WO2009100937A2 - Material suitable as co2 absorbent and for use as a bedding material in fluidized beds, and the production thereof - Google Patents

Material suitable as co2 absorbent and for use as a bedding material in fluidized beds, and the production thereof Download PDF

Info

Publication number
WO2009100937A2
WO2009100937A2 PCT/EP2009/001043 EP2009001043W WO2009100937A2 WO 2009100937 A2 WO2009100937 A2 WO 2009100937A2 EP 2009001043 W EP2009001043 W EP 2009001043W WO 2009100937 A2 WO2009100937 A2 WO 2009100937A2
Authority
WO
WIPO (PCT)
Prior art keywords
particles
carbonate
material according
oxide
core
Prior art date
Application number
PCT/EP2009/001043
Other languages
German (de)
French (fr)
Other versions
WO2009100937A3 (en
Inventor
Tonja MARQUARD-MÖLLENSTEDT
Peter Sichler
Michael Specht
Ulrich ZUBERBÜHLER
Original Assignee
Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg filed Critical Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg
Priority to EP09711423A priority Critical patent/EP2303429A2/en
Publication of WO2009100937A2 publication Critical patent/WO2009100937A2/en
Publication of WO2009100937A3 publication Critical patent/WO2009100937A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/81Solid phase processes
    • B01D53/83Solid phase processes with moving reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0207Compounds of Sc, Y or Lanthanides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0222Compounds of Mn, Re
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • B01J20/0229Compounds of Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0274Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04 characterised by the type of anion
    • B01J20/0277Carbonates of compounds other than those provided for in B01J20/043
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/043Carbonates or bicarbonates, e.g. limestone, dolomite, aragonite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3291Characterised by the shape of the carrier, the coating or the obtained coated product
    • B01J20/3293Coatings on a core, the core being particle or fiber shaped, e.g. encapsulated particles, coated fibers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/08Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst using ammonia or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/386Catalytic partial combustion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/463Gasification of granular or pulverulent flues in suspension in stationary fluidised beds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/32Purifying combustible gases containing carbon monoxide with selectively adsorptive solids, e.g. active carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/602Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/112Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/304Linear dimensions, e.g. particle shape, diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/06Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
    • B01D53/10Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds with dispersed adsorbents
    • B01D53/12Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds with dispersed adsorbents according to the "fluidised technique"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/42Materials comprising a mixture of inorganic materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0261Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a catalytic partial oxidation step [CPO]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/0425In-situ adsorption process during hydrogen production
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0983Additives
    • C10J2300/0996Calcium-containing inorganic materials, e.g. lime
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the invention relates to a material which is particularly suitable for CO 2 absorption and / or for use as a bed material in fluidized beds, a method for producing such a material, a method for producing a CO 2 -lower gas with such a material and other uses of the material, in particular in the field of gas purification.
  • Natural, carbonate-containing minerals such as lime or dolomite are suitable as starting material for absorbents, which can be used in industrial processes, for example for desulfurization or as catalysts, but especially for the separation of CO 2 , for example from flue gases or from synthesis gases.
  • the carbonate-containing minerals are generally subjected to a thermal treatment in which the carbonate is converted under CO 2 release into an oxide, for example CaO.
  • the oxides produced can reversibly take up and release CO 2 , for example in the case of CaO according to the following equation:
  • the oxides can bind sulfur oxide as occurring in flue gases.
  • the separation of CO 2 from gases or their desulfurization is often carried out under fluidizing conditions in fluidized bed reactors, in which ensures a particularly intensive contact between the absorbent and the gas to be treated.
  • a bed of solid particles, in this case the absorbent is caused to flow by an upward flow of a fluid, for example a CO 2 -containing gas.
  • the ability of the oxidic absorbents to absorb CO 2 or SO 2 is of course limited. In the case of CO 2 , however, the absorbents can be regenerated in a simple manner. The regeneration is generally carried out by thermal treatment of the "spent" absorbent, in which the bound CO 2 is liberated again according to the above equation The thermal treatment for regeneration can also take place in a fluidized-bed reactor.
  • the absorbent is frequently allowed to circulate continuously in one cycle, the CO 2 absorption taking place in a first fluidized-bed reactor, and the CO 2 desorption in a second fluidized bed, ie the regeneration of the absorbent.
  • Such a circuit is known for example from DE 199 46 381.
  • the absorbent particles in fluidized-bed reactors are subject to high thermal and in particular also mechanical stresses, the latter resulting in particular from constant collisions with other particles and with the inner walls of the reactors.
  • the chemical composition of the absorbent particles changes as a result of CO 2 uptake or release, which further impairs their structural integrity.
  • a gas cyclone for separating solids with a return line can be installed in fluidized-bed reactors to recycle the particles discharged with the gas stream.
  • the gas cyclone at least partially separates the fine attrition from the gas stream which is then e.g. can be returned to the bottom zone of the fluidized bed.
  • the object of the present invention is to find a way of optimizing the operation of a fluidized bed reactor plant with regard to the described problems.
  • Suitable technical measures are to be provided by which the operation can be kept as trouble-free as possible and in particular also low in maintenance. These measures should in particular _
  • the material according to the present invention is preferably present as bulk material. It can be used in particular as CO 2 absorber and / or as bed material in fluidized beds, in particular as a reactive bed material, and also referred to as such. It consists essentially of at least one metal oxide and / or at least one carbonate. The at least one metal oxide and the at least one carbonate are preferably convertible into each other under CC uptake and release.
  • the material is characterized in preferred embodiments in particular by the fact that it is substantially free of particles having a particle size ⁇ 100 .mu.m, in particular ⁇ 200 .mu.m.
  • fine, volatile particles can be discharged from a fluidized bed by means of a gas flow.
  • particles with a size of up to several hundred micrometers can be discharged.
  • the particles In powdered absorbents based on conventional Be obtained by a thermal treatment of carbonate minerals manner, the particles have a broad particle size distribution, including a proportion of such fine, volatile particles.
  • this portion is discharged from the gas stream and at least partially dragged into downstream equipment parts.
  • the material according to the invention is preferably substantially free of particles having particle sizes ⁇ 100 ⁇ m, preferably ⁇ 200 ⁇ m (also referred to below as undersize), which usually make up a large part of the abrasion which is carried out at normal gas velocities. Accordingly, when using a material according to the invention as an absorbent, the amount of abrasion occurring is markedly lower than with conventional absorbents. The proportion of particularly fine abrasion, which can no longer be detected by gas cyclones, is at least greatly reduced at this stage of the process.
  • the material according to the invention is in particular also with regard to the accumulation of abrasion due to thermal, mechanical and chemical stress in the case of multiple use, ie when used as an absorbent in a cycle with a periodic sequence of CO 2 absorption and regeneration of the absorbent, optimized.
  • the material according to the invention preferably has mechanically particularly stable particles which can withstand the described loads better, so that correspondingly less abrasion results in the CO 2 absorption and the regeneration.
  • the material according to the invention is produced in particular from carbonate-containing materials, in particular by thermal and / or mechanical treatment of at least one carbonate.
  • the mechanical The stability of the absorbent particles is attributable in particular to a mechanical and / or thermal treatment step which can be carried out within the scope of the method according to the invention for producing a material for CO 2 absorption.
  • a starting material is micritic lime.
  • lime should be understood to mean lime which consists at least for the most part of a micrit matrix, in particular a matrix of interconnected carbonate grains with particle sizes ⁇ 100 ⁇ m, preferably ⁇ 10 ⁇ m, in particular ⁇ 5 ⁇ m, particularly preferably ⁇ 4 microns.
  • the material according to the invention is composed in preferred embodiments of individual, interconnected grains with the dimensions given.
  • the material according to the invention may consist of only the at least one metal oxide and only of the at least one carbonate. Preferably, however, it consists essentially of particles which have a core of at least one carbonate and a shell surrounding the core (or shell) of at least one metal oxide.
  • the material according to the invention is largely resistant (passivated) against the influence of atmospheric moisture and accordingly has improved storage and transportability. So the carbonate layer can _ _
  • the particles with the core of at least one carbonate and the shell surrounding the core (or shell) may also be passivated from at least one metal oxide.
  • the core of the carbonate is surrounded by two shells, namely an inner sheath of the at least one metal oxide and an outer sheath of carbonate.
  • sheath or shell substantially completely surrounds the core.
  • the weight ratio of metal oxide to carbonate in the material is preferably between 100: 1 and 1: 100, preferably between 100: 1 and 1: 1, in particular about 10: 1 (oxide to carbonate).
  • a material according to the invention consists essentially of particles which in particular have an average particle size in the range between 0.3 mm and 3 mm, particularly preferably between 0.5 mm and 1.5 mm.
  • it consists essentially of porous particles.
  • the at least one metal oxide is preferably at least one metal oxide of the type M x O y , where M denotes a metal, for example Mg, Ca, Sr, Ba, La, Mn or Y and x and y in the usual way suitable integers describe.
  • the at least one metal oxide is particularly preferably at least one alkaline earth oxide, in particular CaO or a mixture of CaO and MgO.
  • the at least one metal oxide may comprise a portion of iron oxide and / or silicon dioxide. Possibly. it can also contain alumina.
  • the proportion of iron oxide in preferred embodiments is less than 10% by weight (residue on ignition, based on the total mass of the material according to the invention).
  • the proportion of silicon dioxide in preferred embodiments is less than 5% by weight (incineration residue, based on the total mass of the material according to the invention). In particular, this value should not be too high in order not to promote the formation of calcium silicates in operation.
  • cement clinker phases eg 3 CaO • SiO 2 , 2 CaO • SiO 2 , 2 CaO • (Al 2 O 3 , Fe 2 O 3 ), etc. ], which can lead to deposits in various plant components (such as heat exchangers).
  • the proportion of iron oxide, silicon dioxide and aluminum oxide in the material according to the invention is preferably less than 10% by weight, in particular less than 5% by weight (residue on ignition, based on the total mass of the material according to the invention).
  • the at least one carbonate is preferably at least one carbonate of the type M x (CO 3 ) y , where M denotes a metal such as, for example, Mg 1 Ca 1 Sr, Ba, La, Mn or Y and x and y in the customary manner designate suitable integers.
  • the at least one carbonate is particularly preferably at least one alkaline earth carbonate, in particular CaCO 3 or a mixture of CaCO 3 and MgCO 3 .
  • the at least one carbonate may comprise at least one metal oxocarbonate, in particular at least one metal oxocarbonate of the type M x Oy (CO 3 ) 2 , where M denotes a metal, eg Mg, Ca 1 Sr, Ba, La 1 Mn or Y and x , y and z denote suitable integers in the usual way.
  • MgO is contained in the inventive material in preferred embodiments in a proportion of ⁇ 3 wt .-% (incineration residue, based on the total mass of the material according to the invention).
  • the present invention is a process for the preparation of a material as described above.
  • carbonate particles are subjected to a heat treatment in which a thermal desorption reaction takes place under CO 2 release.
  • the method is characterized in that after or during the heat treatment essentially all particles with particle sizes ⁇ 100 ⁇ m, in particular ⁇ 200 ⁇ m, are separated off.
  • the heat treatment is carried out in favor of a large pore surface in the interior of the particles particularly preferably over the shortest possible time at the highest possible temperatures, preferably at a temperature in the range between 1000 0 C and 1500 0 C, in particular between 1100 0 C and 1300 0 C.
  • the temperature during the heat treatment is selected so that the particles during the heat treatment of a - -
  • the material according to the invention is therefore in preferred embodiments a material which has been subjected to a sintering process.
  • an initial material preferably a natural carbonate, such as lime and / or dolomite, see below
  • a lime standard of> 400, in particular> 2000.
  • the lime standard is a measure of the proportion of oxidic impurities. It indicates the total CaO content of the raw material in relation to the CaO content, which can be bound to SiO 2 , Al 2 O 3 and Fe 2 O 3 by formation of cement clinker phases:
  • KSt (2.8 • SiO 2 ) + (1.18 • Al 2 O 3 ) + (0.65 • Fe 2 O 3 )
  • Such a starting material in preferred embodiments has a high sinterability (i.e., the density of the particle increases significantly in the sintering process).
  • Sintering usually refers to the process of "compacting a powder or porous body by a temperature treatment below the melting point of the material", which process can be observed macroscopically as a decrease in length, volume and porosity or density increase.
  • the sinterability increases with increasing lime standard.
  • the material according to the invention has a bulk density> 900 kg / m 3 , in particular> 1200 kg / m 3 .
  • Such a material could be obtained in particular from an initial matehal having a lime standard> 400, in particular> 2000, in the context of the process according to the invention.
  • the resulting material according to the invention has a bulk density> 900 kg / m 3 , in particular> 1200 kg / m 3 .
  • the heat treatment is carried out until the thermal desorption reaction is complete and the carbonate particles are essentially completely converted into oxide particles.
  • the heat treatment is stopped before the thermal desorption reaction is complete and the carbonate particles are substantially completely converted to oxide particles. This results in the material described above with a core of carbonate and a surrounding oxidic layer.
  • the heat treatment can be carried out, for example, under conditions such as occur in a fluidized-bed reactor.
  • particles as already mentioned above, are exposed to mechanical stresses, including, in particular, collisions with other particles and with reactor internals, in fluidized-bed reactors, in particular with the inner walls of the reactors.
  • the carbonate particles to be converted at least partially into oxide particles are therefore subject to the same loads which are also exposed to a "finished" bed material during operation of a fluidized-bed reactor.
  • the heat treatment can be carried out in a rotary kiln.
  • the material according to the invention has an abrasion resistance which is comparable to that of quartz sand.
  • the material according to the invention preferably has an HGI value (Hardgrove Index, determined according to the American ASTM Standard D 409) ⁇ 60, in particular ⁇ 50. This applies in particular if it has the above-mentioned preferred values for the bulk density. - -
  • the material produced according to the described preferred embodiments (thermal treatment or sintering and possibly additional mechanical treatment, ie separation of the particles with a particle size ⁇ 100 ⁇ m, in particular ⁇ 200 ⁇ m) of the method according to the invention differs in summary in two respects from Conventional Absorbenzien: Firstly, it is freed of very fine particles and on the other hand, it has particularly stable particles. From the first use of the material according to the invention as a CO 2 -Absorbens falls to significantly less wear than conventional absorbents, which has a positive effect on the operating stability, reliability and economy (including less bed material consumption, lower number of required maintenance of a fluidized bed reactor per unit time). The small amounts of accumulating abrasion are largely problem-free by means of conventional particle separation, for example by means of a gas cyclone, separable.
  • the particles with particle sizes ⁇ 100 ⁇ m, in particular ⁇ 200 ⁇ m can be separated using a gas cyclone.
  • the separation can thus be carried out continuously during the heat treatment, so that a separate separation step can be omitted.
  • the carbonate particles used are particularly preferably particles of natural carbonates, in particular of lime and / or dolomite. They therefore consist essentially of CaCO 3 or a mixture of CaCO 3 and MgCO 3 . _ _
  • the heat-treated particles are subjected to CC> 2 treatment in a gas atmosphere (recarbonation) so that a layer of carbonate, for example CaCO 3 , can be formed at least on the particle surface.
  • a layer of carbonate for example CaCO 3
  • the chemical composition of the particles below the surface ie in particular the oxidic structure of the particle core
  • the recarbonation is preferably carried out before the separation of the particles having particle sizes ⁇ 100 .mu.m, in particular ⁇ 200 .mu.m.
  • Such treatment may result in the already mentioned passivated particles having on their surface a layer of at least one carbonate.
  • the parameters temperature, pressure, duration of the treatment and / or composition of the gas atmosphere are carefully selected during the CO 2 treatment.
  • the setting of the mentioned parameters depends on many factors, including, but not limited to, the average particle size of the particles to be treated and their other nature.
  • the mean particle size of the particles to be treated ranges, in some preferred embodiments, between 0.7 mm and 1.5 mm.
  • the CO 2 treatment is preferably carried out at temperatures in the range between 600 0 C and 800 0 C, in particular between 650 0 C and 750 0 C. • * "
  • a CO 2 partial pressure between 100 and 700 mbar is preferably set in the CO 2 treatment.
  • the gas atmosphere has a vapor fraction.
  • the H 2 O partial pressure is preferably set to values between 100 mbar and 500 mbar, preferably between 100 mbar and 300 mbar.
  • the duration of a CO 2 treatment is generally between 1 and 10 hours.
  • the CO 2 treatment can be carried out both before and after the separation of the undersize.
  • the CO 2 treatment is carried out directly after the heat treatment (CO 2 desorption), wherein the particles are cooled to a corresponding temperature (preferably ⁇ 800 0 C) and brought into contact with a CO 2 vapor mixture.
  • CO 2 desorption heat treatment
  • a final fractionation eg sieving
  • a finely porous recarbonate can be prepared from a coarse-pore oxide again, the structure of which approaches the original structure of the starting material.
  • This fine porosity is with greater inner Surface, which explains the higher activity.
  • a fine-pored microstructure is mechanically more stable, since many small “bridges” react more elastically to mechanical stresses than a few large “connecting bridges” (which rather act as predetermined breaking points).
  • the inventive material has excellent characteristics with regard to the parameters CO 2 uptake rate, and CO 2 - absorption capacity, in particular if it consists essentially of the above-described particles comprising a core of at least one carbonate, and a cladding surrounding the core of at least one metal oxide or consists of the particles already described with a core of at least one metal oxide and a shell surrounding the core of at least one carbonate.
  • the material has a CO 2 absorption capacity of> 0.05 g C ⁇ 2 / go ⁇ id-
  • the material may have a CO 2 take -up rate of> 0.01 gCO 2 / (goid ⁇ min) (at a CO 2 partial pressure of from 0.01 to 0.3 bar in the raw gas, based on Normal pressure, and an absorption temperature between 600 0 C and 700 0 C).
  • the present invention also includes a method of producing a low-CO 2 gas.
  • a method of producing a low-CO 2 gas in this method, in a first process step, CO 2 is separated from a raw gas (for example, a flue gas or product gas) by means of a material as described above.
  • a second process step the material is then regenerated under CO 2 release.
  • the first and the second process step can also be repeated periodically, it being then preferred for the material to circulate continuously in a circuit as already mentioned at the outset.
  • both the first use of the CC 2 absorbent according to the invention and, if appropriate, in the later periodic operation generally produce less abrasion than with conventional absorbents. The reasons for this have already been explained in detail.
  • the above corresponding statements, in particular with regard to the material according to the invention are hereby incorporated by reference.
  • a material which consists essentially of particles which have at least one core of at least one metal oxide (as is the case, for example, with quicklime).
  • process parameters are selected under which the chemical composition of the core is substantially retained.
  • the core itself participates only limitedly in the reaction happening.
  • the conversion is then reversed again under CO 2 release and the original state is restored.
  • a material which consists essentially of particles which have at least one core of at least one carbonate (as is the case, for example, with limestones which are still untreated).
  • process parameters are selected for the second process step, among which the _ _
  • the process parameters are selected in the second process step so that essentially only the layer surrounding the core is converted into an oxide with CO 2 release.
  • the nucleus itself participates in the reaction process at best only to a limited extent.
  • the conversion is then reversed again and the original state at least approximately restored.
  • the process control according to the two described preferred embodiments ensures that the mechanical stability and thus the abrasion behavior of the particles of the CO 2 absorbent used remains largely the same even after many absorption and regeneration cycles. Presumably, this is due to the fact that in both cases the core participates only limitedly in the reaction process and therefore retains its properties, in particular its mechanical stability.
  • the transition from carbonate to oxide and vice versa is usually accompanied by a change in the crystalline structure of the absorbent particle. Associated with this may be tensions that weaken the structural integrity of the entire particle. If the core does not participate in the reaction process, the tensions occurring in a particle are presumably much lower, so that the particle as a whole retains its stability.
  • the choice of process parameters includes in particular a coordinated adjustment of process temperature, CO 2 - partial pressure and / or process duration.
  • the duration of the process is to be understood as meaning, in particular, the residence time of the CO 2 absorbent in the respective process step.
  • the process parameters in the first process step are selected in particular as a function of the average particle size of the absorbent particles and / or the nature of the raw gas, in particular its CO 2 content.
  • the crude gas used is preferably a hydrogen-containing synthesis gas, in particular a synthesis gas obtained from biomass. Furthermore, smoke and process gases can be used as raw gas.
  • the CCV content in the raw gas usually fluctuates between 10 and 30% by volume and can be reduced to less than 10% by volume (dry gas composition).
  • the first process step is seen as a process temperature under atmospheric conditions, preferably a temperature between 600 0 C and 750 0 C is selected.
  • the process time is usually in the WS in the range of a few minutes.
  • the second process step (regeneration) is preferably selected as the process temperature un- ter atmospheric conditions at a temperature between 800 0 C and 950 0 C.
  • the process duration is usually in the range of a few seconds to less minutes.
  • both process steps are performed without applying an external pressure.
  • the first and / or the second process step are particularly preferably carried out in a fluidized-bed reactor in which the CO 2 -absorbing material correspondingly exists as a fluidized bed.
  • the process according to the invention can also be carried out in other reactors known to the person skilled in the art.
  • the material according to the invention described above can be used not only for the "downstream" removal of CO 2 from a synthesis gas, but also directly in a gasification process step, for example in the presence of a carbonaceous feedstock in the production of synthesis gas from biomass Material can not only absorb CO 2 , but also is able to adsorb on its surface so-called tars (cyclic and polycyclic aromatics) In a further process step, these tars can be used for heat generation by combustion for the thermal desorption reaction, as For example, it is already known from DE 10 2004 045 772.
  • the material according to the invention generally has a catalytic activity with respect to tar degradation which, compared with quartz sand, is less than 0.5 times the tar concentration in the gasification of biogenic input materials under otherwise identical reaction conditions.
  • the catalytic activity is more than twice that of silica sand.
  • the described material according to the invention is outstandingly suitable as an oxide catalyst, in particular for the catalytic tar reforming. Accordingly, the use of the described inventive material as oxide catalyst, in particular for the catalytic tar reforming, the subject of the present invention.
  • iron oxide-containing material according to the invention.
  • the described material according to the invention is also suitable for the separation of sulfur compounds and other impurities contained in gases.
  • the corresponding use is also included in the present invention.
  • the preparation takes place in two stages in preferred embodiments: In a first rotary tubular reactor, carbonate is fired at temperatures above 900 ° C., CO 2 being released. In a second rotary reactor, the intermediate product (oxide) at 650 0 C to 750 0 C again takes CO 2 (Recarbonatmaschine).
  • the separation of particles with a particle size ⁇ 100 microns can be done continuously or after completion of treatment.
  • the starting material e.g., limestone
  • the starting material is preferably added continuously to the first rotary tube reactor.
  • shrinkage of the particles as a result of sintering must be taken into account (approx. 10% under the conditions recommended below).
  • the product falls continuously into a collecting container.
  • the residence time of the material in the rotary tube should be about 30 minutes.
  • the material sinters, increasing its strength but also changing the particle size (the grain shrinks).
  • the material may lose chemical reactivity, ie, for example, the back reaction to the carbonate (recarbonation) or the hydroxide formation generally proceed more slowly, the more the material has been sintered.
  • This sintering process is intensified by long residence times and / or high temperatures (in the lime industry, a distinction is made between soft, medium and hard fires during the sintering process).
  • the Recarbonattician is procedurally much more difficult to implement than the burning process, since the CO 2 uptake proceeds only in a narrow temperature window. Ideally, the material passes through an isothermal rotary tube reactor within about 1 h, through which flue gases pass. Good gas-solid contact is a prerequisite for favorable reaction conditions.
  • the temperature window of Recarbonattician is bounded below by the reaction rate: At temperatures below 600 0 C, the C ⁇ is 2 uptake even at a CO 2 partial pressure of 1 bar very slow and thus not technically relevant. If the temperature is too high, the thermodynamic equilibrium of the CaO-CaCO 3 -CO 2 system is reached, ie the recarbonation reaction is very slow or does not run off any more - in the worst case even calcination conditions are even reached again.
  • the possible / favorable temperature window for the recarbonation depends on the CO 2 partial pressure.
  • the temperature can be increased if the CO 2 partial pressure in the gas phase is greater, ie if, for example, flue gas is enriched with CO 2 .
  • Higher temperatures and partial pressures increase the reaction rate of CO 2 uptake.
  • water vapor has a catalytic effect on the rec- bonatleiters Anlagen and improves the overall material properties.
  • a CC> 2 partial pressure of 0.3 bar and a water vapor partial pressure of 0.1-0.3 bar is recommended.
  • the cooling of the product is preferably carried out in a dry gas atmosphere with a low CO 2 content (eg 5 mol.%) In order to avoid calcination and hydroxide formation.
  • a fluidized bed is suitable for this purpose.
  • the intermediate (oxide) thus occurs e.g. from the calcination rotary kiln and is fed directly into a fluidized bed. Recarbonated particles sink downwards due to their greater specific gravity and can be discharged here.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Gas Separation By Absorption (AREA)
  • Treating Waste Gases (AREA)

Abstract

The invention relates to a material suitable for CO2 absorption and/or for use as bedding material in fluidized beds, to a method for the production of such a material, to a method for producing a gas low in CO2 utilizing such a material, and to further uses of the material, particularly in the area of gas purification. The material substantially comprises at least one metal oxide and/or at least one carbonate, and is substantially free of any particles having a particle size of <100 μm.

Description

Beschreibung description
Als CCb-Absorbens und zur Anwendung als Bettmaterial in Wirbelschichten geeignetes Material und dessen HerstellungAs CCb absorbent and for use as bed material in fluidized beds suitable material and its preparation
Die Erfindung betrifft ein Material, das insbesondere zur CO2-Absorption und/oder zur Anwendung als Bettmaterial in Wirbelschichten geeignet ist, ein Verfahren zur Herstellung eines solchen Materials, ein Verfahren zur Erzeugung eines Cθ2-armen Gases mit einem solchen Material sowie weitere Verwendungen des Materials, insbesondere im Bereich Gasaufreinigung.The invention relates to a material which is particularly suitable for CO 2 absorption and / or for use as a bed material in fluidized beds, a method for producing such a material, a method for producing a CO 2 -lower gas with such a material and other uses of the material, in particular in the field of gas purification.
Natürliche, Carbonat enthaltende Mineralien wie Kalk oder Dolomit eignen sich als Ausgangsmaterial für Absorbenzien, die in technischen Prozessen, beispielsweise zur Entschwefelung oder als Katalysatoren, insbesondere aber zur Abtrennung von CO2, beispielsweise aus Rauchgasen oder aus Synthesegasen, eingesetzt werden können.Natural, carbonate-containing minerals such as lime or dolomite are suitable as starting material for absorbents, which can be used in industrial processes, for example for desulfurization or as catalysts, but especially for the separation of CO 2 , for example from flue gases or from synthesis gases.
Zur Gewinnung dieser Absorbenzien werden die carbonathaltigen Mineralien in der Regel einer thermischen Behandlung unterzogen, bei der das Carbonat unter CO2-Abgabe in ein Oxid, beispielsweise CaO, überführt wird. Die hergestellten Oxide können reversibel CO2 aufnehmen und wieder abgeben, beispielsweise im Fall von CaO gemäß der folgenden Gleichung:To obtain these absorbents, the carbonate-containing minerals are generally subjected to a thermal treatment in which the carbonate is converted under CO 2 release into an oxide, for example CaO. The oxides produced can reversibly take up and release CO 2 , for example in the case of CaO according to the following equation:
CaO + CO2 <r-> CaCO3 CaO + CO 2 <r-> CaCO 3
Bei Entschwefelungsprozessen können die Oxide beispielsweise in Rauchgasen vorkommendes Schwefeloxid als Sulfat binden.In desulfurization processes, for example, the oxides can bind sulfur oxide as occurring in flue gases.
Die Abtrennung von CO2 aus Gasen oder deren Entschwefelung erfolgt häufig unter fluidisierenden Bedingungen in Wirbelschichtreaktoren, in denen ein besonders intensiver Kontakt zwischen dem Absorbens und dem aufzubereitenden Gas gewährleistet ist. In einer Wirbelschicht wird eine Schüttung von Feststoffpartikeln, vorliegend dem Absorbens, durch eine aufwärtsgerichtete Strömung eines Fluids, beispielsweise eines CO2-haltigen Gases, in einen Fließzustand versetzt.The separation of CO 2 from gases or their desulfurization is often carried out under fluidizing conditions in fluidized bed reactors, in which ensures a particularly intensive contact between the absorbent and the gas to be treated. In a fluidized bed, a bed of solid particles, in this case the absorbent, is caused to flow by an upward flow of a fluid, for example a CO 2 -containing gas.
Die Fähigkeit der oxidischen Absorbenzien zur Aufnahme von CO2 oder SO2 ist natürlich begrenzt. Im Fall von CO2 können die Absorbenzien jedoch auf einfache Weise wieder regeneriert werden. Die Regeneration erfolgt in der Regel durch thermische Behandlung des „verbrauchten" Absorbens, bei der gemäß obiger Gleichung das gebundene CO2 wieder freigesetzt wird. Die thermische Behandlung zur Regeneration kann e- benfalls in einem Wirbelschichtreaktor erfolgen.The ability of the oxidic absorbents to absorb CO 2 or SO 2 is of course limited. In the case of CO 2 , however, the absorbents can be regenerated in a simple manner. The regeneration is generally carried out by thermal treatment of the "spent" absorbent, in which the bound CO 2 is liberated again according to the above equation The thermal treatment for regeneration can also take place in a fluidized-bed reactor.
In großtechnischen Prozessen lässt man das Absorbens häufig in einem Kreislauf kontinuierlich zirkulieren, wobei in einem ersten Wirbelschichtreaktor die Cθ2-Absorption erfolgt und in einem zweiten die CO2- Desorption, also die Regeneration des Absorbens. Ein solcher Kreislauf ist beispielsweise aus der DE 199 46 381 bekannt.In large-scale processes, the absorbent is frequently allowed to circulate continuously in one cycle, the CO 2 absorption taking place in a first fluidized-bed reactor, and the CO 2 desorption in a second fluidized bed, ie the regeneration of the absorbent. Such a circuit is known for example from DE 199 46 381.
Sowohl bei der Cθ2-Absorption als auch bei der anschließenden Regeneration des Absorbens unterliegen die Absorbenspartikel in Wirbelschichtreaktoren hohen thermischen und insbesondere auch mechanischen Belastungen, wobei letztere insbesondere aus den ständigen Zu- sammenstößen mit anderen Partikeln sowie mit den Innenwänden der Reaktoren resultieren. Gleichzeitig ändert sich durch die COvAufnahme oder Abgabe die chemische Zusammensetzung der Absorbenspartikel, was deren strukturelle Integrität weiter belastet.Both in CO 2 absorption and in the subsequent regeneration of the absorbent, the absorbent particles in fluidized-bed reactors are subject to high thermal and in particular also mechanical stresses, the latter resulting in particular from constant collisions with other particles and with the inner walls of the reactors. At the same time, the chemical composition of the absorbent particles changes as a result of CO 2 uptake or release, which further impairs their structural integrity.
Die geschilderten Beanspruchungen sind die Ursache für die Deaktivierung des Absorbens und für den insbesondere in Wirbelschicht- Reaktoren auftretenden Partikelabrieb. Weniger fest gebundene Partikelbestandteile lösen sich ab und es entsteht kontinuierlich ein äußerst " "The described stresses are the cause of the deactivation of the absorbent and particulate abrasion occurring in particular in fluidized bed reactors. Less firmly bound particle components dissolve and it continuously creates an extremely ""
feiner Abrieb, der durch den durch die Wirbelschicht geleiteten Gasstrom aus dieser ausgetragen wird. Daraus können diverse Probleme resultieren, die den Betrieb von Wirbelschichtreaktoranlagen beeinträchtigen. Zum einen gehen auf diesem Weg beträchtliche Mengen an Ab- Sorbens verloren, die entsprechend ersetzt werden müssen (i.d.R. kontinuierlich). Zum anderen kann der Abrieb über den Gasstrom in nachgeschaltete Anlagenteile wie Wärmetauscher, Katalysatoren oder Wäscher gelangen und dort Ablagerungen bilden. Die Funktion der nachgeschalteten Anlagenteile wird durch die entstehenden Ablagerungen unter Umständen erheblich beeinträchtigt. In der Folge müssen diese häufig gewartet werden.fine abrasion, which is discharged through the guided through the fluidized bed gas flow from this. This can result in various problems affecting the operation of fluidized bed reactor plants. On the one hand, considerable amounts of waste sorbents are lost in this way, which must be replaced accordingly (i.d.R continuous). On the other hand, the abrasion via the gas stream can reach downstream plant components such as heat exchangers, catalysts or scrubbers and form deposits there. The function of the downstream system components may be significantly affected by the resulting deposits. As a result, they must be serviced frequently.
Um dem entgegenzuwirken, kann in Wirbelschichtreaktoren zur Rückführung der mit dem Gasstrom ausgetragenen Partikel ein Gaszyklon zur Feststoffabscheidung mit einer Rückführleitung installiert werden. Der Gaszyklon trennt den feinen Abrieb zumindest teilweise aus dem Gasstrom ab, welcher dann z.B. in die Bodenzone der Wirbelschicht zurückbefördert werden kann. Dadurch wird der kontinuierliche Verlust an Absorbens in der Wirbelschicht sowie der damit verbundene Austrag an Abrieb in nachgeschaltete Anlagenteile begrenzt, jedoch keinesfalls völlig unterbunden. Zu feiner Abrieb wird zudem von einem Gaszyklon ü- berhaupt nicht erfasst. Durch den Einsatz eines Gaszyklons werden also die negativen Folgen des Auftretens von Abrieb lediglich abgeschwächt. Entsprechend besteht hier nach wie vor Verbesserungsbedarf, insbe- sondere hinsichtlich der Stabilität des eingesetzten Bettmaterials.In order to counteract this, a gas cyclone for separating solids with a return line can be installed in fluidized-bed reactors to recycle the particles discharged with the gas stream. The gas cyclone at least partially separates the fine attrition from the gas stream which is then e.g. can be returned to the bottom zone of the fluidized bed. As a result, the continuous loss of absorbent in the fluidized bed and the associated discharge of abrasion in downstream equipment parts is limited, but not completely prevented. In addition, too fine abrasion is not detected at all by a gas cyclone. By using a gas cyclone, therefore, the negative consequences of the occurrence of abrasion are only weakened. Accordingly, there is still room for improvement, in particular with regard to the stability of the bed material used.
Der vorliegenden Erfindung liegt insbesondere die Aufgabe zugrunde, eine Möglichkeit aufzufinden, wie sich der Betrieb einer Wirbelschichtreaktoranlage im Hinblick auf die beschriebenen Probleme optimieren lässt. Es sollen geeignete technische Maßnahmen bereitgestellt werden, durch die der Betrieb möglichst störungsfrei und insbesondere auch wartungsarm gehalten werden kann. Diese Maßnahmen sollen insbesonde- _In particular, the object of the present invention is to find a way of optimizing the operation of a fluidized bed reactor plant with regard to the described problems. Suitable technical measures are to be provided by which the operation can be kept as trouble-free as possible and in particular also low in maintenance. These measures should in particular _
re in Kombination mit einem Gaszyklon zur Abtrennung von Abrieb einsetzbar sein.be used in combination with a gas cyclone for the separation of abrasion.
Diese Aufgabe wird insbesondere gelöst durch das Material gemäß An- spruch 1 , das Verfahren zur Herstellung eines solchen Materials gemäß Anspruch 15 sowie das Verfahren zur Erzeugung eines CC>2-armen Gases mit einem solchen Material gemäß Anspruch 24. Weitere Lösungen sind in der Bescheibung offenbart. In den abhängigen Ansprüchen 2 bis 14 und 16 bis 23 sind besonders vorteilhafte Ausgestaltungen des erfin- dungsgemäßen Materials und des erfindungsgemäßen Herstellungsverfahrens angegeben. Bevorzugte Ausführungsformen des erfindungsgemäßen Verfahrens zur Erzeugung eines CCVarmen Gases finden sich in den abhängigen Ansprüchen 25 bis 29. Weitere bevorzugte Verwendungen des erfindungsgemäßen Materials sind in den Ansprüchen 30 bis 32 definiert. Der Wortlaut sämtlicher Ansprüche wird hiermit durch Bezugnahme zum Inhalt dieser Beschreibung gemacht.This object is achieved in particular by the material according to claim 1, the method for producing such a material according to claim 15 and the method for producing a CC> 2 low-gas with such a material according to claim 24. Further solutions are described in the Bescheibung disclosed. In the dependent claims 2 to 14 and 16 to 23 particularly advantageous embodiments of the inventive material and the manufacturing method according to the invention are given. Preferred embodiments of the inventive method for producing a CCVarmen gas can be found in the dependent claims 25 to 29. Further preferred uses of the material according to the invention are defined in claims 30 to 32. The wording of all claims is hereby incorporated by reference into the content of this specification.
Das Material nach der vorliegenden Erfindung liegt vorzugsweise als Schüttgut vor. Es lässt sich insbesondere als Cθ2-Absorbens und/oder als Bettmaterial in Wirbelschichten, insbesondere als reaktives Bettmaterial, verwenden und auch so bezeichnen. Es besteht im wesentlichen aus mindestens einem Metalloxid und/oder mindestens einem Carbonat. Das mindestens eine Metalloxid und das mindestens eine Carbonat sind vorzugsweise unter CCVAufnahme und -Abgabe ineinander umwandel- bar. Das Material zeichnet sich in bevorzugten Ausführungsformen insbesondere dadurch aus, dass es im wesentlichen frei von Partikeln mit einer Partikelgröße < 100 μm, insbesondere < 200 μm, ist.The material according to the present invention is preferably present as bulk material. It can be used in particular as CO 2 absorber and / or as bed material in fluidized beds, in particular as a reactive bed material, and also referred to as such. It consists essentially of at least one metal oxide and / or at least one carbonate. The at least one metal oxide and the at least one carbonate are preferably convertible into each other under CC uptake and release. The material is characterized in preferred embodiments in particular by the fact that it is substantially free of particles having a particle size <100 .mu.m, in particular <200 .mu.m.
Wie bereits erwähnt wurde, können durch einen Gasstrom feine, flüchti- ge Partikel, der sogenannte Abrieb, aus einer Wirbelschicht ausgetragen werden. Abhängig von der Geschwindigkeit des Gasstroms können Partikel mit einer Größe von bis zu mehreren hundert Mikrometern ausgetragen werden. In pulverförmigen Absorbenzien, die auf herkömmliche Art und Weise durch eine thermische Behandlung aus carbonathaltigen Mineralien gewonnen werden, weisen die Partikel eine breite Partikelgrößenverteilung auf, darunter auch ein Anteil an solchen feinen, flüchtigen Partikeln. Bereits beim ersten Einsatz des Absorbens wird dieser Anteil vom Gasstrom ausgetragen und zumindest teilweise in nachgeschaltete Anlagenteile geschleppt.As already mentioned, fine, volatile particles, the so-called abrasion, can be discharged from a fluidized bed by means of a gas flow. Depending on the speed of the gas flow, particles with a size of up to several hundred micrometers can be discharged. In powdered absorbents based on conventional Be obtained by a thermal treatment of carbonate minerals manner, the particles have a broad particle size distribution, including a proportion of such fine, volatile particles. Already at the first use of the absorbent, this portion is discharged from the gas stream and at least partially dragged into downstream equipment parts.
Das erfindungsgemäße Material ist hingegen bevorzugt im wesentlichen frei von Partikeln mit Partikelgrößen < 100 μm, vorzugsweise < 200 μm (im folgenden auch als Unterkorn bezeichnet), die in der Regel einen Großteil des Abriebs ausmachen, der bei üblichen Gasgeschwindigkeiten ausgetragen wird. Entsprechend fällt beim Einsatz eines erfindungsgemäßen Materials als Absorbens die Menge des anfallenden Abriebs deutlich geringer aus als bei herkömmlichen Absorbenzien. Der Anteil an besonders feinem Abrieb, der von Gaszyklonen nicht mehr erfasst werden kann, ist in diesem Stadium des Verfahrens zumindest sehr stark vermindert.On the other hand, the material according to the invention is preferably substantially free of particles having particle sizes <100 μm, preferably <200 μm (also referred to below as undersize), which usually make up a large part of the abrasion which is carried out at normal gas velocities. Accordingly, when using a material according to the invention as an absorbent, the amount of abrasion occurring is markedly lower than with conventional absorbents. The proportion of particularly fine abrasion, which can no longer be detected by gas cyclones, is at least greatly reduced at this stage of the process.
Das erfindungsgemäße Material ist in bevorzugten Ausführungsformen insbesondere auch im Hinblick auf den in Folge der thermischen, mechanischen und chemischen Belastung entstehenden Anfall von Abrieb bei mehrfacher Verwendung, also z.B. bei Verwendung als Absorbens in einem Kreislauf mit einer periodischen Abfolge von CO2-Absorption und Regeneration des Absorbens, optimiert.In preferred embodiments, the material according to the invention is in particular also with regard to the accumulation of abrasion due to thermal, mechanical and chemical stress in the case of multiple use, ie when used as an absorbent in a cycle with a periodic sequence of CO 2 absorption and regeneration of the absorbent, optimized.
Das erfindungsgemäße Material weist nämlich vorzugsweise mechanisch besonders stabile Partikel auf, die den beschriebenen Belastungen besser standhalten können, so dass bei der CO2-Absorption und der Regeneration entsprechend weniger Abrieb entsteht.Namely, the material according to the invention preferably has mechanically particularly stable particles which can withstand the described loads better, so that correspondingly less abrasion results in the CO 2 absorption and the regeneration.
Hergestellt wird das erfindungsgemäße Material insbesondere aus carbonathaltigen Materialien, insbesondere durch thermische und/oder me- chaniscne öehandlung aus mindestens einem Carbonat. Die mechani- sehe Stabilität der Absorbenspartikel ist insbesondere auf einen mechanisch und/oder thermischen Behandlungsschritt zurückzuführen, der im Rahmen des erfindungsgemäßen Verfahrens zur Herstellung eines Materials zur CO2-Absorption durchgeführt werden kann.The material according to the invention is produced in particular from carbonate-containing materials, in particular by thermal and / or mechanical treatment of at least one carbonate. The mechanical The stability of the absorbent particles is attributable in particular to a mechanical and / or thermal treatment step which can be carried out within the scope of the method according to the invention for producing a material for CO 2 absorption.
Besonders geeignet als Ausgangsmaterial ist mikritischer Kalk. Unter mikritischem Kalk soll vorliegend Kalk verstanden werden, der zumindest zum überwiegenden Anteil aus einer Mikrit-Matrix besteht, insbesondere einer Matrix aus miteinander verbundenen Carbonat-Körnern mit Korngrößen < 100 μm, vorzugsweise < 10 μm, insbesondere < 5 μm, besonders bevorzugt < 4 μm. Entsprechend setzt sich auch das erfindungsgemäße Material in bevorzugten Ausführungsformen aus einzelnen, untereinander verbundenen Körnern mit den angegebenen Dimensionen zusammen.Particularly suitable as a starting material is micritic lime. In the present case, lime should be understood to mean lime which consists at least for the most part of a micrit matrix, in particular a matrix of interconnected carbonate grains with particle sizes <100 μm, preferably <10 μm, in particular <5 μm, particularly preferably <4 microns. Accordingly, the material according to the invention is composed in preferred embodiments of individual, interconnected grains with the dimensions given.
Auf das Verfahren zur Herstellung eines erfindungsgemäßen Materials, aus dem die erwähnten stabilen Partikel hervorgehen, wird unten noch genauer eingegangen.The process for producing a material according to the invention, from which the mentioned stable particles emerge, will be discussed in more detail below.
Das erfindungsgemäße Material kann sowohl nur aus dem mindestens einen Metalloxid als auch nur aus dem mindestens einen Carbonat bestehen. Vorzugsweise aber besteht es im wesentlichen aus Partikeln, die einen Kern aus mindestens einem Carbonat und eine den Kern umgebende Hülle (oder auch Schale) aus mindestens einem Metalloxid aufweisen.The material according to the invention may consist of only the at least one metal oxide and only of the at least one carbonate. Preferably, however, it consists essentially of particles which have a core of at least one carbonate and a shell surrounding the core (or shell) of at least one metal oxide.
In einer weiteren, besonders bevorzugten Ausführungsform besteht es im wesentlichen aus Partikeln, die einen Kern aus mindestens einem Metalloxid und eine den Kern umgebende Hülle (oder auch Schale) aus mindestens einem Carbonat aufweisen. In dieser Ausführungsform ist das erfindungsgemäße Material weitgehend resistent (passiviert) gegen den Einfluss von Luftfeuchtigkeit und weist entsprechend eine verbesserte Lager- und Transportfähigkeit auf. Die Carbonatschicht kann also _ _In a further, particularly preferred embodiment, it consists essentially of particles which have a core of at least one metal oxide and a shell (or shell) surrounding the core of at least one carbonate. In this embodiment, the material according to the invention is largely resistant (passivated) against the influence of atmospheric moisture and accordingly has improved storage and transportability. So the carbonate layer can _ _
auch dem Zweck dienen, einer Hydroxidbildung beim tiefer (darunter) liegenden Metalloxid vorzubeugen. Auf die Herstellung der mit einer Carbonatschicht versehenen Partikel wird ebenfalls unten noch genauer eingegangen.also serve the purpose of preventing hydroxide formation in the deeper (underlying) metal oxide. The preparation of the particles provided with a carbonate layer is also discussed in more detail below.
Insbesondere können auch die Partikel mit dem Kern aus mindestens einem Carbonat und der den Kern umgebenden Hülle (oder auch Schale) aus mindestens einem Metalloxid passiviert sein. In dieser bevorzugten Ausführungsform ist der Kern aus dem Carbonat von zwei Hüllen umgeben, nämlich einer inneren Hülle aus dem mindestens einen Metalloxid und eine äußeren Hülle aus Carbonat.In particular, the particles with the core of at least one carbonate and the shell surrounding the core (or shell) may also be passivated from at least one metal oxide. In this preferred embodiment, the core of the carbonate is surrounded by two shells, namely an inner sheath of the at least one metal oxide and an outer sheath of carbonate.
Es ist bevorzugt, dass die Hülle (oder auch Schale) den Kern im wesentlichen vollständig umschließt.It is preferred that the sheath (or shell) substantially completely surrounds the core.
Das Gewichtsverhältnis von Metalloxid zu Carbonat im Material beträgt vorzugsweise zwischen 100:1 und 1 :100, vorzugsweise zwischen 100:1 und 1 :1 , insbesondere ca. 10:1 (Oxid zu Carbonat).The weight ratio of metal oxide to carbonate in the material is preferably between 100: 1 and 1: 100, preferably between 100: 1 and 1: 1, in particular about 10: 1 (oxide to carbonate).
Ein erfindungsgemäßes Material besteht in bevorzugten Ausführungsformen im wesentlichen aus Partikeln, die insbesondere eine mittlere Partikelgröße im Bereich zwischen 0,3 mm und 3 mm, besonders bevorzugt zwischen 0,5 mm und 1 ,5 mm, aufweisen. Vorzugsweise besteht es im wesentlichen aus porösen Partikeln.In preferred embodiments, a material according to the invention consists essentially of particles which in particular have an average particle size in the range between 0.3 mm and 3 mm, particularly preferably between 0.5 mm and 1.5 mm. Preferably, it consists essentially of porous particles.
Bei dem mindestens einen Metalloxid handelt es sich bevorzugt um mindestens ein Metalloxid vom Typ MxOy, wobei M ein Metall bezeichnet, z.B. Mg, Ca, Sr, Ba, La, Mn oder Y und x und y in üblicher Weise geeignete ganze Zahlen bezeichnen.The at least one metal oxide is preferably at least one metal oxide of the type M x O y , where M denotes a metal, for example Mg, Ca, Sr, Ba, La, Mn or Y and x and y in the usual way suitable integers describe.
Besonders bevorzugt handelt es sich bei dem mindestens einen Metalloxid um mindestens ein Erdalkalioxid, insbesondere um CaO oder um eine Mischung aus CaO und MgO. In bevorzugten Ausführungsformen kann das mindestens eine Metalloxid einen Anteil Eisenoxid und/oder Siliziumdioxid umfassen. Ggf. kann auch es auch Aluminiumoxid enthalten.The at least one metal oxide is particularly preferably at least one alkaline earth oxide, in particular CaO or a mixture of CaO and MgO. In preferred embodiments, the at least one metal oxide may comprise a portion of iron oxide and / or silicon dioxide. Possibly. it can also contain alumina.
Der Anteil an Eisenoxid liegt in bevorzugten Ausführungsformen bei unter 10 Gew.-% (Glührückstand, bezogen auf die Gesamtmasse des erfindungsgemäßen Materials).The proportion of iron oxide in preferred embodiments is less than 10% by weight (residue on ignition, based on the total mass of the material according to the invention).
Der Anteil an Siliziumdioxid liegt in bevorzugten Ausführungsformen bei unter 5 Gew.-% (Glührückstand, bezogen auf die Gesamtmasse des erfindungsgemäßen Materials). Insbesondere dieser Wert sollte nicht allzu hoch liegen, um die Bildung von Ca-Silikaten im Betrieb nicht zu fördern. Grundsätzlich können sich nämlich, bedingt durch die Anwesenheit von Eisenoxid, Siliziumdioxid und/oder Aluminiumoxid, Zementklinkerphasen [z.B. 3 CaO • SiO2, 2 CaO • SiO2, 2 CaO • (AI2O3, Fe2O3), etc.] bilden, die zu Ablagerungen in diversen Anlagenteilen (wie z.B. Wärmetauschern) führen können.The proportion of silicon dioxide in preferred embodiments is less than 5% by weight (incineration residue, based on the total mass of the material according to the invention). In particular, this value should not be too high in order not to promote the formation of calcium silicates in operation. In principle, due to the presence of iron oxide, silicon dioxide and / or aluminum oxide, cement clinker phases [eg 3 CaO • SiO 2 , 2 CaO • SiO 2 , 2 CaO • (Al 2 O 3 , Fe 2 O 3 ), etc. ], which can lead to deposits in various plant components (such as heat exchangers).
Bevorzugt liegt der Anteil an Eisenoxid, Siliziumdioxid und Aluminiumoxid im erfindungsgemäßen Material in der Summe unter 10 Gew.-%, insbesondere unter 5 Gew.-% (Glührückstand, bezogen auf die Gesamtmasse des erfindungsgemäßen Materials).The proportion of iron oxide, silicon dioxide and aluminum oxide in the material according to the invention is preferably less than 10% by weight, in particular less than 5% by weight (residue on ignition, based on the total mass of the material according to the invention).
Bei dem mindestens einen Carbonat handelt es sich bevorzugt um mindestens ein Carbonat vom Typ Mx(CO3)y, wobei M ein Metall wie z.B. Mg1 Ca1 Sr, Ba, La, Mn oder Y bezeichnet und x und y in üblicher Weise geeignete ganze Zahlen bezeichnen.The at least one carbonate is preferably at least one carbonate of the type M x (CO 3 ) y , where M denotes a metal such as, for example, Mg 1 Ca 1 Sr, Ba, La, Mn or Y and x and y in the customary manner designate suitable integers.
Besonders bevorzugt handelt es sich bei dem mindestens einen Carbonat um mindestens ein Erdalkalicarbonat, insbesondere um CaCO3 oder um eine Mischung aus CaCO3 und MgCO3. In bevorzugten Ausführungsformen kann das mindestens eine Carbonat mindestens ein Metalloxocarbonat umfassen, insbesondere mindestens ein Metalloxocarbonat vom Typ MxOy(CO3)2, wobei M ein Metall bezeichnet, z.B. Mg, Ca1 Sr, Ba, La1 Mn oder Y und x, y und z in üblicher Weise geeignete ganze Zahlen bezeichnen.The at least one carbonate is particularly preferably at least one alkaline earth carbonate, in particular CaCO 3 or a mixture of CaCO 3 and MgCO 3 . In preferred embodiments, the at least one carbonate may comprise at least one metal oxocarbonate, in particular at least one metal oxocarbonate of the type M x Oy (CO 3 ) 2 , where M denotes a metal, eg Mg, Ca 1 Sr, Ba, La 1 Mn or Y and x , y and z denote suitable integers in the usual way.
MgO ist im erfindungsgemäßen Material in bevorzugten Ausführungsformen in einem Anteil < 3 Gew.-% enthalten (Glührückstand, bezogen auf die Gesamtmasse des erfindungsgemäßen Materials).MgO is contained in the inventive material in preferred embodiments in a proportion of <3 wt .-% (incineration residue, based on the total mass of the material according to the invention).
Ebenfalls Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung von einem Material, wie es vorstehend beschrieben wurde. Gemäß dem erfindungsgemäßen Verfahren werden Carbonatpartikel einer Wärmebehandlung unterworfen, bei der eine thermische Desorpti- onsreaktion unter Cθ2-Freisetzung erfolgt. Das Verfahren zeichnet sich in bevorzugten Ausführungsformen dadurch aus, dass nach oder während der Wärmebehandlung im wesentlichen alle Partikel mit Partikelgrößen < 100 μm, insbesondere < 200 μm, abgetrennt werden.Likewise provided by the present invention is a process for the preparation of a material as described above. In accordance with the process according to the invention, carbonate particles are subjected to a heat treatment in which a thermal desorption reaction takes place under CO 2 release. In preferred embodiments, the method is characterized in that after or during the heat treatment essentially all particles with particle sizes <100 μm, in particular <200 μm, are separated off.
Durch letzteren Schritt kann erreicht werden, dass Abrieb nicht bereits mit dem Ausgangsmaterial in einen Wirbelschichtreaktor eingebracht wird, wie vorstehend bereits ausgeführt wurde. Die mit dem Gasstrom austragbaren, flüchtigen Bestandteile sind also auf den im Betrieb entstehenden Abrieb beschränkt.By the latter step can be achieved that abrasion is not already introduced with the starting material in a fluidized bed reactor, as already stated above. The volatiles that can be discharged with the gas stream are thus limited to the abrasion that occurs during operation.
Die Wärmebehandlung erfolgt zugunsten einer großen Porenoberfläche im Inneren der Partikel besonders bevorzugt über einen möglichst kurzen Zeitraum bei möglichst hohen Temperaturen, vorzugsweise bei einer Temperatur im Bereich zwischen 1000 0C und 1500 0C, insbesonde- re zwischen 1100 0C und 1300 0C.The heat treatment is carried out in favor of a large pore surface in the interior of the particles particularly preferably over the shortest possible time at the highest possible temperatures, preferably at a temperature in the range between 1000 0 C and 1500 0 C, in particular between 1100 0 C and 1300 0 C.
In bevorzugten Ausführungsformen wird die Temperatur bei der Wärmebehandlung so gewählt, dass die Partikel bei der Wärmebehandlung ei- - -In preferred embodiments, the temperature during the heat treatment is selected so that the particles during the heat treatment of a - -
nem Sinterprozeß unterliegen. Bei dem erfindungsgemäßen Material handelt es sich also in bevorzugten Ausführungsformen um ein Material, das einem Sinterprozeß unterworfen worden ist.subject to a sintering process. The material according to the invention is therefore in preferred embodiments a material which has been subjected to a sintering process.
Vorzugsweise geht man bei der erfindungsgemäßen Herstellung von einem Augangsmaterial (vorzugsweise einem natürlichen Carbonat, wie Kalk und/oder Dolomit, s.u.) aus, das einen Kalkstandard > 400, insbesondere > 2000, aufweist.Preferably, in the preparation according to the invention, an initial material (preferably a natural carbonate, such as lime and / or dolomite, see below) is used which has a lime standard of> 400, in particular> 2000.
Der Kalkstandard ist ein Maß für den Anteil oxidischer Verunreinigungen. Er gibt den gesamten CaO-Gehalt des Rohstoffes im Verhältnis zu dem CaO-Gehalt an, welcher durch Bildung von Zementklinkerphasen an SiO2, AI2O3 und Fe2O3 gebunden werden kann:The lime standard is a measure of the proportion of oxidic impurities. It indicates the total CaO content of the raw material in relation to the CaO content, which can be bound to SiO 2 , Al 2 O 3 and Fe 2 O 3 by formation of cement clinker phases:
CaO - 100CaO - 100
KSt = (2,8 • SiO2 ) + (1,18 • AI2O3 ) + (0,65 • Fe2O3 )KSt = (2.8 • SiO 2 ) + (1.18 • Al 2 O 3 ) + (0.65 • Fe 2 O 3 )
(Angaben zu CaO, SiO2, AI2O3 und Fe2O3 jeweils in Gew.-%)(Details of CaO, SiO 2 , Al 2 O 3 and Fe 2 O 3 , in each case in% by weight)
Dies steht unmittelbar im Zusammenhang mit den oben angegeben Werten für den Anteil an Eisenoxid, Siliziumdioxid und Aluminiumoxid im erfindungsgemäßen Material.This is directly related to the values given above for the proportion of iron oxide, silicon dioxide and aluminum oxide in the material according to the invention.
Ein solches Ausgangsmaterial weist in bevorzugten Ausführungsformen eine hohe Sinterfähigkeit auf (d.h. die Dichte des Partikels nimmt beim Sinterprozeß deutlich zu).Such a starting material in preferred embodiments has a high sinterability (i.e., the density of the particle increases significantly in the sintering process).
Die Sinterung bezeichnet in der Regel den Prozess der "Verdichtung eines Pulvers oder porösen Körpers durch eine Temperaturbehandlung unterhalb des Schmelzpunktes des Materials", wobei dieser Vorgang sich makroskopisch als Längen-, Volumen- und Porositätsabnahme bzw. Dichtezunahme beobachten lässt. Die Sinterfähigkeit nimmt mit steigendem Kalkstandard zu. In bevorzugten Ausführungsformen weist das erfindungsgemäße Material eine Schüttdichte > 900 kg/m3, insbesondere > 1200 kg/m3, auf. Ein solches Material konnte insbesondere ausgehend von einem Aus- gangsmatehal mit einem Kalkstandard > 400, insbesondere > 2000, im Rahmen des erfindungsgemäßen Verfahrens erhalten werden. Mit anderen Worten, vorzugsweise ausgehend von dem erwähnten Ausgangsmaterial mit einem Kalkstandard > 400, insbesondere > 2000 wird derart gesintert, dass das resultierende erfindungsgemäße Material eine Schüttdichte > 900 kg/m3, insbesondere > 1200 kg/m3, aufweist.Sintering usually refers to the process of "compacting a powder or porous body by a temperature treatment below the melting point of the material", which process can be observed macroscopically as a decrease in length, volume and porosity or density increase. The sinterability increases with increasing lime standard. In preferred embodiments, the material according to the invention has a bulk density> 900 kg / m 3 , in particular> 1200 kg / m 3 . Such a material could be obtained in particular from an initial matehal having a lime standard> 400, in particular> 2000, in the context of the process according to the invention. In other words, preferably starting from the mentioned starting material having a lime standard> 400, in particular> 2000 is sintered such that the resulting material according to the invention has a bulk density> 900 kg / m 3 , in particular> 1200 kg / m 3 .
In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird die Wärmebehandlung durchgeführt, bis die thermische De- sorptionsreaktion abgeschlossen ist und die Carbonatpartikel im wesent- liehen vollständig in Oxidpartikel umgewandelt sind.In a preferred embodiment of the method according to the invention, the heat treatment is carried out until the thermal desorption reaction is complete and the carbonate particles are essentially completely converted into oxide particles.
In einer weiteren bevorzugten Ausführungsform wird die Wärmebehandlung abgebrochen, bevor die thermische Desorptionsreaktion abgeschlossen ist und die Carbonatpartikel im wesentlichen vollständig in Oxidpartikel umgewandelt sind. Hieraus resultiert das oben beschriebene Material mit einem Kern aus Carbonat und einer diesen umgebenden oxidischen Schicht.In another preferred embodiment, the heat treatment is stopped before the thermal desorption reaction is complete and the carbonate particles are substantially completely converted to oxide particles. This results in the material described above with a core of carbonate and a surrounding oxidic layer.
Die Wärmebehandlung kann beispielsweise unter Bedingungen, wie sie in einem Wirbelschichtreaktor auftreten, durchgeführt werden. Dabei sind Partikel, wie oben bereits angesprochen, mechanischen Beanspruchungen ausgesetzt, darunter insbesondere Zusammenstößen mit anderen Partikeln sowie mit Reaktoreinbauten, in Wirbelschichtreaktoren insbesondere mit den Innenwänden der Reaktoren. Die mindestens teil- weise in Oxidpartikel umzuwandelnden Carbonatpartikel unterliegen während ihrer Umwandlung also den gleichen Belastungen, denen im Betrieb eines Wirbelschichtreaktors auch ein „fertiges" Bettmaterial ausgesetzt ist. -The heat treatment can be carried out, for example, under conditions such as occur in a fluidized-bed reactor. In this case, particles, as already mentioned above, are exposed to mechanical stresses, including, in particular, collisions with other particles and with reactor internals, in fluidized-bed reactors, in particular with the inner walls of the reactors. During their transformation, the carbonate particles to be converted at least partially into oxide particles are therefore subject to the same loads which are also exposed to a "finished" bed material during operation of a fluidized-bed reactor. -
Wie im Betrieb lösen sich natürlich auch hierbei z.B. instabile Partikelbestandteile ab bzw. es entsteht Kornbruch, wobei die abgebrochenen Teile dann jedoch nicht als Abrieb von einem Gasstrom ausgetragen wer- den, sondern gemäß den erwähnten bevorzugten Ausführungsformen des erfindungsgemäßen Verfahrens im wesentlichen vollständig abgetrennt werden können, insbesondere soweit sie eine Partikelgröße 100 μm, insbesondere von 200 μm, unterschreiten.As in operation, of course, this also dissolves, for example. unstable particulate constituents or grain breakage occurs, but the broken off portions are then not removed as abrasion from a gas stream, but can be separated essentially completely according to the mentioned preferred embodiments of the method according to the invention, in particular if they have a particle size of 100 μm, in particular of 200 microns, below.
Alternativ ist es natürlich auch denkbar, die Carbonatpartikel in ruhendem Zustand einer Wärmebehandlung zu unterwerfen und diese anschließend einer mechanischen Beanspruchung, beispielsweise starkem Rütteln, auszusetzen und so die instabilen Bestandteile abzulösen.Alternatively, it is of course also possible to subject the carbonate particles in a stationary state to a heat treatment and then subject them to mechanical stress, for example strong shaking, and thus to detach the unstable constituents.
Besonders bevorzugt kann die Wärmebehandlung in einem Drehrohrofen erfolgen.Particularly preferably, the heat treatment can be carried out in a rotary kiln.
Aus diesen bevorzugten Ausführungsformen des erfindungsgemäßen Verfahrens resultiert somit insbesondere ein durch Sinterung thermisch stabilisiertes, mechanisch vorbehandeltes Material mit Partikeln, die bereits vor ihrem ersten Einsatz von instabilen Bestandteilen befreit wurden, welche somit im späteren Betrieb nicht mehr als Abrieb anfallen können. Vorzugsweise weist das erfindungsgemäße Material eine Abriebfestigkeit auf, die mit der von Quarzsand vergleichbar ist.From these preferred embodiments of the method according to the invention thus results in particular by sintering thermally stabilized, mechanically pretreated material with particles that have already been freed before their first use of unstable components, which thus can not be incurred in later operation as abrasion. Preferably, the material according to the invention has an abrasion resistance which is comparable to that of quartz sand.
Zur Quanitifzierung der Abriebfestigkeit kann z.B. ein Mahltest nach Hardgrove durchgeführt werden. Vorzugsweise hat das erfindungsgemäße Material einen HGI-Wert (Hardgrove-Index, bestimmt nach der amerikanischen ASTM Norm D 409) < 60, insbesondere < 50. Dies gilt insbesondere, wenn es die oben erwähnten bevorzugten Werte für die Schüttdichte aufweist. - -To quantify the abrasion resistance, a grinding test according to Hardgrove, for example, can be carried out. The material according to the invention preferably has an HGI value (Hardgrove Index, determined according to the American ASTM Standard D 409) <60, in particular <50. This applies in particular if it has the above-mentioned preferred values for the bulk density. - -
Das gemäß den beschriebenen bevorzugten Ausführungsformen (thermische Behandlung bzw. Sinterung und ggf. zusätzliche mechanische Behandlung, d.h. Abtrennen der Partikel mit einer Partikelgröße < 100 μm, insbesondere < 200 μm) des erfindungsgemäßen Verfahrens her- gestellte Material unterscheidet sich zusammenfassend insbesondere in zweierlei Hinsicht von herkömmlichem Absorbenzien: Zum einen ist es von besonders feinen Partikeln befreit und zum anderen weist es besonders stabile Partikel auf. Vom ersten Einsatz des erfindungsgemäßen Materials als CO2-Absorbens an fällt deutlich weniger Abrieb an als bei herkömmlichen Absorbenzien, was sich positiv auf die Betriebsstabilität, Betriebssicherheit und Wirtschaftlichkeit auswirkt (u.a. weniger Bettmaterialverbrauch, geringere Anzahl an erforderlichen Wartungen einer Wirbelschichtreaktoranlage pro Zeiteinheit). Die geringen Mengen an anfallendem Abrieb sind überwiegend problemlos mittels üblicher Partikelabscheidetechnik, beispielsweise mittels eines Gaszyklons, abtrennbar.The material produced according to the described preferred embodiments (thermal treatment or sintering and possibly additional mechanical treatment, ie separation of the particles with a particle size <100 μm, in particular <200 μm) of the method according to the invention differs in summary in two respects from Conventional Absorbenzien: Firstly, it is freed of very fine particles and on the other hand, it has particularly stable particles. From the first use of the material according to the invention as a CO 2 -Absorbens falls to significantly less wear than conventional absorbents, which has a positive effect on the operating stability, reliability and economy (including less bed material consumption, lower number of required maintenance of a fluidized bed reactor per unit time). The small amounts of accumulating abrasion are largely problem-free by means of conventional particle separation, for example by means of a gas cyclone, separable.
Erfolgt die Wärmebehandlung unter fluidisierenden Bedingungen in einem Wirbelschichtreaktor können die Partikel mit Partikelgrößen < 100 μm, insbesondere < 200 μm, unter Verwendung eines Gaszyklons abgetrennt werden. Die Abtrennung kann so bereits kontinuierlich während der Wärmebehandlung erfolgen, womit ein separater Abtrennungsschritt entfallen kann.If the heat treatment is carried out under fluidizing conditions in a fluidized-bed reactor, the particles with particle sizes <100 μm, in particular <200 μm, can be separated using a gas cyclone. The separation can thus be carried out continuously during the heat treatment, so that a separate separation step can be omitted.
Natürlich ist es auch möglich, die Partikel auf andere Art und Weise abzutrennen, beispielsweise durch Sichten oder Sieben. Dies kommt beispielsweise dann in Frage, wenn die Wärmebehandlung an ruhendem Material durchgeführt wurde.Of course, it is also possible to separate the particles in other ways, for example by sifting or sieving. This is for example in question when the heat treatment was performed on static material.
Bei den eingesetzten Carbonatpartikeln handelt es sich besonders bevorzugt um Partikel aus natürlichen Carbonaten, insbesondere aus Kalk und/oder Dolomit. Sie bestehen also im wesentlichen aus CaCO3 oder einer Mischung aus CaCO3 und MgCO3. _ _The carbonate particles used are particularly preferably particles of natural carbonates, in particular of lime and / or dolomite. They therefore consist essentially of CaCO 3 or a mixture of CaCO 3 and MgCO 3 . _ _
In besonders bevorzugten Ausführungsformen des erfindungsgemäßen Verfahrens werden die wärmebehandelten Partikel einer CC>2-Behand- lung in einer Gasatmosphäre (Recarbonatisierung) unterworfen, so dass sich zumindest an der Partikeloberfläche eine Schicht aus Carbonat, beispielsweise aus CaCO3, ausbilden kann. Vorzugsweise bleibt die chemische Zusammensetzung der Partikel unter der Oberfläche (also insbesondere die oxidische Struktur des Partikelkerns) dabei im wesentlichen erhalten. Vorzugsweise erfolgt die Recarbonatisierung vor der Ab- trennung der Partikel mit Partikelgrößen < 100 μm, insbesondere < 200 μm.In particularly preferred embodiments of the method according to the invention, the heat-treated particles are subjected to CC> 2 treatment in a gas atmosphere (recarbonation) so that a layer of carbonate, for example CaCO 3 , can be formed at least on the particle surface. Preferably, the chemical composition of the particles below the surface (ie in particular the oxidic structure of the particle core) is thereby essentially retained. The recarbonation is preferably carried out before the separation of the particles having particle sizes <100 .mu.m, in particular <200 .mu.m.
Eine solche Behandlung kann zu den bereits erwähnten passivierten Partikeln führen, die an ihrer Oberfläche eine Schicht aus mindestens einem Carbonat aufweisen.Such treatment may result in the already mentioned passivated particles having on their surface a layer of at least one carbonate.
Um die Ausbildung der Schicht tatsächlich auf die Partikeloberfläche zu beschränken, werden bei der Cθ2-Behandlung insbesondere die Parameter Temperatur, Druck, Dauer der Behandlung und/oder Zusammen- setzung der Gasatmosphäre sorgfältig ausgewählt. Im Detail hängt die Einstellung der genannten Parameter von vielen Faktoren ab, darunter u.a. der mittleren Partikelgröße der zu behandelnden Partikel sowie deren sonstigen Beschaffenheit.In order to actually restrict the formation of the layer to the particle surface, in particular the parameters temperature, pressure, duration of the treatment and / or composition of the gas atmosphere are carefully selected during the CO 2 treatment. In detail, the setting of the mentioned parameters depends on many factors, including, but not limited to, the average particle size of the particles to be treated and their other nature.
Die mittlere Partikelgröße der zu behandelnden Partikel liegt in einigen bevorzugten Ausführungsformen im Bereich zwischen 0,7 mm und 1 ,5 mm.The mean particle size of the particles to be treated ranges, in some preferred embodiments, between 0.7 mm and 1.5 mm.
Die CO2-Behandlung erfolgt vorzugsweise bei Temperaturen im Bereich zwischen 600 0C und 800 0C, insbesondere zwischen 650 0C und 750 0C. • *"The CO 2 treatment is preferably carried out at temperatures in the range between 600 0 C and 800 0 C, in particular between 650 0 C and 750 0 C. • * "
In der Gasatmosphäre wird bei der CO2-Behandlung vorzugsweise ein Cθ2-Partialdruck zwischen 100 und 700 mbar eingestellt.In the gas atmosphere, a CO 2 partial pressure between 100 and 700 mbar is preferably set in the CO 2 treatment.
Daneben ist es bevorzugt, wenn bei der CO2-Behandlung die Ga- sathmosphäre einen Dampfanteil aufweist. Vorzugsweise wird der H2O- Partialdruck auf Werte zwischen 100 mbar und 500 mbar, bevorzugt zwischen 100 mbar und 300 mbar, eingestellt. Überraschenderweise wurde nämlich gefunden, dass Dampf sowohl die Eigenschaften des resultierenden recarbonatisierten Materials als auch die Geschwindigkeit der Recarbonatisierung positiv beeinflusst.In addition, it is preferred if, during the CO 2 treatment, the gas atmosphere has a vapor fraction. The H 2 O partial pressure is preferably set to values between 100 mbar and 500 mbar, preferably between 100 mbar and 300 mbar. Surprisingly, it has been found that steam positively influences both the properties of the resulting recarbonated material and the rate of recarbonation.
Unter all diesen bevorzugten Bedingungen, also einer mittleren Partikelgröße im Bereich zwischen 0,7 mm und 1 ,5 mm, einem CO2-Partialdruck zwischen 100 und 700 mbar, einem H2O-Partialdruck zwischen 100 und 300 mbar und beim Einsatz von Partikeln aus CaCO3 oder aus einer Mischung aus CaCO3 und MgCO3 als Ausgangsmaterial beträgt die Dauer einer CO2-Behandlung in der Regel zwischen 1 und 10 Stunden.Under all these preferred conditions, ie an average particle size in the range between 0.7 mm and 1, 5 mm, a CO 2 partial pressure between 100 and 700 mbar, an H 2 O partial pressure between 100 and 300 mbar and the use of particles from CaCO 3 or from a mixture of CaCO 3 and MgCO 3 as starting material, the duration of a CO 2 treatment is generally between 1 and 10 hours.
Die CO2-Behandlung kann sowohl vor als auch nach der Abtrennung des Unterkorns erfolgen. Vorzugsweise wird die CO2-Behandlung jedoch direkt nach der Wärmebehandlung (CO2-Desorption) ausgeführt, wobei die Partikel auf eine entsprechende Temperatur (vorzugsweise < 800 0C) abgekühlt werden und mit einem CO2-Dampf-Gemisch in Kontakt gebracht werden. Hierdurch wird vermieden, dass Zwischenprodukte wie CaO, Branntkalk / Branntdolomit unerwünschte Nebenprodukte bilden (i.w. Hydroxid) und dabei unbrauchbar werden. Eine abschließende Fraktionierung (z.B. Sieben) wird für das abgekühlte Produkt (Recarbo- nat) empfohlen, um die gewünschte Partikelgrößenfraktion zu erhalten.The CO 2 treatment can be carried out both before and after the separation of the undersize. Preferably, however, the CO 2 treatment is carried out directly after the heat treatment (CO 2 desorption), wherein the particles are cooled to a corresponding temperature (preferably <800 0 C) and brought into contact with a CO 2 vapor mixture. This avoids that intermediate products such as CaO, quicklime / Branntdolomit form unwanted by-products (iw hydroxide) and thereby become unusable. A final fractionation (eg sieving) is recommended for the cooled product (recarbonate) to obtain the desired particle size fraction.
Im Rahmen eines erfindungsgemäßen Verfahrens mit Recarbonatisierung kann aus einem grobporigen Oxid wieder ein feinporiges Recarbo- nat hergestellt werden, dessen Struktur der ursprünglichen Struktur des Ausgangsstoffs nahe kommt. Diese Feinporigkeit ist mit größerer innerer Oberfläche verbunden, was die höhere Aktivität erklärt. Außerdem ist ein feinporiges Gefüge mechanisch stabiler, da viele kleine „Brücken" elastischer auf mechanische Beanspruchungen reagieren als wenige große „Verbindungsbrücken" (die eher als Sollbruchstellen wirken).In the context of a process according to the invention with recarbonation, a finely porous recarbonate can be prepared from a coarse-pore oxide again, the structure of which approaches the original structure of the starting material. This fine porosity is with greater inner Surface, which explains the higher activity. In addition, a fine-pored microstructure is mechanically more stable, since many small "bridges" react more elastically to mechanical stresses than a few large "connecting bridges" (which rather act as predetermined breaking points).
Das erfindungsgemäße Material weist hervorragende Eigenschaften im Hinblick auf die Parameter Cθ2-Aufnahmegeschwindigkeit und CO2- Aufnahmekapazität auf, insbesondere wenn es im wesentlichen aus den oben beschriebenen Partikeln mit einem Kern aus mindestens einem Carbonat und einer den Kern umgebenden Hülle aus mindestens einem Metalloxid oder aus den bereits beschriebenen Partikeln mit einem Kern aus mindestens einem Metalloxid und einer den Kern umgebenden Hülle aus mindestens einem Carbonat besteht.The inventive material has excellent characteristics with regard to the parameters CO 2 uptake rate, and CO 2 - absorption capacity, in particular if it consists essentially of the above-described particles comprising a core of at least one carbonate, and a cladding surrounding the core of at least one metal oxide or consists of the particles already described with a core of at least one metal oxide and a shell surrounding the core of at least one carbonate.
Vorzugsweise verfügt das Material über eine Cθ2-Aufnahmekapazität von > 0,05 gCθ2/goχid-Preferably, the material has a CO 2 absorption capacity of> 0.05 g C θ 2 / goχid-
Weiterhin kann es bevorzugt sein, dass das Material eine CO2- Aufnahmegeschwindigkeit von > 0,01 gco2/(goχid • min) aufweist (bei ei- nem CO2-Partialdruck von 0,01 bis 0,3 bar im Rohgas, bezogen auf Normaldruck, und einer Absorptionstemperatur zwischen 600 0C und 700 0C).Furthermore, it may be preferred for the material to have a CO 2 take -up rate of> 0.01 gCO 2 / (goid · min) (at a CO 2 partial pressure of from 0.01 to 0.3 bar in the raw gas, based on Normal pressure, and an absorption temperature between 600 0 C and 700 0 C).
Die vorliegende Erfindung umfasst auch ein Verfahren zur Erzeugung eines CO2-armen Gases. Bei diesem Verfahren wird in einem ersten Prozeßschritt CO2 aus einem Rohgas (beispielsweise einem Rauchgas oder Produktgas) mittels eines Materials, wie es oben beschrieben wurde, abgetrennt. In einem zweiten Prozeßschritt wird dann das Material unter CO2-Freisetzung regeneriert. Der erste und der zweite Pro- zeßschritt können natürlich auch periodisch wiederholt werden, wobei es dann bevorzugt ist, dass das Material in einem Kreislauf, wie er eingangs bereits erwähnt wurde, kontinuierlich zirkuliert. Bei Verwendung des erfindungsgemäßen Materials als Cθ2-Absorbens in einem solchen Verfahren fällt sowohl beim ersten Einsatz des erfindungsgemäßen CC>2-Absorbens als auch gegebenenfalls im späteren periodischen Betrieb grundsätzlich weniger Abrieb an als bei herkömmli- chen Absorbenzien. Die Gründe dafür wurden bereits ausführlich dargelegt. Auf die obigen entsprechenden Ausführungen, insbesondere hinsichtlich des erfindungsgemäßen Materials, wird hiermit ausdrücklich Bezug genommen.The present invention also includes a method of producing a low-CO 2 gas. In this method, in a first process step, CO 2 is separated from a raw gas (for example, a flue gas or product gas) by means of a material as described above. In a second process step, the material is then regenerated under CO 2 release. Of course, the first and the second process step can also be repeated periodically, it being then preferred for the material to circulate continuously in a circuit as already mentioned at the outset. When using the material according to the invention as CO 2 absorber in such a process, both the first use of the CC 2 absorbent according to the invention and, if appropriate, in the later periodic operation generally produce less abrasion than with conventional absorbents. The reasons for this have already been explained in detail. The above corresponding statements, in particular with regard to the material according to the invention, are hereby incorporated by reference.
Zum dauerhaften Erhalt der mechanischen Stabilität und damit des Abriebverhaltens des verwendeten Cθ2-Absorbens trägt insbesondere auch eine geeignete Prozeßführung bei.To permanently maintain the mechanical stability and thus the abrasion behavior of the CO 2 absorbent used in particular also contributes to a suitable process control.
In bevorzugten Ausführungsformen des Verfahrens kommt insbesonde- re ein Material zum Einsatz, das im wesentlichen aus Partikeln besteht, die zumindest einen Kern aus mindestens einem Metalloxid aufweisen (wie es z.B. bei Branntkalk der Fall ist). Es ist bevorzugt, dass in dieser Ausführungsform für den ersten Prozeßschritt Prozeßparameter gewählt werden, unter denen die chemische Zusammensetzung des Kerns im wesentlichen erhalten bleibt. Konkret heißt das, dass die Prozeßparameter im ersten Prozeßschritt (Cθ2-Absorption) so gewählt werden, dass nur die äußere Schicht der Partikel unter CO2-Aufnahme in Carbo- nat umgewandelt wird. Der Kern selbst nimmt allenfalls begrenzt am Reaktionsgeschehen teil. Bei der Regeneration im zweiten Prozeßschritt wird dann die Umwandlung unter Cθ2-Abgabe wieder umgekehrt und der ursprüngliche Zustand wieder hergestellt.In preferred embodiments of the method, in particular a material is used which consists essentially of particles which have at least one core of at least one metal oxide (as is the case, for example, with quicklime). It is preferred that in this embodiment for the first process step, process parameters are selected under which the chemical composition of the core is substantially retained. In concrete terms, this means that the process parameters in the first process step (CO 2 absorption) are selected such that only the outer layer of the particles is converted into carbonate by taking up CO 2 . The core itself participates only limitedly in the reaction happening. During the regeneration in the second process step, the conversion is then reversed again under CO 2 release and the original state is restored.
In weiteren bevorzugten Ausführungsformen des Verfahrens kommt insbesondere ein Material zum Einsatz, das im wesentlichen aus Partikeln besteht, die zumindest einen Kern aus mindestens einem Carbonat aufweisen (wie es z.B. bei noch unbehandeltem Partikeln aus Kalkstein der Fall ist). In dieser Ausführungsform ist es bevorzugt, dass für den zweiten Prozeßschritt Prozeßparameter gewählt werden, unter denen die _ _In further preferred embodiments of the method, in particular, a material is used which consists essentially of particles which have at least one core of at least one carbonate (as is the case, for example, with limestones which are still untreated). In this embodiment, it is preferable that process parameters are selected for the second process step, among which the _ _
chemische Zusammensetzung des Kerns im wesentlichen erhalten bleibt. Konkret heißt das, dass die Prozeßparameter im zweiten Prozeßschritt so gewählt werden, dass im wesentlichen lediglich die den Kern umgebende Schicht unter Cθ2-Abgabe in ein Oxid umgewandelt wird. Auch hier nimmt der Kern selbst somit allenfalls begrenzt am Reaktionsgeschehen teil. Bei der Cθ2-Aufnahme im ersten Prozeßschritt wird die Umwandlung dann wieder umgekehrt und der ursprüngliche Zustand zumindest näherungsweise wieder hergestellt.chemical composition of the core is substantially retained. Specifically, this means that the process parameters are selected in the second process step so that essentially only the layer surrounding the core is converted into an oxide with CO 2 release. Here, too, the nucleus itself participates in the reaction process at best only to a limited extent. In the CO 2 recording in the first process step, the conversion is then reversed again and the original state at least approximately restored.
Durch die Prozeßführung gemäß den beiden beschriebenen bevorzugten Ausführungsformen wird gewährleistet, dass die mechanische Stabilität und damit das Abriebverhalten der Partikel des verwendeten CO2- Absorbens auch nach vielen Absorptions- und Regenerationszyklen wei- testgehend erhalten bleibt. Vermutlich ist dies darauf zurückzuführen, dass der Kern in beiden Fällen nur begrenzt am Reaktionsgeschehen teilnimmt und deshalb seine Eigenschaften, insbesondere seine mechanische Stabilität, behält.The process control according to the two described preferred embodiments ensures that the mechanical stability and thus the abrasion behavior of the particles of the CO 2 absorbent used remains largely the same even after many absorption and regeneration cycles. Presumably, this is due to the fact that in both cases the core participates only limitedly in the reaction process and therefore retains its properties, in particular its mechanical stability.
Der Übergang von Carbonat zu Oxid und umgekehrt geht in aller Regel mit einer Änderung der kristallinen Struktur des Absorbenspartikels einher. Verbunden damit können Spannungen auftreten, die die strukturelle Integrität des gesamten Partikels schwächen. Nimmt der Kern nicht am Reaktionsgeschehen teil, so sind die in einem Partikel auftretenden Spannungen vermutlich sehr viel geringer, so dass der Partikel als Gan- zes seine Stabilität behält.The transition from carbonate to oxide and vice versa is usually accompanied by a change in the crystalline structure of the absorbent particle. Associated with this may be tensions that weaken the structural integrity of the entire particle. If the core does not participate in the reaction process, the tensions occurring in a particle are presumably much lower, so that the particle as a whole retains its stability.
Vorzugsweise beinhaltet die Wahl der Prozeßparameter insbesondere eine aufeinander abgestimmte Einstellung von Prozeßtemperatur, CO2- Partialdruck und/oder Prozeßdauer. Unter Prozeßdauer ist vorliegend insbesondere die Verweilzeit des CO2-Absorbens im jeweiligen Prozeßschritt zu verstehen. Die Prozeßparameter im ersten Prozeßschritt werden darüber hinaus insbesondere in Abhängigkeit der mittleren Partikelgröße der Absor- benspartikel und/oder der Beschaffenheit des Rohgases, insbesondere dessen CO2-Gehalts, gewählt.Preferably, the choice of process parameters includes in particular a coordinated adjustment of process temperature, CO 2 - partial pressure and / or process duration. In the present case, the duration of the process is to be understood as meaning, in particular, the residence time of the CO 2 absorbent in the respective process step. In addition, the process parameters in the first process step are selected in particular as a function of the average particle size of the absorbent particles and / or the nature of the raw gas, in particular its CO 2 content.
Als Rohgas wird vorzugsweise ein wasserstoffhaltiges Synthesegas, insbesondere ein aus Biomasse gewonnenes Synthesegas, eingesetzt. Weiterhin sind auch Rauch- und Prozeßgase als Rohgas einsetzbar.The crude gas used is preferably a hydrogen-containing synthesis gas, in particular a synthesis gas obtained from biomass. Furthermore, smoke and process gases can be used as raw gas.
Der CCVGehalt im Rohgas schwankt dabei in der Regel zwischen 10 und 30 Vol.-% und kann auf unter 10 Vol.-% (trockene Gaszusammensetzung) verringert werden.The CCV content in the raw gas usually fluctuates between 10 and 30% by volume and can be reduced to less than 10% by volume (dry gas composition).
Im ersten Prozeßschritt wird als Prozeßtemperatur unter atmosphäri- sehen Bedingungen vorzugsweise eine Temperatur zwischen 600 0C und 750 0C gewählt. Die Prozeßdauer liegt dabei in aller Regel in der WS im Bereich von einigen Minuten.In the first process step is seen as a process temperature under atmospheric conditions, preferably a temperature between 600 0 C and 750 0 C is selected. The process time is usually in the WS in the range of a few minutes.
Im zweiten Prozeßschritt (Regeneration) wird als Prozeßtemperatur un- ter atmosphärischen Bedingungen vorzugsweise eine Temperatur zwischen 800 0C und 950 0C gewählt. Die Prozeßdauer liegt dabei in aller Regel im Bereich einiger Sekunden bis weniger Minuten.In the second process step (regeneration) is preferably selected as the process temperature un- ter atmospheric conditions at a temperature between 800 0 C and 950 0 C. The process duration is usually in the range of a few seconds to less minutes.
Vorzugsweise werden beide Prozeßschritte ohne Anlegen eines äuße- ren Drucks ausgeführt.Preferably, both process steps are performed without applying an external pressure.
Besonders bevorzugt werden der erste und/oder der zweite Prozeßschritt in einem Wirbelschichtreaktor, in dem das CO2 absorbierende Material entsprechend als Wirbelbett vorliegt, durchgeführt. Grundsätz- lieh kann die Durchführung des erfindungsgemäßen Verfahrens aber auch in anderen, dem Fachmann bekannten Reaktoren erfolgen. Das oben beschriebene erfindungsgemäße Material lässt sich nicht nur zur „nachgeschalteten" Entfernung von CO2 aus einem Synthesegas einsetzen, sondern auch direkt in einem Vergasungsprozeßschritt, beispielsweise in Gegenwart eines kohlenstoffhaltigen Einsatzstoffes bei der Erzeugung von Synthesegas aus Biomasse. Es wurde gefunden, dass das erfindungsgemäße Material dabei nicht nur CO2 absorbieren kann, sondern zudem in der Lage ist, auf seiner Oberfläche sogenannte Teere (zyklische und polyzyklische Aromaten) zu adsorbieren. In einem weiteren Prozeßschritt können diese Teere zur Wärmeerzeugung durch Verbrennung für die thermische Desorptionsreaktion genutzt werden, wie es beispielsweise bereits aus der DE 10 2004 045 772 A1 bekannt ist. Das erfindungsgemäße Material weist dabei in der Regel eine kataly- tische Aktivität bzgl. Teerabbau auf, die - verglichen mit Quarzsand - zu weniger als der 0,5-fachen Teerkonzentrationen bei der Vergasung von biogenen Einsatzstoffen bei ansonsten gleichen Reaktionsbedingungen führt. Mit anderen Worten, die katalytische Aktivität liegt mehr als doppelt so hoch als die von Quarzsand.The first and / or the second process step are particularly preferably carried out in a fluidized-bed reactor in which the CO 2 -absorbing material correspondingly exists as a fluidized bed. In principle, however, the process according to the invention can also be carried out in other reactors known to the person skilled in the art. The material according to the invention described above can be used not only for the "downstream" removal of CO 2 from a synthesis gas, but also directly in a gasification process step, for example in the presence of a carbonaceous feedstock in the production of synthesis gas from biomass Material can not only absorb CO 2 , but also is able to adsorb on its surface so-called tars (cyclic and polycyclic aromatics) In a further process step, these tars can be used for heat generation by combustion for the thermal desorption reaction, as For example, it is already known from DE 10 2004 045 772. In this case, the material according to the invention generally has a catalytic activity with respect to tar degradation which, compared with quartz sand, is less than 0.5 times the tar concentration in the gasification of biogenic input materials under otherwise identical reaction conditions. In other words, the catalytic activity is more than twice that of silica sand.
In diesem Zusammenhang wurde gefunden, dass sich das beschriebene erfindungsgemäße Material hervorragend als Oxidkatalysator, insbesondere für die katalytische Teerreformierung, eignet. Entsprechend ist auch die Verwendung des beschriebenen erfindungsgemäßen Materials als Oxidkatalysator, insbesondere für die katalytische Teerreformierung, Gegenstand der vorliegenden Erfindung.In this context, it has been found that the described material according to the invention is outstandingly suitable as an oxide catalyst, in particular for the catalytic tar reforming. Accordingly, the use of the described inventive material as oxide catalyst, in particular for the catalytic tar reforming, the subject of the present invention.
Besonders gut geeignet ist hierfür eisenoxidhaltiges erfindungsgemäßes Material.Particularly suitable for this is iron oxide-containing material according to the invention.
Daneben eignet sich das beschriebene erfindungsgemäße Material auch zur Abtrennung von Schwefelverbindungen und anderen in Gasen enthaltenen Verunreinigungen. Die entsprechende Verwendung wird ebenfalls von der vorliegenden Erfindung umfasst. Weitere Merkmale der Erfindung ergeben sich aus der nachfolgenden Beschreibung von bevorzugten Ausführungsformen in Verbindung mit den Unteransprüchen. Hierbei können die einzelnen Merkmale jeweils für sich oder zu mehreren in Kombination miteinander bei einer Ausfüh- rungsform der Erfindung verwirklicht sein. Die beschriebenen bevorzugten Ausführungsformen dienen lediglich zur Erläuterung und zum besseren Verständnis der Erfindung und sind in keiner Weise einschränkend zu verstehen.In addition, the described material according to the invention is also suitable for the separation of sulfur compounds and other impurities contained in gases. The corresponding use is also included in the present invention. Further features of the invention will become apparent from the following description of preferred embodiments in conjunction with the subclaims. In this case, the individual features can be implemented individually or in combination with one another in one embodiment of the invention. The described preferred embodiments are merely illustrative and for a better understanding of the invention and are in no way limiting.
BeispieleExamples
Herstellung des erfindungsgemäßen Materials in einem kombinierten Drehrohrofen-ProzessProduction of the material according to the invention in a combined rotary kiln process
Die Herstellung erfolgt in bevorzugten Ausführungsformen zweistufig: In einem ersten Drehrohrreaktor wird Carbonat bei Temperaturen oberhalb 900 0C gebrannt, wobei CO2 freigesetzt wird. Im einem zweiten Drehrohrreaktor nimmt das Zwischenprodukt (Oxid) bei 650 0C bis 7500C wieder CO2 auf (Recarbonatisierung). Das Abtrennen von Partikeln mit einer Partikelgröße < 100 μm kann dabei kontinuierlich erfolgen oder nach abgeschlossener Behandlung.The preparation takes place in two stages in preferred embodiments: In a first rotary tubular reactor, carbonate is fired at temperatures above 900 ° C., CO 2 being released. In a second rotary reactor, the intermediate product (oxide) at 650 0 C to 750 0 C again takes CO 2 (Recarbonatisierung). The separation of particles with a particle size <100 microns can be done continuously or after completion of treatment.
Das Ausgangsmaterial (z.B. Kalkstein) wird vorzugsweise kontinuierlich in den ersten Drehrohrreaktor gegeben. Bei der Wahl der Partikelgröße des Ausgangsmaterials muss je nach Intensität der Wärmebehandlung beim Brennvorgang eine Schrumpfung der Partikel in Folge von Sinterung berücksichtigt werden (unter den im folgenden empfohlenen Bedingungen ca. 10 %). Das Produkt fällt kontinuierlich in ein Auffangbe- hälter.The starting material (e.g., limestone) is preferably added continuously to the first rotary tube reactor. When selecting the particle size of the starting material, depending on the intensity of the heat treatment during the firing process, shrinkage of the particles as a result of sintering must be taken into account (approx. 10% under the conditions recommended below). The product falls continuously into a collecting container.
Die CO2-Freisetzung läuft umso schneller ab, je höher die Temperatur ist. Vorteilhaft sind Temperaturen oberhalb von 1000 0C1 insbesondere _ _The CO 2 release is faster, the higher the temperature. Advantageously, temperatures above 1000 0 C 1 in particular _ _
oberhalb von 1200 0C, welche praktischerweise durch Direktbefeuerung mit einem Gasbrenner erzeugt werden. Dann sollte die Verweilzeit des Materials im Drehrohr ca. 30 min betragen. Bei diesem Schritt sintert das Material, wobei sich seine Festigkeit erhöht, aber auch die Partikel- große ändert (das Korn schrumpft). Durch die Sinterung kann das Material an chemischer Reaktivität verlieren, d.h. zum Beispiel die Rückreaktion zum Carbonat (Recarbonatisierung) oder die Hydroxidbildung laufen in der Regel langsamer ab, je stärker das Material gesintert wurde. Dieser Sinterungsprozess wird durch lange Verweilzeiten und / oder hohe Temperaturen verstärkt (in der Kalkindustrie unterscheidet man beim Sinterprozess daher den Weich-, Mittel- und Hartbrannt).above 1200 0 C, which are produced conveniently by direct firing of a gas burner. Then the residence time of the material in the rotary tube should be about 30 minutes. In this step, the material sinters, increasing its strength but also changing the particle size (the grain shrinks). By sintering, the material may lose chemical reactivity, ie, for example, the back reaction to the carbonate (recarbonation) or the hydroxide formation generally proceed more slowly, the more the material has been sintered. This sintering process is intensified by long residence times and / or high temperatures (in the lime industry, a distinction is made between soft, medium and hard fires during the sintering process).
Die Recarbonatisierung ist verfahrenstechnisch wesentlich schwieriger umzusetzen als der Brennvorgang, da die Cθ2-Aufnahme nur in einem engen Temperaturfenster abläuft. Idealerweise durchläuft das Material innerhalb von ca. 1 h einen isothermen Drehrohrreaktor, welcher von Rauchgasen durchströmt wird. Ein guter Gas-Feststoff-Kontakt ist Voraussetzung für günstige Reaktionsbedingungen. Das Temperaturfenster der Recarbonatisierung ist nach unten durch die Reaktionsgeschwindig- keit begrenzt: Bei Temperaturen unter 600 0C ist die Cθ2-Aufnahme sogar bei einem CO2-Partialdruck von 1 bar sehr langsam und daher technisch nicht relevant. Ist die Temperatur zu hoch, wird das thermodyna- mische Gleichgewicht des CaO-CaCO3-CO2-Systems erreicht, d.h. die Recarbonatisierungsreaktion wird sehr langsam bzw. läuft nicht mehr ab - im ungünstigsten Fall werden sogar wieder Calcinierungsbedingungen erreicht.The Recarbonatisierung is procedurally much more difficult to implement than the burning process, since the CO 2 uptake proceeds only in a narrow temperature window. Ideally, the material passes through an isothermal rotary tube reactor within about 1 h, through which flue gases pass. Good gas-solid contact is a prerequisite for favorable reaction conditions. The temperature window of Recarbonatisierung is bounded below by the reaction rate: At temperatures below 600 0 C, the Cθ is 2 uptake even at a CO 2 partial pressure of 1 bar very slow and thus not technically relevant. If the temperature is too high, the thermodynamic equilibrium of the CaO-CaCO 3 -CO 2 system is reached, ie the recarbonation reaction is very slow or does not run off any more - in the worst case even calcination conditions are even reached again.
Das für die Recarbonatisierung mögliche / günstige Temperaturfenster ist abhängig vom CO2-Partialdruck. Die Temperatur kann erhöht werden, wenn der Cθ2-Partialdruck in der Gasphase größer ist, d.h. wenn z.B. Rauchgas mit CO2 angereichert wird. Höhere Temperaturen und Partial- drücke vergrößern die Reaktionsgeschwindigkeit der CO2-Aufnahme. Außerdem hat Wasserdampf einen katalytischen Effekt aut die Recar- bonatisierungsgeschwindigkeit und verbessert insgesamt die Materialeigenschaften. Als vorteilhafte Gasatmosphäre wird bei ca. 7000C ein CC>2-Partialdruck von 0.3 bar und ein Wasserdampf-Partialdruck von 0.1-0.3 bar empfohlen.The possible / favorable temperature window for the recarbonation depends on the CO 2 partial pressure. The temperature can be increased if the CO 2 partial pressure in the gas phase is greater, ie if, for example, flue gas is enriched with CO 2 . Higher temperatures and partial pressures increase the reaction rate of CO 2 uptake. In addition, water vapor has a catalytic effect on the rec- bonatisierungsgeschwindigkeit and improves the overall material properties. As an advantageous gas atmosphere at about 700 0 C, a CC> 2 partial pressure of 0.3 bar and a water vapor partial pressure of 0.1-0.3 bar is recommended.
Temperaturen unterhalb von 450 0C bis 500 0C müssen in jedem Fall vermieden werden, sofern die Gasatmosphäre Wasserdampf enthält. Ansonsten würde sich aus Calciumoxid (das auch bei einem Recarbonat noch im Korn vorhanden ist) Calciumhydroxid (Ca(OH)2) bilden, so dass ein mechanisch sehr instabiles Material resultiert. Daher erfolgt das Abkühlen des Produktes vorzugsweise in trockener Gasatmosphäre mit einem geringem Cθ2-Anteil (z.B. 5 mol.%), um die Calcinierung und die Hydroxidbildung zu vermeiden.Temperatures below 450 0 C to 500 0 C must be avoided in any case, if the gas atmosphere contains water vapor. Otherwise calcium oxide (Ca (OH) 2) would form from calcium oxide (which is still present in the grain even in the case of a recarbonate), resulting in a material which is very unstable mechanically. Therefore, the cooling of the product is preferably carried out in a dry gas atmosphere with a low CO 2 content (eg 5 mol.%) In order to avoid calcination and hydroxide formation.
Verfahrensvariante: Recarbonatisierung im Wirbelbett (statt Drehrohr)Process variant: recarbonatization in a fluidized bed (instead of a rotary tube)
Da insbesondere bei der Recarbonatisierung eine lange Verweilzeit unter möglichst isothermen Bedingungen günstig ist, bietet sich hierfür eine Wirbelschicht an. Das Zwischenprodukt (Oxid) tritt also z.B. aus dem Calcinierungs-Drehrohr aus und wird direkt in eine Wirbelschicht aufgegeben. Recarbonatisierte Partikel sinken aufgrund ihres größeren spezifischen Gewichtes nach unten und können hier ausgetragen werden.Since a long residence time under isothermal conditions is particularly favorable in the case of recarbonation, a fluidized bed is suitable for this purpose. The intermediate (oxide) thus occurs e.g. from the calcination rotary kiln and is fed directly into a fluidized bed. Recarbonated particles sink downwards due to their greater specific gravity and can be discharged here.
Allgemein gilt, dass insbesondere für die Reaktionskinetik der Recarbonatisierung eine Erhöhung des Gesamtdruckes günstig ist, da höhere CO2-Partialdrücke größere Temperaturen erlauben und somit eine schnellere CO2-Aufnahme möglich ist. In general, an increase in the total pressure is favorable, in particular for the reaction kinetics of the recarbonation, since higher CO 2 partial pressures allow greater temperatures and thus a faster CO 2 uptake is possible.

Claims

- -Patentansprüche - Patent claims
1. Material, insbesondere zur CCvAbsorption und/oder zur Anwendung als Bettmaterial in Wirbelschichten, im wesentlichen bestehend aus mindestens einem Metalloxid und/oder mindestens einem Carbonat, dadurch gekennzeichnet, dass das Material im wesentlichen frei von Partikeln mit einer Partikelgröße < 100 μm, vorzugsweise < 200 μm, ist.1. Material, in particular for CCvabsorption and / or for use as bed material in fluidized beds, consisting essentially of at least one metal oxide and / or at least one carbonate, characterized in that the material substantially free of particles having a particle size <100 .mu.m, preferably <200 μm, is.
2. Material nach Anspruch 1 , erhältlich aus carbonathaltigen Materialien, insbesondere hergestellt oder herstellbar durch thermische Behandlung von mindestens einem Carbonat.2. Material according to claim 1, obtainable from carbonate-containing materials, in particular produced or producible by thermal treatment of at least one carbonate.
3. Material nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, dass es im wesentlichen aus Partikeln besteht, die einen Kern aus mindestens einem Carbonat und eine den Kern umgebende Hülle aus mindestens einem Metalloxid aufweisen.3. Material according to claim 1 or claim 2, characterized in that it consists essentially of particles which have a core of at least one carbonate and a surrounding core surrounding shell of at least one metal oxide.
4. Material nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass es im wesentlichen aus Partikeln besteht, die einen Kern aus mindestens einem Metalloxid und eine den Kern umgebende Hülle aus mindestens einem Carbonat aufweisen.4. Material according to one of claims 1 or 2, characterized in that it consists essentially of particles which have a core of at least one metal oxide and a surrounding core of the shell of at least one carbonate.
5. Material nach einem der Ansprüche 3 oder 4, dadurch gekennzeichnet, dass die Hülle den Kern im wesentlichen vollständig umschließt.5. Material according to one of claims 3 or 4, characterized in that the sheath enclosing the core substantially completely.
6. Material nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es das mindestens eine Erdalkalioxid und das mindestens eine Carbonat in einem Gewichtsverhältnis Oxid zu Carbonat zwischen 1 :100 und 100:1 , vorzugsweise zwischen 100:1 und 1 :1 , insbesondere von ca. 10:1 , autweist. 6. Material according to one of the preceding claims, characterized in that it comprises the at least one alkaline earth oxide and the at least one carbonate in a weight ratio of oxide to carbonate between 1: 100 and 100: 1, preferably between 100: 1 and 1: 1, in particular of about 10: 1, autweis.
7. Material nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es im wesentlichen aus Partikeln mit einer mittleren Partikelgröße im Bereich zwischen 0,3 mm und 3 mm, insbesondere zwischen 0,5 und 1 ,5 mm, besteht.7. Material according to one of the preceding claims, characterized in that it consists essentially of particles having an average particle size in the range between 0.3 mm and 3 mm, in particular between 0.5 and 1, 5 mm.
8. Material nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es im wesentlichen aus porösen Partikeln besteht.8. Material according to one of the preceding claims, characterized in that it consists essentially of porous particles.
9. Material nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es sich bei dem mindestens einen Metalloxid um mindestens ein Metalloxid vom Typ MxOy handelt, wobei M ein Metall wie z.B. Mg, Ca, Sr, Ba, La, Mn oder Y bezeichnet und x und y in üblicher Weise geeignete ganze Zahlen bezeichnen.9. Material according to one of the preceding claims, characterized in that it is the at least one metal oxide at least one metal oxide of the type M x O y , where M is a metal such as Mg, Ca, Sr, Ba, La, Mn or Y and x and y denote suitable integers in the usual way.
10. Material nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es sich bei dem mindestens einen Metalloxid im wesentlichen um mindestens ein Erdalkalioxid, insbesondere um CaO oder eine Mischung aus CaO und MgO, handelt.10. Material according to one of the preceding claims, characterized in that it is the at least one metal oxide is essentially at least one alkaline earth metal oxide, in particular CaO or a mixture of CaO and MgO, is.
11. Material nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das mindestens eine Metalloxid einen Anteil an Eisenoxid und/oder Siliziumdioxid umfasst.11. Material according to one of the preceding claims, characterized in that the at least one metal oxide comprises a proportion of iron oxide and / or silicon dioxide.
12. Material nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es sich bei dem mindestens einen Carbonat um mindestens ein Carbonat vom Typ Mx(Cθ3)y handelt, wobei M ein Metall wie z.B. Mg, Ca, Sr, Ba, La, Mn oder Y bezeichnet und x und y in üblicher Weise geeignete ganze Zahlen bezeichnen. - Zo -12. Material according to one of the preceding claims, characterized in that it is the at least one carbonate at least one carbonate of the type M x (Cθ 3 ) y , where M is a metal such as Mg, Ca, Sr, Ba, La , Mn or Y and x and y denote suitable integers in the usual way. - Zo -
13. Material nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das mindestens eine Carbonat mindestens ein Erdalkalicarbonat, insbesondere CaCO3 oder eine Mischung aus CaCO3 und MgCO3, ist.13. Material according to one of the preceding claims, characterized in that the at least one carbonate is at least one alkaline earth carbonate, in particular CaCO 3 or a mixture of CaCO 3 and MgCO 3 .
14. Material nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das mindestens eine Carbonat mindestens ein Metalloxocarbonat vom Typ MxOy(CO3)z umfasst, wobei M ein Metall wie z.B. Mg, Ca, Sr, Ba, La, Mn oder Y bezeichnet und x, y und z in üblicher Weise geeignete ganze Zahlen bezeichnen.14. Material according to one of the preceding claims, characterized in that the at least one carbonate comprises at least one metal oxocarbonate of the type M x O y (CO 3 ) z , where M is a metal such as Mg, Ca, Sr, Ba, La, Mn or Y and x, y and z denote appropriate integers in the usual way.
15. Verfahren zur Herstellung eines Materials nach einem der vorhergehenden Ansprüche, gekennzeichnet durch eine Wärmebehandlung von Carbonatpartikeln, bei der eine thermische Desorptions- reaktion unter CO2-Freisetzung erfolgt, und eine Abtrennung von Partikeln mit Partikelgrößen < 100 μm, insbesondere < 200 μm, nach und/oder während der Wärmebehandlung.15. A method for producing a material according to any one of the preceding claims, characterized by a heat treatment of carbonate particles, in which a thermal desorption reaction takes place under CO 2 release, and a separation of particles having particle sizes <100 .mu.m, in particular <200 microns, after and / or during the heat treatment.
16. Verfahren nach Anspruch 15, dadurch gekennzeichnet, dass die Wärmebehandlung bei einer Temperatur im Bereich zwischen 1000 0C und 1500 0C insbesondere zwischen 1100 0C und 1300 0C, erfolgt.16. The method according to claim 15, characterized in that the heat treatment at a temperature in the range between 1000 0 C and 1500 0 C, in particular between 1100 0 C and 1300 0C, takes place.
17. Verfahren nach Anspruch 15 oder Anspruch 16, dadurch gekennzeichnet, dass die Wärmebehandlung durchgeführt wird, bis die thermische Desorptionsreaktion abgeschlossen ist und die Carbo- natpartikel im wesentlichen vollständig in Oxidpartikel umgewandelt sind.17. The method according to claim 15 or claim 16, characterized in that the heat treatment is carried out until the thermal desorption reaction is completed and the carbonat natpartikel are substantially completely converted into oxide particles.
18. Verfahren nach Anspruch 15 oder Anspruch 16, dadurch gekennzeichnet, dass die Wärmebehandlung abgebrochen wird, bevor die thermische Desorptionsreaktion abgescniossen isi, so daü& die Carbonatpartikel in Partikel mit einem Kern aus Carbonat und einer den Kern umgebenden Oxidschicht umgewandelt werden.18. The method according to claim 15 or claim 16, characterized in that the heat treatment is stopped before the thermal desorption reaction is terminated, so that & the carbonate particles are converted into particles having a core of carbonate and an oxide layer surrounding the core.
19. Verfahren nach einem der Ansprüche 15 bis 18, dadurch gekennzeichnet, dass als Carbonatpartikel Partikel aus natürlichen Car- bonaten, insbesondere aus Kalk und/oder Dolomit, eingesetzt werden.19. The method according to any one of claims 15 to 18, characterized in that particles of natural carbonates, in particular of lime and / or dolomite, are used as the carbonate particles.
20. Verfahren nach einem der Ansprüche 15 bis 19, dadurch gekennzeichnet, dass die wärmebehandelten Partikel einer Oberflächenbehandlung in einer Cθ2-haltigen Gasatmosphäre unterworfen werden, bei der sich an der Oberfläche der Partikel eine dünne Schicht aus Carbonat ausbildet.20. The method according to any one of claims 15 to 19, characterized in that the heat-treated particles are subjected to a surface treatment in a CO 2 -containing gas atmosphere in which forms a thin layer of carbonate on the surface of the particles.
21. Verfahren nach Anspruch 20, dadurch gekennzeichnet, dass die Cθ2-Behandlung bei Temperaturen im Bereich zwischen 600 0C und 800 0C, insbesondere zwischen 650 0C und 750 0C, erfolgt.21. The method according to claim 20, characterized in that the CO 2 treatment at temperatures in the range between 600 0 C and 800 0 C, in particular between 650 0 C and 750 0 C, takes place.
22. Verfahren nach einem der Ansprüche 20 oder 21 , dadurch gekennzeichnet, dass bei der Cθ2-Behandlung in der Gasatmosphäre ein Cθ2-Partialdruck zwischen 100 mbar und 700 mbar eingestellt wird.22. The method according to any one of claims 20 or 21, characterized in that in the CO 2 treatment in the gas atmosphere, a CO 2 partial pressure between 100 mbar and 700 mbar is set.
23. Verfahren nach einem der Ansprüche 20 bis 22, dadurch gekennzeichnet, dass bei der Cθ2-Behandlung in der Gasatmosphäre ein H2O-Partialdruck zwischen 100 mbar und 500 mbar, bevorzugt zwischen 100 mbar und 300 mbar, eingestellt wird.23. The method according to any one of claims 20 to 22, characterized in that in the CO 2 treatment in the gas atmosphere, a H 2 O partial pressure between 100 mbar and 500 mbar, preferably between 100 mbar and 300 mbar, is set.
24. Verfahren zur Erzeugung eines Cθ2-armen Gases, bei dem in einem ersten Prozeßschritt CO2 aus einem Rohgas mittels eines CO2-absorbierenden Materials, insbesondere gemäß einem der - -LO -24. A method for producing a low-CO 2 gas, wherein in a first process step CO 2 from a raw gas by means of a CO 2 -absorbing material, in particular according to one of - -LO -
Ansprüche 1 bis 14, abgetrennt wird und in einem zweiten Prozeßschritt das Material unter Cθ2-Freisetzung regeneriert wird.Claims 1 to 14, is separated and regenerated in a second process step, the material under CO 2 release.
25. Verfahren nach Anspruch 24, dadurch gekennzeichnet, dass für den ersten und/oder den zweiten Prozeßschritt Prozeßparameter gewählt werden, unter denen die chemische Zusammensetzung des Kerns der Partikel des eingesetzten Materials im wesentlichen erhalten bleibt.25. The method according to claim 24, characterized in that for the first and / or the second process step process parameters are selected, under which the chemical composition of the core of the particles of the material used is substantially retained.
26. Verfahren nach Anspruch 25, dadurch gekennzeichnet, dass die Prozeßparameter in Abhängigkeit der mittleren Partikelgröße der Partikel und/oder der Beschaffenheit des Rohgases, insbesondere dessen CO2-Gehalts, gewählt werden.26. The method according to claim 25, characterized in that the process parameters depending on the average particle size of the particles and / or the nature of the raw gas, in particular its CO 2 content, are selected.
27. Verfahren nach einem der Ansprüche 24 bis 26, dadurch gekennzeichnet, dass als Rohgas ein wasserstoffhaltiges Synthesegas, insbesondere ein aus Biomasse gewonnenes Synthesegas, eingesetzt wird.27. The method according to any one of claims 24 to 26, characterized in that a hydrogen-containing synthesis gas, in particular a synthesis gas obtained from biomass, is used as the raw gas.
28. Verfahren nach einem der Ansprüche 24 bis 27, dadurch gekennzeichnet, dass der CO2-Gehalt im Rohgas zwischen 10 und 30 Vol.-% beträgt.28. The method according to any one of claims 24 to 27, characterized in that the CO 2 content in the raw gas is between 10 and 30 vol .-%.
29. Verfahren nach einem der Ansprüche 24 bis 28, dadurch gekennzeichnet, dass der erste und/oder der zweite Prozeßschritt in einem Wirbelschichtreaktor durchgeführt wird.29. The method according to any one of claims 24 to 28, characterized in that the first and / or the second process step is carried out in a fluidized bed reactor.
30. Verwendung eines Materials nach einem der Ansprüche 1 bis 14 als Bettmaterial für Wirbelschichtprozesse. _30. Use of a material according to any one of claims 1 to 14 as a bed material for fluidized bed processes. _
31. Verwendung eines Materials nach einem der Ansprüche 1 bis 14 in einem Vergasungsprozeßschritt, insbesondere bei der Erzeugung von Synthesegas aus Biomasse.31. Use of a material according to one of claims 1 to 14 in a gasification process step, in particular in the production of synthesis gas from biomass.
32. Verwendung eines Materials nach einem der Ansprüche 1 bis 14 als Oxidkatalysator, insbesondere für die katalytische Teerrefor- mierung.32. Use of a material according to one of claims 1 to 14 as oxide catalyst, in particular for the catalytic tar reforming.
33. Verwendung eines Materials nach einem der Ansprüche 1 bis 14 zur Abtrennung von Schwefelverbindungen und anderen in Rohgasen üblicherweise enthaltenen Verunreinigungen. 33. Use of a material according to any one of claims 1 to 14 for the separation of sulfur compounds and other impurities commonly contained in crude gases.
PCT/EP2009/001043 2008-02-13 2009-02-13 Material suitable as co2 absorbent and for use as a bedding material in fluidized beds, and the production thereof WO2009100937A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09711423A EP2303429A2 (en) 2008-02-13 2009-02-13 Material suitable as co2 absorbent and for use as a bedding material in fluidized beds, and the production thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008010349.7 2008-02-13
DE102008010349A DE102008010349A1 (en) 2008-02-13 2008-02-13 As CO2 absorbent and for use as bed material in fluidized beds suitable material and its preparation

Publications (2)

Publication Number Publication Date
WO2009100937A2 true WO2009100937A2 (en) 2009-08-20
WO2009100937A3 WO2009100937A3 (en) 2010-02-18

Family

ID=40848492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/001043 WO2009100937A2 (en) 2008-02-13 2009-02-13 Material suitable as co2 absorbent and for use as a bedding material in fluidized beds, and the production thereof

Country Status (3)

Country Link
EP (1) EP2303429A2 (en)
DE (1) DE102008010349A1 (en)
WO (1) WO2009100937A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015115119A1 (en) 2015-09-09 2017-03-09 Wehrle-Werk Ag Process for phosphorus recovery
US11718558B2 (en) 2019-08-13 2023-08-08 California Institute Of Technology Process to make calcium oxide or ordinary Portland cement from calcium bearing rocks and minerals

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012204148A1 (en) * 2011-08-18 2013-02-21 Evonik Degussa Gmbh Calcium oxide-containing powder, its preparation and use
DE102017106347A1 (en) * 2017-03-24 2018-09-27 Universität Stuttgart Process and apparatus for the allothermal production of fuel gases

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1218290B1 (en) * 1999-09-28 2004-12-01 Zentrum Für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Method and device for producing a hydrogen or synthesis gas and use thereof
EP1637574A1 (en) * 2004-09-15 2006-03-22 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Process and system for thermal gasification of compounds containing hydrocarbons

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE759736A (en) * 1969-12-02 1971-06-02 Exxon Research Engineering Co PURIFICATION OF FUELS;
NL9201179A (en) * 1992-07-02 1994-02-01 Tno PROCESS FOR THE REGENERATIVE REMOVAL OF CARBON DIOXIDE FROM GAS FLOWS.
GB2305139A (en) * 1995-09-12 1997-04-02 Electric Fuel Coated absorbent particles for a carbon dioxide scrubber system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1218290B1 (en) * 1999-09-28 2004-12-01 Zentrum Für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Method and device for producing a hydrogen or synthesis gas and use thereof
EP1637574A1 (en) * 2004-09-15 2006-03-22 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Process and system for thermal gasification of compounds containing hydrocarbons

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
C. SALVADOR, D. LU, E.J. ANTHONY, J.C. ABANADES: "Enhancement of CaO for CO2 capture in an FBC environment" CHEMICAL ENGINEERING JOURNAL, Bd. 96, 2003, Seiten 187-195, XP002544519 *
T. MARQUARD-MÖLLENSTEDT ET AL: "New Approach for Biomass Gasification to Hydrogen" 2004, , ROME, ITALY , XP007909705 2nd World Conference on biomass for energy, Industry and Climate Protection, 10-14 May, 2004, Rome, Italy Seite 758 - Seite 760; Abbildungen 1,2,4,5,7; Tabellen I,II,VI *
U. ZUBERBÜHLER, M. SPECHT, A. BANDI, T. MARQUARD-MÖLLENSTEDT: "H2-reiches Synthesegas aus Biomasse: Der AER-Prozess" [Online] 2003, FORSCHUNGSVERBUND ERNEUERBARE ENERGIEN , GERMANY , XP007909709 Gefunden im Internet: URL:http://www.fvee.de/fileadmin/publikationen/Workshopbaende/ws2003-2/ws2003-2_04_03.pdf> [gefunden am 2009-09-03] Seite 176 Seite 178 - Seite 180 Seite 183 - Seite 184; Abbildungen 2-4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015115119A1 (en) 2015-09-09 2017-03-09 Wehrle-Werk Ag Process for phosphorus recovery
WO2017042022A1 (en) 2015-09-09 2017-03-16 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Gemeinnützige Stiftung Method for recovering phosphorus
JP2018535169A (en) * 2015-09-09 2018-11-29 ツェントゥルム フューア ゾンネンエネルギー−ウント ヴァッサーシュトッフ−フォルシュング バーデン−ヴァルテムベルク ゲマインニュッツィヒ シュティフトゥング How to recover phosphorus
US11718558B2 (en) 2019-08-13 2023-08-08 California Institute Of Technology Process to make calcium oxide or ordinary Portland cement from calcium bearing rocks and minerals

Also Published As

Publication number Publication date
WO2009100937A3 (en) 2010-02-18
DE102008010349A1 (en) 2009-08-20
EP2303429A2 (en) 2011-04-06

Similar Documents

Publication Publication Date Title
DE3428502C2 (en)
DE4498936C2 (en) Process for the production of activated coke for processes for simultaneous desulfurization and denitrification
DE102009045278B4 (en) Mineral granular desulphurising agent based on calcium hydroxide, process for its preparation and its use
DE60031824T2 (en) Formulation of very pure binder-free low silica X-type zeolite and method of gas separation using the same
EP1188472A2 (en) Process and apparatus for purifying sulphur dioxide containing gases
EP1637574A1 (en) Process and system for thermal gasification of compounds containing hydrocarbons
DE2016838B2 (en) Process for the production of granulated, abrasion-resistant, binder-free molecular sieve zeolites
DE2056096B2 (en) Process for the separation of hydrogen fluoride from gases
WO2009100937A2 (en) Material suitable as co2 absorbent and for use as a bedding material in fluidized beds, and the production thereof
WO2013034314A1 (en) Gas absorption granular material
WO2004089536A1 (en) Method for the production of deformed zeolites, and method for eliminating impurities from a gas stream
EP0808650B1 (en) Process for removing pollutants from exhaust gases
EP0748766B1 (en) Alkaline-earth metal carbonate based granulate with ab- or adsorptive compounds
DE3413976A1 (en) METHOD FOR PRODUCING HIGHLY POROUS MINERAL BODIES WITH POLYFORM STRUCTURE
EP2103338A1 (en) Flue gas cleaning method and slaked lime for a flue gas cleaning method
DE3118481A1 (en) METHOD FOR PRODUCING SINTER DOLOMITE WITH LOW POROSITY AND GOOD HYDRATION RESISTANCE.
EP1441848A2 (en) Body for isolating a constituent contained in a gas mixture
WO2019091618A1 (en) Raw material for producing a refractory product, use of said raw material, and a refractory product comprising such a raw material
DE2650425A1 (en) METHOD FOR REALIZATION OF CARBON MONOXIDE
DE102005004368A1 (en) Catalyst, useful for desulfurizing hydrocarbon stream, comprises a hydrogenation component for hydrogenating organic sulfur containing compounds, and an absorber component for absorbing hydrogen sulfide
DE2924585A1 (en) Solid absorbent for dry dehalogenation of gas stream - consists of moulded calcium hydroxide contg. basic calcium sulphite
DE19638584C2 (en) Process for the separation of dust from a dust-containing and water vapor-containing exhaust gas in a filtering separator
DE3036531A1 (en) Standardised moulded coke, prepd. from a range of oxidised coals - for absorption of nitrogen and sulphur oxide(s) from waste gases
WO2013144367A1 (en) Activation of a material containing alkaline-earth carbonate and alkaline-earth hydroxide for the dry scrubbing of flue gas
DE1283807B (en) Use of a molded coke as an adsorbent for sulfur oxides from exhaust gases

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09711423

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2009711423

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE