WO2009059965A1 - Verbindung von teilnetzen durch eine einheitliche vermittlungsschicht - Google Patents

Verbindung von teilnetzen durch eine einheitliche vermittlungsschicht Download PDF

Info

Publication number
WO2009059965A1
WO2009059965A1 PCT/EP2008/064929 EP2008064929W WO2009059965A1 WO 2009059965 A1 WO2009059965 A1 WO 2009059965A1 EP 2008064929 W EP2008064929 W EP 2008064929W WO 2009059965 A1 WO2009059965 A1 WO 2009059965A1
Authority
WO
WIPO (PCT)
Prior art keywords
network
subnetworks
layer
vehicle
protocol
Prior art date
Application number
PCT/EP2008/064929
Other languages
English (en)
French (fr)
Inventor
Thomas Gallner
Helmut Windl
Original Assignee
Continental Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive Gmbh filed Critical Continental Automotive Gmbh
Priority to US12/741,145 priority Critical patent/US9088436B2/en
Priority to CN200880115383.XA priority patent/CN101855888A/zh
Priority to EP08847787A priority patent/EP2218245A1/de
Publication of WO2009059965A1 publication Critical patent/WO2009059965A1/de

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4604LAN interconnection over a backbone network, e.g. Internet, Frame Relay
    • H04L12/4616LAN interconnection over a LAN backbone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/66Arrangements for connecting between networks having differing types of switching systems, e.g. gateways
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L2012/40267Bus for use in transportation systems
    • H04L2012/40273Bus for use in transportation systems the transportation system being a vehicle
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/08Protocols for interworking; Protocol conversion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level

Definitions

  • the invention relates to the data exchange between different subnetworks in a motor vehicle.
  • gateways are generally required which allow the required conversion of speed, protocol and signals between the different bus systems, such as e.g. CAN, LIN, MOST, FlexRay and between the various data network systems such as Ethernet, Bluetooth, UWB, W-LAN or WiMax.
  • the corresponding transcoding of a message to be transmitted from one network to another network requires additional processing power and leads to a further delay in data transmission.
  • this implementation is associated with a high technical complexity.
  • the source and destination addresses of all existing subsystems in the vehicle are not subject to a uniform addressing scheme, so that at the gateway implementation of the addresses must be made. In addition to the technical effort required for this, this means further time delays and additional demands on the available processor power.
  • the invention has for its object to reduce the technical effort required to exchange data between the various networks in a vehicle so that a faster
  • the invention comprises a network system for motor vehicles with at least two differently constructed subnetworks, which have a data connection, wherein the network layers of the at least two differently structured subnetworks are similar in construction.
  • the route finding that is the so-called routing
  • the flow control and other tasks relating to the data exchange are standardized, whereby the need for the conversion of addresses is eliminated.
  • the protocol of the network layer is formed by the Internet protocol, whereby a network connection can be formed without address-converting gateways and thus additional time delays.
  • at least one of the at least two differently structured subnetworks expediently uses a connectionless transport protocol.
  • at least one of the at least two differently structured subnetworks uses a connection-oriented transport protocol.
  • FIG. 1 shows a comparison of the layer structure of MOST bus system and OSI reference model
  • FIG. 2 shows a comparison in the layer structure of an Ethernet-based multimedia network and the OSI reference model
  • FIG. 3 shows a schematic representation of a conventional vehicle network system
  • Figure 4 shows a schematic representation of a vehicle network system in which the different subnetworks have uniform network layers.
  • the layers of a MOST network are compared with the seven layers of the OSI reference model (Open S_system I_connect).
  • the application layer 7 according to the OSI reference model is designed as a programming interface in the MOST network.
  • the tasks of the presentation layer 6 according to the OSI reference model assume the "network services 2" layer in the MOST network.
  • the services of the communication control layer 5, transport layer 4 and network layer 3 are in the MOST network of the "network daisy chain 1 and layer 1 of the OSI reference model are referred to in the MOST network as the "Most Transceiver" or "MOST physical layer".
  • the layer model of a network for multimedia applications whose bit transmission and data link layers are designed according to the Ethernet standard, is compared with the OSI reference model.
  • the network layer of the Ethernet based multimedia network is based on the internet protocol.
  • TCP Transmission Control Protocol
  • UDP User Datagram Protocol
  • the latter are especially used in streaming media, where audio or video data is transmitted continuously over the network.
  • the encoding, packaging and sending of multimedia data streams is performed at the session layer by the Real-Time Transport Protocol (RTP), which interacts with the Real-Time Control Protocol to issue and maintain Quality of Service (QoS).
  • RTP Real-Time Transport Protocol
  • QoS Quality of Service
  • Controlling and controlling the transmission of realtime-sensitive multimedia data are the subject of the Real-Time Streaming Protocol (RTSP).
  • the connection-oriented transmission of data is handled in the session layer by Hypertext Transfer Protocol (HTTP).
  • HTTP Hypertext Transfer Protocol
  • MPEG-4 and UPnP are used in the presentation layer.
  • the task of the network layer is generally to route data packets from the origin to the destination. It forms the lowest layer for establishing a connection between two end systems, which end systems can be connected to one or the same or to different networks.
  • the network layer the addressing and the correct assignment of source and destination address takes place.
  • each subnetwork has a network layer designed differently from the network layers of the other subnetworks. This also differentiates the address assignments in the individual subnetworks.
  • FIG. 3 shows a schematic representation of a conventional vehicle network system 100, in which the end systems of three different networks are interconnected via gateways 10, 20, 30 and 40.
  • the gateway 10 binds the end systems 11, 12, 13 and 14 of the first one
  • Gateway 30 connects the end systems 31, 32, 33 and 34 of a second subnetwork to the network system 100 of the vehicle, wherein the connection via another gateway 20 (for example, another, not detailed in the figure subnet) takes place.
  • the end systems 41, 42, 43 and 44 of a third subnet are finally connected via the gateway 40 to the vehicle network system.
  • the communication protocols When transmitting a message from one of the subnets to another, the communication protocols must be converted in the gateways. If, for example, a message is transmitted to the end system 43 by the end system 11, the message must pass through the gateways 10, 20 and 40. This is associated with a transition to the protocol of the subnet in which the message is transmitted.
  • the message can be broadcast in the form of a broadcast to all end systems, with the end systems themselves deciding whether the message is relevant to them.
  • the network system can also have a corresponding address management, in which the subnets assign messages from a source address to one or more corresponding destination addresses. Since the addressing takes place in the network layer, the address for the destination system of a directory must be converted in the gateways on the way to the subnet of the destination system, whereby the transmission of a message It increases the required processing power and extends the transmission time.
  • the protocols of the individual network layers are uniform in all the different subnets, as a result of which the network layers of the differently structured or structured subnetworks are identical in their structure.
  • This achieves uniform addressing of the end systems within the vehicle network system built up from differently constructed subnetworks.
  • the need for implementing the addresses of messages or data is eliminated at the gateways even when messages or data are transmitted from one end system of a subnet to one end system of another subnet that has a different structure for this subnet.
  • conversions on the hardware layer defined by the backup and physical layer continue to be made via appropriate coupling elements.
  • the protocol used by the network layer is the Internet Protocol (IP), since the vehicle network system thereby uses e.g. can be constructed as a private network, which can then communicate via a gateway or a router with a globally unique IP address with other networks outside the vehicle, such as a garage network, a navigation network or the like.
  • IP Internet Protocol
  • the unique Internet address of the vehicle also makes car-to-X communication in particular easy to design.
  • a unified network layer allows for hardware filtering of information such as e.g. the definition of a maximum data rate related to an end system and a packet format for the transmission over the two hardware-related layers.
  • the use of a uniform network layer in the different networks of a vehicle also allows integration of independent systems previously operated independently in the vehicle, such as multimedia, telephony, television, navigation, driver assistance or the like.
  • the unambiguous addressing achieved with a uniformly trained network layer also prevents incorrect delivery of data due to erroneous readdressing in the gateways. As a result, vehicle safety can be further increased.
  • the use of the Internet Protocol in the network layer enables a simple reuse of protocols that are standardized in the field of consumer devices. These include, for example, the
  • VoIP Voice over IP
  • SIP Session Initiation Protocol
  • RTP Real Time Transport Protocol
  • IP-based services such as DVB-H (Digital Video Broadcasting for Handsets), VoIP (Voice over IP), IP Radio, IP Navigation or other wireless services, allowing the Integration of multimedia services in the vehicle is simplified.
  • multi-user multimedia can be realized in the vehicle since, if in the network system of the vehicle, e.g. already a video stream is transmitted, a second multimedia location due to the unique source address of the video stream can easily access this video stream. Furthermore, since the address assignment in the Internet Protocol is unique, new end systems such as e.g. simply and safely integrate a new radio into the network system of the vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Small-Scale Networks (AREA)

Abstract

Gewöhnlich werden Teilnetze mit Hilfe von Gateways verbunden, was jedoch sehr aufwendig ist. Die Erfindung betrifft ein Netzwerksystem (200) für Kraftfahrzeuge mit zumindest zwei unterschiedlich aufgebauten Teilnetzen (N1, N2, N3), die eine Datenverbindung aufweisen, wobei sich die Vermittlungsschichten der zumindest zwei unterschiedlich aufgebauten Teilnetze (N1, N2, N3) im Aufbau gleichen. Das Protokoll der Vermittlungsschicht wird hierbei vorzugsweise von dem Internet Protokoll gebildet.

Description

Beschreibung
VERBINDUNG VON TEILNETZEN DURCH EINE EINHEITLICHE VERMITTLUNGSSCHICHT
Die Erfindung betrifft den Datenaustausch zwischen unterschiedlichen Teilnetzen in einem Kraftfahrzeug.
In einem Kraftfahrzeug werden gegenwärtig mehrere unterschiedliche Teilnetzwerke bzw. Teilnetze verwendet, von denen jedes auf die Erfüllung bestimmter Aufgaben spezialisiert ist. Zum Datenaustausch zwischen den verschiedenen Netzwerken sind in der Regel Gateways erforderlich, die die erforderliche Umsetzung von Geschwindigkeit, Protokoll und Signalen zwischen den verschiedenen Bussystemen wie z.B. CAN, LIN, MOST, FlexRay und zwischen den verschiedenen Datennetzsystemen wie beispielsweise Ethernet, Bluetooth, UWB, W-LAN oder WiMax vornehmen. Das entsprechende Umcodieren einer von einem Netzwerk an ein anderes Netzwerk zu übertragenden Nachricht erfordert jedoch zusätzliche Prozessorleistung und führt zu einer weiteren zeitlichen Verzögerung bei der Datenübertragung. Außerdem ist diese Umsetzung mit einem hohen technischen Aufwand verbunden.
Des weiteren unterliegen die Quell- und Zieladressen aller im Fahrzeug vorhandenen Teilsysteme keinem einheitlichen Adressierungsschema, so dass am Gateway eine Umsetzung der Adressen vorgenommen werden muss. Neben dem hierfür erforderlichen technischen Aufwand bedeutet dies weitere zeitliche Verzögerungen und zusätzliche Anforderungen an die verfügbare Pro- zessorleistung.
Ausgehend von dem oben Dargestellten liegt der Erfindung die Aufgabe zugrunde, den zum Austausch von Daten zwischen den verschiedenen Netzwerken in einem Fahrzeug erforderlichen technischen Aufwand so zu reduzieren, dass ein schnellerer
Datenaustausch mit geringeren Anforderungen an die zur Datenübertragung erforderliche Prozessorleistung möglich ist. Diese Aufgabe wird gemäß den unabhängigen Ansprüchen der Erfindung gelöst. Die Erfindung wird in ihren abhängigen Ansprüchen weitergebildet.
Die Erfindung umfasst ein Netzwerksystem für Kraftfahrzeuge mit zumindest zwei unterschiedlich aufgebauten Teilnetzen, die eine Datenverbindung aufweisen, wobei sich die Vermittlungsschichten der zumindest zwei unterschiedlich aufgebauten Teilnetze im Aufbau gleichen.
In diesem Zusammenhang wird darauf hingewiesen, dass die in dieser Beschreibung und den Ansprüchen zur Aufzählung von Merkmalen verwendeten Begriffe "umfassen", "mit", "aufwei- sen", "beinhalten" und "enthalten", sowie deren grammatikalische Abwandlungen, generell eine nichtabschließende Aufzählung von Merkmalen, wie z.B. Verfahrensschritten, Einrichtungen, Bereichen, Größen und dergleichen bezeichnen, die in keiner Weise das Vorhandensein anderer oder zusätzlicher Merkmale oder Gruppierungen von anderen oder zusätzlichen Merkmalen ausschließt.
Durch einen einheitlichen Aufbau der Vermittlungsschichten der unterschiedlichen Netzwerke in einem Kraftfahrzeug werden die Wegefindung, das ist das so genannte Routing, die Flusssteuerung und weitere den Datenaustausch betreffende Aufgaben vereinheitlicht, wodurch die Notwendigkeit zur Umsetzung von Adressen entfällt.
Vorteilhaft wird das Protokoll der Vermittlungsschicht von dem Internet Protokoll gebildet, wodurch ein Netzwerkverbund ohne Adressen umsetzende Gateways und damit zusätzliche zeitliche Verzögerungen gebildet werden kann. Zur Unterstützung einer kontinuierlichen Übertragung von Multimediadaten ver- wendet wenigstens eines der zumindest zwei unterschiedlich aufgebauten Teilnetze zweckmäßigerweise ein verbindungsloses Transportprotokoll. Für eine sichere Datenübertragung vor al- lern im Bereich von Steuerungsaufgaben im Fahrzeug verwendet wenigstens eines der zumindest zwei unterschiedlich aufgebauten Teilnetze ein verbindungsorientiertes Transportprotokoll.
Weitere Merkmale der Erfindung ergeben sich aus der folgenden Beschreibung erfindungsgemäßer Ausführungsbeispiele in Verbindung mit den Ansprüchen sowie den Figuren. Die einzelnen Merkmale können bei einer Ausführungsform gemäß der Erfindung je für sich oder zu mehreren verwirklicht sein. Bei der nach- folgenden Erläuterung einiger Ausführungsbeispiele der Erfindung wird auf die beiliegenden Figuren Bezug genommen, von denen
Figur 1 eine Gegenüberstellung des Schichtaufbaus von MOST- Bussystem und OSI-Referenzmodell zeigt,
Figur 2 eine Gegenüberstellung im Schichtaufbau eines Ether- net-basierenden Multimedianetzwerks und des OSI- Referenzmodells zeigt,
Figur 3 eine schematische Darstellung eines herkömmlichen Fahrzeugnetzwerksystems zeigt und
Figur 4 eine schematische Darstellung eine Fahrzeugnetzwerk- Systems zeigt, bei dem die unterschiedlichen Teilnetze einheitliche Vermittlungsschichten aufweisen.
In der Darstellung von Figur 1 sind die Schichten eines MOST- Netzwerks (Media-Oriented-Systems-Transport-Netzwerks) den sieben Schichten des OSI-Refernzmodells (Open S_ystem I_nter- connect) gegenübergestellt. Die Anwendungsschicht 7 nach dem OSI-Referenzmodell ist im MOST-Netzwerk als Programmierschnittstelle ausgebildet. Die Aufgaben der Darstellungsschicht 6 nach dem OSI-Referenzmodell übernimmt im MOST- Netzwerk die "Netzwerkdienste 2"-Schicht. Die Dienste der Kommunikationssteuerungsschicht 5, Transportschicht 4 und Vermittlungsschicht 3 werden im MOST-Netzwerk von der "Netz- werkdienste 1"-Schicht wahrgenommen. Sicherungsschicht 2 und Bitübertragungsschicht 1 des OSI-Referenzmodells werden im MOST-Netzwerk als "Most-Transceiver-" bzw. "MOST- Bitübertragungsschicht" bezeichnet.
In der Figur 2 ist das Schichtmodell eines Netzwerks für Multimediaanwendungen, dessen Bitübertragungs- und Sicherungsschicht nach dem Ethernetstandard ausgebildet sind, dem OSI- Referenzmodell gegenübergestellt. Die Vermittlungsschicht des Ethernet basierenden Multimedianetzwerks beruht auf dem Internetprotokoll. In der Transportschicht werden sowohl ver- bindungsorientierte (TCP; Transmission Control Protocoll) , als auch verbindungslose (UDP; User Datagram Protocol) Protokolle ausgeführt. Letztere finden insbesondere bei Streaming Media Verwendung, bei dem Audio- oder Videodaten kontinuierlich über das Netzwerk übertragen werden. Das Kodieren, Paketieren und Versenden von Multimedia-Datenströmen wird auf der Sitzungsschicht vom Real-Time Transport Protocol (RTP) wahrgenommen, das mit dem Real-Time Control Protocol zum Aushan- dein und Einhalten von Dienstgüteparametern (QoS; Quality of Service) zusammenwirkt. Steuerung und Kontrolle der Übertragung von echtzeitsensitiven Multimediadaten sind Gegenstand des Real-Time Streaming Protocol (RTSP) . Die verbindungsori- entierte Übertragung von Daten wird in der Sitzungsschicht vom Hypertext Transfer Protocol (HTTP) wahrgenommen. Zur Umsetzung der Daten von und für die auf der Verarbeitungsschicht aufsetzenden Multimedianwendungen werden in der Darstellungsschicht MPEG-4 und UPnP verwendet.
Bei paketorientierten Diensten besteht die Aufgabe der Vermittlungsschicht generell darin, Datenpakete vom Ursprung zum Ziel zu leiten. Sie bildet die unterste Schicht zum Einrichten einer Verbindung zwischen zwei Endsystemen, wobei diese Endsysteme an ein und dasselbe oder an verschiedene Netzwerke angebunden sein können. In der Vermittlungsschicht erfolgt die Adressierung und die richtige Zuweisung von Quell- und Zieladresse. Bei den gegenwärtig üblichen Fahrzeugnetzwerk- Systemen weist jedes Teilnetzwerk eine gegenüber den Vermittlungsschichten der anderen Teilnetze unterschiedlich aufgebaute Vermittlungsschicht auf. Dadurch unterscheiden sich auch die Adresszuweisungen in den einzelnen Teilnetzwerken.
In der Figur 3 ist eine schematische Darstellung eines herkömmlichen Fahrzeugnetzwerksystems 100 wiedergegeben, bei dem die Endsysteme dreier unterschiedlicher Netzwerke über Gateways 10, 20, 30 und 40 miteinander verbunden sind. Das Gate- way 10 bindet die Endsysteme 11, 12, 13 und 14 des ersten
Teilnetzes an das Netzwerksystem 100 des Fahrzeugs an. Gateway 30 bindet die Endsysteme 31, 32, 33 und 34 eines zweiten Teilnetzes an das Netzwerksystem 100 des Fahrzeugs an, wobei die Anbindung über ein weiteres Gateway 20 (zum Beispiel ei- nes weiteren, in der Figur nicht näher detaillierten Teilnetzes) erfolgt. Die Endsysteme 41, 42, 43 und 44 eines dritten Teilnetzes werden schließlich über das Gateway 40 mit dem Fahrzeugnetzwerksystem verbunden .
Beim Übertragen einer Nachricht von einem der Teilnetze zu einem anderen müssen die Kommunikationsprotokolle in den Gateways umgewandelt werden. Wird von dem Endsystem 11 beispielsweise eine Nachricht an das Endsystem 43 übertragen, so muss die Nachricht die Gateways 10, 20 und 40 passieren. Dies ist jeweils mit einem Übergang in das Protokoll des Teilnetzes verbunden, in das die Nachricht übertragen wird. Die Nachricht kann in Form eines Rundrufs per Broadcasting an alle Endsysteme versandt werden, wobei die Endsysteme selbst entscheiden, ob die Nachricht für sie relevant ist. Das Net- werksystem kann aber auch eine entsprechende Adressverwaltung aufweisen, bei der die Teilnetze Nachrichten von einer Quelladresse jeweils einer oder mehreren entsprechenden Zieladressen zuweisen. Da die Adressierung in der Vermittlungsschicht stattfindet, muss die Adresse für das Zielsystem einer Nach- rieht in den Gateways auf dem Weg zum Teilnetz des Zielsystems umgesetzt werden, wodurch die zum Übertragen einer Nach- rieht erforderliche Prozessorleistung erhöht und die Übertragungszeit verlängert wird.
In dem Fahrzeug-Netzwerksystem der Figur 4 sind die Protokol- Ie der einzelnen Vermittlungsschichten bei allen unterschiedlichen Teilnetzen einheitlich, wodurch sich die Vermittlungsschichten der unterschiedlich aufgebauten bzw. strukturierten Teilnetze, in ihrem Aufbau gleichen. Damit wird eine einheitliche Adressierung der Endsysteme innerhalb des aus unter- schiedlich aufgebauten Teilnetzen aufgebauten Fahrzeugnetwerksystems erreicht. Folglich entfällt an den Gateways die Notwendigkeit zur Umsetzung der Adressen von Nachrichten bzw. Daten auch dann, wenn Nachrichten bzw. Daten von einem Endsystemen eines Teilnetzes zu einem Endsystemen eines anderen, zu diesem Teilnetz unterschiedlich aufgebauten Teilnetz übertragen werden. Umsetzungen auf der durch die Sicherungs- und Bitübertragungsschicht definierten Hardwareebene werden natürlich weiterhin über geeignete Kopplungselemente vorgenommen .
Vorzugsweise wird als Protokoll der Vermittlungsschicht das Internet-Protokoll (IP) verwendet, da das Fahrzeugnetzwerksystem hierdurch z.B. als privates Netzwerk aufgebaut werden kann, das dann über ein Gateway bzw. einen Router mit einer weltweit eindeutigen IP-Adresse mit anderen Netzwerken außerhalb des Fahrzeugs, beispielsweise einem Werkstattnetzwerk, ein Navigationsnetzwerk oder dergleichen, kommunizieren kann. Durch die eindeutige Internetadresse des Fahrzeugs lässt sich insbesondere auch die Car-to-X-Kommunikation einfach gestal- ten.
Die Verwendung einer einheitlichen Vermittlungsschicht in den unterschiedlichen Teilnetzen eines Fahrzeugnetzwerksystems führt zu einer deutlichen Kostensenkung bei der Vernetzung der Teilnetze, da auf aufwändige Gateways, wie z.B. MOST- o- der CAN-Gateways (CAN = Controller Area Network) verzichtet werden kann. Ferner ergibt sich daraus die Möglichkeit des einfachen Aufbauens einer Redundanz im Fahrzeug, denn die einzelnen Teilnetze des Fahrzeug können direkt miteinander verbunden werden, wodurch ein Datenaustausch zwischen den einzelnen Teilnetzen über mehrere Wege möglich wird. Mittels dieser Redundanz kann somit auf einfache Weise eine Erhöhung der Betriebssicherheit des Fahrzeugs erzielt werden.
Da die Adressierung bei einer einheitlich aufgebauten Vermittlungsschicht einheitlich erfolgt, ist eine eindeutige und transparente Adressierung aller Endsysteme in einem Fahrzeug möglich. Eine falsche Konfiguration ist hierdurch leicht zu erkennen, womit Applikations- und Testaufwand wesentlich verringert werden.
Außerdem ermöglicht eine einheitlich ausgebildete Vermittlungsschicht eine Hardware-Filterung von Informationen, wie z.B. die Definition einer auf ein Endsystem und ein Paketformat bezogenen maximalen Datenrate für die Übertragung über die beiden hardwarenahen Schichten.
Die Verwendung einer einheitlichen Vermittlungsschicht in den unterschiedlichen Netzwerken eines Fahrzeugs ermöglicht ferner eine Integration von bisher im Fahrzeug unabhängig voneinander betriebenen eigenständigen Systemen, wie beispiels- weise Multimedia, Fernsprechen, Television, Navigation, Fahrerassistenz oder dergleichen mehr. Die bei einer einheitlich ausgebildeten Vermittlungsschicht erzielte eindeutige Adressierung beugt zudem einer Fehlzustellung von Daten aufgrund einer fehlerhaften Umadressierung in den Gateways vor. Hier- durch kann die Fahrzeugsicherheit weiterhin erhöht werden.
Der Einsatz des Internet-Protokolls in der Vermittlungsschicht ermöglicht vor allem eine einfache Wiederverwendung von Protokollen, die im Bereich der Endverbrauchergeräte standardisiert sind. Hierzu zählen beispielsweise das bei
VoIP (Voice over IP) eingesetzte Session Initiative Protokoll (SIP) und Real Time Transport Protokoll (RTP) . Die Verwendung des Internet-Protokolls in einer einheitlich ausgebildeten Vermittlungsschicht gestattet ferner die Verarbeitung IP- basierender Dienste, wie beispielsweise DVB-H (Digitaler Videorundfunk für Handgeräte) , VoIP (Voice over IP) , IP-Radio, IP-Navigation oder anderer Funkdienste, wodurch die Integration von Multimediadiensten im Fahrzeug vereinfacht wird.
Außerdem kann mit einer auf dem Internet Protokoll basierenden einheitlichen Vermittlungsschicht Mehrplatz-Multimedia im Fahrzeug realisiert werden, da, wenn im Netzwerksystem des Fahrzeugs z.B. bereits ein Videostream übertragen wird, ein zweiter Multimediaplatz aufgrund der eindeutigen Quelladresse des Videostreams einfach auf diesen Videostream zugreifen kann. Da ferner die Adressvergabe beim Internet-Protokoll eindeutig ist, lassen sich auch neue Endsysteme wie z.B. ein neues Radiogerät einfach und sicher in das Netzwerksystem des Fahrzeugs einbinden.

Claims

Patentansprüche
1. Netzwerksystem für Kraftfahrzeuge mit zumindest zwei unterschiedlich aufgebauten Teilnetzen (Nl, N2, N3) , die eine Datenverbindung aufweisen, dadurch gekennzeichnet, dass sich die Vermittlungsschichten der zumindest zwei unterschiedlich aufgebauten Teilnetze (Nl, N2, N3) im Aufbau gleichen .
2. Netzwerksystem nach Anspruch 1, dadurch gekennzeichnet, dass das Protokoll der Vermittlungsschicht von dem Internet Protokoll gebildet wird.
3. Netzwerksystem nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass wenigstens eines der zumindest zwei unterschiedlich aufgebauten Teilnetze (Nl, N2, N3) ein verbindungsloses Trans- portprotokoll verwendet.
4. Netzwerksystem nach einem der Ansprüche 1, 2 oder 3, dadurch gekennzeichnet, dass wenigstens eines der zumindest zwei unterschiedlich auf- gebauten Teilnetze (Nl, N2, N3) ein verbindungsorientiertes Transportprotokoll verwendet.
PCT/EP2008/064929 2007-11-08 2008-11-04 Verbindung von teilnetzen durch eine einheitliche vermittlungsschicht WO2009059965A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/741,145 US9088436B2 (en) 2007-11-08 2008-11-04 Interconnection of subnetworks by a uniform network layer
CN200880115383.XA CN101855888A (zh) 2007-11-08 2008-11-04 子网通过统一的网络层连接
EP08847787A EP2218245A1 (de) 2007-11-08 2008-11-04 Verbindung von teilnetzen durch eine einheitliche vermittlungsschicht

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007053246.8 2007-11-08
DE102007053246A DE102007053246A1 (de) 2007-11-08 2007-11-08 Einheitliche Vermittlungsschicht in Fahrzeugen

Publications (1)

Publication Number Publication Date
WO2009059965A1 true WO2009059965A1 (de) 2009-05-14

Family

ID=40473410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/064929 WO2009059965A1 (de) 2007-11-08 2008-11-04 Verbindung von teilnetzen durch eine einheitliche vermittlungsschicht

Country Status (5)

Country Link
US (1) US9088436B2 (de)
EP (1) EP2218245A1 (de)
CN (1) CN101855888A (de)
DE (1) DE102007053246A1 (de)
WO (1) WO2009059965A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011134761A3 (de) * 2010-04-27 2012-12-06 Robert Bosch Gmbh Verfahren zur bereitstellung einer kommunikation für mindestens ein gerät

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110071995A (ko) * 2009-12-22 2011-06-29 한국전자통신연구원 이더넷-모스트 게이트웨이 장치
DE102012219917A1 (de) * 2012-10-31 2014-06-12 Continental Automotive Gmbh Verfahren zur Verwaltung eines Steuergerätenetzwerks in einem Fahrzeug und Steuergerätenetzwerk
EP2741452A1 (de) * 2012-12-10 2014-06-11 Robert Bosch Gmbh Verfahren zur Datenübertragung unter ECUs und/oder Messvorrichtungen
CN105579968B (zh) * 2013-09-26 2019-12-17 大陆汽车有限责任公司 针对进程间通信的用户消息队列方法
DE102016221690A1 (de) * 2016-11-04 2018-05-09 Audi Ag Verfahren zum Übertragen von Datenpaketen zwischen einem Ethernet und einem Bussystem in einem Kraftfahrzeug sowie Gatewayvorrichtung und Kraftfahrzeug

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1168760A2 (de) * 2000-06-28 2002-01-02 BECKER GmbH Verfahren zur Kommunikation zwischen zwei Netzwerken sowie Netzwerk
WO2003036917A2 (en) * 2001-10-23 2003-05-01 The Boeing Company Network system having multiple subnets for a mobile platform
EP1657876A1 (de) * 2004-11-12 2006-05-17 Sony Deutschland GmbH Verfahren und Vorrichtung zum Senden von Daten eines ersten Standards und Empfangen von Daten eines zweiten Standards auf einem vorbestimmten Sicherheitsgrad in einem Schichten-Netzwerk

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6115372A (en) * 1998-02-04 2000-09-05 Newcom Technologies, Inc. Synchronous packet switching
US6246688B1 (en) * 1999-01-29 2001-06-12 International Business Machines Corp. Method and system for using a cellular phone as a network gateway in an automotive network
US6654355B1 (en) 1999-12-14 2003-11-25 Schneider Automation Inc. Bridge for CAN to TCP/IP connection
EP1404063A3 (de) * 2002-09-24 2005-07-20 Envitech Automation Inc. Kommunikationschaltung für ein Fahrzeug
JP4046593B2 (ja) * 2002-10-25 2008-02-13 Necエレクトロニクス株式会社 ネットワーク制御方法
US20050066035A1 (en) * 2003-09-19 2005-03-24 Williams Aidan Michael Method and apparatus for connecting privately addressed networks
US8037204B2 (en) * 2005-02-11 2011-10-11 Cisco Technology, Inc. Method and system for IP train inauguration
US7301455B2 (en) * 2005-09-20 2007-11-27 Vulano Group, Inc. Self-configuring emergency event alarm network
US20070195808A1 (en) * 2006-02-17 2007-08-23 Wabash National, L.P. Wireless vehicle mesh network
TWI330025B (en) * 2006-11-17 2010-09-01 Ind Tech Res Inst Multi-service method over heterogeneous network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1168760A2 (de) * 2000-06-28 2002-01-02 BECKER GmbH Verfahren zur Kommunikation zwischen zwei Netzwerken sowie Netzwerk
WO2003036917A2 (en) * 2001-10-23 2003-05-01 The Boeing Company Network system having multiple subnets for a mobile platform
EP1657876A1 (de) * 2004-11-12 2006-05-17 Sony Deutschland GmbH Verfahren und Vorrichtung zum Senden von Daten eines ersten Standards und Empfangen von Daten eines zweiten Standards auf einem vorbestimmten Sicherheitsgrad in einem Schichten-Netzwerk

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MAIHOFER C ET AL: "Design alternatives for IP in vehicles", VTC 2003-SPRING. THE 57TH. IEEE SEMIANNUAL VEHICULAR TECHNOLOGY CONFERENCE. PROCEEDINGS. JEJU, KOREA, APRIL 22 - 25, 2003; [IEEE VEHICULAR TECHNOLGY CONFERENCE], NEW YORK, NY : IEEE, US, vol. 3, 22 April 2003 (2003-04-22), pages 1783 - 1787, XP010862500, ISBN: 978-0-7803-7757-8 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011134761A3 (de) * 2010-04-27 2012-12-06 Robert Bosch Gmbh Verfahren zur bereitstellung einer kommunikation für mindestens ein gerät
CN103109512A (zh) * 2010-04-27 2013-05-15 罗伯特·博世有限公司 用于为至少一个设备提供通信的方法

Also Published As

Publication number Publication date
DE102007053246A1 (de) 2009-05-20
US20100265858A1 (en) 2010-10-21
CN101855888A (zh) 2010-10-06
US9088436B2 (en) 2015-07-21
EP2218245A1 (de) 2010-08-18

Similar Documents

Publication Publication Date Title
WO2009059965A1 (de) Verbindung von teilnetzen durch eine einheitliche vermittlungsschicht
EP3577871B1 (de) Verfahren und vorrichtung zur modularen lenkung eines avb-streams
DE102006027708B3 (de) Verfahren zur Optimierung einer Kommunikationsverbindung in einem paketvermittelten Sprachdatennetzwerk
EP1287660A2 (de) Verfahren zum übertragen von sprachinformationen über ein internetprotokoll
EP1227632B1 (de) Verfahren zum Betrieb eines Multimedia-Kommunikationsnetzwerkes
EP2036313B1 (de) Verfahren zur verwaltung von kommunikationsverbindungen über netzwerk-adressumsetzende nat netzknoten
EP2686995A1 (de) Verfahren zum aufbau einer kommunikationsverbindung
EP1430688A1 (de) Netzübergangseinrichtung und kommunikationssystem für echtzeitkommunikationsverbindungen
WO2007113031A1 (de) Verfahren zur gesicherten nutzdatenübertragung
EP2695364A1 (de) Verfahren zur adressierung von nachrichten in einem computernetzwerk
WO2004100498A1 (de) Verfahren zum datenaustausch zwischen netzelementen in netzwerken mit verschiedenen adressbereichen
DE102007043707A1 (de) Kommunikationssystem
EP2279603B1 (de) Vorrichtung und Verfahren zur Neuverhandlung einer Multimediaverbindung sowie zugehöriges Kommunikationssystem, digitales Speichermedium, Computer-Programm-Produkt und Computerprogramm
EP2421209A2 (de) Verfahren zum Senden digitaler Daten
DE60210945T2 (de) Verfahren zum verbindungsaufbau in einem multimedianetzwerk
EP2016719B1 (de) Verfahren, netzagent und bandbreitenbroker zum verwalten der verfügbaren bandbreite für verbindungen zwischen endgeräten eines paketorientierten kommunikationsnetzes
EP2108229B1 (de) Verfahren und kommunikationsanordnung zum transport von multimediadaten zwischen ip-endgeräten in einem lokalen netz eines wan
DE102005052188B4 (de) Dienstqualitätssicherung mit Hilfe zentral erfasster Dienstgüteparameter
WO2019145297A1 (de) Verfahren zur daten-kommunikation in einem ethernet-basierten, insbesondere industriellen netzwerk, vorrichtung zur durchführung des verfahrens sowie computerprogramm und computerlesbares medium
DE60207358T2 (de) Verfahren zum Übertragen von Daten über ein Kommunikationsnetzwerk an ein Terminal und Netzwerkknoten
EP1924072A1 (de) Aufbau einer Kommunikationsverbindung in einem privaten IP-Netzwerk ohne Kontaktierung eines öffentlichen STUN-Servers
WO2004002061A1 (de) KOMMUNIKATIONSNETZWERK UND BETRIEBSVERFAHREN FüR DIESES
EP1903753A1 (de) Verfahren zur Erzeugung einer externen Internet-Protokoll-Adresse zur Verwendung als Zieladresse einer Reserve-External-Address-Nachricht
DE10245643A1 (de) Integrierte Steuereinheit
WO2004008717A1 (de) Verfahren zur adressumsetzung in paketnetzen und steuerelement für kommunikationsnetzwerke

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880115383.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08847787

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008847787

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12741145

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE