WO2008114527A1 - Health management system for ruminant animal, health management method for ruminant animal and collar for health management system for ruminant animal - Google Patents

Health management system for ruminant animal, health management method for ruminant animal and collar for health management system for ruminant animal Download PDF

Info

Publication number
WO2008114527A1
WO2008114527A1 PCT/JP2008/050837 JP2008050837W WO2008114527A1 WO 2008114527 A1 WO2008114527 A1 WO 2008114527A1 JP 2008050837 W JP2008050837 W JP 2008050837W WO 2008114527 A1 WO2008114527 A1 WO 2008114527A1
Authority
WO
WIPO (PCT)
Prior art keywords
ruminant
temperature
acceleration
data
health management
Prior art date
Application number
PCT/JP2008/050837
Other languages
French (fr)
Japanese (ja)
Inventor
Masahiro Okamoto
Subom Park
Original Assignee
Orion Machinery Co., Ltd.
Hokkaido Technology Licensing Office Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orion Machinery Co., Ltd., Hokkaido Technology Licensing Office Co., Ltd. filed Critical Orion Machinery Co., Ltd.
Publication of WO2008114527A1 publication Critical patent/WO2008114527A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K29/00Other apparatus for animal husbandry
    • A01K29/005Monitoring or measuring activity, e.g. detecting heat or mating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61DVETERINARY INSTRUMENTS, IMPLEMENTS, TOOLS, OR METHODS
    • A61D17/00Devices for indicating trouble during labour of animals ; Methods or instruments for detecting pregnancy-related states of animals
    • A61D17/002Devices for indicating trouble during labour of animals ; Methods or instruments for detecting pregnancy-related states of animals for detecting period of heat of animals, i.e. for detecting oestrus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61DVETERINARY INSTRUMENTS, IMPLEMENTS, TOOLS, OR METHODS
    • A61D17/00Devices for indicating trouble during labour of animals ; Methods or instruments for detecting pregnancy-related states of animals
    • A61D17/008Devices for indicating trouble during labour of animals ; Methods or instruments for detecting pregnancy-related states of animals for detecting birth of animals, e.g. parturition alarm

Definitions

  • the present invention relates to a ruminant health management system, a ruminant health management method, and a ruminant health management system collar, and is applied to, for example, grasping the health status of cattle, the timing of estrus and parturition. It is suitable. Background art
  • Reference 1 suspends a cow food intake measurement device including a motion detection sensor from the cow's neck with a belt, detects the foraging movement using this motion detection sensor, and calculates the amount of food consumed by this cow from the number of detections of this foraging movement.
  • Techniques for computing and recording are disclosed.
  • Reference 2 describes an accelerometer that is attached to the opposite side of the leg of the animal's spine and that detects acceleration and outputs acceleration data. It is disclosed that a configuration is provided that includes a data memory that stores time-series data and an analysis unit that is connected to the data memory and outputs step count data obtained by analyzing acceleration data every predetermined time.
  • Reference 3 describes an apparatus for investigating the chewing situation of a ruminant animal, a mastication motion detection means for detecting the mastication behavior of the ruminant animal to be investigated, which is attached to the ruminant subject of the investigation, It is disclosed that the apparatus includes a mastication action recording unit that records a detection result.
  • Reference 4 attaches a frequency meter that senses the up and down movement caused by eating this herbivorous animal in the lower jaw of the herbivorous animal, counts the number of times, and the signal from the frequency meter is recorded over time. It is disclosed to detect foraging behavior such as foraging time, foraging time, and foraging amount of herbivorous livestock.
  • Document 5 discloses a method for monitoring the physiological condition of a ruminant or the suitability of a feed by installing a sound sensor on the neck of a ruminant such as a cow and detecting a mastication behavior on a throat and detecting a chewing behavior. ing.
  • the sound sensor is classified according to the number of chewing actions in the unit time during eating and rumination, and the spout sensor is an assist.
  • Reference 6 describes an estrus detection device that has an estrus behavior measurement means that is attached to a cow's neck and measures the frequency of estrus behavior, and an estrus cow detection means that detects an estrus cow based on the measurement results of the estrus behavior measurement means.
  • the estrus behavior measuring means is scrambled with a collar, an acceleration sensor and an angle sensor for measuring the number of times of riding based on the inclination of the body, and an ultrasonic transmission unit for transmitting ultrasonic waves when riding.
  • the estrus cow detection means includes a first analysis section and a second analysis section for selecting an estrus cow based on the measurement result transmitted by the estrus behavior measurement means.
  • a device having an analysis unit and an output unit for outputting the analysis result of each analysis unit is disclosed.
  • the problem to be solved by the present invention is to manage the health of ruminants, which can easily grasp the health status of ruminants such as cattle and the timing of estrus and delivery without burdening the ruminants. It is to provide a system, a ruminant health care method and a ruminant health care system collar. Disclosure of the invention
  • ruminants such as cows lower their heads when eating and raise their heads when ruminating, and put them on ruminants.
  • An acceleration sensor or temperature sensor is attached to the collar, and the acceleration in the front-rear direction when viewed from the ruminant is measured by the acceleration sensor, or the temperature of the lower jaw and body of the ruminant and the temperature of the lower jaw and the body
  • the temperature sensor By measuring the difference with the temperature sensor, it is possible to easily grasp the status of foraging / rumination, and based on this grasping result, it is possible to grasp the health status of ruminants, the timing of estrus and delivery, etc. I found it possible.
  • the first invention is a first invention. That is, in order to solve the above problem, the first invention is a first invention.
  • An acceleration sensor that is attached to a collar fitted to the ruminant's neck and that measures acceleration in the longitudinal direction when viewed from the ruminant and / or a temperature sensor that measures the temperature of the lower jaw and body of the ruminant. It is a ruminant health management system.
  • This ruminant health care system typically includes a memory for recording acceleration data and / or temperature data measured by an acceleration sensor and / or a temperature sensor, and an acceleration data recorded in the memory. And / or external output means for outputting temperature data to the outside.
  • Various memories such as a semiconductor memory and a magnetic memory can be used as the memory.
  • the external output means is preferably wireless radio wave communication.
  • the acceleration data and Z or temperature data measured by the acceleration sensor and / or temperature sensor are transmitted as radio waves.
  • this ruminant health management system typically includes a receiving device that receives data transmitted by radio waves, and data transmitted by connecting to the receiving device.
  • the collar is movable according to the vertical movement of the ruminant's head, and is generated by the movement of the collar during rumination or foraging, by an acceleration sensor attached to the collar in the longitudinal direction as seen from the ruminant. measure.
  • an acceleration sensor attached to the collar in the longitudinal direction as seen from the ruminant. measure.
  • the ruminant health management system for example, if the acceleration data measured by the acceleration sensor shows a positive value that exceeds a predetermined value (threshold value) continuously for a certain period of time, the ruminant is in the foraging state, constant Predetermined over time
  • the ruminant can be judged to be ruminant if it shows a negative value less than the value, and the ruminant can be judged to be resting if it shows a value within a predetermined range for a certain period of time.
  • This predetermined value may vary from individual to individual. If the pattern of acceleration data measured by the acceleration sensor and the pattern of accumulated acceleration data of the same individual in the same time zone are different from each other, it is possible to determine that the rubbing object is in an abnormal state. In other words, if the pattern of acceleration data measured by the acceleration sensor is different from the pattern of acceleration data accumulated over a certain period, it can be determined that some abnormality has occurred. Furthermore, when the pattern shows such that the difference between the acceleration data and the accumulated acceleration data exceeds a predetermined value, the ruminant can be determined to be in the estrus state. This predetermined value may vary from individual to individual.
  • the collar also moves the temperature sensor closer to the ruminant's body when the ruminant's head is raised vertically, and the temperature sensor moves to the lower jaw of the ruminant when the ruminant's head is lowered vertically. It is attached to approach. For example, if the difference in ruminant mandibular temperature relative to the temperature of the ruminant body measured by the temperature sensor is positive, the ruminant is in the foraging state, and if it is negative, the ruminant is ruminant. Can be determined as a rumination. Further, when the temperature difference data pattern and the accumulated temperature difference data pattern of the same individual in the same time zone are different from each other, the ruminant can be determined to be in an abnormal state.
  • the rubbing object when the difference between the temperature difference data and the accumulated temperature difference data shows a pattern that exceeds a predetermined value, the rubbing object can be determined to be in the estrus state.
  • This predetermined value may vary from individual to individual.
  • the ruminant when a pattern in which the difference between the temperature difference data and the accumulated temperature difference data is below a predetermined value is shown, the ruminant can be determined to be in a poor physical condition or a state immediately before delivery.
  • This predetermined value is May vary from body to body.
  • the first invention is a first invention.
  • a ruminant health management method characterized by managing the health of the ruminant based on acceleration data and / or temperature data measured by the acceleration sensor and / or the temperature sensor.
  • the third invention is a first invention.
  • a ruminant health management system comprising an acceleration sensor for measuring longitudinal acceleration when viewed from the ruminant and / or a temperature sensor for measuring the temperature of the lower jaw and body of the ruminant. It is a collar for the mud.
  • Ruminants are vertebrate cloven hoofs that swallow food once swallowed and chewed (finely crushed) and then swallowed.
  • cattle including dairy and beef cattle
  • buffalo Java beef, panthen, yak, hidge, goat, antelope, deer, gazelle, giraffe, camel, llama, alpaca, guanaco, vicu ⁇ a, mamji power, rat power, etc. It is not a thing.
  • FIG. 1 is a schematic diagram showing the overall configuration of a ruminant health management system according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing a collar to which an acceleration / temperature measurement module used in a ruminant health management system according to an embodiment of the present invention is attached.
  • FIG. 3 is a schematic diagram showing a ruminant wearing a collar in a standing state in the ruminant health management system according to the embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing a ruminant wearing a collar foraging in a ruminant health management system according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing a ruminant wearing a collar performing rumination in the ruminant health management system according to the embodiment of the present invention.
  • FIG. 6 is a schematic diagram showing a configuration example of a ruminant health management system according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram showing a result of measuring acceleration in the ruminant health management system according to the embodiment of the present invention.
  • FIG. 8 is a schematic diagram showing a result of measuring acceleration in the ruminant health management system according to the embodiment of the present invention.
  • FIG. 9 is a schematic diagram showing a moving average of accelerations measured in the ruminant health management system according to the first embodiment of the present invention.
  • FIG. 10 is a schematic diagram showing a double moving average of accelerations measured in a ruminant health management system according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram showing a moving average of accelerations measured in the ruminant health management system according to one embodiment of the present invention.
  • FIG. 12 is a schematic diagram showing the results of measuring acceleration in a ruminant health management system according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram showing the results of measuring acceleration in a ruminant health management system according to an embodiment of the present invention.
  • FIG. 14 is a schematic diagram showing a moving average of accelerations measured in the ruminant health management system according to one embodiment of the present invention.
  • FIG. 15 is a schematic diagram showing a moving average of accelerations measured in a ruminant health management system according to an embodiment of the present invention.
  • FIG. 16 is a schematic diagram showing the results of measuring acceleration in a ruminant health management system according to an embodiment of the present invention.
  • FIG. 17 is a schematic diagram showing the results of measuring the ruminant acceleration in the ruminant health care system according to the embodiment of the present invention.
  • FIG. 18 is a schematic diagram showing a moving average of accelerations measured in a ruminant health management system according to an embodiment of the present invention.
  • FIG. 19 is a schematic diagram showing the results of measuring acceleration in the ruminant health care system according to the embodiment of the present invention.
  • FIG. 20 is a schematic diagram showing the results of measuring acceleration in the ruminant health care system according to the embodiment of the present invention.
  • FIG. 21 is a schematic diagram showing a moving average of accelerations measured in the ruminant health management system according to the embodiment of the present invention.
  • FIG. 22 is a schematic diagram showing the results of measuring temperature in the ruminant health management system according to one embodiment of the present invention.
  • FIG. 23 is a schematic diagram showing the results of measuring temperature in a ruminant health management system according to an embodiment of the present invention.
  • FIG. 24 is a schematic diagram showing the results of measuring the temperature in the ruminant health care system according to one embodiment of the present invention.
  • FIG. 25 is a schematic diagram showing the results of measuring temperature in the ruminant health care system according to one embodiment of the present invention.
  • FIG. 26 is a schematic diagram showing the results of measuring temperature in the ruminant health management system according to one embodiment of the present invention.
  • FIG. 27 is a schematic diagram showing the results of measuring temperature in the ruminant health management system according to one embodiment of the present invention.
  • FIG. 28 is a schematic diagram showing the results of measuring temperature in the ruminant health management system according to one embodiment of the present invention.
  • FIG. 29 is a schematic diagram showing the results of measuring temperature in a ruminant health care system according to one embodiment of the present invention.
  • FIG. 30 is a schematic diagram showing the results of measuring temperature in a ruminant health management system according to an embodiment of the present invention.
  • FIG. 31 is a schematic diagram showing the results of measuring temperature in a ruminant health care system according to an embodiment of the present invention.
  • FIG. 32 is a schematic diagram showing the results of measuring temperature in the ruminant health care system according to the embodiment of the present invention.
  • FIG. 33 is a schematic diagram showing the results of measuring acceleration in the ruminant health management system according to the embodiment of the present invention.
  • FIG. 34 is a schematic diagram showing a moving average of accelerations measured in a ruminant health management system according to an embodiment of the present invention.
  • FIG. 1 shows the overall configuration of a ruminant health management system according to this embodiment.
  • a collar 13 having an acceleration / temperature measurement module 11 attached to a neck 11a of a ruminant 11 to be managed is fitted.
  • This collar 1 3 is a ruminant 1 1 Acceleration / temperature measurement module that is configured to be movable when the head 1 1 b moves in the vertical direction during foraging and rumination, and is attached to the lower part of this collar 1 3 1 2 is ruminant 1 1 It can move forward and backward as viewed from 1.
  • This acceleration / temperature measurement module 1 2 measures the acceleration in the front-rear direction as seen from the ruminant 1 1 b generated in response to the vertical movement of the head 1 1 b of the ruminant 1 and the ruminant 1 1 for measuring the temperature of the lower jaw 1 1 c and the body 1 1 d.
  • the acceleration data and temperature data measured by the acceleration / temperature measurement module 1 2 are recorded in, for example, a memory (not shown) built into the acceleration / temperature measurement module 1 2, and from this memory to wireless radio wave communication.
  • the receiving device 15 provided in the management center 14.
  • the acceleration data and temperature data received by the receiving device 15 are stored in the memory of the data processing device 16 and the acceleration data and temperature data are analyzed according to a predetermined algorithm. Based on the results, the ruminant 1 1 is managed for health.
  • Fig. 2 shows details of the collar 13 and acceleration / temperature measurement module 12.
  • the acceleration / temperature measurement module 12 is attached to the lowermost position of the collar 1 3 when the collar 1 3 is fitted to the neck 1 1 a of the ruminant 1 1.
  • the acceleration / temperature measurement module 12 includes an acceleration sensor 17 and a temperature sensor 18. Outside the acceleration / temperature measurement module 12, sensor portions 18 a and 18 b of the temperature sensor 18 are provided.
  • Sensor part 1 8a is used to measure the temperature of the ruminant part 1 1c of the ruminant 1 1
  • sensor part 1 8b is used to measure the temperature of the body part 1 1d connected to the neck of the ruminant 1 1 .
  • the diameter and width of the collar 1 3 are appropriately determined according to the thickness of the neck 1 1 a of the ruminant 1 1, but the acceleration sensor 1 7 and the temperature sensor 1 8 From the point of view of good measurement, it is generally better not to tighten the collar 13, which is convenient for the ruminant 1 1 management.
  • the diameter of the collar 1 3 is preferably such that when the ruminant 1 1 lifts the head and the collar 1 3 is pulled up, the collar 1 1 a and the collar 1 3 For example, a gap of 6 to 9 cm is selected between them, but the present invention is not limited to this.
  • Figure 3 shows the standing time when the ruminant 1 1 does not raise or lower the head 1 1 b. As shown in FIG. 3, in this state, neither the sensor unit 1 8a nor 1 8b of the acceleration / temperature measurement module 1 is in contact with the ruminant 1 1.
  • Figure 4 shows the ruminant 1 1 foraging with the head 1 1 b lowered.
  • the sensor part 1 8 a of the temperature sensor 1 8 of the acceleration / temperature measurement module 1 1 contacts the lower jaw part 1 1 c of the ruminant 1 1 and this lower jaw part 1 1 c temperature is measured.
  • Figure 5 shows the ruminant 1 1 ruminating with the head 1 1 b raised.
  • the sensor part 1 8 b of the acceleration / temperature measurement module 1 1 contacts the body part 1 1 d connected to the neck of the ruminant 1 1, and this body part 1 1 The temperature of d is measured.
  • FIG. 6 shows a specific example of the ruminant health management system.
  • acceleration data and temperature data measured by the acceleration sensor 1 7 and the temperature sensor 1 8 of the acceleration / temperature measurement module 1 2 are collected by the data collection and transmission unit 51.
  • the acceleration / temperature measurement module 1 2 contains or is connected to a processor, clock counter, memory, power supply, etc. as needed.
  • Data collection 'Transmission unit 5 The data transmitted from 1 is received by the receiving unit 6 1 of the management center 14 and stored in the memory of the computer 62.
  • the computer 62 analyzes these data according to a predetermined algorithm, and an alarm is generated by the computer 62 according to the result.
  • a server 63 is connected to the computer 62 so that the transmitted data and processed data can be stored.
  • the computer 6 2 is also connected to a monitor 6 4. Then, according to the monitoring result of the monitor 6 4, an alarm is issued by the alarm device 6 5, or it can be displayed by the indicator light 6 6. Next, we will explain how to use this ruminant health management system.
  • acceleration data and / or temperature data are measured by the acceleration / temperature measurement module 12 attached to the collar 1 3 fitted to the neck 1 la of the ruminant 1 1 to be managed.
  • the acceleration data is measured from the longitudinal movement of the acceleration sensor 17 of the acceleration / temperature measurement module 12.
  • the temperature data is measured when the sensor parts 1 8 a and 1 8 b of the temperature sensor 1 8 of the acceleration / temperature measurement module 1 2 are in contact with the lower jaw part 1 1 c and the body part 1 1 d, respectively. .
  • only the maximum value per unit time of acceleration data and / or temperature data measured by the acceleration / temperature measurement module 12 is taken into the memory.
  • Measurement of acceleration and temperature may be performed, for example, every second, but ingestion into memory, specifically, for example, every minute or every two minutes, there is little difference, and foraging And rumination behavior can be detected, but when making a judgment, for example, taking a moving average every 5 to 10 minutes will accelerate
  • the acceleration data and temperature data thus captured in the memory are received by the receiving device 15 provided in the management center 14 by wireless radio wave communication, and the data processing device 16 follows a predetermined algorithm. Analysis is performed, and based on the results, the health status of ruminants 1 1, estrus and parturition of labor are ascertained.
  • Acceleration was measured using a 3-axis acceleration sensor as the acceleration sensor 1 7 of the acceleration / temperature measurement module 1 2.
  • a 3-axis acceleration sensor (G—MENDR 0 2) manufactured by Slick Co., Ltd. was used.
  • One axis of this 3-axis accelerometer was aligned in the front-rear direction when viewed from ruminant 1 1 and only this one axis was used.
  • the three-axis acceleration sensor has a height of 75 mm, a width of 60 mm, a depth of 32 mm, and a weight of 1 15 g including the battery.
  • This 3-axis accelerometer also comes with a temperature sensor.
  • Figures 7 and 8 show the measurement results of the acceleration (x) of cow N 0.1 and cow N o. 2 for 24 hours, and the vertical axis shows the measured acceleration (gravity acceleration G (9.8 m / s 2 ) The unit of time), the horizontal axis is time. Acceleration is the maximum acceleration measured at 1 minute intervals. We also observed these cows visually to observe their behavior.
  • Figures 7 and 8 show the time zone of rumination and the time zone of foraging, respectively. From Fig. 7 and Fig. 8, the cattle feed when the acceleration is positive. When the acceleration is negative, there is a tendency to be ruminant or to rest. The distinction between rumination and rest can be determined by the magnitude of the absolute value of acceleration (i XI).
  • Figures 7 and 8 also show the temperature measurement results of the temperature sensor attached to the 3-axis accelerometer, but it depends on whether the temperature sensor is in contact with the ruminant. This temperature is the temperature near this temperature sensor. The temperature measurement results show that the temperature tends to be high during rumination and low during foraging.
  • FIG. 9 is a graph of the moving average of accelerations measured for cow N 0.2 shown in FIG.
  • FIG. 10 is a graph of the double moving average of accelerations measured for the cow N 0.2 shown in FIG.
  • the graph shown in Fig. 9 shows the moving average of the 5-minute moving average of the data shown in Fig. 8 taken every 5 minutes. A moving average of only 5 minutes may be used, but by taking a double moving average, the graph becomes smoother and easier to see as shown in Fig. 10. From FIG. 9 and FIG. 10, it can be seen that the determination of rumination or foraging can be made more clearly by taking the moving average of acceleration, or even the double moving average.
  • FIG. 11 is a graph of the moving average of the acceleration measured before and after the cow N 0.2 shown in FIG. From Fig. 11 it can be seen that taking a moving average makes it possible to more clearly determine whether rumination or foraging.
  • Figure 1 shows the measurement results of acceleration measured for 14 hours for cattle N0.1.
  • Fig. 13 shows the measurement results of acceleration measured for 24 hours for cattle N 0.3.
  • Figures 14 and 15 are measured for 14 hours for cattle N 0.4. A graph of the moving average of the measured accelerations. Figures 14 and 15 are continuous in time.
  • Figures 16 and 17 show the measurement results of acceleration before and after estrus for cattle No. 5 in estrus. Figures 16 and 17 are continuous in time. From Fig. 16 and Fig. 17 it can be seen that foraging and rumination time are clearly reduced with estrus.
  • FIG. 18 is a graph of the moving average of accelerations measured for the cow N 0.5 shown in FIGS. 16 and 17. From Fig. 18, it can be seen that the estrus behavior can be determined more clearly by taking the moving average.
  • Figures 19 and 20 show the measurement results of acceleration during and after estrus for cattle N 0.6 during estrus. Figures 19 and 20 are continuous in time.
  • FIG. 11 is a graph of the moving average of accelerations measured for cow N 0.6 shown in FIGS. 19 and 10. From Fig. 21, it can be seen that the estrus behavior can be judged more clearly by taking the moving average.
  • the optimal timing for artificial insemination is 4 to 12 hours after the start of estrus, 16 hours at the latest, or 4 hours after the start of estrus to 8 hours after the end of estrus (estrus duration is approximately 12 hours) It is desirable to insemination before, so that the timing of artificial insemination is not missed.
  • the ruminant when the acceleration data measured by the acceleration sensor shows a positive value continuously exceeding a predetermined value for a certain period of time, the ruminant is in a fed state and continues for a certain period of time. Indicates negative value below the value If the ruminant is in a ruminant state, and if it shows a value within a predetermined range for a certain period of time, the ruminant can be determined to be in a resting state. In addition, if the pattern of acceleration data measured by the acceleration sensor and the pattern of accumulated acceleration data of the same individual in the same time zone are different from each other, they are repulsive.
  • An object can be determined to be in an abnormal state. Furthermore, when the pattern shows such that the difference between the acceleration data and the accumulated acceleration data exceeds a predetermined value, the ruminant can be determined to be in the estrus state.
  • the temperature was measured using a 2-channel temperature data garage (R T R — 7 1) manufactured by Tiandi Co., Ltd. as the temperature sensor 1 8 of the acceleration / temperature measurement module 1 2.
  • the external dimensions of this temperature data port girder are 92 mm high, 66 mm wide, 35 mm deep, and weigh approximately 120 g including batteries.
  • Figure 22 shows the results of measuring the jaw side temperature, body side temperature, and outside air temperature of a healthy cattle N 0.7 grazed on the pasture, and is a 24-hour measurement day.
  • Fig. 23 plots the temperature difference obtained by subtracting the body temperature from the jaw side temperature of cow N 0.7 in Fig. 22.
  • Figure 23 also shows the results of visual observation of the behavior of these 20 cattle No. 7. From Fig. 23, it can be seen that the jaw side temperature rises when eating, the body side temperature rises when lying down, and neither the jaw side temperature nor the body side temperature changes when standing.
  • FIG. 14 shows the results of measuring the jaw side temperature and body side temperature of cattle N 0.8 before and after estrus, and is 60-hour measurement data.
  • FIG. 25 shows the temperature difference obtained by subtracting the body side temperature from the jaw side temperature of cattle No. 8 in FIG. 25 24.
  • Figure 25 shows the behavior of this cow N 0.8 with the naked eye. The results are also shown. From Fig. 25, it can be seen that there is a characteristic difference in the pattern of temperature change between Day 1 when mucus secretion is observed and Day 2 when estrus occurs.
  • Fig. 26 shows the measurement results of the jaw side temperature, body side temperature, and outside air temperature of cattle No. 9 before parturition, and is measured data for 24 hours.
  • Fig. 7 plots the temperature difference obtained by subtracting the body temperature from the jaw side temperature of cattle N 0.9 in Fig. 26. As can be seen from FIG. 26, no change in body temperature was observed between 5 o'clock and 18 o'clock. Delivery was 2 2:54.
  • FIG. 28 shows the measurement results of the jaw and body temperatures and the outside air temperature of sick (hypocalcemic) cattle No. 10 with 24 hours of measurement data.
  • FIG. 29 plots the temperature difference obtained by subtracting the body side temperature from the jaw side temperature of cow No. 10 in FIG. Figure 29 also shows the results of macroscopic observation of the behavior of this cow No. 10.
  • the jaw side temperature rises when eating, the body side temperature rises when lying down, and neither the jaw side temperature nor the body side temperature changes when standing.
  • Figure 19 in sick cattle, foraging was 11%, standing rumination was 16%, recumbent rumination was 2%, standing rest was 39%, and lying rest was 31%. They often stand up due to their poor physical condition, with a rest rate of 70%, and sick cows are often standing.
  • Fig. 30 shows the results of measuring the jaw side temperature, body side temperature and outside air temperature of cattle N 0.11 1 for high lactating cows, and the measurement data for 24 hours.
  • Fig. 31 plots the temperature difference obtained by subtracting the body temperature from the jaw side temperature of cattle No. 11 in Fig. 30.
  • Fig. 31 also shows the results of macroscopic observation of the behavior of this cow No. 11. As can be seen from Fig. 31, the temperature on the jaw side rises when eating, the body temperature rises when lying down, Neither the jaw side temperature nor the body side temperature changes when standing.
  • Fig. 3 2 shows the above-mentioned estrus cows (cow No. 8), calving cows (cow No. 9), sick cattle (cow N 0.10) and high-lactating cows (cow No. ll). Indicates the temperature difference between individuals.
  • the temperature on the chin side increased during foraging, and the temperature on the body side increased during rumination and rest. This trend becomes even clearer in the temperature difference data, and the influence of outside air temperature can be eliminated. Cattle foraging, standing and lying behavior can be predicted from this temperature difference data.
  • the pattern of temperature difference data changed due to less feeding and rumination, and in the case of norikura, the temperature sensor was pressed against the body, so a significant increase in temperature was observed.
  • the ruminant's mandibular temperature difference with respect to the body temperature of the ruminant measured by the temperature sensor shows a positive value. If this value is indicated, the ruminant can be determined to be in a ruminant state. Also, same as temperature difference data pattern A ruminant can be determined to be in an abnormal state when the patterns of accumulated temperature difference data in the same time zone differ from each other. Furthermore, when the pattern shows that the difference between the temperature difference data and the accumulated temperature difference data exceeds a predetermined value, the ruminant can be determined to be in the estrus state. Furthermore, if the difference between the temperature difference data and the accumulated temperature difference data shows a pattern that is below a predetermined value, the ruminant can be determined to be in a poor physical condition or just before delivery.
  • Tables 1 and 2 show the measurement results of the number of impacts every 3 hours. In the time of day within Table 1 and Table 2, for example, 0-3 means from midnight to 3:00 am.
  • the thresholds were 15 m / s 2 for cattle N 0.5 and 25 m / s 2 for cats No 1 .2 to No 1 .4.
  • the time period underlined the number of impacts is in estrus. Estrus of cows in free stall barns N 0.5, N o .1 2 to N o .1 4 ranged in duration from 9 to 20 hours. 9 am to 12 am in the morning
  • cattle No. 5 began estrus after 9 am on the first day and ended at around 6 pm. In this case, the average number of impacts every three hours before, during and after estrus is 3.3, 14.3, and 1.8, respectively. It can also be seen that cow N 0. 1 2 began estrus after 6 am on the fourth day and ended at around 9 pm. In this case, the average number of impacts every three hours before, during, and after estrus is 1.9, 13.3, and 2.6, respectively. From Table 2, it can be seen that cattle N 0.13 began estrus at about 3:00 pm on the second day and ended at about 1 1:00 am on the third day. In this case, the average number of impacts every three hours before, during and after estrus is 4.5, 2 9. 1 and 5.6, respectively.
  • cow N 0. 1 4 began estrus after midnight on the fourth day and ended at around 3 pm. In this case, the average number of impacts every three hours before, during and after estrus is 8.6, 21.8, and 8.1, respectively. It can be seen that cattle No. 1 3 has a longer estrus than cattle No. 5, cattle No. 1 2 and cattle No. 1 4.
  • Table 3 summarizes the average values of the number of impacts before, during and after estrus for each cow. As can be seen from Table 3, the number of impacts during estrus is greater than before and after, so the start time and duration of estrus can be detected from the number of impacts. Table 3 Cattle No. 5 Cattle No. 1 2 Cattle No. 1 3 Cattle No • 14 Before flatbed 3. 3 2. 9 4. 5 8. 6 4. 8 Medium 14.3 1 3. 3 29. 1 2 1. 8 19. 6 After clearing 1. 8 1. 6 5. 6 8. 1 4.5
  • Table 4 shows the results of experiments conducted to verify the estimation accuracy of foraging time and rumination time due to the impact of unrestrained cattle in free stall barns, and actual and estimated values of foraging time and rumination time. In addition, the ratio of the estimated value to the measured value (estimated value / measured value) is shown.
  • Four dairy cows (cow No. 3, No. 4, No. 15 and No. 16) owned by Dairy Gakuen University were used as ruminants 1 1.
  • Table 5 shows the results of experiments conducted to verify the accuracy of estimation of foraging time and rumination time due to impact of moored cattle in Tystall beef bowl, and actual values and estimations of foraging time and rumination time.
  • ruminants 1 four dairy cows (cow N 0. 17 to No. 20) owned by Rakuno Gakuen University were used.
  • cattle N 0. 4 1 and No. 4—2 show the case where measurements were taken over two consecutive days for cattle No 4.
  • the threshold varies from cow individual to cattle, but the foraging threshold is 2.5 to 3.5 m / s 2 , and the ruling threshold is 2.8 to 1 to 4.0 m / s 2 .
  • Table 6 shows the results of experiments conducted to verify the accuracy of estimation of feeding time and rumination time due to the impact of unrestrained cattle in free stall barns before and after estrus and immediately before parturition.
  • the measured and estimated time values and the ratio of the estimated value to the measured value are shown.
  • As the ruminant 1 1, three dairy cows (cow No 5, No 6, No 1) owned by Rakuno Gakuen University were used.
  • H_1, H-2 and H-3 represent the first day, second day and third day after the start of estrus, respectively.
  • -3 C,-2 C and-1 C are Indicate 3 days before, 2 days before, and 1 day before the start of delivery.
  • Fig. 33 shows the measurement results of the acceleration of cattle N 0.19 for 4 hours.
  • Figure 34 shows a graph of the moving average of the accelerations measured in this way.
  • the collar 1 3 fitted with the caro velocity / temperature measurement module 1 2 can be managed simply by fitting it to the neck 1 1 a of the ruminant 1 1, it does not require the labor of the user and is simple, Also, it is not necessary to put a burden on ruminants 1 1.
  • the ratio of foraging time to rumination time can be seen, it is possible to grasp the health status, estrus and pre-partum status of cattle. Also, by looking at the order of ruminant feeding, it is possible to determine the strength of individuals in the population.
  • the status of foraging / rumination can be ascertained regardless of the breeding method, that is, whether fleece, grazing or tying.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Animal Husbandry (AREA)
  • Pregnancy & Childbirth (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Environmental Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Fodder In General (AREA)

Abstract

A health management system for a ruminant animal comprising an acceleration sensor which is attached to a collar to be put on the neck of a ruminant animal for measuring the acceleration in the front-back direction in relation to the ruminant animal and/or a temperature sensor for measuring the temperatures at the lower jaw and the trunk of the ruminant animal. Based on the acceleration data and/or temperature data measured by the acceleration sensor and/or temperature sensor, the health conditions and the rutting or childbirth time of the ruminant animal are understood.

Description

明 細 書 反芻動物の健康管理システム、 反芻動物の健康管理方法および反芻 動物の健康管理システム用首輪 技術分野  Description Ruminant Health Management System, Ruminant Health Management Method and Ruminant Animal Health Management Collar Technical Field
この発明は、 反芻動物の健康管理システム、 反芻動物の健康管理方 法および反芻動物の健康管理システム用首輪に関し、 例えば、 牛の健 康状態、 発情や分娩のタイ ミ ングの把握などに適用して好適なもので ある。 背景技術  The present invention relates to a ruminant health management system, a ruminant health management method, and a ruminant health management system collar, and is applied to, for example, grasping the health status of cattle, the timing of estrus and parturition. It is suitable. Background art
酪農において、 牛の健康状態、 発情や分娩のタイミ ングの把握は重 要であるが、 フリーストール (牛舎内での放し飼い) や放牧地に放牧 する場合には個体毎の管理は困難であり、 タイストール (繋ぎ飼い) の場合でも個体観察には労力を要する。  In dairy farming, it is important to know the health of cattle, the timing of estrus and parturition, but it is difficult to manage individual animals when grazing on free stalls (free range in cowshed) or pasture. Even in the case of tie stalls, individual observation requires labor.
そこで、 この状況を改善するために、 従来より多くの提案がなされ ている (例えば、 特開 2 0 0 2— 2 6 2 7 1 2号公報 (文献 1 ) 、 特 開平 1 1 一 5 6 1 4 6号公報 (文献 2 ) 、 特開 2 0 0 3— 2 1 9 7 5 7号公報 (文献 3 ) 、 特開平 1 0— 2 6 2 4 9 8号公報 (文献 4 ) 、 特表 2 0 0 4— 5 0 4 0 5 1号公報 (文献 5 ) 、 特開 2 0 0 5— 2 1 0 9 2 7号公報 (文献 6 ) 参照) 。  Therefore, in order to improve this situation, many proposals have been made than before (for example, Japanese Patent Laid-Open No. 2 0 2-2 6 2 7 12 (Reference 1), Japanese Patent Laid-Open No. 1 1 1 5 6 1 Japanese Laid-Open Patent Publication No. 46 (Reference 2), Japanese Laid-Open Patent Publication No. 2000-0 2 1 9 7 57 (Publication 3), Japanese Laid-Open Patent Publication No. 10-2 6 2 4 98 (Publication 4), Special Table 2 No. 0 0 4-5 0 4 0 5 1 (reference 5), Japanese Patent Application Laid-Open No. 2 0 5-2 1 0 9 27 (reference 6).
文献 1 には、 運動検知センサを含む牛採食量計測装置を牛の首にベ ルトにより吊り下げ、 この運動検知センサにより採食運動を検知し、 この採食運動の検知回数からこの牛の採食量を演算して記録する技術 が開示されている。 文献 2には、 放牧された動物に装着される放牧動物管理装置におい て、 動物の背骨に対する脚の反対側へ装着され、 加速度を検知して加 速度データを出力する加速度センサと、 加速度データを時系列で記憶 するデータメモリと、 このデータメモリと接続されて加速度データを 解析した歩数データを所定時間ごとに出力する解析部とを備えた構成 とすることが開示されている。 Reference 1 suspends a cow food intake measurement device including a motion detection sensor from the cow's neck with a belt, detects the foraging movement using this motion detection sensor, and calculates the amount of food consumed by this cow from the number of detections of this foraging movement. Techniques for computing and recording are disclosed. Reference 2 describes an accelerometer that is attached to the opposite side of the leg of the animal's spine and that detects acceleration and outputs acceleration data. It is disclosed that a configuration is provided that includes a data memory that stores time-series data and an analysis unit that is connected to the data memory and outputs step count data obtained by analyzing acceleration data every predetermined time.
文献 3には、 反芻動物の咀嚼状況を調査するための装置において、 調査対象反芻動物に装着されてその調査対象反芻動物の咀嚼動作を検 出する咀嚼動作検出手段と、 この咀嚼動作検出手段の検出結果を記録 する咀嚼動作記録手段とを備えた構成とすることが開示されている。 文献 4には、 草食家畜の下顎部にこの草食家畜が喫食することによ つて生じる上下動を感知し、 その回数をカウン卜する度数計を取り付 け、 その度数計からの信号を経時的に記録し、 草食家畜の採食時間、 採食時間帯、 採食量などの採食行動を検出することが開示されている。 文献 5には、 牛などの反芻動物の首に音センサ、 喉に吐き戻しセン サを設置して咀嚼行動を検出し、 反芻動物の生理的状態あるいは飼料 の好適性を監視する方法が開示されている。 この場合、 音センサは採 食時および反芻時の単位時間内における咀嚼行動数の数によって区分 し、 吐き戻しセンサは補助とする。  Reference 3 describes an apparatus for investigating the chewing situation of a ruminant animal, a mastication motion detection means for detecting the mastication behavior of the ruminant animal to be investigated, which is attached to the ruminant subject of the investigation, It is disclosed that the apparatus includes a mastication action recording unit that records a detection result. Reference 4 attaches a frequency meter that senses the up and down movement caused by eating this herbivorous animal in the lower jaw of the herbivorous animal, counts the number of times, and the signal from the frequency meter is recorded over time. It is disclosed to detect foraging behavior such as foraging time, foraging time, and foraging amount of herbivorous livestock. Document 5 discloses a method for monitoring the physiological condition of a ruminant or the suitability of a feed by installing a sound sensor on the neck of a ruminant such as a cow and detecting a mastication behavior on a throat and detecting a chewing behavior. ing. In this case, the sound sensor is classified according to the number of chewing actions in the unit time during eating and rumination, and the spout sensor is an assist.
文献 6には、 牛の首に装着し発情行動の頻度を計測する発情行動計 測手段と、 発情牛を発情行動計測手段の計測結果に基づき検知する発 情牛検知手段とを有する発情検知装置であって、 発情行動計測手段は、 首輪と、 体の傾きに基づき乗駕回数を計測する加速度センサおよび角 度センサと、 乗駕した際に超音波を発信する超音波発信部と、 乗駕さ れた際に乗駕した牛の超音波発信部からの超音波を受信し、 被乗駕回 数を計測する受信側超音波センサと、 各センサの計測結果と自らの識 別情報とを発情牛検知手段へ送信する乗駕情報送信部とを有し、 発情 牛検知手段は、 発情行動計測手段が送信する計測結果に基づき発情牛 を選定する第一解析部および第二解析部と、 各解析部の解析結果を出 力する出力部とを有するものが開示されている。 Reference 6 describes an estrus detection device that has an estrus behavior measurement means that is attached to a cow's neck and measures the frequency of estrus behavior, and an estrus cow detection means that detects an estrus cow based on the measurement results of the estrus behavior measurement means. The estrus behavior measuring means is scrambled with a collar, an acceleration sensor and an angle sensor for measuring the number of times of riding based on the inclination of the body, and an ultrasonic transmission unit for transmitting ultrasonic waves when riding. Receiving ultrasonic waves from the ultrasonic transmission part of the cattle that boarded, and the receiving side ultrasonic sensor that measures the number of times of riding, the measurement results of each sensor and their own knowledge The estrus cow detection means includes a first analysis section and a second analysis section for selecting an estrus cow based on the measurement result transmitted by the estrus behavior measurement means. A device having an analysis unit and an output unit for outputting the analysis result of each analysis unit is disclosed.
しかしながら、 文献 1〜 6に開示されたいずれの技術も、 牛などの 反芻動物の健康状態、 発情や分娩のタイミ ングをこの反芻動物に負担 を掛けないで簡便に把握することは困難であった。  However, it is difficult for any of the techniques disclosed in References 1 to 6 to easily grasp the health of ruminants such as cattle and the timing of estrus and delivery without burdening the ruminant. .
そこで、 この発明が解決しょうとする課題は、 牛などの反芻動物の 健康状態、 発情や分娩のタイ ミ ングをこの反芻動物に負担を掛けない で簡便に把握することができる反芻動物の健康管理システム、 反芻動 物の健康管理方法および反芻動物の健康管理システム用首輪を提供す ることである。 発明の開示  Therefore, the problem to be solved by the present invention is to manage the health of ruminants, which can easily grasp the health status of ruminants such as cattle and the timing of estrus and delivery without burdening the ruminants. It is to provide a system, a ruminant health care method and a ruminant health care system collar. Disclosure of the invention
本発明者らは、 上記の課題を解決すべく鋭意研究を行った結果、 牛 などの反芻動物は採食時には頭部を下げ、 反芻時には頭部を上げる現 象に着目し、 反芻動物にはめる首輪に加速度センサあるいは温度セン サを取り付け、 反芻動物から見て前後方向の加速度を加速度センサに より計測し、 あるいは、 反芻動物の下顎部および体部の温度や下顎部 の温度と体部の温度との差を温度センサにより計測することで採食/ 反芻の状況を簡便に把握することができ、 この把握結果に基づいて反 芻動物の健康状態、 発情や分娩のタイ ミ ングなどの把握が可能である ことを見出した。 この方法では、 加速度センサや温度センサを取り付 けた首輪を反芻動物にはめればよいので、 使用者の労力を要さないば かりでなく、 頭絡 (ハーネス) を装着する必要がないので反芻動物に 負担を与えないで済む。 この発明は、 以上の検討に基づいてさらに検討を行った結果案出さ れたものである。 As a result of intensive studies to solve the above problems, the present inventors have focused on the phenomenon that ruminants such as cows lower their heads when eating and raise their heads when ruminating, and put them on ruminants. An acceleration sensor or temperature sensor is attached to the collar, and the acceleration in the front-rear direction when viewed from the ruminant is measured by the acceleration sensor, or the temperature of the lower jaw and body of the ruminant and the temperature of the lower jaw and the body By measuring the difference with the temperature sensor, it is possible to easily grasp the status of foraging / rumination, and based on this grasping result, it is possible to grasp the health status of ruminants, the timing of estrus and delivery, etc. I found it possible. In this method, a collar with an acceleration sensor and a temperature sensor need only be attached to the ruminant, so not only the user's effort is not required, but there is no need to wear a head harness (harness). There is no burden on animals. The present invention has been devised as a result of further studies based on the above studies.
すなわち、 上記課題を解決するために、 第 1 の発明は、  That is, in order to solve the above problem, the first invention is
反芻動物の首にはめる首輪に取り付けられた、 前記反芻動物から見 て前後方向の加速度を計測する加速度センサおよび/または前記反芻 動物の下顎部および体部の温度を計測する温度センサを有することを 特徴とする反芻動物の健康管理システムである。  An acceleration sensor that is attached to a collar fitted to the ruminant's neck and that measures acceleration in the longitudinal direction when viewed from the ruminant and / or a temperature sensor that measures the temperature of the lower jaw and body of the ruminant. It is a ruminant health management system.
この反芻動物の健康管理システムは、 典型的には、 加速度センサお よび/または温度センサにより計測された加速度データおよび/また は温度データを記録するメモリ と、 このメモリに記録された加速度デ 一夕および/または温度データを外部に出力する外部出力手段とをさ らに有する。 メモリ としては、 半導体メモリ、 磁気メモリなどの各種 のものを用いることができる。 外部出力手段は、 好適には、 無線電波 通信であり、 この場合には加速度センサおよび/または温度センサに より計測された加速度データおよび Zまたは温度データを電波として 送信する。 外部出力手段が無線電波送信である場合、 この反芻動物の 健康管理システムは、 典型的には、 無線電波で送信されたデータを受 信する受信装置と、 受信装置に接続して送信されたデータを記録する メモリ と、 メモリに記録されたデータについて所定のアルゴリズムで 演算を行う解析装置とを有する。  This ruminant health care system typically includes a memory for recording acceleration data and / or temperature data measured by an acceleration sensor and / or a temperature sensor, and an acceleration data recorded in the memory. And / or external output means for outputting temperature data to the outside. Various memories such as a semiconductor memory and a magnetic memory can be used as the memory. The external output means is preferably wireless radio wave communication. In this case, the acceleration data and Z or temperature data measured by the acceleration sensor and / or temperature sensor are transmitted as radio waves. When the external output means is radio wave transmission, this ruminant health management system typically includes a receiving device that receives data transmitted by radio waves, and data transmitted by connecting to the receiving device. A memory for recording the data, and an analysis device for performing an operation on the data recorded in the memory with a predetermined algorithm.
首輪は反芻動物の頭部の垂直方向の動きに応じて可動であり、 反芻 または採食時に首輪が移動することにより発生する、 反芻動物から見 て前後方向の加速度を首輪に取り付けた加速度センサにより計測する。 この反芻動物の健康管理システムでは、 例えば、 加速度センサにより 計測された加速度データが、 一定時間継続して所定の値 (閾値) を上 回る正の値を示す場合は反芻動物が採食状態、 一定時間継続して所定 の値を下回る負の値を示す場合は反芻動物が反芻状態、 一定時間所定 の範囲内の値を示す場合は反芻動物が休息状態と判定することができ る。 この所定の値は個体毎に異なることがある。 また、 加速度センサ により計測された加速度データのパターンと、 同一個体の同一時間帯 における累積加速度データのパターンとが互いに異なる場合は反芻動 物が異常状態と判定することができる。 言い換えれば、 加速度センサ により計測された加速度デー夕のパ夕一ンが、 ある期間にわたつて累 積した加速度データのパターンと異なる場合には何らかの異常が生じ ていると判定することができる。 さらに、 この加速度データと累積加 速度データとの差が所定の値を上回るようなパターンを示す場合は反 芻動物が発情状態と判定することができる。 この所定の値は個体毎に 異なることがある。 The collar is movable according to the vertical movement of the ruminant's head, and is generated by the movement of the collar during rumination or foraging, by an acceleration sensor attached to the collar in the longitudinal direction as seen from the ruminant. measure. In this ruminant health management system, for example, if the acceleration data measured by the acceleration sensor shows a positive value that exceeds a predetermined value (threshold value) continuously for a certain period of time, the ruminant is in the foraging state, constant Predetermined over time The ruminant can be judged to be ruminant if it shows a negative value less than the value, and the ruminant can be judged to be resting if it shows a value within a predetermined range for a certain period of time. This predetermined value may vary from individual to individual. If the pattern of acceleration data measured by the acceleration sensor and the pattern of accumulated acceleration data of the same individual in the same time zone are different from each other, it is possible to determine that the rubbing object is in an abnormal state. In other words, if the pattern of acceleration data measured by the acceleration sensor is different from the pattern of acceleration data accumulated over a certain period, it can be determined that some abnormality has occurred. Furthermore, when the pattern shows such that the difference between the acceleration data and the accumulated acceleration data exceeds a predetermined value, the ruminant can be determined to be in the estrus state. This predetermined value may vary from individual to individual.
また、 首輪は、 反芻動物の頭部が垂直方向に上がった時に温度セン ザが反芻動物の体部に接近し、 反芻動物の頭部が垂直方向に下がった 時に温度センサが反芻動物の下顎部に接近するように取り付けられる。 例えば、 温度センサにより計測された反芻動物の体部の温度に対する 反芻動物の下顎部の温度の差が、 正の値を示す場合は反芻動物は採食 状態、 負の値を示す場合は反芻動物は反芻状態と判定することができ る。 また、 温度差データのパターンと、 同一個体の同一時間帯におけ る累積温度差データのパターンとが互いに異なる場合は反芻動物が異 常状態と判定することができる。 さらに、 温度差データと累積温度差 デー夕との差が所定の値を上回るようなパターンを示す場合は反芻動 物は発情状態と判定することができる。 この所定の値は個体毎に異な ることがある。 さらにまた、 温度差データと累積温度差データとの差 が所定の値を下回るようなパターンを示す場合は反芻動物は体調不良 状態または分娩直前状態と判定することができる。 この所定の値は個 体毎に異なることがある。 温度差データを用いることにより、 外気温 の影響を排除することができ、 正確な判定を行うことができる。 The collar also moves the temperature sensor closer to the ruminant's body when the ruminant's head is raised vertically, and the temperature sensor moves to the lower jaw of the ruminant when the ruminant's head is lowered vertically. It is attached to approach. For example, if the difference in ruminant mandibular temperature relative to the temperature of the ruminant body measured by the temperature sensor is positive, the ruminant is in the foraging state, and if it is negative, the ruminant is ruminant. Can be determined as a rumination. Further, when the temperature difference data pattern and the accumulated temperature difference data pattern of the same individual in the same time zone are different from each other, the ruminant can be determined to be in an abnormal state. Furthermore, when the difference between the temperature difference data and the accumulated temperature difference data shows a pattern that exceeds a predetermined value, the rubbing object can be determined to be in the estrus state. This predetermined value may vary from individual to individual. Furthermore, when a pattern in which the difference between the temperature difference data and the accumulated temperature difference data is below a predetermined value is shown, the ruminant can be determined to be in a poor physical condition or a state immediately before delivery. This predetermined value is May vary from body to body. By using temperature difference data, the influence of outside air temperature can be eliminated and accurate judgment can be made.
第 1の発明は、  The first invention is
反芻動物の首に、 前記反芻動物から見て前後方向の加速度を計測す る加速度センサおよび/または前記反芻動物の下顎部および体部の温 度を計測する温度センサを取り付けた首輪をはめ、 前記加速度センサ および/または前記温度センサにより計測される加速度データおよび /または温度データに基づいて前記反芻動物の健康を管理するように したことを特徴とする反芻動物の健康管理方法である。  Wear a collar attached to the ruminant's neck with an accelerometer that measures longitudinal acceleration as viewed from the ruminant and / or a temperature sensor that measures the temperature of the lower jaw and body of the ruminant, A ruminant health management method characterized by managing the health of the ruminant based on acceleration data and / or temperature data measured by the acceleration sensor and / or the temperature sensor.
第 3の発明は、  The third invention is
反芻動物から見て前後方向の加速度を計測する加速度センサおよび /または前記反芻動物の下顎部および体部の温度を計測する温度セン ザが取り付けられていることを特徴とする反芻動物の健康管理システ ム用首輪である。  A ruminant health management system comprising an acceleration sensor for measuring longitudinal acceleration when viewed from the ruminant and / or a temperature sensor for measuring the temperature of the lower jaw and body of the ruminant. It is a collar for the mud.
第 2および第 3の発明においては、 第 1の発明に関連して説明した ことが成立する。  In the second and third inventions, what has been described in relation to the first invention is valid.
反芻動物は、 一度嚥下した食物を再び口に戻して咀嚼 (細かく破砕) した後、 再嚥下する脊椎動物偶蹄類であり、 具体的には、 例えば、 牛 (乳牛、 肉牛を含む) 、 水牛、 ジャワ牛、 パンテーン、 ャク、 ヒッジ、 ャギ、 アンテロープ、 シカ、 ガゼル、 キリ ン、 ラクダ、 リ ャマ、 アル パカ、 グアナコ、 ビクーニャ、 マメジ力、 ネズミジ力などであるが、 これに限定されるものではない。 図面の簡単な説明  Ruminants are vertebrate cloven hoofs that swallow food once swallowed and chewed (finely crushed) and then swallowed. Specifically, for example, cattle (including dairy and beef cattle), buffalo, Java beef, panthen, yak, hidge, goat, antelope, deer, gazelle, giraffe, camel, llama, alpaca, guanaco, vicuña, mamji power, rat power, etc. It is not a thing. Brief Description of Drawings
第 1図は、 この発明の一実施形態による反芻動物の健康管理システ ムの全体構成を示す略線図である。 第 2図は、 この発明の一実施形態による反芻動物の健康管理システ ムにおいて用いられる加速度/温度計測モジュールが取り付けられた 首輪を示す略線図である。 FIG. 1 is a schematic diagram showing the overall configuration of a ruminant health management system according to an embodiment of the present invention. FIG. 2 is a schematic diagram showing a collar to which an acceleration / temperature measurement module used in a ruminant health management system according to an embodiment of the present invention is attached.
第 3図は、 この発明の一実施形態による反芻動物の健康管理システ ムにおいて首輪をはめた反芻動物が起立状態にある時を示す略線図で ある。  FIG. 3 is a schematic diagram showing a ruminant wearing a collar in a standing state in the ruminant health management system according to the embodiment of the present invention.
第 4図は、 この発明の一実施形態による反芻動物の健康管理システ ムにおいて首輪をはめた反芻動物が採食を行っている時を示す略線図 である。  FIG. 4 is a schematic diagram showing a ruminant wearing a collar foraging in a ruminant health management system according to an embodiment of the present invention.
第 5図は、 この発明の一実施形態による反芻動物の健康管理システ ムにおいて首輪をはめた反芻動物が反芻を行っている時を示す略線図 である。  FIG. 5 is a schematic diagram showing a ruminant wearing a collar performing rumination in the ruminant health management system according to the embodiment of the present invention.
第 6図は、 この発明の一実施形態による反芻動物の健康管理システ ムの構成例を示す略線図である。  FIG. 6 is a schematic diagram showing a configuration example of a ruminant health management system according to an embodiment of the present invention.
第 7図は、 この発明の一実施形態による反芻動物の健康管理システ ムにおいて加速度を計測した結果を示す略線図である。  FIG. 7 is a schematic diagram showing a result of measuring acceleration in the ruminant health management system according to the embodiment of the present invention.
第 8図は、 この発明の一実施形態による反芻動物の健康管理システ ムにおいて加速度を計測した結果を示す略線図である。  FIG. 8 is a schematic diagram showing a result of measuring acceleration in the ruminant health management system according to the embodiment of the present invention.
第 9図は、 この発明め一実施形態による反芻動物の健康管理システ ムにおいて計測した加速度の移動平均を示す略線図である。  FIG. 9 is a schematic diagram showing a moving average of accelerations measured in the ruminant health management system according to the first embodiment of the present invention.
第 1 0図は、 この発明の一実施形態による反芻動物の健康管理シス テムにおいて計測した加速度の二重移動平均を示す略線図である。 第 1 1図は、 この発明の一実施形態による反芻動物の健康管理シス テムにおいて計測した加速度の前後移動平均を示す略線図である。 第 1 2図は、 この発明の一実施形態による反芻動物の健康管理シス テムにおいて加速度を計測した結果を示す略線図である。 第 1 3図は、 この発明の一実施形態による反芻動物の健康管理シス テムにおいて加速度を計測した結果を示す略線図である。 FIG. 10 is a schematic diagram showing a double moving average of accelerations measured in a ruminant health management system according to an embodiment of the present invention. FIG. 11 is a schematic diagram showing a moving average of accelerations measured in the ruminant health management system according to one embodiment of the present invention. FIG. 12 is a schematic diagram showing the results of measuring acceleration in a ruminant health management system according to an embodiment of the present invention. FIG. 13 is a schematic diagram showing the results of measuring acceleration in a ruminant health management system according to an embodiment of the present invention.
第 1 4図は、 この発明の一実施形態による反芻動物の健康管理シス テムにおいて計測した加速度の移動平均を示す略線図である。  FIG. 14 is a schematic diagram showing a moving average of accelerations measured in the ruminant health management system according to one embodiment of the present invention.
第 1 5図は、 この発明の一実施形態による反芻動物の健康管理シス テムにおいて計測した加速度の移動平均を示す略線図である。  FIG. 15 is a schematic diagram showing a moving average of accelerations measured in a ruminant health management system according to an embodiment of the present invention.
第 1 6図は、 この発明の一実施形態による反芻動物の健康管理シス テムにおいて加速度を計測した結果を示す略線図である。  FIG. 16 is a schematic diagram showing the results of measuring acceleration in a ruminant health management system according to an embodiment of the present invention.
第 1 7図は、 この発明の一実施形態による反芻動物の健康管理シス テムにおいて反芻動物の加速度を計測した結果を示す略線図である。 第 1 8図は、 この発明の一実施形態による反芻動物の健康管理シス テムにおいて計測した加速度の移動平均を示す略線図である。  FIG. 17 is a schematic diagram showing the results of measuring the ruminant acceleration in the ruminant health care system according to the embodiment of the present invention. FIG. 18 is a schematic diagram showing a moving average of accelerations measured in a ruminant health management system according to an embodiment of the present invention.
第 1 9図は、 この発明の一実施形態による反芻動物の健康管理シス テムにおいて加速度を計測した結果を示す略線図である。  FIG. 19 is a schematic diagram showing the results of measuring acceleration in the ruminant health care system according to the embodiment of the present invention.
第 2 0図は、 この発明の一実施形態による反芻動物の健康管理シス テムにおいて加速度を計測した結果を示す略線図である。  FIG. 20 is a schematic diagram showing the results of measuring acceleration in the ruminant health care system according to the embodiment of the present invention.
第 2 1図は、 この発明の一実施形態による反芻動物の健康管理シス テムにおいて計測した加速度の移動平均を示す略線図である。  FIG. 21 is a schematic diagram showing a moving average of accelerations measured in the ruminant health management system according to the embodiment of the present invention.
第 2 2図は、 この発明の一実施形態による反芻動物の健康管理シス テムにおいて温度を計測した結果を示す略線図である。  FIG. 22 is a schematic diagram showing the results of measuring temperature in the ruminant health management system according to one embodiment of the present invention.
第 2 3図は、 この発明の一実施形態による反芻動物の健康管理シス テムにおいて温度を計測した結果を示す略線図である。  FIG. 23 is a schematic diagram showing the results of measuring temperature in a ruminant health management system according to an embodiment of the present invention.
第 2 4図は、 この発明の一実施形態による反芻動物の健康管理シス テムにおいて温度を計測した結果を示す略線図である。  FIG. 24 is a schematic diagram showing the results of measuring the temperature in the ruminant health care system according to one embodiment of the present invention.
第 2 5図は、 この発明の一実施形態による反芻動物の健康管理シス テムにおいて温度を計測した結果を示す略線図である。 第 2 6図は、 この発明の一実施形態による反芻動物の健康管理シス テムにおいて温度を計測した結果を示す略線図である。 FIG. 25 is a schematic diagram showing the results of measuring temperature in the ruminant health care system according to one embodiment of the present invention. FIG. 26 is a schematic diagram showing the results of measuring temperature in the ruminant health management system according to one embodiment of the present invention.
第 2 7図は、 この発明の一実施形態による反芻動物の健康管理シス テムにおいて温度を計測した結果を示す略線図である。  FIG. 27 is a schematic diagram showing the results of measuring temperature in the ruminant health management system according to one embodiment of the present invention.
第 2 8図は、 この発明の一実施形態による反芻動物の健康管理シス テムにおいて温度を計測した結果を示す略線図である。  FIG. 28 is a schematic diagram showing the results of measuring temperature in the ruminant health management system according to one embodiment of the present invention.
第 2 9図は、 この発明の一実施形態による反芻動物の健康管理シス テムにおいて温度を計測した結果を示す略線図である。  FIG. 29 is a schematic diagram showing the results of measuring temperature in a ruminant health care system according to one embodiment of the present invention.
第 3 0図は、 この発明の一実施形態による反芻動物の健康管理シス テムにおいて温度を計測した結果を示す略線図である。  FIG. 30 is a schematic diagram showing the results of measuring temperature in a ruminant health management system according to an embodiment of the present invention.
第 3 1図は、 この発明の一実施形態による反芻動物の健康管理シス テムにおいて温度を計測した結果を示す略線図である。  FIG. 31 is a schematic diagram showing the results of measuring temperature in a ruminant health care system according to an embodiment of the present invention.
第 3 2図は、 この発明の一実施形態による反芻動物の健康管理シス テムにおいて温度を計測した結果を示す略線図である。  FIG. 32 is a schematic diagram showing the results of measuring temperature in the ruminant health care system according to the embodiment of the present invention.
第 3 3図は、 この発明の一実施形態による反芻動物の健康管理シス テムにおいて加速度を計測した結果を示す略線図である。  FIG. 33 is a schematic diagram showing the results of measuring acceleration in the ruminant health management system according to the embodiment of the present invention.
第 3 4図は、 この発明の一実施形態による反芻動物の健康管理シス テムにおいて計測した加速度の移動平均を示す略線図である。 発明を実施するための最良の形態  FIG. 34 is a schematic diagram showing a moving average of accelerations measured in a ruminant health management system according to an embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 この発明の一実施形態について図面を参照しながら説明する。 第 1図はこの一実施形態による反芻動物の健康管理システムの全体 構成を示す。  Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows the overall configuration of a ruminant health management system according to this embodiment.
第 1図に示すように、 この反芻動物の健康管理システムにおいては、 管理する反芻動物 1 1の首 1 1 aに、 加速度/温度計測モジュール 1 1を取り付けた首輪 1 3をはめる。 この首輪 1 3は、 反芻動物 1 1の 採食時および反芻時に頭部 1 1 bの垂直方向の動きが生じた時に可動 な大きさに構成されており、 これに伴いこの首輪 1 3の下部に取り付 けられた加速度/温度計測モジュール 1 2が反芻動物 1 1から見て前 後方向に可動になっている。 この加速度/温度計測モジュール 1 2は、 反芻動物 1 1の頭部 1 1 bの垂直方向の動きに応じて発生する反芻動 物 1 1から見て前後方向の加速度を計測するとともに、 反芻動物 1 1 の下顎部 1 1 cおよび体部 1 1 dの温度を計測するためのものである。 加速度/温度計測モジユール 1 2で計測された加速度デー夕および 温度データは、 例えばこの加速度/温度計測モジュール 1 2に内蔵さ れたメモリ (図示せず) に記録され、 このメモリから無線電波通信に より送信され、 管理センター 1 4に備えられた受信装置 1 5により受 信される。 この受信装置 1 5により受信された加速度データおよび温 度データはデータ処理装置 1 6のメモリに格納され、 この加速度デー 夕および温度デ一夕に対して所定のァルゴリズムに従つた解析が行わ れ、 その結果に基づいて反芻動物 1 1の健康管理が行われる。 As shown in Fig. 1, in this ruminant health management system, a collar 13 having an acceleration / temperature measurement module 11 attached to a neck 11a of a ruminant 11 to be managed is fitted. This collar 1 3 is a ruminant 1 1 Acceleration / temperature measurement module that is configured to be movable when the head 1 1 b moves in the vertical direction during foraging and rumination, and is attached to the lower part of this collar 1 3 1 2 is ruminant 1 1 It can move forward and backward as viewed from 1. This acceleration / temperature measurement module 1 2 measures the acceleration in the front-rear direction as seen from the ruminant 1 1 b generated in response to the vertical movement of the head 1 1 b of the ruminant 1 and the ruminant 1 1 for measuring the temperature of the lower jaw 1 1 c and the body 1 1 d. The acceleration data and temperature data measured by the acceleration / temperature measurement module 1 2 are recorded in, for example, a memory (not shown) built into the acceleration / temperature measurement module 1 2, and from this memory to wireless radio wave communication. And received by the receiving device 15 provided in the management center 14. The acceleration data and temperature data received by the receiving device 15 are stored in the memory of the data processing device 16 and the acceleration data and temperature data are analyzed according to a predetermined algorithm. Based on the results, the ruminant 1 1 is managed for health.
第 2図に首輪 1 3および加速度/温度計測モジュール 1 2の詳細を 示す。 第 2図に示すように、 加速度/温度計測モジュール 1 2は反芻 動物 1 1の首 1 1 aに首輪 1 3をはめた時のこの首輪 1 3の最下部の 位置に取り付けられている。 この加速度/温度計測モジュール 1 2は 加速度センサ 1 7および温度センサ 1 8を有している。 この加速度/ 温度計測モジュール 1 2の外部には温度センサ 1 8のセンサ部 1 8 a、 1 8 bが設けられている。 センサ部 1 8 aは反芻動物 1 1の下顎部 1 1 cの温度の計測に用いられ、 センサ部 1 8 bは反芻動物 1 1の首に 連なる体部 1 1 dの温度の計測に用いられる。  Fig. 2 shows details of the collar 13 and acceleration / temperature measurement module 12. As shown in FIG. 2, the acceleration / temperature measurement module 12 is attached to the lowermost position of the collar 1 3 when the collar 1 3 is fitted to the neck 1 1 a of the ruminant 1 1. The acceleration / temperature measurement module 12 includes an acceleration sensor 17 and a temperature sensor 18. Outside the acceleration / temperature measurement module 12, sensor portions 18 a and 18 b of the temperature sensor 18 are provided. Sensor part 1 8a is used to measure the temperature of the ruminant part 1 1c of the ruminant 1 1 and sensor part 1 8b is used to measure the temperature of the body part 1 1d connected to the neck of the ruminant 1 1 .
首輪 1 3の直径および幅は、 反芻動物 1 1の首 1 1 aの太さなどに 応じて適宜決められるが、 加速度センサ 1 7および温度センサ 1 8に よる計測を良好に行う観点からは、 一般的には首輪 1 3はきつく締め ない方が良く、 これは反芻動物 1 1 の管理上も都合が良い。 具体的に は、 首輪 1 3の直径は、 好適には、 反芻動物 1 1 が頭を持ち上げた状 態で、 首輪 1 3を上に引っ張り上げた場合に首 1 1 aと首輪 1 3 との 間に例えば 6〜 9 c mの隙間ができるように選ぶが、 これに限定され るものではない。 The diameter and width of the collar 1 3 are appropriately determined according to the thickness of the neck 1 1 a of the ruminant 1 1, but the acceleration sensor 1 7 and the temperature sensor 1 8 From the point of view of good measurement, it is generally better not to tighten the collar 13, which is convenient for the ruminant 1 1 management. Specifically, the diameter of the collar 1 3 is preferably such that when the ruminant 1 1 lifts the head and the collar 1 3 is pulled up, the collar 1 1 a and the collar 1 3 For example, a gap of 6 to 9 cm is selected between them, but the present invention is not limited to this.
第 3図は反芻動物 1 1 が頭部 1 1 bを上げても下げてもいない起立 時を示す。 第 3図に示すように、 この状態では、 加速度/温度計測モ ジュール 1 のセンサ部 1 8 a、 1 8 bとも反芻動物 1 1 と接触して いない。  Figure 3 shows the standing time when the ruminant 1 1 does not raise or lower the head 1 1 b. As shown in FIG. 3, in this state, neither the sensor unit 1 8a nor 1 8b of the acceleration / temperature measurement module 1 is in contact with the ruminant 1 1.
第 4図は反芻動物 1 1 が頭部 1 1 bを下げて採食を行っている時を 示す。 第 4図に示すように、 この状態では、 加速度/温度計測モジュ ール 1 1の温度センサ 1 8のセンサ部 1 8 aは反芻動物 1 1の下顎部 1 1 cに接触し、 この下顎部 1 1 cの温度が計測される。  Figure 4 shows the ruminant 1 1 foraging with the head 1 1 b lowered. As shown in Fig. 4, in this state, the sensor part 1 8 a of the temperature sensor 1 8 of the acceleration / temperature measurement module 1 1 contacts the lower jaw part 1 1 c of the ruminant 1 1 and this lower jaw part 1 1 c temperature is measured.
第 5図は反芻動物 1 1が頭部 1 1 bを上げて反芻を行っている時を 示す。 第 5図に示すように、 この状態では、 加速度/温度計測モジュ ール 1 1のセンサ部 1 8 bは反芻動物 1 1 の首に連なる体部 1 1 dに 接触し、 この体部 1 1 dの温度が計測される。  Figure 5 shows the ruminant 1 1 ruminating with the head 1 1 b raised. As shown in FIG. 5, in this state, the sensor part 1 8 b of the acceleration / temperature measurement module 1 1 contacts the body part 1 1 d connected to the neck of the ruminant 1 1, and this body part 1 1 The temperature of d is measured.
この反芻動物の健康管理システムの具体的な構成例を第 6図に示す。 第 6図に示すように、 加速度/温度計測モジュール 1 2の加速度セン サ 1 7および温度センサ 1 8により計測される加速度デー夕および温 度データはデータ収集 ·送信ュニッ ト 5 1 により収集され、 反芻動物 1 1 の各個体に付与された個体 I Dや時間データなどとともに管理セ ン夕ー 1 4に送信される。 加速度/温度計測モジュール 1 2には、 必 要に応じてデ一夕プロセッサー、 クロックカウンター、 メモリ、 電源 などが内蔵され、 あるいは接続される。 データ収集 '送信ユニッ ト 5 1 から送信されたデータは管理センター 1 4の受信ュニッ ト 6 1 によ り受信され、 コンピュータ 6 2のメモリに格納される。 コンピュータ 6 2でこれらのデータの解析が所定のァルゴリズムに従って行われ、 その結果に応じてコンピュ一夕 6 2によりアラームを発生する。 コン ピュータ 6 2にはサーバー 6 3が接続され、 上述の送信されたデータ や処理後のデ一タなどを蓄積することができるようになつている。 コ ンピュー夕 6 2はまた、 モニタ一 6 4 と接続されている。 そして、 モ 二夕一 6 4によるモニター結果に応じて警報器 6 5により警報を発し、 あるいは、 表示灯 6 6により表示することができるようになつている。 次に、 この反芻動物の健康管理システムの使用方法について説明す る。 Figure 6 shows a specific example of the ruminant health management system. As shown in Fig. 6, acceleration data and temperature data measured by the acceleration sensor 1 7 and the temperature sensor 1 8 of the acceleration / temperature measurement module 1 2 are collected by the data collection and transmission unit 51. Along with the individual ID and time data assigned to each individual of the ruminant 1 1, it is sent to the management center 14. The acceleration / temperature measurement module 1 2 contains or is connected to a processor, clock counter, memory, power supply, etc. as needed. Data collection 'Transmission unit 5 The data transmitted from 1 is received by the receiving unit 6 1 of the management center 14 and stored in the memory of the computer 62. The computer 62 analyzes these data according to a predetermined algorithm, and an alarm is generated by the computer 62 according to the result. A server 63 is connected to the computer 62 so that the transmitted data and processed data can be stored. The computer 6 2 is also connected to a monitor 6 4. Then, according to the monitoring result of the monitor 6 4, an alarm is issued by the alarm device 6 5, or it can be displayed by the indicator light 6 6. Next, we will explain how to use this ruminant health management system.
第 1図に示すように、 管理する反芻動物 1 1の首 1 l aにはめた首 輪 1 3に取り付けられた加速度/温度計測モジュール 1 2により加速 度データおよび/または温度データを計測する。 このとき、 加速度デ 一夕は、 加速度/温度計測モジュール 1 2の加速度センサ 1 7の前後 動より計測される。 一方、 温度データは、 加速度/温度計測モジユー ル 1 2の温度センサ 1 8のセンサ部 1 8 a、 1 8 bがそれぞれ下顎部 1 1 cおよび体部 1 1 dと接触することにより計測される。 メモリに は、 加速度/温度計測モジュール 1 2により計測される加速度データ および/または温度データのうち例えば単位時間当たりの最大値のみ を取り込む。 これにより、 不必要なデータをスク リーニングすること ができるとともに、 データ数の節約ができ、 メモリ容量の節約ができ る。 加速度および温度の計測は、 例えば 1秒毎に行ってもよいが、 メ モリへの取り込みは、 具体的には、 例えば、 1分毎あるいは 2分毎で あってもほとんど差はなく、 採食および反芻行動を検出することがで きるが、 判定をする際に例えば 5〜 1 0分毎の移動平均を取ると加速  As shown in Fig. 1, acceleration data and / or temperature data are measured by the acceleration / temperature measurement module 12 attached to the collar 1 3 fitted to the neck 1 la of the ruminant 1 1 to be managed. At this time, the acceleration data is measured from the longitudinal movement of the acceleration sensor 17 of the acceleration / temperature measurement module 12. On the other hand, the temperature data is measured when the sensor parts 1 8 a and 1 8 b of the temperature sensor 1 8 of the acceleration / temperature measurement module 1 2 are in contact with the lower jaw part 1 1 c and the body part 1 1 d, respectively. . For example, only the maximum value per unit time of acceleration data and / or temperature data measured by the acceleration / temperature measurement module 12 is taken into the memory. As a result, unnecessary data can be screened, the number of data can be saved, and memory capacity can be saved. Measurement of acceleration and temperature may be performed, for example, every second, but ingestion into memory, specifically, for example, every minute or every two minutes, there is little difference, and foraging And rumination behavior can be detected, but when making a judgment, for example, taking a moving average every 5 to 10 minutes will accelerate
2 度および温度の変化が滑らかになり、 一目で採食および反芻行動を判 定できるので、 より正確な測定には 1分每の方が望ましい。 こう して メモリに取り込まれた加速度データおよび温度データは、 無線電波通 信により、 管理センター 1 4に備えられた受信装置 1 5により受信さ れ、 データ処理装置 1 6により所定のアルゴリズムに従った解析が行 われ、 その結果に基づいて反芻動物 1 1 の健康状態、 発情や分娩の夕 ィ ミ ングの把握などが行われる。 2 Every minute is better for more accurate measurements, as the change in temperature and temperature will be smooth, and foraging and rumination behavior can be determined at a glance. The acceleration data and temperature data thus captured in the memory are received by the receiving device 15 provided in the management center 14 by wireless radio wave communication, and the data processing device 16 follows a predetermined algorithm. Analysis is performed, and based on the results, the health status of ruminants 1 1, estrus and parturition of labor are ascertained.
〈実施例 1 〉  <Example 1>
加速度/温度計測モジュール 1 2の加速度センサ 1 7 として 3軸加 速度センサを用い、 加速度の計測を行った。 この 3軸加速度センサと しては、 株式会社スリ ック製の 3軸加速度センサ (G— ME N D R 0 2 ) を用いた。 この 3軸加速度センサの 1軸を反芻動物 1 1から 見て前後方向に合わせ、 この 1軸のみ使用した。 この 3軸加速度セン ザの外形寸法は高さ 7 5 mm、 幅 6 0 mm、 奥行き 3 2 mmであり、 重さは電池を含めて 1 1 5 gである。 この 3軸加速度センサには温度 センサも付属している。  Acceleration was measured using a 3-axis acceleration sensor as the acceleration sensor 1 7 of the acceleration / temperature measurement module 1 2. As this 3-axis acceleration sensor, a 3-axis acceleration sensor (G—MENDR 0 2) manufactured by Slick Co., Ltd. was used. One axis of this 3-axis accelerometer was aligned in the front-rear direction when viewed from ruminant 1 1 and only this one axis was used. The three-axis acceleration sensor has a height of 75 mm, a width of 60 mm, a depth of 32 mm, and a weight of 1 15 g including the battery. This 3-axis accelerometer also comes with a temperature sensor.
反芻動物 1 1 として酪農学園大学所有の 4頭の健常牛 (牛 N o . 1 〜N o . 4 ) および 2頭の発情前後の牛 (牛 N o . 5、 N o . 6 ) を 用いた。  As ruminants 1 1, 4 healthy cows (cow No. 1 to No. 4) and 2 cows before and after estrus (cow No. 5 and No. 6) owned by Rakuno Gakuen University were used. .
第 7図および第 8図は牛 N 0. 1 および牛 N o . 2の加速度 ( x ) の 2 4時間の計測結果を示し、 縦軸は計測された加速度 (重力加速度 G ( 9. 8 m/ s 2 ) を単位とする値) 、 横軸は時刻である。 加速度 は、 1分間隔で計測した加速度の最大加速度である。 また、 これらの 牛を目視観察して行動を観察した。 第 7図および第 8図には、 反芻を 行っている時間帯および採食を行っている時間帯をそれぞれ示してい る。 第 7図および第 8図より、 牛は、 加速度が正である時は採食を行 つており、 加速度が負である時は反芻を行っているか休息状態を示す 傾向が認められる。 また、 反芻と休息との区別は、 加速度の絶対値の 大きさ ( i X I ) で判定可能であり、 絶対値が大きいと反芻、 小さい と休息であると判定することができる。 第 7図および第 8図には、 3 軸加速度センサに付属している温度センサによる温度の計測結果も併 せて示してあるが、 この温度センサと反芻動物との接触の有無にかか わらず、 この温度はこの温度センサの付近の温度である。 この温度の 計測結果より、 反芻時には温度が高く、 採食時には低い傾向があるこ とが分かる。 Figures 7 and 8 show the measurement results of the acceleration (x) of cow N 0.1 and cow N o. 2 for 24 hours, and the vertical axis shows the measured acceleration (gravity acceleration G (9.8 m / s 2 ) The unit of time), the horizontal axis is time. Acceleration is the maximum acceleration measured at 1 minute intervals. We also observed these cows visually to observe their behavior. Figures 7 and 8 show the time zone of rumination and the time zone of foraging, respectively. From Fig. 7 and Fig. 8, the cattle feed when the acceleration is positive. When the acceleration is negative, there is a tendency to be ruminant or to rest. The distinction between rumination and rest can be determined by the magnitude of the absolute value of acceleration (i XI). When the absolute value is large, it can be judged as rumination, and when it is small, it can be judged as rest. Figures 7 and 8 also show the temperature measurement results of the temperature sensor attached to the 3-axis accelerometer, but it depends on whether the temperature sensor is in contact with the ruminant. This temperature is the temperature near this temperature sensor. The temperature measurement results show that the temperature tends to be high during rumination and low during foraging.
第 9図は、 第 8図に示す牛 N 0 . 2について計測された加速度の移 動平均のグラフである。 また、 第 1 0図は、 第 8図に示す牛 N 0 . 2 について計測された加速度の二重移動平均のグラフである。 第 9図に 示すグラフは、 第 8図に示すデータの 5分毎の移動平均をとり、 その 5分間の移動平均の移動平均を図示したものである。 5分間の移動平 均だけでも良いが、 二重移動平均をとることにより、 第 1 0図に示す ように、 より滑らかなグラフとなり見やすくなる。 第 9図および第 1 0図より、 加速度の移動平均、 さらには二重移動平均をとると、 反芻 か採食かの判定をより明確に行うことができることが分かる。  FIG. 9 is a graph of the moving average of accelerations measured for cow N 0.2 shown in FIG. FIG. 10 is a graph of the double moving average of accelerations measured for the cow N 0.2 shown in FIG. The graph shown in Fig. 9 shows the moving average of the 5-minute moving average of the data shown in Fig. 8 taken every 5 minutes. A moving average of only 5 minutes may be used, but by taking a double moving average, the graph becomes smoother and easier to see as shown in Fig. 10. From FIG. 9 and FIG. 10, it can be seen that the determination of rumination or foraging can be made more clearly by taking the moving average of acceleration, or even the double moving average.
第 1 1図は、 第 8図に示す牛 N 0 . 2について計測された加速度の 前後移動平均のグラフである。 第 1 1図より、 移動平均を取ると、 反 芻か採食かの判定をより明確に行うことができることが分かる。  FIG. 11 is a graph of the moving average of the acceleration measured before and after the cow N 0.2 shown in FIG. From Fig. 11 it can be seen that taking a moving average makes it possible to more clearly determine whether rumination or foraging.
第 1 図は、 牛 N 0 . 1 について 1 4時間計測された加速度の計測 結果を示す。  Figure 1 shows the measurement results of acceleration measured for 14 hours for cattle N0.1.
第 1 3図は、 牛 N 0 . 3について 2 4時間計測された加速度の計測 結果を示す。  Fig. 13 shows the measurement results of acceleration measured for 24 hours for cattle N 0.3.
第 1 4図および第 1 5図は、 牛 N 0 . 4について 1 4時間計測され た加速度の移動平均のグラフを示す。 第 1 4図および第 1 5図は時間 的に連続している。 Figures 14 and 15 are measured for 14 hours for cattle N 0.4. A graph of the moving average of the measured accelerations. Figures 14 and 15 are continuous in time.
第 1 6図および第 1 7図は、 発情期の牛 N o . 5についての発情前 後の加速度の計測結果を示す。 第 1 6図および第 1 7図は時間的に連 続している。 第 1 6図および第 1 7図より、 発情に伴って採食時間や 反芻時間が明らかに少なくなることが分かる。  Figures 16 and 17 show the measurement results of acceleration before and after estrus for cattle No. 5 in estrus. Figures 16 and 17 are continuous in time. From Fig. 16 and Fig. 17 it can be seen that foraging and rumination time are clearly reduced with estrus.
第 1 8図は、 第 1 6図および第 1 7図に示す牛 N 0 . 5について計 測された加速度の移動平均のグラフである。 第 1 8図より、 移動平均 を取ると、 発情行動の判定をより明確に行うことができることが分か る。  FIG. 18 is a graph of the moving average of accelerations measured for the cow N 0.5 shown in FIGS. 16 and 17. From Fig. 18, it can be seen that the estrus behavior can be determined more clearly by taking the moving average.
第 1 9図および第 2 0図は、 発情期の牛 N 0 . 6の発情中および発 情後の加速度の計測結果を示す。 第 1 9図および第 2 0図は時間的に 連続している。  Figures 19 and 20 show the measurement results of acceleration during and after estrus for cattle N 0.6 during estrus. Figures 19 and 20 are continuous in time.
第 1 1 図は、 第 1 9図および第 1 0図に示す牛 N 0 . 6について計 測された加速度の移動平均のグラフである。 第 2 1図より、 移動平均 を取ると、 発情行動の判定をより明確に行うことができることが分か る。  FIG. 11 is a graph of the moving average of accelerations measured for cow N 0.6 shown in FIGS. 19 and 10. From Fig. 21, it can be seen that the estrus behavior can be judged more clearly by taking the moving average.
これらの結果より、 加速度の計測により、 発情や分娩のタイ ミ ング の把握が可能であることが分かる。 最適な人工授精のタイ ミ ングにつ いては、 発情開始後 4〜 1 2時間、 遅く とも 1 6時間、 あるいは発情 開始後 4時間から発情終了後 8時間 (発情の持続時間は約 1 2時間) までに授精することが望ましいので、 人工授精のタイ ミ ングを逃さな いようにすることができる。  From these results, it is understood that the timing of estrus and labor can be grasped by measuring acceleration. The optimal timing for artificial insemination is 4 to 12 hours after the start of estrus, 16 hours at the latest, or 4 hours after the start of estrus to 8 hours after the end of estrus (estrus duration is approximately 12 hours) It is desirable to insemination before, so that the timing of artificial insemination is not missed.
以上のことから分かるように、 加速度センサにより計測された加速 度データが、 一定時間継続して所定の値を上回る正の値を示す場合は 反芻動物が採食状態、 一定時間継続して所定の値を下回る負の値を示 す場合は反芻動物が反芻状態、 一定時間所定の範囲内の値を示す場合 は反芻動物が休息状態と判定することができる。 また、 加速度センサ により計測された加速度デー夕のパターンと、 同一個体の同一時間帯 における累積加速度データのパターンとが互いに異なる場合は反芻動As can be seen from the above, when the acceleration data measured by the acceleration sensor shows a positive value continuously exceeding a predetermined value for a certain period of time, the ruminant is in a fed state and continues for a certain period of time. Indicates negative value below the value If the ruminant is in a ruminant state, and if it shows a value within a predetermined range for a certain period of time, the ruminant can be determined to be in a resting state. In addition, if the pattern of acceleration data measured by the acceleration sensor and the pattern of accumulated acceleration data of the same individual in the same time zone are different from each other, they are repulsive.
5 物が異常状態と判定することができる。 さらに、 この加速度データと 累積加速度データとの差が所定の値を上回るようなパターンを示す場 合は反芻動物が発情状態と判定することができる。 5 An object can be determined to be in an abnormal state. Furthermore, when the pattern shows such that the difference between the acceleration data and the accumulated acceleration data exceeds a predetermined value, the ruminant can be determined to be in the estrus state.
〈実施例 >  <Example>
加速度/温度計測モジュール 1 2の温度センサ 1 8 として株式会社 10 ティアン ドディ製の 2チャンネル温度デー夕口ガー (R T R— 7 1 ) を用い、 温度の計測を行った。 この温度データ口ガーの外形寸法は高 さ 9 2 m m、 幅 6 6 m m、 奥行き 3 5 m mであり、 重さは電池を含め て約 1 2 0 gである。  The temperature was measured using a 2-channel temperature data garage (R T R — 7 1) manufactured by Tiandi Co., Ltd. as the temperature sensor 1 8 of the acceleration / temperature measurement module 1 2. The external dimensions of this temperature data port girder are 92 mm high, 66 mm wide, 35 mm deep, and weigh approximately 120 g including batteries.
反芻動物 1 1 として酪農学園大学所有の 5頭の牛 (牛 N o . 7〜N 15 o . l l ) を用いた。  As the ruminant 1 1, 5 cows (cow No. 7 to N 15 o. L l) owned by Dairy Gakuen University were used.
第 2 2図は、 放牧地に放牧された健常な牛 N 0 . 7の顎側温度およ び体側温度ならびに外気温を計測した結果を示し、 2 4時間の計測デ 一夕である。 また、 第 2 3図は第 2 2図の牛 N 0 . 7の顎側温度から 体側温度を引いた温度差をプロッ 卜 したものである。 第 2 3図にはこ 20 の牛 N o . 7の行動を肉眼観察した結果も併せて示す。 第 2 3図より、 採食時には顎側の温度が上昇し、 横臥時には体側温度が上昇し、 起立 時には顎側温度および体側温度とも変化しないことが分かる。  Figure 22 shows the results of measuring the jaw side temperature, body side temperature, and outside air temperature of a healthy cattle N 0.7 grazed on the pasture, and is a 24-hour measurement day. Fig. 23 plots the temperature difference obtained by subtracting the body temperature from the jaw side temperature of cow N 0.7 in Fig. 22. Figure 23 also shows the results of visual observation of the behavior of these 20 cattle No. 7. From Fig. 23, it can be seen that the jaw side temperature rises when eating, the body side temperature rises when lying down, and neither the jaw side temperature nor the body side temperature changes when standing.
第 1 4図は発情前後の牛 N 0 . 8の顎側温度および体側温度を計測 した結果を示し、 6 0時間の計測データである。 また、 第 2 5図は第 25 2 4図の牛 N o . 8の顎側温度から体側温度を引いた温度差をプロッ ■·■:} 卜 したものである。 第 2 5図にはこの牛 N 0 . 8の行動を肉眼観察し た結果も併せて示す。 第 2 5図より、 1 日目と粘液の分泌が観察され る 2日目と発情が起きている 3日目とは温度変化のパターンに特徴的 な差が見られることが分かる。 Figure 14 shows the results of measuring the jaw side temperature and body side temperature of cattle N 0.8 before and after estrus, and is 60-hour measurement data. FIG. 25 shows the temperature difference obtained by subtracting the body side temperature from the jaw side temperature of cattle No. 8 in FIG. 25 24. Figure 25 shows the behavior of this cow N 0.8 with the naked eye. The results are also shown. From Fig. 25, it can be seen that there is a characteristic difference in the pattern of temperature change between Day 1 when mucus secretion is observed and Day 2 when estrus occurs.
第 2 6図は分娩前の牛 N o . 9の顎側温度および体側温度ならびに 外気温を計測した結果を示し、 2 4時間の計測データである。 また、 第 7図は第 2 6図の牛 N 0 . 9の顎側温度から体側温度を引いた温 度差をプロッ トしたものである。 第 2 6図から分かるように、 5時〜 1 8時の間は体温の変化が見られなくなった。 分娩は 2 2時 5 4分で あった。  Fig. 26 shows the measurement results of the jaw side temperature, body side temperature, and outside air temperature of cattle No. 9 before parturition, and is measured data for 24 hours. Fig. 7 plots the temperature difference obtained by subtracting the body temperature from the jaw side temperature of cattle N 0.9 in Fig. 26. As can be seen from FIG. 26, no change in body temperature was observed between 5 o'clock and 18 o'clock. Delivery was 2 2:54.
第 2 8図は病気 (低カルシウム血症) の牛 N o . 1 0の顎側温度お よび体側温度ならびに外気温を計測した結果を示し、 2 4時間の計測 データである。 また、 第 2 9図は第 2 8図の牛 N o . 1 0の顎側温度 から体側温度を引いた温度差をプロッ 卜したものである。 第 2 9図に はこの牛 N o . 1 0の行動を肉眼観察した結果も併せて示す。 第 2 9 図から分かるように、 採食時には顎側の温度が上昇し、 横臥時には体 側温度が上昇し、 起立時には顎側温度および体側温度とも変化しない。 第 1 9図から分かるように、 病牛では、 採食が 1 1 %、 起立反芻が 1 6 %、 横臥反芻が 2 %、 起立休息が 3 9 %、 横臥休息が 3 1 %であ り、 体調の悪さからじっと起立していることが多く、 休息の割合が 7 0 %を占め、 また、 病牛は起立状態にあることが多かった。  Fig. 28 shows the measurement results of the jaw and body temperatures and the outside air temperature of sick (hypocalcemic) cattle No. 10 with 24 hours of measurement data. FIG. 29 plots the temperature difference obtained by subtracting the body side temperature from the jaw side temperature of cow No. 10 in FIG. Figure 29 also shows the results of macroscopic observation of the behavior of this cow No. 10. As can be seen from Fig. 29, the jaw side temperature rises when eating, the body side temperature rises when lying down, and neither the jaw side temperature nor the body side temperature changes when standing. As can be seen from Figure 19, in sick cattle, foraging was 11%, standing rumination was 16%, recumbent rumination was 2%, standing rest was 39%, and lying rest was 31%. They often stand up due to their poor physical condition, with a rest rate of 70%, and sick cows are often standing.
第 3 0図は高泌乳牛の牛 N 0 . 1 1の顎側温度および体側温度なら びに外気温を計測した結果を示し、 2 4時間の計測データである。 ま た、 第 3 1図は第 3 0図の牛 N o . 1 1の顎側温度から体側温度を引 いた温度差をプロッ トしたものである。 第 3 1図にはこの牛 N o . 1 1の行動を肉眼観察した結果も併せて示す。 第 3 1図から分かるよう に、 採食時には顎側の温度が上昇し、 横臥時には体側温度が上昇し、 起立時には顎側温度および体側温度とも変化しない。 Fig. 30 shows the results of measuring the jaw side temperature, body side temperature and outside air temperature of cattle N 0.11 1 for high lactating cows, and the measurement data for 24 hours. Fig. 31 plots the temperature difference obtained by subtracting the body temperature from the jaw side temperature of cattle No. 11 in Fig. 30. Fig. 31 also shows the results of macroscopic observation of the behavior of this cow No. 11. As can be seen from Fig. 31, the temperature on the jaw side rises when eating, the body temperature rises when lying down, Neither the jaw side temperature nor the body side temperature changes when standing.
第 3 1図から分かるように、 高泌乳牛では、 採食が 2 9 %、 起立反 芻が 6 %、 横臥反芻が 2 8 %、 起立休息が 1 0 %、 横臥休息が 2 7 % であり、 反芻の割合は 3 4 %、 休息の割合は 3 7 %でほぼ同じであり、 また、 横臥にあることが多かった。  As can be seen from Figure 31 in the high lactating cows, foraging was 29%, standing rumination was 6%, recumbent rumination was 28%, standing rest was 10%, and lying rest was 27% The ratio of rumination was 34%, and the ratio of rest was 37%, which was almost the same, and was often lying down.
第 3 2図に上記の発情牛 (牛 N o . 8 ) 、 分娩牛 (牛 N o . 9 ) 、 病牛 (牛 N 0 . 1 0 ) および高泌乳牛 (牛 N o . l l ) の各個体の温 度差を示す。  Fig. 3 2 shows the above-mentioned estrus cows (cow No. 8), calving cows (cow No. 9), sick cattle (cow N 0.10) and high-lactating cows (cow No. ll). Indicates the temperature difference between individuals.
以上の温度計測により、 次のようなことが分かった。  From the above temperature measurement, we found the following.
採食時には顎側の温度が上昇し、 反芻 ·休息時には体側の温度が上 昇した。 温度差データではこの傾向はさらに明確になり、 外気温の影 響を排除することができる。 また、 牛の採食、 起立、 横臥の行動をこ の温度差データから予測することができる。  The temperature on the chin side increased during foraging, and the temperature on the body side increased during rumination and rest. This trend becomes even clearer in the temperature difference data, and the influence of outside air temperature can be eliminated. Cattle foraging, standing and lying behavior can be predicted from this temperature difference data.
発情期には採食 ·反芻が少なくなるため温度差データのパターンが 変化し、 また、 乗駕の場合は温度センサーが体に押し付けられるため、 温度の著しい上昇が見られた。  During the estrus, the pattern of temperature difference data changed due to less feeding and rumination, and in the case of norikura, the temperature sensor was pressed against the body, so a significant increase in temperature was observed.
分娩前には温度差が非常に小さくなった。 これは分娩前は体を動か さなくなるためと考えられる。  The temperature difference became very small before delivery. This is thought to be because the body does not move before delivery.
体調不良の牛は興奮状態で立ち続けるため、 温度差のふれ幅が健常 時に比べて小さかった。  Unhealthy cows kept standing in excitement, so the temperature difference was smaller than normal.
高泌乳牛の温度差デー夕のパターンは健常牛と同様であつた。 これ は、 高泌乳牛の行動は健常牛と変わらないためと考えられる。  The pattern of temperature difference in the high lactating cows was similar to that of healthy cows. This is probably because the behavior of highly lactating cows is not different from that of healthy cows.
以上のことから分かるように、 温度センサにより計測された反芻動 物の体部の温度に対する反芻動物の下顎部の温度の差が、 正の値を示 す場合は反芻動物は採食状態、 負の値を示す場合は反芻動物は反芻状 態と判定することができる。 また、 温度差データのパターンと、 同一 個体の同一時間帯における累積温度差デー夕のパターンとが互いに異 なる場合は反芻動物が異常状態と判定することができる。 さらに、 温 度差データと累積温度差データとの差が所定の値を上回るようなパ夕 ーンを示す場合は反芻動物は発情状態と判定することができる。 さら にまた、 温度差データと累積温度差データとの差が所定の値を下回る ようなパターンを示す場合は反芻動物は体調不良状態または分娩直前 状態と判定することができる。 As can be seen from the above, the ruminant's mandibular temperature difference with respect to the body temperature of the ruminant measured by the temperature sensor shows a positive value. If this value is indicated, the ruminant can be determined to be in a ruminant state. Also, same as temperature difference data pattern A ruminant can be determined to be in an abnormal state when the patterns of accumulated temperature difference data in the same time zone differ from each other. Furthermore, when the pattern shows that the difference between the temperature difference data and the accumulated temperature difference data exceeds a predetermined value, the ruminant can be determined to be in the estrus state. Furthermore, if the difference between the temperature difference data and the accumulated temperature difference data shows a pattern that is below a predetermined value, the ruminant can be determined to be in a poor physical condition or just before delivery.
〈実施例 3 >  <Example 3>
反芻動物 1 1 として酪農学園大学所有の 4頭の発情前後の乳牛 (牛 N o . 5、 N o . 1 2〜N o . 1 4 ) を用い、 加速度/温度計測モジ ユール 1 2の加速度センサ 1 7により加速度の計測を行い、 計測され た加速度の絶対値 ( 1 x 1 ) の大きさが各個体毎に設定した所定の値 (閾値) を上回る衝撃の回数を 3時間毎に測定した。 加速度/温度計 測モジュール 1 2の加速度センサ 1 7 としては実施例 1 と同様な 3軸 加速度センサを用いた。 これらの牛 N o . 5、 N o . 1 2〜N o . 1 4はフリーストール牛舎において放し飼いされた。 測定は、 牛 N o . 5については連続する 3日間にわたって行い、 牛 N 0. 1 2および牛 N o . 1 4については連続する 7日間にわたって行い、 牛 N 0. 1 3 については連続する 6日間にわたって行った。  As ruminants 1 1, four estrus dairy cows (cow No. 5, No. 1 2 to No. 1 4) owned by Rakuno Gakuen University, and acceleration / temperature measurement module 1 2 acceleration sensor Acceleration was measured according to 17 and the number of shocks in which the absolute value of the measured acceleration (1 x 1) exceeded the predetermined value (threshold) set for each individual was measured every 3 hours. As the acceleration sensor 1 7 of the acceleration / thermometer module 1 2, the same 3-axis acceleration sensor as in Example 1 was used. These cows No. 5, No. 1 2 to No. 14 were kept free in a free stall barn. Measurements are taken for 3 consecutive days for cattle N o. 5, for 7 consecutive days for cattle N 0. 1 2 and cattle N o. 1 4, and continuous for cattle N 0. 1 3 6 Went for days.
表 1および表 2に 3時間毎の衝撃の回数の測定結果を示す。 表 1お よび表 2の日内の時刻において、 例えば、 0— 3は午前 0時から午前 3時までを意味する。 閾値は、 牛 N 0. 5については 1 5 m/ s 2 、 牛 N o . 1 2〜N o . 1 4については 2 5 m/ s 2 とした。 表 1およ び表 2において、 衝撃の回数に下線を付した時間帯は発情中である。 フリーストール牛舎内の牛 N 0. 5、 N o . 1 2〜N o . 1 4の発情 持続時間は 9〜 2 0時間の幅があった。 午前 9時から 1 2時までは朝 Tables 1 and 2 show the measurement results of the number of impacts every 3 hours. In the time of day within Table 1 and Table 2, for example, 0-3 means from midnight to 3:00 am. The thresholds were 15 m / s 2 for cattle N 0.5 and 25 m / s 2 for cats No 1 .2 to No 1 .4. In Tables 1 and 2, the time period underlined the number of impacts is in estrus. Estrus of cows in free stall barns N 0.5, N o .1 2 to N o .1 4 ranged in duration from 9 to 20 hours. 9 am to 12 am in the morning
9
Figure imgf000022_0001
日内の曜(時)
9
Figure imgf000022_0001
Day of the week (hour)
0— 3 3-6 6-9 9-12 12 — 15 15-18 18-21 21-24 牛 No. 5、 1 X 1 >15m/s2 0— 3 3-6 6-9 9-12 12 — 15 15-18 18-21 21-24 Cattle No. 5, 1 X 1> 15m / s 2
第 1日目 3 6 1 15 16 12 1 0 第 2曰目 2 0 1 3 1 3 3 0 第 3曰目 3 1 1 2 2 5 3 2 牛 No. 12、 1 X 1 >25m/s2 1st day 3 6 1 15 16 12 1 0 2nd eye 2 0 1 3 1 3 3 0 3rd eye 3 1 1 2 2 5 3 2 Cattle No. 12, 1 X 1> 25m / s 2
第 1日目 2 0 0 10 5 2 0 6 第 2日目 2 0 2 2 1 9 0 2 第 3日目 0 4 3 4 0 5 0 7 第 4日目 0 6 10 ― 15 20 8 2 第 5日目 2 2 2 4 0 2 2 4 第 6日目 0 2 0 4 2 1 1 0 0 第 7曰目 5 2 2 2 4 5 0 0 Day 1 2 0 0 10 5 2 0 6 Day 2 2 0 2 2 1 9 0 2 Day 3 0 4 3 4 0 5 0 7 Day 4 0 6 10-15 20 8 2 Day 5 Day 2 2 2 4 0 2 2 4 Day 6 0 2 0 4 2 1 1 0 0 Day 7 5 2 2 2 4 5 0 0
n cn n cn
表 2 曰内の B^ij (時) Table 2 B ^ ij (hours) in the cage
0-3 3-6 6-9 9-12 12一 15 15-18 18-2】 21-24 牛 No. 13、 1 X 1 >25m/s2 0-3 3-6 6-9 9-12 12 1 15 15-18 18-2] 21-24 Cattle No. 13, 1 X 1> 25m / s 2
第 1日目 4 0 16 1 0 7 13 0: 第 2日目 2 2 7 7 0 20 14 21 第 3日目 52 32 45 20 10 7 3 0 第 4日目 4 5 2 7 2 7 0 12 第 5曰目 0 2 8 17 0 1 9 14 第 6曰目 4 7 2 13 4 5 7 一 牛 No. 14、 1 X 1 >25m/s2 Day 1 4 0 16 1 0 7 13 0: Day 2 2 2 7 7 0 20 14 21 Day 3 52 32 45 20 10 7 3 0 Day 4 4 5 2 7 2 7 0 12 5th 0 2 8 17 0 1 9 14 6th 4 7 2 13 4 5 7 One cow No. 14, 1 X 1> 25m / s 2
第 1日目 7 0 14 14 8 15 4 10 第 2日目 0 2 1 1 16 0 1 1 1 1 7 第 3日目 0 2 16 19 19 1 1 . 7 2 第 4曰目 18 20 27 22 22 6 2 18 第 5曰目 0 4 2 4 2 15 18 0 第 6日目 14 0 7 19 1 1 15 0 6 第 7日目 0 2 5 24 15 12 6 12 1st day 7 0 14 14 8 15 4 10 2nd day 0 2 1 1 16 0 1 1 1 1 7 3rd day 0 2 16 19 19 1 1 .7 2 4th eye 18 20 27 22 22 6 2 18 5th day 0 4 2 4 2 15 18 0 6th day 14 0 7 19 1 1 15 0 6 7th day 0 2 5 24 15 12 6 12
表 1より、 牛 N o . 5は第 1 日目の午前 9時過ぎに発情が始まり、 午後 6時頃に発情が終了したことが分かる。 この場合、 発情前、 発情 中および発情後の 3時間毎の衝撃の回数の平均値はそれぞれ 3. 3、 1 4. 3、 1 . 8である。 また、 牛 N 0. 1 2は第 4日目の午前 6時 過ぎに発情が始まり、 午後 9時頃に発情が終了したことが分かる。 こ の場合、 発情前、 発情中および発情後の 3時間毎の衝撃の回数の平均 値はそれぞれ 1. 9、 1 3. 3、 2. 6である。 表 2より、 牛 N 0 . 1 3は第 2日目の午後 3時過ぎに発情が始まり、 第 3日目の午前 1 1 時頃に発情が終了したことが分かる。 この場合、 発情前、 発情中およ び発情後の 3時間毎の衝撃の回数の平均値はそれぞれ 4. 5、 2 9. 1、 5. 6である。 また、 牛 N 0. 1 4は第 4日目の午前 0時過ぎに 発情が始まり、 午後 3時頃に発情が終了したことが分かる。 この場合、 発情前、 発情中および発情後の 3時間毎の衝撃の回数の平均値はそれ ぞれ 8. 6、 2 1 . 8、 8. 1である。 牛 N o . 1 3は牛 N o . 5、 牛 N o . 1 2および牛 N o . 1 4に比べて発情が長く続く ことが分か る。 From Table 1, it can be seen that cattle No. 5 began estrus after 9 am on the first day and ended at around 6 pm. In this case, the average number of impacts every three hours before, during and after estrus is 3.3, 14.3, and 1.8, respectively. It can also be seen that cow N 0. 1 2 began estrus after 6 am on the fourth day and ended at around 9 pm. In this case, the average number of impacts every three hours before, during, and after estrus is 1.9, 13.3, and 2.6, respectively. From Table 2, it can be seen that cattle N 0.13 began estrus at about 3:00 pm on the second day and ended at about 1 1:00 am on the third day. In this case, the average number of impacts every three hours before, during and after estrus is 4.5, 2 9. 1 and 5.6, respectively. It can also be seen that cow N 0. 1 4 began estrus after midnight on the fourth day and ended at around 3 pm. In this case, the average number of impacts every three hours before, during and after estrus is 8.6, 21.8, and 8.1, respectively. It can be seen that cattle No. 1 3 has a longer estrus than cattle No. 5, cattle No. 1 2 and cattle No. 1 4.
表 2より、 牛 N o . 1 3および N o . I 4は発情前日のほぼ同時刻 に落ち着きがなくなつていることが分かる。 これは、 同じ牛舎に発情 中の牛がいて、 乗駕しょうとしたものと考えられる。 1 日後には他の 牛の乗駕を許す発情が生じたものと考えられる。  From Table 2, it can be seen that cattle No. 1 3 and No. I 4 are resting at about the same time the day before estrus. This is probably because there was a cow in estrus in the same barn and tried to ride. One day later, it is probable that an estrus that allowed other cattle to ride was generated.
各牛の発情前、 発情中および発情後の 3時間毎の衝撃の回数の平均 値を表 3にまとめて示す。 表 3から明らかなように、 発情中はその前 後に比較して衝撃回数がずつと多いため、 衝撃回数により発情の開始 時刻および持続時間の検出が可能である。 表 3 牛 No , 5 牛 No . 1 2 牛 No . 1 3 牛 No • 14 平 赚前 3. 3 2. 9 4. 5 8. 6 4. 8 赚中 14. 3 1 3. 3 29. 1 2 1. 8 19. 6 発晴後 1. 8 1. 6 5. 6 8. 1 4. 5 Table 3 summarizes the average values of the number of impacts before, during and after estrus for each cow. As can be seen from Table 3, the number of impacts during estrus is greater than before and after, so the start time and duration of estrus can be detected from the number of impacts. Table 3 Cattle No. 5 Cattle No. 1 2 Cattle No. 1 3 Cattle No • 14 Before flatbed 3. 3 2. 9 4. 5 8. 6 4. 8 Medium 14.3 1 3. 3 29. 1 2 1. 8 19. 6 After clearing 1. 8 1. 6 5. 6 8. 1 4.5
表 4は、 フリーストール牛舎における無拘束牛の衝撃による採食時 間および反芻時間の推定精度を検証するために行った実験の結果を示 し、 採食時間および反芻時間の実測値および推定値ならびに実測値に 対する推定値の比 (推定値/実測値) を示す。 反芻動物 1 1 として酪 農学園大学所有の 4頭の乳牛 (牛 N o . 3、 N o . 4、 N o . 1 5、 N o . 1 6 ) を用いた。 表 5は、 タイスト一ル牛舍における係留され た牛の衝撃による採食時間および反芻時間の推定精度を検証するため に行った実験の結果を示し、 採食時間および反芻時間の実測値および 推定値ならびに実測値に対する推定値の比 (推定値/実測値) を示す。 反芻動物 1 1 として酪農学園大学所有の 4頭の乳牛 (牛 N 0. 1 7〜 N o . 2 0 ) を用いた。 表 4および表 5において、 例えば、 牛 N 0. 4一 1および N o . 4— 2は牛 N o . 4について連続する 2日間にわ たって測定を行った場合を示す。 閾値は牛の個体毎に異なるが、 採食 時の閾値は 2. 5〜 3. 5 m/ s 2 、 反芻時の閾値は— 2. 8〜一 4. 0 m/ s 2 である。 Table 4 shows the results of experiments conducted to verify the estimation accuracy of foraging time and rumination time due to the impact of unrestrained cattle in free stall barns, and actual and estimated values of foraging time and rumination time. In addition, the ratio of the estimated value to the measured value (estimated value / measured value) is shown. Four dairy cows (cow No. 3, No. 4, No. 15 and No. 16) owned by Dairy Gakuen University were used as ruminants 1 1. Table 5 shows the results of experiments conducted to verify the accuracy of estimation of foraging time and rumination time due to impact of moored cattle in Tystall beef bowl, and actual values and estimations of foraging time and rumination time. And the ratio of the estimated value to the measured value (estimated value / measured value). As ruminants 1 1, four dairy cows (cow N 0. 17 to No. 20) owned by Rakuno Gakuen University were used. In Tables 4 and 5, for example, cattle N 0. 4 1 and No. 4—2 show the case where measurements were taken over two consecutive days for cattle No 4. The threshold varies from cow individual to cattle, but the foraging threshold is 2.5 to 3.5 m / s 2 , and the ruling threshold is 2.8 to 1 to 4.0 m / s 2 .
Figure imgf000026_0001
m (分) 鋼(分) 牛 No. 翔幢 躯値 比 類直 比
Figure imgf000026_0001
m (minutes) Steel (minutes) Cattle No. Shogo Price value Similarity ratio
15 337 371 1. 101 661 669 1. 01215 337 371 1. 101 661 669 1. 012
16 334 326 0. 976 482 450 0. 93416 334 326 0. 976 482 450 0. 934
4-1 480 474 0. 988 430 501 1. 1654-1 480 474 0. 988 430 501 1.165
4-2 400 415 1. 038 433 424 0. 9794-2 400 415 1. 038 433 424 0. 979
3-1 486 399 0. 821 571 607 1. 0633-1 486 399 0. 821 571 607 1. 063
3-2 482 473 1. 024 560 560 1. 000 平纏 416. 5 409. 7 0. 991 522. 8 535. 2 1. 026 標 mi ^ 69. 8 57. 9 0. 090 90. 7 94. 3 0. 080 3-2 482 473 1. 024 560 560 1. 000 Hiramatsu 416.5 5 409. 7 0. 991 522. 8 535. 2 1. 026 mi ^ 69. 8 57. 9 0. 090 90. 7 94. 3 0. 080
表 5 翻寺間(分) 綱(分) 牛 No. 類直 比 誦 躯値 比 Table 5 Transformer (min) Tuna (min) Cattle No. Similarity 誦 躯 Value Ratio
17-1 416 443 1. 065 563 503 0. 89317-1 416 443 1. 065 563 503 0. 893
17-2 440 433 0. 984 568 534 0. 94017-2 440 433 0. 984 568 534 0. 940
17-3 493 400 0. 811 578 550 0. 95217-3 493 400 0. 811 578 550 0. 952
18-1 394 376 0. 954 354 378 1. 06818-1 394 376 0. 954 354 378 1. 068
18-2 386 389 1. 008 494 407 0. 82418-2 386 389 1. 008 494 407 0. 824
18-3 489 509 1. 041 468 332 0. 70118-3 489 509 1. 041 468 332 0. 701
19-1 435 409 0. 940 685 663 0. 96819-1 435 409 0. 940 685 663 0. 968
19-2 362 350 0. 967 659 628 0. 95319-2 362 350 0. 967 659 628 0. 953
19-3 438 419 0. 957 520 542 1. 04219-3 438 419 0. 957 520 542 1. 042
20-1 472 504 1. 068 523 465 0. 88920-1 472 504 1. 068 523 465 0. 889
20-2 496 448 0. 903 498 514 1. 03220-2 496 448 0. 903 498 514 1. 032
20-3 446 439 0. 984 443 511 1. 153 平■ 438. 9 426. 6 0. 974 529. 4 502. 3 0. 951 20-3 446 439 0. 984 443 511 1. 153 Flat 438. 9 426. 6 0. 974 529. 4 502. 3 0. 951
43. 8 47. 3 0. 072 90. 6 96. 1 0. 119 43. 8 47. 3 0. 072 90. 6 96. 1 0. 119
表 4および表 5から明らかなように、 採食時間および反芻時間とも 実測値に対する推定値の比は 1に近く、 衝撃による採食時間および反 芻時間の推定精度はかなり高い。 As is clear from Tables 4 and 5, the ratio of the estimated value to the actual measurement value for both foraging time and rumination time is close to 1, and the estimation accuracy of foraging time and rumination time due to impact is quite high.
表 6は、 発情前後および分娩直前の乳牛におけるフリーストール牛 舎における無拘束牛の衝撃による採食時間および反芻時間の推定精度 を検証するために行った実験の結果を示し、 採食時間および反芻時間 の実測値および推定値ならびに実測値に対する推定値の比 (推定値/ 実測値) を示す。 反芻動物 1 1 として酪農学園大学所有の 3頭の乳牛 (牛 N o . 5、 N o . 6、 N o . 1 ) を用いた。 表 6において、 H _ 1、 H— 2および H— 3はそれぞれ発情開始後の第 1 日目、 第 2曰 目および第 3日目を示し、 — 3 C、 — 2 Cおよび— 1 Cはそれぞれ分 娩開始の 3日前、 2日前および 1 日前を示す。 Table 6 shows the results of experiments conducted to verify the accuracy of estimation of feeding time and rumination time due to the impact of unrestrained cattle in free stall barns before and after estrus and immediately before parturition. The measured and estimated time values and the ratio of the estimated value to the measured value (estimated value / measured value) are shown. As the ruminant 1 1, three dairy cows (cow No 5, No 6, No 1) owned by Rakuno Gakuen University were used. In Table 6, H_1, H-2 and H-3 represent the first day, second day and third day after the start of estrus, respectively.-3 C,-2 C and-1 C are Indicate 3 days before, 2 days before, and 1 day before the start of delivery.
O O
表 6 脑鍋(分) 鐧. (分) 牛 No. mm mm 比 霞直 m 比 Table 6 Rice bowl (min) 鐧. (Min) Cattle No. mm mm ratio 霞 straight m ratio
5-1 H-l 384 332 0. 865 312 322 1. 0325-1 H-l 384 332 0. 865 312 322 1. 032
5-2 Η-2 332 290 0. 873 552 678 1. 2285-2 Η-2 332 290 0. 873 552 678 1. 228
5-3 Η-3 430 488 1. 135 472 466 0. 9875-3 Η-3 430 488 1. 135 472 466 0. 987
6-1 Η- 1 306 294 0. 961 536 556 1. 0376-1 Η- 1 306 294 0. 961 536 556 1. 037
6-2 Η-2 448 314 0. 701 562 630 1. 1216-2 Η-2 448 314 0. 701 562 630 1.121
21-1 -3C 280 340 1. 214 474 552 1. 16521-1 -3C 280 340 1. 214 474 552 1. 165
21-2 -2C 280 542 1. 936 490 408 0. 83321-2 -2C 280 542 1. 936 490 408 0. 833
21-3 -1C 332 224 0. 675 448 602 1. 34421-3 -1C 332 224 0. 675 448 602 1. 344
21-4 中 498 258 0. 518 334 490 1. 467 平雌 365. 6 342. 4 0. 966 464. 4 522. 7 1. 135 21-4 Medium 498 258 0. 518 334 490 1. 467 Flat female 365. 6 342. 4 0. 966 464. 4 522. 7 1. 135
78. 5 105. 0 0. 419 89. 2 1 12. 7 0. 193 78. 5 105. 0 0. 419 89. 2 1 12. 7 0. 193
表 6より、 衝撃による採食時間および反芻時間の推定精度は、 発情 中や分娩直前ではやや悪くなることが分かる。 逆にこの特性を利用す ることにより、 発情を発見することができる。 From Table 6, it can be seen that the estimation accuracy of foraging time and rumination time due to impact is slightly worse during estrus and immediately before delivery. Conversely, by using this characteristic, estrus can be discovered.
夕イストール牛舎における係留された牛の加速度の計測結果の一例 として、 牛 N 0 . 1 9の加速度の 4時間の計測結果を第 3 3図に示 す。 また、 こう して計測された加速度の移動平均のグラフを第 3 4図 に示す。  As an example of the measurement results of the acceleration of moored cattle in the evening stall, Fig. 33 shows the measurement results of the acceleration of cattle N 0.19 for 4 hours. Figure 34 shows a graph of the moving average of the accelerations measured in this way.
以上のように、 この一実施形態による反芻動物の健康管理システム によれば、 次のような種々の利点を得ることができる。 すなわち、 カロ 速度/温度計測モジュール 1 2を取り付けた首輪 1 3を反芻動物 1 1 の首 1 1 aにはめるだけで管理することができるので、 使用者の労力 を要さず、 簡便であり、 また、 反芻動物 1 1に負担を掛けないで済む。 また、 採食時間と反芻時間との比を見ることができるので、 牛の健康 状態や発情 ·分娩前状態などの把握が可能である。 また、 反芻動物の 採食順番を見ることで、 集団における個体の強さも把握できる。 また、 飼育方式によらず、 すなわちフリース卜ールでも放牧でもタイスト一 ルでも、 採食/反芻の状況を把握することができる。  As described above, according to the ruminant health management system according to this embodiment, the following various advantages can be obtained. In other words, since the collar 1 3 fitted with the caro velocity / temperature measurement module 1 2 can be managed simply by fitting it to the neck 1 1 a of the ruminant 1 1, it does not require the labor of the user and is simple, Also, it is not necessary to put a burden on ruminants 1 1. In addition, since the ratio of foraging time to rumination time can be seen, it is possible to grasp the health status, estrus and pre-partum status of cattle. Also, by looking at the order of ruminant feeding, it is possible to determine the strength of individuals in the population. In addition, the status of foraging / rumination can be ascertained regardless of the breeding method, that is, whether fleece, grazing or tying.
より具体的には、 例えば、 採食量が低下する諸症状を伴う全ての疾 病 (消化器障害、 ケトーシスなどの代謝病、 乳房炎、 肢蹄障害など) 、 粗飼料不足に伴う第一胃発酵異常や乳牛にあっては乳脂率低下予測、 牛群などの反芻動物の群内における社会的位置 (闘争 ·敵対行動によ る飼料摂取不足) 、 分娩の切迫、 発情などの異常を早期に発見するこ とができるため、 反芻動物の健康管理や発情サイクル管理などを簡便 に行うことができる。  More specifically, for example, all diseases accompanied by various symptoms that reduce food consumption (digestive disorders, metabolic diseases such as ketosis, mastitis, leg-and-hoe disorders), abnormal rumen fermentation due to lack of roughage For dairy cattle and dairy cows, early detection of abnormalities such as prediction of reduced milk fat rate, social position in ruminant groups such as cattle herds (struggling and lack of feed intake due to hostile behavior), imminent delivery, and estrus Therefore, ruminant health management and estrus cycle management can be easily performed.
以上、 この発明の一実施形態および実施例について具体的に説明し たが、 この発明は、 上述の実施形態および実施例に限定されるもので はなく、 この発明の技術的思想に基づく各種の変形が可能である。 例えば、 上述の実施形態および実施例において挙げた数値、 構造、 形状などはあく までも例に過ぎず、 必要に応じてこれらと異なる数値、 構造、 形状などを用いてもよい。 Although one embodiment and example of the present invention have been specifically described above, the present invention is not limited to the above-described embodiment and example. However, various modifications based on the technical idea of the present invention are possible. For example, the numerical values, structures, shapes, and the like given in the above-described embodiments and examples are merely examples, and different numerical values, structures, shapes, etc. may be used as necessary.
以上説明したように、 この発明によれば、 牛などの反芻動物の健康 状態、 発情や分娩のタイ ミ ングをこの反芻動物に負担を掛けないで簡 便に把握することができる。  As described above, according to the present invention, it is possible to easily grasp the health status, estrus and delivery timing of ruminants such as cows without burdening the ruminant.

Claims

請 求 の 範 囲 The scope of the claims
1 . 反芻動物の首にはめる首輪に取り付けられた、 前記反芻動物から 見て前後方向の加速度を計測する加速度センサおよび/または前記反 芻動物の下顎部および体部の温度を計測する温度センサを有すること を特徴とする反芻動物の健康管理システム。 1. An acceleration sensor attached to a collar fitted to the ruminant's neck, which measures acceleration in the front-rear direction when viewed from the ruminant and / or a temperature sensor which measures the temperature of the lower jaw and body of the ruminant A ruminant health management system characterized by comprising:
2 . 前記加速度センサおよび/または前記温度センサにより計測され た加速度データおよび/または温度データを記録するメモリと、 前記 メモリに記録された前記加速度データおよび/または前記温度データ を外部に出力する外部出力手段とをさらに有することを特徴とする請 求の範囲 1記載の反芻動物の健康管理システム。  2. a memory for recording acceleration data and / or temperature data measured by the acceleration sensor and / or the temperature sensor, and an external output for outputting the acceleration data and / or the temperature data recorded in the memory to the outside The ruminant health management system according to claim 1, further comprising: means.
3 . 前記加速度センサによ り計測された加速度データが、 一定時間継 続して所定の値を上回る正の値を示す場合は前記反芻動物が採食状態、 一定時間継続して所定の値を下回る負の値を示す場合は前記反芻動物 が反芻状態、 一定時間所定の範囲内の値を示す場合は前記反芻動物が 休息状態と判定することを特徴とする請求の範囲 1記載の反芻動物の 健康管理システム。  3. If the acceleration data measured by the acceleration sensor shows a positive value that exceeds a predetermined value for a certain period of time, the ruminant is in a fed state and continues to maintain the predetermined value for a certain period of time. 2. The ruminant according to claim 1, wherein the ruminant is judged to be ruminant when it shows a negative value below, and the ruminant is judged to be resting when it shows a value within a predetermined range for a certain period of time. Health management system.
4 . 前記加速度センサにより計測された前記加速度データのパターン と、 同一個体の同一時間帯における累積加速度デー夕のパターンとが 互いに異なる場合は前記反芻動物が異常状態と判定することを特徴と する請求の範囲 1記載の反芻動物の健康管理システム。  4. The ruminant is determined to be in an abnormal state when a pattern of the acceleration data measured by the acceleration sensor is different from a pattern of accumulated acceleration data in the same time zone of the same individual. Range of ruminant health management system as described in 1.
5 . 前記加速度データと前記累積加速度データとの差が所定の値を上 回るようなパターンを示す場合は前記反芻動物が発情状態と判定する ことを特徴とする請求の範囲 4記載の反芻動物の健康管理システム。  5. The ruminant is determined to be in an estrus state when it shows a pattern in which a difference between the acceleration data and the cumulative acceleration data exceeds a predetermined value. Health management system.
6 . 前記首輪は、 前記反芻動物の頭部が垂直方向に上がった時に前記 温度センサが前記反芻動物の体部に接近し、 前記反芻動物の頭部が垂 直方向に下がった時に前記温度センサが前記反芻動物の下顎部に接近 するように取り付けられていることを特徴とする請求の範囲 1記載の 反芻動物の健康管理システム。 6. The collar is configured such that when the head of the ruminant is raised vertically, the temperature sensor approaches the body of the ruminant and the head of the ruminant is suspended. 2. The ruminant health management system according to claim 1, wherein the temperature sensor is attached so as to approach the lower jaw of the ruminant when lowered in a straight direction.
7 . 前記温度センサにより計測された前記反芻動物の体部の温度に対 する前記反芻動物の下顎部の温度の差が、 正の値を示す場合は前記反 芻動物は採食状態、 負の値を示す場合は前記反芻動物は反芻状態と判 定することを特徴とする請求の範囲 1記載の反芻動物の健康管理シス テム。  7. If the difference in temperature of the ruminant lower jaw relative to the temperature of the ruminant body measured by the temperature sensor shows a positive value, the ruminant is in the foraging state, negative 2. The ruminant health management system according to claim 1, wherein when the value is indicated, the ruminant is determined to be ruminant.
8 . 前記温度センサにより計測された前記反芻動物の体部の温度に対 する前記反芻動物の下顎部の温度の温度差データのパターンと、 同一 個体の同一時間帯における累積温度差データのパターンとが互いに異 なる場合は前記反芻動物が異常状態と判定することを特徴とする請求 の範囲 1記載の反芻動物の健康管理システム。  8. The temperature difference data pattern of the ruminant lower jaw temperature relative to the temperature of the ruminant body measured by the temperature sensor, and the cumulative temperature difference data pattern of the same individual in the same time zone 2. The ruminant health management system according to claim 1, wherein the ruminant is determined to be in an abnormal state when they are different from each other.
9 . 前記温度差データと前記累積温度差データとの差が所定の値を上 回るようなパターンを示す場合は前記反芻動物は発情状態と判定する ことを特徴とする請求の範囲 8記載の反芻動物の健康管理システム。 9. The ruminant according to claim 8, wherein the ruminant is determined to be in an estrus state when a pattern in which a difference between the temperature difference data and the accumulated temperature difference data exceeds a predetermined value is indicated. Animal health management system.
1 0 . 前記温度差データと前記累積温度差データとの差が所定の値を 下回るようなパターンを示す場合は前記反芻動物は体調不良状態また は分娩直前状態と判定することを特徴とする請求の範囲 8記載の反芻 動物の健康管理システム。 10. When the difference between the temperature difference data and the accumulated temperature difference data shows a pattern that is less than a predetermined value, the ruminant is determined to be in a poor physical condition or a state immediately before delivery. The rumination animal health care system according to claim 8.
1 1 . 前記外部出力手段が無線電波送信であり、 前記無線電波で送信 されたデータを受信する受信装置と、 前記受信装置に接続して送信さ れたデ一夕を記録するメモリ と、 前記メモリに記録されたデ一夕につ いて所定のアルゴリズムで演算を行う解析装置とを有することを特徴 とする請求の範囲 2記載の反芻動物の健康管理システム。  1 1. The external output means is radio wave transmission, a receiving device for receiving data transmitted by the radio wave, a memory for recording data transmitted by connecting to the receiving device, 3. The ruminant health management system according to claim 2, further comprising an analysis device that performs an operation with a predetermined algorithm for data stored in the memory.
1 2 . 反芻動物の首に、 前記反芻動物から見て前後方向の加速度を計 測する加速度センサおよび/または前記反芻動物の下顎部および体部 の温度を計測する温度センサを取り付けた首輪をはめ、 前記加速度セ ンサおよび/または前記温度センサにより計測される加速度データお よび/または温度データに基づいて前記反芻動物の健康を管理するよ うにしたことを特徴とする反芻動物の健康管理方法。 1 2. Measure the longitudinal acceleration on the ruminant's neck as viewed from the ruminant. Wearing a collar fitted with an acceleration sensor to measure and / or a temperature sensor to measure the temperature of the lower jaw and body of the ruminant, acceleration data measured by the acceleration sensor and / or the temperature sensor and / or A ruminant health management method characterized by managing the health of the ruminant based on temperature data.
1 3 . 反芻動物から見て前後方向の加速度を計測する加速度センサお よび/または前記反芻動物の下顎部および体部の温度を計測する温度 センサが取り付けられていることを特徴とする反芻動物の健康管理シ ステム用首輪。  1 3. A ruminant characterized in that it is equipped with an acceleration sensor for measuring longitudinal acceleration as viewed from the ruminant and / or a temperature sensor for measuring the temperature of the lower jaw and body of the ruminant. Collar for health care system.
PCT/JP2008/050837 2007-03-16 2008-01-16 Health management system for ruminant animal, health management method for ruminant animal and collar for health management system for ruminant animal WO2008114527A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007068041A JP4931653B2 (en) 2007-03-16 2007-03-16 Ruminant health management system and ruminant health management method
JP2007-068041 2007-03-16

Publications (1)

Publication Number Publication Date
WO2008114527A1 true WO2008114527A1 (en) 2008-09-25

Family

ID=39765645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/050837 WO2008114527A1 (en) 2007-03-16 2008-01-16 Health management system for ruminant animal, health management method for ruminant animal and collar for health management system for ruminant animal

Country Status (2)

Country Link
JP (1) JP4931653B2 (en)
WO (1) WO2008114527A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011080850A (en) * 2009-10-07 2011-04-21 Okamoto Machine Tool Works Ltd Data logger apparatus
CN102144571A (en) * 2011-03-15 2011-08-10 赵增友 PC network telemetered multi-parameter acquisition cow tie with solar/temperature difference power supply
EP2446855A1 (en) * 2010-10-26 2012-05-02 Anemon S.A. Device for measuring a physiological parameter of an animal
AT516566A1 (en) * 2014-12-03 2016-06-15 Smartbow Gmbh Method for obtaining quantified data on re-killing activity
DE202017000171U1 (en) 2017-01-13 2017-04-03 GKMI Gesellschaft für Kooperation, Management und Innovation mbH Headband sensor
CN108836348A (en) * 2018-06-01 2018-11-20 陕西乾乐科贸有限公司 A method of it is ruminated using acceleration transducer detection mammal
WO2019125114A1 (en) * 2017-12-20 2019-06-27 Sanchez Arocha Octavio Wireless system and method for monitoring the health of feeder cattle by monitoring rumination in real time
EP4118961A4 (en) * 2020-03-09 2024-04-10 Nitto Denko Corp Anomaly sensing system

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5407012B2 (en) * 2009-03-10 2014-02-05 独立行政法人農業・食品産業技術総合研究機構 Method and system for distinguishing dairy cow health
JP2010227161A (en) * 2009-03-26 2010-10-14 Wacom-It Co Ltd Delivery reporting system
JP2011044787A (en) * 2009-08-19 2011-03-03 Sric Corp Animal behavior management device, animal behavior management method, and program of the same
JP5316797B2 (en) * 2009-08-25 2013-10-16 株式会社 ワコムアイティ Cow body temperature output device
JP5688597B2 (en) * 2009-11-13 2015-03-25 広島県 Ruminant management equipment
JP5541085B2 (en) * 2010-10-27 2014-07-09 カシオ計算機株式会社 Animal monitoring support device, animal monitoring support method, monitoring support server, monitoring support terminal, program
CN102415876B (en) * 2011-08-13 2015-12-02 赵增友 A kind of PC network monitoring portable solar energy multifunctional reflexless terminal of milch cow back
JP6032671B2 (en) * 2013-01-08 2016-11-30 国立研究開発法人産業技術総合研究所 Water intake measurement device
JP5635637B2 (en) * 2013-03-15 2014-12-03 ヤフー株式会社 Animal abnormality detection device, animal abnormality detection method, and program
JP6197250B2 (en) * 2014-12-01 2017-09-20 広島県 Ruminant management methods
JP6653099B2 (en) * 2015-09-10 2020-02-26 国立大学法人岩手大学 Ruminant behavior analysis method and behavior analyzer
JP6622039B2 (en) * 2015-09-17 2019-12-18 広島県 Ruminant delivery information detection system and delivery information detection method
JP6409028B2 (en) * 2016-07-13 2018-10-17 デザミス株式会社 Cattle activity state management system
EP3603388A4 (en) * 2017-03-31 2020-12-16 NTT Technocross Corporation Behavior specifying device, behavior specifying method and program
JP6635995B2 (en) * 2017-10-02 2020-01-29 Nttテクノクロス株式会社 Behavior identification device, behavior identification method, and program
JP6635968B2 (en) * 2017-03-31 2020-01-29 Nttテクノクロス株式会社 Behavior identification device, behavior identification method, and program
KR101960474B1 (en) * 2017-04-24 2019-07-15 아란타(주) System for performing diagnosis of domestic animal
JP7040930B2 (en) * 2017-12-12 2022-03-23 Nttテクノクロス株式会社 Specific equipment, specific method, and program
JP7088782B2 (en) * 2018-03-27 2022-06-21 Nttテクノクロス株式会社 Specific equipment, specific method and program
JP7204093B2 (en) * 2018-10-09 2023-01-16 Nttテクノクロス株式会社 Detection device, detection method and program
KR102219300B1 (en) * 2018-12-21 2021-02-24 서울대학교산학협력단 Temperature and activity sensor mounted module and detecting system for abnormal parturition of livestock by using the module
JP6579476B1 (en) * 2019-02-27 2019-09-25 光和ネットサービス株式会社 Action detection device and action detection method
JP7232517B2 (en) * 2019-03-26 2023-03-03 国立大学法人岩手大学 Cattle rumen environment evaluation method and cattle rumen environment evaluation device
JP2020036627A (en) * 2019-12-17 2020-03-12 Nttテクノクロス株式会社 Action specification device, action specification method, and program
KR102390411B1 (en) * 2020-05-06 2022-04-26 경상북도 (관련부서:경상북도축산기술연구소장) Method for predicting abortion or premature birth based on changes in body temperature and activity in rumen after vaccination of bovine foot-and-mouth disease
KR102190426B1 (en) * 2020-06-01 2020-12-11 (주)대연씨앤아이 Fastening device for monitoring livestock
JP7156616B2 (en) * 2020-08-07 2022-10-19 ライブストック・アグリテクノ株式会社 Determination device, determination method, and program
KR102393546B1 (en) * 2020-08-24 2022-05-03 경상국립대학교산학협력단 Cow delivery detection system
KR102571221B1 (en) * 2021-06-02 2023-08-29 주식회사 에스비솔루션 Method and system for managing animal data
KR102635759B1 (en) * 2021-06-23 2024-02-14 경상국립대학교산학협력단 Cow delivery notice system using accelerometer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09313065A (en) * 1996-05-31 1997-12-09 Matsushita Electric Works Ltd Health-controlling system for raised animal
JPH1156146A (en) * 1997-08-26 1999-03-02 Matsushita Electric Works Ltd Grazing stock managing apparatus and grazing stock managing system using the apparatus
JPH11128210A (en) * 1997-10-29 1999-05-18 Matsushita Electric Works Ltd Animal exercise quantity controlling device and its system, and recording medium storing animal exercise control program
JP2003310077A (en) * 2002-04-22 2003-11-05 Seiko Instruments Inc System and method for controlling cattle
JP2007124966A (en) * 2005-11-04 2007-05-24 Technos Japan:Kk Device for detecting estrus information, delivery information and/or biological information of animal

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4723739B2 (en) * 2001-03-13 2011-07-13 パナソニック電工株式会社 Cattle food intake measuring device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09313065A (en) * 1996-05-31 1997-12-09 Matsushita Electric Works Ltd Health-controlling system for raised animal
JPH1156146A (en) * 1997-08-26 1999-03-02 Matsushita Electric Works Ltd Grazing stock managing apparatus and grazing stock managing system using the apparatus
JPH11128210A (en) * 1997-10-29 1999-05-18 Matsushita Electric Works Ltd Animal exercise quantity controlling device and its system, and recording medium storing animal exercise control program
JP2003310077A (en) * 2002-04-22 2003-11-05 Seiko Instruments Inc System and method for controlling cattle
JP2007124966A (en) * 2005-11-04 2007-05-24 Technos Japan:Kk Device for detecting estrus information, delivery information and/or biological information of animal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MATSUI K.: "Hoboku Kachiku no Seiri Seitai Joho no Jido Kirokuho", THE JAPANESE SOCIETY FOR ANIMAL SCIENCES HOKURIKU SHIBU KAIHO, vol. 71, 1995, pages 7 - 13 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011080850A (en) * 2009-10-07 2011-04-21 Okamoto Machine Tool Works Ltd Data logger apparatus
EP2446855A1 (en) * 2010-10-26 2012-05-02 Anemon S.A. Device for measuring a physiological parameter of an animal
CN102144571A (en) * 2011-03-15 2011-08-10 赵增友 PC network telemetered multi-parameter acquisition cow tie with solar/temperature difference power supply
AT516566A1 (en) * 2014-12-03 2016-06-15 Smartbow Gmbh Method for obtaining quantified data on re-killing activity
AT516585A3 (en) * 2014-12-03 2022-08-15 Smartbow Gmbh Method for obtaining information about a livestock
DE202017000171U1 (en) 2017-01-13 2017-04-03 GKMI Gesellschaft für Kooperation, Management und Innovation mbH Headband sensor
DE102018200271A1 (en) 2017-01-13 2018-07-19 Humboldt-Universität Zu Berlin Sensor system and method for detecting physiological parameters
DE102018200271B4 (en) * 2017-01-13 2020-03-26 Humboldt-Universität Zu Berlin Sensor system and method for recording physiological parameters
WO2019125114A1 (en) * 2017-12-20 2019-06-27 Sanchez Arocha Octavio Wireless system and method for monitoring the health of feeder cattle by monitoring rumination in real time
CN108836348A (en) * 2018-06-01 2018-11-20 陕西乾乐科贸有限公司 A method of it is ruminated using acceleration transducer detection mammal
EP4118961A4 (en) * 2020-03-09 2024-04-10 Nitto Denko Corp Anomaly sensing system

Also Published As

Publication number Publication date
JP4931653B2 (en) 2012-05-16
JP2008228573A (en) 2008-10-02

Similar Documents

Publication Publication Date Title
WO2008114527A1 (en) Health management system for ruminant animal, health management method for ruminant animal and collar for health management system for ruminant animal
Chapa et al. Accelerometer systems as tools for health and welfare assessment in cattle and pigs–a review
US7350481B2 (en) Method and system for monitoring physiological conditions of, and/or suitability of animal feed for ruminant animals
CN107205362B (en) Method for obtaining information about farm animals
JP2017060407A (en) System and method for health care of ruminant
JP6925638B2 (en) Cattle health management system and management method and health management program
US20060173367A1 (en) Equine fitness monitoring
US20180031598A1 (en) Apparatus and Method for Detecting Disease in Dairy Animals
US20230270077A1 (en) Method and system for determining phase transition in young animal
KR101976519B1 (en) Apparatus for monitoring ruminant stomach of cattle and method thereof
JP2011103793A (en) Apparatus for controlling ruminant, system for controlling ruminant and method for controlling ruminant
CN107410082A (en) Recognition methods is ruminated based on ruminant noseband pressure change
Janzekovic et al. The art equipment for measuring the horse’s heart rate
Blomberg Automatic registration of dairy cows grazing behaviour on pasture
Janzekovic et al. Polar sport tester for cattle heart rate measurements
JP2003325077A (en) Method for foreseeing sexual excitement/delivery date of cattle, pig, horse or the like and finding disease by analysis of numerical value of vibration, and attachment type apparatus for foreseeing sexual excitement/delivery date and finding disease used therefor
Michie et al. Wireless MEMS sensors for precision farming
Barwick et al. On-animal motion sensing using accelerometers as a tool for monitoring sheep behaviour and health status
Brassel et al. Automated detection of health disorders in lactating dairy cattle on pasture: a preliminary study.
US20240164349A1 (en) Health tracker device for horses
AU2004224828A1 (en) Equine fitness monitoring
IL153801A (en) Method and system for monitoring physiological conditions of, and/or suitabilty of animal feed for ruminant animals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08703681

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08703681

Country of ref document: EP

Kind code of ref document: A1