WO2009107221A1 - Radio base station, scheduling method and radio communication system - Google Patents

Radio base station, scheduling method and radio communication system Download PDF

Info

Publication number
WO2009107221A1
WO2009107221A1 PCT/JP2008/053553 JP2008053553W WO2009107221A1 WO 2009107221 A1 WO2009107221 A1 WO 2009107221A1 JP 2008053553 W JP2008053553 W JP 2008053553W WO 2009107221 A1 WO2009107221 A1 WO 2009107221A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
base station
rlc
scheduling
priority
Prior art date
Application number
PCT/JP2008/053553
Other languages
French (fr)
Japanese (ja)
Inventor
秀和 佐藤
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2008/053553 priority Critical patent/WO2009107221A1/en
Publication of WO2009107221A1 publication Critical patent/WO2009107221A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present invention relates to a radio base station, a scheduling method, and a radio communication system.
  • the present invention can also be used, for example, in a technique for scheduling data addressed to a wireless terminal in a wireless communication system or the like.
  • the present invention is not limited to the above-described object, and can be positioned as one of other objects that is an effect obtained by each configuration shown in the embodiments to be described later and that cannot be obtained by conventional techniques. .
  • a wireless base station that communicates with a wireless terminal via a wireless link, wherein a plurality of data units constituting individual data of a plurality of logical channels associated with a transport channel of the wireless link Based on the buffer unit held for each channel, the scheduler for scheduling the transmission timing of each data unit in the buffer unit based on the priority set for each logical channel, and the transmission timing scheduled by the scheduler, It is possible to use a radio base station including a transmission processing unit that selects any one of the data units from the buffer unit and transmits the selected data unit to a communication path that reaches the radio terminal.
  • the communication path is the communication path between the wireless link or the destination wireless base station of the wireless terminal and between the destination wireless base station and the wireless terminal after the movement.
  • a wireless link may be included.
  • the scheduler may perform the scheduling so that a data unit of a logical channel having a higher priority is preferentially transmitted to the communication path.
  • the scheduler may perform the scheduling so that the number of selections of data units of individual logical channels is adjusted according to the priority of the logical channels.
  • the scheduler may perform the scheduling so that the number of selections of the data unit of each logical channel is adjusted based on the buffer amount for each logical channel in the buffer unit. Good.
  • the scheduler may temporarily set a priority of the data unit of the logical channel to be transmitted to the movement-destination radio base station higher than others. (7) Further, when the data unit of the logical channel is a data unit received from the source wireless base station of the wireless terminal, the scheduler temporarily sets the priority of the data unit higher than others. You may do it.
  • a scheduling method in a radio base station that communicates with a radio terminal via a radio link, and a plurality of data constituting individual data of a plurality of logical channels associated with a transport channel of the radio link
  • a unit is held for each logical channel, and the transmission timing of each data unit is scheduled based on the priority set for each logical channel, and according to the scheduled transmission timing, any one of the data units is scheduled. It is possible to use a scheduling method that selects these and transmits them to the communication path leading to the wireless terminal.
  • At least one wireless terminal a wireless base station communicating with the wireless terminal via a wireless link, and individual data of a plurality of logical channels associated with the transport channel of the wireless link are configured.
  • a buffer unit that holds a plurality of data units for each logical channel; a scheduler that schedules the transmission timing of each data unit in the buffer unit based on a priority set for each logical channel; and the scheduler
  • a wireless communication system including a transmission processing unit that selects one of the data units from the buffer unit and transmits the selected data unit to a communication path that reaches the wireless terminal according to the transmission timing scheduled in (1) can be used.
  • Radio base station (eNB) 1-1 Handover source radio base station (HO source eNB) 1-2 Handover destination radio base station (HO destination eNB) 2 Radio terminal (UE) 3 Core network equipment (MME / UPE) 4 IP network 5 IP packet termination processing unit 6 Downstream RLC layer processing unit 7 Storage buffer 8 Data selection unit 9 Scheduler
  • the communication system illustrated in FIG. 1 includes two radio base stations (evolved Node-B, eNB for short) 1, two radio terminals (UE: User Equipment) 2, and a core network system device (MME / UPE: Mobile Management Entity / User Plane Entity) 3.
  • eNBs evolved Node-B
  • MME Mobile Management Entity / User Plane Entity
  • the number of eNBs and the number of UEs are not limited to the numbers shown in FIG. Any one or more of them can exist.
  • a packet communication system based on 3GPP LTE (3rd Generation Partnership Project Long Service Term Evolution) standard will be described as an example of a communication system, but of course, the communication system is not limited to such a communication system.
  • the radio base station 1 is not limited to the eNB, but may be a radio base station (BS: Base Station) of a generation earlier than LTE / SAE (Long Term Evolution / System Architecture Evolution).
  • BS Base Station
  • SAE Long Term
  • eNB1 has the function of the radio base station (Node-B) of the generation before LTE / SAE and the function of a radio base station controller (RNC: Radio Network Controller).
  • ENB1 is connected to MME / UPE3 using a communication interface called S1 (S1 interface), and connected to other eNB1 using a communication interface called X1 (X1 interface).
  • the eNB 1 of this example has a function of communicating with the UE 2 via a radio link.
  • the radio link includes a downlink (DL) that is a direction from eNB1 to UE2, and an uplink (UL) that is the opposite direction.
  • the UE 2 has a function of performing radio communication with the eNB 1 via the radio link, and can communicate with another UE 2 or an external packet network via the eNB 1.
  • MME / UPE3 is an entity corresponding to a higher-level device of eNB1, and has a function of managing and controlling eNB1, a function of managing location registration of UE2, a function of transmitting and receiving messages between UE2 and the external packet network, etc. It has.
  • Packet scheduling between eNB1 and UE2 for example, eNB1 receives information on QoS (Quality of Services) of packet data, packet data type (whether initial transmission or retransmission, etc.), and radio propagation path status reported from UE2 RLC (Radio Link Control) that constitutes a protocol data unit (PDU: Protocol Data Unit) in the MAC (Media Access Control) sub-layer addressed to UE 2 based on priority information corresponding to any one or a combination of two or more Scheduling (assignment of transmission timing) of DL data addressed to the UE 2 is performed using a service data unit (SDU) in the sublayer as a basic unit.
  • SDU service data unit
  • SDU service data unit
  • a part or all of the priority information can be notified (set) to the eNB 1 (scheduler) by a higher-level device (MME / UPE 3 or the like).
  • MAC_PDU a PDU in the MAC sublayer
  • RLC_PDU includes a MAC header and a MAC payload
  • the MAC payload includes a plurality of PDUs in the RLC sublayer (hereinafter referred to as RLC_PDU).
  • RLC_PDU includes an RLC header and an RLC payload that can store a plurality of RLC_SDUs.
  • a part or all of the RLC_SDU is stored in the RLC payload by division (segmentation) and combination processing described later. That is, the RLC_PDU is also a service data unit (hereinafter referred to as MAC_SDU) in the MAC sublayer.
  • MAC_SDU service data unit
  • a radio bearer as a service access point (SAP) providing inter-layer communication is defined between a PDCP (Packet Data Convergence Protocol) sublayer and an RLC sublayer, and user data addressed to the UE 2 Is subjected to header compression processing by RoHC (Robust Header Compression), which is one of the parameters defining the radio bearer, and becomes RLC_SDU which is variable length data.
  • SAP service access point
  • the RLC_SDU is divided (segmented) into units suitable for processing such as ARQ (Automatic Repeat Request) control and order control, combined to generate an RLC payload, and a unit in which an RLC header is added ( RLC_PDU (MAC_SDU)) can be delivered to the MAC sublayer.
  • RLC_PDU RLC_PDU
  • Control data can also be delivered to the MAC sublayer in units corresponding to RLC_PDUs.
  • LCH logical channel
  • CCH control channel
  • Only one LCH may be assigned to one UE 2 or a plurality of LCHs may be assigned.
  • LCH # 1 to LCH # l (l is a natural number) are assigned to UE # 1
  • LCH # m (m is a natural number) is assigned to UE # n (n is a natural number). Is assigned.
  • the priority information is set in the LCH by, for example, the MME / UPE3.
  • the RLC_PDU (MAC_SDU) delivered from the RLC sublayer via the LCH is divided (segmented) into the storage buffer for each LCH, and distributed and held in units of RLC_SDUs before being combined.
  • scheduling is performed not in units of RLC_PDU (MAC_SDU) but in units based on RLC_SDU. Therefore, in some cases, it is preferable that the data transfer from the RLC sublayer to the MAC sublayer via the LCH is performed by adding an RLC header in units of variable length RLC_SDU before the segmentation and combination are performed.
  • packet data addressed to UE2 is selected and combined in units based on RLC_SDU based on priority information for each LCH, and is converted into RLC_PDU (MAC_SDU) with an RLC header added. Further, the MAC_SDU is added to a MAC header including control information (sequence number, etc.) for HARQ (Hybrid Automatic Repeat Request), etc., and converted into MAC_PDU, together with CCH control data generated in the RLC layer Then, it is multiplexed (mapped) to a transmission channel (Transport Channel) and transmitted to UE2.
  • MAC_SDU RLC_PDU
  • RLC_SDU corresponds to one of a plurality of data units constituting individual data (RLC_PDU) of a plurality of logical channels (LCH) associated with a transport channel of a radio link between eNB1 and UE2.
  • the eNB 1 of this example can perform buffering and scheduling for each LCH in units of the data unit.
  • the eNB 1 when scheduling is performed in units of MAC_SDUs for each UE 2 based on the priority information set in the LCH, the eNB 1 has the MAC_SDU of the LCH # 1 with the priority “high”, The transmission timing is scheduled in the order of MAC_SDU of LCH # 2 having a medium priority, MAC_SDU of LCH # 3 having a medium priority, and MAC_SDU of LCH # m having a high priority.
  • the data of each LCH is scheduled in smaller RLC_SDU units, and is transmitted to the radio link addressed to UE 2 based on the scheduling result. If this is the case, it is possible to evenly provide DL data transmission opportunities of the same priority to a plurality of UEs 2, and to shorten the data arrival time to each UE 2.
  • the HO source eNB 1-1 determines whether to perform handover based on the result of the measurement report. If it is determined and it is determined that the handover is to be performed, the handover is requested to the HO destination eNB 1-2. When the HO destination eNB 1-2 permits the handover request, the HO source eNB 1-1 transfers (forwards) the packet data addressed to the UE 2 remaining in the local station 1-1 to the HO destination eNB 1-2.
  • the HO source eNB 1-1 in this example performs scheduling in units of RLC_SDU at the time of data transfer between eNBs 1, and based on the scheduling result, packet data addressed to UE 2 in units based on RLC_SDU. Transfer to HO destination eNB1-2.
  • the HO source eNB 1-1 may temporarily set the priority of the RLC_SDU transferred to the HO destination eNB 1-2 to be higher than the others, and perform scheduling in units of the RLC_SDU.
  • the priority of the RLC_SDU transferred from the HO source eNB 1-1 may be temporarily set higher than the others, and the scheduling in units of the RLC_SDU may be performed.
  • RLC_PDU MAC_SDU
  • RLC_PDU of LCH # m with priority “Large” The transmission timing is scheduled in the order of RLC_PDU of LCH # 2 having a medium priority and RLC_PDU of LCH # 3 having a medium priority.
  • the eNB 1 of the present example for example, in the data transfer between the HO source eNB 1-1 and the HO destination eNB 1-2, for example, in the same manner as the scheduling method described in (1.1), 1 performs scheduling in units of RLC_SDUs, and transfers RLC_SDUs to the HO destination eNB 1-2 based on the scheduling result, so that it is possible to shorten the data arrival time to each UE2.
  • the transfer unit at this time is the RLC_SDU unit, it is possible to efficiently perform ARQ retransmission processing, concealment processing, and the like.
  • the scheduling in the downlink (downlink) data transmission from the eNB1 to the UE2 has been described as an example, but the uplink from the UE2 to the eNB1 (uplink) The same scheduling may be applied to the above.
  • FIG. 7 is a block diagram illustrating a configuration of eNB 1 according to one embodiment.
  • the HO source eNB 1-1 and the HO destination eNB 1-2 shown in FIG. 7 include, for example, an IP packet termination processing unit 5, a downlink RLC layer processing unit 6, a storage buffer 7, a data selection unit 8, and a scheduler, respectively. 9 is provided.
  • the IP packet termination processing unit 5 of this example receives packet data (RLC_SDU) as control plane (C-Plane) information and user plane (U-Plane) data from the MME / UPE 3 via the IP network 4. And a function of performing a predetermined termination process.
  • RLC_SDU packet data
  • C-Plane control plane
  • U-Plane user plane
  • the IP packet termination processing unit 5 of this example has a function of transferring packet data from the HO source eNB 1-1 to the HO destination eNB 1-2 via the IP network 4 when the UE 2 is handed over, for example.
  • the downlink RLC layer processing unit 6 has a function of distributing the RLC_SDU received by the IP packet termination processing unit 5 to the storage buffer 7 for each LCH.
  • the downlink RLC layer processing unit 6 of the present example has a function of performing predetermined protocol processing (header addition, etc.) on transfer data from the HO source eNB 1-1 to the HO destination eNB 1-2 at the time of handover of the UE 2. To do. Furthermore, the downlink RLC layer processing unit 6 of this example has a function of notifying the scheduler 9 of the priority of each LCH set by the MME / UPE 3, for example.
  • the storage buffer (buffer unit) 7 stores, for each LCH, a plurality of RLC_SDUs constituting individual packet data of a plurality of logical channels (LCH) associated with the transport channel of the radio link between eNB1 and UE2. It has the function to hold.
  • the storage buffer 7 of this example for example, as in the example shown in FIG. 8, RLC_SDUs indicated by codes “# 1” to “# 4” for LCH # 1, and codes “#” for LCH # 2.
  • RLC_SDUs indicated by 5 ”to“ # 8 ”, RLC_SDUs indicated by“ # 9 ”to“ # 13 ”for LCH # 3, and“ # 100 ”to“ # 100 ”for LCH # m The RLC_SDU indicated by “# 103” is stored.
  • the data selection unit (transmission processing unit) 8 selects and extracts packet data stored in the storage buffer 7 in units of RLC_SDUs based on the transmission timing scheduled by the scheduler 9, performs predetermined radio processing, It has a function to transmit to a wireless link. Further, the data selection unit 8 of the present example has a function of transferring the selected / extracted data addressed to the UE 2 to the HO destination eNB 1-2 based on the transmission timing scheduled by the scheduler 9 when the UE 2 is handed over. To do.
  • the scheduler 9 of this example has a function of scheduling the transmission timing of the RLC_SDU stored in the storage buffer 7 based on the priority information of each LCH set by the MME / UPE 3, for example,
  • the scheduler 9 of this example has a function of controlling the data selection unit 8 so that RLC_SDU to be transmitted to the UE 2 is preferentially selected and extracted.
  • the scheduler 9 of this example has a priority information table that holds, for example, the priority information set by the MME / UPE 3 and each LCH in association with each other.
  • This priority information table holds (stores) a user (UE) number, an LCH, and a priority, for example, as in the example shown in FIG.
  • the priority set by the MME / UPE 3 is given by numerical data “1” to “20”, for example.
  • the scheduler 9 of this example uses “high” as priority information based on the numerical data. ”,“ Medium ”, and“ small ”may be defined.
  • the scheduler 9 of this example defines a priority “Large” for LCHs having a priority (numerical data) of “20” to “15”, and a priority (numerical data) of “14” to “10”. “L” can be defined for LCHs with priority (numerical data) “9” to “1”. Thereby, the scheduler 9 of this example performs scheduling control so that the RLC_SDU is selected and extracted by the data selection unit 8 in the order of LCH having the priorities of “large”, “medium”, and “small”, for example.
  • the priority of LCH # 1 and LCH # m is “high”, and the priority of LCH # 2 and LCH # 3 is “medium”.
  • the priority definition method described above is merely an example, and the present invention is not limited to this.
  • Each information held in the priority information table may be updated after the data selection unit 8 selects / extracts data or when a new setting is notified by the MME / UPE 3. .
  • the scheduler 9 schedules the data of each LCH in smaller RLC_SDU units based on the priority information set for each LCH, and the data selection unit 8 Based on the scheduling result, RLC_SDU is selected and extracted from the storage buffer, predetermined radio processing is performed, and it is transmitted to the radio link addressed to UE2.
  • the eNB 1 schedules to transmit the RLC_SDU of the LCH # 1 having the priority “Large” (see the code “# 1”) first, and then performs the priority “ Scheduling to transmit RLC_SDU (see code “# 100”) of “large” LCH # m. That is, the RLC_SDU of LCH # 1 with the priority “Large” (refer to code “# 1” to code “# 4”) and the RLC_SDU of LCH # m (refer to code “# 100” to code “# 103”) , Scheduled in turn (alternately) in units of RLC_SDU and transmitted to UE2.
  • RLC_SDU of LCH # 2 having a medium priority (refer to code “# 5” to code “# 7”) and RLC_SDU of LCH # 3 (refer to code “# 9” to code “# 11”)
  • scheduling is performed in units of RLC_SDU and transmitted to UE2.
  • the HO source eNB 1-1 of the present example can apply the same scheduling as described above to data transfer with the HO destination eNB 1-2.
  • the scheduler 9 performs scheduling for each RLC_SDU, and the data selection unit 8 transfers the RLC_SDU to the HO destination eNB 1-2 based on the scheduling result.
  • the transmission timing of the RLC_SDU can be evenly distributed for a plurality of LCHs having the same priority. It is possible to suppress the occurrence of transmission delay.
  • the scheduler 9 may temporarily set the LCH priority of the RLC_SDU to be transferred to the HO destination eNB 1-2 to be higher than the others, thereby improving the degree of freedom of scheduling. Therefore, it is possible to further optimize the data transmission time.
  • the HO destination eNB 1-2 has the same configuration as that of the HO source eNB 1-1.
  • the above-described scheduling may be performed for the RLC_SDU transferred from the HO source eNB 1-1.
  • the HO destination eNB 1-2 receives the priority information table together with the transfer data from the HO source eNB 1-1.
  • the scheduler 9 and the data selection unit 8 of the HO destination eNB 1-2 schedule the RLC_SDU transferred from the HO source eNB 1-1 based on the priority information set in each LCH and address it to a plurality of UEs 2.
  • the scheduler 9 of the HO source eNB 1-1 temporarily sets the priority information for the LCH of the UE 2 that performs the handover out of the priorities held in the priority information table, for example, so that the UE 2 You may make it transmit addressed data preferentially over others.
  • the HO source eNB 1-1 and / or the HO destination eNB 1-2 are configured so that the priority of the LCH of the UE # 1 becomes higher as in the example illustrated in FIG.
  • the priority information corresponding to UE 2 that does not perform handover may be set low, or both of them may be performed.
  • the scheduler 9 and the data selection unit 8 of the HO destination eNB 1-2 detect that there is no data addressed to the UE 2 that has performed the handover in the storage buffer 7, and the transfer data transmission to the UE 2 addressed after the handover is completed You may make it detect that it did.
  • the transfer process is stopped, the priority information in the priority information table is returned to the value before the update (setting), and preferential scheduling for the transfer data is performed. You may make it cancel.
  • the priority information of the LCH set by the MME / UPE 3 may be received to create a new priority information table and perform the above-described scheduling.
  • the HO destination eNB 1-2 can obtain the same effect as that of the HO source eNB 1-1 described above, and can temporarily transmit data addressed to the UE 2 that has performed the handover preferentially over others. it can. Note that when transmitting transfer data from the HO destination eNB 1-2 to the UE 2, the transport block size (TBS) may be changed according to the data length.
  • TBS transport block size
  • the eNB 1 can reduce the data arrival time to each UE 2 by suppressing the transmission delay of the transfer data during the handover.
  • the scheduler 9 and the data selection unit 8 may change the scheduling unit according to, for example, the transmission destination of the RLC_SDU. For example, when the transmission destination of RLC_SDU is another eNB1, scheduling may be performed in units of a plurality of RLC_SDUs, and when the transmission destination of RLC_SDU is UE2, scheduling may be performed in units of RLC_SDUs.
  • the scheduling unit of RLC_SDU may be changed according to the stage of handover (“HO preparation”, “HO execution”, “HO completion”, etc. shown in FIG. 5). In this way, since the degree of freedom (flexibility) of the scheduling can be improved, the data transmission time can be optimized.
  • the eNB 1 in this example has the priority “Large” LCH # 1 and the RLC_SDU of the LCH # m having a higher priority than the threshold ( In the same manner as described above in 2.1), that is, scheduling in units of RLC_SDU and transmitting to each UE2.
  • RLC_SDUs of LCH # 2 and LCH # 3 having a priority equal to or lower than the threshold are stored in the RLC_PDU (MAC_SDU) unit or in the order stored in the storage buffer 7, that is, codes “# 5” to Scheduling is performed in the order of code “# 13” and transmitted to UE 2.
  • RLC_SDU of LCH with higher priority can be preferentially transmitted, so that it is possible to improve the degree of freedom of scheduling and further optimize the data transmission time. Become.
  • the scheduler 9 and the data selection unit 8 may change the unit of RLC_SDU scheduling according to, for example, the transmission destination of the RLC_SDU. For example, when the destination of RLC_SDU is another eNB1, scheduling may be performed in a unit in which a plurality of RLC_SDUs are combined, and when the destination of RLC_SDU is UE2, scheduling may be performed in units of RLC_SDU.
  • the scheduling unit of RLC_SDU may be changed according to the stage of handover (“HO preparation”, “HO execution”, “HO completion”, etc. shown in FIG. 5). In this way, it is possible to improve the degree of freedom of scheduling, so that it is possible to further optimize the data transmission time.
  • RLC_SDU is selected and scheduled based on the LCH priority. However, based on the buffer amount for each LCH in the storage buffer 7, each LCH is selected. Scheduling may be performed so that the number of RLC_SDU selections is adjusted. That is, the scheduling unit may be changed based on the amount of LCH remaining (waiting to be transmitted).
  • the scheduler 9 and the data selection unit 8 of this example monitor the data remaining amount of RLC_SDU for each LCH stored in the storage buffer 7 regularly or irregularly, and the data remaining amount is equal to or greater than a predetermined threshold value.
  • scheduling is performed in units of a plurality of RLC_SDUs of the LCH.
  • the scheduler 9 and the data selection unit 8 try to transmit the RLC_SDU of the LCH # 1 having the priority “Large” (see the code “# 1”) first, but the remaining data amount of the LCH # 1 is predetermined.
  • RLC_SDUs indicated by code “# 1” and code “# 2” are collectively (continuously) transmitted after being determined to be equal to or greater than the threshold.
  • RLC_SDU of LCH # m with priority “L” it is determined that the remaining data amount of LCH # m is less than the predetermined threshold, and only RLC_SDU indicated by code “# 100” is transmitted. To do.
  • the subsequent RLC_SDU is also transmitted in the same manner.
  • the data amount may be updated every time RLC_SDU is transmitted from each LCH.
  • the scheduler 9 and the data selection unit 8 of the present modification for example, set a plurality of threshold values for the LCH data remaining amount, and based on the relationship between the remaining data amount and the plurality of threshold values, RLC_SDU You may make it change a transmission unit in steps.
  • the transmission unit of RLC_SDU is changed according to the remaining amount of data in the storage buffer 7, so that the degree of freedom in scheduling can be improved and the data transmission time can be further optimized.
  • the scheduler 9 in this example may perform scheduling so that the number of RLC_SDU selections for each LCH is adjusted according to the priority of the LCH, or the remaining data amount of the LCH and the priority of the LCH. In accordance with both, scheduling may be performed so that the number of selections of RLC_SDUs of individual LCHs is adjusted. In this way, it is possible to further improve the degree of freedom of scheduling, and it is possible to further optimize the data transmission time.
  • the HO source eNB 1-1 transfers data to the HO destination eNB 1-2 via the IP network 4, but instead of using the IP network 4, the HO source eNB 1-1 transfers data using a high-speed dedicated line or the like. You may make it perform. Further, in the above-described example, the eNB 1 has been described with respect to an example of scheduling and transmitting in units of RLC_SDU. However, if the data size is smaller than RLC_PDU (MAC_SDU), the same processing is performed in units of data other than RLC_SDU. It may be.
  • the scheduling is applied to the data transfer at the time of handover between different eNBs 1 has been described.
  • the same processing is also performed for the data transfer at the time of handover between sectors in the same eNB 1. May be.
  • the functions of the HO source eNB 1-1 and the HO destination eNB 1-2 described above may be selected as necessary.
  • HO source eNB 1-1 and HO destination eNB 1-2 may be provided in another entity as necessary.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Data units constituting respective data on logical channels associated with transport channels of a radio link are held for each of the logical channels, the transmission timing of each of the data units is scheduled according to the priority set for each of the logical channels, and any of the data units is selected according to the scheduled transmission timing and transmitted to a communication path which leads to a radio terminal.

Description

無線基地局、スケジューリング方法及び無線通信システムRadio base station, scheduling method, and radio communication system
 本発明は、無線基地局、スケジューリング方法及び無線通信システムに関する。本発明は、例えば、無線通信システム等において、無線端末宛のデータをスケジューリングする技術に用いることもできる。 The present invention relates to a radio base station, a scheduling method, and a radio communication system. The present invention can also be used, for example, in a technique for scheduling data addressed to a wireless terminal in a wireless communication system or the like.
 無線端末と無線基地局との間でパケットデータ通信を行なう移動通信システムにおいて、無線端末へのパケットデータの送信タイミングを管理するパケットスケジューリングがある。
 このパケットスケジューリングに関する既存の技術として、例えば、下記特許文献1には、複数の移動端末が共通のチャネルにアサインされ、端末毎に送信機会の優先度が設定されている場合に、無線基地局が、重み付けラウンドロビン法にしたがって送信待機データが存在する複数の前記優先度の中から1つの優先度を選択し、選択した優先度を持つ移動端末の集合のなかから無線リンク品質の高いものに対して送信機会を与えるパケットスケジューリング方法が記載されている。
特開2004-260261号公報
In a mobile communication system that performs packet data communication between a wireless terminal and a wireless base station, there is packet scheduling for managing transmission timing of packet data to the wireless terminal.
As an existing technique related to this packet scheduling, for example, in Patent Document 1 below, when a plurality of mobile terminals are assigned to a common channel and the priority of transmission opportunities is set for each terminal, the radio base station In accordance with the weighted round robin method, one priority is selected from the plurality of priorities in which transmission standby data exists, and a radio terminal having a high radio link quality is selected from a set of mobile terminals having the selected priority. A packet scheduling method for providing a transmission opportunity is described.
JP 2004-260261 A
 しかしながら、上述した従来の技術は、無線端末へのデータ到達時間という観点からスケジューリングの単位が最適化されているとはいえないため、送信機会を与えられた移動端末に対するデータ送信が完了するまで、他のデータ送信を開始することができない場合がある。その結果、無線端末にデータが到達する時間に遅延が生じることがある。
 本件の目的の一つは、無線端末へのデータ到達時間を短縮することにある。
However, since the above-described conventional technique cannot be said to have a scheduling unit optimized from the viewpoint of data arrival time at the wireless terminal, until data transmission to the mobile terminal given a transmission opportunity is completed, It may not be possible to start another data transmission. As a result, there may be a delay in the time for data to reach the wireless terminal.
One of the purposes of this case is to shorten the data arrival time to the wireless terminal.
 なお、前記目的に限らず、後述する実施形態に示す各構成により導かれる作用効果であって、従来の技術によっては得られない作用効果を奏することも他の目的の一つとして位置付けることができる。 It should be noted that the present invention is not limited to the above-described object, and can be positioned as one of other objects that is an effect obtained by each configuration shown in the embodiments to be described later and that cannot be obtained by conventional techniques. .
 例えば、以下の手段を用いる。
 (1)無線端末と無線リンクを介して通信する無線基地局であって、前記無線リンクのトランスポートチャネルと対応付けられる複数の論理チャネルの個々のデータを構成する複数のデータユニットを、前記論理チャネル毎に保持するバッファ部と、前記論理チャネル毎に設定された優先度に基づいて、前記バッファ部における前記各データユニットの送信タイミングをスケジューリングするスケジューラと、前記スケジューラでスケジューリングされた送信タイミングに従って、前記各データユニットのいずれかを前記バッファ部から選択して前記無線端末へ至る通信路へ送信する送信処理部と、をそなえる無線基地局を用いることができる。
For example, the following means are used.
(1) A wireless base station that communicates with a wireless terminal via a wireless link, wherein a plurality of data units constituting individual data of a plurality of logical channels associated with a transport channel of the wireless link Based on the buffer unit held for each channel, the scheduler for scheduling the transmission timing of each data unit in the buffer unit based on the priority set for each logical channel, and the transmission timing scheduled by the scheduler, It is possible to use a radio base station including a transmission processing unit that selects any one of the data units from the buffer unit and transmits the selected data unit to a communication path that reaches the radio terminal.
 (2)ここで、前記通信路は、前記無線リンク、又は、前記無線端末の移動先無線基地局との間の通信路及び前記移動先無線基地局と移動後の前記無線端末との間の無線リンクを含む、ようにしてもよい。
 (3)また、前記スケジューラは、前記優先度の高い論理チャネルのデータユニットほど優先的に前記通信路へ送信されるように前記スケジューリングを行なう、ようにしてもよい。
(2) Here, the communication path is the communication path between the wireless link or the destination wireless base station of the wireless terminal and between the destination wireless base station and the wireless terminal after the movement. A wireless link may be included.
(3) Further, the scheduler may perform the scheduling so that a data unit of a logical channel having a higher priority is preferentially transmitted to the communication path.
 (4)さらに、前記スケジューラは、前記論理チャネルの優先度に応じて個々の論理チャネルのデータユニットの選択回数が調整されるように前記スケジューリングを行なう、ようにしてもよい。
 (5)ここで、前記スケジューラは、前記バッファ部における前記論理チャネル毎のバッファ量に基づいて、個々の論理チャネルのデータユニットの選択回数が調整されるように前記スケジューリングを行なう、ようにしてもよい。
(4) Further, the scheduler may perform the scheduling so that the number of selections of data units of individual logical channels is adjusted according to the priority of the logical channels.
(5) Here, the scheduler may perform the scheduling so that the number of selections of the data unit of each logical channel is adjusted based on the buffer amount for each logical channel in the buffer unit. Good.
 (6)また、前記スケジューラは、前記移動先無線基地局へ送信する前記論理チャネルのデータユニットの優先度を他よりも一時的に高く設定する、ようにしてもよい。
 (7)さらに、前記スケジューラは、前記論理チャネルのデータユニットが前記無線端末の移動元無線基地局から受信したデータユニットであると、そのデータユニットの優先度を他よりも一時的に高く設定する、ようにしてもよい。
(6) The scheduler may temporarily set a priority of the data unit of the logical channel to be transmitted to the movement-destination radio base station higher than others.
(7) Further, when the data unit of the logical channel is a data unit received from the source wireless base station of the wireless terminal, the scheduler temporarily sets the priority of the data unit higher than others. You may do it.
 (8)また、無線端末と無線リンクを介して通信する無線基地局におけるスケジューリング方法であって、前記無線リンクのトランスポートチャネルと対応付けられる複数の論理チャネルの個々のデータを構成する複数のデータユニットを、前記論理チャネル毎に保持し、前記論理チャネル毎に設定された優先度に基づいて、前記各データユニットの送信タイミングをスケジューリングし、前記スケジューリングされた送信タイミングに従って、前記各データユニットのいずれかを選択して前記無線端末へ至る通信路へ送信する、スケジューリング方法を用いることができる。 (8) A scheduling method in a radio base station that communicates with a radio terminal via a radio link, and a plurality of data constituting individual data of a plurality of logical channels associated with a transport channel of the radio link A unit is held for each logical channel, and the transmission timing of each data unit is scheduled based on the priority set for each logical channel, and according to the scheduled transmission timing, any one of the data units is scheduled. It is possible to use a scheduling method that selects these and transmits them to the communication path leading to the wireless terminal.
 (9)さらに、少なくとも1つの無線端末と、前記無線端末と無線リンクを介して通信する無線基地局と、前記無線リンクのトランスポートチャネルと対応付けられる複数の論理チャネルの個々のデータを構成する複数のデータユニットを、前記論理チャネル毎に保持するバッファ部と、前記論理チャネル毎に設定された優先度に基づいて、前記バッファ部における前記各データユニットの送信タイミングをスケジューリングするスケジューラと、前記スケジューラでスケジューリングされた送信タイミングに従って、前記各データユニットのいずれかを前記バッファ部から選択して前記無線端末へ至る通信路へ送信する送信処理部と、をそなえる無線通信システムを用いることができる。 (9) Furthermore, at least one wireless terminal, a wireless base station communicating with the wireless terminal via a wireless link, and individual data of a plurality of logical channels associated with the transport channel of the wireless link are configured. A buffer unit that holds a plurality of data units for each logical channel; a scheduler that schedules the transmission timing of each data unit in the buffer unit based on a priority set for each logical channel; and the scheduler A wireless communication system including a transmission processing unit that selects one of the data units from the buffer unit and transmits the selected data unit to a communication path that reaches the wireless terminal according to the transmission timing scheduled in (1) can be used.
 無線端末へのデータ到達時間を短縮することが可能となる。 It becomes possible to shorten the data arrival time to the wireless terminal.
一実施形態に係る通信システムの構成を示すブロック図である。It is a block diagram which shows the structure of the communication system which concerns on one Embodiment. レイヤ2のデータフォーマットを示す図である。It is a figure which shows the data format of a layer 2. レイヤ2のデータ処理を示す図である。It is a figure which shows the data processing of a layer 2. eNB-UE間における従来のパケットスケジューリングを示す図である。It is a figure which shows the conventional packet scheduling between eNB-UE. ハンドオーバ時の処理フローを示す図である。It is a figure which shows the processing flow at the time of a hand-over. eNB間における従来のパケットスケジューリングを示す図である。It is a figure which shows the conventional packet scheduling between eNBs. 一実施形態に係るeNBの構成を示すブロック図である。It is a block diagram which shows the structure of eNB which concerns on one Embodiment. 図7に示すeNBでのデータ格納例を示す図である。It is a figure which shows the example of data storage in eNB shown in FIG. 優先度情報テーブルの一例を示す図である。It is a figure which shows an example of a priority information table. 一実施形態に係るeNBの動作を説明する図である。It is a figure explaining operation | movement of eNB which concerns on one Embodiment. 優先度情報テーブルの一例を示す図である。It is a figure which shows an example of a priority information table. 第1変形例に係るeNBの動作を説明する図である。It is a figure explaining operation | movement of eNB which concerns on a 1st modification. 第2変形例に係るeNBの動作を説明する図である。It is a figure explaining operation | movement of eNB which concerns on a 2nd modification.
符号の説明Explanation of symbols
 1 無線基地局(eNB)
 1-1 ハンドオーバ元無線基地局(HO元eNB)
 1-2 ハンドオーバ先無線基地局(HO先eNB)
 2 無線端末(UE)
 3 コアネットワーク系装置(MME/UPE)
 4 IP網
 5 IPパケット終端処理部
 6 下りRLCレイヤ処理部
 7 格納バッファ
 8 データ選択部
 9 スケジューラ
1 Radio base station (eNB)
1-1 Handover source radio base station (HO source eNB)
1-2 Handover destination radio base station (HO destination eNB)
2 Radio terminal (UE)
3 Core network equipment (MME / UPE)
4 IP network 5 IP packet termination processing unit 6 Downstream RLC layer processing unit 7 Storage buffer 8 Data selection unit 9 Scheduler
 以下、図面を参照して実施の形態を説明する。ただし、以下に示す実施形態は、あくまでも例示に過ぎず、以下に示す実施形態で明示しない種々の変形や技術の適用を排除する意図はない。即ち、本実施形態は、その趣旨を逸脱しない範囲で種々変形(各実施形態を組み合わせる等)して実施することができる。
 〔1〕概要
 図1に示す例を用いて本例の概要を説明する。
Hereinafter, embodiments will be described with reference to the drawings. However, the embodiment described below is merely an example, and there is no intention to exclude various modifications and technical applications that are not clearly shown in the embodiment described below. That is, the present embodiment can be implemented with various modifications (combining the embodiments) without departing from the spirit of the present embodiment.
[1] Outline The outline of this example will be described with reference to the example shown in FIG.
 この図1に例示する通信システムは、2台の無線基地局(evolved Node-B、略してeNB)1と、2台の無線端末(UE:User Equipment)2と、コアネットワーク系装置(MME/UPE:Mobile Management Entity/User Plane Entity)3とをそなえる。なお、eNB数、UE数は、もちろん、図1に示す台数には限定されない。いずれも1又は複数存在することができる。また、以下では、通信システムの一例として、3GPP LTE(3rd Generation Partnership Project Long Term Evolution)標準をベースとするパケット通信システムについて説明するが、勿論、このような通信システムに限定されるものではない。例えば、無線基地局1は、eNBに限らず、LTE/SAE(Long Term Evolution/System Architecture Evolution)よりも前の世代の無線基地局(BS:Base Station)などであってもよい。 The communication system illustrated in FIG. 1 includes two radio base stations (evolved Node-B, eNB for short) 1, two radio terminals (UE: User Equipment) 2, and a core network system device (MME / UPE: Mobile Management Entity / User Plane Entity) 3. Of course, the number of eNBs and the number of UEs are not limited to the numbers shown in FIG. Any one or more of them can exist. In the following, a packet communication system based on 3GPP LTE (3rd Generation Partnership Project Long Service Term Evolution) standard will be described as an example of a communication system, but of course, the communication system is not limited to such a communication system. For example, the radio base station 1 is not limited to the eNB, but may be a radio base station (BS: Base Station) of a generation earlier than LTE / SAE (Long Term Evolution / System Architecture Evolution).
 ここで、eNB1は、LTE/SAEよりも前の世代の無線基地局(Node-B)の機能と無線基地局制御装置(RNC:Radio Network Controller)の機能とを兼ね備えている。
 また、eNB1は、MME/UPE3とはS1と呼ばれる通信インタフェース(S1インタフェース)を用いて接続され、他のeNB1とはX1と呼ばれる通信インタフェース(X1インタフェース)を用いて接続される。
Here, eNB1 has the function of the radio base station (Node-B) of the generation before LTE / SAE and the function of a radio base station controller (RNC: Radio Network Controller).
ENB1 is connected to MME / UPE3 using a communication interface called S1 (S1 interface), and connected to other eNB1 using a communication interface called X1 (X1 interface).
 さらに、本例のeNB1は、UE2と無線リンクを介して通信する機能を具備する。無線リンクには、eNB1からUE2への方向であるダウンリンク(DL)と、その逆の方向であるアップリンク(UL)とが含まれる。
 UE2は、eNB1と前記無線リンクを介して無線通信を行なう機能を具備しており、eNB1を介して他のUE2や外部パケット網などと通信することができる。
Furthermore, the eNB 1 of this example has a function of communicating with the UE 2 via a radio link. The radio link includes a downlink (DL) that is a direction from eNB1 to UE2, and an uplink (UL) that is the opposite direction.
The UE 2 has a function of performing radio communication with the eNB 1 via the radio link, and can communicate with another UE 2 or an external packet network via the eNB 1.
 MME/UPE3は、eNB1の上位装置に相当するエンティティで、eNB1を管理、制御する機能、UE2の位置登録を管理する機能、UE2と前記外部パケット網との間のメッセージの送受信を行なう機能などを具備する。
 (1.1)eNB1-UE2間のパケットスケジューリング
 例えば、eNB1は、パケットデータのQoS(Quality of Services)やパケットデータ種類(初回送信か再送か等)、UE2から報告される無線伝搬路状態に関する情報のいずれか1又は2以上の組み合わせに応じた優先度情報に基づいて、UE2宛のMAC(Media Access Control)サブレイヤでのプロトコルデータユニット(PDU:Protocol Data Unit)を構成するRLC(Radio Link Control)サブレイヤでのサービスデータユニット(SDU:Service Data Unit)を基本単位としてUE2宛のDLデータのスケジューリング(送信タイミングの割り当て)を行なう。なお、前記優先度情報の一部又は全部は、上位装置(MME/UPE3など)がeNB1(スケジューラ)に対して通知(設定)することが可能である。
MME / UPE3 is an entity corresponding to a higher-level device of eNB1, and has a function of managing and controlling eNB1, a function of managing location registration of UE2, a function of transmitting and receiving messages between UE2 and the external packet network, etc. It has.
(1.1) Packet scheduling between eNB1 and UE2, for example, eNB1 receives information on QoS (Quality of Services) of packet data, packet data type (whether initial transmission or retransmission, etc.), and radio propagation path status reported from UE2 RLC (Radio Link Control) that constitutes a protocol data unit (PDU: Protocol Data Unit) in the MAC (Media Access Control) sub-layer addressed to UE 2 based on priority information corresponding to any one or a combination of two or more Scheduling (assignment of transmission timing) of DL data addressed to the UE 2 is performed using a service data unit (SDU) in the sublayer as a basic unit. Note that a part or all of the priority information can be notified (set) to the eNB 1 (scheduler) by a higher-level device (MME / UPE 3 or the like).
 ここで、レイヤ2(データリンク層)におけるデータフォーマットについて、図2を用いて説明する。
 この図2に示すように、MACサブレイヤでのPDU(以下、MAC_PDUという)は、MACヘッダと、MACペイロードとから構成され、MACペイロードには、RLCサブレイヤでのPDU(以下、RLC_PDUという)を複数格納することが可能である。RLC_PDUは、RLCヘッダと、複数のRLC_SDUを格納可能なRLCペイロードとから構成される。RLC_SDUは、後述する分割(セグメント化)、結合の処理により、その一部又は全部がRLCペイロードに格納される。つまり、上記RLC_PDUは、MACサブレイヤでのサービスデータユニット(以下、MAC_SDUという)でもある。
Here, the data format in layer 2 (data link layer) will be described with reference to FIG.
As shown in FIG. 2, a PDU in the MAC sublayer (hereinafter referred to as MAC_PDU) includes a MAC header and a MAC payload, and the MAC payload includes a plurality of PDUs in the RLC sublayer (hereinafter referred to as RLC_PDU). Can be stored. The RLC_PDU includes an RLC header and an RLC payload that can store a plurality of RLC_SDUs. A part or all of the RLC_SDU is stored in the RLC payload by division (segmentation) and combination processing described later. That is, the RLC_PDU is also a service data unit (hereinafter referred to as MAC_SDU) in the MAC sublayer.
 本例のレイヤ2の各サブレイヤでのデータ処理例について、図3を用いて説明する。
 まず、例えば、PDCP(Packet Data Convergence Protocol)サブレイヤとRLCサブレイヤとの間には、レイヤ間通信を提供するサービスアクセスポイント(SAP)としての無線ベアラ(Radio Bearer)が定義され、UE2宛のユーザデータは、無線ベアラを規定するパラメータの一つであるRoHC(Robust Header Compression)によってヘッダ圧縮処理を施されて可変長のデータであるRLC_SDUとなる。
An example of data processing in each sublayer of layer 2 in this example will be described with reference to FIG.
First, for example, a radio bearer as a service access point (SAP) providing inter-layer communication is defined between a PDCP (Packet Data Convergence Protocol) sublayer and an RLC sublayer, and user data addressed to the UE 2 Is subjected to header compression processing by RoHC (Robust Header Compression), which is one of the parameters defining the radio bearer, and becomes RLC_SDU which is variable length data.
 RLCサブレイヤにおいては、RLC_SDUを、ARQ(Automatic Repeat Request)制御や順序制御等の処理に適した単位に分割(セグメント化)、結合してRLCペイロードを生成し、これにRLCヘッダを付加した単位(RLC_PDU(MAC_SDU))でMACサブレイヤへ引き渡すことが可能である。制御データについても、RLC_PDUに相当する単位でMACサブレイヤへ引き渡すことが可能である。 In the RLC sublayer, the RLC_SDU is divided (segmented) into units suitable for processing such as ARQ (Automatic Repeat Request) control and order control, combined to generate an RLC payload, and a unit in which an RLC header is added ( RLC_PDU (MAC_SDU)) can be delivered to the MAC sublayer. Control data can also be delivered to the MAC sublayer in units corresponding to RLC_PDUs.
 ここで、RLCサブレイヤとMACサブレイヤとの間のユーザデータの引渡しは、論理チャネル(LCH)と呼ばれるレイヤ(プロトコル)間通信の論理的なチャネル(SAP)を介して行なうことができ、同様に、制御データは制御チャネル(CCH:Control Channel)と呼ばれる論理的なチャネル(SAP)を介して行なうことができる。
 LCHは、1つのUE2に対して1つだけ割り当てられる場合もあるし、複数割り当てられる場合もある。図3に示す例では、UE#1に対してLCH#1~LCH#l(lは自然数)が割り当てられ、また、UE#n(nは自然数)に対してLCH#m(mは自然数)が割り当てられている。LCHには、例えばMME/UPE3により前記優先度情報が設定される。
Here, delivery of user data between the RLC sublayer and the MAC sublayer can be performed via a logical channel (SAP) of communication between layers (protocols) called a logical channel (LCH). Control data can be transmitted through a logical channel (SAP) called a control channel (CCH).
Only one LCH may be assigned to one UE 2 or a plurality of LCHs may be assigned. In the example shown in FIG. 3, LCH # 1 to LCH # l (l is a natural number) are assigned to UE # 1, and LCH # m (m is a natural number) is assigned to UE # n (n is a natural number). Is assigned. The priority information is set in the LCH by, for example, the MME / UPE3.
 本例のMACサブレイヤでは、RLCサブレイヤからLCHを介して引き渡されたRLC_PDU(MAC_SDU)をLCH毎の格納バッファに前記分割(セグメント化)、結合される前のRLC_SDU単位で振り分けて保持し、各LCHに設定された上記優先度情報に基づき、RLC_PDU(MAC_SDU)単位ではなく、RLC_SDUを基本とした単位でスケジューリングを行なう。したがって、LCHを介したRLCサブレイヤからMACサブレイヤへのデータ引き渡しは、前記セグメント化、結合が行なわれる前の可変長のRLC_SDU単位でRLCヘッダを付与して行なった方が好ましい場合もある。 In the MAC sublayer of this example, the RLC_PDU (MAC_SDU) delivered from the RLC sublayer via the LCH is divided (segmented) into the storage buffer for each LCH, and distributed and held in units of RLC_SDUs before being combined. On the basis of the priority information set in the above, scheduling is performed not in units of RLC_PDU (MAC_SDU) but in units based on RLC_SDU. Therefore, in some cases, it is preferable that the data transfer from the RLC sublayer to the MAC sublayer via the LCH is performed by adding an RLC header in units of variable length RLC_SDU before the segmentation and combination are performed.
 このスケジューリングにより、UE2宛のパケットデータは、LCH毎の優先度情報に基づき、RLC_SDUを基本とする単位で選択、結合され、RLCヘッダが付加されてRLC_PDU(MAC_SDU)に変換される。
 さらに、MAC_SDUは、例えば、HARQ(Hybrid Automatic Repeat Request)等のための制御情報(シーケンス番号等)を含むMACヘッダが付加されてMAC_PDUに変換され、RLCレイヤにて生成されたCCHの制御データとともに、送信チャネル(Transport Channel)に多重(マッピング)されてUE2宛に送信される。
By this scheduling, packet data addressed to UE2 is selected and combined in units based on RLC_SDU based on priority information for each LCH, and is converted into RLC_PDU (MAC_SDU) with an RLC header added.
Further, the MAC_SDU is added to a MAC header including control information (sequence number, etc.) for HARQ (Hybrid Automatic Repeat Request), etc., and converted into MAC_PDU, together with CCH control data generated in the RLC layer Then, it is multiplexed (mapped) to a transmission channel (Transport Channel) and transmitted to UE2.
 つまり、RLC_SDUは、eNB1とUE2との間の無線リンクのトランスポートチャネルと対応付けられる複数の論理チャネル(LCH)の個々のデータ(RLC_PDU)を構成する複数のデータユニットの一つに相当し、本例のeNB1は、そのデータユニットを単位にLCH別にバッファリング、スケジューリングを行なうことが可能なのである。 That is, RLC_SDU corresponds to one of a plurality of data units constituting individual data (RLC_PDU) of a plurality of logical channels (LCH) associated with a transport channel of a radio link between eNB1 and UE2. The eNB 1 of this example can perform buffering and scheduling for each LCH in units of the data unit.
 ここで、図4に例示するように、LCHに設定された優先度情報に基づいて、UE2毎にMAC_SDU単位でスケジューリングを行なうとすると、eNB1は、優先度「大」のLCH#1のMAC_SDU、優先度「中」のLCH#2のMAC_SDU、優先度「中」のLCH#3のMAC_SDU、優先度「大」のLCH#mのMAC_SDUの順序で送信タイミングをスケジューリングすることになる。 Here, as illustrated in FIG. 4, when scheduling is performed in units of MAC_SDUs for each UE 2 based on the priority information set in the LCH, the eNB 1 has the MAC_SDU of the LCH # 1 with the priority “high”, The transmission timing is scheduled in the order of MAC_SDU of LCH # 2 having a medium priority, MAC_SDU of LCH # 3 having a medium priority, and MAC_SDU of LCH # m having a high priority.
 したがって、UE#n宛のMAC_PDUは、LCH#mの優先度がUE#1のLCH#1と同じ優先度(「大」)であるにもかかわらず、UE#1宛のMAC_PDUの送信が完了しないと送信開始されない。これは、UE#nへのデータ到達時間の遅延につながる。
 即ち、このスケジューリング方法では、UE2へのデータ到達時間の観点からスケジューリングの単位が最適化されているとはいえないため、あるUE2宛のデータ送信が完了しないと、他のUE2宛のデータ送信が開始されない場合がある。
Therefore, the transmission of the MAC_PDU addressed to UE # 1 is completed even though the MAC_PDU addressed to UE # n has the same priority ("high") as the LCH # m priority of LCH # m. Otherwise, transmission will not start. This leads to a delay in data arrival time to UE # n.
That is, in this scheduling method, it cannot be said that the unit of scheduling is optimized from the viewpoint of the data arrival time to UE2, so if data transmission to a certain UE2 is not completed, data transmission to another UE2 is not performed. May not start.
 これに対し、上述のように、LCH毎に設定された優先度情報に基づいて、各LCHのデータをより小さなRLC_SDU単位でスケジューリングし、このスケジューリング結果に基づいて、UE2宛の無線リンクへ送出することとすれば、複数UE2に対する同一優先度のDLデータの送信機会を均等に与えることができ、また、各UE2へのデータ到達時間を短縮することが可能となる。 On the other hand, as described above, based on the priority information set for each LCH, the data of each LCH is scheduled in smaller RLC_SDU units, and is transmitted to the radio link addressed to UE 2 based on the scheduling result. If this is the case, it is possible to evenly provide DL data transmission opportunities of the same priority to a plurality of UEs 2, and to shorten the data arrival time to each UE 2.
 (1.2)ハンドオーバ元eNB-ハンドオーバ先eNB間のパケットスケジューリング
 次に、ハンドオーバ元eNB-ハンドオーバ先eNB間のパケットスケジューリングについて説明する。
 例えば、UE2が、ハンドオーバ元eNB(HO元eNB)1-1がカバーするエリア(セル)からハンドオーバ先eNB(HO先eNB)1-2がカバーするエリア(セル)へ移動するとき、図5に示すフローによりハンドオーバ処理が行なわれる。
(1.2) Packet scheduling between handover source eNB and handover destination eNB Next, packet scheduling between the handover source eNB and the handover destination eNB will be described.
For example, when the UE 2 moves from an area (cell) covered by the handover source eNB (HO source eNB) 1-1 to an area (cell) covered by the handover destination eNB (HO destination eNB) 1-2, FIG. The handover process is performed according to the flow shown.
 即ち、まず、UE2が、HO元eNB1-1宛に、通信中の伝送路の無線品質を測定して報告すると、HO元eNB1-1は、前記測定報告の結果に基づきハンドオーバを行なうかどうかを判定し、ハンドオーバを行なうと判定した場合に、HO先eNB1-2にハンドオーバを要求する。
 HO先eNB1-2がハンドオーバ要求を許可すると、HO元eNB1-1は、自局1-1内に残留するUE2宛のパケットデータをHO先eNB1-2へ転送(フォワーディング)する。
That is, first, when the UE 2 measures and reports the radio quality of the transmission path in communication to the HO source eNB 1-1, the HO source eNB 1-1 determines whether to perform handover based on the result of the measurement report. If it is determined and it is determined that the handover is to be performed, the handover is requested to the HO destination eNB 1-2.
When the HO destination eNB 1-2 permits the handover request, the HO source eNB 1-1 transfers (forwards) the packet data addressed to the UE 2 remaining in the local station 1-1 to the HO destination eNB 1-2.
 既存の通信システムでは、ハンドオーバ時において、HO元無線基地局からHO先無線基地局へ、UE宛のパケットデータの転送は行なわずに制御データのみを転送する場合があるが、本例の通信システムでは、ハンドオーバ時において、HO元eNB1-1に残留するUE2宛のパケットデータを制御データとともにHO先eNB1-2へ転送する。
 その際のデータ転送についても、(1.1)で上述したようなRLC_SDU単位のパケットスケジューリングを適用するのが好ましい。
In an existing communication system, there is a case where only control data is transferred without transferring packet data addressed to the UE from the HO source radio base station to the HO destination radio base station at the time of handover. Then, at the time of handover, the packet data addressed to UE2 remaining in the HO source eNB1-1 is transferred to the HO destination eNB1-2 together with the control data.
For the data transfer at that time, it is preferable to apply the packet scheduling in units of RLC_SDU as described above in (1.1).
 例えば、本例のHO元eNB1-1は、eNB1間でのデータ転送時に、RLC_SDUの単位でのスケジューリングを行ない、そのスケジューリング結果に基づいて、UE2宛のパケットデータを、RLC_SDUを基本とする単位でHO先eNB1-2宛に転送する。
 その際、HO元eNB1-1は、例えば、HO先eNB1-2へ転送されるRLC_SDUの優先度を他よりも一時的に高く設定して、前記RLC_SDU単位のスケジューリングを行なうようにしてもよい。
For example, the HO source eNB 1-1 in this example performs scheduling in units of RLC_SDU at the time of data transfer between eNBs 1, and based on the scheduling result, packet data addressed to UE 2 in units based on RLC_SDU. Transfer to HO destination eNB1-2.
At that time, for example, the HO source eNB 1-1 may temporarily set the priority of the RLC_SDU transferred to the HO destination eNB 1-2 to be higher than the others, and perform scheduling in units of the RLC_SDU.
 また、HO先eNB1-2でも、例えば、HO元eNB1-1から転送されたRLC_SDUの優先度を他よりも一時的に高く設定して、前記RLC_SDU単位のスケジューリングを行なうようにしてもよい。
 なお、図6に例示するように、eNB1間データ転送時にRLC_PDU(MAC_SDU)単位でスケジューリングを行なうとすると、優先度「大」のLCH#1のRLC_PDU、優先度「大」のLCH#mのRLC_PDU、優先度「中」のLCH#2のRLC_PDU、優先度「中」のLCH#3のRLC_PDUの順で送信タイミングがスケジューリングされることになる。
In the HO destination eNB 1-2, for example, the priority of the RLC_SDU transferred from the HO source eNB 1-1 may be temporarily set higher than the others, and the scheduling in units of the RLC_SDU may be performed.
As illustrated in FIG. 6, when scheduling is performed in units of RLC_PDU (MAC_SDU) at the time of data transfer between eNBs 1, RLC_PDU of LCH # 1 with priority “Large”, RLC_PDU of LCH # m with priority “Large” The transmission timing is scheduled in the order of RLC_PDU of LCH # 2 having a medium priority and RLC_PDU of LCH # 3 having a medium priority.
 したがって、UE#n宛のデータは、LCH#mの優先度がUE#1のLCH#1と同じ「大」であるにもかかわらず、LCH#1のデータ送信が完了しないと送信開始されない。
 つまり、同優先度のLCHが複数ある場合、それらの転送処理の開始に時間差が生じ、各転送データのHO先eNB1-2への到達時間のばらつきが大きくなる。また、その結果、HO先eNB1-2からUE2宛に前記転送データを送信する際においても、UE2へのデータ到達時間がばらつくこととなる。
Therefore, transmission of data addressed to UE # n is not started unless data transmission of LCH # 1 is completed, even though LCH # m has the same priority as LCH # 1 of UE # 1.
That is, when there are a plurality of LCHs having the same priority, a time difference occurs at the start of the transfer process, and the variation in arrival time of each transfer data to the HO destination eNB 1-2 becomes large. As a result, even when the transfer data is transmitted from the HO destination eNB1-2 to the UE2, the data arrival time to the UE2 varies.
 これに対し、本例のeNB1は、HO元eNB1-1とHO先eNB1-2との間のデータ転送においても、(1.1)で上述したスケジューリング方法と同様に、例えば、HO元eNB1-1が、RLC_SDU単位でスケジューリングを行ない、このスケジューリング結果に基づいて、RLC_SDUをHO先eNB1-2宛に転送するので、各UE2へのデータ到達時間を短縮することが可能となる。 On the other hand, the eNB 1 of the present example, for example, in the data transfer between the HO source eNB 1-1 and the HO destination eNB 1-2, for example, in the same manner as the scheduling method described in (1.1), 1 performs scheduling in units of RLC_SDUs, and transfers RLC_SDUs to the HO destination eNB 1-2 based on the scheduling result, so that it is possible to shorten the data arrival time to each UE2.
 また、このときの転送単位がRLC_SDU単位であるので、ARQの再送処理や、秘匿処理などを効率的に行なうことが可能となる。
 なお、上記(1.1)及び(1.2)では、eNB1からUE2への下り方向(ダウンリンク)のデータ送信におけるスケジューリングを例として説明したが、UE2からeNB1への上り方向(アップリンク)においても同様のスケジューリングを適用するようにしてもよい。
In addition, since the transfer unit at this time is the RLC_SDU unit, it is possible to efficiently perform ARQ retransmission processing, concealment processing, and the like.
In the above (1.1) and (1.2), the scheduling in the downlink (downlink) data transmission from the eNB1 to the UE2 has been described as an example, but the uplink from the UE2 to the eNB1 (uplink) The same scheduling may be applied to the above.
 この場合、レイヤ2の各サブレイヤでのデータ処理は、図3に示す例と反対の方向で行なわれる。
 〔2〕eNB1の構成及び動作について
 (2.1)一実施形態
 図7は一実施形態に係るeNB1の構成を示すブロック図である。この図7に示すHO元eNB1-1及びHO先eNB1-2は、それぞれ、例えば、IPパケット終端処理部5と、下りRLCレイヤ処理部6と、格納バッファ7と、データ選択部8と、スケジューラ9とをそなえる。
In this case, data processing in each sublayer of layer 2 is performed in the opposite direction to the example shown in FIG.
[2] Configuration and Operation of eNB 1 (2.1) One Embodiment FIG. 7 is a block diagram illustrating a configuration of eNB 1 according to one embodiment. The HO source eNB 1-1 and the HO destination eNB 1-2 shown in FIG. 7 include, for example, an IP packet termination processing unit 5, a downlink RLC layer processing unit 6, a storage buffer 7, a data selection unit 8, and a scheduler, respectively. 9 is provided.
 なお、以下において、上記のHO元eNB1-1及びHO先1-2をそれぞれ区別しない場合は、単に、eNB1と表記する。また、通信システム内に設けられるeNB1の数は、勿論、図7に示す数に限定されるものではない。また、図7中の破線矢印は、eNB1間を転送されるパケットデータの流れを示すものである。
 ここで、本例のIPパケット終端処理部5は、MME/UPE3からIP網4を介してコントロールプレーン(C-Plane)情報及びユーザプレーン(U-Plane)データとしてのパケットデータ(RLC_SDU)を受信し、所定の終端処理を施す機能を具備する。
In the following, when the HO source eNB 1-1 and the HO destination 1-2 are not distinguished from each other, they are simply expressed as eNB1. Also, the number of eNBs 1 provided in the communication system is, of course, not limited to the number shown in FIG. 7 indicates the flow of packet data transferred between eNBs.
Here, the IP packet termination processing unit 5 of this example receives packet data (RLC_SDU) as control plane (C-Plane) information and user plane (U-Plane) data from the MME / UPE 3 via the IP network 4. And a function of performing a predetermined termination process.
 また、本例のIPパケット終端処理部5は、例えば、UE2のハンドオーバの際に、HO元eNB1-1からHO先eNB1-2へIP網4を介してパケットデータを転送する機能を具備する。
 下りRLCレイヤ処理部6は、前記IPパケット終端処理部5により受信したRLC_SDUを、LCH毎に格納バッファ7に振り分ける機能を具備する。
In addition, the IP packet termination processing unit 5 of this example has a function of transferring packet data from the HO source eNB 1-1 to the HO destination eNB 1-2 via the IP network 4 when the UE 2 is handed over, for example.
The downlink RLC layer processing unit 6 has a function of distributing the RLC_SDU received by the IP packet termination processing unit 5 to the storage buffer 7 for each LCH.
 また、本例の下りRLCレイヤ処理部6は、UE2のハンドオーバの際に、HO元eNB1-1からHO先eNB1-2への転送データについて所定のプロトコル処理(ヘッダ付与など)を行なう機能を具備する。
 さらに、本例の下りRLCレイヤ処理部6は、例えば、MME/UPE3により設定される各LCHの優先度をスケジューラ9に通知する機能を具備する。
Further, the downlink RLC layer processing unit 6 of the present example has a function of performing predetermined protocol processing (header addition, etc.) on transfer data from the HO source eNB 1-1 to the HO destination eNB 1-2 at the time of handover of the UE 2. To do.
Furthermore, the downlink RLC layer processing unit 6 of this example has a function of notifying the scheduler 9 of the priority of each LCH set by the MME / UPE 3, for example.
 格納バッファ(バッファ部)7は、eNB1とUE2との間の無線リンクのトランスポートチャネルと対応付けられる複数の論理チャネル(LCH)の個々のパケットデータを構成する複数のRLC_SDUを、前記LCH毎に保持する機能を具備する。
 本例の格納バッファ7は、例えば、図8に示す例のように、LCH#1について、符号「#1」~符号「#4」で示すRLC_SDUを、また、LCH#2について、符号「#5」~符号「#8」で示すRLC_SDUを、さらに、LCH#3について、符号「#9」~符号「#13」で示すRLC_SDUを格納し、LCH#mについて、符号「#100」~符号「#103」で示すRLC_SDUを格納する。
The storage buffer (buffer unit) 7 stores, for each LCH, a plurality of RLC_SDUs constituting individual packet data of a plurality of logical channels (LCH) associated with the transport channel of the radio link between eNB1 and UE2. It has the function to hold.
The storage buffer 7 of this example, for example, as in the example shown in FIG. 8, RLC_SDUs indicated by codes “# 1” to “# 4” for LCH # 1, and codes “#” for LCH # 2. RLC_SDUs indicated by 5 ”to“ # 8 ”, RLC_SDUs indicated by“ # 9 ”to“ # 13 ”for LCH # 3, and“ # 100 ”to“ # 100 ”for LCH # m The RLC_SDU indicated by “# 103” is stored.
 データ選択部(送信処理部)8は、スケジューラ9でスケジューリングされた送信タイミングに基づき、前記格納バッファ7に格納されるパケットデータをRLC_SDU単位で選択・抽出して、所定の無線処理を行ない、上記無線リンクへ送出する機能を具備する。
 また、本例のデータ選択部8は、UE2のハンドオーバの際に、スケジューラ9でスケジューリングされた送信タイミングに基づき、選択・抽出した当該UE2宛のデータをHO先eNB1-2に転送する機能を具備する。
The data selection unit (transmission processing unit) 8 selects and extracts packet data stored in the storage buffer 7 in units of RLC_SDUs based on the transmission timing scheduled by the scheduler 9, performs predetermined radio processing, It has a function to transmit to a wireless link.
Further, the data selection unit 8 of the present example has a function of transferring the selected / extracted data addressed to the UE 2 to the HO destination eNB 1-2 based on the transmission timing scheduled by the scheduler 9 when the UE 2 is handed over. To do.
 ここで、本例のスケジューラ9は、例えば、MME/UPE3により設定された各LCHの優先度情報に基づいて、格納バッファ7に格納されるRLC_SDUの送信タイミングをスケジューリングする機能を具備し、例えば、本例のスケジューラ9は、優先的にUE2宛に送信すべきRLC_SDUが選択・抽出されて送信されるようにデータ選択部8を制御する機能を具備する。 Here, the scheduler 9 of this example has a function of scheduling the transmission timing of the RLC_SDU stored in the storage buffer 7 based on the priority information of each LCH set by the MME / UPE 3, for example, The scheduler 9 of this example has a function of controlling the data selection unit 8 so that RLC_SDU to be transmitted to the UE 2 is preferentially selected and extracted.
 このために、本例のスケジューラ9は、例えば、MME/UPE3により設定された優先度情報と各LCHとを対応付けて保持する優先度情報テーブルを有する。この優先度情報テーブルは、例えば、図9に示す例のように、ユーザ(UE)番号、LCH及び優先度を保持(格納)する。
 ここで、MME/UPE3により設定される優先度は、例えば、「1」~「20」の数値データで与えられるが、本例のスケジューラ9は、その数値データに基づき、優先度情報として「大」、「中」、「小」を定義するようにしてもよい。
For this purpose, the scheduler 9 of this example has a priority information table that holds, for example, the priority information set by the MME / UPE 3 and each LCH in association with each other. This priority information table holds (stores) a user (UE) number, an LCH, and a priority, for example, as in the example shown in FIG.
Here, the priority set by the MME / UPE 3 is given by numerical data “1” to “20”, for example. The scheduler 9 of this example uses “high” as priority information based on the numerical data. ”,“ Medium ”, and“ small ”may be defined.
 例えば、本例のスケジューラ9は、優先度(数値データ)が「20」~「15」のLCHに対して優先度「大」を定義し、優先度(数値データ)が「14」~「10」のLCHに対して優先度「中」を定義し、優先度(数値データ)が「9」~「1」のLCHに対して優先度「小」を定義することができる。これにより、本例のスケジューラ9は、例えば、優先度が「大」、「中」、「小」のLCHの順序で、データ選択部8によりRLC_SDUが選択・抽出されるようにスケジューリング制御する。 For example, the scheduler 9 of this example defines a priority “Large” for LCHs having a priority (numerical data) of “20” to “15”, and a priority (numerical data) of “14” to “10”. “L” can be defined for LCHs with priority (numerical data) “9” to “1”. Thereby, the scheduler 9 of this example performs scheduling control so that the RLC_SDU is selected and extracted by the data selection unit 8 in the order of LCH having the priorities of “large”, “medium”, and “small”, for example.
 これによると、図8及び図9に示す例では、LCH#1及びLCH#mの優先度が「大」、LCH#2及びLCH#3の優先度が「中」となる。なお、上述した優先度の定義方法はあくまで一例であり、これに限定されるものではない。
 また、上記優先度情報テーブルに保持される各情報は、データ選択部8がデータを選択・抽出した後や、MME/UPE3により新たな設定が通知された場合に更新されるようにしてもよい。
According to this, in the example shown in FIGS. 8 and 9, the priority of LCH # 1 and LCH # m is “high”, and the priority of LCH # 2 and LCH # 3 is “medium”. The priority definition method described above is merely an example, and the present invention is not limited to this.
Each information held in the priority information table may be updated after the data selection unit 8 selects / extracts data or when a new setting is notified by the MME / UPE 3. .
 上述のように構成された本例のeNB1は、スケジューラ9が、LCH毎に設定された優先度情報に基づいて、各LCHのデータをより小さなRLC_SDU単位でスケジューリングし、データ選択部8が、このスケジューリング結果に基づいて、格納バッファからRLC_SDUを選択・抽出して所定の無線処理を行ない、UE2宛の無線リンクへ送出する。 In the eNB 1 of this example configured as described above, the scheduler 9 schedules the data of each LCH in smaller RLC_SDU units based on the priority information set for each LCH, and the data selection unit 8 Based on the scheduling result, RLC_SDU is selected and extracted from the storage buffer, predetermined radio processing is performed, and it is transmitted to the radio link addressed to UE2.
 例えば、図10に示す例のように、eNB1は、優先度「大」のLCH#1のRLC_SDU(符号「#1」を参照)を最初に送信するようにスケジューリングし、次に、優先度「大」のLCH#mのRLC_SDU(符号「#100」を参照)を送信するようにスケジューリングする。
 即ち、優先度「大」のLCH#1のRLC_SDU(符号「#1」~符号「#4」を参照)及びLCH#mのRLC_SDU(符号「#100」~符号「#103」を参照)は、RLC_SDU単位で順番に(交互に)スケジューリングされてUE2宛に送信される。
For example, as in the example illustrated in FIG. 10, the eNB 1 schedules to transmit the RLC_SDU of the LCH # 1 having the priority “Large” (see the code “# 1”) first, and then performs the priority “ Scheduling to transmit RLC_SDU (see code “# 100”) of “large” LCH # m.
That is, the RLC_SDU of LCH # 1 with the priority “Large” (refer to code “# 1” to code “# 4”) and the RLC_SDU of LCH # m (refer to code “# 100” to code “# 103”) , Scheduled in turn (alternately) in units of RLC_SDU and transmitted to UE2.
 そして、優先度「中」のLCH#2のRLC_SDU(符号「#5」~符号「#7」を参照)及びLCH#3のRLC_SDU(符号「#9」~符号「#11」を参照)についても、同様に、RLC_SDUの単位でスケジューリングしてUE2宛に送信する。
 これにより、優先度が同じである複数のLCHについて、RLC_SDUの送信タイミングを均等に分散できるので、送信遅延の発生を抑制することが可能となる。
Then, RLC_SDU of LCH # 2 having a medium priority (refer to code “# 5” to code “# 7”) and RLC_SDU of LCH # 3 (refer to code “# 9” to code “# 11”) Similarly, scheduling is performed in units of RLC_SDU and transmitted to UE2.
Thereby, since the transmission timing of RLC_SDU can be evenly distributed for a plurality of LCHs having the same priority, it is possible to suppress the occurrence of transmission delay.
 また、本例のHO元eNB1-1は、HO先eNB1-2との間のデータ転送についても、上記と同様のスケジューリングを適用することができる。
 例えば、スケジューラ9が、RLC_SDU単位でスケジューリングを行ない、データ選択部8が、このスケジューリング結果に基づいて、RLC_SDUをHO先eNB1-2宛に転送する。
In addition, the HO source eNB 1-1 of the present example can apply the same scheduling as described above to data transfer with the HO destination eNB 1-2.
For example, the scheduler 9 performs scheduling for each RLC_SDU, and the data selection unit 8 transfers the RLC_SDU to the HO destination eNB 1-2 based on the scheduling result.
 これにより、UE2のハンドオーバ時のHO元eNB1-1とHO先eNB1-2との間のデータ転送においても、優先度が同じである複数のLCHについて、RLC_SDUの送信タイミングを均等に分散できるので、送信遅延の発生を抑制することが可能となる。
 なお、スケジューラ9は、HO先eNB1-2へ転送するRLC_SDUのLCHの優先度を他よりも一時的に高く設定するようにしてもよく、このようにすれば、スケジューリングの自由度を向上させることができるので、さらなるデータ伝送時間の最適化を図ることが可能となる。
Thereby, even in the data transfer between the HO source eNB 1-1 and the HO destination eNB 1-2 at the time of the handover of the UE 2, the transmission timing of the RLC_SDU can be evenly distributed for a plurality of LCHs having the same priority. It is possible to suppress the occurrence of transmission delay.
Note that the scheduler 9 may temporarily set the LCH priority of the RLC_SDU to be transferred to the HO destination eNB 1-2 to be higher than the others, thereby improving the degree of freedom of scheduling. Therefore, it is possible to further optimize the data transmission time.
 次に、HO先eNB1-2の動作について説明する。
 図7に示すように、HO先eNB1-2もHO元eNB1-1と同様の構成を有し、例えば、HO元eNB1-1から転送されるRLC_SDUを対象として上述したスケジューリングを行なうようにしてもよい。
 例えば、HO先eNB1-2は、HO元eNB1-1から、転送データとともに上記優先度情報テーブルを受信する。
Next, the operation of the HO destination eNB 1-2 will be described.
As shown in FIG. 7, the HO destination eNB 1-2 has the same configuration as that of the HO source eNB 1-1. For example, the above-described scheduling may be performed for the RLC_SDU transferred from the HO source eNB 1-1. Good.
For example, the HO destination eNB 1-2 receives the priority information table together with the transfer data from the HO source eNB 1-1.
 これにより、HO先eNB1-2のスケジューラ9及びデータ選択部8は、各LCHに設定された優先度情報に基づいて、HO元eNB1-1から転送されたRLC_SDUをスケジューリングして複数のUE2宛に送信する。
 また、HO元eNB1-1のスケジューラ9は、例えば、優先度情報テーブルに保持される優先度のうち、ハンドオーバを実施するUE2のLCHについての優先度情報を一時的に高く設定して、当該UE2宛のデータを他よりも優先的に送信するようにしてもよい。
As a result, the scheduler 9 and the data selection unit 8 of the HO destination eNB 1-2 schedule the RLC_SDU transferred from the HO source eNB 1-1 based on the priority information set in each LCH and address it to a plurality of UEs 2. Send.
Also, the scheduler 9 of the HO source eNB 1-1 temporarily sets the priority information for the LCH of the UE 2 that performs the handover out of the priorities held in the priority information table, for example, so that the UE 2 You may make it transmit addressed data preferentially over others.
 例えば、UE#1がハンドオーバを行なう場合、HO元eNB1-1またはHO先eNB1-2あるいはその双方は、図11に示す例のように、UE#1のLCHの優先度が高くなるように当該優先度情報を更新(変更)することにより、UE#1宛の転送データを他よりも優先的に送信することができる。なお、他の方法として、ハンドオーバを行なわないUE2に対応する優先度情報を低く設定するようにしてもよいし、それら両方を行なうようにしてもよい。 For example, when the UE # 1 performs a handover, the HO source eNB 1-1 and / or the HO destination eNB 1-2 are configured so that the priority of the LCH of the UE # 1 becomes higher as in the example illustrated in FIG. By updating (changing) the priority information, it is possible to transmit the transfer data addressed to the UE # 1 with higher priority than others. As another method, the priority information corresponding to UE 2 that does not perform handover may be set low, or both of them may be performed.
 さらに、HO先eNB1-2のスケジューラ9及びデータ選択部8は、ハンドオーバを行なったUE2宛のデータが格納バッファ7に無いことを検知して、ハンドオーバ実施後のUE2宛への転送データ送信が完了したことを検出するようにしてもよい。
 そして、前記転送データの送信完了を検出すると、前記転送処理を停止し、上記優先度情報テーブルの優先度情報を上記更新(設定)前の値に戻して、転送データについての優先的なスケジューリングを中止するようにしてもよい。なお、他の方法として、MME/UPE3により設定されるLCHの優先度情報を受信することで、新たな優先度情報テーブルを作成して、上述したスケジューリングを行なうようにしてもよい。
Further, the scheduler 9 and the data selection unit 8 of the HO destination eNB 1-2 detect that there is no data addressed to the UE 2 that has performed the handover in the storage buffer 7, and the transfer data transmission to the UE 2 addressed after the handover is completed You may make it detect that it did.
When the completion of transmission of the transfer data is detected, the transfer process is stopped, the priority information in the priority information table is returned to the value before the update (setting), and preferential scheduling for the transfer data is performed. You may make it cancel. As another method, the priority information of the LCH set by the MME / UPE 3 may be received to create a new priority information table and perform the above-described scheduling.
 これにより、HO先eNB1-2においても、上述したHO元eNB1-1と同様の効果が得られるほか、一時的に、ハンドオーバを実施したUE2宛のデータを他よりも優先的に送信することができる。
 なお、HO先eNB1-2からUE2宛に転送データを送信する際には、トランスポートブロックサイズ(TBS:Transport Block Size)をデータ長に合わせて変更するようにしてもよい。
As a result, the HO destination eNB 1-2 can obtain the same effect as that of the HO source eNB 1-1 described above, and can temporarily transmit data addressed to the UE 2 that has performed the handover preferentially over others. it can.
Note that when transmitting transfer data from the HO destination eNB 1-2 to the UE 2, the transport block size (TBS) may be changed according to the data length.
 上述のように、eNB1は、ハンドオーバ時における転送データの伝送遅延を抑制して、各UE2へのデータ到達時間を短縮することが可能となる。
 なお、上記スケジューラ9及びデータ選択部8は、例えば、RLC_SDUの送信先に応じて、スケジューリングの単位を変更するようにしてもよい。例えば、RLC_SDUの送信先が他のeNB1である場合は、RLC_SDUを複数個まとめた単位でスケジューリングし、RLC_SDUの送信先がUE2である場合は、RLC_SDU単位でスケジューリングするようにしてもよい。
As described above, the eNB 1 can reduce the data arrival time to each UE 2 by suppressing the transmission delay of the transfer data during the handover.
The scheduler 9 and the data selection unit 8 may change the scheduling unit according to, for example, the transmission destination of the RLC_SDU. For example, when the transmission destination of RLC_SDU is another eNB1, scheduling may be performed in units of a plurality of RLC_SDUs, and when the transmission destination of RLC_SDU is UE2, scheduling may be performed in units of RLC_SDUs.
 また、例えば、ハンドオーバの実施段階(図5に示す「HO準備」、「HO実行」、「HO完了」など)に応じて、RLC_SDUのスケジューリング単位を変更するようにしてもよい。
 このようにすれば、上記スケジューリングの自由度(柔軟性)を向上することができるので、データ伝送時間の最適化を図ることが可能となる。
Also, for example, the scheduling unit of RLC_SDU may be changed according to the stage of handover (“HO preparation”, “HO execution”, “HO completion”, etc. shown in FIG. 5).
In this way, since the degree of freedom (flexibility) of the scheduling can be improved, the data transmission time can be optimized.
 (2.2)第1変形例
 上述した実施形態では、全てのRLC_SDUを上記スケジューリングの対象とする例について説明したが、LCHの優先度に基づいて、RLC_SDUを選択して上記スケジューリングを適用してもよい。
 例えば、本例のスケジューラ9は、優先度の高いLCHのRLC_SDUほど優先的に送信されるように上記スケジューリングを行なう。
(2.2) First Modification In the above-described embodiment, an example in which all RLC_SDUs are the targets of the scheduling has been described. However, based on the LCH priority, the RLC_SDU is selected and the scheduling is applied. Also good.
For example, the scheduler 9 of this example performs the scheduling so that the RLC_SDU of the LCH having a higher priority is preferentially transmitted.
 ここで、本変形例の動作について図12を用いて説明する。
 例えば、本例のeNB1は、優先度の閾値として優先度「中」を設定した場合、前記閾値よりも優先度の高い優先度「大」のLCH#1及びLCH#mのRLC_SDUについては、(2.1)で上述したのと同様の方法で、即ち、RLC_SDU単位でスケジューリングして各UE2宛に送信する。
Here, the operation of this modification will be described with reference to FIG.
For example, when the priority “medium” is set as the priority threshold, the eNB 1 in this example has the priority “Large” LCH # 1 and the RLC_SDU of the LCH # m having a higher priority than the threshold ( In the same manner as described above in 2.1), that is, scheduling in units of RLC_SDU and transmitting to each UE2.
 一方、前記閾値以下の優先度のLCH#2及びLCH#3のRLC_SDUについては、RLC_PDU(MAC_SDU)単位で、あるいは、格納バッファ7に格納されたままの順序で、即ち、符号「#5」~符号「#13」の順序で、スケジューリングしてUE2宛に送信する。
 このように、本変形例においては、優先度の高いLCHのRLC_SDUほど優先的に送信することができるので、スケジューリングの自由度を向上させて、さらなるデータ伝送時間の最適化を図ることが可能となる。
On the other hand, RLC_SDUs of LCH # 2 and LCH # 3 having a priority equal to or lower than the threshold are stored in the RLC_PDU (MAC_SDU) unit or in the order stored in the storage buffer 7, that is, codes “# 5” to Scheduling is performed in the order of code “# 13” and transmitted to UE 2.
In this way, in this modified example, RLC_SDU of LCH with higher priority can be preferentially transmitted, so that it is possible to improve the degree of freedom of scheduling and further optimize the data transmission time. Become.
 なお、上記スケジューラ9及びデータ選択部8は、例えば、RLC_SDUの送信先に応じて、RLC_SDUのスケジューリングの単位を変更するようにしてもよい。例えば、RLC_SDUの送信先が他のeNB1である場合は、RLC_SDUを複数個まとめた単位でスケジューリングし、RLC_SDUの送信先がUE2である場合は、RLC_SDU単位でスケジューリングするようにしてもよい。 The scheduler 9 and the data selection unit 8 may change the unit of RLC_SDU scheduling according to, for example, the transmission destination of the RLC_SDU. For example, when the destination of RLC_SDU is another eNB1, scheduling may be performed in a unit in which a plurality of RLC_SDUs are combined, and when the destination of RLC_SDU is UE2, scheduling may be performed in units of RLC_SDU.
 また、例えば、ハンドオーバの実施段階(図5に示す「HO準備」、「HO実行」、「HO完了」など)に応じて、RLC_SDUのスケジューリング単位を変更するようにしてもよい。
 このようにすれば、やはりスケジューリングの自由度を向上させることができるので、さらなるデータ伝送時間の最適化を図ることが可能となる。
Also, for example, the scheduling unit of RLC_SDU may be changed according to the stage of handover (“HO preparation”, “HO execution”, “HO completion”, etc. shown in FIG. 5).
In this way, it is possible to improve the degree of freedom of scheduling, so that it is possible to further optimize the data transmission time.
 (2.3)第2変形例
 また、上述した実施形態では、LCHの優先度に基づいて、RLC_SDUを選択してスケジューリングしたが、格納バッファ7におけるLCH毎のバッファ量に基づいて、個々のLCHのRLC_SDUの選択回数が調整されるようにスケジューリングを行なうようにしてもよい。即ち、LCHの残存(送信待ち)データ量に基づいて、スケジューリングの単位を変更するようにしてもよい。
(2.3) Second Modification In the above-described embodiment, RLC_SDU is selected and scheduled based on the LCH priority. However, based on the buffer amount for each LCH in the storage buffer 7, each LCH is selected. Scheduling may be performed so that the number of RLC_SDU selections is adjusted. That is, the scheduling unit may be changed based on the amount of LCH remaining (waiting to be transmitted).
 例えば、本例のスケジューラ9及びデータ選択部8は、格納バッファ7に格納されているLCH毎のRLC_SDUのデータ残量を定期または不定期に監視し、当該データ残量が所定の閾値以上であるLCHについては、当該LCHのRLC_SDUを複数個まとめた単位でスケジューリングする。
 ここで、本変形例の動作について図13を用いて説明する。
For example, the scheduler 9 and the data selection unit 8 of this example monitor the data remaining amount of RLC_SDU for each LCH stored in the storage buffer 7 regularly or irregularly, and the data remaining amount is equal to or greater than a predetermined threshold value. For LCH, scheduling is performed in units of a plurality of RLC_SDUs of the LCH.
Here, the operation of this modification will be described with reference to FIG.
 例えば、スケジューラ9及びデータ選択部8は、優先度「大」のLCH#1のRLC_SDU(符号「#1」を参照)を最初に送信しようとするが、LCH#1のデータ残量が所定の閾値以上であると判定して、符号「#1」及び符号「#2」で示すRLC_SDUをまとめて(連続して)送信する。
 次いで、優先度「大」のLCH#mのRLC_SDUを送信する際は、LCH#mのデータ残量が前記所定の閾値未満であると判定して、符号「#100」で示すRLC_SDUのみを送信する。
For example, the scheduler 9 and the data selection unit 8 try to transmit the RLC_SDU of the LCH # 1 having the priority “Large” (see the code “# 1”) first, but the remaining data amount of the LCH # 1 is predetermined. RLC_SDUs indicated by code “# 1” and code “# 2” are collectively (continuously) transmitted after being determined to be equal to or greater than the threshold.
Next, when transmitting RLC_SDU of LCH # m with priority “L”, it is determined that the remaining data amount of LCH # m is less than the predetermined threshold, and only RLC_SDU indicated by code “# 100” is transmitted. To do.
 また、優先度「大」のLCH#1のRLC_SDU(符号「#3」を参照)についても、LCH#1のデータ残量が前記所定の閾値未満であると判定して、符号「#3」で示すRLC_SDUのみを送信する。
 そして、優先度「大」のLCH#mのRLC_SDU(符号「#101」を参照)を送信しようとするが、LCH#mのデータ残量が所定の閾値以上であると判定して、符号「#101」~符号「#103」で示すRLC_SDUをまとめて送信する。
Also, for the RLC_SDU of LCH # 1 having the priority “L” (see symbol “# 3”), it is determined that the remaining data amount of LCH # 1 is less than the predetermined threshold, and the symbol “# 3”. Only the RLC_SDU indicated by is transmitted.
Then, the RLC_SDU of the LCH # m having the priority “Large” (see the code “# 101”) is to be transmitted, but it is determined that the remaining data amount of the LCH # m is equal to or greater than a predetermined threshold. RLC_SDUs indicated by “# 101” to “# 103” are transmitted together.
 このようにして、後続のRLC_SDUについても同様に送信する。なお、各LCHからRLC_SDUを送信する毎に、前記データ量を更新するようにしてもよい。
 また、本変形例のスケジューラ9及びデータ選択部8は、例えば、LCHのデータ残量に関して複数の閾値を設定しておき、前記データ残量と前記複数の閾値との関係に基づいて、RLC_SDUの送信単位を段階的に変更するようにしてもよい。
In this way, the subsequent RLC_SDU is also transmitted in the same manner. Note that the data amount may be updated every time RLC_SDU is transmitted from each LCH.
In addition, the scheduler 9 and the data selection unit 8 of the present modification, for example, set a plurality of threshold values for the LCH data remaining amount, and based on the relationship between the remaining data amount and the plurality of threshold values, RLC_SDU You may make it change a transmission unit in steps.
 このように、本変形例においては、格納バッファ7でのデータ残量に応じてRLC_SDUの送信単位を変更するので、スケジューリングの自由度を向上させて、さらなるデータ伝送時間の最適化を図ることが可能となる。
 なお、本例のスケジューラ9は、LCHの優先度に応じて個々のLCHのRLC_SDUの選択回数が調整されるようにスケジューリングを行なうようにしてもよいし、LCHの残存データ量とLCHの優先度の両方に応じて、個々のLCHのRLC_SDUの選択回数が調整されるようにスケジューリングを行なうようにしてもよい。このようにすれば、スケジューリングの自由度を一層向上させることができ、さらなるデータ伝送時間の最適化を図ることが可能となる。
As described above, in this modification, the transmission unit of RLC_SDU is changed according to the remaining amount of data in the storage buffer 7, so that the degree of freedom in scheduling can be improved and the data transmission time can be further optimized. It becomes possible.
Note that the scheduler 9 in this example may perform scheduling so that the number of RLC_SDU selections for each LCH is adjusted according to the priority of the LCH, or the remaining data amount of the LCH and the priority of the LCH. In accordance with both, scheduling may be performed so that the number of selections of RLC_SDUs of individual LCHs is adjusted. In this way, it is possible to further improve the degree of freedom of scheduling, and it is possible to further optimize the data transmission time.
 〔3〕その他
 上述した例では、HO元eNB1-1は、IP網4を介してHO先eNB1-2へデータを転送したが、IP網4の代わりに高速専用線などを用いてデータ転送を行なうようにしてもよい。
 また、上述した例では、eNB1は、RLC_SDU単位でスケジューリングして送信する例について説明したが、RLC_PDU(MAC_SDU)よりも小さいデータサイズであれば、RLC_SDU以外のデータ単位で同様の処理を実施するようにしてもよい。
[3] Others In the example described above, the HO source eNB 1-1 transfers data to the HO destination eNB 1-2 via the IP network 4, but instead of using the IP network 4, the HO source eNB 1-1 transfers data using a high-speed dedicated line or the like. You may make it perform.
Further, in the above-described example, the eNB 1 has been described with respect to an example of scheduling and transmitting in units of RLC_SDU. However, if the data size is smaller than RLC_PDU (MAC_SDU), the same processing is performed in units of data other than RLC_SDU. It may be.
 さらに、上述した例では、異なるeNB1間のハンドオーバ時におけるデータ転送に、上記スケジューリングを適用した例について説明したが、同一eNB1におけるセクタ間ハンドオーバ時のデータ転送についても、同様の処理を実施するようにしてもよい。
 また、上述したHO元eNB1-1及びHO先eNB1-2が具備する各機能は、必要に応じて取捨選択してもよい。
Furthermore, in the above-described example, the example in which the scheduling is applied to the data transfer at the time of handover between different eNBs 1 has been described. However, the same processing is also performed for the data transfer at the time of handover between sectors in the same eNB 1. May be.
Further, the functions of the HO source eNB 1-1 and the HO destination eNB 1-2 described above may be selected as necessary.
 さらに、上述したHO元eNB1-1及びHO先eNB1-2が具備する各機能は、必要に応じて他のエンティティに設けるようにしてもよい。 Furthermore, the functions provided in the above-described HO source eNB 1-1 and HO destination eNB 1-2 may be provided in another entity as necessary.

Claims (9)

  1.  無線端末と無線リンクを介して通信する無線基地局であって、
     前記無線リンクのトランスポートチャネルと対応付けられる複数の論理チャネルの個々のデータを構成する複数のデータユニットを、前記論理チャネル毎に保持するバッファ部と、
     前記論理チャネル毎に設定された優先度に基づいて、前記バッファ部における前記各データユニットの送信タイミングをスケジューリングするスケジューラと、
     前記スケジューラでスケジューリングされた送信タイミングに従って、前記各データユニットのいずれかを前記バッファ部から選択して前記無線端末へ至る通信路へ送信する送信処理部と、
    をそなえたことを特徴とする、無線基地局。
    A wireless base station that communicates with a wireless terminal via a wireless link,
    A buffer unit that holds, for each logical channel, a plurality of data units constituting individual data of a plurality of logical channels associated with the transport channel of the radio link;
    A scheduler that schedules the transmission timing of each data unit in the buffer unit based on the priority set for each logical channel;
    According to the transmission timing scheduled by the scheduler, a transmission processing unit that selects any of the data units from the buffer unit and transmits the selected data unit to a communication path that reaches the wireless terminal;
    A radio base station characterized by having
  2.  前記通信路は、前記無線リンク、又は、前記無線端末の移動先無線基地局との間の通信路及び前記移動先無線基地局と移動後の前記無線端末との間の無線リンクを含む、ことを特徴とする、請求項1記載の無線基地局。 The communication path includes the wireless link, or a communication path between the wireless terminal and a destination wireless base station, and a wireless link between the destination wireless base station and the moved wireless terminal. The radio base station according to claim 1, wherein:
  3.  前記スケジューラは、
     前記優先度の高い論理チャネルのデータユニットほど優先的に前記通信路へ送信されるように前記スケジューリングを行なう、ことを特徴とする、請求項1記載の無線基地局。
    The scheduler
    The radio base station according to claim 1, wherein the scheduling is performed so that data units of logical channels with higher priority are transmitted to the communication path with higher priority.
  4.  前記スケジューラは、
     前記論理チャネルの優先度に応じて個々の論理チャネルのデータユニットの選択回数が調整されるように前記スケジューリングを行なう、ことを特徴とする、請求項1記載の無線基地局。
    The scheduler
    The radio base station according to claim 1, wherein the scheduling is performed so that the number of selections of data units of individual logical channels is adjusted according to the priority of the logical channels.
  5.  前記スケジューラは、
     前記バッファ部における前記論理チャネル毎のバッファ量に基づいて、個々の論理チャネルのデータユニットの選択回数が調整されるように前記スケジューリングを行なう、ことを特徴とする、請求項1記載の無線基地局。
    The scheduler
    2. The radio base station according to claim 1, wherein the scheduling is performed so that the number of times of selecting a data unit of each logical channel is adjusted based on a buffer amount for each logical channel in the buffer unit. .
  6.  前記スケジューラは、
     前記移動先無線基地局へ送信する前記論理チャネルのデータユニットの優先度を他よりも一時的に高く設定する、ことを特徴とする、請求項2記載の無線基地局。
    The scheduler
    The radio base station according to claim 2, wherein the priority of the data unit of the logical channel transmitted to the destination radio base station is temporarily set higher than others.
  7.  前記スケジューラは、
     前記論理チャネルのデータユニットが前記無線端末の移動元無線基地局から受信したデータユニットであると、そのデータユニットの優先度を他よりも一時的に高く設定する、ことを特徴とする、請求項1記載の無線基地局。
    The scheduler
    The data unit of the logical channel is temporarily set higher than others when the data unit received from the source radio base station of the radio terminal is a data unit. 1. A radio base station according to 1.
  8.  無線端末と無線リンクを介して通信する無線基地局におけるスケジューリング方法であって、
     前記無線リンクのトランスポートチャネルと対応付けられる複数の論理チャネルの個々のデータを構成する複数のデータユニットを、前記論理チャネル毎に保持し、
     前記論理チャネル毎に設定された優先度に基づいて、前記各データユニットの送信タイミングをスケジューリングし、
     前記スケジューリングされた送信タイミングに従って、前記各データユニットのいずれかを選択して前記無線端末へ至る通信路へ送信する、
    ことを特徴とする、スケジューリング方法。
    A scheduling method in a radio base station that communicates with a radio terminal via a radio link,
    A plurality of data units constituting individual data of a plurality of logical channels associated with a transport channel of the radio link are held for each logical channel,
    Scheduling the transmission timing of each data unit based on the priority set for each logical channel;
    According to the scheduled transmission timing, select one of the data units and transmit to the communication path to the wireless terminal,
    The scheduling method characterized by the above-mentioned.
  9.  少なくとも1つの無線端末と、
     前記無線端末と無線リンクを介して通信する無線基地局と、
     前記無線リンクのトランスポートチャネルと対応付けられる複数の論理チャネルの個々のデータを構成する複数のデータユニットを、前記論理チャネル毎に保持するバッファ部と、
     前記論理チャネル毎に設定された優先度に基づいて、前記バッファ部における前記各データユニットの送信タイミングをスケジューリングするスケジューラと、
     前記スケジューラでスケジューリングされた送信タイミングに従って、前記各データユニットのいずれかを前記バッファ部から選択して前記無線端末へ至る通信路へ送信する送信処理部と、
    をそなえたことを特徴とする、無線通信システム。
    At least one wireless terminal;
    A radio base station communicating with the radio terminal via a radio link;
    A buffer unit that holds, for each logical channel, a plurality of data units constituting individual data of a plurality of logical channels associated with the transport channel of the radio link;
    A scheduler that schedules the transmission timing of each data unit in the buffer unit based on the priority set for each logical channel;
    According to the transmission timing scheduled by the scheduler, a transmission processing unit that selects any of the data units from the buffer unit and transmits the selected data unit to a communication path that reaches the wireless terminal;
    A wireless communication system, characterized by comprising:
PCT/JP2008/053553 2008-02-28 2008-02-28 Radio base station, scheduling method and radio communication system WO2009107221A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/053553 WO2009107221A1 (en) 2008-02-28 2008-02-28 Radio base station, scheduling method and radio communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/053553 WO2009107221A1 (en) 2008-02-28 2008-02-28 Radio base station, scheduling method and radio communication system

Publications (1)

Publication Number Publication Date
WO2009107221A1 true WO2009107221A1 (en) 2009-09-03

Family

ID=41015635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/053553 WO2009107221A1 (en) 2008-02-28 2008-02-28 Radio base station, scheduling method and radio communication system

Country Status (1)

Country Link
WO (1) WO2009107221A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109327247A (en) * 2013-05-10 2019-02-12 富士通互联科技有限公司 Wireless communication system, wireless communication device, wireless communications method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004312681A (en) * 2002-11-22 2004-11-04 Lg Electronics Inc Data transmission method for mobile communication system
JP2007053474A (en) * 2005-08-16 2007-03-01 Kddi Corp Handover method in multi-hop communication, and base station and radio terminal for executing this method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004312681A (en) * 2002-11-22 2004-11-04 Lg Electronics Inc Data transmission method for mobile communication system
JP2007053474A (en) * 2005-08-16 2007-03-01 Kddi Corp Handover method in multi-hop communication, and base station and radio terminal for executing this method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109327247A (en) * 2013-05-10 2019-02-12 富士通互联科技有限公司 Wireless communication system, wireless communication device, wireless communications method

Similar Documents

Publication Publication Date Title
KR102297506B1 (en) Method and apparatus for transmitting and receiving a data using a plurality of carriers in mobilre communication system
US10827396B2 (en) Uplink data splitting
US10784998B2 (en) Wireless communication in multi-rat system
RU2517281C2 (en) Base station, mobile station, communication system, transmission method and reordering method
CN107257551B (en) Method and apparatus for transceiving data using multiple carriers in mobile communication system
US7733832B2 (en) Method and apparatus for transmitting/receiving control information of user equipment for uplink data transmission
CN107750064B (en) Data transmission method, base station and user equipment
US20060092876A1 (en) Method and apparatus for scheduling uplink data transmission for mobile station in soft handover region in a mobile communication system
US20100240375A1 (en) Resource allocation
CN108337633B (en) Data distribution configuration method, base station system and user terminal
KR102196939B1 (en) Appartus and method for data synchronization in cloud cell communication system
JP2010525639A (en) Improved transmission scheme for protocol data units during procedures including protocol layer reset
JP2012114940A (en) Wireless communication method for transmitting sequence of data units between wireless device and network
JP2007295588A (en) QUALITY-OF-SERVICE (QoS)-AWARE SCHEDULING FOR UPLINK TRANSMISSION BY INDIVIDUAL CHANNELS
USRE48316E1 (en) Communications system, base station, user equipment, and signaling transmission method
CN110072253B (en) Communication method, device and system
EP3226606B1 (en) Method for ran-wlan aggregation
JP6897692B2 (en) Wireless communication devices, wireless communication systems, and wireless communication methods
US9723526B2 (en) Apparatus and method for forwarding handover data in wireless communication system
JP2008005490A (en) Method and apparatus of constructing packet for mac layer in wireless communications system
CN110691425A (en) Terminal, base station and method thereof in mobile communication system
KR20180107664A (en) Method for estimating data rate of cooperating base station in dual-connectivity network and base station applying same
WO2009107221A1 (en) Radio base station, scheduling method and radio communication system
WO2002084952A1 (en) Flow control in radio access networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08721002

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08721002

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP