調整を可変ゲイン部32aによって行う。また、ゲイン調整が行われた信号に含まれるノイズの除去及び信号の増幅をフィルタ・アンプ部32bによって行う。識別信号処理部32は、処理することによって得られた識別信号をCPU35に入力する。CPU35の詳細は後述する。 The identification signal processing unit 32 is electrically connected to the light receiving photodiode 27. Then, the gain adjustment of the electric signal output from the light receiving photodiode 27 is performed by the variable gain unit 32a. The filter / amplifier unit 32b removes noise contained in the signal whose gain has been adjusted and amplifies the signal. The identification signal processing unit 32 inputs the identification signal obtained by processing to the CPU 35. Details of the CPU 35 will be described later.
 第1のモニタ信号用処理部33は、第1光量モニタ28と電気的に接続される。そして、第1光量モニタ28から出力される電気信号のゲイン調整を可変ゲイン部33aによって行う。また、ゲイン調整が行われた信号に含まれるノイズの除去及び信号の増幅をフィルタ・アンプ部33bによって行う。第1のモニタ信号処理部33は、処理することによって得られたモニタ信号をCPU35に入力する。 The first monitor signal processing unit 33 is electrically connected to the first light quantity monitor 28. Then, the gain adjustment of the electric signal output from the first light quantity monitor 28 is performed by the variable gain unit 33a. The filter / amplifier unit 33b removes noise and amplifies the signal included in the signal whose gain has been adjusted. The first monitor signal processing unit 33 inputs a monitor signal obtained by processing to the CPU 35.
 第2のモニタ信号用処理部34は、第2光量モニタ29と電気的に接続される。そして、第2光量モニタ29から出力される電気信号のゲイン調整を可変ゲイン部34aによって行う。また、ゲイン調整が行われた信号に含まれるノイズの除去及び信号の増幅をフィルタ・アンプ部34bによって行う。第2のモニタ信号処理部34は、処理することによって得られたモニタ信号をCPU35に入力する。 The second monitor signal processing unit 34 is electrically connected to the second light quantity monitor 29. Then, the gain adjustment of the electric signal output from the second light quantity monitor 29 is performed by the variable gain unit 34a. The filter / amplifier unit 34b removes noise contained in the signal whose gain has been adjusted and amplifies the signal. The second monitor signal processing unit 34 inputs the monitor signal obtained by processing to the CPU 35.
 CPU35は、内蔵型のADコンバータを備え、受信した識別信号及びモニタ信号をデジタル信号に変換する。そして、CPU35は受信した識別信号と予めメモリ(図示せず)に記憶されているデータに基づいて、識別信号を処理して被検出物70上の色調や濃淡等の特性を検出して、被検出物70の分類や真偽の判定等を行う。また、CPU35は受信したモニタ信号によって第1光量モニタ28及び第2光量モニタ29における出力を確認し、確認結果に基づいて光源駆動部31に信号を出して第1光源21及び第2光源22の駆動電流を調節する。 The CPU 35 includes a built-in AD converter, and converts the received identification signal and monitor signal into digital signals. Then, the CPU 35 processes the identification signal based on the received identification signal and data stored in advance in a memory (not shown) to detect characteristics such as color tone and shading on the object 70 to be detected. Classification of the detected object 70, authenticity determination, and the like are performed. In addition, the CPU 35 confirms the outputs from the first light amount monitor 28 and the second light amount monitor 29 based on the received monitor signal, and outputs a signal to the light source driving unit 31 based on the confirmation result, so that the first light source 21 and the second light source 22 Adjust the drive current.
 次に、第1実施形態の光学センサ1の初期調整について図7を参照しながら説明する。図7は、第1実施形態の光学センサ1における初期調整のフローを示すフローチャートである。まず、光学センサ1の組み立て時に、基準光を用いて受光用フォトダイオード27側のゲイン調整が行われる(ステップS1)。基準光は、予め治具として用意したものを用い、ここで調整された調整値が以後固定値として使用される。ゲイン調整は可変ゲイン部32aの調整により行う。 Next, the initial adjustment of the optical sensor 1 of the first embodiment will be described with reference to FIG. FIG. 7 is a flowchart showing a flow of initial adjustment in the optical sensor 1 of the first embodiment. First, when the optical sensor 1 is assembled, gain adjustment on the light receiving photodiode 27 side is performed using the reference light (step S1). The reference light is prepared in advance as a jig, and the adjustment value adjusted here is used as a fixed value thereafter. Gain adjustment is performed by adjusting the variable gain section 32a.
 受光用フォトダイオード27のゲインが決まると、基準となる被検出物を用いて受光用フォトダイオード27からの出力レベルが狙いの値となるように、第1光源21と第2光源22とについて、それぞれ別々にLED光量(LEDの発光光量)を調整する(ステップS2)。基準となる被検出物には、運用時に光学センサ1を用いて検出しようとしている特殊インクと同一のインクが塗布されている。LED光量の調整は光源駆動部31の調整により行う。 When the gain of the light-receiving photodiode 27 is determined, the first light source 21 and the second light source 22 are set so that the output level from the light-receiving photodiode 27 becomes a target value using the reference detection object. The LED light amount (LED light emission amount) is adjusted separately (step S2). The reference object to be detected is coated with the same special ink that is to be detected using the optical sensor 1 during operation. The LED light amount is adjusted by adjusting the light source driving unit 31.
 各光源21、22についてLED光量が決定されると、決定されたLED光量の下で、第1光量モニタ28の出力レベルと第2光量モニタ29の出力レベルとが、狙いの値となるようにゲイン調整が行われる(ステップS3)。ここで調整された調整値は、以後固定値として使用される。 When the LED light amount is determined for each of the light sources 21 and 22, the output level of the first light amount monitor 28 and the output level of the second light amount monitor 29 are set to target values under the determined LED light amount. Gain adjustment is performed (step S3). The adjustment value adjusted here is used as a fixed value thereafter.
 以上のように初期調整が行われた光学センサ1の運用時の動作について図8を参照しながら説明する。図8は、第1実施形態の光学センサ1の運用時の動作を示すフローチャートである。 The operation of the optical sensor 1 that has been initially adjusted as described above will be described with reference to FIG. FIG. 8 is a flowchart showing an operation during operation of the optical sensor 1 of the first embodiment.
 運用時においては、まず、光学センサ1の第1光源21と第2光源22とが点灯される(ステップS11)。そして、第1光量モニタ28及び第2光量モニタ29からのモニタ出力が狙いの範囲内にあるか否かが確認される(ステップS12)。この確認はCPU35によって行われ、詳細には予めメモリに記憶された狙いの値と、モニタ信号から得られる出力値とを比較することによって行われる。 During operation, first, the first light source 21 and the second light source 22 of the optical sensor 1 are turned on (step S11). Then, it is confirmed whether or not the monitor outputs from the first light quantity monitor 28 and the second light quantity monitor 29 are within a target range (step S12). This confirmation is performed by the CPU 35. Specifically, the confirmation is performed by comparing the target value stored in advance in the memory with the output value obtained from the monitor signal.
 第1光源21と第2光源22とのうち、少なくともいずれか一方についてモニタ出力が狙いの範囲内になかった場合には、モニタ出力が狙いの範囲内になかった光源(LED)について、出力の変更が行われる(ステップS13)。出力の変更量は、例えば、モニタ出力が狙いの範囲からずれた量を参考に決定するようにすれば良い。第1光源21及び/又は第2光源22の出力の変更が行われると、再度モニタ出力が狙いの範囲内であるか否かが確認され、モニタ出力が狙いの範囲内となるまで、この動作が繰り返される。 In the case where the monitor output is not within the target range for at least one of the first light source 21 and the second light source 22, the output of the light source (LED) whose monitor output is not within the target range is output. A change is made (step S13). For example, the output change amount may be determined with reference to an amount by which the monitor output deviates from the target range. When the output of the first light source 21 and / or the second light source 22 is changed, it is confirmed again whether or not the monitor output is within the target range, and this operation is performed until the monitor output is within the target range. Is repeated.
 第1光源21と第2光源22とのいずれについてもモニタ出力が狙いの範囲内である場合には、両光源を点灯した状態で被検出物70に対する測定が実行される。すなわち、受光用フォトダイオード27からの出力がCPU35に取り込まれる(ステップS14)。CPU35は、取り込んだ情報と予めメモリに記憶されている情報に基づいて、被検出物70の分類や真偽の判定等を行う。 When the monitor output is within the target range for both the first light source 21 and the second light source 22, the measurement of the detected object 70 is performed with both the light sources turned on. That is, the output from the light receiving photodiode 27 is taken into the CPU 35 (step S14). The CPU 35 performs classification of the detected object 70, authenticity determination, and the like based on the acquired information and information stored in advance in the memory.
 その後、光学センサ1による測定を終了するか否かが確認される(ステップS15)。測定を続行する(測定を終了しない)場合には、ステップS12~ステップS14の動作が繰り返される。 Thereafter, it is confirmed whether or not the measurement by the optical sensor 1 is finished (step S15). When the measurement is continued (the measurement is not terminated), the operations from step S12 to step S14 are repeated.
 次に、以上のように構成される第1実施形態の光学センサ1の作用について、被検出物70が商品券である場合を例に説明する。図9は、第1実施形態の光学センサ1が商品券搬送用の搬送装置に取り付けられた状態を示す概略平面図である。図9に示すように、搬送装置には上ガイド板61と下ガイド板62とが設けられ、この上ガイド板61と下ガイド板62とに挟まれた部分が搬送路63となる。なお、図9における商品券70の搬送方向は、紙面に対して垂直な方向である。 Next, the operation of the optical sensor 1 according to the first embodiment configured as described above will be described using an example in which the detected object 70 is a gift certificate. FIG. 9 is a schematic plan view showing a state in which the optical sensor 1 of the first embodiment is attached to a gift certificate carrying device. As shown in FIG. 9, the transport device is provided with an upper guide plate 61 and a lower guide plate 62, and a portion sandwiched between the upper guide plate 61 and the lower guide plate 62 serves as a transport path 63. In addition, the conveyance direction of the gift certificate 70 in FIG. 9 is a direction perpendicular | vertical with respect to a paper surface.
 光学センサ1は、上ガイド板61の更に上側に配置され、センサカバー12側が下向き(センサカバー12が搬送路と向き合う状態)となるように取り付けられる。そして、センサカバー12の先端の円錐台12c部分(2つある)のみが、上ガイド板61から突出して搬送路63上に出るように取り付けられる。このように円錐台12cの部分のみを突出させるのは、搬送される商品券70が光学センサ1のセンサカバー12にぶつかってジャムを生じることを避けるためである。 The optical sensor 1 is disposed on the upper side of the upper guide plate 61, and is attached so that the sensor cover 12 side faces downward (the sensor cover 12 faces the transport path). And only the truncated cone 12c part (there are two) of the front-end | tip of the sensor cover 12 is attached so that it may protrude from the upper guide plate 61 and may protrude on the conveyance path 63. FIG. The reason for projecting only the portion of the truncated cone 12 c is to prevent the conveyed gift certificate 70 from hitting the sensor cover 12 of the optical sensor 1 and causing a jam.
 また、光学センサ1は、センサカバー12の窓部12aと窓部12bとが商品券70の搬送方向に対して略垂直な方向に並んだ状態となるように搬送装置に取り付けられている。このために、光学センサ1によって、商品券70の搬送方向と非平行な方向に離れた2つの領域の情報を得ることが可能である。 Further, the optical sensor 1 is attached to the transport device so that the window portion 12a and the window portion 12b of the sensor cover 12 are aligned in a direction substantially perpendicular to the transport direction of the gift certificate 70. For this reason, it is possible to obtain information of two regions separated in the direction non-parallel to the conveyance direction of the gift certificate 70 by the optical sensor 1.
 図10は、商品券の構成例を説明するための模式図である。図10に示すように、商品券70には、破線で囲まれる部分に特殊インクで印刷されたバーコード71が存在する。本例においては、バーコード71は、可視光(本実施形態では波長590nmの琥珀色の光)を照射した場合に、赤外領域の波長を持つ蛍光を発光する特殊インクで印刷されている。このため、バーコード71は目視できない。このように目視できないバーコード71の使用は、商品券の外観を損ねないといった利点や偽造防止のための情報を持たせるといった利点を有する。 FIG. 10 is a schematic diagram for explaining a configuration example of a gift certificate. As shown in FIG. 10, the gift certificate 70 has a bar code 71 printed with special ink in a portion surrounded by a broken line. In this example, the barcode 71 is printed with special ink that emits fluorescence having a wavelength in the infrared region when irradiated with visible light (in this embodiment, amber light with a wavelength of 590 nm). For this reason, the barcode 71 cannot be visually observed. The use of the bar code 71 that cannot be seen in this way has an advantage that the appearance of the gift certificate is not impaired and an advantage that information for preventing forgery is provided.
 ところで、搬送装置によって搬送される商品券70は、図10のような向きで搬送路63を搬送されることもあるし、図11のような向きで搬送路63を搬送されることもある。このため、商品券70の搬送方向と非平行な方向に離れた2つの領域から情報を得られるような構成としておかないと、搬送装置を搬送される商品券70のバーコード情報を検出し損なう場合がある。なお、図11は、搬送装置を搬送される商品券の向きが図10の場合と比べて上下逆となっている状態を示す図である。 By the way, the gift certificate 70 transported by the transport device may be transported along the transport path 63 in the direction as shown in FIG. 10, or may be transported along the transport path 63 in the direction as shown in FIG. For this reason, unless information is obtained from two areas separated in a direction non-parallel to the direction of conveyance of the gift certificate 70, the barcode information of the gift certificate 70 conveyed through the conveyance device is missed. There is a case. In addition, FIG. 11 is a figure which shows the state which the direction of the gift certificate conveyed by a conveying apparatus is upside down compared with the case of FIG.
 この点、第1実施形態の光学センサ1によれば、離間する2つの領域について別々に光を照射する構成となっている。そして、2つの領域のそれぞれで発生する蛍光(赤外光)について、導光プリズム25によって単一の受光用フォトダイオード27で検出できるようになっている。このため、商品券70の向きが上下のどちらの向きとなっていても、バーコード71を検出できる。 In this regard, according to the optical sensor 1 of the first embodiment, light is separately irradiated to two regions that are separated from each other. Then, fluorescence (infrared light) generated in each of the two regions can be detected by the single light receiving photodiode 27 by the light guide prism 25. For this reason, the barcode 71 can be detected regardless of the orientation of the gift certificate 70 in the vertical direction.
 このように第1実施形態の光学センサ1によれば、被検出物70の離れた2つの領域(2つの領域は搬送方向と非平行な方向に離れている)の情報を2つの光源21、22と単一の受光用フォトダイオード27とを用いて検出できる。すなわち、従来の構成とは異なり、光源の数の増加に合わせて受光素子の数を増やす必要がなく、本実施形態の光学センサ1を利用すればコスト面で有利(受光素子で受光した信号の処理回路も1つで良いという利点も含む)となる。なお、導光プリズム25は樹脂成形により製造でき、導光プリズム25の導入は受光素子を増やすことに比べれば低コストとできる。 As described above, according to the optical sensor 1 of the first embodiment, information on two areas away from the object to be detected 70 (the two areas are separated in a direction non-parallel to the transport direction) 22 and a single light receiving photodiode 27. That is, unlike the conventional configuration, it is not necessary to increase the number of light receiving elements in accordance with the increase in the number of light sources, and the use of the optical sensor 1 of this embodiment is advantageous in terms of cost (the signal received by the light receiving element). Including the advantage that only one processing circuit is required. The light guide prism 25 can be manufactured by resin molding, and the introduction of the light guide prism 25 can be reduced in cost compared to the increase in the number of light receiving elements.
 また、第1実施形態の光学センサ1の場合、2つの光源21、21の間隔及び導光プリズム25のサイズ設計を変更すれば、被検出物70の検出を行いたい2点間の離間距離を自由に変更できる。このため、第1実施形態の光学センサ1の適用例を、例えば、次のようなものとしてもよい。 Further, in the case of the optical sensor 1 according to the first embodiment, if the distance between the two light sources 21 and 21 and the size design of the light guide prism 25 are changed, the separation distance between the two points where the detection target 70 is to be detected can be set. You can change it freely. For this reason, the application example of the optical sensor 1 of the first embodiment may be as follows, for example.
 すなわち、例えば、搬送装置を搬送される被検出物70の搬送位置のずれによって被検出物70が有する特殊インクの存在を検出し損なわないように、第1実施形態の光学センサ1を適用してもよい。 That is, for example, the optical sensor 1 according to the first embodiment is applied so that the presence of the special ink included in the detected object 70 is not lost due to a shift in the transfer position of the detected object 70 conveyed through the conveying device. Also good.
 また、例えば、搬送装置を搬送される被検出物70の種類が複数ある場合、被検出物70の幅が種類によって異なる場合がある。そのような場合に、本実施形態の光学センサ1を適用して、いずれの種類の被検出物70についても特殊インクの存在を検出し損なわないようにしてもよい。 Further, for example, when there are a plurality of types of the detected object 70 conveyed by the conveying device, the width of the detected object 70 may differ depending on the type. In such a case, the optical sensor 1 of the present embodiment may be applied to detect the presence of the special ink for any type of the detected object 70 so as not to be damaged.
 更に、例えば、2つの領域に特殊インクが印刷されているような場合に、この2つの位置の特殊インクを検出するために、第1実施形態の光学センサ1を適用してもよい。この適用例の場合、複数位置からの光を受光素子で合わせて取り込む構成とでき、特殊インクの存在を確認し易い構成とできる。 Furthermore, for example, when special ink is printed in two areas, the optical sensor 1 of the first embodiment may be applied to detect the special ink at these two positions. In the case of this application example, light from a plurality of positions can be combined and received by the light receiving element, and the presence of special ink can be easily confirmed.
(第2実施形態)
 次に、第2実施形態の光学センサについて説明する。図12は、第2実施形態の光学センサが備えるセンサ部の構成を示す概略断面図である。なお、図12においては説明の都合上、被検出物も示している。
(Second Embodiment)
Next, an optical sensor according to a second embodiment will be described. FIG. 12 is a schematic cross-sectional view illustrating a configuration of a sensor unit included in the optical sensor according to the second embodiment. In FIG. 12, the object to be detected is also shown for convenience of explanation.
 第2実施形態の光学センサ2は、センサ部40が備える導光部41が、第1実施形態の場合のようなプリズムではなく、複数のミラーから成っている点について第1実施形態の光学センサ1と異なる。従って、基本的に導光部41の構成についてのみ説明し、その他の部分については第1実施形態の場合と同一の符号を付して、特に必要がない場合はその説明を省略する。なお、第2実施形態の光学センサ2の外観構成についても、第1実施形態の構成と同様である。 The optical sensor 2 according to the second embodiment is different from the optical sensor according to the first embodiment in that the light guide unit 41 included in the sensor unit 40 includes a plurality of mirrors instead of the prism as in the first embodiment. Different from 1. Therefore, only the configuration of the light guide unit 41 is basically described, and the other parts are denoted by the same reference numerals as those in the first embodiment, and the description thereof is omitted unless particularly necessary. The appearance configuration of the optical sensor 2 of the second embodiment is the same as that of the first embodiment.
 導光部41は、第1ハーフミラー41aと、第2ハーフミラー41bと、第1反射ミラー41cと、第2反射ミラー41dと、を備える。第1ハーフミラー41aと第2ハーフミラー41b、及び、第1反射ミラー41cと第2反射ミラー41dは、それぞれ対称的な位置に配置されている。 The light guide unit 41 includes a first half mirror 41a, a second half mirror 41b, a first reflection mirror 41c, and a second reflection mirror 41d. The first half mirror 41a and the second half mirror 41b, and the first reflection mirror 41c and the second reflection mirror 41d are arranged at symmetrical positions, respectively.
 第1ハーフミラー41a及び第2ハーフミラー41bは、いずれも入射する光の一部を透過し、残りの一部を反射するように構成されている。このようなハーフミラーは、例えば透明部材上に金属の反射膜を非常に薄く作製することによって形成される金属ハーフミラーであってもよい。また、別の形態として、透明部材上に複数の物質を極めて薄く積層させて成る誘電体ハーフミラー(ダイクロイックミラー)であってもよい。 The first half mirror 41a and the second half mirror 41b are both configured to transmit a part of incident light and reflect the remaining part. Such a half mirror may be a metal half mirror formed by, for example, forming a metal reflective film very thinly on a transparent member. As another form, a dielectric half mirror (dichroic mirror) formed by laminating a plurality of substances extremely thinly on a transparent member may be used.
 なお、後者の場合には、可視光は透過するが、赤外光は透過しない(反射する)ような誘電多層膜を形成することも可能である。このような構成とする場合には、投光側フィルタ23、24と受光側フィルタ26を省略することも可能となる。 In the latter case, it is possible to form a dielectric multilayer film that transmits visible light but does not transmit (reflect) infrared light. In the case of such a configuration, the light projecting filters 23 and 24 and the light receiving filter 26 can be omitted.
 また、第1反射ミラー41c及び第2反射ミラー41dは、入射した光を全て反射するように形成される。このような反射ミラーは、透明部材上に金属膜を設けることによって作製できる。 The first reflection mirror 41c and the second reflection mirror 41d are formed so as to reflect all incident light. Such a reflection mirror can be produced by providing a metal film on a transparent member.
 なお、図12おいては、各ミラー41a~41dを別々の部材として配置する構成を示している。ただし、反射面となる複数(本実施形態では4つ)の傾斜面を有する樹脂成形体を形成し、傾斜面に第1ハーフミラー41a、第2ハーフミラー41b、第1反射ミラー41c、及び第2反射ミラー41dを形成する構成としてもよい(後述の第3実施形態の構成を参照)。この構成では、導光部41を単一の部材とできるために部品点数を少なくでき、安価に製造することが可能となる。したがって、より好ましい態様と言える。 FIG. 12 shows a configuration in which the mirrors 41a to 41d are arranged as separate members. However, a resin molded body having a plurality of (four in this embodiment) inclined surfaces serving as reflecting surfaces is formed, and the first half mirror 41a, the second half mirror 41b, the first reflecting mirror 41c, and the first reflecting mirrors are formed on the inclined surfaces. It is good also as a structure which forms the 2 reflection mirror 41d (refer the structure of 3rd Embodiment mentioned later). In this configuration, since the light guide portion 41 can be a single member, the number of parts can be reduced, and it can be manufactured at low cost. Therefore, it can be said that it is a more preferable aspect.
 このように構成される導光部41を備える光学センサ2の作用について説明する。なお、ここでは、ハーフミラーが金属ハーフミラーの場合について説明する。第1光源21から出射される光は、第1投光側フィルタ23で赤外光をカットされ、第1ハーフミラー41aで一部が透過され、一部が反射される。第1ハーフミラー41aを透過した光は、センサカバー12の第1の窓部12aを経由して被検出物70に至る。 The operation of the optical sensor 2 including the light guide unit 41 configured as described above will be described. Here, a case where the half mirror is a metal half mirror will be described. The light emitted from the first light source 21 is cut from infrared light by the first light-projecting filter 23, partially transmitted by the first half mirror 41a, and partially reflected. The light transmitted through the first half mirror 41 a reaches the detection object 70 via the first window portion 12 a of the sensor cover 12.
 第1光源21からの光の照射によって生じる被検出物70からの光は、第1の窓部12aを経由して第1ハーフミラー41aへと至る。ここで第1ハーフミラー41aは、その光の一部を透過して、一部を反射する。第1ハーフミラー41aで反射された光は、第1反射ミラー41cで全て反射され、ここで反射された反射光のうち、赤外光のみが受光側フィルタ27を通過して受光用フォトダイオード27へと至る。 The light from the detected object 70 generated by the light irradiation from the first light source 21 reaches the first half mirror 41a via the first window portion 12a. Here, the first half mirror 41a transmits part of the light and reflects part of the light. The light reflected by the first half mirror 41a is all reflected by the first reflection mirror 41c, and only the infrared light of the reflected light reflected here passes through the light receiving side filter 27 and receives the light receiving photodiode 27. It leads to.
 同様に、第2光源22から光を出射することによって、被検出物70から生じた光が第2ハーフミラー41bと第2反射ミラー41dとを経由して受光用フォトダイオード27へと至る。すなわち、第2実施形態の光学センサ2は、第1実施形態の光学センサ1と同様に、被検出物70の近傍でない離れた2つの領域に別々に光を照射して、それによって別々の位置で生じる光を、導光部41によって異なる反射経路を利用して、単一の受光用フォトダイオード27に導く構成となっている。 Similarly, by emitting light from the second light source 22, the light generated from the detected object 70 reaches the light receiving photodiode 27 via the second half mirror 41b and the second reflecting mirror 41d. That is, similarly to the optical sensor 1 of the first embodiment, the optical sensor 2 of the second embodiment irradiates two separate areas that are not in the vicinity of the detected object 70 separately, and thereby separate positions. In this configuration, the light generated in (1) is guided to a single light-receiving photodiode 27 using different reflection paths depending on the light guide unit 41.
 従って、第2実施形態の光学センサ2は、第1実施形態と同様の効果を得られる。そして、第2実施形態の光学センサ2は、第1実施形態の光学センサ1と同様の方法で使用できる。 Therefore, the optical sensor 2 of the second embodiment can obtain the same effects as those of the first embodiment. And the optical sensor 2 of 2nd Embodiment can be used by the method similar to the optical sensor 1 of 1st Embodiment.
(第3実施形態)
 次に、第3実施形態の光学センサについて説明する。以上の第1及び第2実施形態では、第1光源21及び第2光源22から出射される光の波長が同一である場合について説明した。第3実施形態の光学センサは、第1光源21と第2光源22とで出射される光の波長が異なる場合の構成例である。
(Third embodiment)
Next, an optical sensor according to a third embodiment will be described. In the first and second embodiments described above, the case where the wavelengths of the light emitted from the first light source 21 and the second light source 22 are the same has been described. The optical sensor of the third embodiment is a configuration example when the wavelengths of light emitted by the first light source 21 and the second light source 22 are different.
 ここで、第1光源21と第2光源22とで、出射される光の波長を異ならせる構成が必要となる理由を説明しておく。図13は、図10の商品券と異なる商品券の構成例を説明するための模式図である。 Here, the reason why the first light source 21 and the second light source 22 need to have different wavelengths of emitted light will be described. FIG. 13 is a schematic diagram for explaining a configuration example of a gift certificate different from the gift certificate of FIG. 10.
 図13に示すように、商品券70の搬送方向と非平行な方向に離れた2つの領域(第1の領域72及び第2の領域73)に、それぞれ異なる性質の特殊インクで情報を印刷する場合があり得る。詳細には、例えば、第1の領域72について第1実施形態で説明したような特殊インクを用い、第2の領域73に紫外線を照射した場合に蛍光(可視光)を生じる特殊インクを用いる構成があり得る。このような商品券70について、各領域72、73の情報を検出しようとする場合、異なる波長を有する光源が必要となる。第3実施形態の光学センサは、このような商品券70を想定した構成である。 As shown in FIG. 13, information is printed with special inks having different properties in two areas (first area 72 and second area 73) separated in a direction non-parallel to the conveyance direction of the gift certificate 70. There may be cases. Specifically, for example, a configuration using the special ink as described in the first embodiment for the first region 72 and using the special ink that generates fluorescence (visible light) when the second region 73 is irradiated with ultraviolet rays. There can be. For such a gift certificate 70, when trying to detect the information of the areas 72 and 73, light sources having different wavelengths are required. The optical sensor of the third embodiment has a configuration that assumes such a gift certificate 70.
 図14は、第3実施形態の光学センサが備えるセンサ部の構成を示す概略断面図である。なお、図14においては説明の都合上、被検出物(商品券)についても示している。また、第3実施形態の光学センサ3の外観構成については、第1実施形態の構成と同様である。 FIG. 14 is a schematic cross-sectional view illustrating a configuration of a sensor unit included in the optical sensor of the third embodiment. In FIG. 14, for the convenience of explanation, an object to be detected (gift certificate) is also shown. The external configuration of the optical sensor 3 of the third embodiment is the same as that of the first embodiment.
 図14に示すように、第3実施形態の光学センサ3のセンサ部50は、第1光源21と、第2光源22と、第1投光側フィルタ23と、第2投光側フィルタ24と、導光部51と、受光用フォトダイオード27と、第1光量モニタ28と、第2光量モニタ29と、回路基板30と、を備える。 As shown in FIG. 14, the sensor unit 50 of the optical sensor 3 of the third embodiment includes a first light source 21, a second light source 22, a first light projecting filter 23, and a second light projecting filter 24. A light guide 51, a light receiving photodiode 27, a first light quantity monitor 28, a second light quantity monitor 29, and a circuit board 30.
 第1光源21、第1投光側フィルタ23、受光用フォトダイオード27、第1光量モニタ28、及び第2光量モニタ29の構成については、第1実施形態の構成と同様であるために、ここでは説明を省略する。 The configurations of the first light source 21, the first light projecting side filter 23, the light receiving photodiode 27, the first light amount monitor 28, and the second light amount monitor 29 are the same as the configurations of the first embodiment. Then, explanation is omitted.
 第2光源22は、波長370nmの紫外光を出射するLEDである。第2投光側フィルタ24は、紫外光を通過させ、可視光をカットする青色フィルタである。青色フィルタは詳細には、例えば波長370nmの光に対して最大透過率を有するフィルタである。 The second light source 22 is an LED that emits ultraviolet light having a wavelength of 370 nm. The second light projecting side filter 24 is a blue filter that passes ultraviolet light and cuts visible light. Specifically, the blue filter is, for example, a filter having a maximum transmittance with respect to light having a wavelength of 370 nm.
 導光部51は、一体的に形成される透明樹脂部材51eに複数のミラー51a~51dが形成された構造となっている。詳細には、透明樹脂部材51eが有する4つの傾斜面に、第1ハーフミラー51a、第2ハーフミラー51b、第1反射ミラー51c、及び第2反射ミラー51dが形成されている。 The light guide portion 51 has a structure in which a plurality of mirrors 51a to 51d are formed on a transparent resin member 51e that is integrally formed. Specifically, a first half mirror 51a, a second half mirror 51b, a first reflection mirror 51c, and a second reflection mirror 51d are formed on four inclined surfaces of the transparent resin member 51e.
 第1ハーフミラー51a及び第2ハーフミラー51bは、本実施形態では金属ハーフミラーであり、透明樹脂部材51eの傾斜面に薄い金属膜を形成した構成である。ただし、これらは、透明樹脂部材51eの傾斜面に誘電体多層膜を形成してできる誘電体ハーフミラーとしても構わない。また、第1反射ミラー51c及び第2反射ミラー51dは、入射する光を全て反射するように、透明樹脂部材51eの傾斜面に金属膜を形成してできた金属ミラーである。 The first half mirror 51a and the second half mirror 51b are metal half mirrors in this embodiment, and have a configuration in which a thin metal film is formed on the inclined surface of the transparent resin member 51e. However, these may be a dielectric half mirror formed by forming a dielectric multilayer film on the inclined surface of the transparent resin member 51e. The first reflection mirror 51c and the second reflection mirror 51d are metal mirrors formed by forming a metal film on the inclined surface of the transparent resin member 51e so as to reflect all incident light.
 また、導光部51内には、第1ハーフミラー51aと第1反射ミラー51cとの間に第1受光側フィルタ52が配置されている。第1受光側フィルタ52は、可視光をカットして赤外光のみを透過させる赤外透過フィルタである。本実施形態においては、第1受光側フィルタ52として、例えば、波長950nmの光の透過率80%以上、波長800nmの光の透過率が1%以下のフィルタが用いられる。 In the light guide 51, a first light receiving side filter 52 is disposed between the first half mirror 51a and the first reflecting mirror 51c. The first light-receiving side filter 52 is an infrared transmission filter that cuts visible light and transmits only infrared light. In the present embodiment, as the first light receiving side filter 52, for example, a filter having a light transmittance of 80% or more for a wavelength of 950 nm and a light transmittance of 1% or less for a light having a wavelength of 800 nm is used.
 また、導光部51内には、第2ハーフミラー51bと第2反射ミラー51dとの間に第2受光側フィルタ53が配置されている。第2受光側フィルタ53は、紫外光をカットして、可視光を透過させる可視透過フィルタである。本実施形態では、第2受光側フィルタ53として、例えば、赤色成分(波長約640nm~約770nm)の光を透過させるフィルタが用いられる。ただし、検出すべき光(蛍光)の色(例えば、橙、黄色等)に合わせて、異なるフィルタとしても良い。 In the light guide 51, a second light receiving side filter 53 is disposed between the second half mirror 51b and the second reflecting mirror 51d. The second light receiving side filter 53 is a visible transmission filter that cuts ultraviolet light and transmits visible light. In the present embodiment, as the second light-receiving side filter 53, for example, a filter that transmits light of a red component (wavelength of about 640 nm to about 770 nm) is used. However, different filters may be used according to the color of light (fluorescence) to be detected (for example, orange, yellow, etc.).
 このように構成される導光部51の作用について説明する。まず、第1光源21から出射される光について説明する。導光部51に入射した光は、第1ハーフミラー51aで一部が反射されるが、残りの一部が透過されて被検出物70に至る。そして、それによって生じる被検出物70からの光は、第1ハーフミラー51aで一部が透過されるが、残りの一部が反射される。第1ハーフミラー51aで反射された光は、第1受光側フィルタ52を通過(なお、可視光成分はカットされる)し、第1反射ミラー51cで全て反射されて受光用フォトダイオード27へと至る。 The operation of the light guide 51 configured as described above will be described. First, the light emitted from the first light source 21 will be described. A part of the light incident on the light guide 51 is reflected by the first half mirror 51 a, but the remaining part is transmitted and reaches the object 70 to be detected. Then, a part of the light from the detected object 70 generated thereby is transmitted through the first half mirror 51a, but the remaining part is reflected. The light reflected by the first half mirror 51 a passes through the first light receiving side filter 52 (note that the visible light component is cut), and is totally reflected by the first reflecting mirror 51 c to the light receiving photodiode 27. It reaches.
 次に、第2光源22ら出射される光について説明する。導光部51に入射した光は、第2ハーフミラー51bで一部が反射されるが、残りの一部が透過されて被検出物70に至る。そして、それによって生じる被検出物70からの光は、第2ハーフミラー51bで一部が透過されるが、残りの一部が反射される。第2ハーフミラー51bで反射された光は、第2受光側フィルタ53を通過(なお、紫外光成分はカットされる)し、第1反射ミラー51cで全て反射されて受光用フォトダイオード27へと至る。 Next, the light emitted from the second light source 22 will be described. A part of the light incident on the light guide 51 is reflected by the second half mirror 51 b, but the remaining part is transmitted and reaches the object 70 to be detected. A part of the light generated from the detected object 70 is transmitted through the second half mirror 51b, but the remaining part is reflected. The light reflected by the second half mirror 51b passes through the second light-receiving side filter 53 (note that the ultraviolet light component is cut), and is totally reflected by the first reflecting mirror 51c to the light-receiving photodiode 27. It reaches.
 回路基板30は、第1実施形態の光学センサ1と同様に、第1光源21及び第2光源22の駆動の制御や、受光用フォトダイオード27、第1光量モニタ28及び第2光量モニタ29からの電気信号の処理を行うために設けられる。図15は、第3実施形態の光学センサ3における回路構成を示すブロック図である。 Similar to the optical sensor 1 of the first embodiment, the circuit board 30 controls the driving of the first light source 21 and the second light source 22, and includes the light receiving photodiode 27, the first light amount monitor 28, and the second light amount monitor 29. It is provided to perform the electrical signal processing. FIG. 15 is a block diagram illustrating a circuit configuration of the optical sensor 3 according to the third embodiment.
 図15に示すように、第3実施形態の光学センサ3の回路構成は、基本的に第1実施形態の光学センサ1と同様である。第1実施形態と重複する部分については、同一の符号を付し、その説明は省略する。第1実施形態と異なる点は、交番点灯制御部36が設けられている点である。 As shown in FIG. 15, the circuit configuration of the optical sensor 3 of the third embodiment is basically the same as that of the optical sensor 1 of the first embodiment. The same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. The difference from the first embodiment is that an alternating lighting control unit 36 is provided.
 交番点灯制御部36は、第1光源21と第2光源22とが、所定の時間間隔で順番に切り換えて点灯(交番点灯)されるように光源駆動部31の動作を制御する。第3実施形態の光学センサ3においては、上述のように、被検出物70の異なる位置に印刷される性質の異なる2つの情報を検出することを目的としている。 The alternating lighting control unit 36 controls the operation of the light source driving unit 31 so that the first light source 21 and the second light source 22 are switched in order at predetermined time intervals and turned on (alternate lighting). In the optical sensor 3 of the third embodiment, as described above, the object is to detect two pieces of information having different properties printed at different positions of the detected object 70.
 このようなことから、光学センサ3は、別々の位置を照射し、互いに異なる波長の光を出射する2つの光源21、22を有する構成としている。そして、第3実施形態の光学センサ3においても、単一の受光用フォトダイオード27だけで、異なる2つの領域の情報を検出する構成としている。したがって、第1光源21と第2光源22とを別々に点灯しないと、被検出物70に印刷される性質の異なる2つの特殊インクの検出ができない。このため、第1光源21と第2光源22とを交番点灯する必要があり、交番点灯制御部36が設けられている。 For this reason, the optical sensor 3 has two light sources 21 and 22 that irradiate different positions and emit light having different wavelengths. The optical sensor 3 according to the third embodiment is also configured to detect information of two different areas with only the single light receiving photodiode 27. Therefore, unless the first light source 21 and the second light source 22 are turned on separately, the two special inks having different properties printed on the detection target 70 cannot be detected. For this reason, it is necessary to alternately turn on the first light source 21 and the second light source 22, and an alternating lighting control unit 36 is provided.
 なお、交番点灯制御部36が第1光源21と第2光源22とを交番点灯させる時間間隔は、例えば被検出物70が搬送される速度や特殊インクが印刷されるサイズ等を鑑みて、実験やシミュレーション等を行うことによって決定される。 Note that the time interval at which the alternating lighting control unit 36 alternately turns on the first light source 21 and the second light source 22 is measured in consideration of, for example, the speed at which the detected object 70 is conveyed, the size at which the special ink is printed, and the like. Or by performing a simulation or the like.
 また、本実施形態の場合、第1光源21が点灯される場合と、第2光源22が点灯される場合とで、受光用フォトダイオード27で受光される蛍光の波長が異なる。この場合、受光用フォトダイオードの感度が異なる場合がある。このような点を考慮して、光学センサ3の初期調整の段階で、第1光源21を使用する場合と第2光源22を使用する場合とで、別々に受光用フォトダイオード27のゲイン調整値を得ておき、光源21、22の交番点灯に合わせて、識別信号用処理部32の設定条件を変更する構成としても構わない。 In the present embodiment, the wavelength of the fluorescence received by the light receiving photodiode 27 differs depending on whether the first light source 21 is turned on or the second light source 22 is turned on. In this case, the sensitivity of the light receiving photodiode may be different. In consideration of such points, the gain adjustment value of the light receiving photodiode 27 is separately determined when the first light source 21 is used and when the second light source 22 is used at the initial adjustment stage of the optical sensor 3. The setting condition of the identification signal processing unit 32 may be changed in accordance with alternating lighting of the light sources 21 and 22.
 以上のように構成される第3実施形態の光学センサ3を搬送装置に取り付ければ、搬送される商品券70が有する2つの領域の性質が異なる特殊インクを別々に検出し、商品券の分類や真偽判定を行うことが可能である。なお、本実施形態の構成の場合には、搬送時に商品券70の上下が反転(図10及び図11を参照)しないように管理しておく必要がある。 If the optical sensor 3 of the third embodiment configured as described above is attached to the transport device, special inks having different properties in the two areas of the transported gift certificate 70 are separately detected, and the gift certificate classification and It is possible to perform authenticity determination. In the case of the configuration of the present embodiment, it is necessary to manage the gift certificate 70 so that the top and bottom of the gift certificate 70 are not reversed (see FIGS. 10 and 11) during transportation.
 本実施形態の構成の場合、被検出物70の2つの領域に別々に光を照射して、それによって別々の位置で生じる光を、導光部51によって異なる反射経路を利用して、単一の受光用フォトダイオード27に導く構成となっている。すなわち、光源の数の増加に合わせて受光素子の数を増加させることなく、受光素子を1つとできる。したがって、被検出物70の近傍でない複数の位置に、性質の異なる2つの特殊インクが印刷されるような場合でも、それらの情報を低コストで検出することが可能となる。 In the case of the configuration of the present embodiment, the two regions of the detected object 70 are separately irradiated with light, thereby causing the light generated at different positions to be single by using different reflection paths by the light guide unit 51. The light receiving photodiode 27 is guided. That is, the number of light receiving elements can be reduced to one without increasing the number of light receiving elements in accordance with the increase in the number of light sources. Therefore, even when two special inks having different properties are printed at a plurality of positions that are not in the vicinity of the detected object 70, it is possible to detect such information at a low cost.
(その他)
 本発明は、以上に示した実施形態に限定されるものではなく、本発明の目的を逸脱しない範囲で種々の変更が可能である。
(Other)
The present invention is not limited to the embodiment described above, and various modifications can be made without departing from the object of the present invention.
 例えば、以上に示した第1から第3実施形態においては、図2、図12及び図14に示される図を参照して、導光部25、41、51が左右対称な構造となるようにした。しかしながら、この構成に限定される趣旨ではない。被検出物70の搬送方向と非平行な方向に離れた2つの領域の情報を検出できれば良く、導光部25、41、51が左右非対称な構造であっても勿論構わない。 For example, in the first to third embodiments described above, with reference to the drawings shown in FIGS. 2, 12, and 14, the light guide portions 25, 41, and 51 have a symmetrical structure. did. However, the present invention is not limited to this configuration. It suffices if information of two areas separated in a direction non-parallel to the conveyance direction of the detected object 70 can be detected, and the light guides 25, 41, 51 may of course have an asymmetric structure.
 また、例えば、以上に示した第1及び第2実施形態においては、第1光源21と第2光源22とを交番点灯しない構成とした。しかし、これに限定されず、第1光源21と第2光源22とを交番点灯する構成としても構わない。このようにすると、受光用フォトダイオード27で検出される情報が第1光源21を点灯した場合によるものか、第2光源22を点灯した場合によるものか、を区別できる。すなわち、搬送される商品券70のいずれの場所に特殊インクで印刷された情報(例えばバーコード情報)があったかを把握できる。 Further, for example, in the first and second embodiments described above, the first light source 21 and the second light source 22 are not alternately lit. However, the present invention is not limited to this, and the first light source 21 and the second light source 22 may be alternately turned on. In this way, it is possible to distinguish whether the information detected by the light receiving photodiode 27 is based on when the first light source 21 is turned on or when the second light source 22 is turned on. That is, it can be grasped where information (for example, bar code information) printed with special ink is located in the gift certificate 70 to be conveyed.
 また、このような交番点灯を行った場合には、商品券70の特殊インク(バーコード71)を検出した場合の信号のS/N比を良くできる。すなわち、交番点灯しない場合には、一方の光源を点灯することによって受光用フォトダイオード27に不要な光が入る可能性が高まりS/Nを悪化させる可能性がある。この点を、交番点灯により解消できる。 In addition, when such alternating lighting is performed, the S / N ratio of the signal when the special ink (bar code 71) of the gift certificate 70 is detected can be improved. That is, when alternating lighting is not performed, there is a possibility that unnecessary light enters the light receiving photodiode 27 by turning on one of the light sources, and the S / N may be deteriorated. This point can be eliminated by alternating lighting.
 また、例えば、以上に示した第1から第3実施形態においては、被検出物70の近傍でない離れた2つの領域の情報を、2つの光源21、22と、1つの受光用フォトダイオード27(受光素子)とを用いて検出する構成を示した。しかし、これに限らず、本発明の光学センサは、被検出物70の近傍でない離れた3つ以上の領域の情報を、光源の数を3つ以上として、1つの受光素子で検出するセンサとして応用できる。以下、被検出物70の近傍でない離れた3つの領域の情報を検出する場合の導光部の構成について図16に示す。 Further, for example, in the first to third embodiments described above, information on two distant areas that are not in the vicinity of the detected object 70 is obtained by using two light sources 21 and 22 and one light receiving photodiode 27 ( The configuration of detecting using a light receiving element) is shown. However, the present invention is not limited to this, and the optical sensor of the present invention is a sensor that detects information of three or more regions that are not in the vicinity of the detected object 70 by using one light receiving element with three or more light sources. Can be applied. Hereinafter, the configuration of the light guide unit in the case of detecting information on three separate areas that are not in the vicinity of the detected object 70 is shown in FIG.
 図16は、光源の数が3つとされた場合の導光プリズムの構成例を示す図である。図16は、図3Aに示す導光プリズムを変形した構成であって平面図で示している。図16に示す構成は、破線の円で囲まれた部分の情報を検出できる構成である。図中、81は光源から出射された光を透過するための平面部(透過面)で、82は被検出物からの光を全反射するための第1の傾斜面(全反射面)で、83は第1の傾斜面82で反射された光を更に全反射する第2の傾斜面(全反射面)ある。なお、図16の記載方法において、第1の傾斜面82は導光体プリズムの外面を示し、第2の傾斜面83は導光体プリズムの内面を示している。このように構成された導光プリズムも、複数の光源から出射される光を透過して被検出物へと導くと共に、被検出物の複数の位置からの光について、各々異なる反射経路を利用して単一の受光素子へと導く。 FIG. 16 is a diagram illustrating a configuration example of the light guide prism when the number of light sources is three. FIG. 16 is a plan view showing a modified configuration of the light guide prism shown in FIG. 3A. The configuration illustrated in FIG. 16 is a configuration that can detect information of a portion surrounded by a broken-line circle. In the figure, 81 is a plane part (transmission surface) for transmitting light emitted from the light source, and 82 is a first inclined surface (total reflection surface) for totally reflecting light from the object to be detected. Reference numeral 83 denotes a second inclined surface (total reflection surface) that further totally reflects the light reflected by the first inclined surface 82. In the description method of FIG. 16, the first inclined surface 82 indicates the outer surface of the light guide prism, and the second inclined surface 83 indicates the inner surface of the light guide prism. The light guide prism configured in this way also transmits light emitted from a plurality of light sources and guides it to a detected object, and uses different reflection paths for light from a plurality of positions of the detected object. To a single light receiving element.
 また、以上に示した第1から第3実施形態においては、光源21、22と受光用フォトダイオード27とを、被検出物70から見て同一側に配置する構成とした。しかし、本発明はこの構成に限定される趣旨ではない。すなわち、例えば図17に示すように、搬送路63を搬送される被検出物70を挟んで、一方の側に光源21、22を配置し、他方の側に導光部(例えば導光プリズム25;ただし、図1の場合と上下逆さまに配置する必要がある)を配置するとしても構わない。ただし、第1から第3実施形態のように配置した方が、光学センサを小型とでき、また、光を透過しない被検出物に適用できるために好ましい。 In the first to third embodiments described above, the light sources 21 and 22 and the light receiving photodiode 27 are arranged on the same side when viewed from the object 70 to be detected. However, the present invention is not limited to this configuration. That is, for example, as shown in FIG. 17, the light sources 21 and 22 are arranged on one side with the detected object 70 conveyed on the conveyance path 63 interposed therebetween, and the light guide unit (for example, the light guide prism 25) is arranged on the other side. However, it may be arranged upside down as in the case of FIG. However, the arrangement as in the first to third embodiments is preferable because the optical sensor can be reduced in size and can be applied to an object to be detected that does not transmit light.
 また、以上に示した第1から第3実施形態においては、被検出物が光学センサに対して相対的に移動する構成として、被検出物を搬送装置で搬送する構成を示した。しかし、本発明の光学センサは、光学センサ自体を動かすことによって、被検出物が光学センサに対して相対的に移動する場合でも適用できる。 In the first to third embodiments described above, the configuration in which the detected object is transported by the transport device is shown as the configuration in which the detected object moves relative to the optical sensor. However, the optical sensor of the present invention can be applied even when the object to be detected moves relative to the optical sensor by moving the optical sensor itself.
 本発明は、例えば、商品券、株券、債権、紙幣等の紙葉類や、プリペードカード、クレジットカード等のカード類等の被検出物に対して、光学的な手法を用いて、その分類や真偽判定等を行うためのセンサとして好適に利用できる。 The present invention uses, for example, an optical method to classify paper sheets such as gift certificates, stock certificates, receivables, and banknotes, and prepaid cards, cards such as credit cards, and the like. It can be suitably used as a sensor for performing authenticity determination or the like.

Claims (11)

  1.  センサ本体に対して相対的に移動する被検出物に光を照射し、前記被検出物からの光を検出する光学センサであって、
     前記被検出物の離れた複数の位置を別々に照射するための複数の光源と、
     前記被検出物の前記複数の位置からの光を受光して光電変換する単一の受光素子と、
     前記複数の光源の各々から出射される光を透過して前記被検出物へと導く共に、前記複数の位置からの光について、各々異なる反射経路を利用して前記単一の受光素子へと導く導光部と、
     を備えることを特徴とする光学センサ。
    An optical sensor that irradiates a detected object that moves relative to the sensor body and detects light from the detected object,
    A plurality of light sources for separately irradiating a plurality of separated positions of the object to be detected;
    A single light receiving element that receives and photoelectrically converts light from the plurality of positions of the detected object;
    The light emitted from each of the plurality of light sources is transmitted and guided to the detected object, and the light from the plurality of positions is guided to the single light receiving element using different reflection paths. A light guide;
    An optical sensor comprising:
  2.  前記導光部は、単一の部材からなることを特徴とする請求項1に記載の光学センサ。 The optical sensor according to claim 1, wherein the light guide unit is made of a single member.
  3.  前記単一の部材は、前記複数の光源に対して各々設けられて前記複数の光源から出射される光を透過するための透過面と、前記被検出物からの光について、全反射するための複数の全反射面と、を備える導光プリズムであることを特徴とする請求項2に記載の光学センサ。 The single member is provided for each of the plurality of light sources to transmit light emitted from the plurality of light sources, and to totally reflect light from the object to be detected. The optical sensor according to claim 2, wherein the optical sensor is a light guide prism including a plurality of total reflection surfaces.
  4.  前記導光部は複数のミラーを備え、前記複数のミラーには、入射する光の一部を透過し、残りの一部を反射する複数の第1のミラーと、入射する光を全て反射する複数の第2のミラーと、が含まれることを特徴とする請求項1に記載の光学センサ。 The light guide unit includes a plurality of mirrors, and the plurality of mirrors transmits a part of incident light and reflects a remaining part of the plurality of first mirrors and reflects all incident light. The optical sensor according to claim 1, further comprising a plurality of second mirrors.
  5.  前記光源から出射される光の波長と、前記単一の受光素子で受光される光の波長とが異なるように形成されることを特徴とする請求項1に記載の光学センサ。 The optical sensor according to claim 1, wherein the optical sensor is formed so that a wavelength of light emitted from the light source is different from a wavelength of light received by the single light receiving element.
  6.  前記光源から出射される光が可視光であり、前記単一の受光素子で受光される光が赤外光であることを特徴とする請求項5に記載の光学センサ。 6. The optical sensor according to claim 5, wherein the light emitted from the light source is visible light, and the light received by the single light receiving element is infrared light.
  7.  前記複数の光源は、各々異なる波長の光を出射することを特徴とする請求項1に記載の光学センサ。 The optical sensor according to claim 1, wherein each of the plurality of light sources emits light having a different wavelength.
  8.  前記複数の光源が交番点灯することを特徴とする請求項1に記載の光学センサ。 The optical sensor according to claim 1, wherein the plurality of light sources are alternately lit.
  9.  前記複数の光源と前記単一の受光素子とは、前記被検出物から見て同一側に配置されることを特徴とする請求項1に記載の光学センサ。 The optical sensor according to claim 1, wherein the plurality of light sources and the single light receiving element are arranged on the same side as viewed from the object to be detected.
  10.  前記複数の光源は、第1の光源と第2の光源との2つの光源から成り、
     前記導光プリズムは樹脂で形成され、
     前記第1の光源と前記導光プリズムとの間、前記第2の光源と前記導光プリズムとの間、及び前記導光プリズムと前記単一の受光素子との間には、各々通過できる光を特定の波長領域の光に制限するフィルタが配置されることを特徴とする請求項3に記載の光学センサ。
    The plurality of light sources include two light sources, a first light source and a second light source,
    The light guide prism is formed of resin,
    Light that can pass between the first light source and the light guide prism, between the second light source and the light guide prism, and between the light guide prism and the single light receiving element. The optical sensor according to claim 3, wherein a filter that restricts the light to light in a specific wavelength region is disposed.
  11.  光の出射面及び入射面として機能し、位置的に同一の平面上にある複数の入出射面と、
     前記複数の入出射面の各々について傾斜した状態で対向配置されて、全反射面として機能する複数の第1の傾斜面と、
     前記複数の第1の傾斜面で全反射された光を更に全反射するために設けられる複数の第2の傾斜面と、
     前記複数の第2の傾斜面で全反射された光を出射する出射面と、を備え、
     前記第1の傾斜面には、前記複数の入出射面の各々に対して1つずつ平行に対向配置され、前記複数の第1の傾斜面の各々の一部に部分的な平面を設けることによって形成されて透過面として機能する平面部が設けられることを特徴とする導光プリズム。
    A plurality of light incident / exit surfaces that function as light exit surfaces and light incident surfaces and are located on the same plane;
    A plurality of first inclined surfaces which are opposed to each other in a state of being inclined with respect to each of the plurality of incident / exit surfaces and function as total reflection surfaces;
    A plurality of second inclined surfaces provided to further totally reflect the light totally reflected by the plurality of first inclined surfaces;
    An emission surface that emits light totally reflected by the plurality of second inclined surfaces, and
    The first inclined surface is arranged to face each of the plurality of incident / exit surfaces in parallel, and a partial flat surface is provided on a part of each of the plurality of first inclined surfaces. A light guide prism, characterized by being provided with a flat portion that is formed by and functions as a transmission surface.
PCT/JP2008/053845 2008-03-04 2008-03-04 Optical sensor and optical waveguide prism WO2009110064A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/053845 WO2009110064A1 (en) 2008-03-04 2008-03-04 Optical sensor and optical waveguide prism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/053845 WO2009110064A1 (en) 2008-03-04 2008-03-04 Optical sensor and optical waveguide prism

Publications (1)

Publication Number Publication Date
WO2009110064A1 true WO2009110064A1 (en) 2009-09-11

Family

ID=41055643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/053845 WO2009110064A1 (en) 2008-03-04 2008-03-04 Optical sensor and optical waveguide prism

Country Status (1)

Country Link
WO (1) WO2009110064A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2750111A4 (en) * 2011-08-25 2015-03-11 Glory Kogyo Kk Paper item identification device, paper item spectrometry light guide and light guide case
EP3221853B1 (en) * 2014-11-20 2022-06-22 Bundesdruckerei GmbH Method and device for capturing of emitted light and method for the manufacturing

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06288714A (en) * 1993-03-31 1994-10-18 Canon Inc Measuring device
JPH11213164A (en) * 1998-01-29 1999-08-06 Fuji Xerox Co Ltd Personal identification device
JP2002010028A (en) * 2000-06-20 2002-01-11 Sharp Corp Light source unit for original reader
JP2002246446A (en) * 2001-02-20 2002-08-30 Assist Japan Kk Wafer alignment device
JP2004265682A (en) * 2003-02-28 2004-09-24 Matsushita Electric Works Ltd Display device
JP2005050213A (en) * 2003-07-30 2005-02-24 Nec Machinery Corp Image recognition device
JP2007139565A (en) * 2005-11-17 2007-06-07 Seiko Epson Corp Image recognition device, device of aligning substrate, and device of laminating substrate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06288714A (en) * 1993-03-31 1994-10-18 Canon Inc Measuring device
JPH11213164A (en) * 1998-01-29 1999-08-06 Fuji Xerox Co Ltd Personal identification device
JP2002010028A (en) * 2000-06-20 2002-01-11 Sharp Corp Light source unit for original reader
JP2002246446A (en) * 2001-02-20 2002-08-30 Assist Japan Kk Wafer alignment device
JP2004265682A (en) * 2003-02-28 2004-09-24 Matsushita Electric Works Ltd Display device
JP2005050213A (en) * 2003-07-30 2005-02-24 Nec Machinery Corp Image recognition device
JP2007139565A (en) * 2005-11-17 2007-06-07 Seiko Epson Corp Image recognition device, device of aligning substrate, and device of laminating substrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2750111A4 (en) * 2011-08-25 2015-03-11 Glory Kogyo Kk Paper item identification device, paper item spectrometry light guide and light guide case
US9335254B2 (en) 2011-08-25 2016-05-10 Glory Ltd. Paper sheet recognition apparatus, light guide and light guide casing for use in spectrometric measurement of paper sheet
EP3221853B1 (en) * 2014-11-20 2022-06-22 Bundesdruckerei GmbH Method and device for capturing of emitted light and method for the manufacturing

Similar Documents

Publication Publication Date Title
EP1576549B1 (en) Optical sensing device for detecting optical features of valuable papers
JP4188111B2 (en) Paper sheet authenticity discrimination device
EP1494178B1 (en) A banknote validator with a reflecting optical sensor
WO2005078670A1 (en) Inspection device
TWI231458B (en) A banknote detecting unit for a banknote distinguishing device
JP5537473B2 (en) Optical line sensor device and method for identifying valuable paper
JP2012198188A (en) Photodetection device and paper sheet processing apparatus including photodetection device
WO2009110064A1 (en) Optical sensor and optical waveguide prism
WO2009157049A1 (en) Sensor for paper sheet identification
JP4058246B2 (en) Method and apparatus for detecting tape body attached to paper sheet
JP2003272022A (en) Device for detecting tape on paper sheet by using near- infrared ray
JP4074917B1 (en) Paper sheet identification device
JP2009216678A (en) Optical sensor module and optical sensor
JP2008282270A (en) Paper sheet discrimination device
JP2003332614A (en) Optical coupling device and information apparatus using the same
JP2014197005A (en) Optical line sensor apparatus and discrimination method of securities
JP2007087333A (en) Pearl ink detection device
JP2008016998A (en) Optical reader and its correction method
JP2017151654A (en) Valuable document identification device, valuable document processor, image sensor unit, and method for detecting optical variable element region
WO2016021294A1 (en) Paper sheet processing device
JP2013030100A (en) Image sensor unit, and paper sheet recognition device
JP2001307170A (en) Fluorescent thread detector of paper sheets

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08721265

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08721265

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP