WO2009061572A1 - Thermal haptic effects - Google Patents

Thermal haptic effects Download PDF

Info

Publication number
WO2009061572A1
WO2009061572A1 PCT/US2008/078900 US2008078900W WO2009061572A1 WO 2009061572 A1 WO2009061572 A1 WO 2009061572A1 US 2008078900 W US2008078900 W US 2008078900W WO 2009061572 A1 WO2009061572 A1 WO 2009061572A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
group
garment
haptic
cold
Prior art date
Application number
PCT/US2008/078900
Other languages
French (fr)
Inventor
Erin B. Ramsay
Neil T. Olien
Original Assignee
Immersion Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Immersion Corporation filed Critical Immersion Corporation
Publication of WO2009061572A1 publication Critical patent/WO2009061572A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user

Definitions

  • One embodiment of the present invention is directed to a haptic feedback system, More particularly, one embodiment of the present invention is directed to a thermal haptic feedback system.
  • kinesthetic feedback such as active and resistive force feedback
  • tactile feedback such as vibration, texture, and heat
  • thermal haptics effects Some known haptic feedback systems use heating or cooling haptic effects (collectively, “thermal haptics effects”) in addition to force feedback effects.
  • thermal haptic effects is fairly basic and is only able to impart minimal information to the user, especially when compared to other known haptic effects such as vibration based haptic effects.
  • One embodiment is a thermal haptic feedback device that includes a plurality of cells coupled to a processor.
  • the processor controls each of the cells so that each cell can independently generate heating or cooling effects.
  • Unique haptic effects such as a simulated wind effect, can be generated by causing some cells to be hot or cold, or changing some of the cells from hot to cold.
  • FIG. 1 is a block diagram of a thermal haptic system in accordance with one embodiment.
  • FIG. 2 is a flow diagram of the functionality of the system in accordance with one embodiment when a thermal haptic effect that simulates a specific object, such as a hand, is created on a garment.
  • One embodiment is a thermal haptic system that can provide both heat and cold to a user in localized areas to provide complex haptic effects.
  • FIG. 1 is a block diagram of a thermal haptic system 10 in accordance with one embodiment.
  • System 10 includes a garment or wearable object 20 that is designed to be worn by a user or otherwise located near a user so that it is touching the user's skin. Coupled to garment 20 is a processor 24, and memory 22.
  • Processor 24 may be any general purpose processor or controller, or any device that can execute instructions.
  • Memory 22 is any type of storage media that can store instructions and other data.
  • Garment 20 for example, may be a glove, sleeve, pant leg, neck covering, shoe, hat, etc.
  • Garment 20 may be embedded within a larger garment or clothing.
  • Garment 20 may be flexible so it can be wrapped around a portion of a user's body.
  • Processor 24 is coupled to garment 20 through one or more wires 23.
  • Garment 20 includes multiple cells, for example cells 12-16. Each cell can provide heating or cooling in a generally isolated area that is approximately the size of the cell. Each cell can be independently controlled, allowing for the generation of complex thermal haptic patterns for generating haptic effects, as disclosed below. In one embodiment, the size of each cell is related to the haptic resolution of the contacting body surface. In one embodiment, in addition to thermal haptic effects, each cell can include force feedback type haptic effects generated by, for example, actuators. In one embodiment, processor 24 is connected by at least one wire to each of the cells of garment 20 so that each cell can be separately controlled and can independently generate hot or cold.
  • each cell 12-16 is formed from two dissimilar metals or semiconductors (n-type and p-type) and the Peltier effect occurs at the junction between the n and p materials. As a current flows from the p to n materials, the junction is cooled. When the current is reversed the junction heats. If two junctions are implemented, one junction heats while one junction cools. In one embodiment, a p-n junction is used to both cool and heat, keeping the complexity down. In another embodiment, the p-n junction is only used for cooling, and the heating is generated using another type of available heating element for efficiency purposes. [0012] In another embodiment, each cell 12-16 of garment 20 includes a container for compressed carbon dioxide or other gas.
  • Processor 24 by controlling whether gas is released or compressed into the container, creates a heating or cooling effect.
  • the compressing of the gas generates heat and the uncompressing of the gas produces cooling.
  • Each cell 12-16 may be individually connected to a compressor and the compression/release of gas may be controlled to produce thermal haptic effects of the garment.
  • the container is made of metal or some other thermally conductive material that can be the portion of the cell that is applied to the skin portion of the user's body. For example, carbon dioxide (“CO 2 ”) metal containers become cold when the compressed gas is released and the CO 2 container may touch the skin of a user.
  • CO 2 carbon dioxide
  • the compressed air or atmosphere is used to generate a cooling sensation by blowing the substance through a semi-permeable layer of garment 20 onto the skin of the user.
  • the effect may be increased if the garment 20 is damp.
  • Air warmed by a heater element may be used to create heating effects.
  • Garment 20 can include individually controlled gas spigot lines to allow for greater granularity of control in the heating and cooling.
  • garment 20 includes a closed "water loop system” that includes a thermally conductive latex liner where hot and cold water is pumped to cells 12-16 within garment 20 to flush to the liner and to create a sensation of hot and cold.
  • garment 20 includes a main line for cooling and heating liquids and valves that control which type of liquid is being pumped through a particular cell of garment 20.
  • an "open water” system is implemented by using garment 20 as a wicking material that draws waters away from the skin. Jets of hot and cold water are directed at the skin and then "wicked away” to allow for the recirculation of fluid.
  • System 10 when controlled by processor 24, can be used to generate many novel types of haptic effects because the large number of cells can create a variety of thermal patterns.
  • garment 20 is in the form of a sleeve worn by a user.
  • a haptic effect can be created that would allow the user to feel as if someone is touching them on their arm by creating the shape of a hand thermally imprinted by heating a pattern of cells 12-16 that form the shape of a hand.
  • the change in temperature may be combined with an applied force or other haptic effect, again in the shape of a hand in the form of pressure rather than heat, to create a completely immersive experience of somebody touching or grabbing the user's arm.
  • System 10 may be used to enhance virtual reality by simulating a texture of a surface and a thermal behavior of an object.
  • garment 20 will apply cold effects, while wood may be neutral.
  • surgeons can determine if organs are infected by way of temperature.
  • individual parts and components could feel cool or warm to the touch depending on results.
  • Fig. 2 is a flow diagram of the functionality of system 10 in accordance with one embodiment when a thermal haptic effect that simulates a specific object, such as a hand, is created on garment 20.
  • the functionality of the flow diagram of Fig. 2 is implemented by software stored in memory and executed by a processor. In other embodiments, the functionality can be performed by hardware, or any combination of hardware and software.
  • processor 24 receives information regarding the object to be simulated (e.g., a hand) and determines a group of cells having the appropriate pattern out of all the cells of garment 20 that forms the shape of the object.
  • processor 24 changes the thermal properties of the determined cells by generating signals to the determined group of cells to either cool or heat the cells, depending on the desired thermal effect. As a result, the user will "feel" the object against their skin.
  • embodiments may include combining one method of heating with another method of cooling.
  • heated water can be used to create the heating sensation and provide a damp surface for the injection of compressed gas for cooling.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • User Interface Of Digital Computer (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)

Abstract

A thermal haptic feedback device includes a plurality of cells coupled to a processor. The processor controls each of the cells so that each cell can independently generate heating or cooling effects. Unique haptic effects, such as a simulated wind effect, can be generated by causing some cells to be hot or cold, or changing some of the cells from hot to cold,

Description

THERMAL HAPTIC EFFECTS
FIELD OF THE INVENTION
[0001] One embodiment of the present invention is directed to a haptic feedback system, More particularly, one embodiment of the present invention is directed to a thermal haptic feedback system.
BACKGROUND INFORMATION
[0002] Electronic device manufacturers strive to produce a rich interface for users. Conventional devices use visual and auditory cues to provide feedback to a user. In some interface devices, kinesthetic feedback (such as active and resistive force feedback) and/or tactile feedback (such as vibration, texture, and heat) is also provided to the user, more generally known collectively as "haptic feedback" or "haptic effects".
[0003] Some known haptic feedback systems use heating or cooling haptic effects (collectively, "thermal haptics effects") in addition to force feedback effects. However, the known uses of thermal haptic effects is fairly basic and is only able to impart minimal information to the user, especially when compared to other known haptic effects such as vibration based haptic effects.
[0004] Based on the foregoing, there is a need for an improved system and method for generating thermal haptic effects. SUMMARY QF THE INVENTION
[0005] One embodiment is a thermal haptic feedback device that includes a plurality of cells coupled to a processor. The processor controls each of the cells so that each cell can independently generate heating or cooling effects. Unique haptic effects, such as a simulated wind effect, can be generated by causing some cells to be hot or cold, or changing some of the cells from hot to cold.
BRIEF DESCRIPTION OF THE DRAWINGS
[0006] Fig. 1 is a block diagram of a thermal haptic system in accordance with one embodiment.
[0007] Fig. 2 is a flow diagram of the functionality of the system in accordance with one embodiment when a thermal haptic effect that simulates a specific object, such as a hand, is created on a garment.
DETAILED DESCRIPTION
[0008] One embodiment is a thermal haptic system that can provide both heat and cold to a user in localized areas to provide complex haptic effects.
[0009] Fig. 1 is a block diagram of a thermal haptic system 10 in accordance with one embodiment. System 10 includes a garment or wearable object 20 that is designed to be worn by a user or otherwise located near a user so that it is touching the user's skin. Coupled to garment 20 is a processor 24, and memory 22. Processor 24 may be any general purpose processor or controller, or any device that can execute instructions. Memory 22 is any type of storage media that can store instructions and other data. Garment 20, for example, may be a glove, sleeve, pant leg, neck covering, shoe, hat, etc. Garment 20 may be embedded within a larger garment or clothing. Garment 20 may be flexible so it can be wrapped around a portion of a user's body. Processor 24 is coupled to garment 20 through one or more wires 23.
[0010] Garment 20 includes multiple cells, for example cells 12-16. Each cell can provide heating or cooling in a generally isolated area that is approximately the size of the cell. Each cell can be independently controlled, allowing for the generation of complex thermal haptic patterns for generating haptic effects, as disclosed below. In one embodiment, the size of each cell is related to the haptic resolution of the contacting body surface. In one embodiment, in addition to thermal haptic effects, each cell can include force feedback type haptic effects generated by, for example, actuators. In one embodiment, processor 24 is connected by at least one wire to each of the cells of garment 20 so that each cell can be separately controlled and can independently generate hot or cold.
[0011] In one embodiment, each cell 12-16 is formed from two dissimilar metals or semiconductors (n-type and p-type) and the Peltier effect occurs at the junction between the n and p materials. As a current flows from the p to n materials, the junction is cooled. When the current is reversed the junction heats. If two junctions are implemented, one junction heats while one junction cools. In one embodiment, a p-n junction is used to both cool and heat, keeping the complexity down. In another embodiment, the p-n junction is only used for cooling, and the heating is generated using another type of available heating element for efficiency purposes. [0012] In another embodiment, each cell 12-16 of garment 20 includes a container for compressed carbon dioxide or other gas. Processor 24, by controlling whether gas is released or compressed into the container, creates a heating or cooling effect. The compressing of the gas generates heat and the uncompressing of the gas produces cooling. Each cell 12-16 may be individually connected to a compressor and the compression/release of gas may be controlled to produce thermal haptic effects of the garment. In one embodiment, the container is made of metal or some other thermally conductive material that can be the portion of the cell that is applied to the skin portion of the user's body. For example, carbon dioxide ("CO2") metal containers become cold when the compressed gas is released and the CO2 container may touch the skin of a user.
[0013] In one embodiment, the compressed air or atmosphere is used to generate a cooling sensation by blowing the substance through a semi-permeable layer of garment 20 onto the skin of the user. The effect may be increased if the garment 20 is damp. Air warmed by a heater element may be used to create heating effects. Garment 20 can include individually controlled gas spigot lines to allow for greater granularity of control in the heating and cooling.
[0014JIn another embodiment, garment 20 includes a closed "water loop system" that includes a thermally conductive latex liner where hot and cold water is pumped to cells 12-16 within garment 20 to flush to the liner and to create a sensation of hot and cold. In another embodiment, garment 20 includes a main line for cooling and heating liquids and valves that control which type of liquid is being pumped through a particular cell of garment 20. In another embodiment, an "open water" system is implemented by using garment 20 as a wicking material that draws waters away from the skin. Jets of hot and cold water are directed at the skin and then "wicked away" to allow for the recirculation of fluid.
[0015] System 10, when controlled by processor 24, can be used to generate many novel types of haptic effects because the large number of cells can create a variety of thermal patterns. For example, in one embodiment garment 20 is in the form of a sleeve worn by a user. A haptic effect can be created that would allow the user to feel as if someone is touching them on their arm by creating the shape of a hand thermally imprinted by heating a pattern of cells 12-16 that form the shape of a hand. The change in temperature may be combined with an applied force or other haptic effect, again in the shape of a hand in the form of pressure rather than heat, to create a completely immersive experience of somebody touching or grabbing the user's arm.
[0016] System 10 may be used to enhance virtual reality by simulating a texture of a surface and a thermal behavior of an object. For example, to simulate a piece of metal, garment 20 will apply cold effects, while wood may be neutral. In a medical simulator, surgeons can determine if organs are infected by way of temperature. In virtual reality mechanical design simulations, individual parts and components could feel cool or warm to the touch depending on results.
[0017] Rapid cycling from cold to hot can be used to simulate environmental conditions. For example, wind can be simulated by rapidly cycling cells 12-16 between hot and cold, and different types of wind can be simulated by altering the cycling pattern, such as steady, gusting, breezy, etc. Waves can also be simulated through rapid cycling. [0018] Fig. 2 is a flow diagram of the functionality of system 10 in accordance with one embodiment when a thermal haptic effect that simulates a specific object, such as a hand, is created on garment 20. In one embodiment, the functionality of the flow diagram of Fig. 2 is implemented by software stored in memory and executed by a processor. In other embodiments, the functionality can be performed by hardware, or any combination of hardware and software.
[0019] At 102, processor 24 receives information regarding the object to be simulated (e.g., a hand) and determines a group of cells having the appropriate pattern out of all the cells of garment 20 that forms the shape of the object.
[0020] At 104, processor 24 changes the thermal properties of the determined cells by generating signals to the determined group of cells to either cool or heat the cells, depending on the desired thermal effect. As a result, the user will "feel" the object against their skin.
[0021] Several embodiments of the present invention are specifically illustrated and/or described herein. However, it will be appreciated that modifications and variations of the present invention are covered by the above teachings and within the purview of the appended claims without departing from the spirit and intended scope of the invention.
[0022] For example, embodiments may include combining one method of heating with another method of cooling. For example, heated water can be used to create the heating sensation and provide a damp surface for the injection of compressed gas for cooling.

Claims

WHAT IS CLAIMED IS:
1. A thermal haptic feedback device comprising: a processor; and a plurality of cells coupled to the processor, wherein each of the cells is adapted to independently generate hot and cold.
2. The device of claim 1, wherein each of the cells comprises a Peltier junction.
3. The device of claim 1, wherein each of the cells comprises a container that stores compressed gas.
4. The device of claim 1, wherein each of the cells is coupled to a liquid system.
5. The device of claim 4, wherein the liquid system is a closed loop system.
6. The device of claim 1, wherein the system is adapted to create a wind haptic effect by rapidly changing each of the cells from hot to cold.
7. The device of claim 1, wherein the system is adapted to create an object haptic effect by selecting a group of the plurality of cells; wherein the group is approximately a shape of the object.
8. A method of generating a haptic effect comprising: placing a garment on a skin of a user, wherein the garment comprises a plurality of cells; and controlling the plurality of cells by independently causing at least some of the cells to generate heating or cooling effects.
9. The method of claim 8, wherein the controlling comprises applying current to a Peltier junction.
10. The method of claim 8, wherein the controlling comprises releasing compressed gas from a container.
11. The method of claim 8, wherein the controlling comprises transferring fluid to the cells.
12. The method of claim 11, wherein the transferring comprises a closed water loop system.
13. The method of claim 8, wherein the controlling comprises rapidly changing each of the cells from hot to cold to create a wind haptic effect.
14. The method of claim 8, wherein the controlling comprises selecting a group of the plurality of cells; wherein the group is approximately a shape of an object.
15. The method of claim 14, wherein the object is a hand.
16. A haptic generation system comprising: means for placing a plurality of cells against a skin of a user; and means for controlling the plurality of cells by independently causing at least some of the cells to generate heating or cooling effects.
17. A method of generating a haptic effect to simulate an object comprising: determining a group of cells from a plurality of cells that is shaped similar to the object; and changing a thermal property for the group of cells.
18. The method of claim 17, wherein the changing the thermal property comprises heating the group of cells.
19. The method of claim 17, wherein the plurality of cells form a garment that is applied to a skin of a user.
20. The method of claim 18, wherein the heating the group of cells comprises applying electricity to a Peltier junction.
PCT/US2008/078900 2007-11-08 2008-10-06 Thermal haptic effects WO2009061572A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/937,081 US20090120105A1 (en) 2007-11-08 2007-11-08 Thermal Haptic Effects
US11/937,081 2007-11-08

Publications (1)

Publication Number Publication Date
WO2009061572A1 true WO2009061572A1 (en) 2009-05-14

Family

ID=40155745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/078900 WO2009061572A1 (en) 2007-11-08 2008-10-06 Thermal haptic effects

Country Status (2)

Country Link
US (1) US20090120105A1 (en)
WO (1) WO2009061572A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2827224A1 (en) 2013-07-18 2015-01-21 Technische Universität Dresden Method and device for tactile interaction with visualised data
CN104898843A (en) * 2015-06-06 2015-09-09 深圳市虚拟现实科技有限公司 Virtual reality implementation method and head-wearing virtual reality equipment
US9703381B2 (en) 2015-02-18 2017-07-11 Ecole Polytechnique Federale De Lausanne (Epfl) Multimodal haptic device including a thermal and tactile display unit, system, and method of using the same
EP3611596A1 (en) 2018-08-13 2020-02-19 Vestel Elektronik Sanayi ve Ticaret A.S. Haptic device, apparatus and system

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090282908A1 (en) * 2008-05-09 2009-11-19 Thermogear, Inc. Electrifiable fabric
US8487759B2 (en) 2009-09-30 2013-07-16 Apple Inc. Self adapting haptic device
US10013058B2 (en) 2010-09-21 2018-07-03 Apple Inc. Touch-based user interface with haptic feedback
US10120446B2 (en) 2010-11-19 2018-11-06 Apple Inc. Haptic input device
US8550905B2 (en) * 2011-04-11 2013-10-08 Sony Computer Entertainment Inc. Temperature feedback motion controller
US9178509B2 (en) 2012-09-28 2015-11-03 Apple Inc. Ultra low travel keyboard
US9779592B1 (en) 2013-09-26 2017-10-03 Apple Inc. Geared haptic feedback element
US9928950B2 (en) 2013-09-27 2018-03-27 Apple Inc. Polarized magnetic actuators for haptic response
CN105579928A (en) 2013-09-27 2016-05-11 苹果公司 Band with haptic actuators
WO2015047364A1 (en) 2013-09-29 2015-04-02 Pearl Capital Developments Llc Devices and methods for creating haptic effects
US10236760B2 (en) 2013-09-30 2019-03-19 Apple Inc. Magnetic actuators for haptic response
US9317118B2 (en) * 2013-10-22 2016-04-19 Apple Inc. Touch surface for simulating materials
CN105814510B (en) 2013-12-10 2019-06-07 苹果公司 Band body attachment mechanism with haptic response
AU2014391723B2 (en) 2014-04-21 2018-04-05 Apple Inc. Apportionment of forces for multi-touch input devices of electronic devices
DE102015209639A1 (en) 2014-06-03 2015-12-03 Apple Inc. Linear actuator
KR102143310B1 (en) 2014-09-02 2020-08-28 애플 인크. Haptic notifications
US10353467B2 (en) 2015-03-06 2019-07-16 Apple Inc. Calibration of haptic devices
AU2016100399B4 (en) 2015-04-17 2017-02-02 Apple Inc. Contracting and elongating materials for providing input and output for an electronic device
CN107925333B (en) 2015-09-08 2020-10-23 苹果公司 Linear actuator for use in an electronic device
US9672702B2 (en) 2015-09-23 2017-06-06 Apple Inc. Thermal haptic alert notification
US9971408B2 (en) * 2016-01-27 2018-05-15 Ebay Inc. Simulating touch in a virtual environment
US10039080B2 (en) 2016-03-04 2018-07-31 Apple Inc. Situationally-aware alerts
US10268272B2 (en) 2016-03-31 2019-04-23 Apple Inc. Dampening mechanical modes of a haptic actuator using a delay
US10613630B2 (en) * 2016-09-30 2020-04-07 Sony Interactive Entertainment Inc. Temperature controlled headset apparatus
WO2018143015A1 (en) * 2017-02-06 2018-08-09 アルプス電気株式会社 Tactile-sensation presentation device
US10622538B2 (en) 2017-07-18 2020-04-14 Apple Inc. Techniques for providing a haptic output and sensing a haptic input using a piezoelectric body
DE102017122377A1 (en) * 2017-09-27 2019-03-28 Deutsches Zentrum für Luft- und Raumfahrt e.V. Glove-type input / output device and method for outputting thermo-receptive information via a force
CA3092689A1 (en) 2017-10-23 2019-05-02 Patent Holding Company 001, Llc Communication devices, methods, and systems
US10599223B1 (en) 2018-09-28 2020-03-24 Apple Inc. Button providing force sensing and/or haptic output
US10691211B2 (en) 2018-09-28 2020-06-23 Apple Inc. Button providing force sensing and/or haptic output
US10437340B1 (en) 2019-01-29 2019-10-08 Sean Sullivan Device for providing thermoreceptive haptic feedback
US11380470B2 (en) 2019-09-24 2022-07-05 Apple Inc. Methods to control force in reluctance actuators based on flux related parameters
CA3177615A1 (en) 2020-10-30 2022-05-05 Datafeel Inc. Wearable data communication apparatus, kits, methods, and systems
US11977683B2 (en) 2021-03-12 2024-05-07 Apple Inc. Modular systems configured to provide localized haptic feedback using inertial actuators
US11809631B2 (en) 2021-09-21 2023-11-07 Apple Inc. Reluctance haptic engine for an electronic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4414984A (en) * 1977-12-19 1983-11-15 Alain Zarudiansky Methods and apparatus for recording and or reproducing tactile sensations
EP1524586A1 (en) * 2003-10-17 2005-04-20 Sony International (Europe) GmbH Transmitting information to a user's body
GB2409798A (en) * 2004-01-12 2005-07-13 Graeme Donald Robertson A garment that provides a tactile in response to a computer signal
WO2006015335A1 (en) * 2004-07-30 2006-02-09 Wms Gaming Inc. Gaming machine chair

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2938356A (en) * 1956-04-12 1960-05-31 Little Inc A Method and means for controlling temperatures adjacent living bodies
US3007473A (en) * 1958-04-07 1961-11-07 John K Jackson Temperature control device for hypothermia treatment of a patient
US4118946A (en) * 1976-11-23 1978-10-10 Eddie Sam Tubin Personnel cooler
US4470263A (en) * 1980-10-14 1984-09-11 Kurt Lehovec Peltier-cooled garment
US6551347B1 (en) * 1988-09-28 2003-04-22 Life Enhancement Technologies, Inc. Cooling/heating system
US5631861A (en) * 1990-02-02 1997-05-20 Virtual Technologies, Inc. Force feedback and texture simulating interface device
US5830208A (en) * 1997-01-31 1998-11-03 Laserlite, Llc Peltier cooled apparatus and methods for dermatological treatment
IL159575A0 (en) * 2001-06-25 2004-06-01 Paul A Chambers Personal cooling or warming system using closed loop fluid flow
IL161919A0 (en) * 2001-11-14 2005-11-20 Henry M Jackson Foundation Multi-tactile display haptic interface device
US7362313B2 (en) * 2003-01-17 2008-04-22 3M Innovative Properties Company Touch simulation system and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4414984A (en) * 1977-12-19 1983-11-15 Alain Zarudiansky Methods and apparatus for recording and or reproducing tactile sensations
EP1524586A1 (en) * 2003-10-17 2005-04-20 Sony International (Europe) GmbH Transmitting information to a user's body
GB2409798A (en) * 2004-01-12 2005-07-13 Graeme Donald Robertson A garment that provides a tactile in response to a computer signal
WO2006015335A1 (en) * 2004-07-30 2006-02-09 Wms Gaming Inc. Gaming machine chair

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GI-HUN ET AL: "Development of Quantitative Tactile Display Device to Provide Both PinArray-Type Tactile Feedback and Thermal Feedback", EUROHAPTICS CONFERENCE, 2007 AND SYMPOSIUM ON HAPTIC INTERFACES FOR VI RTUAL ENVIRONMENT AND TELEOPERATOR SYSTEMS. WORLD HAPTICS 2007. SECOND JOINT, IEEE, PI, 1 March 2007 (2007-03-01), pages 578 - 579, XP031070746, ISBN: 978-0-7695-2738-3 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2827224A1 (en) 2013-07-18 2015-01-21 Technische Universität Dresden Method and device for tactile interaction with visualised data
DE102013214148A1 (en) * 2013-07-18 2015-01-22 Technische Universität Dresden Method and device for haptic interaction with visualized data
US9703381B2 (en) 2015-02-18 2017-07-11 Ecole Polytechnique Federale De Lausanne (Epfl) Multimodal haptic device including a thermal and tactile display unit, system, and method of using the same
CN104898843A (en) * 2015-06-06 2015-09-09 深圳市虚拟现实科技有限公司 Virtual reality implementation method and head-wearing virtual reality equipment
EP3611596A1 (en) 2018-08-13 2020-02-19 Vestel Elektronik Sanayi ve Ticaret A.S. Haptic device, apparatus and system

Also Published As

Publication number Publication date
US20090120105A1 (en) 2009-05-14

Similar Documents

Publication Publication Date Title
US20090120105A1 (en) Thermal Haptic Effects
US20160238040A1 (en) Multimodal Haptic Device, System, and Method of Using the Same
Günther et al. Therminator: Understanding the interdependency of visual and on-body thermal feedback in virtual reality
US20190201785A1 (en) Systems and methods for providing haptic effects related to touching and grasping a virtual object
Perovich et al. Awakened apparel: embedded soft actuators for expressive fashion and functional garments
Muthukumarana et al. Touch me gently: recreating the perception of touch using a shape-memory alloy matrix
CN106406547A (en) Wearable somatic sensation simulation device, somatic sensation simulation method and somatic sensation simulation system
Muthukumarana et al. Clothtiles: A prototyping platform to fabricate customized actuators on clothing using 3d printing and shape-memory alloys
CN106406545A (en) Somatosensory stimulation generation device
Zhang et al. Pneumod: A modular haptic device with localized pressure and thermal feedback
WO2018094999A1 (en) Somatosensory simulation apparatus having air-cooling stimulation function
CN106409054A (en) Somatosensory sensing device with air outlet function and somatosensory simulation system
CN106390447B (en) Proprioceptive simulation equipment with passive stimulatory function
WO2018094936A1 (en) Somatic sensation simulation device having cold tactile sensation, and somatic sensation simulation system
CN106390448A (en) Somatosensory simulation equipment
US20210400248A1 (en) Method and System for Creating an Out-of-Body Experience
Tsimeris et al. ForceForm: a dynamically deformable interactive surface
CN106406548A (en) Somatic sensation simulation device having smell generation function, and somatic sensation simulation system
CN205018364U (en) Intelligence cloth and intelligent clothes
Han et al. AoEs: enhancing teleportation experience in immersive environment with mid-air haptics
CN106406550A (en) Somatosensory simulation apparatus with pressing function and somatosensory simulation system
Liu et al. FlowGlove: A liquid-based wearable device for haptic interaction in virtual reality
Han et al. Hapmosphere: Simulating the weathers for walking around in immersive environment with haptics feedback
WO2018094992A1 (en) Somatic sensation simulation device having wetting function, and somatic sensation simulation system
CN212379817U (en) Human-computer interaction dynamic virtual thermal environment system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08848387

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08848387

Country of ref document: EP

Kind code of ref document: A1