WO2008116456A1 - All-around collision warning method for helicopters - Google Patents

All-around collision warning method for helicopters Download PDF

Info

Publication number
WO2008116456A1
WO2008116456A1 PCT/DE2008/000505 DE2008000505W WO2008116456A1 WO 2008116456 A1 WO2008116456 A1 WO 2008116456A1 DE 2008000505 W DE2008000505 W DE 2008000505W WO 2008116456 A1 WO2008116456 A1 WO 2008116456A1
Authority
WO
WIPO (PCT)
Prior art keywords
helicopter
sensors
database
reflection
sensor
Prior art date
Application number
PCT/DE2008/000505
Other languages
German (de)
French (fr)
Inventor
Daniel Dreyer
Thilo Lees
Volker Gollnick
Gerald Sobotta
Original Assignee
Eads Deutschland Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eads Deutschland Gmbh filed Critical Eads Deutschland Gmbh
Publication of WO2008116456A1 publication Critical patent/WO2008116456A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/04Display arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/933Radar or analogous systems specially adapted for specific applications for anti-collision purposes of aircraft or spacecraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/933Radar or analogous systems specially adapted for specific applications for anti-collision purposes of aircraft or spacecraft
    • G01S13/935Radar or analogous systems specially adapted for specific applications for anti-collision purposes of aircraft or spacecraft for terrain-avoidance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/86Combinations of lidar systems with systems other than lidar, radar or sonar, e.g. with direction finders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/933Lidar systems specially adapted for specific applications for anti-collision purposes of aircraft or spacecraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/51Display arrangements
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0073Surveillance aids
    • G08G5/0078Surveillance aids for monitoring traffic from the aircraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • G01S13/862Combination of radar systems with sonar systems

Definitions

  • the invention relates to a method for all-round
  • the known laser and radar-based obstacle warning sensors which detect objects along the trajectory in a forward-looking manner within a limited field of view of typically approximately 30 ° * 40 °, have a sensor range of approximately 1000 m in good visibility. Since they are based on a sensor principle, they either have limitations on the all-weather capability or the detection capability of small objects, eg. B. thin wires of 5 - 10 mm.
  • individual radar sensors operating at different wavelengths for different distances are assigned to predetermined scanning sectors of the sphere surrounding the helicopter and incorporated into an overall system for detecting obstacles provides complete coverage of the relevant helicopter environment, which is not possible with a single scanning radar beam.
  • This increases the safety during takeoff and landing in difficult terrain under adverse visibility, the operational spectrum by warning against collisions during the landing approach of the helicopter in poor visibility and the situational awareness of the pilots in complicated maneuvers.
  • These radar sensors operate as transmitting and receiving units and deliver their signals, which are provided with an identifier, to an identification and evaluation unit, which displays the display units installed in the cockpit Cockpit displays supplied. This can be done either directly or via an intermediate symbol generator.
  • warning system is also a singular obstacle detection of overhead lines and mountain edges possible, but requires the detection of small objects, in particular about existing overland power lines, a vertical incidence of the radar beams on them. This also applies to the lateral distance detection of larger stones, rocks, mountain edges and the like.
  • the invention has for its object to provide a new method for all-around collision warning using an active system for helicopters, which is all-weather and better than hitherto obstacles and terrain formations, in particular also detect overhead lines and other obstacles and mountain edges and the pilot can.
  • the invention is based on the principle that the defined range of motion of a helicopter must be free from reflections of the sensor signals of potential objects in order to ensure collision freedom, ie, as long as sensor signals emitted in a defined movement space are not reflected by objects the movement within this space of movement is collision free.
  • the range of motion of the helicopter is defined by the rotor diameter, the maximum length of the helicopter - blade leading edge main rotor to blade edge tail rotor - and a safety corridor beyond.
  • the necessary sensor range is determined by the low translatory speed of the helicopter of approx. 10 - 20 kts during takeoff / landing /
  • the detection range is determined for a horizontal speed of 10 kts.
  • two different types of sensors adapted to the movement space are used simultaneously according to the invention, namely radar and laser or radar and ultrasound sensors or other combinations of ultra-high resolution and weather-independent sensors.
  • the radar, laser and ultrasound sensors used are small, reliably operating components - as known, for example, from the distance warning system of vehicle technology - and allow a simple and flexible attachment to the helicopter structure.
  • the sensors for carrying out the method according to the invention are constructed, for example, from a radar sensor and a laser sensor, these sensors detect objects of varying degrees due to their physical properties.
  • Laser sensors are able to detect small and thin objects such as B. wires easier to detect than radar sensors.
  • a radar has a large range capability even under different atmospheric conditions, such as dust, rain, snow and fog. Both sensors send their signals according to the given measuring points, so that over the term of the distance and the orientation of the sensor, the direction of the received reflection in each sensor is determined. For each sensor type, an individual signal evaluation of the received reflection field takes place in accordance with its physical characteristics.
  • Another algorithmic evaluation checks in the next step on the basis of the sensor-specific positioning accuracy and the type of object, whether it is one and the same or different, possibly closely spaced objects.
  • such a radar and a laser sensor can detect the same high-voltage mast, which is identified by the algorithm as a mast.
  • the laser sensor is also able to detect the associated lines, which detects a radar sensor insufficiently reliable. As long as there are no reflection patterns that indicate potentially hazardous objects, the room is considered safe. This will be metallic objects, larger - -
  • Density which can be set as a threshold, distributed in the observation room, is considered as a collision-free space.
  • the evaluation algorithm stores a uniform "overall picture" of the object situation in the database and can then be displayed in different form in the cockpit.
  • a second form of collision warning is based on the approach that identified and identified in the sensor data fusion objects are positively identified as obstacles and displayed as forbidden waypoints of the crew to display.
  • the sensor data fusion according to the invention gives for the first time a clear and clear situation presentation.
  • Previous approaches know only the superimposed optical, visual representation of z. For example, video and infrared imagery that are not capable of abstract fusion, which also allows the use of non-image sensors.
  • the scanning sectors of the method for an all-round warning system according to the invention which are provided with respect to a helicopter of FIG. 2 shows the safe movement space of an example helicopter according to FIG. 1, FIG.
  • Fig. 3a the display of a cockpit display for the 3b method according to the invention in strong abstract for "acute collision danger forward",
  • Fig. 4 is a functional diagram of the all-around warning system according to the invention.
  • the paired sensors can be pivoted or, if sufficiently large antennae devices are present, also be fixed to the helicopter. They are - as the figures Ia and Ib show - arranged front, back and sides of the helicopter and the scanning A, B, C, D, and E assigned. Each installation point so two different sensor types, namely radar and laser sensors or radar and ultrasonic sensors are assigned. Below the helicopter such sensor pairs are also arranged in a pivotable or fixed form. The cover area of the sensors below the helicopter covers the front edge of his fuselage and the outer tip of his tail boom; see. Fig. Ia.
  • the measurement signals of the various sensors are related in terms of distance and direction together on the position of the helicopter by means of the evaluation of the database, not shown. Due to the common reference to a coordinate system, objects can be detected with the different sensors and the detected detections can be verified. If both sensor types detect different objects, these objects are also recorded as potential hazards. If the system is made up of a radar sensor and a laser sensor, these sensors detect objects differently due to their physical properties.
  • the laser sensor is capable of small and thin objects, such. As wires, easier to detect than the radar sensor. By contrast, the radar sensor has a longer range, even under dust, rain and fog. The ranges are, as shown in FIG. 2, chosen around the helicopter and amount to a maximum of 67.26 meters in the present embodiment, of which 10 meters embody the required safety distance.
  • Both sensor types of each pair transmit their measuring pulses, so that over the runtime the distance as well as the orientation of the sensor, the direction of the received reflections in the respective sensor is determined by means of evaluation electronics. From this, in each case a reflection field and the reflection density in the range of motion of the aircraft Lfz are derived and these data are fed to a database.
  • the objects thus detected by a sensor are stored in the database with their absolute positions. This gives a first overall picture of the situation in which both sensor types can have recognized the same or different objects.
  • Another algorithmic evaluation checks in the next step on the basis of the sensor-specific positioning accuracy and the type of object, whether it is one and the same or different, possibly closely spaced objects. Due to the described sensor properties, such a radar and a laser sensor can detect the same high-voltage mast, which is also identified as a mast with the aid of the algorithm. However, the laser sensor is also able to detect the lines that a radar detects only insufficiently reliably.
  • FIGS. 3a and b The representation of the collision warning or approach warning in the cockpit is shown in FIGS. 3a and b.
  • the representation of the measurement results of the sensors takes place after preparation of the measurement signals supplied by them with a hazard rating of the determined distances, preferably here with differently colored, hatched here areas designated 10, 11 and 12 and a colorless circular arc 13 of the display in the form of the helicopter HS surrounding circular arcs, for whose center approximately the geometric center of the - -
  • Helicopter is selected, within a common display, each comprising Figures 3a and 3b.
  • the entire spatial hazard image of the helicopter is displayed clearly and immediately recognizable to the pilot.
  • an acute danger of collision at the front can be recognized by a red (right, thick hatched), a yellow (left, thick hatched) and a green (left, thin hatched) arc
  • a slight danger of collision is recognizable on the right by a colorless, ie not hatched
  • each a yellow and a red arc missing collision danger left recognizable by colorless arcs and low risk of collision with respect to the ground recognizable by two colorless and a green circular arc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

The invention relates to a method for the all-around identification of obstacles within the movement area of a helicopter using radar, laser and/or ultrasonic sensors. The ranges of the sensors that are used are selected in accordance with the movement area and the installation locations of the sensors on the helicopter, predetermined scanning movements related to the scanning area are communicated to the sensors and all measuring signals of the sensors received by means of reflection and their individual positions are fed to a common database after an individual signal evaluation that is ordered according to the scanning area, said signals being respectively referenced in terms of distance and direction with the position of the helicopter and being fed in the form of a received reflective field in order to combine all reflective fields and compare them with patterns stored in the database. The complete layout of the movement area that is to be monitored is determined using a subsequent algorithmic evaluation and is displayed as a complete image in the cockpit of the helicopter.

Description

Verfahren zur Rundum-Kollisionswarnung für HubschrauberMethod for all-around collision warning for helicopters
Die Erfindung betrifft ein Verfahren zum Rundum-The invention relates to a method for all-round
Erkennen von Hindernissen innerhalb des Bewegungsraumes eines Hubschraubers unter Verwendung von, dem Hubschrauber zugeordneten, aktiven Radar- und/oder Laser- Sensoren und/oder Infrarot- oder Ultraschall-Sensoren.Detecting obstacles within the scope of a helicopter using helicopter-associated active radar and / or laser sensors and / or infrared or ultrasonic sensors.
Es ist bekannt, mit einem abtastenden Radar- oder Laserstrahl von einem Hubschrauber aus Hindernisse zu erkennen sowie Abstände zum Boden mit einem Radarhöhenmesser zu bestimmen. Hinderniserkennungssysteme, die auf Lasertechnik basieren, sind hinsichtlich der Erkennung kleiner Objekte befriedigend, insbesondere aber stark wetterabhängig bezüglich ihrer Detektionsschrit- te. Radarsysteme zeichnen sich umgekehrt durch eine große Wetterrobustheit, aber geringer Auflösung aus.It is known to detect obstacles with a scanning radar or laser beam from a helicopter and to determine distances to the ground with a radar altimeter. Obstacle detection systems based on laser technology are satisfactory with respect to the detection of small objects, but in particular are strongly weather-dependent with respect to their detection steps. Radar systems, on the other hand, are characterized by great weather robustness but low resolution.
Hubschrauber sind regelmäßig der Gefahr der Kollision mit Objekten am Boden, insbesondere während Start, Landung und Schwebflug ausgesetzt. Diese Gefährdung verschärft sich in Wüstengegenden durch Staub- /Sandverwirbelungen = "Brown Out" oder in verschneiten - -Helicopters are regularly exposed to the risk of collision with objects on the ground, especially during takeoff, landing and hovering. This danger is exacerbated in desert areas by dust / sand turbulence = "Brown Out" or in snowy - -
Gegenden durch Schneeverwirbelungen = "White Out", wenn durch die Verwirbelungen die Außensicht sehr stark eingeschränkt ist.Regions caused by snow turbulence = "White Out", if the turbulence limits the external view very much.
Die bekannten Hinderniswarnsensoren auf Laser- und Radarbasis, die im Fluge vorausschauend in einem begrenzten Sichtfeld von typischerweise ca. 30° * 40° Objekte entlang der Flugbahn erfassen, verfügen über eine Sensorsichtweite von etwa 1000 m bei guter Sicht. Da sie auf jeweils einem Sensorprinzip basieren, weisen sie entweder Einschränkungen bezüglich der Allwetterfähigkeit oder der Detektionsfähigkeit kleiner Objekte, z. B. dünner Drähte von 5 - 10 mm auf.The known laser and radar-based obstacle warning sensors, which detect objects along the trajectory in a forward-looking manner within a limited field of view of typically approximately 30 ° * 40 °, have a sensor range of approximately 1000 m in good visibility. Since they are based on a sensor principle, they either have limitations on the all-weather capability or the detection capability of small objects, eg. B. thin wires of 5 - 10 mm.
Nach einem nicht zum Stand der Technik gehörenden Vorschlag werden zum Erkennen von Hindernissen einzelne auf unterschiedliche Wellenlängen für verschiedene Entfernungen (short-range und long-range) arbeitenden Radarsensoren vorbestimmten Abtastsektoren der den Hub- schrauber umgebenen Sphäre zugeordnet und diese in ein Gesamtsystem eingebunden, das zur kompletten Abdeckung der relevanten Hubschrauberumgebung führt, was mit einem einzigen abtastenden Radarstrahl nicht möglich ist. Damit wird die Sicherheit bei Start und Landung in schwierigem Gelände unter widrigen Sichtverhältnissen, das operationelle Spektrum durch Warnung vor Kollisionen während des Landeanfluges des Hubschraubers bei schlechter Sicht und das Situationsbewusstsein der Piloten bei komplizierten Manövern erhöht. Diese Radar- sensoren arbeiten als Sende- und Empfangseinheiten und liefern ihre mit einer Kennung versehenen Signale an eine Kennungs- und Auswerteeinheit, welche die im Cockpit installierten Anzeigeneinheiten, die sogenannten Cockpit-Displays versorgt. Dies kann entweder direkt oder über einen zwischengeschalteten Symbolgenerator erfolgen.According to a proposal which does not belong to the prior art, individual radar sensors operating at different wavelengths for different distances (short-range and long-range) are assigned to predetermined scanning sectors of the sphere surrounding the helicopter and incorporated into an overall system for detecting obstacles provides complete coverage of the relevant helicopter environment, which is not possible with a single scanning radar beam. This increases the safety during takeoff and landing in difficult terrain under adverse visibility, the operational spectrum by warning against collisions during the landing approach of the helicopter in poor visibility and the situational awareness of the pilots in complicated maneuvers. These radar sensors operate as transmitting and receiving units and deliver their signals, which are provided with an identifier, to an identification and evaluation unit, which displays the display units installed in the cockpit Cockpit displays supplied. This can be done either directly or via an intermediate symbol generator.
Mithilfe eines solchen Radar-basiertern Rundum-Using such a radar-based all-round
Warnsystems wird zwar eine singuläre Hinderniserkennung auch von Überlandleitungen und Bergkanten möglich, jedoch erfordert das Erkennen kleiner Objekte, insbesondere etwa vorhandener Überland-Stromleitungen ein senk- rechtes Auftreffen der Radarstrahlen auf diese. Dies gilt auch für die seitliche Abstandserkennung von größeren Steinen, Felsen, Bergkanten und ähnlichem.Although warning system is also a singular obstacle detection of overhead lines and mountain edges possible, but requires the detection of small objects, in particular about existing overland power lines, a vertical incidence of the radar beams on them. This also applies to the lateral distance detection of larger stones, rocks, mountain edges and the like.
Der Erfindung liegt die Aufgabe zugrunde, ein neues Verfahren zur Rundum-Kollisionswarnung unter Verwendung eines aktiven Systems für Hubschrauber zu schaffen, welches allwettertauglich ist und besser als bisher Hindernisse und Geländeformationen, insbesondere auch Überlandleitungen und andere Hindernisse sowie Berg- kanten erkennen und dem Piloten anzeigen kann.The invention has for its object to provide a new method for all-around collision warning using an active system for helicopters, which is all-weather and better than hitherto obstacles and terrain formations, in particular also detect overhead lines and other obstacles and mountain edges and the pilot can.
Diese Aufgabe ist durch die Merkmale des Patentanspruchs 1 gelöst.This object is solved by the features of patent claim 1.
Weitere Merkmale der Erfindung ergeben sich aus den Unteransprüchen.Further features of the invention will become apparent from the dependent claims.
Die Erfindung geht von dem Prinzip aus, dass der definierte Bewegungsraum eines Hubschraubers frei von Re- flexionen der Sensorsignale von potenziellen Objekten sein muss, um Kollisionsfreiheit zu gewährleisten, d.h. also, solange in einem definierten Bewegungsraum ausgesandte Sensorsignale nicht von Objekten reflektiert werden, ist die Bewegung innerhalb dieses Bewegungsraumes kollisionsfrei. Der Bewegungsraum des Hubschraubers definiert sich aus dem Rotordurchmesser, der maximalen Länge des Hubschraubers - Blattvorderkante Hauptrotor bis Blattkante Heckrotor - und einem darüber hinausgehenden Sicherheitskorridor.The invention is based on the principle that the defined range of motion of a helicopter must be free from reflections of the sensor signals of potential objects in order to ensure collision freedom, ie, as long as sensor signals emitted in a defined movement space are not reflected by objects the movement within this space of movement is collision free. The range of motion of the helicopter is defined by the rotor diameter, the maximum length of the helicopter - blade leading edge main rotor to blade edge tail rotor - and a safety corridor beyond.
Die notwendige Sensorreichweite bestimmt sich aus der geringen translatorischen Geschwindigkeit des Hub- schraubers von ca. 10 - 20 kts während Start/Landung/The necessary sensor range is determined by the low translatory speed of the helicopter of approx. 10 - 20 kts during takeoff / landing /
Schwebeflug und den notwendigen Reaktionszeiten von Pilot (typisch: 3 sek.) Hubschrauber (typisch: 4 sek.) und Auswerteeinheit (2 sek. bis zur nächsten Detektion) zur sicheren Detektion (typisch also ca. 8 Sekunden für diese Komponenten) . Beispielhaft ist die Detek- tionsreichweite für eine horizontale Geschwindigkeit von 10 kts bestimmt.Hover and the necessary reaction times of Pilot (typically: 3 sec.) Helicopter (typically: 4 sec.) And evaluation unit (2 sec. Until the next detection) for safe detection (typically about 8 seconds for these components). By way of example, the detection range is determined for a horizontal speed of 10 kts.
Xπetektion = 5,14 m/s* ( 3+4+2 ) Sek . = 46,26 mXπetection = 5.14 m / s * (3 + 4 + 2) sec. = 46.26 m
Damit ergibt sich bei einem Rotorradius von z. B. 11 m und einem gewählten Sicherheitsabstand von 10 m eine maximal erforderliche Sensorreichweite von:This results in a rotor radius of z. B. 11 m and a selected safety distance of 10 m, a maximum required sensor range of:
Äsmax = R-Rotor + ^Sicherheit + ^Detektion = H M + 1 0 JTl + 4 6 , 2 6 m = 67,26 mÄsmax = R-Rotor + ^ Safety + ^ Detection = H M + 1 0 JTl + 4 6, 2 6 m = 67.26 m
Zur sicheren Erkennung solcher Hindernissen werden erfindungsgemäß jeweils zwei unterschiedliche, auf den Bewegungsraum abgestimmte Sensortypen gleichzeitig verwendet, nämlich Radar- und Laser- oder Radar- und Ultraschall-Sensoren oder andere Kombinationen von höchstauflösenden und wetterunabhängigen Sensoren, de- -In order to reliably detect such obstacles, two different types of sensors adapted to the movement space are used simultaneously according to the invention, namely radar and laser or radar and ultrasound sensors or other combinations of ultra-high resolution and weather-independent sensors. -
ren durch Reflexionen an Hindernissen verursachte Messsignale individuell nach Abtasträumen geordnet hinsichtlich Entfernung und Richtung gemeinsam auf die Position des Hubschraubers bezogen zu Reflexionsfeldern zusammengefasst und nach Bestimmen der Reflexionsdichte im Bewegungsraum des Hubschraubers in einer Datenbank fusioniert werden und nach Abgleich mit in der Datenbank gespeicherten Mustern mittels algorithmischer Auswertung als die Gesamtsituation des zu überwachenden Bewegungsraumes des Hubschraubers darstellendes konsolidiertes Gesamtbild im Cockpit des Hubschraubers zur Anzeige gebracht werden. Dadurch kann z.B. eine Annäherungswarnung oder Kollisionswarnung rechtzeitig erfolgen.ren caused by reflections on obstacles measurement signals individually ordered by scanning rooms in terms of distance and direction together on the position of the helicopter combined to reflection fields and fused after determining the reflection density in the space of the helicopter in a database and after comparison with stored in the database patterns using algorithmic Evaluation as the overall situation of the monitored space for movement of the helicopter performing consolidated overall picture in the cockpit of the helicopter are displayed. Thereby, e.g. An approach warning or collision warning is timely.
Die zur Anwendung gelangenden Radar-, Laser- und Ultraschall-Sensoren sind kleine, zuverlässig arbeitende Bauelemente - wie zum Beispiel aus der Abstandswarnung der Fahrzeugtechnik bekannt - und erlauben eine einfa- che und flexible Anbringung an der Hubschrauberstruktur .The radar, laser and ultrasound sensors used are small, reliably operating components - as known, for example, from the distance warning system of vehicle technology - and allow a simple and flexible attachment to the helicopter structure.
Sind die Sensoren zur Ausführung des erfindungsgemäßen Verfahrens beispielsweise aus einem Radar-Sensor und einem Laser-Sensor aufgebaut, detektieren diese Sensoren aufgrund ihrer physikalischen Eigenschaften Objekte unterschiedlich gut. Laser-Sensoren sind in der Lage, kleine und dünne Objekte wie z. B. Drähte leichter zu detektieren als Radar-Sensoren. Hingegen weist ein Ra- dar eine große Reichweitenfähigkeit auch unter verschiedenen atmosphärischen Bedingungen, wie Staub, Regen, Schnee und Nebel auf. Beide Sensoren senden ihre Signale entsprechend den vorgegebenen Messpunkten aus, so dass über die Laufzeit die Entfernung sowie über die Ausrichtung des Sensors die Richtung der empfangenen Reflexion im jeweiligen Sensor ermittelt wird. Für jeden Sensortyp erfolgt gemäß seinen physikalischen Eigenarten eine individuelle Signalauswertung des empfangenen Reflexionsfeldes. Ebenfalls erfolgt jeweils für jeden Sensortyp eine Mustererkennung, so dass aus der Anordnung der Reflexio- nen sowie deren Entfernung auf definierte Objekte geschlossen werden kann. Die so von den Sensor-Paaren de- tektierten Objekte werden in einer Datenbank mit ihren absoluten Positionen abgelegt. Damit ergibt sich ein erstes Gesamtbild über die Situation, bei der jeweils beide Sensortypen die gleichen oder unterschiedliche Objekte erkannt haben können.If the sensors for carrying out the method according to the invention are constructed, for example, from a radar sensor and a laser sensor, these sensors detect objects of varying degrees due to their physical properties. Laser sensors are able to detect small and thin objects such as B. wires easier to detect than radar sensors. On the other hand, a radar has a large range capability even under different atmospheric conditions, such as dust, rain, snow and fog. Both sensors send their signals according to the given measuring points, so that over the term of the distance and the orientation of the sensor, the direction of the received reflection in each sensor is determined. For each sensor type, an individual signal evaluation of the received reflection field takes place in accordance with its physical characteristics. Likewise, a pattern recognition takes place in each case for each sensor type, so that conclusions can be drawn from the arrangement of the reflections and their distance to defined objects. The objects thus detected by the sensor pairs are stored in a database with their absolute positions. This results in a first overall picture of the situation in which both sensor types can have recognized the same or different objects.
Eine weitere algorithmische Auswertung prüft im nächsten Schritt anhand der sensorspezifischen Positionie- rungsgenauigkeit und der Objektart, ob es sich um ein und dasselbe oder unterschiedliche, gegebenenfalls eng beieinander stehende Objekte handelt.Another algorithmic evaluation checks in the next step on the basis of the sensor-specific positioning accuracy and the type of object, whether it is one and the same or different, possibly closely spaced objects.
Aufgrund der oben beschriebenen Sensoreigenschaften können so ein Radar- und ein Laser-Sensor den gleichen Hochspannungsmasten erkennen, der mit Hilfe des Algorithmus auch nur als ein Mast identifiziert wird. Der Laser-Sensor ist jedoch zusätzlich in der Lage, auch die zugeordneten Leitungen zu erkennen, die ein Radar- Sensor nur unzureichend zuverlässig detektiert. Solange keine Reflexionsmuster auftreten, die auf potenziell gefährdende Objekte hindeuten, wird der Raum als sicher eingestuft. Dabei werden metallische Objekte, größere - -Because of the sensor characteristics described above, such a radar and a laser sensor can detect the same high-voltage mast, which is identified by the algorithm as a mast. However, the laser sensor is also able to detect the associated lines, which detects a radar sensor insufficiently reliable. As long as there are no reflection patterns that indicate potentially hazardous objects, the room is considered safe. This will be metallic objects, larger - -
Steine und Hölzer als gefährdende Objekte betrachtet. Sind an einem Positionsbereich gleiche beziehungsweise ähnliche Reflexionen durch beide Sensoren erfasst, so wertet der Algorithmus dieses als ein Hindernis. Sind die Reflexionen unstrukturiert und in sehr geringerStones and woods considered as endangered objects. If identical or similar reflections are detected by both sensors at one position range, then the algorithm evaluates this as an obstacle. Are the reflections unstructured and in very low
Dichte, die als Schwellwert einstellbar ist, im Beobachtungsraum verteilt, wird das als kollisionsfreier Raum gewertet. Mit dem Auswertealgorithmus wird ein einheitliches "Gesamtbild" über die Objektsituation in der Datenbank abgelegt und kann anschließend in unterschiedlicher Form im Cockpit zur Anzeige gebracht werden.Density, which can be set as a threshold, distributed in the observation room, is considered as a collision-free space. The evaluation algorithm stores a uniform "overall picture" of the object situation in the database and can then be displayed in different form in the cockpit.
Eine zweite Form der Kollisionswarnung basiert auf dem Ansatz, dass die erkannten und im Rahmen der Sensordatenfusion verifizierten Objekte als Hindernisse positiv identifiziert werden und als verbotene Wegpunkte der Besatzung zur Anzeige gebracht werden.A second form of collision warning is based on the approach that identified and identified in the sensor data fusion objects are positively identified as obstacles and displayed as forbidden waypoints of the crew to display.
Die erfindungsgemäße Sensordatenfusion ergibt erstmals eine eindeutige und klare Situationsdarstellung. Bisherige Ansätze kennen lediglich die überlagerte optische, bildliche Darstellung von z. B. Video- und Infrarot- Bild, mit denen eine abstrakte Fusion, die auch die Verwendung nicht bildlicher Sensoren ermöglicht, nicht möglich ist.The sensor data fusion according to the invention gives for the first time a clear and clear situation presentation. Previous approaches know only the superimposed optical, visual representation of z. For example, video and infrared imagery that are not capable of abstract fusion, which also allows the use of non-image sensors.
Die Erfindung ist nachfolgend in Verbindung mit der Zeichnung beschrieben. Im Einzelnen zeigen:The invention is described below in conjunction with the drawing. In detail show:
Fig. Ia, die in Bezug auf einen Hubschrauber dar- Ib gestellten Abtastsektoren des Verfahrens für ein Rundum-Warnsystem gemäß der Erfindung, Fig. 2 den sicheren Bewegungsraum eines Beispiel- Hubschraubers gemäß Fig. 1,1a, the scanning sectors of the method for an all-round warning system according to the invention, which are provided with respect to a helicopter of FIG. 2 shows the safe movement space of an example helicopter according to FIG. 1, FIG.
Fig. 3a, die Anzeige eines Cockpit-Displays für das 3b Verfahren nach der Erfindung in starker Abstraktion für "akute Kollisionsgefahr vorn", undFig. 3a, the display of a cockpit display for the 3b method according to the invention in strong abstract for "acute collision danger forward", and
Fig. 4 ein Funktionsschema des Rundum-Warnsystems gemäß der Erfindung.Fig. 4 is a functional diagram of the all-around warning system according to the invention.
Da die zur Durchführung des erfindungsgemäßen Verfahrens erforderlichen Bauteile und -gruppen an sich bekannt sind, wurde auf deren Darstellung verzichtet. Die paarweise angeordneten Sensoren können schwenkbar oder, falls genügend große Antennenapparaturen vorhanden sind, auch fest am Hubschrauber angeordnet sein. Sie sind - wie die Figuren Ia und Ib zeigen - vorne, hinten und an den Seiten des Hubschraubers angeordnet und den Abtastbereichen A, B, C, D, und E zugeordnet. Jedem Installationspunkt sind also zwei unterschiedliche Sensorentypen, nämlich Radar- und Laser-Sensoren oder Radar- und Ultraschall-Sensoren zugeordnet. Unterhalb des Hubschraubers sind ebenfalls solche Sensorpaare in schwenkbarer oder fester Form angeordnet. Der Abdek- kungsbereich der Sensoren unterhalb des Hubschraubers erfasst die Vorderkante seines Rumpfes und die äußere Spitze seines Heckauslegers; vgl. Fig. Ia.Since the components and groups required for carrying out the method according to the invention are known per se, their representation has been dispensed with. The paired sensors can be pivoted or, if sufficiently large antennae devices are present, also be fixed to the helicopter. They are - as the figures Ia and Ib show - arranged front, back and sides of the helicopter and the scanning A, B, C, D, and E assigned. Each installation point so two different sensor types, namely radar and laser sensors or radar and ultrasonic sensors are assigned. Below the helicopter such sensor pairs are also arranged in a pivotable or fixed form. The cover area of the sensors below the helicopter covers the front edge of his fuselage and the outer tip of his tail boom; see. Fig. Ia.
Die Messsignale der verschiedenen Sensoren werden hinsichtlich Entfernung und Richtung gemeinsam auf die Position des Hubschraubers mittels der nicht dargestellten Auswerteelektronik der Datenbank bezogen. Durch den gemeinsamen Bezug auf ein Koordinatensystem können mit den unterschiedlichen Sensoren Objekte de- tektiert und die erfolgten Detektionen verifiziert werden. Detektieren beide Sensortypen jeweils unterschied- liehe Objekte, so werden diese Objekte auch als potenzielle Gefährdung mit erfasst. Ist das System aus einem Radar-Sensor und einem Laser-Sensor aufgebaut, detektieren diese Sensoren aufgrund ihrer physikalischen Eigenschaften Objekte unterschiedlich gut. Der Laser- Sensor ist in der Lage, kleine und dünne Objekte, wie z. B. Drähte, leichter zu detektieren als der Radar- Sensor. Hingegen weist der Radar-Sensor eine größere Reichweite, auch unter Staub, Regen und Nebel auf. Die Reichweiten sind, wie Fig. 2 zeigt, rund um den Hub- schrauber gewählt und betragen im vorliegenden Ausführungsbeispiel maximal 67,26 Meter, von denen 10 Meter den erforderlichen Sicherheitsabstand verkörpern.The measurement signals of the various sensors are related in terms of distance and direction together on the position of the helicopter by means of the evaluation of the database, not shown. Due to the common reference to a coordinate system, objects can be detected with the different sensors and the detected detections can be verified. If both sensor types detect different objects, these objects are also recorded as potential hazards. If the system is made up of a radar sensor and a laser sensor, these sensors detect objects differently due to their physical properties. The laser sensor is capable of small and thin objects, such. As wires, easier to detect than the radar sensor. By contrast, the radar sensor has a longer range, even under dust, rain and fog. The ranges are, as shown in FIG. 2, chosen around the helicopter and amount to a maximum of 67.26 meters in the present embodiment, of which 10 meters embody the required safety distance.
Beide Sensortypen eines jeden Paares senden ihre Mess- pulse aus, so dass über die Laufzeit die Entfernung sowie über die Ausrichtung des Sensors die Richtung der empfangenen Reflexionen im jeweiligen Sensor mittels einer Auswerteelektronik ermittelt wird. Hieraus wird jeweils ein Reflexionsfeld sowie die Reflexionsdichte im Bewegungsraum des Luftfahrzeuges Lfz abgeleitet und werden diese Daten einer Datenbank zugeführt.Both sensor types of each pair transmit their measuring pulses, so that over the runtime the distance as well as the orientation of the sensor, the direction of the received reflections in the respective sensor is determined by means of evaluation electronics. From this, in each case a reflection field and the reflection density in the range of motion of the aircraft Lfz are derived and these data are fed to a database.
Für jeden Sensortyp erfolgt also gemäß seinen physikalischen Eigenarten eine individuelle Signalauswertung des empfangenen Reflexionsfeldes. Ebenfalls erfolgt jeweils für jeden Sensortyp eine Mustererkennung, so dass aus der Anordnung der Reflexionen sowie deren Entfernung auf definierte Objekte geschlossen werden kann. - -For each type of sensor, an individual signal evaluation of the received reflection field takes place in accordance with its physical characteristics. Likewise, a pattern recognition takes place in each case for each sensor type, so that conclusions can be drawn from the arrangement of the reflections and their distance to defined objects. - -
Die so von einem Sensor detektierten Objekte werden in der Datenbank mit ihren absoluten Positionen abgelegt. Damit ergibt sich ein erstes Gesamtbild über die Situation, bei der beide Sensortypen die gleichen oder un- terschiedliche Objekte erkannt haben können. Eine weitere algorithmische Auswertung prüft im nächsten Schritt anhand der sensorspezifischen Positionierungsgenauigkeit und der Objektart, ob es sich um ein und dasselbe oder unterschiedliche, gegebenenfalls eng bei- einander stehende Objekte handelt. Aufgrund der beschriebenen Sensoreigenschaften können so ein Radar- und ein Laser-Sensor den gleichen Hochspannungsmasten erkennen, der mit Hilfe des Algorithmus auch nur als ein Mast identifiziert wird. Der Laser-Sensor ist je- doch zusätzlich in der Lage, auch die Leitungen zu erkennen, die ein Radar nur unzureichend zuverlässig de- tektiert .The objects thus detected by a sensor are stored in the database with their absolute positions. This gives a first overall picture of the situation in which both sensor types can have recognized the same or different objects. Another algorithmic evaluation checks in the next step on the basis of the sensor-specific positioning accuracy and the type of object, whether it is one and the same or different, possibly closely spaced objects. Due to the described sensor properties, such a radar and a laser sensor can detect the same high-voltage mast, which is also identified as a mast with the aid of the algorithm. However, the laser sensor is also able to detect the lines that a radar detects only insufficiently reliably.
Mit dem Auswertealgorithmus wird so ein einheitliches "Gesamtbild" über die Objektsituation in einer Datenbank abgelegt und kann anschließend in unterschiedlicher Form im Cockpit zur Anzeige gebracht werden.With the evaluation algorithm, a uniform "overall picture" of the object situation is stored in a database and can then be displayed in different form in the cockpit.
Die Darstellung der Kollisionswarnung oder Annäherungs- warnung im Cockpit zeigt die Figur 3a und b. Die Darstellung der Messergebnisse der Sensoren erfolgt nach Aufbereitung der von ihnen gelieferten Messsignale mit einer Gefahreneinstufung der ermittelten Entfernungen, vorzugsweise hier mit unterschiedlich gefärbten, hier schraffierten Bereichen bezeichnet mit 10, 11 und 12 sowie einem farblosen Kreisbogen 13 der Anzeige in Form von den Hubschrauber HS umgebenden Kreisbögen, für deren Mittelpunkt etwa der geometrische Mittelpunkt des - -The representation of the collision warning or approach warning in the cockpit is shown in FIGS. 3a and b. The representation of the measurement results of the sensors takes place after preparation of the measurement signals supplied by them with a hazard rating of the determined distances, preferably here with differently colored, hatched here areas designated 10, 11 and 12 and a colorless circular arc 13 of the display in the form of the helicopter HS surrounding circular arcs, for whose center approximately the geometric center of the - -
Hubschraubers gewählt ist, und zwar innerhalb eines gemeinsamen Displays, das jeweils die Figuren 3a und 3b umfasst. Auf diese Weise wird das gesamte räumliche Gefährdungsbild des Hubschraubers für den Piloten über- sichtlich und sofort erkennbar dargestellt. Als Beispiel ist eine akute Kollisionsgefahr vorne erkennbar durch einen roten (rechts, dick schraffiert) , einen gelben (links, dick schraffiert) und einen grünen (links, dünn schraffiert) Kreisbogen, eine geringe KoI- lisionsgefahr ist rechts erkennbar durch einen farblosen, also nicht schraffierten, und je einen gelben und einen roten Kreisbogen, fehlende Kollisionsgefahr links erkennbar durch farblose Kreisbögen und geringe Kollisionsgefahr gegenüber dem Boden erkennbar durch zwei farblose und einen grünen Kreisbogen dargestellt. Helicopter is selected, within a common display, each comprising Figures 3a and 3b. In this way, the entire spatial hazard image of the helicopter is displayed clearly and immediately recognizable to the pilot. For example, an acute danger of collision at the front can be recognized by a red (right, thick hatched), a yellow (left, thick hatched) and a green (left, thin hatched) arc, a slight danger of collision is recognizable on the right by a colorless, ie not hatched, and each a yellow and a red arc, missing collision danger left recognizable by colorless arcs and low risk of collision with respect to the ground recognizable by two colorless and a green circular arc.
- -- -
B e z u g s z e i c h e n l i s t eC o m p a n c e m e n t i o n s
10 "Gelber" (dick rechts schraffierter) Kreisbogen10 "Yellow" (thick hatched right) circular arc
11 "Roter" (dick links schraffierter) Kreisbogen11 "Red" (thick left hatched) arc
12 "Grüner" (dünn schraffierter) Kreisbogen12 "Green" (thin hatched) arc
13 Farbloser Kreisbogen A Abtastbereich B Abtastbereich13 Colorless arc A Sample area B Sample area
C AbtastbereichC scanning range
D AbtastbereichD scanning range
E AbtastbereichE scanning range
HS Hubschrauber HS helicopter

Claims

P a t e n t a n s p r ü c h eP a n t a n s p r e c h e
Verfahren zum rundum Erkennen von Hindernissen innerhalb des Bewegungsraumes eines Hubschraubers unter Verwendung von dem Hubschrauber zugeordneten Radar- und Laser- und/oder Ultraschall-Sensoren mit folgenden Schritten:Method for detecting all obstacles within the range of motion of a helicopter using helicopter-associated radar and laser and / or ultrasound sensors, comprising the following steps:
Die Reichweiten der zur Anwendung gelangenden Sensoren werden in Abhängigkeit des zu überwachenden Bewegungsraumes und der Installationsorte der Sensoren am Hubschrauber ge- wählt,The ranges of the sensors used are selected as a function of the movement space to be monitored and the installation locations of the sensors on the helicopter,
den Sensoren werden vorbestimmte, auf den Abtastraum bezogene Abtastbewegungen aufgeprägt,the sensors are given predetermined scanning movements related to the scanning space,
- alle durch Reflexionen erhaltenen Messsignale der Sensoren mit ihren absoluten Positionen werden nach individueller, nach Abtasträumen geordneter Signalauswertung jeweils hinsichtlich Entfernung und Richtung gemeinsam auf die Position des Hubschraubers bezogen und nach Bestimmen der Reflexionsdichte im Bewegungsraum des Hubschraubers als empfangenes Reflexionsfeld einer gemeinsamen Datenbank zugeführt zwecks Fusion aller Reflexionsfelder und Ver- - -- All received by reflections measuring signals of the sensors with their absolute positions are based on individual, arranged by scanning signal evaluation in terms of distance and direction together on the position of the helicopter and fed after determining the reflection density in the space of movement of the helicopter as a received reflection field of a common database for the purpose of fusion of all reflection fields and - -
gleich mit in der Datenbank gespeicherten Mustern, wobei mittels nachfolgender algorithmischer Auswertung die Gesamtsituation des zu überwachenden Bewegungsraumes ermittelt und im Cockpit des Hubschraubers als Gesamtbild zursame with stored in the database patterns, which determined by means of subsequent algorithmic evaluation of the overall situation of the movement space to be monitored and in the cockpit of the helicopter as a whole
Anzeige gebracht wird.Display is brought.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass für die Messsignale eines jeden Sensortyps entsprechend den physikalischen Eigenschaften und des zugeordneten Reflexionsfeldes eine individuelle Signalauswertung jeder Objekterkennung durchgeführt wird, ehe diese in der Datenbank abgelegt wird.2. The method according to claim 1, characterized in that for the measurement signals of each sensor type corresponding to the physical properties and the associated reflection field, an individual signal evaluation of each object recognition is performed before it is stored in the database.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass beim Auftreten von Reflexionsmustern in einem der Bewegungsräume geprüft wird, ob in einem Po- stierungsbereich der nach Entfernung und Richtung ermittelt ist, beide Sensorenarten gleiche oder ähnliche Reflexionen erfasst haben, die über den3. The method according to claim 1, characterized in that it is checked in the occurrence of reflection patterns in one of the movement spaces, whether in a Po- stierungsbereich determined by distance and direction, both types of sensors have the same or similar reflections recorded over the
Algorithmus als Hindernis bestimmt werden, während bei unstrukturierten Reflexen dies als kollisionsfreier Raum gewertet wird.Algorithm can be determined as an obstacle, while in unstructured reflections this is considered as a collision-free space.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass nach Ablage eines Reflexionsfeldes in der Datenbank durch weitere algorithmische Auswertung geprüft wird, ob es sich bei dem detektierten Objekt um ein und dasselbe oder ob es sich um unterschied- liehe oder eng beieinander stehende Objekte handelt. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die ermittelte Gesamtsituation als in Richtung und relativer Entfernung der reflektierenden Objekte im Bewegungsraum des Hubschraubers als farbco- dierte Kreisbogenabschnitte deren Mittelpunkt der Schwerpunkt des Hubschraubers ist, im Cockpit dargestellt wird. 4. The method according to claim 1, characterized in that is checked after filing a reflection field in the database by further algorithmic evaluation, whether the detected object is one and the same or whether it is different Liehe or closely related objects , A method according to claim 1, characterized in that the determined overall situation as in the direction and relative distance of the reflecting objects in the range of motion of the helicopter as color-coded circular arc sections whose center is the center of gravity of the helicopter is shown in the cockpit.
PCT/DE2008/000505 2007-03-26 2008-03-25 All-around collision warning method for helicopters WO2008116456A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007014878.1 2007-03-26
DE102007014878A DE102007014878A1 (en) 2007-03-26 2007-03-26 Method for all-around collision warning for helicopters

Publications (1)

Publication Number Publication Date
WO2008116456A1 true WO2008116456A1 (en) 2008-10-02

Family

ID=39691192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2008/000505 WO2008116456A1 (en) 2007-03-26 2008-03-25 All-around collision warning method for helicopters

Country Status (2)

Country Link
DE (1) DE102007014878A1 (en)
WO (1) WO2008116456A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011136707A1 (en) * 2010-04-27 2011-11-03 Saab Ab Helicopter obstacle detection and information system
US8473189B2 (en) 2008-11-18 2013-06-25 Deutsches Zentrum für Luft- und Raumfahrt e.V. Helicopter having collision avoidance apparatus
US9214088B2 (en) 2012-06-06 2015-12-15 Airbus Helicopters Deutschland GmbH Obstacle information system of a helicopter
CN106007799A (en) * 2016-05-18 2016-10-12 中国人民解放军国防科学技术大学 Radar and infrared compatible stealth material based double-layer frequency selective surface and preparation method of radar and infrared compatible stealth material
CN106003864A (en) * 2016-05-18 2016-10-12 中国人民解放军国防科学技术大学 High-temperature-resistant radar and infrared compatible stealth material based on frequency selective surface and preparation method of high-temperature-resistant radar and infrared compatible stealth material
CN106042515A (en) * 2016-05-18 2016-10-26 中国人民解放军国防科学技术大学 Sandwich-structure high-temperature-resistant radar wave-absorbing material and preparation method thereof
CN106427115A (en) * 2016-09-21 2017-02-22 中国人民解放军国防科学技术大学 High temperature resistant radar and infrared compatible stealth material based on double-layer metamaterials and preparation method of stealth material
CN107085215A (en) * 2009-05-20 2017-08-22 贝尔直升机泰克斯特龙公司 Collision free and warning system
US9911344B2 (en) 2015-07-24 2018-03-06 Honeywell International Inc. Helicopter landing system using a camera for obstacle detection
WO2023082283A1 (en) * 2021-11-15 2023-05-19 深圳市大疆创新科技有限公司 Obstacle avoidance method and apparatus for movable platform, movable platform, and storage medium

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009035191B4 (en) * 2009-07-29 2013-07-25 Eads Deutschland Gmbh Method of generating a sensor-based, synthetic view of helicopter landing assistance under brown-out or white-out conditions
DE102009045755B4 (en) * 2009-10-16 2013-11-07 Esg Elektroniksystem- Und Logistik Gmbh Method and apparatus for conflict detection
CN103824478B (en) * 2014-03-05 2015-12-09 中国民用航空飞行学院 Airport flashpoint recognition methods
CN104916168B (en) * 2015-06-03 2017-11-07 南京莱斯信息技术股份有限公司 The conflict evading system and bypassing method of airdrome scene moving target
FR3041767A1 (en) * 2015-09-25 2017-03-31 Airbus Helicopters OBSTACLE DETECTION METHOD AND VEHICLE PROVIDED WITH AN OBSTACLE DETECTION SYSTEM
CN110471066B (en) * 2019-07-25 2022-04-05 东软睿驰汽车技术(沈阳)有限公司 Position determination method and device
DE102020212433A1 (en) 2020-10-01 2022-04-07 Zf Friedrichshafen Ag Computing device for an automated vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3106100A1 (en) * 1981-02-19 1982-09-09 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Obstacle warning device for aerospace or water vehicles
US5371581A (en) * 1993-03-08 1994-12-06 Schwartz Electro-Optics, Inc. Helicopter obstacle warning system
JP2001215276A (en) * 2000-02-03 2001-08-10 Tamagawa Seiki Co Ltd Helicopter anti-collision warning method and device
DE10015164A1 (en) * 2000-03-27 2001-10-11 Helmut Klausing ROSAR communication method for obstacle detection in helicopter, involves merging heliradar laser-radar sensor data with registered data of on-board-intrinsic database for display of flight path and landing location
WO2002088770A2 (en) * 2001-04-26 2002-11-07 Eads Deutschland Gmbh Method for recognizing and identifying objects
EP1348981A2 (en) * 2002-03-28 2003-10-01 Rosemount Aerospace Inc. Distributed laser obstacle awareness system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3106100A1 (en) * 1981-02-19 1982-09-09 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Obstacle warning device for aerospace or water vehicles
US5371581A (en) * 1993-03-08 1994-12-06 Schwartz Electro-Optics, Inc. Helicopter obstacle warning system
JP2001215276A (en) * 2000-02-03 2001-08-10 Tamagawa Seiki Co Ltd Helicopter anti-collision warning method and device
DE10015164A1 (en) * 2000-03-27 2001-10-11 Helmut Klausing ROSAR communication method for obstacle detection in helicopter, involves merging heliradar laser-radar sensor data with registered data of on-board-intrinsic database for display of flight path and landing location
WO2002088770A2 (en) * 2001-04-26 2002-11-07 Eads Deutschland Gmbh Method for recognizing and identifying objects
EP1348981A2 (en) * 2002-03-28 2003-10-01 Rosemount Aerospace Inc. Distributed laser obstacle awareness system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8473189B2 (en) 2008-11-18 2013-06-25 Deutsches Zentrum für Luft- und Raumfahrt e.V. Helicopter having collision avoidance apparatus
CN107085215A (en) * 2009-05-20 2017-08-22 贝尔直升机泰克斯特龙公司 Collision free and warning system
WO2011136707A1 (en) * 2010-04-27 2011-11-03 Saab Ab Helicopter obstacle detection and information system
US9214088B2 (en) 2012-06-06 2015-12-15 Airbus Helicopters Deutschland GmbH Obstacle information system of a helicopter
US9911344B2 (en) 2015-07-24 2018-03-06 Honeywell International Inc. Helicopter landing system using a camera for obstacle detection
CN106007799A (en) * 2016-05-18 2016-10-12 中国人民解放军国防科学技术大学 Radar and infrared compatible stealth material based double-layer frequency selective surface and preparation method of radar and infrared compatible stealth material
CN106003864A (en) * 2016-05-18 2016-10-12 中国人民解放军国防科学技术大学 High-temperature-resistant radar and infrared compatible stealth material based on frequency selective surface and preparation method of high-temperature-resistant radar and infrared compatible stealth material
CN106042515A (en) * 2016-05-18 2016-10-26 中国人民解放军国防科学技术大学 Sandwich-structure high-temperature-resistant radar wave-absorbing material and preparation method thereof
CN106007799B (en) * 2016-05-18 2018-07-31 中国人民解放军国防科学技术大学 Radar & infrared stealth materials and preparation method thereof based on double-layer frequency selective surfaces
CN106427115A (en) * 2016-09-21 2017-02-22 中国人民解放军国防科学技术大学 High temperature resistant radar and infrared compatible stealth material based on double-layer metamaterials and preparation method of stealth material
WO2023082283A1 (en) * 2021-11-15 2023-05-19 深圳市大疆创新科技有限公司 Obstacle avoidance method and apparatus for movable platform, movable platform, and storage medium

Also Published As

Publication number Publication date
DE102007014878A1 (en) 2008-10-02

Similar Documents

Publication Publication Date Title
WO2008116456A1 (en) All-around collision warning method for helicopters
DE102006053354B4 (en) All-round warning system for helicopters
EP1653250B1 (en) Integrated system for aircraft vortex safety
EP0634669B1 (en) Method for classifying an object and application thereof
DE102008014330A1 (en) Obstacle detection system, in particular for an anti-collision system
DE102009035191B4 (en) Method of generating a sensor-based, synthetic view of helicopter landing assistance under brown-out or white-out conditions
WO2009047292A1 (en) Device for detecting a vehicle on an airport runway
DE102005047273B4 (en) Method for supporting low-level flights
DE102008029613A1 (en) A method of estimating the elevation of a target object using a radar data fusion
DE3939731A1 (en) AUTONOMOUS LANDING SYSTEM
DE10120537A1 (en) Procedure with an interferometric ROSAR device
DE4140406C2 (en) Procedures for orienting, navigating, guiding and monitoring aircraft
EP1595237B1 (en) System for monitoring airport areas
EP2634597B1 (en) Method for detecting obstacles in restricted visibility
EP2485064A1 (en) Laser systems and control of same
WO2011157723A1 (en) System and method for collision avoidance
DE102008024308B4 (en) Method for detecting non-cooperative aviation on board an aircraft
EP0273326B1 (en) Landing-aid system for aircraft having its own on-board radar
WO2012069629A2 (en) Flight guidance system
DE10015164A1 (en) ROSAR communication method for obstacle detection in helicopter, involves merging heliradar laser-radar sensor data with registered data of on-board-intrinsic database for display of flight path and landing location
DE102017219537A1 (en) Airplane and arrangement comprising an aircraft
EP3159868B1 (en) Method for producing a dodge recommendation for a vehicle
EP0822423A2 (en) Method and system for detecting a target
DE19614798A1 (en) Geographical, multistatic three=dimensional measuring platform
Waanders et al. Miniaturized and low-cost obstacle warning system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08757922

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 08757922

Country of ref document: EP

Kind code of ref document: A1