WO2009104612A1 - Fiber laser - Google Patents

Fiber laser Download PDF

Info

Publication number
WO2009104612A1
WO2009104612A1 PCT/JP2009/052715 JP2009052715W WO2009104612A1 WO 2009104612 A1 WO2009104612 A1 WO 2009104612A1 JP 2009052715 W JP2009052715 W JP 2009052715W WO 2009104612 A1 WO2009104612 A1 WO 2009104612A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
optical fiber
fiber laser
amplification
light
Prior art date
Application number
PCT/JP2009/052715
Other languages
French (fr)
Japanese (ja)
Inventor
盛輝 大原
裕己 近藤
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2009554330A priority Critical patent/JPWO2009104612A1/en
Publication of WO2009104612A1 publication Critical patent/WO2009104612A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06791Fibre ring lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06716Fibre compositions or doping with active elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08018Mode suppression
    • H01S3/08022Longitudinal modes
    • H01S3/08027Longitudinal modes by a filter, e.g. a Fabry-Perot filter is used for wavelength setting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1608Solid materials characterised by an active (lasing) ion rare earth erbium

Definitions

  • the present invention relates to a fiber laser suitable for optical communication, measurement, processing, and the like.
  • fiber lasers have attracted attention due to their high beam quality in addition to ease of maintenance. It is used as a laser.
  • a fiber laser amplification medium a fiber to which rare earth such as erbium (Er), ytterbium (Yb), thulium (Tm) is added is used.
  • an amplification optical fiber doped with Yb is generally used, while for communication and measurement, an amplification optical fiber added with Er capable of obtaining a laser beam in a 1.5 ⁇ m band is used. It is done.
  • wavelength division multiplexing (WDM) optical communication requires a light source with a wide wavelength range.
  • FGB fiber Bragg grating
  • Non-Patent Document 1 a laser using an amplification optical fiber added with Er has been proposed (see Non-Patent Document 1).
  • Non-Patent Document 1 uses a long amplification optical fiber having a length ranging from several meters to several tens of meters, and it is difficult to reduce the size.
  • An object of the present invention is to provide a fiber laser that can oscillate in a wide wavelength range with a short optical fiber for amplification.
  • the present invention has the following gist.
  • An optical fiber for amplification in which Er is added to the core, a light source of excitation light for optically exciting Er, an optical coupler for guiding the excitation light to the optical fiber for amplification, and light for extracting laser light emitted from the optical fiber for amplification A fiber laser having a coupler, wherein the length of the optical fiber for amplification is 0.5 m or less, and the absorption coefficient of the optical fiber for amplification is 100 dB / m at any wavelength in the wavelength range of 1520 to 1540 nm.
  • a fiber laser in which the product of the length and the absorption coefficient is 40 to 150 dB.
  • a WDM light source comprising the fiber laser of any one of (1) to (8) above.
  • a sensor light source comprising the fiber laser of any one of (1) to (8) above.
  • the present inventor has found that the fiber length can be shortened by using an amplification optical fiber having a large absorption coefficient, and has led to the present invention.
  • the fiber laser can be miniaturized. Moreover, it is expected that the fiber laser is less susceptible to environmental changes due to the downsizing of the fiber laser or the shortening of the resonator length.
  • 1 optical fiber for amplification
  • 2 pumping light source
  • 3 optical coupler for guiding pumping light into the resonator
  • 4 optical coupler for extracting laser light
  • 5 tunable filter
  • 6 isolator
  • 7 output.
  • FIG. 1 is a conceptual diagram for explaining a fiber laser according to the present invention, in which the resonator is a ring resonator.
  • reference numeral 1 denotes an amplification optical fiber in which Er is added to the core
  • 2 denotes a pumping light source for optically exciting Er, that is, a pumping light source
  • 3 denotes an optical coupler for guiding the pumping light to the amplification optical fiber 1. That is, an optical coupler for guiding excitation light into the resonator, 4 is an optical coupler for extracting laser light, 5 is a wavelength tunable filter, and 6 is an isolator.
  • the core glass is obtained by adding 0.1 to 1.0 part by mass of Er to 100 parts by mass of the matrix glass.
  • the matrix glass contains 20 to 60 mol of Bi 2 O 3. %, B 2 O 3 and / or SiO 2 in total 20 to 50 mol%, Al 2 O 3 and / or Ga 2 O 3 in total 3 to 30 mol%, and the core diameter is 3 to It is preferable that it is 8 micrometers.
  • Total al 2 O 3 and Ga 2 O 3 may be 3 to 20 mol%. If Er is less than 0.1 part by mass, the absorption coefficient may be small. More preferably, it is 0.2 parts by mass or more.
  • the energy conversion efficiency is lowered, and there is a possibility that sufficient laser oscillation cannot be obtained. More preferably, it is 0.8 mass part or less.
  • the core diameter is less than 3 ⁇ m, the overlap between the distribution of light in the optical fiber and the core region to which Er is added may be small, and the absorption coefficient may be small. More preferably, it is 3.5 ⁇ m or more. If it exceeds 8 ⁇ m, the mode field diameter becomes smaller than the core diameter, and Er may not be sufficiently excited. More preferably, it is 7 ⁇ m or less.
  • the difference in refractive index between the core glass and the clad glass of the amplification optical fiber 1 is preferably 0.003 to 0.030. If it is less than 0.003, there is a possibility that the loss when the fiber is bent increases. Preferably it is 0.005 or more. If it exceeds 0.030, connection may be difficult. More preferably, it is 0.020 or less.
  • the absorption coefficient (A) of the amplification optical fiber 1 is not 100 dB / m or more at any wavelength in the wavelength range of 1520 to 1540 nm, the absorbance per unit length becomes too small, and the length of the amplification optical fiber 1 It becomes difficult to shorten.
  • it is 200 dB / m or more, More preferably, it is 300 dB / m or more.
  • a related to the absorption peak is 100 dB / m or more.
  • the length (L) of the amplification optical fiber 1 exceeds 0.5 m, it is difficult to reduce the size of the fiber laser. In addition, the laser oscillation may become unstable due to the influence of disturbance. Preferably it is 0.35 m or less, More preferably, it is 0.30 m or less. L is preferably 0.05 m or more. If it is less than 0.05 m, handling becomes difficult. More preferably, it is 0.10 m or more, Most preferably, it is 0.15 m or more.
  • a ⁇ L the product of A and L (A ⁇ L) is less than 40 dB, sufficient output may not be obtained, or laser oscillation on the long wavelength side may not be obtained, and the band or variable wavelength width may be narrowed. , Preferably 50 dB or more, more preferably 60 dB or more. If A ⁇ L exceeds 150 dB, strong pumping light power is required, and efficiency may deteriorate. (A ⁇ L) is preferably 120 dB or less, more preferably 100 dB or less.
  • the isolator 6 is not essential, but transmits light only in one direction in the resonator. Thus, by oscillating in only one direction, a stable laser with less noise can be obtained.
  • the wavelength tunable filter 5 is not essential, but is preferably used when it is desired to easily change the oscillation wavelength, or when unnecessary stimulated emission light is to be removed. It is preferable to introduce a tunable filter into the resonator. When it is desired to remove unnecessary stimulated emission light, the full width at half maximum of the wavelength tunable filter 5 is preferably 5 nm or less, more preferably 2 nm or less.
  • the excitation light laser light having a wavelength of 0.90 to 0.99 ⁇ m or 1.46 to 1.49 ⁇ m is usually used, but in order to oscillate efficiently, the wavelength of the excitation light is 0.95 to 0. It is preferable to set it to .99 ⁇ m.
  • the width of the oscillation wavelength band of the laser is preferably 100 nm or more. If it is less than 100 nm, it may be difficult to use the WDM system efficiently, or it may be difficult to increase the number of detection points when used as a light source for a sensor. More preferably, it is 110 nm or more, More preferably, it is 120 nm or more.
  • the resonator structure there is a Fabry-Perot type other than the ring type.
  • a Fabry-Perot type is used as the resonator structure, a configuration in which optical fiber Bragg gratings are arranged at both ends is typical.
  • the same configuration as that of FIG. 1 is used as the amplification optical fiber 1 of FIG. 1 having A (absorption coefficient at a wavelength of 1532 nm, unit is dB / m) and L (unit: m) in Examples 1 to 8 in Table 1.
  • a fiber laser was fabricated.
  • the optical coupler 4 can guide 90% of light to the ring resonator and output 10% of light as an output, and the wavelength variable filter 5 has a full width at half maximum of 1 nm.
  • Examples 1 to 7 are examples, and example 8 is a comparative example.
  • the amplification optical fibers of Example 1 and Example 2 are as follows.
  • the amplification optical fibers in Examples 3 to 8 are as follows.
  • variable wavelength width (unit: nm) when excited is shown in the column W1 in Table 1, and the variable wavelength width (unit: nm) when the amplification optical fiber 1 is excited 100 mW in the front and 100 mW in the rear is W2 in Table 1. It shows in each column.
  • the amplification optical fiber of Example 9 is as follows.
  • Core glass: mol% display composition is Bi 2 O 3 42.8, B 2 O 3 28.5, SiO 2 14.3, CeO 2 0.2, Al 2 O 3 7.1, Ga 2 O 3 7. 1 is obtained by adding 0.6 parts by mass of Er to 100 parts by mass of the matrix glass.
  • Composition in mol% of clad glass Bi 2 O 3 42.8, B 2 O 3 28.5, SiO 2 14.3, CeO 2 0.2, Al 2 O 3 10.6, Ga 2 O 3 6.
  • Cladding diameter 125 ⁇ m. Difference in refractive index between core and clad: 0.01.
  • the amplification optical fiber of Example 10 is as follows.
  • Mol% display composition of clad glass Bi 2 O 3 42.7, B 2 O 3 28.5, SiO 2 14.2, CeO 2 0.3, Al 2 O 3 14.3.
  • Core diameter 7.0 ⁇ m.
  • the variable wavelength width is 100 nm or more (W1).
  • W1 the variable wavelength width
  • FIG. 2 shows the spectrum of the laser light of Example 4.
  • the horizontal axis represents the wavelength, and the vertical axis represents the output light intensity.
  • the spectrum of the output light when oscillating at every 10 nm from 1500 nm to 1620 nm and the spectrum of the output light when oscillating at 1491 nm and 1625 nm are shown in one graph. It is shown.
  • the small peak near 1530 nm is stimulated emission light generated when oscillating at 1491 nm, 1500 nm, and 1625 nm, and it can be seen that the stimulated emission light is suppressed to be small relative to the laser light.
  • the fiber laser according to the present invention can be widely used in applications that require a small size and excellent stability.
  • it can be suitably used as a WDM light source or a sensor light source.

Abstract

It is possible to provide a small-size fiber laser. The fiber laser includes: an amplification optical fiber having a core containing Er; a light source for optically exciting the Er; an optical coupler which introduces the excitation light to the amplification optical fiber; and an optical coupler for extracting a laser light from the amplification optical fiber. The amplification optical fiber has a length not greater than 0.5 m. The amplification optical fiber has an absorption coefficient not smaller than 100 dB/m in the wavelength range from 1520 to 1540 nm. The product of the length and the absorption coefficient is in the range from 40 to 150 dB.

Description

ファイバレーザーFiber laser
 本発明は、光通信、計測、加工などに好適なファイバレーザーに関する。 The present invention relates to a fiber laser suitable for optical communication, measurement, processing, and the like.
 従来よりレーザー光源としては、半導体レーザー、固体レーザー、気体レーザーが使用されているが、近年はメンテナンスの容易性に加えてビーム品質の高さからファイバレーザーが注目され、加工用、計測用、通信用のレーザーとして使われている。
  ファイバレーザーの増幅媒体としては、エルビウム(Er)やイッテリビウム(Yb)やツリウム(Tm)などの希土類が添加されたファイバが用いられる。
Conventionally, semiconductor lasers, solid state lasers, and gas lasers have been used as laser light sources, but in recent years, fiber lasers have attracted attention due to their high beam quality in addition to ease of maintenance. It is used as a laser.
As a fiber laser amplification medium, a fiber to which rare earth such as erbium (Er), ytterbium (Yb), thulium (Tm) is added is used.
 高出力を得るためにはYbを添加した増幅用光ファイバが一般的に用いられる一方、通信用や計測用には1.5μm帯のレーザー光が得られるErを添加した増幅用光ファイバが用いられる。
  また、波長分割多重(WDM)方式の光通信では広帯域な波長の光源が必要とされる。
  また、ファイバブラッググレーティング(FGB)ファイバを利用したセンサー用の光源として用いる場合、広帯域なレーザー光源と波長の異なったFGBファイバを並列もしくは直列に接続することにより観測点を増やすことが可能となる。
In order to obtain a high output, an amplification optical fiber doped with Yb is generally used, while for communication and measurement, an amplification optical fiber added with Er capable of obtaining a laser beam in a 1.5 μm band is used. It is done.
Also, wavelength division multiplexing (WDM) optical communication requires a light source with a wide wavelength range.
When used as a sensor light source using a fiber Bragg grating (FGB) fiber, the number of observation points can be increased by connecting a broadband laser light source and FGB fibers having different wavelengths in parallel or in series.
 このようなファイバレーザーとして、Erを添加した増幅用光ファイバを用いたものが提案されている(非特許文献1参照)。 As such a fiber laser, a laser using an amplification optical fiber added with Er has been proposed (see Non-Patent Document 1).
 WDM用の光源やセンサー用の光源としては小型で安定性のよいファイバレーザーが求められる。
  しかし、非特許文献1で開示されているファイバレーザーは長さが数mから数十mに及ぶような長い増幅用光ファイバを用いるものであり、小型化が困難なものであった。
  本発明は、増幅用光ファイバの長さが短く、かつ、広帯域な波長での発振ができるファイバレーザーの提供を目的とする。
As a light source for WDM and a light source for sensors, a small and stable fiber laser is required.
However, the fiber laser disclosed in Non-Patent Document 1 uses a long amplification optical fiber having a length ranging from several meters to several tens of meters, and it is difficult to reduce the size.
An object of the present invention is to provide a fiber laser that can oscillate in a wide wavelength range with a short optical fiber for amplification.
 本発明は、以下の要旨を有する。
(1)コアにErが添加されている増幅用光ファイバ、Erを光励起する励起光の光源、励起光を増幅用光ファイバに導く光カプラ、および増幅用光ファイバから出たレーザー光を取り出す光カプラ、を有するファイバレーザーであって、前記増幅用光ファイバの長さが0.5m以下であり、前記増幅用光ファイバの吸収係数が1520~1540nmの波長域のいずれかの波長において100dB/m以上であり、前記長さと前記吸収係数の積が40~150dBであるファイバレーザー。
(2)共振器がリング共振器である上記(1)のファイバレーザー。
(3)波長可変フィルターを有する上記(1)または(2)のファイバレーザー。
(4)前記励起光の波長が900~990nmである上記(1)~(3)のいずれかのファイバレーザー。
(5)前記レーザー光の可変波長幅が100nm以上である上記(1)~(4)のいずれかのファイバレーザー。
(6)前記増幅用光ファイバのコアガラスが、マトリクスガラス100質量部に対してErを0.1~1.0質量部含有している上記(1)~(5)のいずれかのファイバレーザー。
(7)前記増幅用光ファイバのコア径が3~8μmである上記(1)~(6)のいずれかのファイバレーザー。
(8)アイソレーターを有する上記(1)~(7)のいずれかのファイバレーザー。
(9)上記(1)~(8)のいずれかのファイバレーザーを有するWDM用の光源。
(10)上記(1)~(8)のいずれかのファイバレーザーを有するセンサー用の光源。
The present invention has the following gist.
(1) An optical fiber for amplification in which Er is added to the core, a light source of excitation light for optically exciting Er, an optical coupler for guiding the excitation light to the optical fiber for amplification, and light for extracting laser light emitted from the optical fiber for amplification A fiber laser having a coupler, wherein the length of the optical fiber for amplification is 0.5 m or less, and the absorption coefficient of the optical fiber for amplification is 100 dB / m at any wavelength in the wavelength range of 1520 to 1540 nm. A fiber laser in which the product of the length and the absorption coefficient is 40 to 150 dB.
(2) The fiber laser according to (1), wherein the resonator is a ring resonator.
(3) The fiber laser according to the above (1) or (2) having a wavelength tunable filter.
(4) The fiber laser according to any one of (1) to (3) above, wherein the wavelength of the excitation light is 900 to 990 nm.
(5) The fiber laser according to any one of (1) to (4) above, wherein the variable wavelength width of the laser light is 100 nm or more.
(6) The fiber laser according to any one of (1) to (5), wherein the core glass of the amplification optical fiber contains 0.1 to 1.0 part by mass of Er with respect to 100 parts by mass of the matrix glass .
(7) The fiber laser according to any one of (1) to (6), wherein the amplification optical fiber has a core diameter of 3 to 8 μm.
(8) The fiber laser according to any one of (1) to (7) above, having an isolator.
(9) A WDM light source comprising the fiber laser of any one of (1) to (8) above.
(10) A sensor light source comprising the fiber laser of any one of (1) to (8) above.
 本発明者は、吸収係数の大きい増幅用光ファイバを用いることによりファイバ長を短くできることを見出し、本発明に至った。 The present inventor has found that the fiber length can be shortened by using an amplification optical fiber having a large absorption coefficient, and has led to the present invention.
 本発明によれば、ファイバレーザーの小型化が可能になる。
  また、ファイバレーザーが小型になること、または共振器長が短くなることにより、ファイバレーザーが環境変化を受けにくくなることが期待される。
According to the present invention, the fiber laser can be miniaturized.
Moreover, it is expected that the fiber laser is less susceptible to environmental changes due to the downsizing of the fiber laser or the shortening of the resonator length.
本発明のファイバレーザーの一例を説明するための概念図である。It is a conceptual diagram for demonstrating an example of the fiber laser of this invention. 本発明のファイバレーザーの発振スペクトルの一例である。It is an example of the oscillation spectrum of the fiber laser of the present invention.
符号の説明Explanation of symbols
 1:増幅用光ファイバ、2:励起光源、3:励起光を共振器中に導くための光カプラ、4:レーザー光を取り出すための光カプラ、5:波長可変フィルター、6:アイソレーター、7:出力。 1: optical fiber for amplification, 2: pumping light source, 3: optical coupler for guiding pumping light into the resonator, 4: optical coupler for extracting laser light, 5: tunable filter, 6: isolator, 7: output.
 図1は本発明のファイバレーザーを説明するための概念図であり、共振器がリング共振器である場合のものである。なお、本発明は図1に限定されない。
  図1において、1はコアにErが添加されている増幅用光ファイバ、2はErを光励起する励起光の光源、すなわち励起光源、3は励起光を増幅用光ファイバ1に導くための光カプラ、すなわち励起光を共振器中に導くための光カプラ、4はレーザー光を取り出すための光カプラ、5は波長可変フィルター、6はアイソレーターである。
FIG. 1 is a conceptual diagram for explaining a fiber laser according to the present invention, in which the resonator is a ring resonator. Note that the present invention is not limited to FIG.
In FIG. 1, reference numeral 1 denotes an amplification optical fiber in which Er is added to the core, 2 denotes a pumping light source for optically exciting Er, that is, a pumping light source, and 3 denotes an optical coupler for guiding the pumping light to the amplification optical fiber 1. That is, an optical coupler for guiding excitation light into the resonator, 4 is an optical coupler for extracting laser light, 5 is a wavelength tunable filter, and 6 is an isolator.
 増幅用光ファイバ1は、そのコアガラスがマトリクスガラス100質量部にErが0.1~1.0質量部添加されているものであり、そのマトリクスガラスが、Biを20~60モル%、Bおよび/またはSiOを合計で20~50モル%、Alおよび/またはGaを合計で3~30モル%含有するものであり、コア径は3~8μmであることが好ましい。AlとGaの合計は3~20モル%であってもよい。
  Erが0.1質量部未満では吸収係数が小さくなるおそれがある。より好ましくは0.2質量部以上である。1.0質量部超ではエネルギー変換効率が低下し、十分なレーザー発振が得られないおそれがある。より好ましくは0.8質量部以下である。
  コア径が3μm未満では光ファイバ内の光の分布とErが添加されているコア領域との重なりが小さくなり、吸収係数が小さくなるおそれがある。より好ましくは3.5μm以上である。8μm超ではモードフィールド径がコア径より小さくなり、Erを十分に励起できなくなるおそれがある。より好ましくは7μm以下である。
In the optical fiber for amplification 1, the core glass is obtained by adding 0.1 to 1.0 part by mass of Er to 100 parts by mass of the matrix glass. The matrix glass contains 20 to 60 mol of Bi 2 O 3. %, B 2 O 3 and / or SiO 2 in total 20 to 50 mol%, Al 2 O 3 and / or Ga 2 O 3 in total 3 to 30 mol%, and the core diameter is 3 to It is preferable that it is 8 micrometers. Total al 2 O 3 and Ga 2 O 3 may be 3 to 20 mol%.
If Er is less than 0.1 part by mass, the absorption coefficient may be small. More preferably, it is 0.2 parts by mass or more. If it exceeds 1.0 part by mass, the energy conversion efficiency is lowered, and there is a possibility that sufficient laser oscillation cannot be obtained. More preferably, it is 0.8 mass part or less.
If the core diameter is less than 3 μm, the overlap between the distribution of light in the optical fiber and the core region to which Er is added may be small, and the absorption coefficient may be small. More preferably, it is 3.5 μm or more. If it exceeds 8 μm, the mode field diameter becomes smaller than the core diameter, and Er may not be sufficiently excited. More preferably, it is 7 μm or less.
 増幅用光ファイバ1のコアガラスとクラッドガラスの屈折率差は0.003~0.030であることが好ましい。0.003未満ではファイバを曲げた場合のロスが大きくなるおそれがある。好ましくは0.005以上である。0.030超では接続が困難になるおそれがある。より好ましくは0.020以下である。 The difference in refractive index between the core glass and the clad glass of the amplification optical fiber 1 is preferably 0.003 to 0.030. If it is less than 0.003, there is a possibility that the loss when the fiber is bent increases. Preferably it is 0.005 or more. If it exceeds 0.030, connection may be difficult. More preferably, it is 0.020 or less.
 増幅用光ファイバ1の吸収係数(A)が1520~1540nmの波長域のいずれの波長においても100dB/m以上でないと、単位長さあたりの吸光度が小さくなりすぎ、増幅用光ファイバ1の長さを短くすることが困難になる。好ましくは200dB/m以上、より好ましくは300dB/m以上である。なお、通常はErの吸収ピークが上記波長域に存在し、その吸収ピークに係るAが100dB/m以上であることが求められる。 If the absorption coefficient (A) of the amplification optical fiber 1 is not 100 dB / m or more at any wavelength in the wavelength range of 1520 to 1540 nm, the absorbance per unit length becomes too small, and the length of the amplification optical fiber 1 It becomes difficult to shorten. Preferably it is 200 dB / m or more, More preferably, it is 300 dB / m or more. In general, it is required that an Er absorption peak exists in the above-mentioned wavelength range, and A related to the absorption peak is 100 dB / m or more.
 増幅用光ファイバ1の長さ(L)は0.5m超ではファイバレーザーを小型化することが困難になる。また、外乱の影響によりレーザー発振が不安定になるおそれがある。好ましくは0.35m以下、より好ましくは0.30m以下である。なお、Lは好ましくは0.05m以上である。0.05m未満では取り扱いが困難になる。より好ましくは0.10m以上、特に好ましくは0.15m以上である。 If the length (L) of the amplification optical fiber 1 exceeds 0.5 m, it is difficult to reduce the size of the fiber laser. In addition, the laser oscillation may become unstable due to the influence of disturbance. Preferably it is 0.35 m or less, More preferably, it is 0.30 m or less. L is preferably 0.05 m or more. If it is less than 0.05 m, handling becomes difficult. More preferably, it is 0.10 m or more, Most preferably, it is 0.15 m or more.
 前記Aと前記Lの積(A×L)が40dB未満では十分な出力が得られないおそれがある、または長波長側でのレーザー発振が得られず帯域または可変波長幅が狭くなるおそれがあり、好ましくは50dB以上、より好ましくは60dB以上である。A×Lが150dB超では強い励起光パワーが必要になって効率が悪くなるおそれがある。(A×L)は好ましくは120dB以下、より好ましくは100dB以下である。 If the product of A and L (A × L) is less than 40 dB, sufficient output may not be obtained, or laser oscillation on the long wavelength side may not be obtained, and the band or variable wavelength width may be narrowed. , Preferably 50 dB or more, more preferably 60 dB or more. If A × L exceeds 150 dB, strong pumping light power is required, and efficiency may deteriorate. (A × L) is preferably 120 dB or less, more preferably 100 dB or less.
 アイソレーター6は必須ではないが、共振器中で光を一方向のみ透過する。このように一方向のみで発振することにより、ノイズの少ない安定したレーザーを得ることが可能になる。 The isolator 6 is not essential, but transmits light only in one direction in the resonator. Thus, by oscillating in only one direction, a stable laser with less noise can be obtained.
 波長可変フィルター5は必須ではないが、発振波長を容易に変えるようにしたい場合、不要な誘導放出光を除きたい場合などには用いることが好ましい。共振器中には、波長可変フィルターを導入することが好ましい。
  不要な誘導放出光を除きたい場合には波長可変フィルター5の半値全幅は、好ましくは5nm以下、より好ましくは2nm以下である。
The wavelength tunable filter 5 is not essential, but is preferably used when it is desired to easily change the oscillation wavelength, or when unnecessary stimulated emission light is to be removed. It is preferable to introduce a tunable filter into the resonator.
When it is desired to remove unnecessary stimulated emission light, the full width at half maximum of the wavelength tunable filter 5 is preferably 5 nm or less, more preferably 2 nm or less.
 励起光としては通常、波長が0.90~0.99μmまたは1.46~1.49μmのレーザー光が使用されるが、効率的に発振させるためには励起光の波長を0.95~0.99μmとすることが好ましい。 As the excitation light, laser light having a wavelength of 0.90 to 0.99 μm or 1.46 to 1.49 μm is usually used, but in order to oscillate efficiently, the wavelength of the excitation light is 0.95 to 0. It is preferable to set it to .99 μm.
 レーザーの発振波長帯域の幅、すなわちレーザーの可変波長幅は100nm以上であることが好ましい。100nm未満では、WDM方式を効率よく使うことが困難になるおそれがある、またはセンサー用の光源として用いる場合検出箇所を増やすことが困難になるおそれがある。より好ましくは110nm以上、さらに好ましくは120nm以上である。 The width of the oscillation wavelength band of the laser, that is, the variable wavelength width of the laser is preferably 100 nm or more. If it is less than 100 nm, it may be difficult to use the WDM system efficiently, or it may be difficult to increase the number of detection points when used as a light source for a sensor. More preferably, it is 110 nm or more, More preferably, it is 120 nm or more.
 共振器構造としてはリング型以外にファブリペロー型が挙げられる。共振器構造としてファブリペロー型をとる場合、光ファイバブラッググレーティングを両端に配置する構成が典型的である。 As the resonator structure, there is a Fabry-Perot type other than the ring type. When a Fabry-Perot type is used as the resonator structure, a configuration in which optical fiber Bragg gratings are arranged at both ends is typical.
 図1の増幅用光ファイバ1として表1の例1~8のA(波長1532nmにおける吸収係数。単位はdB/m。)、L(単位:m)を有するものを用いて図1と同じ構成のファイバレーザーを作製した。光カプラ4は90%の光をリング共振器に導き10%の光を出力として外部に取り出すことができるものとし、波長可変フィルター5は半値全幅が1nmのものとした。例1~7は実施例、例8は比較例である。 The same configuration as that of FIG. 1 is used as the amplification optical fiber 1 of FIG. 1 having A (absorption coefficient at a wavelength of 1532 nm, unit is dB / m) and L (unit: m) in Examples 1 to 8 in Table 1. A fiber laser was fabricated. The optical coupler 4 can guide 90% of light to the ring resonator and output 10% of light as an output, and the wavelength variable filter 5 has a full width at half maximum of 1 nm. Examples 1 to 7 are examples, and example 8 is a comparative example.
 例1および例2の増幅用光ファイバはいずれも次のようなものである。
  コアガラス:モル%表示組成がBi 42.8、SiO 34.2、CeO 0.2、Al 3.6、Ga 17.8、La 1.4、であるマトリクスガラス100質量部にErが0.32質量部添加されたもの。
  クラッドガラスのモル%表示組成:Bi 42.8、SiO 34.2、CeO 0.2、Al 7.1、Ga 14.3、La 1.4。
  コア径:5.4μm。
  クラッド径:125μm。
  コアとクラッドの屈折率差:0.01。
The amplification optical fibers of Example 1 and Example 2 are as follows.
Core glass: mol% display composition is Bi 2 O 3 42.8, SiO 2 34.2, CeO 2 0.2, Al 2 O 3 3.6, Ga 2 O 3 17.8, La 2 O 3 4, in which 0.32 parts by mass of Er is added to 100 parts by mass of the matrix glass.
Mol% display composition of clad glass: Bi 2 O 3 42.8, SiO 2 34.2, CeO 2 0.2, Al 2 O 3 7.1, Ga 2 O 3 14.3, La 2 O 3 4.
Core diameter: 5.4 μm.
Cladding diameter: 125 μm.
Difference in refractive index between core and clad: 0.01.
 例3~8の増幅用光ファイバはいずれも次のようなものである。
  コアガラス:モル%表示組成がBi 42.8、B 5.0、SiO 29.2、CeO 0.2、Al 3.6、Ga 17.8、La 1.4、であるマトリクスガラス100質量部にErが0.64質量部添加されたもの。
  クラッドガラスのモル%表示組成:Bi 42.8、B 5.0、SiO 29.2、CeO 0.2、Al 7.1、Ga 14.3、La 1.4。
  コア径:3.9μm。
  クラッド径:125μm。
  コアとクラッドの屈折率差:0.01。
The amplification optical fibers in Examples 3 to 8 are as follows.
Core glass: mol% display composition is Bi 2 O 3 42.8, B 2 O 3 5.0, SiO 2 29.2, CeO 2 0.2, Al 2 O 3 3.6, Ga 2 O 3 17. 8, which is 0.64 parts by mass of Er to 100 parts by mass of matrix glass which is La 2 O 3 1.4.
Mol% display composition of clad glass: Bi 2 O 3 42.8, B 2 O 3 5.0, SiO 2 29.2, CeO 2 0.2, Al 2 O 3 7.1, Ga 2 O 3 14. 3, La 2 O 3 1.4.
Core diameter: 3.9 μm.
Cladding diameter: 125 μm.
Difference in refractive index between core and clad: 0.01.
 例1~8のファイバレーザーにおいて、図1の励起光源2、2から表1のλeの欄に波長(単位:μm)を示す励起光を発し、前方50mW、後方50mWで増幅用光ファイバ1を励起したときの可変波長幅(単位:nm)を表1のW1の欄に、前方100mW、後方100mWで増幅用光ファイバ1を励起したときの可変波長幅(単位:nm)を表1のW2の欄にそれぞれ示す。 In the fiber lasers of Examples 1 to 8, pumping light having a wavelength (unit: μm) is emitted from the pumping light sources 2 and 2 in FIG. The variable wavelength width (unit: nm) when excited is shown in the column W1 in Table 1, and the variable wavelength width (unit: nm) when the amplification optical fiber 1 is excited 100 mW in the front and 100 mW in the rear is W2 in Table 1. It shows in each column.
 また、AおよびLが表1の例9および例10の該当欄に示すようなものである増幅用光ファイバについて、λeが0.98μmである場合のW1、W2を、Aの値から推定した利得に基づき推定した。結果を同表の該当欄に示す。なお、Aの値自体も、各増幅用光ファイバのコア、クラッドの屈折率およびコア径から閉じ込め係数を算出し、コアガラスの吸収係数推定値を用いて推定した。また、表中の*印は推定値であることを示す。例9および例10は比較例である。 For amplification optical fibers in which A and L are as shown in the corresponding columns of Example 9 and Example 10 in Table 1, W1 and W2 when λe is 0.98 μm were estimated from the value of A Estimated based on gain. The results are shown in the corresponding column of the table. The value of A itself was also estimated by calculating the confinement factor from the refractive index and core diameter of the core and cladding of each amplification optical fiber and using the estimated absorption coefficient of the core glass. Moreover, * mark in a table | surface shows that it is an estimated value. Examples 9 and 10 are comparative examples.
 例9の増幅用光ファイバは次のようなものである。
  コアガラス:モル%表示組成がBi 42.8、B 28.5、SiO 14.3、CeO 0.2、Al 7.1、Ga 7.1、であるマトリクスガラス100質量部にErが0.6質量部添加されたもの。
  クラッドガラスのモル%表示組成:Bi 42.8、B 28.5、SiO 14.3、CeO 0.2、Al 10.6、Ga 3.6。
  コア径:2.5μm。
  クラッド径:125μm。
  コアとクラッドの屈折率差:0.01。
The amplification optical fiber of Example 9 is as follows.
Core glass: mol% display composition is Bi 2 O 3 42.8, B 2 O 3 28.5, SiO 2 14.3, CeO 2 0.2, Al 2 O 3 7.1, Ga 2 O 3 7. 1 is obtained by adding 0.6 parts by mass of Er to 100 parts by mass of the matrix glass.
2. Composition in mol% of clad glass: Bi 2 O 3 42.8, B 2 O 3 28.5, SiO 2 14.3, CeO 2 0.2, Al 2 O 3 10.6, Ga 2 O 3 6.
Core diameter: 2.5 μm.
Cladding diameter: 125 μm.
Difference in refractive index between core and clad: 0.01.
 例10の増幅用光ファイバは次のようなものである。
  コアガラス:モル%表示組成がBi 42.7、B 28.5、SiO 14.2、CeO 0.2、Al 7.2、Ga 7.2、であるマトリクスガラス100質量部にErが0.06質量部添加されたもの。
  クラッドガラスのモル%表示組成:Bi 42.7、B 28.5、SiO 14.2、CeO 0.3、Al 14.3。
  コア径:7.0μm。
  クラッド径:125μm。
  コアとクラッドの屈折率差:0.01。
The amplification optical fiber of Example 10 is as follows.
Core glass: mol% display composition is Bi 2 O 3 42.7, B 2 O 3 28.5, SiO 2 14.2, CeO 2 0.2, Al 2 O 3 7.2, Ga 2 O 3 7. 2, in which 0.06 parts by mass of Er is added to 100 parts by mass of the matrix glass.
Mol% display composition of clad glass: Bi 2 O 3 42.7, B 2 O 3 28.5, SiO 2 14.2, CeO 2 0.3, Al 2 O 3 14.3.
Core diameter: 7.0 μm.
Cladding diameter: 125 μm.
Difference in refractive index between core and clad: 0.01.
 例1~7では励起光パワーの小さい場合であっても可変波長幅が100nm以上となる(W1)。特に、Lが0.15~0.30m、A×Lが50~100dB、λeが0.98μmである例3~5では大きなW2が得られる。 In Examples 1 to 7, even when the pumping light power is small, the variable wavelength width is 100 nm or more (W1). In particular, in Examples 3 to 5 where L is 0.15 to 0.30 m, A × L is 50 to 100 dB, and λe is 0.98 μm, a large W2 can be obtained.
 図2は例4のレーザー光のスペクトルを示す。
  横軸は波長、縦軸は出力光強度であり、1500nmから1620nmまで10nm毎で発振させた時の出力光のスペクトル、および1491nmと1625nmで発振させた時の出力光のスペクトルを一つのグラフに示したものである。
  1530nm付近の小さいピークは1491nm、1500nmおよび1625nmで発振した場合に発生する誘導放出光であり、レーザー光に対して誘導放出光が小さく抑えられていることがわかる。
FIG. 2 shows the spectrum of the laser light of Example 4.
The horizontal axis represents the wavelength, and the vertical axis represents the output light intensity. The spectrum of the output light when oscillating at every 10 nm from 1500 nm to 1620 nm and the spectrum of the output light when oscillating at 1491 nm and 1625 nm are shown in one graph. It is shown.
The small peak near 1530 nm is stimulated emission light generated when oscillating at 1491 nm, 1500 nm, and 1625 nm, and it can be seen that the stimulated emission light is suppressed to be small relative to the laser light.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明によるファイバレーザーは小型で優れた安定性が必要とされる用途に広く使用できる。例えば、WDM用の光源やセンサー用の光源として好適に利用できる。 The fiber laser according to the present invention can be widely used in applications that require a small size and excellent stability. For example, it can be suitably used as a WDM light source or a sensor light source.
 なお、2008年2月18日に出願された日本特許出願2008-36585号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として取り入れるものである。 The entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2008-36585 filed on Feb. 18, 2008 are incorporated herein as the disclosure of the specification of the present invention. Is.

Claims (10)

  1.  コアにErが添加されている増幅用光ファイバ、Erを光励起する励起光の光源、励起光を増幅用光ファイバに導く光カプラ、および増幅用光ファイバから出たレーザー光を取り出す光カプラ、を有するファイバレーザーであって、前記増幅用光ファイバの長さが0.5m以下であり、前記増幅用光ファイバの吸収係数が1520~1540nmの波長域のいずれかの波長において100dB/m以上であり、前記長さと前記吸収係数の積が40~150dBであるファイバレーザー。 An optical fiber for amplification in which Er is added to the core, a light source of excitation light for optically exciting Er, an optical coupler for guiding the excitation light to the optical fiber for amplification, and an optical coupler for extracting laser light emitted from the optical fiber for amplification A fiber laser having a length of the amplification optical fiber of 0.5 m or less, and an absorption coefficient of the amplification optical fiber of 100 dB / m or more at any wavelength in a wavelength range of 1520 to 1540 nm. A fiber laser in which the product of the length and the absorption coefficient is 40 to 150 dB.
  2.  共振器がリング共振器である請求項1のファイバレーザー。 2. The fiber laser according to claim 1, wherein the resonator is a ring resonator.
  3.  波長可変フィルターを有する請求項1または2のファイバレーザー。 3. The fiber laser according to claim 1, further comprising a tunable filter.
  4.  前記励起光の波長が900~990nmである請求項1~3のいずれかのファイバレーザー。 The fiber laser according to any one of claims 1 to 3, wherein a wavelength of the excitation light is 900 to 990 nm.
  5.  前記レーザー光の可変波長幅が100nm以上である請求項1~4のいずれかのファイバレーザー。 The fiber laser according to any one of claims 1 to 4, wherein a variable wavelength width of the laser light is 100 nm or more.
  6.  前記増幅用光ファイバのコアガラスが、マトリクスガラス100質量部に対してErを0.1~1.0質量部含有している請求項1~5のいずれかのファイバレーザー。 6. The fiber laser according to claim 1, wherein the core glass of the amplification optical fiber contains 0.1 to 1.0 part by mass of Er with respect to 100 parts by mass of the matrix glass.
  7.  前記増幅用光ファイバのコア径が3~8μmである請求項1~6のいずれかのファイバレーザー。 The fiber laser according to any one of claims 1 to 6, wherein the amplification optical fiber has a core diameter of 3 to 8 µm.
  8.  アイソレーターを有する請求項1~7のいずれかのファイバレーザー。 The fiber laser according to any one of claims 1 to 7, further comprising an isolator.
  9.  請求項1~8のいずれかのファイバレーザーを有するWDM用の光源。 A WDM light source comprising the fiber laser according to any one of claims 1 to 8.
  10.  請求項1~8のいずれかのファイバレーザーを有するセンサー用の光源。 A light source for a sensor having the fiber laser according to any one of claims 1 to 8.
PCT/JP2009/052715 2008-02-18 2009-02-17 Fiber laser WO2009104612A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009554330A JPWO2009104612A1 (en) 2008-02-18 2009-02-17 Fiber laser

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-036585 2008-02-18
JP2008036585 2008-02-18

Publications (1)

Publication Number Publication Date
WO2009104612A1 true WO2009104612A1 (en) 2009-08-27

Family

ID=40985491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052715 WO2009104612A1 (en) 2008-02-18 2009-02-17 Fiber laser

Country Status (2)

Country Link
JP (1) JPWO2009104612A1 (en)
WO (1) WO2009104612A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107394580A (en) * 2017-07-27 2017-11-24 广东复安科技发展有限公司 the signal output method of laser and laser

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11314935A (en) * 1999-02-02 1999-11-16 Furukawa Electric Co Ltd:The Rare earth element doped glass
JP2005347668A (en) * 2004-06-07 2005-12-15 Sun Tec Kk Wavelength scanning type fiber laser optical source

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4250830B2 (en) * 1998-10-20 2009-04-08 旭硝子株式会社 Light amplification glass
JP4232414B2 (en) * 2001-10-10 2009-03-04 旭硝子株式会社 Optical amplification glass and optical waveguide
JP2007103641A (en) * 2005-10-04 2007-04-19 Asahi Glass Co Ltd Optical fiber for amplification

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11314935A (en) * 1999-02-02 1999-11-16 Furukawa Electric Co Ltd:The Rare earth element doped glass
JP2005347668A (en) * 2004-06-07 2005-12-15 Sun Tec Kk Wavelength scanning type fiber laser optical source

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Conference on Optical Fiber Communication. OFC 97.", 16 February 1997, article BELOV, A.V. ET AL.: "Optical and gain characteristics of high-concentration erbium- dopedfibers on base of cesium-silicate glasses", pages: 181 - 182 *
PIOTR MYSLINSKI ET AL.: "Performance of High- ConcentrationErbium-Doped Fiber Amplifiers", IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 11, no. 8, August 1999 (1999-08-01), pages 973 - 975 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107394580A (en) * 2017-07-27 2017-11-24 广东复安科技发展有限公司 the signal output method of laser and laser

Also Published As

Publication number Publication date
JPWO2009104612A1 (en) 2011-06-23

Similar Documents

Publication Publication Date Title
CA2693854C (en) Light emitting devices with phosphosilicate glass
US6370180B2 (en) Semiconductor-solid state laser optical waveguide pump
EP1124295A2 (en) Raman fiber laser
US8548013B2 (en) Fiber laser
Soh et al. Neodymium-doped cladding-pumped aluminosilicate fiber laser tunable in the 0.9-/spl mu/m wavelength range
Li et al. Extreme short wavelength operation (1.65–1.7 µm) of silica-based thulium-doped fiber amplifier
Al‐Azzawi et al. Gain‐flattened hybrid EDFA operating in C+ L band with parallel pumping distribution technique
EP2385593B1 (en) Fibre laser device
JP4914037B2 (en) Optical fiber, optical coherence tomography apparatus, and optical fiber laser
AU768232B2 (en) Optical fiber for optical amplification and optical fiber amplifier
Dianov Raman fiber amplifiers
Seah et al. 400W Ytterbium-doped fiber oscillator at 1018nm
WO2009104612A1 (en) Fiber laser
Harun et al. The performance of double-clad ytterbium-doped fiber laser with different pumping wavelengths
Htein et al. Amplification at 1400–1450 nm of the large-core Nd-doped fiber by white LED pumping
Firstov et al. Bismuth-doped optical fiber amplifier and watt-level CW laser for the spectral region 1600–1800 nm
Emori et al. High-power cascaded Raman fiber laser with 41-W output power at 1480-nm band
JP2007234948A (en) Multi-wavelength light source
Al-Mashhadani et al. Impact of booster section length on the performance of linear cavity brillouin-erbium fiber laser
US8102596B2 (en) Optical fiber for amplification
JP2756510B2 (en) Broadband fiber laser medium and optical amplifier using the same
Nicholson et al. All-in-one 1236-nm Yb/Raman fiber laser
JPH11317560A (en) Optical amplifier and laser oscillator
JP2005322696A (en) Waveguide added with rare-earth element, light source and optical amplifier
JP3446998B2 (en) Excitation method of 1.3 μm band optical amplifier or laser oscillator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09713007

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009554330

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09713007

Country of ref document: EP

Kind code of ref document: A1