WO2008128462A1 - A fault detecting method, system and apparatus for optical distributed network - Google Patents

A fault detecting method, system and apparatus for optical distributed network Download PDF

Info

Publication number
WO2008128462A1
WO2008128462A1 PCT/CN2008/070721 CN2008070721W WO2008128462A1 WO 2008128462 A1 WO2008128462 A1 WO 2008128462A1 CN 2008070721 W CN2008070721 W CN 2008070721W WO 2008128462 A1 WO2008128462 A1 WO 2008128462A1
Authority
WO
WIPO (PCT)
Prior art keywords
loss
optical
signal
optical network
uplink
Prior art date
Application number
PCT/CN2008/070721
Other languages
French (fr)
Chinese (zh)
Inventor
Sulin Yang
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Publication of WO2008128462A1 publication Critical patent/WO2008128462A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0793Network aspects, e.g. central monitoring of transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/14Monitoring arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1694Allocation of channels in TDM/TDMA networks, e.g. distributed multiplexers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0677Localisation of faults
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0823Errors, e.g. transmission errors
    • H04L43/0829Packet loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/16Threshold monitoring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0028Local loop
    • H04J2203/0039Topology
    • H04J2203/0041Star, e.g. cross-connect, concentrator, subscriber group equipment, remote electronics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0057Operations, administration and maintenance [OAM]
    • H04J2203/006Fault tolerance and recovery

Definitions

  • the loss is further judged if the loss of the downlink signal and/or the uplink signal of the optical line terminal to all optical network units/optical network terminals exceeds the normal. Range, then determine that the fault occurred in the trunk segment;

Abstract

A fault detecting method, system and apparatus for optical distributed network are provided, the method comprises: the losses of the uplink signal at OLT side and the downlink signal at ONU/ONT side are detected respectively; if the loss of the downlink signal is greater than that of the uplink signal, then it is determined that an optical fiber bend fault is occurred; if the loss of the downlink signal is equal to that of the uplink signal, then it is determined that a connector fault is occurred. The system comprises: the first signal detecting module (1) arranged at OLT side and the second signal detecting module (2) arranged at ONU/ONT side, for detecting the optical powers of the uplink signal and the downlink signal at both sides respectively; a loss computing module (3), for computing the losses of the uplink signal and the downlink signal; and a fault analysis module (4), for analyzing and determining the fault type and/or the fault location according to the losses of the uplink signal and the downlink signal. The invention can expediently detect the fault type and/or the fault location, and have no special requirement to the optical fiber layout, so it is adapt to carry out fault detection on-line and in real time.

Description

一种光分布网络的故障检测方法、 系统及装置 技术领域 本发明涉及一种通信网络的故障检测方法、 系统及装置, 尤其是一种对 光分布网络中存在的故障的检测方法、 系统及装置。 背景技术 目前,在接入网领域中, 数字用户线路 (Digital Subscriber Line,筒称 DSL)充分发展之余, 光接入也蓬勃兴起, 尤其是点到多点特征的光接入技 术一无源光网络( Passive Optical Network, 筒称 PON )再次受到关注。 与 点到点光接入相比, P0N局端用一根光纤, 即可分成数十路甚至更多路光纤连 接用户, 从而大大降低建网成本。 目前, 具有代表性的 P0N技术是吉比特无源 光网络 (Gigabit Passive Optical Network 筒称 GPON)和以太网无源光网络 (Ethernet Passive Optical Network, 筒称 EPON) , 其中 GPON技术具有较高 线路速率、 维护管理功能完善等特点。  TECHNICAL FIELD The present invention relates to a fault detection method, system and device for a communication network, and more particularly to a method, system and device for detecting faults in a light distribution network . BACKGROUND OF THE INVENTION At present, in the field of access networks, digital subscriber lines (DSL) are fully developed, and optical access is also booming, especially for point-to-multipoint optical access technologies. The Optical Network (Passive Optical Network) is once again receiving attention. Compared with point-to-point optical access, the P0N central office can be divided into dozens or more optical fibers to connect users with one optical fiber, thus greatly reducing the cost of network construction. At present, representative P0N technologies are Gigabit Passive Optical Network (GPON) and Ethernet Passive Optical Network (EPON), among which GPON technology has higher line rate. , maintenance management functions and other features.
P0N系统结构如图 1所示, 由三个部分组成: 光线路终端 (Optical Line Termination, 筒称 OLT ) 、 光分布网 ( Optical Distribution Network, 筒 称 ODN)和光网络单元(Optical Network Unit , 筒称 ONU ) /光网络终 端 (Optical Network Termination, 筒称 ONT ) 。  The P0N system structure is shown in Figure 1. It consists of three parts: Optical Line Termination (OLT), Optical Distribution Network (ODN), and Optical Network Unit (Optical Network Unit). ONU) / Optical Network Termination (ONT).
0LT为 PON系统提供网络侧接口, 连接一个或多个 0DN。 ODN将 0LT下行的数 据分路传输到各个 0NU, 同时将多个 0NU/0NT的上行数据汇总传输到 0LT。 ONU 为 PON系统提供用户侧接口, 上行与 0DN相连。 如果 0NU直接提供用户端口功 能, 如以太网用户端口, 则称为 0NT。  The 0LT provides a network side interface for the PON system, connecting one or more 0DNs. The ODN splits the data in the 0LT downlink to each 0NU, and simultaneously aggregates the uplink data of multiple 0NU/0NTs to the 0LT. The ONU provides a user-side interface for the PON system, and the upstream is connected to the 0DN. If 0NU provides user port functions directly, such as an Ethernet user port, it is called 0NT.
ODN—般分成四部分, 无源光分路器 (Splitter) , 主干光纤(Feed Fiber) A、 分布光纤(Distribute Fiber) B和分路光纤(Drop Fiber) C, 其中分 布光纤和分路光纤可以统称为分支光纤。 图 1中是具有 2级分光的 0DN结构图, 对只有一级分光的 0DN只有主干光纤和分路光纤。 ODN is generally divided into four parts, a passive optical splitter (Splitter), a backbone fiber (Feed Fiber) A, a distributed fiber (Distribute Fiber) B and a split fiber (Drop Fiber) C, which are divided into The cloth fiber and the branch fiber can be collectively referred to as a branch fiber. In Figure 1, there is a 0DN structure diagram with 2-level splitting. For the 0DN with only one-stage splitting, there are only trunk fibers and split fibers.
P0N系统上行采用 1 310腿的波长, 下行采用 1490nm的波长。 上、 下行的光 可以在同一根光纤中传输如图 1所示, 上、 下行也可以分别采用一根光纤来传 输。  The P0N system uses a wavelength of 1 310 legs for the uplink and a wavelength of 1490 nm for the downlink. The uplink and downlink lights can be transmitted in the same fiber as shown in Figure 1. The uplink and downlink can also be transmitted by using one fiber.
在 P0N系统中, 从 0LT到 0NU称为下行, 反之为上行。 下行数据采用广播的 方式发送到各 0NU的, 而各 0NU的上行数据发送由 0LT分配发送区间, 采用时分 复用的方式发送给 0LT。  In the P0N system, from 0LT to 0NU is called downlink, and vice versa. The downlink data is sent to each 0NU in a broadcast manner, and the uplink data transmission of each 0NU is allocated by the 0LT transmission interval, and is transmitted to the 0LT in a time division multiplexing manner.
在 PON系统中, 0LT与 0NU/0NT是通过 0DN连接, 如果 0DN出现故障, 必然会 影响整个 P0N系统的数据传输, 0DN的故障主要由连接和过度弯曲引起。 连接 故障包括连接器松动, 连接器光纤端面受污染等。  In the PON system, 0LT and 0NU/0NT are connected through 0DN. If the 0DN fails, it will inevitably affect the data transmission of the entire P0N system. The failure of 0DN is mainly caused by the connection and excessive bending. Connection failures include loose connectors and contamination of the fiber end face of the connector.
曾经有这样的统计结果: 光纤入户 (F iber To The Home , 筒称 FTTH ) 系统的故障有 83 %是发生在靠近用户的"第一公里", 光纤故障占 37%。 其中光 纤故障中有 70 %以上是连接故障引起的, 26 %是由于光纤弯曲造成的过度衰 减引起的。 因此, 随着 P0N网络的大量部署和运行, 为了保证 P0N网络的正常 运行, 需要能够正确、 快速识别和定位光纤故障。 另外, 由于 P0N网络靠近用 户, 光纤故障的识别和定位方案必须满足低成本的要求。 光纤故障的特点是 对光路的损耗增大, 甚至完全中断。  There have been such statistical results: 83% of the failures of the Fibre-to-Home (F iber To The Home) system occurred in the "first kilometer" near the user, and the fiber failure accounted for 37%. More than 70% of fiber failures are caused by connection failures, and 26% are caused by excessive attenuation caused by fiber bending. Therefore, with the large number of P0N networks deployed and running, in order to ensure the normal operation of the P0N network, it is necessary to correctly and quickly identify and locate fiber faults. In addition, because the P0N network is close to the user, the identification and location of the fiber fault must meet the low cost requirements. Fiber faults are characterized by increased or even complete loss of light path.
光时域反射计 ( Opt i ca l Time Doma in Ref l ec tometer , 筒称 OTDR )是测 量光纤传输特性的测量仪器。 0TDR提供了沿光纤长度分布的衰减细节, 即探 测、 定位和测量光纤光缆链路上任何位置的故障 (又称为事件) 。 所述的故 障是指因光纤链路中因为熔接、 连接器、 转接头、 跳线、 弯曲或断裂等形成 的缺陷, 这种缺陷的光传输特性的变化可以被测量。 在光纤通信网中, 光纤 传输链路的传输特性测试、 故障定位都需要 0TDR。 OTDR的工作方式类似雷达扫描, 0TDR发送测试信号,然后根据光纤事件点 反射回来的信号的强度和时间, 确定故障点的类型和位置。 如图 2所示, 0TDR—般设置在 0LT侧。 The Opt i ca l Time Doma in Ref l ec tometer (OTDR) is a measuring instrument for measuring the transmission characteristics of an optical fiber. 0TDR provides attenuation details along the length of the fiber, ie detecting, locating and measuring faults (also known as events) anywhere on the fiber optic cable link. The failure refers to a defect in the optical transmission link due to welding, connectors, adapters, jumpers, bends or breaks, etc., and variations in the optical transmission characteristics of such defects can be measured. In the optical fiber communication network, the transmission characteristic test and fault location of the optical fiber transmission link require 0TDR. The OTDR works like a radar scan. The 0TDR sends a test signal and then determines the type and location of the fault based on the strength and time of the signal reflected back from the fiber event point. As shown in Figure 2, 0TDR is normally set on the 0LT side.
通过光纤的链路监测可以能够自动的、 持续的对光纤线路进行在线远程 监测, 可以定期维护 P0N网络的光纤线路, 可以远程识别故障, 实现对故障的 快速反应, 可以在高层网络受影响之前, 实现底层的快速保护切换。  The optical fiber link monitoring can automatically and continuously perform on-line remote monitoring of the optical fiber line. The optical fiber line of the P0N network can be regularly maintained, and the fault can be identified remotely to achieve a rapid response to the fault, which can be affected before the high-level network is affected. Implement the underlying fast protection switch.
但是在 P0N网络点对多点拓朴结构中, 0LT侧 0TDR发出的测试信号, 经各 分支反射回来的信号是叠加在一起的, 0TDR不能区分事件点所在的分支光 纤, 而如果从 0NU侧解决故障点定位的成本又太高, 且在线路损耗过大时, 测 试数据不能实时传到 0LT侧。 另外, 由于 P0N网络对价格的敏感性, 需要低成 本的光纤网络故障识别方案。  However, in the point-to-multipoint topology of the P0N network, the test signals sent by the 0TDR on the 0LT side are superimposed on each branch, and the 0TDR cannot distinguish the branch fiber where the event point is located, and if it is resolved from the ONU side. The cost of fault location is too high, and when the line loss is too large, the test data cannot be transmitted to the 0LT side in real time. In addition, due to the price sensitivity of the P0N network, a low cost fiber network fault identification scheme is required.
现有技术中还提出了另一种方案, 该方案是在每条分支光纤的末端加一 个反射镜, 用来反射测试波长。 在布线的过程中, 使每条分支光纤的长度不 一样, 这样每条分支光纤末端反射光的波形不会重叠。 通过监测每条分支光 纤末端反射光的波形来监测分支光纤。  Another solution has been proposed in the prior art by adding a mirror at the end of each branch fiber to reflect the test wavelength. In the process of wiring, the length of each branch fiber is different, so that the waveforms of the reflected light at the end of each branch fiber do not overlap. The branch fiber is monitored by monitoring the waveform of the reflected light at the end of each branch fiber.
该方案必须要求每条分支光纤长度不一样, 才能根据每条支路的反射信 号的位置确定支路状态。 从而增加了布线的难度, 而且只能判断断纤或性能 严重劣化的缺陷, 不能判断其他原因(如连接, 弯曲, 应力改变等)造成的缺 陷。  The scheme must require that each branch fiber has a different length to determine the branch state based on the position of the reflected signal of each branch. This increases the difficulty of wiring, and can only judge the defects of fiber breakage or severe deterioration of performance, and cannot judge the defects caused by other causes (such as connection, bending, stress change, etc.).
P0N网络光纤的 0LT侧测试的困难在于多个分支光纤对 0TDR发出的测试信 号后向反射信号会叠加在一起, 从而导致不能分辨出具体某条分支光纤的故 障。 如图 3所示, 其现有技术的另一方案, 0TDR设置在 0NU/0NT侧, 从 0NU/0NT 侧监测 P0N网络光纤, 每个 0NU/0NT集成一个 0TDR,每个 0NU分时监测该 0NU所在 的分支光纤和主干光纤, 测试的数据或结果通过上行通道上传给 0LT。 此方法 很容易的定位出分支光纤或主干光纤的故障。 但由于 0NU/0NT数量众多, 0TDR 设备是非常昂贵, 实现该方案的成本^艮高, 在 0NU侧部署并不现实。 发明内容 The difficulty of the 0LT side test of the P0N network fiber is that the back-reflection signals of the test signals sent by the multiple branch fibers to the 0TDR are superimposed, which makes it impossible to distinguish the fault of a specific branch fiber. As shown in FIG. 3, another solution of the prior art, 0TDR is set on the 0NU/0NT side, and the P0N network fiber is monitored from the 0NU/0NT side, and each 0NU/0NT integrates a 0TDR, and each 0NU time-sharing monitors the ONU. The branch fiber and trunk fiber are located, and the test data or result is uploaded to the 0LT through the uplink channel. This method easily locates the fault of the branch fiber or the trunk fiber. However, due to the large number of 0NU/0NTs, the 0TDR device is very expensive, and the cost of implementing the solution is high. It is not realistic to deploy on the 0NU side. Summary of the invention
本发明实施例的目的是提供一种光分布网络的故障检测方法、 系统及装 置, 可以以较低成本, 方便的对光分布网络中的故障进行类型检测和 /或故障 位置检测。  The object of the embodiments of the present invention is to provide a fault detection method, system and device for a light distribution network, which can perform type detection and/or fault location detection on faults in a light distribution network at a low cost and conveniently.
为实现上述目的, 本发明实施例提供了一种光分布网络的故障检测方 法, 包括如下步骤:  To achieve the above objective, an embodiment of the present invention provides a fault detection method for a light distribution network, including the following steps:
检 'J上行信号和下行信号的损耗;  Check the loss of 'J uplink signal and downlink signal;
当上行信号损耗和 /或下行信号的损耗超出正常范围时, 将上行信号损耗 和下行信号的损耗进行比较, 如果下行信号的损耗大于上行信号的损耗, 则 确定发生了光纤弯曲故障。  When the uplink signal loss and/or the loss of the downlink signal exceeds the normal range, the uplink signal loss is compared with the loss of the downlink signal. If the loss of the downlink signal is greater than the loss of the uplink signal, it is determined that the fiber bending fault has occurred.
本发明实施例还提供了另一种光分布网络的故障检测方法, 包括如下步 骤:  Another embodiment of the present invention provides a fault detection method for another optical distribution network, including the following steps:
检 'J上行信号和下行信号的损耗;  Check the loss of 'J uplink signal and downlink signal;
当检测到上行信号和 /或下行信号的损耗超出正常范围时, 对损耗进行进 一步判断, 如果光线路终端到所有的光网络单元 /光网络终端的下行信号和 / 或上行信号的损耗都超出正常范围, 则确定故障发生在主干段;  When it is detected that the loss of the uplink signal and/or the downlink signal is out of the normal range, the loss is further judged if the loss of the downlink signal and/or the uplink signal of the optical line terminal to all optical network units/optical network terminals exceeds the normal. Range, then determine that the fault occurred in the trunk segment;
如果光线路终端到同一分布光纤连接的所有光网络单元 /光网络终端的下 行信号和 /或上行信号的损耗都超出了正常范围, 则确定故障发生在该分布光 纤;  If the loss of the downlink signal and/or the uplink signal of all the optical network unit/optical network terminals connected to the same distributed optical fiber exceeds the normal range, it is determined that the fault occurs in the distributed optical fiber;
如果光线路终端到一个或数个光网络单元 /光网络终端的下行信号和 /或 上行信号的损耗超出了正常范围, 并且所述一个或数个光网络单元 /光网络终 端不是连接到同一分布光纤的所有光网络单元 /光网络终端, 则确定故障发生 在与所述一个或数个光网络单元 /光网络终端对应的分路段上。  If the loss of the downlink signal and/or the uplink signal of the optical line terminal to one or several optical network units/optical network terminals exceeds the normal range, and the one or several optical network units/optical network terminals are not connected to the same distribution All of the optical network units/optical network terminals of the optical fiber determine that a fault has occurred on the shunt segment corresponding to the one or more optical network units/optical network terminals.
本发明还提供了一种光分布网络的故障检测系统, 包括: 第一信号检测模块, 设置在光线路终端侧, 用于检测光线路终端侧的 上、 下行信号的光功率; The invention also provides a fault detection system for a light distribution network, comprising: The first signal detecting module is disposed on the optical line terminal side for detecting optical power of the uplink and downlink signals on the optical line terminal side;
第二信号检测模块, 设置在光网络单元 /光网络终端侧, 用于检测光网络 单元 /光网络终端侧的上、 下行信号的光功率;  The second signal detecting module is disposed on the optical network unit/optical network terminal side, and is configured to detect optical power of the uplink and downlink signals on the optical network unit/optical network terminal side;
损耗计算模块, 与所述第一信号检测模块和第二信号检测模块连接, 用 于根据检测到的光功率计算上、 下行信号的损耗;  The loss calculation module is connected to the first signal detection module and the second signal detection module, and is configured to calculate the loss of the uplink and downlink signals according to the detected optical power;
故障分析模块, 与所述损耗计算模块连接, 用于根据上、 下行信号的损 耗确定故障的类型和 /或故障位置。  The fault analysis module is coupled to the loss calculation module for determining the type of fault and/or the fault location based on the loss of the uplink and downlink signals.
本发明还提供了一种光分布网络的故障检测装置, 包括:  The invention also provides a fault detecting device for a light distribution network, comprising:
信号检测模块, 用于检测上、 下行信号的光功率;  a signal detecting module, configured to detect optical power of the uplink and downlink signals;
损耗计算模块, 与所述信号检测模块连接, 用于根据检测到的光功率计 算上、 下行信号的损耗;  a loss calculation module, connected to the signal detection module, configured to calculate the loss of the uplink and downlink signals according to the detected optical power;
故障分析模块, 与所述损耗计算模块连接, 用于根据上、 下行信号的损 耗确定故障的类型和 /或故障位置。  The fault analysis module is coupled to the loss calculation module for determining the type of fault and/or the fault location based on the loss of the uplink and downlink signals.
由上述技术方案可知, 本发明通过对上下行信号的损耗进行检测分析, 可以方便的检测出故障的类型和 /或故障的位置, 并且对光纤的布放没有特殊 要求, 可以在线、 实时的识别光纤弯曲、 连接器故障等。  It can be seen from the above technical solution that the present invention can conveniently detect the type of fault and/or the location of the fault by detecting and analyzing the loss of the uplink and downlink signals, and has no special requirements for the deployment of the optical fiber, and can be identified online and in real time. Fiber bending, connector failure, etc.
下面通过附图和实施例, 对本发明的技术方案做进一步的详细描述。 附图说明 图 1为现有技术的 P 0 N系统结构示意图;  The technical solution of the present invention will be further described in detail below through the accompanying drawings and embodiments. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic structural view of a prior art P 0 N system;
图 2为现有技术利用 0TDR在 0LT侧进行故障测试的示意图;  2 is a schematic diagram of a prior art failure test using the 0TDR on the 0LT side;
图 3为现有技术利用 0TDR在 0NU/0NT侧进行故障测试的示意图;  3 is a schematic diagram of a prior art failure test on the 0NU/0NT side using 0TDR;
图 4为本发明实施例 2的光分布网络的故障检测系统的结构示意图; 图 5为本发明实施例 3的光分布网络的故障检测装置的结构示意图。 具体实施方式 实施例 1 4 is a schematic structural diagram of a fault detection system of a light distribution network according to Embodiment 2 of the present invention; and FIG. 5 is a schematic structural diagram of a fault detection apparatus for a light distribution network according to Embodiment 3 of the present invention. DETAILED DESCRIPTION OF THE INVENTION Embodiment 1
在 OLT侧和 0NU/0NT侧设置光功率计, 分别检测 0LT侧和 0NU/0NT侧的上、 下行信号的光功率; 根据检测到的光功率分别计算上行信号和下行信号的损 耗; 对于任何光网络来说, 信号发送端与信号的接收端之间都存在损耗, 对 于下行信号来说, 0LT侧检测的下行信号的光功率大于 0NU/0NT侧检测的下行 信号的光功率, 0LT侧和 0NU/0NT侧检测到的下行信号的光功率之差, 即为下 行信号的损耗; 对上行信号, 0NU/0NT侧检测的上行信号的光功率大于 0LT侧 检测的上行信号的光功率, 0LT侧和 0NT/0NT侧检测到的上行信号的光功率之 差, 即为上行信号的损耗。 由于在实际的 P0N系统中, 一个 0LT通过 0DN连接多 个 0NU/0NT , 在每一个 0NU/0NT侧设置光功率计, 这样便会获得多组上下行信 号的损耗的检测数据, 如果检测到的损耗数据或损耗变化量超出了正常的范 围, 则说明光网络发生了故障。 通过对多组损耗数据的分析处理, 可以得到 光分布网络中的故障类型和 /或故障位置的信息。  An optical power meter is disposed on the OLT side and the 0NU/0NT side to detect optical power of the uplink and downlink signals on the 0LT side and the 0NU/0NT side respectively; and calculate the loss of the uplink signal and the downlink signal according to the detected optical power; For the network, there is loss between the signal transmitting end and the receiving end of the signal. For the downlink signal, the optical power of the downlink signal detected by the 0LT side is greater than the optical power of the downlink signal detected by the 0NU/0NT side, 0LT side and 0NU. The difference between the optical power of the downlink signal detected by the /0NT side is the loss of the downlink signal; for the uplink signal, the optical power of the uplink signal detected by the 0NU/0NT side is greater than the optical power of the uplink signal detected by the 0LT side, and the 0LT side is The difference between the optical powers of the uplink signals detected on the 0NT/0NT side is the loss of the uplink signal. In the actual P0N system, a 0LT connects multiple ONU/0NTs through 0DN, and an optical power meter is set on each 0NU/0NT side, so that the detection data of the loss of multiple sets of uplink and downlink signals is obtained, if detected. If the loss data or loss variation exceeds the normal range, the optical network has failed. By analyzing and processing multiple sets of loss data, information on the type of fault and/or the location of the fault in the optical distribution network can be obtained.
1 )故障类型的检测: 当光纤连接故障发生时(如端面受污染、 连接器松 动), 上、 下行方向的(1 310nm和 1490)损耗变化是一致的。 当光纤发生过度弯 曲时, 上、 下行方向的(1 310謹和 1490nm)的损耗变化不一样, 下行方向 (1490nm)的损耗相对上行方向(1 310腿)的衰减变化更大, 即过度弯曲对波长 长的光波的损耗比波长短的光波的损耗大。  1) Detection of fault type: When the fiber connection failure occurs (such as the end face is contaminated and the connector is loose), the loss changes in the upper and lower directions (1 310 nm and 1490) are consistent. When the fiber is excessively bent, the losses in the upper and lower directions (1 310 and 1490 nm) are different, and the loss in the downstream direction (1490 nm) is larger than that in the upstream direction (1 310 legs), that is, excessive bending The loss of a light wave having a long wavelength is larger than the loss of a light wave having a short wavelength.
P0N网络布放后会测试每条链路的上、 下行损耗, 即测试 0LT与每个 0NU/0NT之间的光链路的上、 下行损耗, 该损耗作为 P0N网络的上、 下行参考 损耗。 参考损耗还可以这样确定, 当需要对 P0N网络的 0DN的损耗重新进行校 准时, 测量 0DN的上、 下行损耗, 以此作为参考损耗。 P0N网络运行后, 实时 测量 ODN的上、 下行损耗获得 ODN的上、 下行实时损耗, 上、 下行实时损耗与 上、 下行参考损耗之间的差值即为上、 下行损耗变化量。 After the P0N network is deployed, the uplink and downlink loss of each link is tested, that is, the uplink and downlink loss of the optical link between the 0LT and each ONU/0NT is tested. The loss is used as the uplink and downlink reference loss of the P0N network. The reference loss can also be determined by measuring the up and down loss of 0DN as a reference loss when it is necessary to recalibrate the 0DN loss of the P0N network. After the P0N network is running, real time The upper and lower losses of the ODN are measured to obtain the uplink and downlink real-time losses of the ODN. The difference between the uplink and downlink real-time losses and the uplink and downlink reference losses is the amount of change in the uplink and downlink losses.
当光网络发生故障时, 上行信号和 /或下行信号的损耗将会超出正常范 围, 判断上下行信号的损耗是否超出正常范围可以通过两种方式:  When the optical network fails, the loss of the uplink signal and/or the downlink signal will exceed the normal range. Judging whether the loss of the uplink and downlink signals exceeds the normal range can be achieved in two ways:
方式 1、 根据事先测定的参考损耗, 预先设定一个损耗阈值, 如果实时测 量的信号损耗超过该阈值, 则认为信号损耗超出了正常范围。  Method 1. According to the previously determined reference loss, a loss threshold is preset. If the signal loss measured in real time exceeds the threshold, the signal loss is considered to be beyond the normal range.
方式 2、 根据事先测定的参考损耗, 预先设定一个损耗变化量阈值, 将实 时测量的损耗减去参考损耗获得损耗变化量, 如果信号损耗的变化量超过该 阈值, 则认为信号损耗超出了正常范围。  Mode 2: According to the previously determined reference loss, a loss variation threshold is preset, and the loss measured in real time is subtracted from the reference loss to obtain the loss variation. If the variation of the signal loss exceeds the threshold, the signal loss is considered to be beyond normal. range.
上行信号和下行信号的损耗程度的比较, 可以通过实时检测的上下行信 号损耗来直接进行比较, 也可以通过上下行信号的损耗变化量来进行比较。  The comparison of the loss degree of the uplink signal and the downlink signal can be directly compared by the uplink and downlink signal loss detected in real time, or can be compared by the loss variation of the uplink and downlink signals.
因此, 当上行信号损耗和 /或下行信号的损耗超出正常范围时, 将上行信 号损耗和下行信号的损耗进行比较, 如果下行信号的损耗大于上行信号的损 耗, 则确定发生了光纤弯曲故障; 如果上下行信号的损耗相等或上下行信号 的损耗变化量相等, 则确定发生了连接器故障。  Therefore, when the uplink signal loss and/or the loss of the downlink signal exceeds the normal range, the uplink signal loss is compared with the loss of the downlink signal. If the loss of the downlink signal is greater than the loss of the uplink signal, it is determined that the fiber bending fault occurs; If the loss of the uplink and downlink signals is equal or the loss of the uplink and downlink signals is equal, it is determined that a connector failure has occurred.
所述的正常范围指 0DN无故障时其对上、 下行信号的损耗的变化范围。 The normal range refers to the range of variation of the loss of the uplink and downlink signals when the 0DN is not faulty.
2 )故障位置的检测: 如图 1所示, 0DN可被无源光分路器 (Spl i t ter)分 成三部分, 主干光纤(Feed Fiber)、 分布光纤(Di s t r ibute Fiber)和分路光 纤(Drop Fiber) , 分路光纤再与 0NU/0NT连接。 由于这种分级结构的存在, 当 检测到上行信号和 /或下行信号的损耗超出正常范围时, 可以通过对检测到的 多组损耗数据进行分析处理, 根据 0NU/0NT与分布光纤(Di s tr ibute F iber)和 分路光纤(Drop Fiber)的对应关系, 来确定故障发生在主干光纤还是某段分 布光纤或分路光纤, 具体为: 2) Detection of fault location: As shown in Figure 1, the 0DN can be divided into three parts by the passive optical splitter, the lead fiber, the distributed fiber (Di str ibute fiber) and the split fiber. (Drop Fiber), the split fiber is connected to 0NU/0NT. Due to the existence of such a hierarchical structure, when the loss of the uplink signal and/or the downlink signal is detected beyond the normal range, the detected multiple sets of loss data can be analyzed and processed according to the 0NU/0NT and the distributed fiber (Di s tr The correspondence between ibute F iber and Drop Fiber determines whether the fault occurs in the trunk fiber or a segment of the distributed fiber or the split fiber, specifically:
如果 0LT到所有的 0NU/0NT的下行信号和 /或上行信号的损耗都超出正常范 围, 则可以判断故障发生在主干段; 如果 OLT到同一分布光纤连接的所有 ONU/ONT的下行信号和 /或上行信号的 损耗都超出了正常范围, 则确定故障发生在该分布光纤; If the loss of the downlink signal and/or the uplink signal from 0LT to all 0NU/0NTs is out of the normal range, it can be judged that the fault occurs in the trunk segment; If the loss of the downlink signal and/or the uplink signal of all ONUs/ONTs connected by the OLT to the same distribution fiber exceeds the normal range, it is determined that the fault occurs in the distribution fiber;
如果 0LT到一个或数个 0NU/0NT的下行信号和 /或上行信号损耗超出了正常 范围, 并且所述一个或数个 0NU/0NT不是连接到同一分布光纤的所有 0NU/0NT, 则确定故障发生在与所述一个或数个 ONU/ONT对应的分路段上。  If the downlink signal and/or uplink signal loss of 0LT to one or several ONU/0NTs exceeds the normal range, and the one or more ONU/0NTs are not all 0NU/0NTs connected to the same distribution fiber, then the fault is determined to occur. On the branch segment corresponding to the one or several ONUs/ONTs.
0NT/0NU与分支光纤的对应关系为: P0N网络布放过程中或布放后, 会记 录 0DN的拓朴结构及 0DN所连接的所有的 0NU/0NT与该 0DN的关系即每个 0NU/0NT 纤(对一级分光的 0DN)。 通过 0NU/0NT的物理标识(如 0NU/0NT的序列号 ( SN Ser i a l Number ) 或媒体访问控制地址(MAC地址 ( Med ia Acces s Cont ro l Addres s ) )或逻辑标识(如 ONU/ONT的标识(ID)或 LLI D (逻辑链路标识))与0DN 的拓朴进行关联。  The corresponding relationship between 0NT/0NU and the branch fiber is as follows: During the P0N network deployment or after deployment, the topology of the 0DN and the relationship between all the 0NU/0NTs connected to the 0DN and the 0DN are recorded for each 0NU/0NT. Fiber (0DN for primary grading). Through the physical identification of 0NU/0NT (such as 0NU/0NT serial number (SN Serial Number) or media access control address (MAC address (Mega ia Acces s Cont ro l Addres s)) or logical identification (such as ONU/ONT The identity (ID) or LLI D (logical link identity) is associated with the topology of the 0DN.
对于上述的故障位置检测和故障类型检测是相互独立, 在实际应用中可 以结合在一起使用, 可以首先通过故障类型的检测来确定故障的类型, 进一 步通过故障位置的检测来确定故障发生的具体位置; 也可以首先通过故障位 置的检测来确定故障发生的具体位置, 再通过故障类型的检测来确定故障的 类型。  The above-mentioned fault location detection and fault type detection are independent of each other, and can be used together in practical applications. The fault type can be first determined by detecting the fault type, and the fault location is further determined by detecting the fault location. It is also possible to first determine the specific location of the fault by detecting the fault location, and then determine the fault type by detecting the fault type.
上述的 0LT侧和 0NU/0NT侧不限于 0LT设备和 0NU/0NT设备, 也可以是靠近 0LT设备和 /或 0NU/0NT设备的光纤, 也就是说, 光功率计既可以与 0LT设备和 0NU/0NT设备一体设置, 也可以在靠近 0LT设备和 0NU/0NT设备的光纤处设置检 测点, 在检测点分出的光路上, 用光功率计对上、 下行光信号的功率进行检 测。  The above 0LT side and 0NU/0NT side are not limited to the 0LT device and the 0NU/0NT device, and may be an optical fiber close to the 0LT device and/or the 0NU/0NT device, that is, the optical power meter can be used with both the 0LT device and the 0NU/. The 0NT device is integrated. It is also possible to set a detection point at the fiber near the 0LT device and the 0NU/0NT device. The optical power meter is used to detect the power of the upper and lower optical signals on the optical path separated by the detection point.
上述实施实例 1中的光功率计也可以换成能测量光功率的其他仪器或设 备。  The optical power meter in the above embodiment 1 can also be replaced with other instruments or devices capable of measuring optical power.
实施例 2 参见图 4其为本发明实施例 2的光分布网络的故障检测系统的结构示意 图, 该系统包括: Example 2 4 is a schematic structural diagram of a fault detection system of a light distribution network according to Embodiment 2 of the present invention, where the system includes:
第一信号检测模块 1 , 设置在 0LT侧, 用于在 0LT侧检测上、 下行信号的光 功率;  The first signal detecting module 1 is disposed on the 0LT side for detecting the optical power of the uplink and downlink signals on the 0LT side;
第二信号检测模块 2 , 设置在 0NU/0NT侧, 用于在 0NU/0NT侧的检测上、 下 行信号的光功率;  The second signal detecting module 2 is disposed on the 0NU/0NT side for detecting the optical power of the upper and lower signals on the 0NU/0NT side;
所述的第一、 第二信号检测模块能够检测 1 310nm和 l Onm光信号的光功 率。 所述的第一、 第二信号检测模块可以进一步包括 1 310nm光信号的光功率 检测模块和 1490謹光信号的光功率检测模块。  The first and second signal detecting modules are capable of detecting optical power of the 1 310 nm and l Onm optical signals. The first and second signal detecting modules may further include an optical power detecting module of 1 310 nm optical signal and an optical power detecting module of 1490 optical signal.
所述的第一信号检测模块和第二信号检测模块可以是光功率计。 所述的 信号检测模块可以与 0LT设备和 0NU/0NT设备一体设置, 即在 0LT和 0NU/0NT设 备中集成信号检测模块,集成的信号检测模块用于测量发送和 /或接收的光功 率, 即上、 下行波长的光功率。 具体实现时, 所述的信号检测模块可以集成 在 0LT和 0NU/0NT设备的光收发器模块外部, 还可以集成在光收发器内部或将 所述的信号检测模块的一部分功能集成在光收发器内部, 另一部分功能集成 在收发器外部。 另外, 也可以在靠近 0LT设备和 0NU/0NT设备的光纤处设置检 测点, 在检测点分出的光路上, 用信号检测模块对上、 下行信号的光功率进 行检测。  The first signal detecting module and the second signal detecting module may be optical power meters. The signal detection module can be integrated with the 0LT device and the 0NU/0NT device, that is, the signal detection module is integrated in the 0LT and ONU/0NT devices, and the integrated signal detection module is used to measure the transmitted and/or received optical power, ie Optical power of the upstream and downstream wavelengths. In a specific implementation, the signal detection module may be integrated outside the optical transceiver module of the 0LT and ONU/0NT devices, or may be integrated inside the optical transceiver or integrate a part of the functions of the signal detection module into the optical transceiver. Internally, another part of the function is integrated outside the transceiver. In addition, it is also possible to set a detection point near the optical fiber of the 0LT device and the 0NU/0NT device, and use the signal detection module to detect the optical power of the uplink and downlink signals on the optical path separated by the detection point.
损耗计算模块 3 , 与所述第一信号检测模块和第二信号检测模块连接, 用 于根据检测到的光功率计算上、 下行信号的损耗;  The loss calculation module 3 is connected to the first signal detection module and the second signal detection module, and is configured to calculate the loss of the uplink and downlink signals according to the detected optical power;
故障分析模块 4 , 与所述损耗计算模块连接, 用于根据上、 下行信号的损 耗确定故障的类型和 /或故障位置。  The fault analysis module 4 is connected to the loss calculation module for determining the type of fault and/or the fault location according to the loss of the uplink and downlink signals.
所述的损耗计算模块和故障分析模块, 可以设置在 0LT侧, 也可以与所述 的信号检测模块一起设置在 0LT和 0NU/0NT设备中。 当所述的损耗计算模块和 所述的故障分析模块与所述的第一信号检测模块集成在 0LT设备中时, 0LT和 ONU/ONT集成的第一、 第二信号检测模块检测上下行两个波长(1 31 0/ 1490nm) 的光功率, 然后 0NU/0NT设备通过 0DN把所述的检测到的上行行两个波长的光 功率传递给 0LT设备中的所述损耗计算模块进行上、 下行信号的损耗计算, 然 后再由所述的故障分析模块对上、 下行信号的损耗进行分析处理, 得出检测 结果。 The loss calculation module and the failure analysis module may be disposed on the 0LT side, or may be disposed in the 0LT and ONU/0NT devices together with the signal detection module. When the loss calculation module and the failure analysis module are integrated with the first signal detection module in the 0LT device, 0LT and The first and second signal detection modules integrated by the ONU/ONT detect the optical power of the two wavelengths (1 31 0/ 1490 nm), and then the 0NU/0NT device passes the detected upstream line of the two wavelengths through the 0DN. The optical power is transmitted to the loss calculation module in the 0LT device to perform loss calculation of the uplink and downlink signals, and then the fault analysis module analyzes and processes the loss of the uplink and downlink signals to obtain a detection result.
实施例 3 图, 该装置包括:  Embodiment 3 Figure, the device includes:
信号检测模块 5 , 用于检测上、 下行信号的光功率;  a signal detecting module 5, configured to detect optical power of the uplink and downlink signals;
损耗计算模块 6 , 与所述信号检测模块连接, 用于根据检测到的光功率计 算上、 下行信号的损耗;  The loss calculation module 6 is connected to the signal detection module, and is configured to calculate the loss of the uplink and downlink signals according to the detected optical power;
故障分析模块 7 , 与所述损耗计算模块连接, 用于根据上、 下行信号的损 耗确定故障的类型和 /或故障位置。 以方便的识别出光纤弯曲和连接器故障, 并能迅速定位其所在的光纤段, 尤 其适合实时在线检测。  The fault analysis module 7 is connected to the loss calculation module for determining the type of fault and/or the fault location according to the loss of the uplink and downlink signals. It is easy to identify fiber bending and connector failure, and can quickly locate the fiber segment where it is located, especially for real-time online detection.
最后应说明的是: 以上实施例仅用以说明本发明的技术方案而非对其进 行限制, 尽管参照较佳实施例对本发明进行了详细的说明, 本领域的普通技 术人员应当理解: 其依然可以对本发明的技术方案进行修改或者等同替换, 而这些修改或者等同替换亦不能使修改后的技术方案脱离本发明技术方案的 ^"神和范围。  It should be noted that the above embodiments are only intended to illustrate the technical solutions of the present invention and are not to be construed as limiting the embodiments of the present invention. The technical solutions of the present invention may be modified or equivalently replaced, and the modified technical solutions may not deviate from the technical scope of the present invention.

Claims

权利要求 Rights request
1、 一种光分布网络的故障检测方法, 其特征在于, 包括:  A fault detection method for a light distribution network, comprising:
检 'J上行信号和下行信号的损耗;  Check the loss of 'J uplink signal and downlink signal;
当上行信号损耗和 /或下行信号的损耗超出正常范围时, 将上行信号损耗 和下行信号的损耗进行比较, 如果下行信号的损耗大于上行信号的损耗, 则 确定发生了光纤弯曲故障。  When the uplink signal loss and/or the loss of the downlink signal exceeds the normal range, the uplink signal loss is compared with the loss of the downlink signal. If the loss of the downlink signal is greater than the loss of the uplink signal, it is determined that the fiber bending fault has occurred.
2、 根据权利要求 1所述的方法, 其特征在于, 还包括: 如果上下行信号 的损耗相等, 则确定发生了连接器故障。  2. The method according to claim 1, further comprising: determining that a connector failure has occurred if the losses of the uplink and downlink signals are equal.
3、 根据权利要求 1所述的方法, 其特征在于, 所述检测上行信号和下行 信号的损耗的方法包括:  3. The method according to claim 1, wherein the method for detecting loss of an uplink signal and a downlink signal comprises:
分别检测光线路终端侧和光网络单元 /光网络终端侧的上、 下行信号的光 功率;  Detecting optical power of the uplink and downlink signals on the optical line terminal side and the optical network unit/optical network terminal side respectively;
根据检测到的光功率分别计算上行信号和下行信号的损耗。  The loss of the uplink signal and the downlink signal are respectively calculated according to the detected optical power.
4、 根据权利要求 3所述的方法, 其特征在于, 还包括:  4. The method according to claim 3, further comprising:
如果所述光线路终端到所有的所述光网络单元 /光网络终端的下行信号和 /或上行信号损耗都超出正常范围, 则确定故障发生在主干段;  If the downlink signal and/or the uplink signal loss of the optical line terminal to all the optical network unit/optical network terminals are out of the normal range, it is determined that the fault occurs in the trunk segment;
如果所述光线路终端到同一分布光纤连接的所有所述光网络单元 /光网络 终端的下行信号和 /或上行信号的损耗都超出了正常范围, 则确定故障发生在 该分布光纤;  If the loss of the downlink signal and/or the uplink signal of all the optical network unit/optical network terminals connected to the same distributed optical fiber is out of the normal range, it is determined that the fault occurs in the distributed optical fiber;
如果所述光线路终端到一个或数个所述光网络单元 /光网络终端的下行信 号和 /或上行信号损耗超出了正常范围, 并且所述一个或数个光网络单元 /光 网络终端不是连接到同一分布光纤的所有光网络单元 /光网络终端, 则确定故 障发生在与所述一个或数个光网络单元 /光网络终端对应的分路段上。  If the downlink signal and/or uplink signal loss of the optical line terminal to one or several of the optical network unit/optical network terminals exceeds a normal range, and the one or several optical network units/optical network terminals are not connected To all optical network units/optical network terminals of the same distribution fiber, it is determined that the fault occurs on the branch segment corresponding to the one or several optical network units/optical network terminals.
5、 一种光分布网络的故障检测方法, 其特征在于, 包括如下步骤: 检 'J上行信号和下行信号的损耗; 当检测到上行信号和 /或下行信号的损耗超出正常范围时, 对损耗进行进 一步判断, 如果光线路终端到所有的光网络单元 /光网络终端的下行信号和 / 或上行信号的损耗都超出正常范围, 则确定故障发生在主干段; A fault detection method for a light distribution network, comprising the steps of: detecting a loss of a 'J uplink signal and a downlink signal; When it is detected that the loss of the uplink signal and/or the downlink signal is out of the normal range, the loss is further judged if the loss of the downlink signal and/or the uplink signal of the optical line terminal to all optical network units/optical network terminals exceeds the normal. Range, then determine that the fault occurred in the trunk segment;
如果光线路终端到同一分布光纤连接的所有光网络单元 /光网络终端的下 行信号和 /或上行信号的损耗都超出了正常范围, 则确定故障发生在该分布光 纤;  If the loss of the downlink signal and/or the uplink signal of all the optical network unit/optical network terminals connected to the same distributed optical fiber exceeds the normal range, it is determined that the fault occurs in the distributed optical fiber;
如果光线路终端到一个或数个光网络单元 /光网络终端的下行信号和 /或 上行信号的损耗超出了正常范围, 并且所述一个或数个光网络单元 /光网络终 端不是连接到同一分布光纤的所有光网络单元 /光网络终端, 则确定故障发生 在与所述一个或数个光网络单元 /光网络终端对应的分路段上。  If the loss of the downlink signal and/or the uplink signal of the optical line terminal to one or several optical network units/optical network terminals exceeds the normal range, and the one or several optical network units/optical network terminals are not connected to the same distribution All of the optical network units/optical network terminals of the optical fiber determine that a fault has occurred on the shunt segment corresponding to the one or more optical network units/optical network terminals.
6、 根据权利要求 5所述的方法, 其特征在于, 所述检测上行信号和下行 信号的损耗的操作具体为:  The method according to claim 5, wherein the detecting the loss of the uplink signal and the downlink signal is specifically:
分别检测光线路终端侧和光网络单元 /光网络终端侧下行信号的光功率; 根据检测到的光功率分别计算下行信号的损耗。  The optical power of the downlink signal on the optical line terminal side and the optical network unit/optical network terminal side is respectively detected; and the loss of the downlink signal is separately calculated according to the detected optical power.
7、 一种光分布网络的故障检测系统, 其特征在于, 包括:  7. A fault detection system for a light distribution network, comprising:
第一信号检测模块, 设置在光线路终端侧, 用于检测光线路终端侧的 上、 下行信号的光功率;  The first signal detecting module is disposed on the optical line terminal side for detecting optical power of the uplink and downlink signals on the optical line terminal side;
第二信号检测模块, 设置在光网络单元 /光网络终端侧, 用于检测光网络 单元 /光网络终端侧的上、 下行信号的光功率;  The second signal detecting module is disposed on the optical network unit/optical network terminal side, and is configured to detect optical power of the uplink and downlink signals on the optical network unit/optical network terminal side;
损耗计算模块, 与所述第一信号检测模块和第二信号检测模块连接, 用 于根据检测到的光功率计算上、 下行信号的损耗;  The loss calculation module is connected to the first signal detection module and the second signal detection module, and is configured to calculate the loss of the uplink and downlink signals according to the detected optical power;
故障分析模块, 与所述损耗计算模块连接, 用于根据上、 下行信号的损 耗确定故障的类型和 /或故障位置。  The fault analysis module is coupled to the loss calculation module for determining the type of fault and/or the fault location based on the loss of the uplink and downlink signals.
8、 根据权利要求 7所述的系统, 其特征在于, 所述损耗计算模块和故障 分析模块设置在光线路终端侧; 所述第二信号检测模块通过光分布网与所述 损耗计算模块进行通信, 将所述光网络单元 /光网络终端侧的上、 下行信号的 光功率发送给损耗计算模块。 The system according to claim 7, wherein the loss calculation module and the failure analysis module are disposed on the optical line terminal side; the second signal detection module passes the optical distribution network and the The loss calculation module communicates to transmit the optical power of the uplink and downlink signals on the optical network unit/optical network terminal side to the loss calculation module.
9、 根据权利要求 7或 8所述的系统, 其特征在于, 所述第一信号检测模块 设置在光线路终端内部, 与光线路终端中的收发模块一体设置或分离设置; 所述第二信号检测模块设置在光网络单元 /光网络终端的内部, 与光网络 单元 /光网络终端中的收发模块一体设置或分离设置。  The system according to claim 7 or 8, wherein the first signal detecting module is disposed inside the optical line terminal, and is integrally disposed or separated from the transceiver module in the optical line terminal; the second signal The detecting module is disposed inside the optical network unit/optical network terminal, and is integrally or separately disposed with the transceiver module in the optical network unit/optical network terminal.
10、 一种光分布网络的故障检测装置, 其特征在于, 包括:  10. A fault detecting apparatus for a light distribution network, comprising:
信号检测模块, 用于检测上、 下行信号的光功率;  a signal detecting module, configured to detect optical power of the uplink and downlink signals;
损耗计算模块, 与所述信号检测模块连接, 用于根据检测到的光功率计 算上、 下行信号的损耗; 故障分析模块, 与所述损耗计算模块连接, 用于根据上、 下行信号的损 耗确定故障的类型和 /或故障位置。  And a loss calculation module, configured to be connected to the signal detection module, configured to calculate a loss of the uplink and downlink signals according to the detected optical power; and a fault analysis module, connected to the loss calculation module, configured to determine the loss according to the uplink and downlink signals The type of fault and / or the location of the fault.
PCT/CN2008/070721 2007-04-18 2008-04-16 A fault detecting method, system and apparatus for optical distributed network WO2008128462A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200710097910.6 2007-04-18
CN 200710097910 CN101291176B (en) 2007-04-18 2007-04-18 Fault detection method, system and apparatus for optical distributed network

Publications (1)

Publication Number Publication Date
WO2008128462A1 true WO2008128462A1 (en) 2008-10-30

Family

ID=39875094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/070721 WO2008128462A1 (en) 2007-04-18 2008-04-16 A fault detecting method, system and apparatus for optical distributed network

Country Status (2)

Country Link
CN (1) CN101291176B (en)
WO (1) WO2008128462A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103684580A (en) * 2012-08-31 2014-03-26 中兴通讯股份有限公司 Radio remote unit and link fault reporting method thereof as well as wireless communication system
CN109379131A (en) * 2018-12-04 2019-02-22 中国航空工业集团公司西安航空计算技术研究所 Highly reliable optical fiber telecommunications system optical link on-Line Monitor Device and fault detection method
CN110868250A (en) * 2018-08-28 2020-03-06 中国电信股份有限公司 Method and system for determining relevant information of access equipment
EP3681057A1 (en) * 2019-01-14 2020-07-15 Nokia Solutions and Networks Oy Monitoring signals in a passive optical network
CN112929081A (en) * 2021-01-14 2021-06-08 南京科舜通信科技有限公司 5G forwarding network quality detection method

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8515278B2 (en) 2008-10-31 2013-08-20 Futurewei Technologies, Inc. Passive optical networks with mode coupling receivers
CN101753207B (en) * 2008-12-16 2013-08-28 华为技术有限公司 Fiber link fault recognition method, device and system
CN101790111B (en) 2009-01-23 2014-09-17 华为技术有限公司 Method and device and system for detecting light distributed network
CN101814950B (en) * 2009-02-23 2013-04-10 高通创锐讯通讯科技(上海)有限公司 Generation mechanism for receiving optical power measurement indication signal and error protection method
CN101789824A (en) * 2009-12-30 2010-07-28 中兴通讯股份有限公司 Online optical network unit (ONU) optical power acquisition device and method
CN101917226B (en) * 2010-08-23 2016-03-02 中兴通讯股份有限公司 A kind of method and optical line terminal carrying out fiber fault diagnosis in EPON
CN102075246B (en) * 2011-01-19 2015-05-13 中兴通讯股份有限公司 Method, system and optical line terminal for obtaining malfunction information of optical network unit
CN103944633B (en) * 2014-04-01 2016-08-24 广东科学技术职业学院 TD-LTE MIMO indoor radio signal profile fiber transmission link fault detection module and method
CN107104727B (en) * 2014-05-16 2021-03-02 青岛海信宽带多媒体技术有限公司 Method and device for reporting state of optical module of optical line terminal
TWI549441B (en) * 2014-08-06 2016-09-11 Chunghwa Telecom Co Ltd Using Optical Fiber Home to Service Network Management Information Quickly Diagnose Methods of Optical Distribution Network Barriers
CN105703825A (en) * 2014-11-24 2016-06-22 中兴通讯股份有限公司 Optical network unit and alarm method thereof
CN105553739B (en) * 2015-12-25 2019-04-26 瑞斯康达科技发展股份有限公司 A kind of method and device for realizing MAC Address tracking
CN107070544B (en) * 2017-01-11 2023-06-27 上海嘉慧光电子技术有限公司 Optical module, detection device using the same, and determination method
TWI672919B (en) * 2018-07-31 2019-09-21 中華電信股份有限公司 Multiple wavelengths optical power measuring device and method thereof
CN110838872B (en) 2018-08-16 2021-10-01 华为技术有限公司 Method, device and system for realizing optical link fault identification
JP7389888B2 (en) * 2019-08-26 2023-11-30 華為技術有限公司 Methods, devices and systems for determining optical network termination equipment connections
CN115549777A (en) * 2020-05-30 2022-12-30 浙江光维通信技术有限公司 Network terminal state identification method and device based on OTDR
CN113938768B (en) * 2020-06-29 2023-04-11 华为技术有限公司 Optical network operation information monitoring method and related equipment
CN112054870A (en) * 2020-08-14 2020-12-08 武汉光迅科技股份有限公司 Passive optical network access system and method
CN114696898B (en) * 2020-12-31 2024-04-09 华为技术有限公司 Risk identification method and related device
CN115133982A (en) * 2021-03-26 2022-09-30 华为技术有限公司 Optical splitting device, optical splitting system, passive optical network and optical fiber fault detection method
CN115250386A (en) * 2021-04-26 2022-10-28 华为技术有限公司 Optical communication system, optical signal transmission method and related equipment
CN113794959B (en) * 2021-10-20 2024-01-09 深圳市天威网络工程有限公司 PON network fault automatic positioning method and system thereof
CN115865221B (en) * 2022-11-30 2024-04-19 四川天邑康和通信股份有限公司 PON network BOSA device interference shielding method and system

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10327104A (en) * 1997-05-23 1998-12-08 Hitachi Cable Ltd Optical fiber fault point detector
EP1098458A2 (en) * 1999-11-08 2001-05-09 Fujitsu Limited An apparatus and a method for locating a fault of a transmission line
CN1392683A (en) * 2001-06-18 2003-01-22 莱特司给网络股份有限公司 Fault determining in optical communication network
CN1505284A (en) * 2002-12-02 2004-06-16 深圳市中兴通讯股份有限公司 A distributed fault-locating method in a total optical network
US20040156635A1 (en) * 2003-02-06 2004-08-12 Nortel Networks Limited Method and apparatus for the transmission fault detection in an access network
KR20050076846A (en) * 2004-01-24 2005-07-28 삼성전자주식회사 Bidirectional wavelength-division-multiplexed passive optical network with fault monitoring function
CN1665173A (en) * 2004-03-03 2005-09-07 华为技术有限公司 Optical fibre fault monitoring and positioning system for communication network and method thereof
CN1677072A (en) * 2004-03-30 2005-10-05 华为技术有限公司 Optical fiber fault automatic monitoring method
JP2005337804A (en) * 2004-05-25 2005-12-08 Nippon Telegraph & Telephone East Corp Fault location support method in optical fiber
US20060007426A1 (en) * 2004-07-08 2006-01-12 Weller Whitney T Novel Algorithm, Method and apparatus for In-Service Testing of Passive Optical Networks (PON) and Fiber to the Premise (FTTP) Networks
JP2006033442A (en) * 2004-07-16 2006-02-02 N Ii C Tele Netsutowaakusu Kk System and method for monitoring fracture of optical fiber
CN1731709A (en) * 2004-08-05 2006-02-08 阿尔卡特公司 Optical distribution network monitoring method and system
US7031049B2 (en) * 2002-11-06 2006-04-18 Fujitsu Limited Loss point detecting method and distributed raman amplifier applying the same
US7035202B2 (en) * 2001-03-16 2006-04-25 Juniper Networks, Inc. Network routing using link failure information
US20060153562A1 (en) * 2002-07-24 2006-07-13 Meriton Networks Inc. Automatic detection and resolution of fiber cabling errors in optical networks
WO2006085356A1 (en) * 2005-02-08 2006-08-17 Fujitsu Limited Light input break detection device
US20060222364A1 (en) * 2005-04-04 2006-10-05 Korea Advanced Institute Of Science And Technology Fault localization apparatus for optical line in wavelength division multiplexed passive optical network
JP2006287888A (en) * 2005-04-04 2006-10-19 Korea Advanced Inst Of Science & Technology Fault location detecting apparatus for optical line in wavelength division multiplexed passive optical subscriber communication network
CN1866791A (en) * 2006-02-08 2006-11-22 华为技术有限公司 Method and apparatus for testing passive optical network fault

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4048855B2 (en) * 2002-07-16 2008-02-20 日本電気株式会社 Failure detection device

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10327104A (en) * 1997-05-23 1998-12-08 Hitachi Cable Ltd Optical fiber fault point detector
EP1098458A2 (en) * 1999-11-08 2001-05-09 Fujitsu Limited An apparatus and a method for locating a fault of a transmission line
US7035202B2 (en) * 2001-03-16 2006-04-25 Juniper Networks, Inc. Network routing using link failure information
CN1392683A (en) * 2001-06-18 2003-01-22 莱特司给网络股份有限公司 Fault determining in optical communication network
US20060153562A1 (en) * 2002-07-24 2006-07-13 Meriton Networks Inc. Automatic detection and resolution of fiber cabling errors in optical networks
US7031049B2 (en) * 2002-11-06 2006-04-18 Fujitsu Limited Loss point detecting method and distributed raman amplifier applying the same
CN1505284A (en) * 2002-12-02 2004-06-16 深圳市中兴通讯股份有限公司 A distributed fault-locating method in a total optical network
US20040156635A1 (en) * 2003-02-06 2004-08-12 Nortel Networks Limited Method and apparatus for the transmission fault detection in an access network
KR20050076846A (en) * 2004-01-24 2005-07-28 삼성전자주식회사 Bidirectional wavelength-division-multiplexed passive optical network with fault monitoring function
CN1665173A (en) * 2004-03-03 2005-09-07 华为技术有限公司 Optical fibre fault monitoring and positioning system for communication network and method thereof
CN1677072A (en) * 2004-03-30 2005-10-05 华为技术有限公司 Optical fiber fault automatic monitoring method
JP2005337804A (en) * 2004-05-25 2005-12-08 Nippon Telegraph & Telephone East Corp Fault location support method in optical fiber
US20060007426A1 (en) * 2004-07-08 2006-01-12 Weller Whitney T Novel Algorithm, Method and apparatus for In-Service Testing of Passive Optical Networks (PON) and Fiber to the Premise (FTTP) Networks
JP2006033442A (en) * 2004-07-16 2006-02-02 N Ii C Tele Netsutowaakusu Kk System and method for monitoring fracture of optical fiber
CN1731709A (en) * 2004-08-05 2006-02-08 阿尔卡特公司 Optical distribution network monitoring method and system
WO2006085356A1 (en) * 2005-02-08 2006-08-17 Fujitsu Limited Light input break detection device
US20060222364A1 (en) * 2005-04-04 2006-10-05 Korea Advanced Institute Of Science And Technology Fault localization apparatus for optical line in wavelength division multiplexed passive optical network
JP2006287888A (en) * 2005-04-04 2006-10-19 Korea Advanced Inst Of Science & Technology Fault location detecting apparatus for optical line in wavelength division multiplexed passive optical subscriber communication network
CN1866791A (en) * 2006-02-08 2006-11-22 华为技术有限公司 Method and apparatus for testing passive optical network fault

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103684580A (en) * 2012-08-31 2014-03-26 中兴通讯股份有限公司 Radio remote unit and link fault reporting method thereof as well as wireless communication system
CN103684580B (en) * 2012-08-31 2016-02-24 中兴通讯股份有限公司 The method of Remote Radio Unit and reporting links fault thereof, wireless communication system
CN110868250A (en) * 2018-08-28 2020-03-06 中国电信股份有限公司 Method and system for determining relevant information of access equipment
CN109379131A (en) * 2018-12-04 2019-02-22 中国航空工业集团公司西安航空计算技术研究所 Highly reliable optical fiber telecommunications system optical link on-Line Monitor Device and fault detection method
CN109379131B (en) * 2018-12-04 2022-06-17 中国航空工业集团公司西安航空计算技术研究所 High-reliability optical fiber communication system optical link on-line monitoring device and fault detection method
EP3681057A1 (en) * 2019-01-14 2020-07-15 Nokia Solutions and Networks Oy Monitoring signals in a passive optical network
CN112929081A (en) * 2021-01-14 2021-06-08 南京科舜通信科技有限公司 5G forwarding network quality detection method

Also Published As

Publication number Publication date
CN101291176B (en) 2012-07-04
CN101291176A (en) 2008-10-22

Similar Documents

Publication Publication Date Title
WO2008128462A1 (en) A fault detecting method, system and apparatus for optical distributed network
US8290364B2 (en) Method, optical network and network device for locating fiber events
CN101296034B (en) Method and apparatus for transmission of monitoring information, passive optical network system
CN101232328B (en) Method for locating case point of branch optical fiber, optical network and network appliance
TWI474635B (en) An optical line terminal (olt) for performing in-band and out-band otdr measurements
JP4183699B2 (en) Optical distribution network monitoring method and system
US7684702B2 (en) Optical link monitoring system and method for passive optical network
CN102714545B (en) Optical transceiver module, passive optical network system, optical fiber detection method and system
US9577748B2 (en) Monitoring of a passive optical network (PON)
WO2012065459A1 (en) System and method for testing fibre failure in passive optical network
US20080292312A1 (en) Method and apparatus for determining optical path attenuation between passive optical network nodes
WO2015006623A1 (en) Optical network communication system with embedded optical time domain reflectometer and method of operation thereof
CN102035599A (en) FTTH passive optical link monitoring system and method
CN103905112A (en) Method, device and system for fault detection of passive optical network
CN102684779A (en) Centralized measurement device, failure monitoring method and system
CN201369727Y (en) Optical line terminal
CN107070544B (en) Optical module, detection device using the same, and determination method
CN201918994U (en) FTTH (Fiber To The Home) passive optical link monitoring system
CN106506069B (en) optical line terminal, optical transceiver module, system and optical fiber detection method
Urban et al. OTM-and OTDR-based cost-efficient fiber fault identification and localization in passive optical network
WO2016061782A1 (en) Optical fiber troubleshooting method, device and system
CN102932055B (en) Device and method used for detecting optical collision and applied to time division passive optical network
JP2011035738A (en) Failed onu specification method and device
WO2009094952A1 (en) Method, optical network and network equipment for locating branch fiber event point
EP2312769B1 (en) A method of attenuating an optical measuring signal in the monitoring of a specified optical path in a working single-mode branch structure network.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08734079

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08734079

Country of ref document: EP

Kind code of ref document: A1