WO2008083384A2 - System and method to acquire, aggregate, manage, and distribute media - Google Patents

System and method to acquire, aggregate, manage, and distribute media Download PDF

Info

Publication number
WO2008083384A2
WO2008083384A2 PCT/US2007/089227 US2007089227W WO2008083384A2 WO 2008083384 A2 WO2008083384 A2 WO 2008083384A2 US 2007089227 W US2007089227 W US 2007089227W WO 2008083384 A2 WO2008083384 A2 WO 2008083384A2
Authority
WO
WIPO (PCT)
Prior art keywords
media
manager
stream
operable
user
Prior art date
Application number
PCT/US2007/089227
Other languages
French (fr)
Other versions
WO2008083384A3 (en
Inventor
Amir Ansari
George A. Cowgill
Ramprakash Masina
Jude P. Ramayya
Alvin R. Mcquarters
Atousa Raissyan
Leon E. Nicholls
Marshall T. Rose
Robert Clavenna
Original Assignee
Prodea Systems, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/966,936 external-priority patent/US8031726B2/en
Application filed by Prodea Systems, Inc. filed Critical Prodea Systems, Inc.
Publication of WO2008083384A2 publication Critical patent/WO2008083384A2/en
Publication of WO2008083384A3 publication Critical patent/WO2008083384A3/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/085Retrieval of network configuration; Tracking network configuration history
    • H04L41/0853Retrieval of network configuration; Tracking network configuration history by actively collecting configuration information or by backing up configuration information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/14Charging, metering or billing arrangements for data wireline or wireless communications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/14Charging, metering or billing arrangements for data wireline or wireless communications
    • H04L12/1403Architecture for metering, charging or billing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • H04L41/0806Configuration setting for initial configuration or provisioning, e.g. plug-and-play
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0604Management of faults, events, alarms or notifications using filtering, e.g. reduction of information by using priority, element types, position or time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/50Network service management, e.g. ensuring proper service fulfilment according to agreements
    • H04L41/5003Managing SLA; Interaction between SLA and QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/50Network service management, e.g. ensuring proper service fulfilment according to agreements
    • H04L41/508Network service management, e.g. ensuring proper service fulfilment according to agreements based on type of value added network service under agreement
    • H04L41/5096Network service management, e.g. ensuring proper service fulfilment according to agreements based on type of value added network service under agreement wherein the managed service relates to distributed or central networked applications

Definitions

  • the present subject matter relates to the management of media content and associated metadata through a gateway device at a user premises, wherein the gateway device is associated with endpoint devices to facilitate management of the media content and metadata, where a demarcation is defined between resources of the gateway accessible to and managed by a service provider and service access by a user via an endpomt device.
  • the digital home is now becoming more complex with the myriad of new and emerging digital devices intended to address many user and consumer needs such as communication, entertainment, privacy, and security.
  • users who are technologically challenged may find it a daunting and intimidating task to manage their home networks and interconnected digital devices.
  • new paradigms are emerging oriented to delivering media content to and the consuming of media content at the home. Many of these paradigms rely on communication of application specific data to and/or from the Internet, as opposed to conventional telephone or broadcast video type applications.
  • the protection of received Internet-sourced media content in addition to user- generated media content is additionally an important aspect that may be inadequately addressed by the technologically-challenged user.
  • a media content manager residing at a user premises having a tuner coupled to at least one media source operable to selectively receive at least one media stream of at least one type of media content.
  • the media content manager also including a media processor coupled to the tuner and operable to receive the at least one media stream and convert the media stream to a predetermined data format
  • the media content manages has a media manager coupled to the media processor and operable to receive the at least one media stream in the predetermined data format and direct the media stream to a selected media player device coupled to the media processor.
  • the media content manager includes a storage device coupled to the media manager and operable to receive and store the at least one media stream in the predetermined data format.
  • the gateway device has a user module having a user interface that is associated with the at least one application, wherein the user module enables bi-directional communications with the at least one media player device.
  • the gateway device includes a network module having the connection that enables bi-directional communications with a remote service manager. There is an interface boundary between the application service module and the network module forming a network service provider demarcation.
  • the gateway device has a tuner coupled to at least one media source via the network module and operable to selectively receive at least one media stream of at least one type of media content.
  • the gateway device includes a media processor coupled to the tuner and operable to receive the at least one media stream and convert the media stream to a predetermined data format.
  • the gateway device also includes a media manager coupled to the media processor and operable to receive the at least one media stream in the predetermined data format and direct the media stream to a selected media player device coupled to the media processor via the user module.
  • the gateway device has a storage device coupled to the media manager and operable to receive and store the at least one media stream in the predetermined data format.
  • a method of aggregating, managing and distributing media content involving the selection of at least one media source and selectively receiving at least one media stream of at least one type of media content.
  • the method further comprises the conversion of the media stream to a r ⁇ H p t p rrmn p ri rl p tn format.
  • the at least one media stream includes metadata. Additionally, the methods involves directing the media stream to a selected one of a plurality of media player devices coupled to the media processor.
  • a computer-readable medium having encoded thereon a method of aggregating, managing and distributing media content includes selecting at least one media source and selectively receiving at least one media stream of at least one type of media content.
  • the method further includes converting the media stream to a predetermined data format.
  • the at least one media stream includes metadata.
  • the method involves directing the media stream to a selected one of a plurality of media player devices coupled to the media processor.
  • the method includes storing the at least one media stream in the predetermined data format.
  • a system comprises a remote service manager, a gateway device residing at a user premises and coupled to the remote service manager via a network, where the gateway device comprises an application service module being remotely managed by the remote service manager via a connection, the application service module residing on a user premises side of a network service provider demarcation, and a network module having the connection that enables bi-directional communications with the remote service manager.
  • the gateway device further comprises a tuner in communication with at least one media source operable to selectively receive at least one media stream of at least one type of media content, a media processor coupled to the tuner and operable to receive the at least one media stream and convert the media stream to a predetermined data format, a media manager coupled to the media processor and operable to receive the at least one media stream in the predetermined data format and direct the media stream to a selected media player device coupled to the media processor, and a storage device coupled to the media manager and operable to receive and store the at least one media stream in the predetermined data format.
  • a tuner in communication with at least one media source operable to selectively receive at least one media stream of at least one type of media content
  • a media processor coupled to the tuner and operable to receive the at least one media stream and convert the media stream to a predetermined data format
  • a media manager coupled to the media processor and operable to receive the at least one media stream in the predetermined data format and direct the media stream to a selected media player device coupled to the
  • a system comprises a media source having media content and associated metadata, a media server having access to the media source, a media player device coupled to the media source, the media player being operable to display media content and metadata to the user, and a media adaptor coupled to the media server and media player, the media adaptor comprising a predictive cache, the media adaptor operable to receive user queries related to media content at the media source, transmit the user queries to the media server for processing, and the predictive cache being operable to transmit anticipatory queries related to the user queries to the media server, and cache anticipatory search results supplied by the media server.
  • FIG. l is a network diagram of an embodiment of an exemplary system having a service management center connected to gateway devices that are connected to respective endpomt devices at the user premises.
  • FIG. 2 is a high-level block diagram of an embodiment of the architecture of the exemplary system showing the demarcation between a gateway device and the service management center in reference to a network service provider demarcation.
  • FIG. 3 is a high-level block diagram of an embodiment of the software and hardware components of a gateway device together with a network service provider termination apparatus, and shows a network service provider demarcation as well as an application service provider demarcation.
  • FIGS. 4A and 4B are more detailed logical diagrams of an embodiment of an exemplary gateway device.
  • FIG. 5 is a high-level architectural overview of an exemplary system to manage the multiplicity of media storage devices and sources in a way that provides a centralized, logical view of all media, and corresponding metadata, available to the user.
  • FIG. 6 is a data flow diagram that desc ⁇ bes the process of the exemplary system that allows management of multiple media storage devices and sources in a way that provides a centralized, logical view of all media and corresponding metadata available to the user.
  • FIG. 7 is a data flow diagram for an exemplary embodiment of a predictive media cache.
  • a customer typically subscribes to basic transport services from a network service provider (e.g., ISP - Internet Service Provider, cable provider, fixed wireless providers, ILEC - Incumbent Local Exchange Carrier, or CLEC - Competitive Local Exchange Carrier).
  • a network service provider e.g., ISP - Internet Service Provider, cable provider, fixed wireless providers, ILEC - Incumbent Local Exchange Carrier, or CLEC - Competitive Local Exchange Carrier.
  • the network service provider manages these basic services, at the logical network layer, typically at layers 1 , 2 and 3 of the Open Systems Interconnection (OSI) model. While network services and associated devices may operate minimally at those levels, they operate at those levels to support operations at OSI layers 1, 2 and 3. Many applications, however, involve higher level service logic for applications that view the network transport as simply a transport pipe.
  • OSI Open Systems Interconnection
  • VoIP Voice Over Internet Protocol
  • SIP Session initiation protocol
  • IP Internet Protocol
  • the SEP server controls the call set-up, tear-down, billing and the like for the voice call services.
  • FIG. l is a network diagram of an embodiment of an exemplary system having a service management center 201 connected to gateway devices 10 that are connected to respective endpoint devices 11 at the user premises.
  • This secure platform for building and providing multiple application services for digital endpoints 11 associated with a gateway device 10 requires connectivity between the gateway device 10 and each of a user's endpoint devices 11.
  • this connectivity may be provided by network interfaces such as one or more USB interfaces 13, wired Local Area Network (LAN) connections such as provided by an Ethernet LAN interface 16, a wireless network interface via a WiFi LAN access point 62, other LAN transport technologies such as HPNA or HomePlugAV, or other technologies now available or hereafter developed.
  • LAN Local Area Network
  • the WiFi connection may be implemented for example, in accordance with the I.E.E.E. 802.11 b/g/n wireless network communications standard. These interfaces provide the required network interconnectivity for the endpoint devices 11 to connect to the gateway device 10 t ⁇ access, miiitinie flnniication services residing on the gateway device 10.
  • the connectivity between digital endpoint devices 11 and the gateway device 10 may be accomplished by other suitable means now known or to be developed, including, by way of example, through of a virtual private area network connection accessed through a WAN interface.
  • Exemplary endpoint devices 11, with which the gateway device 10 may communicate via the USB interface 13, include, for example, a home automation networking device 20 (e.g. XlO, Z-Wave or ZigBee) for wired or wireless home network automation.
  • the device 20 which in turn controls devices such as a switch controller 22, sensor devices 23, automatically-controlled window blinds 24, and a controlled lighting or lamp unit 25, for example.
  • the gateway device 10 may communicate via the Ethernet LAN interface 16 across a local IP network 60 or via the WiFi LAN access point 62 to reach personal computing (PC) and laptop/mobile devices 30a,...,30c that serve as file sources, control points and hosts for various other endpoint devices 11.
  • PC personal computing
  • laptop/mobile devices 30a,...,30c serve as file sources, control points and hosts for various other endpoint devices 11.
  • the gateway device 10 may communicate via Ethernet LAN interface 16 across a local EP network 60 or via WiFi LAN access point 62 to access one or more television display devices 32 including the associated set top boxes (STB) 35a or digital media adapters (DMA) 35b.
  • STB set top boxes
  • DMA digital media adapters
  • one or more SEP phones (or VoEP phone devices) 40, or other devices that convert IP interfaces to Public Switched Telephone Network (PSTN) Foreign eXchange Office (FXO) and Foreign eXchange Subscriber (FXS) interfaces may be accessed by gateway device 10 via Ethernet LAN interface 16 across a local EP network 60 or via WiFi LAN access point 62.
  • PSTN Public Switched Telephone Network
  • FXO Foreign eXchange Office
  • FXS Foreign eXchange Subscriber
  • the gateway device 10 may access the DMA 35b for a television display device 32, which enables bidirectional wireline or wireless communication.
  • the DMA 35b supports several functions for multiple services including, but not limited to: media (e.g., video and music) by enabling the transfer of media (e.g., video and music) to the TV; voice services, by providing for Calling Line Identification (CLED) and for voice mail control; and provide Home Automation Services including status and control of networked home automation devices.
  • the DMA 35b converts audio and video (optionally) to a format suitable for a TV.
  • the DMA 35b may be capable of receiving context-sensitive commands from a remote control device (not shown) and forwarding those commands to the gateway device 10.
  • the gateway device 10 This enables the use of menus on the television display device 32 for controlling application services and various features functions thereof, as offered by the gateway device 10. Therefore, the combination of the gateway device 10, DMA 35, and the television display device 32 one is able to provide the following features inriiiHin ⁇ hni nnt limited to: display of media; media control functions, when enabled (FF, REW, STOP, PAUSE, etc); display of CLID; control of voicemail; picture viewing; control of home automation; and user functions for the gateway device 10.
  • a set top box 35a is in communication with the gateway device 10 via the wireless access point 62.
  • the set top box 35a also may handle media format conversion (for example NTSC to ATSC television RF signals), digital decryption and other DRM (digital rights management) functions, Video On Demand Purchases, etc.
  • the combination of the Set Top Box 35a with the television display device 32 may enable, by way of example, Media format conversion (for example NTSC to ATSC); decryption; other DRM functions (such as expiry of leases), prohibition of copying to digital outputs, function restriction, etc.; Video On Demand Purchases; and media control functions (e.g., FF, REW, STOP, PAUSE, etc.).
  • the communications to and from the television display device 32 provide a user interface for interaction with the gateway device 10.
  • the software/firmware of the gateway device 10 supports, among other things, a graphical user interface (GUI) via the television display device 32, sometimes referred to as the "ten-foot" interface.
  • GUI graphical user interface
  • the PCs 30a,..., 30c shown in FIG. 1 interface with the gateway device 10 and serve as, among other things, file sources, control points and hosts for various software clients.
  • the gateway device 10 may access PC device 30b via Ethernet LAN interface 16 across a local IP network 60 or via WiFi LAN access point 62.
  • the gateway device 10 accessing the PC may provide for the bidirectional moving of files, and status and control for the endpomt devices 11 , including for example, status and control of networked home automation devices.
  • PCs 30a,..., 30c users may access the gateway device 10 for any number of reasons, such as for example, share files on the gateway device 10 with other endpomt devices 11, back-up or transfer files to the gateway device 10 or other endpomt devices 11 having storage capabilities; access personal page for notifications, receive RDF site summary (RSS) or Atom feeds, share photos, and receive voicemail messages.
  • RSS RDF site summary
  • PCs 30a,..., 30c may also serve as a host for IM and SIP soft phone clients and other endpomt devices 11.
  • the client-server interaction of the PCs 30a,..., 30c with the gateway device 10 offers an alternative GUI for at least some of the services.
  • the PC based GUI is sometimes referred to as the "two-foot" interface.
  • other digital endpomt devices 11 for which connectivity may be established with the gateway device 10 include, but are not limited to, media player devices (audio, VIHP ⁇ . flnrhn/viHen with or without metadata), hi-fi audio equipment with media streaming capability, game stations, Internet radio devices, WiFi phones, WiFi or other wirelessly enabled digital cameras, facsimile machines, electronic picture frames, health monitors (sensor and monitoring devices) and devices now known or to be developed.
  • media player devices audio, VIHP ⁇ . flnrhn/viHen with or without metadata
  • hi-fi audio equipment with media streaming capability game stations
  • Internet radio devices WiFi phones, WiFi or other wirelessly enabled digital cameras
  • facsimile machines electronic picture frames
  • health monitors sensor and monitoring devices
  • the endpoint devices may be directly coupled to the gateway device off the Internet or private IP networks.
  • the exemplary system disclosed in FIG. 1 moves substantial functions performed by the typical network server into the user premises 70 by incorporating those functions into a gateway device 10, but in a way that allows for the server functionality to be externally managed by a service management center 201 , which may in turn be operated by a third-party application service provider 98.
  • the architecture of the exemplary system does not require identity of the provider/manufacturer of the gateway device, the service management center or the third-party application service provider.
  • a gateway device may be manufactured under the control of one entity, for distribution to one or more service management entities (each of which operates its own service management center).
  • the gateway device may then be activated with a particular service management center under the control of a particular system management entity.
  • a system management entity may be the entity that determines the mix of application services to which the user subscribes, or this "retail" function for application services may be performed by one or more application service providers, one or more of whom the user may subscribe to depending on the mix of application services offered by each application service provider.
  • the term "application service provider” is used herein to refer to various entities up and down the "supply chain” and include, but are not limited to, manufacturers of the gateway device and endpoint devices, suppliers of the gateway device and endpoint devices, entities that provide, operate or manage application services, network service providers (described above), and entities that provide the activation manager function described in detail below. These entities in the supply chain may or may not operate or function independently of one another.
  • the term “remote service manager” is also used to refer to the service management center 201 and/or application service provider 98.
  • the server functionality residing in the gateway device 10 is not only located in the user premises 70 but it now resides on the user premises side of the traditional network service provider demarcation 312.
  • the exemplary system shown in FIG. 1 does not just move server functionality from the servers in a traditional network operations center, where they were previously located, to the home; but it also moves the logical position of the execution of application services logic of the server to the user premises 70 side of the network service provider demarcation 312 and provides logical hooks to enable the external service manager to perform its function(s) on that side of the Hemarr.atinn Fnr example, application service logic transmitted by application service provider 98 related to the use of one or more gateway devices 10 and/or endpoint devices 11 can now be provisioned, serviced and managed on the user premises 70 side of the network service provider demarcation 312, albeit by an external service management center 201 operated by or on behalf of a third-party application service provider 98.
  • the application software architecture coupled with the specific managed hardware implementation at the user premises 70, enables a single service provider to provide the network services such as IP network 99, whereas one or more application services providers 98 (possibly including the network service provider) can provide the applications services to the customer independently of providing the network service
  • the disclosed exemplary system in FIG. 1 addresses network computing and traffic capacity and latency challenges of providing application services at the network level.
  • the exemplary architecture thus results in significantly reduced latency and improved reliability.
  • FIG. 1 Another aspect of the exemplary system in FIG. 1 is that it enables the application service provider 98 through the use of the service management center 201 to control hardware elements (endpomt devices 11 ) of various types located on the user premises 70 side of the network service provider demarcation 312 by communicating through the gateway device 10.
  • the exemplary system can gather operational information such as billing records, alarms, statistical data, and log information associated with gateway device 10 and the endpomt devices 11 connected to gateway device 10.
  • Such a centralized management greatly reduces the burden on end users in managing their equipment or network and provides an application service provider 98 through the service management center 201 the ability to optimize service delivery.
  • FIG.1 demonstrates the exemplary network configuration.
  • gateway device 10 which is connected to services management center 201 and thereby application service provider 98 via a wide area network, such as, by way of example, IP network 99.
  • the exemplary system has gateway device 10 located on the user premises 70 associated with various endpomt devices 11.
  • the novel system architecture of the exemplary network configuration as shown in FIG. 1 allows for the management of services for the gateway device 10 and endpoint devices 11 and facilitates the easy addition of new services or modification of existing services on the gateway 10 and endpoint devices 11 via application service provider 98 through service management center 201.
  • Such services may include, for example, facility management (home automation), media content downloading and Digital Rights Management (DRM), device updates, data backups, file sharing, media downloading, and transmission.
  • AU these services may be provided, from the user's perspective, without the intermediary of a plurality of external service providers who may typically provide these individual services for every endpoint device 11 in the user premises 70; rather, the user may receive, through the system architecture, application services for all these devices, which application services may be managed through the system architecture by a network service provider.
  • facility management home automation
  • DRM Digital Rights Management
  • the software/firmware for these services resides m the gateway device 10.
  • the gateway device 10 is integrated with hardware and software modules and respective interfaces that handle all aspects of home automation and digital endpoint service and management for the home in a manner without having to rely on external service providers and in a manner that is essentially seamless to the user.
  • This is advantageously provided by the service management center 201 which is able to access regions of the gateway device 10 that are not accessible to the user for controlling the transport and storage of digital content and enabling service applications and upgrades that provide largely invisible support for many tasks performed by users through their endpoint devices 11.
  • the gateway device 10 connects the various endpoint devices 11 together for enabling the user to expe ⁇ ence a connected digital home, where information from one endpoint device 11 (for example voicemail from SIP Phone 40) can be viewed and acted on at another endpoint device 11 (for example the TV 32).
  • the gateway device 10 thus hosts the various in- home endpoint devices 11 and facilitates the moving of information from one endpoint device 11 to another endpoint device 11.
  • Some of the in-home endpoint devices 11 processing duties performed by the gateway device 10 include, but are not limited to, 1) detecting new devices and provide IP addresses dynamically or statically; 2) functioning as a (Network Address Translator) NAT, router and firewall; 3) providing a centralized disk storage in the home; 4) obtaining configuration files from the service management center and configuring all in-home devices; 5) acting as a registrar for SIP -based devices; 6) receiving calls from and delivering calls to voice devices, providing voicemail services; 7) decrypting and securely streaming media having digital rights management encoding; 8) distributing media to an appropriate endpoint device; 9) compressing and encrypting files for network back-up; 10) backmg-up files to the service management center, to other elements within the svstem or other off-site storage centers provided by third parties directly from the gateway device; 11) handling home automation schedules and changes in status; 12) providing in- home personal web-based portals for each user; 13) providing parental control services (e.g.,
  • gateway device 10 may perform other duties such as setting and reporting of alarms and statistics for aggregation, perform accessibility testing; notify a registration server (and location server) of the ports it is "listening" on; utilize IM or like peer and presence communications protocol information for call processing and file sharing services; receive provisioning information via the registration server; utilize a SIP directory server to make/receive calls via the SBC network element to/from the PSTN and other gateway device devices; and download DRM and non-DRM based content and facilitating the DRM key exchanges with media endpoints.
  • service maintenance features such as setting and reporting of alarms and statistics for aggregation, perform accessibility testing; notify a registration server (and location server) of the ports it is "listening" on; utilize IM or like peer and presence communications protocol information for call processing and file sharing services; receive provisioning information via the registration server; utilize a SIP directory server to make/receive calls via the SBC network element to/from the PSTN and other gateway device devices; and download DRM and non-DRM based content and
  • the service management center 201 generally provides a communications and processing infrastructure for supporting the variety of application services and related communications residing at the gateway devices 10, 1O 1 ...1O n .
  • this infrastructure may be configured to provide a secure environment and may be IP -based.
  • this support architecture is designed for high availability, redundancy, and cost-effective scaling.
  • the application service provider 98 in conjunction with the service management center 201, depicted in FIG. 1 , manages application services for a number of gateway devices 10, 1O 1 ...1O n located at various users' premises 70.
  • Connectivity for the various gateway devices 10, 10 1 ...1 O n to the service management center 201 and thereby the application service provider 98 is provided, in one embodiment, via a WAN termination interface, such as Ethernet WAN 53 over a broadband connection via the IP network 99, or, for example, via a wireless EvDO (Evolution Data Optimized) Internet data interface embodied as a PCMCIA (personal computer memory) wireless card 56, or a WiMax interface.
  • a WAN termination interface such as Ethernet WAN 53 over a broadband connection via the IP network 99
  • a wireless EvDO Evolution Data Optimized
  • Internet data interface embodied as a PCMCIA (personal computer memory) wireless card 56, or a WiMax interface.
  • the gateway device 10 includes both a hardware and software infrastructure that enables a bridging of the WAN and LAN networks, e.g. a proxy function, such that control of any endpoint device 11 at any user premises 70 via the gateway device 10 using, optionally, a secure peer and presence tvne messaging infrastructure or other communications protocols, e.g. HTTPS.
  • a proxy function such that control of any endpoint device 11 at any user premises 70 via the gateway device 10 using, optionally, a secure peer and presence tvne messaging infrastructure or other communications protocols, e.g. HTTPS.
  • HTTPS HyperTextvne messaging infrastructure
  • EVI networks 99a, 99b such as provided by YAHOO, MICROSOFT (MSN), SKYPE, AMERICA ONLINE, ICQ, and the like
  • a user may access any type of functionality at a subordinate digital endpomt device 11 at and user premises 70 via the gateway devices 10, 10 ! ... 1O n and service management center 201 by simple use of peer and presence messaging protocols.
  • a peer and presence communications protocol may be used such as Jabber and/or XMPP.
  • Jabber is a set of streaming XML (Extensible Markup Language) protocols and technologies that enable any two entities on the Internet to exchange messages, presence, and other structured information in close to real time.
  • the gateway device is provided with functionality for enabling a user to remotely tap into and initiate functionality of a digital endpomt devices 11 or the respective applications of the endpomt devices 11 at the premises via the EVI networks 99a and 99b.
  • the gateway device 10 and network connectivity to the novel service management center 201 provides, in a preferred embodiment, a secure peer and presence messaging framework, enabling real-time communications among peers via other gateway devices 10 1 ...1 O n .
  • the device 10 provides the ability to construct communication paths between peers with formal communications exchanges available between, for example, one gateway device 1O 1 at user premises 7O 1 and a second gateway device 1O n located at user premises 7O n .
  • such an infrastructure provides for content addressing, enabling peers through remote gateway devices 10] ...1 O n to supply and request content such as files, media content or other resources of interest to a community of interest.
  • FIG. 2 is a high-level block diagram of an embodiment of the architecture of the exemplary system showing the demarcation between a gateway device 10 and the service management center 201 in reference to a network service provider demarcation 312.
  • the logical network service provider demarcation 312 is formed at the edge of the wide area network at the user premises, between the wide area network and the equipment in the user premises.
  • a network service provider takes responsibility for managing resources on the network side of the network service provider demarcation 312, leaving the user to manage everything on the user premises side.
  • the gateway device 10 is implemented in such a manner as to offer its user many of the applications services, that were previously offered from network-side servers, from the user premises.
  • FIG. 2 shows that, in the exemplary architecture, many of these application service functionalities that were previously offered from the service provider network 318 exist across the network service provider demarcation 312 and logically reside at the application services layer 314 in the user premises network 316 on the hardware components located in the gateway device 10.
  • the software/firmware that implements application services is logically positioned on the user premises network 316 of the network service provider demarcation 312.
  • the application services layer 314 shown in FIG. 2 represents the functional layers that provides access to applications services by application clients. These application services exist on a managed application service delivery platform (ASD) 326.
  • the ASD 326 may include three functional modules, namely the application service enforcement (ASE) module 320, the application service logic (ASL) module 322, and the application service management (ASM) module 324.
  • ASE application service enforcement
  • ASL application service logic
  • ASM application service management
  • the application services layer 314 includes the ASL module 322 which executes the application services that the gateway device 10 or endpoint devices 11 request.
  • Such services may include parental control 322a, backup 322b, advertising server 322c, presence and peered networking 322d, media distribution 322e, call processing 322f, and file sharing 322g.
  • the ASE module 320 is responsible for enforcing the relevant application privileges to the application services.
  • the ASE module 320 and the ASL module 322 must interact with each other so that the ASL module 322 can provide access to the client applications that have passed the policy enforcement procedures set forth in the ASE module 320. Additionally, a firewall 330 to protect the application client from application level attacks from the open Internet is located on the user premises network 316 within the application service layer 314.
  • FIG. 2 Other elements shown in FIG. 2 that may reside in the gateway device 10 and logically positioned on the user premises network 316 include a network function layer 328 comprised of, but not limited to, a switch 328a, router 328b and/or a bridge 328c.
  • the switch, router and bridge may optionally reside outside of the gateway device 10 and the functions thereof be performed elsewhere.
  • a LAN termination interfaces 332 located within the network interconnect layer 334 on the user premises network 316 may optionally include, but not be limited to the following interfaces: WiFi 332a, Ethernet 332b, Multimedia Over Coax Alliance (MOCA) 332c, Home Phonelme Networking Alliance (HPNA) 332d, HomePlug 332e, and Asynchronous Transfer Mode CATMI 332f Other interfaces currently known or to be developed may be included.
  • the various LAN termination interfaces 332 allows bi -directional network layer communications on the user's side of the premises with one or more of the associated endpoint devices 1 1.
  • FIG. 2 also shows the WAN termination interfaces 336 at the network interconnect layer 334 on gateway device 10, but on the service provider network 318 side of the network service provider demarcation 312.
  • the WAN termination 336 may include, but not limited to the following interfaces Digital Subscriber Line (DSL) modem 336a, Passive Optical Network (PON) 336b, cellular packets 336c, Data Over Cable Service Interface Specification (DCSIS) modem 336d, and Worldwide Interoperability for Microwave Access (WiMAX) 336e. Other interfaces now known or to be developed may be included.
  • the WAN termination 336 provides connectivity to the wide area network (WAN) 338 at the network function layer 328 on the service provider network 318.
  • WAN wide area network
  • the WAN 338 may include, but not limited to, the Internet 338a and a private data network 338b, for example.
  • the WAN termination 336 enables bi-directional network layer communications for the associated endpoint devices 11 via a WAN and enables bi-directional communications between the gateway device 10 and the service management center 201 via the WAN.
  • the core of the logical capacities of the service management center 201 resides on the Service provider network 318, and is depicted as the Application Service Management (ASM) 324 portion of the application service delivery platform 326 m the application services layer 314.
  • the ASM module 324 is implemented in the service management center 201, which is external to the user premises, and on the service provider network 318 side of the network service provider demarcation 312.
  • the ASM module 324 may include functions such as provisioning 324a, subscnption 324b, and monitoring 324c, for example.
  • va ⁇ ous ASM module 324 functionalities performed at the service management center 201, from the service provider network 318 regime include but are not limited to, initializing service in the gateway devices, providing security for the gateway devices and the network support infrastructure, enabling real time secure access and control to and from the gateway devices, distributing updates and new service options to the gateway devices, providing service access to and from the gateway devices and remote access to the gateway devices, for example.
  • the service management center 201 provides the following exemplary additional services and features: authentication, multi-service registration, subscription control, service authorization, alarm management, remote diagnostic support, billing collection and management, web services access, remote access to gateway devices (e.g.
  • SIP or Internet/web based communications via SIP or Internet/web based communications), reachability to access challenged gateway devices, software updates, service data distribution, location service for all services, SIP VoIP service, media services, backup services, sha ⁇ ng services, provisioning, gateway interfaces to other service providers (northbound and pee ⁇ ng), load balancing, p ⁇ vacy, security, and network protection.
  • the logical network architecture for the service management center network 201 delivering these capabilities is illustrated and described in greater detail in the above-identified related applications.
  • the ASM module 324 is operable to provide the necessary data to the ASE 320 and ASL modules 322 for them to carry out their respective functions. Specifically, the ASE module 320 receives the policies and permissions of each application client from the ASM module 324 (such as provisioning data and subscription data) and enforces those policies against the requested actions by the client application. Furthermore, the ASL module 322 may interact with the ASM module 324 for monitoring purposes and status information such as call data recording and billing. The ASM module 324 also manages the overall security and integrity of the ASD 326.
  • the ASL module 322 and ASE module 320 maintain logical connectivity or interaction with the ASM module 324 in the service management center 201, typically via communication through WAN 338.
  • This logical connectivity is established through an always-on (or on an as needed, periodic basis), secure control channel 210 between the application services layer 314 (ASL and ASE) of the user premises network 316 and the application services layer 314 (ASM) of the service provider network 318.
  • the control channel 210 is established through the network function layer 328 and the network interconnect layer 334.
  • the service management center 201 communicates with one or more of the gateway devices 10 thereby providing an infrastructure to support and/or manage the application services offered to endpomt devices 11 and their users by logic implemented in the gateway device(s). This logic is called the gateway operational management software and will be further described below.
  • the ASD 326 considered in its entirety, extends all the way from the service provider network 318 to the user premises network 316 by traversing the network service provider demarcation 312.
  • FIG. 2 also introduces a logical platform manager layer 340 to the user premises network 316, which allows for mter-layer allocation of local resources.
  • the platform manager layer 340 guarantees access between the ASL module 322 on the user premises network 316 and the ASM module 324 in the service management center 201 by assuring that the local user premises hardware and software modules are functioning at a required state (CPU and memory usage, bandwidth usage, QoS settings, etc.) in order for the ASL module 322 to have the necessary resources to establish its required communications path to the ASM module 324.
  • ASE, ASL and ASM modules are only examples of functions that may be logically bundled; other bundles, and other means of bundling these functions, are possible.
  • the platform manager layer 340 is also responsible for implementing that part of the managed application services to be performed by the gateway device 10.
  • the platform manager layer 340 secures and manages the overall hardware platform, given that in this scenario, the network function layer 328 and the application services layer 314 reside on one hardware platform.
  • This secure hardware platform provides a robust and secure operating environment for the application services layer 314.
  • the platform manager layer 340 must interface (represented by arrows 1, 2, and 3) with all the layers above it and allow for bi-directional operational information flow among all of the functions including application services.
  • Application services represent functionalities, implemented in the upper layer(s) of the protocol or logical stack above the network layer(s) that may extend up to the application layer (layer 7 of the OSI model).
  • An application service for example, provides application server communication with a client functionality of one or more endpomt devices, for the respective service, communicated on top of network layer communications through the interfaces.
  • the services are provided on a subscription service basis to users at the premises.
  • the ASE module 320 provides enforcement regarding authorization, authentication, configuration, and/or use of the respective application service via the endpoint devices 11.
  • the application service includes service and feature functions, implemented and controlled by the ASL module 322. Management of the application service is based on communications with the ASM 324 housed within service management center 201 via the WAN 338.
  • Examples of application services include, but are not limited to one or more of: media delivery, content management, access control and use tracking, file sharing, and protection and back-up services of both Internet/Web-generated digital media content and user generated digital media content.
  • the disclosed gateway 10 device thus is configured and programmed to simplify various aspects of managing the emerging home/business digital networks including the myriad of interconnected digital endpoint devices 11 associated with the gateway device 10.
  • the endpoint devices 11 need not reside within, or be located at, the premises to maintain their association with the gateway device 10.
  • Application service functionality of the gateway device 10, as provided by the exemplary system is enabled/disabled and configured by an application service provider 98 (FIG. 1), via communications between the gateway device 10 and the service management center 201 As shown by the discussion of FIG.
  • application service software/firmware is logically positioned on the user premises network 316, that is to say on the user premises side of the network service provider demarcation 312.
  • the gateway device 10 software/firmware also defines a logical service provider-user demarcation between the user premises and the application service provider, as will be described in more detail with regard to FIG. 3.
  • the gateway device 10 and service management center 201 move substantial functions performed by the typical network server into the user premises by incorporating those functions in a way that allows for the server functionality to be externally managed by the service management center 201 which may be operated by a third-party service provider such as an application service provider 98.
  • the server functionality and the application services offered via the gateway device 10 may be managed by the service management center 201.
  • the server function residing in the gateway device 10 is not only located on the user premises but it now resides logically on the user premises side of the network service provider demarcation 312 and on the service provider side of the applications service provider demarcation 392 (see further discussion below in reference to FIG. 3).
  • FIG. 3 is a high-level block diagram of an embodiment of the software and hardware components of a gateway device together with a network service provider termination apparatus 344, and shows a network service provider demarcation 312 as well as an application service provider demarcation 392.
  • the drawing shows an example of user premises hardware components required for delivering data services (i.e. Internet connectivity) along with a separate, non-integrated managed hardware used in delivering a set of managed application services (e.g. IM, VOD, IP telephony).
  • the Network Service Provider Wide Area Network Termination Apparatus (NSP-TA) 344 allows for a typical termination of WAN 338 at a network service provider interface 346 for such services as DSL, cable, and fiber.
  • NSP-TA Network Service Provider Wide Area Network Termination Apparatus
  • Additional components within the NSP-TA 344 may include a CPU 346, power 348, memory 350, routing/bridging module 352, and a user premises network interface 354, for example.
  • the NSP-TA 344 may be an existing user-premises device, provided by the carrier supplying network services to the premises.
  • FIG. 3 also depicts the network service provider demarcation 312 at the hardware level.
  • FIG. 3 includes a representation of the application services layer 314 above the physical/network layer 342. This layer corresponds to the application services layer 314 of FIG. 2, but without reference to any logical elements residing at the network services ⁇ rovider
  • the management element represented by the network service provider managed application 356, allows the network service provider to determine the status of the network hardware device and interfaces as well as maintain a certain degree of security enforcement at the customer premises.
  • the network service functionality is at the network interconnect layer 334 and network function layer 328 (displayed in FIG 2) and generally does not extend to the application services layer 314 beyond basic authentication, authorization and state management as depicted by network services user authentication application module 358.
  • the logical elements also have a network service provider demarcation 312.
  • the network service provider management application module 360 the applications that are managed by the network service provider logic 362
  • the network service provider logic 362 allows the network service provider the exclusive control over the applications withm the portion of the network service provider management application module 360 that are logically on the network service provider managed applications 356 side.
  • the user interface to managed applications 364 is present on the LAN side of the network service provider demarcation 312 withm the application services layer 314. Within this interface resides software/firmware and logic available to users other than the network service provider referred to as the network user controlled logic 366.
  • the network user controlled logic 366 provides a user interface to the network service provider logic 362 and, to the extent permitted by the network service provider logic 362, interaction with or communication between the user and network service provider through the network user controlled logic 366 and the network service provider logic 362, and to the NSP-TA 344 hardware components.
  • the network user controlled logic 366 allows the user of the NSP-TA 344 to make certain minimal software/firmware changes relevant to their preferences (e g , user name and password changes, local IP addresses changes, local interface selection).
  • All user devices typically can only communicate with the NSP-TA 344 through one or more of the user premises network interfaces 354.
  • the user can modify the network user controlled logic 366 through the user premises network Interface 354.
  • the network service provider demarcation 312 is typically within the NSP-TA 344, logically dividing the network service provider interface 346 and the user premises network interface modules 354.
  • the network service provider does not have any in-depth visibility or significant responsibility beyond the network service provider demarcation 312.
  • FIG. 3 illustrates the User Network and Application Delivery Apparatus (UNA-DA) 368, which is depicted as a separate managed gateway device 10 (but as described below mav optionally be combined with elements of the NSF-TA 344) that a managed- service provider (which may be different than the network service provider) would control in delivering a set of application services to the user premises 70 (FIG 1).
  • FIG. 3 illustrates the logical architecture of the software and hardware of the gateway device 10 together with a NSP-TA 344 for broadband connection to WAN 338.
  • the gateway device 10 is an application delivery apparatus, for delivering application services to endpomt devices 11 using network layer communications through the network interface 153.
  • FIG. 1 User Network and Application Delivery Apparatus
  • FIG. 3 also illustrates two relevant demarcations and a termination which delineate control/management access with respect to the functionalities of the gateway device 10.
  • FIG. 3 shows the arrangement of the ASL module 322 and the ASE module 320 of FIG. 2 as being logically positioned between these two demarcations which results in significant management control by the application service provider 98 and relieve the user of significant burdens in arranging and configuring the systems/services at the user premises 70 (FIG. 1).
  • FIG. 3 identifies a dividing line across the logical elements of the UNA-DA 368, and a corresponding dividing line across hardware components, referred to as the applications service provider demarcation 392.
  • the arrows at the top of FIG. 3 thus show the delineations in management responsibility created by the two logical demarcations 312 and 392.
  • the covered area to the left of the network service provider demarcation 312 as depicted by arrow 384 is the network service provider's responsibility.
  • the area covered by arrow 390 which represents anything to the right of the application service provider demarcation 392 is the end user's responsibility.
  • the logic and hardware between these two demarcations, as depicted by arrow 386, is the application service provider's 98 responsibility.
  • the managed gateway device 10 is composed of several elements at both the physical/network layer 342 and the application services layer 314. At the physical/network layer 342, the device 10 includes its own dedicated CPU 152, memory 370, packet/cell switching fabric 374, data traffic module 376 and power 378 as well as its own dedicated set of interfaces.
  • the UNA-DA 368 includes one or more network interfaces 153 providing connectivity to the NSP-TA 344 as well as to user premises endpoint devices 11.
  • the physical connection 151 that connects the UNA-DA 368 to the NSP-TA 344 also provides connectivity for the UNA-DA 368 to the WAN 338, and is the means by which the UNA- DA 368 accesses the WAN 338.
  • Programming elements of the UNA-DA 368 in the gateway device 10 are depicted at the application services layer 314 of the UNA-DA 368.
  • the software/firmware corresponding to the ASL module 322 and the ASE module 320 of FIG. 2 reside on the application service provider managed applications and platform 380 (FIG. 3).
  • the application service provider managed applications and platform 380 is managed by the managed application service provider 98 in conjunction with the service management center 201 housing the ASM module 324.
  • the application service provider 98 accesses the application service provider managed applications and platform 380 by means of control channel 210 through the WAN 338.
  • logical elements that form the application service provider managed applications and platform 380 include, but are not limited to, device drivers 104, operating system 106, system service 108, and platform module 109. These logical elements are described with respect to FIGS. 4A and 4B below.
  • Another logical element that forms the application service provider managed applications and platform 380 includes the application service interface 140. The application service interface 140 enables communications from user endpoint devices 11 with the application service provider managed applications and platform 380.
  • the application service provider managed applications and platform 380 includes a platform management module 110 that, with other software/firmware in the platform and the ASM 324, allows the managed application service provider 98 to control the hardware elements of the UNA- DA 368 in addition to other relevant application services logic or hardware that may reside on the user premises.
  • this software/firmware enables a managed application service provider 98 to control and manage the hardware elements on the UNA-DA 368 to ensure proper use and allocation of the UNA-DA 's processing, memory, storage, and bandwidth, to monitor local hardware security and generate needed alarms or protection sequences, and to prioritize applications based on a set of established policies.
  • the user would have control over specific parameters of application services obtained through the UNA-DA 368, through the user interface and platform to managed applications 382 shown in FIG. 3. These parameters allow the user to control the local behavior of the interfaces and to configure the specific applications to implement the user preferences for those applications.
  • the application service provider 98 can interact with the network service provider's managed applications through the network service provider management application 360. This is an optional function but it helps show how the gateway device 10 can interface with a network device, such as the NSP-TA 344, from a network service provider, and provide a unified application interface.
  • the logical connection 388 represent this management relationship between platform management logic module 110 in the gateway device 10 and the network service provider management application 360 in the NSP-TA 344.
  • the application service provider 98 manages the NSP-TA 344 for the user, even though it is not the application service provider's hardware In the case where the application service provider is a network service provider as well, then it would work in practically the same way. If the NSP-TA is the application service provider's own hardware, the degree of integration and control can be elevated even more.
  • FIG. 3 also shows how the software/firmware elements on the gateway device 10 effectively partitions the hardware at the application service provider demarcation 392, which gives the application service provider 98 the ability to provide a managed Peer-to-Peer private service that will enable that provider to use the gateway device 10 for performing distributed computing, search, indexing, file backup, sharing, etc., all managed and controlled by the application service provider 98 through service management center 201.
  • the two hardware regimes described above may be combined into one managed hardware platform. This would in effect replace the "user" access with a managed “machine” access, for aspects of the NSP-TA 344, as well as aspects of the application services offered through the UNA-DA 368.
  • the combination creates an integral gateway device 10 providing both network service and application services, under centralized management.
  • network interconnect functions of the NSP-TA 344 may still be managed by the network service provider, as in the example of FIG. 3.
  • FIGS. 4A and 4B are more detailed logical diagrams of an embodiment of an exemplary gateway device 10.
  • the gateway device 10 utilizes a layered architecture, which enables the encapsulation of similar functionality and the minimization of dependencies between functions in different layers.
  • FIG. 4A shows the lower portion of the layered architecture, and FIG.
  • FIG. 4B shows the upper portion of the layered architecture.
  • the completed set of layers can be conceptualized as if FIG. 4B was combined with FIG. 4A, with the layers of FIG. 4B above those of FIG. 4A.
  • FIGS. 4A and 4B also depict exemplary functionality (hardware and logical) resident in each of the layers.
  • the layered architecture includes, but not limited to, a hardware components layer 102, hardware driver layer 104, base operating system layer 106, system services layer 108, platform modules layer 109, platform management layer 110, services framework layer 120, application services layer 130, and application services interfaces layer 140. These layers combined represent the layered architecture of the exemplary gateway device 10.
  • FIGS. 4A and 4B An overview of FIGS. 4A and 4B made in reference to FIGS. 2 and 3 is provided for o ⁇ entation purposes.
  • the logical elements of the network interconnect Layer 334 residing on the gateway device 10 are found in the hardware drivers layer 104 in FIG. 4A, which govern the operation of the hardware components layer 102.
  • the processor runs a base operating system shown in FIG. 4A at layer 106, which plays a role in each of the network interconnect 334, network function 328, application services 314 and platform manager layer 340 (FIG. 2).
  • Logical elements represented by the network function layer 328 (FIG. 2) comprise elements from the system services layer 108 (FIG. 4A).
  • the platform manager layer 340 (FIG.
  • FIG. 4B illustrates the exemplary architecture of FIGS. 4A and 4B by the platform modules 109 and the platform management layer 110.
  • Particular logical elements comprising the ASL module 322 and ASE module 320 of the application services layer 314 (FIG. 2) are shown in FIG. 4B as comprising logical elements from each of services framework 120 and application services 130.
  • the layered architecture displayed in FIG. 4B facilitates reuse or sharing of logic across the layers to provide a managed services framework 120.
  • application services interface 140 enables communications from user endpomt devices 11 (FIG. 1) within their respective service environments.
  • the hardware components layer 102 includes a central processing unit (CPU) 152, which may be a system on a chip that includes processing elements, digital signal processor resources and memory.
  • CPU central processing unit
  • the implementation of functions and the related control such as a router (with quality of service (QoS)), firewall, VoIP gateway, voice services and voice mail may be embodied and performed withm the CPU 152.
  • QoS quality of service
  • VoIP gateway voice services and voice mail
  • the CPU 152 is also coupled to a random access memory (RAM) 170 and additionally, nonvolatile hard d ⁇ ve/disk magnetic and/or optical disk memory storage 154.
  • the hard drive/disk magnetic and/or optical disk memory storage 154 provides non-volatile storage of computer readable instructions, data structures, program modules, objects, service configuration data and other data for use by the gateway device 10.
  • the non- volatile hard d ⁇ ve/disk magnetic and/or optical disk memory storage 154 may be partitioned into a network side which is the repository for sto ⁇ ng all of the service logic and data associated with executing services subscribed to by the user, and, is invisible to the user, and, a user side for storing user generated content and applications in which the user has visibility.
  • the CPU 152 may be coupled to a microcontroller for controlling a display device and/or other devices.
  • Additional hardware components include one or more Ethernet LAN and WAN interface cards 155, 156 (e.g. 802.11, Tl, T3, 56 kb, X.25, DSL or xDSL) which may include broadband connections (e.g. ISDN, Frame Relay, ATM, Gigabit Ethernet, Ethernet over SONET, etc.), wireless connections, or some combination of any or all of the above.
  • broadband connections e.g. ISDN, Frame Relay, ATM, Gigabit Ethernet, Ethernet over SONET, etc.
  • wireless connections the cards would be associated with WiFi LAN access point 62 to enable a wireless connection.
  • the Ethernet LAN interface 155 provides data communication connectivity withm the user premises, essentially, for communication with any endpomt devices operating within the premises.
  • the Ethernet WAN interface 156 provides data communication connectivity for the gateway device 10 and endpoint devices 11 (not shown) communicating through the device 10, with the wide area network like IP network 99 shown in FIG. 1.
  • the hardware components 102 may also include one or more USB interfaces 158. Furthermore, for additional or alternative communications with the wide area network, the hardware components may also include the PCMCIA EvDO interface card 160.
  • a data encryption/decryption unit 162 is additionally provided as part of the architecture for providing data security features.
  • a watchdog timer element or like timer reset element 164 is provided as is one or more LED devices 166 for indicating status and other usable information to users of the gateway device 10.
  • the hardware layer 102 may also include an option module 168.
  • the hardware components at layer 102 have multiple interfaces for connection to such an option module 168. These interfaces, by way of example, could be a data bus (e.g. PCI, etc), network interface (e.g. Ethernet (RJ45), MoCA/HPNA (Coax)) and Power feeds.
  • the option module 168 allows additional functionality to be added to the gateway device 10 at the hardware layer 102.
  • this additional functionality could be everything from support for a variety of extra WAN interfaces (e.g. xDSL, DOCSIS, Fiber (PON), cellular packet, WiMAX, etc.), media processing (e.g. Cable TV termination, Digital Video Recording, Satellite TV Termination, over-the-air broadcasting, etc), to voice processing (FXS, FXO, Speech Detection, Voice to Text, etc).
  • the option module 168 may have its own standalone CPU, memory, mputs/outputs, storage, or provide additional functionality by its use of the CPU, memory, inputs/outputs, and storage facilities off of the other hardware layer 102 components.
  • the option module 168 may be managed indirectly by the platform manager layer 340 (FIG. 2).
  • gateway hardware layer provides a high-level functional disclosure of an example of the hardware that may be used in the gateway device Those skilled in the art will recognize that the gateway device may utilize other hardware platforms or configurations.
  • the hardware drivers layer 104 comprises a multitude of driver interfaces including but not limited to: a PCMCIA driver 104a, for enabling low level communication between the gateway CPU 152 and the PCMCIA network interface card wireless interface, an IDE driver 104b for enabling low level communication between the gateway CPU 152 and the local mass memory storage element, and LAN/WAN Ethernet drivers 104c for enabling low level communication between the gateway CPU 152 and the respective network interface cards 155 and 156.
  • a PCMCIA driver 104a for enabling low level communication between the gateway CPU 152 and the PCMCIA network interface card wireless interface
  • an IDE driver 104b for enabling low level communication between the gateway CPU 152 and the local mass memory storage element
  • LAN/WAN Ethernet drivers 104c for enabling low level communication between the gateway CPU 152 and the respective network interface cards 155 and 156.
  • the exemplary driver layer also includes, but not limited to an LED driver/controller 104d for driving LED(s) 166, a USB driver 104e allowing CPU 152 to communicate via USB interface 158, and an 802.11 b/g (or n) wireless network driver 104f for allowing the CPU 152 to communicate via the WiFi LAN access point 62.
  • the drivers provide the logical connectivity between the low level hardware devices 102 and the base operating system 106.
  • the base operating 106 controls the execution of computer programs and provides scheduling, mput-output control, file and data management, memory management, and communication control and related services for the gateway device 10.
  • the gateway device 10 architecture may support any embedded operating system, any real-time ODeratme system, anv open source operating system, any proprietary operating system, or even any operating systems for mobile computing devices as long as the operational needs of the client discussed herein below can be met.
  • Exemplary operating systems that may be employed include WINDOWS, MACINTOSH, LINUX or UNIX or even an embedded Lmux operating system.
  • the gateway device 10 may be advantageously provided with an embedded base operating system 106 that provides operating system functions such as multiple threads, first-in first-out or round robin scheduling, semaphores, mutexes, condition variables, and message queues, for example.
  • an embedded base operating system 106 that provides operating system functions such as multiple threads, first-in first-out or round robin scheduling, semaphores, mutexes, condition variables, and message queues, for example.
  • a system services support layer 108 providing both client-like and server-like functions that enable a wide range of functionality for the types of services capable of being managed by the gateway device 10.
  • a Dynamic Host Configuration Protocol (DHCP) client 108a and server 108b software modules are provided.
  • the DHCP client particularly requests via a UDP/IP (User Datagram Protocol/Internet Protocol (e.g , IPv4, IPv6, etc.) configured connection information such as the IP address that the gateway device 10 has been dynamically assigned by a DHCP service (not shown), and/or any the subnet mask information the gateway device should be using.
  • UDP/IP User Datagram Protocol/Internet Protocol (e.g , IPv4, IPv6, etc.) configured connection information such as the IP address that the gateway device 10 has been dynamically assigned by a DHCP service (not shown), and/or any the subnet mask information the gateway device should be using.
  • the DHCP server dynamically assigns or allocates network IP addresses to subordinate endpoints 11 on a leased basis.
  • a Virtual Private Network (VPN) client 108c may communicate via a proxy server in the service management center 201, according to a VPN protocol or some other tunneling or encapsulation protocol.
  • An SMTP client 108d handles incoming/outgoing email over TCP, in accordance with the Simple Mail Transfer protocol.
  • a Network Time Protocol (NTP) 108e (RFC 1305) generates and correlates timestamps for network events and generally provides time synchronization and distribution for the Internet.
  • a Domain Name Server (DNS) client 108f and server 108g combination are used by the IP stack to resolve fully-qualified host or symbolic names, i.e. mapping host names to IP addresses.
  • DNS Domain Name Server
  • HTTP Hypertext Transfer Protocol
  • SSL Secure Sockets Layer
  • a Secure File Transfer Protocol (SFTP) client 108i and server 108j combination govern the ability for file transfer over TCP.
  • a SAMBA 108k server is an open source program providing Common Internet Files Services (CIFS) including, but not limited to file and p ⁇ nt services, authentication and authorization, name resolution, and service announcement (browsing).
  • An EvDO/PPP driver 1081 includes a Pomt-to-Point Protocol (PPP) daemon configuration for wireless broadband services.
  • PPPoE (Point-to-Point Protocol over Ethernet) client 108m combines the Point-to- Point Protocol (PP), commonly used in dialup connections, with the Ethernet protocol.
  • PPP Point-to-Point Protocol
  • the PPPoE client 108m supports and provides authentication and management of multiple broadband subscribers in a local area network without any special support required from either the telephone company or an Internet service provider (ISP).
  • the gateway device 10 is thus adapted for connecting multiple computer users on an Ethernet local area network to a remote site through the gateway 10 and can be used to enable all users of an office or home to share a common Digital Subsc ⁇ ber Line (DSL), cable modem, or wireless connection to the Internet.
  • a Secure Shell or SSH 108n server implemented with HTTP protocol provides network protocol functionality adapted for establishing a secure channel between a local and a remote computer and encrypts traffic between secure devices by using public-key cryptography to authenticate the remote computer and (optionally) to allow the remote computer to authenticate the user.
  • a central database server 183 handles all of the database aspects of the system. For example, the database server 183 maintains and updates registries and status of connected digital endpoint devices 11 (FIG. 1), maintains and updates service configuration data, services specific data (e.g. indexes of backed-up files, other service specific indexes, metadata related to media services, etc.) and firmware configurations for endpomt devices 11 (FIG. 1).
  • the database server 183 may also store billing and transaction detail records and performance diagnostics.
  • the database server logic 183 also satisfies all other database storage needs as will be described in greater detail herein.
  • the platform module layer 109 provides a software framework for base operating system layer 106 and communications level platform functionality such as CPU management 109a, timer management 109b, memory management functions 109c, a firewall 109d; a web wall 109e for providing seamless WWW access over visual displays via access technologies enumerated herein, (e.g., HTTP, SMS (Short Messaging Service) and WAP (Wireless Access Protocol)), QoS management features 109f, bandwidth management features 109g, and hard disk d ⁇ ve management features 109h
  • the layered architecture further provides a platform management layer 110 as shown in FIG.
  • platform management layer 110 which together with the platform modules 109 implement the platform manager layer 340 discussed earlier (FIG. 2).
  • the features and functions in platform management layer 110 include a platform manager module 110a which will implement unique rules based notification services. On operational failure, for example, when one of the components or services fails, the platform manager module 110a would detect this failure and take appropriate action such as implement a sequence of rules to provide notification to a user.
  • Another module withm platform management layer 110 is a scheduler manager module 1 10b.
  • Scheduler manager module 110b manages scheduled device maintenance, managing scheduled services, e.g. back-up services, etc.
  • the layer 110 also includes a diagnostics manager module 110c and a firmware upgrades manager module HOd for managing firmware upgrades.
  • a resource manager module 11Oe manages system resources and digital contention amongst the various resources (e.g. CPU/bandwidth utilization) withm platform management layer 110.
  • a display manager module 11Of and a logger manager module 11Og store and track gateway log-in activity of users and applications, e.g. voice call logs, at the user premises.
  • the platform management layer HO m concert with resource manager module 11Oe and the platform manager module 110a enforce the separation of network-side managed service control and user-side delegations depending upon service subsc ⁇ ptions and configurations.
  • the platform manager module 110a and resource manager module 11Oe encompass rules and guidelines provided according to subscribed services that act to enforce, manage, and control the input/output operations and use of hard drives space.
  • the operation of the platform manager module 110a and resource manager module 11Oe help to determine the line between what is "owned by" the customer and what is "owned by” the application service provider thereby establishing the application service provider demarcation 392 as seen in FIG. 3.
  • the logical platform management layer 110 allows for mter-layer allocation of local resources. This function guarantees access between the application services/management logic implemented at the higher layers of the architecture withm the gateway device 10 and the applications service management function in the service management center 201, by assu ⁇ ng that the local user premises hardware and software modules are functioning at a required state (CPU and memory usage, bandwidth usage, QoS settings, etc.).
  • the platform management layer 110 is also responsible for implementing that part of the managed application services to be performed by the gateway device 10. hi that regard, the platform management layer 110 secures and manages the overall hardware platform, given that in this scenario, the network function layer and the application service laver reside on one hardware platform. This secure hardware platform provides a robust and secure operating environment for the application services layer. So, to establish a secure and robust hardware operating environment, the platform management layer 110 must interface with all the layers above it and allow for bi-directional operational information flow among all of the functions.
  • the Services Framework Layer 120 which provides a library of application support service processes that facilitate data collection and data distribution to and from the endpomt devices (FIG. 1).
  • the application support service processes include, but are not limited to, a device authentication manager 12Og for use in authenticating devices connected to the gateway device and the user of the gateway device, a billing manager 120a for collecting and formatting service records and service usage by endpomt devices, (e.g., calls, back-up services etc.), a fault manager 120b for detecting and managing determined system and/or service faults that are monitored and used for performance monitoring and diagnostics, a database manager 120c, a control channel interface 12Oh via which the gateway initiates secure communications with the operations support infrastructure, a configuration manager 12Od for tracking and maintaining device configuration, a user manager 12Oe, a service manager 12Oi for managing service configuration and firmware versions for subscribed services provided at the gateway device, and a statistics manager 12Of for collecting and formatting features associated with the gateway device
  • the layered service architecture shown in FIG. 4B additionally provides the gateway device 10 with mtra-process communication and inter-process communication amongst the many services and modules in the service framework layer 120 that enables the provisioning, management and execution of many applications and services at the application services layer 130.
  • the application services layer 130 providing library of user application services and application support threads including, but not limited to, file share manager 130a, backup server 130b, home storage 130c, network device manager 130d, basic photo editor 130e, home automation controller 130f, media services module 130g, call processing module 130h, voice mail and interactive voice response (IVR) server 130i, presence and networking 13 Oj, parental control 130k, and intelligent ads manager 1301.
  • the gateway device 10, shown in FIG. 4B, further provides application service interfaces 140 that are used to enable a variety of user applications and communications modalities.
  • the application service interfaces 140 enable communications from user endpomt devices 11 (FIG. 1) within service environments.
  • the application service interfaces 140 enable the application services 130 to act as an approp ⁇ ate server with respect to client device application or service functionality of the endpoint devices 11 (FIG. 1).
  • the application service interfaces 140 also enable corresponding interfaces for the application services with aspects of service environments implemented outside the user premises.
  • the interfaces 140 enable the application services layer 130 to act as an appropriate client, for extending the application or service related communications to a server accessed via a wide area network, such as a server of the service management center 201 (FIG. 1).
  • Specific application service interfaces 140 might include a Session Initiation Protocol (SIP) Interface 141
  • SIP interface 141 is an interface to the generic transactional model defined by the session initiation protocol that provides a standard for initiating, modifying or terminating interactive user sessions that involve one or more multimedia elements that can include voice, video, instant messaging, online games, etc., by providing access to dialog functionality from the transaction interface.
  • SIP signaling interface enables connection to a SIP network that is served by a SIP directory server via a session border controller element in the service management center 201 (FIG. 1).
  • application service interfaces layer 140 may include the web interface 142 that enables HTTP interactions (requests and responses) between two applications
  • the Web services interface 149 that provides the access interface and manages authentication as gateway device 10 access the service management center 201 via web services may be included in the application service interface layer 140.
  • the IM Interface 144 which can optionally be located within the application service interface layer 140, is a client that enables the gateway device 10 to connect to one or more specific EVI network(s).
  • the UPnP (Universal Plug and Play) interface 147 enables connectivity to other stand-alone devices and PCs from many different vendors.
  • the XMPP interface 145 within the application service interface layer 140, is provided to implement the protocol for streaming (XML) elements via the gateway device 10, m order to exchange messages and presence information in close to real time, e.g. between two gateway devices.
  • the core features of XMPP interface 145 provide the building blocks for many types of near-real-time applications, which may be layered as application services on top of the base TCP/IP transport protocol layers by sending application-specific data qualified by particular XML namespaces.
  • the XMPP interface 145 provides the basic functionality expected of an EvI and presence application that enable users to perform the following functions including, but not limited to, 1) exchange messages with other users, 2) exchange presence information with other devices, 3) manage subscriptions to and from other users, 4) manage items m a contact list (in XMPP this is called a "roster"), 5) block communications to or from specific other users by assigning and enforcing privileges to communicate and send or share content amongst users (buddies) and other devices, and 6) communicating with applications in the service management center and vice versa.
  • the synchronization of allowed services and features and the real-time notification of service and configuration changes can be communicated through this interface.
  • the gateway device 10 is enabled to aggregate all types of media, such as real time broadcast media, Internet-based streamed media, pull and push video-on-demand, or to aggregate and distribute personal media located on the user premises.
  • the disclosed invention is directed to the ability of the exemplary system to obtain/acquire media content and/or associated metadata, to store and aggregate that content and/or metadata, and then efficiently distribute or access the content for streaming to endpomt devices 11 associated with, and managed by, the gateway device 10.
  • An end user has many endpomt devices 11 at their user premises that, for example, provide access to music, movies, photos, and other forms of media and their associated metadata.
  • a user via an endpomt device 11, can access additional media and metadata outside of the user premises, for example, through the Internet, satellite services, and other terrestrial mechanisms.
  • This invention provides a system and methods to manage the multiplicity of media storage devices and sources in a way that provides a centralized, logical view of all media and corresponding metadata available to the user.
  • DMS Digital Media Server
  • a DMS may be implemented either as a standalone device, or as firmware/software running on a gateway device 10 or endpomt device 11.
  • DMA 35b of FIG. 1 Another key component to this invention is a Digital Media Adapter (such as DMA 35b of FIG. 1), which browses and plays media that resides on one or more DMS devices.
  • the DMA 35b allows the user via an endpomt device 11, such as television display devices 32 (FIG. 1), to browse media that is stored on the DMS by presenting icons and navigation artifacts as a series of "pages" (i.e. menus) that are displayed on the television display devices 32, for example.
  • the media that the DMA 35b is accessing on the DMS includes metadata. Metadata is information that describes the content, quality, condition, origin, and/or other characteristics of the media content or other pieces of data.
  • Metadata examples include: title, location of media, type, size, duration, resolution, genre, content rating, copyright information (such as for DRM), language, author/artist/actor/director names, year of publication/release, graphical elements (album art, for example), parental control parameters, user "tag” data, and other data downloaded from the Internet.
  • the DMS is responsible for finding, collecting, aggregating, storing and managing the metadata associated with the media. It should be noted that the DMA functionality may be implemented either as a standalone device, or as firmware/software running on a gateway device 10 or endpomt device 11.
  • the gateway device 10 may serve as both a DMA and a DMS.
  • the gateway device 10 may be given the capabilities of a DMA device and/or DMS device, such as for example, the functionalities of media and metadata collection, aggregation and distribution by adding media content processing capabilities. These may include, for example: (a) video encoding/decodmg/transcodmg by way of hardware/firmware; (b) media management, such as firmware/software that permits metadata and media file aggregation, organization, and distribution; and (c) digital rights management (DRM), such as decrypting/encryption, and transcription, and the secure handling of media files on a secure hardware platform.
  • DRM digital rights management
  • the DMA and DMS functions can be added in whole or in part to the gateway device 10 to achieve a desired service definition. Therefore, it is not necessary to implement all functions concurrently. Furthermore, there may be more than one endpoint device 11, gateway device 10, or other device withm the exemplary system serving as a DMA or DMS. In the preferred embodiment, the overall implementation takes into account the possible inclusion of all such capabilities at some point.
  • FIG. 5 is a high-level architectural overview of an exemplary system to manage the multiplicity of media storage devices and sources in a way that provides a centralized, logical view of all media and corresponding metadata available to the user.
  • the gateway device 10 is acting as a DMA and the DMS.
  • the gateway device 10 is connected to the IP network 99, for example, and to various endpoint devices 11 via a LAN connection 60.
  • the gateway device 10 has access to media and the associated metadata on servers residing within the service management center 201, application service provider 98, and or any other entity that is accessible through the exemplary system depicted in FIG. 1.
  • the media sources 500 (via the IP network connection, the WAN connection 338 (FIG.2), and the option module 168 (FIG. 4) allow the gateway device 10 to receive media and the associated metadata from sources within and beyond the user premises, for example, the Internet, satellite television providers, other real-time video providers, media associated with other gateway devices 10 on other user premises, etc.
  • endpoint devices 11 may be charactenzed as, but not limited to, media storage devices and media player devices.
  • media storage devices is used to refer to endpomt devices 11 or other gateway devices 10 that have the capability of sto ⁇ ng media content and associated metadata that can be accessed by gateway device 10 or other endpomt devices.
  • the media storage devices depicted in FIG. 5 include, but not limited to, a network attached storage (NAS) 503 and a personal computer (PC) 30a.
  • NAS network attached storage
  • PC personal computer
  • media player devices is used to refer to endpomt devices 11 or other gateway devices 10 that are capable of rendering (by displaying or playing) media, including audio, video, audio/video, images, with or without the associated metadata.
  • Media player devices may include, but are not limited to, stand alone television display devices 32, personal computers, and properly-enabled audio equipment. These media player devices include the necessary hardware to receive the media stream and render the media stream for user consumption.
  • the media player devices may incorporate DMA functionalities or be coupled to a DMA device that provides DMA capability.
  • the gateway device 10 depicted in FIG. 5 it comprises a media processor 501, a media manager 507, a network module 502, a tuner module 506, and a storage device such as hard drive 154.
  • the media processor 501 decodes/encodes and decrypts/encrypts the media content sent through the gateway device 10 and make the necessary protocol translation and/or media format conversion. For example, the media processor may convert the media stream into IP data packets. Additionally, the media processor 501 may handle DRM processing.
  • the media manager 507 receives the IP data packets and directs the IP data packets to the approp ⁇ ate endpomt device 11 , other gateway device 10, or any other entity within the exemplary system that may be communicated with through network module 502.
  • the media manager also tracks and monitors the media played on all media player devices. The media manager thus also associates the media played to users associated with these media player devices.
  • the usage tracking data may stored in the hard drive device in the gateway device, and may be used to customize and personalize the media content and user experience provided by the gateway device (including parental control functionality, paid targeted advertisement, etc.).
  • the media usage data may be transmitted to the service management center for analysis, and may be aggregated across all gateway devices.
  • the network module 502 provides the interface to the IP network 99 and LAN 60.
  • the tuner module 506 provides the capability for selectively receiving television signals, such as, but not limited to, direct broadcast satellite (DBS), cable, and/or Internet protocol television (IPTV).
  • DBS direct broadcast satellite
  • IPTV Internet protocol television
  • the tuner module 506 may select between IP "stations" by associating with the correct multicast stream, for example.
  • the tuner 506 modulates those source signals into a form suitable for processing by the media processor 501 and transmission by the media manager 507 within the exemplary system.
  • the hard d ⁇ ve 154 is preferably non-volatile memory used for storing media and the associated metadata within the exemplary system.
  • the hard drive 154 may serve as a "cache" to buffer the media before it is streamed to the media player devices to provide digital video recorder (DVR) functionalities. Further, the hard drive may be used for consistent playback if there is a mismatch in transmission speed between the endpoint device and the media source.
  • DVR digital video recorder
  • FIG. 6 is a data flow diagram that desc ⁇ bes the process of the exemplary system that allows management of multiple media storage devices and sources in a way that provides a centralized, logical view of all media and corresponding metadata available to the user.
  • the gateway device 10 is plugged into the LAN 60 and IP network 99 on the user premises. Connecting the gateway device 10 to the LAN 60 and IP network 99 enables the gateway device 10 to be connected to various network devices including, but not limited to, endpomt devices 11 and other gateway device 10.
  • the gateway device 10 automatically discovers endpomt devices 11 on the LAN 60 and IP network 99 that are associated with gateway device 10
  • the gateway device acts as the router and DHCP server in the customer premises and provides the IP address.
  • endpoint devices 11 may serve as media storage devices 505 and media player devices 504. Furthermore, endpomt devices 11 can store and serve media (i.e. send media across the exemplary system from one endpoint device 11 to another endpomt device 11).
  • the discovery of the endpoint devices 11 at step 602 may be done through open protocols, such as universal plug and play (UPnP), or through proprietary protocols supported by the gateway device 10.
  • UPnP refers to a protocol used for streaming media or advertising/collecting media and device information over a LAN.
  • the details of choosing and implementing the protocols are managed by the gateway device 10, and typically hidden from the end user so that the experience is an integrated and uniform expe ⁇ ence across all the associated endpomt devices 11, it is possible for the user to manually add devices that do not support a discovery protocol.
  • an end user may manually input into the gateway device 10 specific information about a particular endpomt device 11, such as its IP address, MAC address, and the communications protocol (i.e. SMB, NFS, etc.) that is associated with that endpoint, so that an endpomt device 11 is associated with a particular gateway device 10.
  • Step 603 involves the user establishing preferences on gateway device 10 for the media content and associated metadata that meet their preference.
  • the end user via an endpomt device 11 such as a properly-enabled television display device 32, accesses the gateway device 10 to enter user preferences for media content and the associated metadata they want to access and use.
  • the user can specify whether to download and store the media content and associated metadata on the gateway device's hard drive 154 (FIG. 5).
  • the sources for the media content and metadata may include, but is not limited to, the Internet or from multiple Internet-based subscription services, broadcast media such as cable TV and satellite TV, endpoint devices 11 associated with the gateway device 10, and other gateway devices 10 through peer-to-peer networking across IP network 99.
  • the gateway device 10 may, in addition to or in lieu of, download media content to its hard drive 154, scan the media that resides on each endpoint device 11, other gateway devices 10, and/or from other sources that are available over IP network 99, and build a comprehensive database of metadata for all media. Using this metadata database, the gateway device 10 can search for, organize and query the metadata to enable the user to utilize the metadata to find media content.
  • the metadata contained in the metadata database on the gateway device 10 also contains information (such as pointers) necessary to access the media, regardless of whether the media resides on an associated endpoint device 11, the gateway device 10 itself, or on another device that is accessible via the LAN 60 and/or IP network 99.
  • the end user via an endpoint device 11 with DMA functionality, such as the television display device 32, may send a request for media content by entering information or menu selection associated with the media content.
  • the information is sent to the gateway device 10.
  • the gateway device 10 will use the user-supplied information to search its own hard drive for the location of the media as well as all associated endpoint devices 11 and any external source that may be accessible to the gateway device 10. It should be noted, that the gateway device 10 during the searching process for the media, scans its metadata database to determine the location of the media. Then the gateway device 10 accesses the media via the location indicated in the metadata database.
  • the compatibility of the found media content is compared to the rendering capabilities of the endpoint point device 11 (step 606). Because the media content may be formatted according to protocols inconsistent with the media- rendering capabilities on the associated endpoint device 11, the gateway device 10 may serve as a transcoder (i.e. decoder/encoder). The gateway device 10 may be programmed so that it possesses the ability to convert the media content in a manner suitable for display/rendering/playing on the associated digital end point device 11 that will receive the media content.
  • an endpoint device 11 serving as a media player device 504 device, can only play MPEG2 video format, then any MPEG4 videos will have to be transcoded by the gateway device 10, so that the endpoint device 11 may render/display the video to the end user.
  • the gateway device 10 by using the user-supplied information, can determine if a rendering endpomt device 11 supports the format of the media content from the source storing the media content. If the rendering endpomt device 1 1 does not support the format indicated in the metadata, the gateway device 10 can then, for example, reference the metadata to locate the source of the media content, and obtain the alternative encoding. Then the media content is made available m the alternative encoding that is capable of being rendered/played on the receiving endpomt device 11.
  • the gateway device 10 may then receive and stream/distribute, via the LAN 60 or IP network 99, the stored media content to any compatible endpomt devices 11 and/or other gateway device 10.
  • the streaming of media content need not be performed concurrently with the acquisition of the content; rather the media content may be downloaded or encoded and stored on the hard drive 154 of gateway device 10 which may then be shared and streamed to the associated endpomt devices 11 and/or other gateway devices 10.
  • the gateway device 10 manages the streaming, including digital rights authorizations.
  • the user may assign a media stream to a selected television display devices 32 in the house.
  • the gateway device 10 may be provisioned to, for example, 1) transcribe the DRM to make sure the media source encryption format is compatible with the endpomt DRM capabilities, and 2) signal the endpomt device that DRM is needed and redirect the endpomt device to the location on the IP network where it may acquire the proper license to unlock the DRM.
  • the gateway device 10 does not have to download the media to its hard drive 154.
  • the gateway device 10 may also manage the streaming and rendering of media content not stored on it.
  • the gateway device 10 may manage and control the streaming and rendering of media content stored on associated endpomt devices 11 and/or other gateway devices 10.
  • the gateway device 10 may control one endpomt device 11 or another gateway device 10 to directly stream/distribute media content to another endpomt device 11 and/or gateway device 10.
  • the user may utilize existing media content storage on associated endpomt devices 11 and/or other gateway devices 10 to access media content and storage, and avoid the need for complete media file transfer to the gateway device 10 (and the concomitant burden on the gateway's resources).
  • the media and its associated metadata arrives at the endpomt device 11.
  • the end user via their initial request for the media content, indicated which endpomt device 11 is supposed to receive the media content and associated metadata.
  • the endpomt device 11 renders the media and its associated metadata and completes the process flow depicted in FIG. 6.
  • gateway device 10 may be used to redirect output and to allow, from a central location, selection and control of: (i) the media content to be displayed on a particular endpomt device 11 ; (n) the endpomt devices 11 registered with the gateway device 10 that store and/or render the media content; and (in) sources outside the user premises, such as other endpomt devices 11 and/or other gateway devices 10, by utilizing the peer- to-peer capabilities of the system architecture to access media content and the associated metadata stored on those additional resources.
  • the process flow described in FIG. 6 is for exemplary purposes and is no way to be construed as a limitation.
  • the user when making the request for media content at step 604 may dictate where the media content and its associated metadata will be sent to by the gateway device 10 serving as the DMS.
  • the gateway device 10 serving as the DMS may dictate where the media content and its associated metadata will be sent to by the gateway device 10 serving as the DMS.
  • a user making a request from one endpomt device 11 serving as a DMA does not mean the gateway device 10 serving as the DMS must automatically send the response to the requesting endpomt device 11.
  • the exemplary system allows for the gateway device 10 serving as the DMA to send media content and its associated metadata from a request for such data to any endpomt device 11 , other gateway device 10, or any other device that is associated with gateway device 10 via the LAN 60 or IP network 99.
  • a DMA 35b attached to a television display device 32 may be configured to control a television feed from a satellite or cable provider, for example.
  • the DMA 35b in turn is connected to the gateway device's tuner module 506 via LAN 60.
  • the DMA 35b renders a "page" (i.e. menu) displayed on the television display device 32.
  • the menu includes metadata provided by the gateway device 10, which it collects from an Internet service that is aware of the television channel lme-ups in a specific region.
  • the end user may utilize the menu to control changing channels on the tuner module 506 mside the gateway device 10. Once the user selects a "channel", or media source, the gateway device 10 proceeds to take the necessary steps to stream the video content to the DMA 35b for displaying on the television display device 32. Steps taken by the gateway device 10 may include one or all of the following: decrypt/encrypt, decode/encode, record, and/or stream.
  • a user of a DMA 35b in combination with a television display device 32 may browse "peer" video content on a "peer” gateway device 10.
  • the gateway device 10 residing on the user premises is in peer-to- peer networking relationship with another gateway device 1On residing in another user premises 70 (FIG. 1).
  • the gateway device 10 using metadata, collates and prepares that video content for local consumption by, among other things, downloading and/or streaming the selected video content from the peer gateway device 1On.
  • the video content on gateway device 1On may be downloaded to gateway device 10 and then sent to the DMA 35b for viewing on television display device 32, or the video content on gateway device 1On could be streamed directly from gateway device 1On across IP network 99 to the DMA 35b for viewing on television display device 32.
  • the user may decide to redirect the selected "peer" video content to another rendering endpomt device 11 on the user premises other than the DMA 35b and television display device 32 combination.
  • the redirected peer video could be sent to television display device 32a, NAS 503, and/or PC 30a. If the endpoint device 11 selected for video display does not implement the same streaming protocols that the local DMA 35b is using, the task may be completed, nonetheless, because the gateway device 10 through which the video is being streamed, includes hardware/firmware/software that allows it to support various protocols and convert between media formats.
  • the mobile device can use the gateway device 10 as a control point to manage the streaming of content residing locally on the gateway device 10 or content on other attached devices, which are managed by the gateway device 10 through its LAN 60 or IP network 99 connections.
  • the metadata database stores metadata associated with media content the gateway device 10 has access to from other gateway devices 10, endpoint devices 11, and other media sources.
  • certain end users may be able to augment the metadata database, e.g., to add user voting, user "tags,” etc. Because all desired metadata may not be obtained from the device on which the media content is stored, the gateway device 10 may search for and utilize services on the Internet to augment the metadata within the database.
  • Metadata for album art and lyrics may not be part of the metadata imbedded with the media content.
  • the gateway can utilize external sites to obtain the additional metadata for album art and lyrics.
  • By updating the metadata stored withm the metadata database the gateway device 10 can provide faster and more accurate access to media content.
  • the metadata database can also be used as a resource to determine whether a particular endpoint device 11 or another gateway device 10 has access to transfer, store, and/or render media content, for example. This capability may be exercised with respect to media residing on the gateway device 10 or on the associated endpoint devices 11. Specifically, the metadata with respect to a particular media content may be updated such that a particular endpomt device 11 and/or gateway device 10 is blocked from accessing the media content associated with the metadata. For example, some media may be tagged as being unavailable to children in the household.
  • the gateway device 10 acting as a clea ⁇ nghouse, might consult the metadata to determine if the desired access is allowed.
  • the use of the metadata database also allows the gateway device 10 to efficiently and quickly manage the streaming of media content stored on endpoint devices 11.
  • the metadata database allows the gateway device 10 to quickly locate the media content.
  • the user is not required to store the media content on the gateway device 10.
  • the gateway device 10 is then allowed to leverage its resources by utilizing endpoint device's 11 storage that is holding the media content.
  • FIG. 7 is a data flow diagram for an exemplary embodiment of a predictive media cache.
  • the goal of the predictive media cache is to anticipate the next query of the end user through the use of the DMA. Predictive caching thus takes advantage of the likelihood that the answer for one query determines the possible queries that immediately follow.
  • the DMA is associated with a particular DMS as described above with respect to FIG. 5.
  • the user makes a DMA initiated query, at step 702, by inputting information into the DMA requesting media content and/or metadata from a DMS.
  • the predictive media cache (implemented as hardware, software, or a combination thereof) of the DMA determines whether the answer to the query is already cached. If so, the answer to the DMA initiated query is presented to the DMA at step 704a, which is viewed by the user. If the answer to the DMA initiated query is not cached, at step 704b, the DMA initiated request is sent to the DMS and the subsequent answer to the query (i.e. metadata and/or media content) is presented to the DMA for viewing by the end user.
  • the subsequent answer to the query i.e. metadata and/or media content
  • the predictive media cache begins queuing a small number of background queries that correspond to the media content and/or metadata associated with the DMA initiated request.
  • a predictive query queue keeps track of all background queries since the last DMA initiated query.
  • the background que ⁇ es are processed by the DMA du ⁇ ng idle processing cycles.
  • the predictive media cache sends background queries to the DMS and receives from the DMS the answer to those que ⁇ es before the end user actually makes the next DMA initiated query.
  • the predictive media cache increases the effectiveness and efficiency of media content management for an end user to predict future DMA initiated que ⁇ es made by the user, so that the answer to a future DMA initiated query already resides within the predictive media cache.
  • Step 707 involves the user making a new DMA initiated query for additional media content and/or metadata from the DMS. If any of the previous background queries made at step 705 accurately predicted the users DMA initiated query then the answer already resides in the predictive media cache. Therefore, as indicated in Fig. 7, the predictive media cache checks at step 703 again to determine whether the answer is cached. If the answer is cached, at Step 704a, the DMA would be presented with the answer, which is then viewed by the user. If on the other hand, none of the background que ⁇ es were successful in predicting the DMA initiated query then the DMA initiated request is sent to the DMS and the subsequent answer to the query (i.e.
  • the predictive media cache is queuing background queries (step 705) and sending background que ⁇ es to the DMS and receiving from the DMS the answer to those que ⁇ es (step 706) before the end user actually makes the next DMA initiated query (step 707).
  • the predictive media caching process outlined above can be repeated over and over again depending upon how often the end user makes a DMA initiated re ⁇ uest. Applying the process flow described in Fig.
  • an example of a DMA initiated query at step 702 might be, "What are the first six music albums in the database containing tracks by the artist named 'Gene Krupa'?"
  • the predictive media cache determines whether the answer to this exemplary query is cached (step 703). If the answer to the query is cached then the end user is presented the answer (i.e. the first six music albums in the database containing tracks by the artist named "Gene Krupa") at step 704a. If the answer is not cached then the DMA initiated query is sent to the DMS, the answer to the query is sent back to the DMA (step 704b), and the end user is presented the answer to the DMA initiated query (step 704a).
  • the predictive media cache initiates (step 705) and processes (step 706) one or more background queries, each reflecting a possible query that may be asked next with reference to the answer received from the DMA initiated query made at step 702.
  • the background queries may include, but not limited to, a query for the artwork and track information associated with the six requested albums and/or the metadata and media content associated with seventh through twelfth music albums by the artist named "Gene Krupa.”
  • the predictive media cache at step 703 determines whether the answer to the additional DMA initiated query is already cached based on the previous background queries. If the query involved a request for the artwork and track information associated with the six requested albums and/or the metadata and media content associated with seventh through twelfth music albums by the artist named "Gene Krupa" then the answer would already reside in the predictive media cache and be presented to the end user (step 704a). If on the other hand, the background queries were not successful in predicting the DMA initiated query then the DMA initiated request is sent to the DMS and the subsequent answer to the query (i.e.
  • the predictive media cache is queuing background queries (step 705) and sending background que ⁇ es to the DMS and receiving from the DMS the answer to those queries (step 706) before the end user actually makes the next DMA initiated query (step 707).
  • the predictive queue keeps track of all que ⁇ es waiting for processing. In all cases, the DMA balances responsiveness to a DMA initiated query (i.e. user input query) while still providing sufficient processing cycles to the predictive media cache so it may service the background que ⁇ es.
  • the predictive media cache establishes multiple connections to the DMS. This allows multiple background que ⁇ es to be transmitted with minimal additional overhead. Furthermore, a small number of background quenes are pipelined on each connection, based on the number of connections available and the size of the query in the predictive query queue. Finally, through judicious implementation, the predictive cache's processing needs can be met especially by exploiting the time slot available while an end user is reviewing the answer to their DMA initiated queue.
  • a background query may be established each time a user enters a keystroke into the DMA device while trying to run a DMA initiated query.
  • a separate background query would run every time a user enters a keystroke as part of a DMA initiated query.
  • a DMA could be setup to perform a background query after a small period of time (e.g. 250 milliseconds) has elapsed where no additional keystrokes have been entered by the end user for a DMA initiated query.
  • the predictive media cache preferably has read-only access to the media metadata it stores. Accordingly, when another process on the DMS updates the metadata within the metadata database on the DMS, a notification is sent to the DMA that a portion of its predictive media cache may be invalid. When the DMA communicates this information to its predictive media cache, the cache flushes the appropriate answers it is storing and the associated entries, if any, in the predictive query queue, and then resends the approp ⁇ ate que ⁇ es from the predictive query queue in order to refresh the cache.
  • gateway device 10 and its interactions with various endpomt devices 11, service management center 201, and application service provider 98 have been described with reference to diagrams of methods, apparatus (systems) and computer program products. It will be understood that elements and functions illustrated in the diagrams, can be implemented by computer program instructions running on one or more approp ⁇ ately configured hardware platforms, e.g. to operate as a gateway device 10 or as one or more systems implementing functions of the service management center 201. Hence, operations described above may be carried out by execution of software, firmware, or microcode operating on a computer other programmable device of any type. Additionally, code for implementing such operations may comprise computer instruction in any form (e.g.
  • program instructions may be provided to a processor of a general purpose computer, special purpose computer, embedded processor or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, so as to implement functions described above.
  • Terms regarding computer or machine "readable medium” (or media) as used herein therefore relate to any storage medium and any physical or earner wave transmission medium, which participates in providing instructions or code or data to a processor for execution or processing
  • Storage media include any or all of the memory of the gateway device 10 or associated modules thereof or any of the hardware platforms as may be used m the service management center 201, such as various semiconductor memories, tape drives, disk drives and the like, which may provide storage at any time for the software programming. All or portions of the software may at times be communicated through the Internet or various other telecommunication networks Such communications, for example, may enable loading of the software from one computer into another computer, for example, from gateway device 10 or from another source mto an element of the service management center 201.
  • another type of media that may bear the software elements includes optical, electrical and electromagnetic waves, such as used across physical interfaces between local devices, through wired and optical landline networks and over various air-lmks.
  • the physical elements that carry such waves, such as wired or wireless links, optical links or the like, also may be considered as media bea ⁇ ng the software
  • the broad class of media that may bear the instructions or data encompass many forms, including but not limited to, non-volatile storage media, volatile storage media as well as carrier wave and physical forms of transmission media.
  • An extension of the system architecture provides the ability of various and disparate third-party application service providers 98 to provide multiple application services independently.
  • Application services are managed by the application service provider 98 through the service management center 201, meaning, generally, authorizing, provisioning, and monitoring the usage of a particular application service. This can be accomplished in a variety of ways with varying degrees of involvement of, or coordination with, the service management center 201.
  • the service management center 201 could manage these items "soup-to-nuts" or have minimal involvement.
  • the service management center 201 could deal directly with the third-party application service provider 98 to acquire application services at the request of a user and manage the delivery, authorization, usage-monitoring and upgrading of the application service.
  • a service provider may have arrangements with the third-party application service provider 98 by which orders or requests from the users may come directly to the third-party application service provider 98, and services are delivered to the user by the third-party service provider who in turn coordinates with the managed service provider to register and monitor the particular application service placed in the gateway device 10. It should be noted that this ability to manage application services extends through the gateway device 10 into the endpoint devices 11 registered or associated with the gateway device 10 or service management center 201.

Abstract

A media content manager residing at a user premises having a tuner coupled to at least one media source operable to selectively receive at least one media stream of at least one type of media content. The media content manager also including a media processor coupled to the tuner and operable to receive the at least one media stream and convert the media stream to a predetermined data format, the at least one media stream comprising metadata. Additionally, the media content manages has a media manager coupled to the media processor and operable to receive the at least one media stream in the predetermined data format and direct the media stream to a selected media player device coupled to the media processor. Furthermore, the media content manager includes a storage device coupled to the media manager and operable to receive and store the at least one media stream in the predetermined data format.

Description

SYSTEM AND METHOD TO ACQUIRE, AGGREGATE. MANAGE, AND DISTRIBUTE MEDIA
Technical Field
The present subject matter relates to the management of media content and associated metadata through a gateway device at a user premises, wherein the gateway device is associated with endpoint devices to facilitate management of the media content and metadata, where a demarcation is defined between resources of the gateway accessible to and managed by a service provider and service access by a user via an endpomt device.
Background
The digital home is now becoming more complex with the myriad of new and emerging digital devices intended to address many user and consumer needs such as communication, entertainment, privacy, and security. However, given the complexity of the emerging digital home and digital environments generally, users who are technologically challenged may find it a daunting and intimidating task to manage their home networks and interconnected digital devices. Moreover, new paradigms are emerging oriented to delivering media content to and the consuming of media content at the home. Many of these paradigms rely on communication of application specific data to and/or from the Internet, as opposed to conventional telephone or broadcast video type applications. The protection of received Internet-sourced media content in addition to user- generated media content is additionally an important aspect that may be inadequately addressed by the technologically-challenged user. Furthermore, with respect to Internet-based data, most of the content delivery solutions are provided to the digital home networks through availability of the "two-foot" interface (i.e. the PC). It is relatively cumbersome to bring this content to the "ten-foot" interface (e.g the television).
Summary of the Invention
There exists a need for a system to simplify the overall management of services and applications available to the digital home or even the small enterprise. Such a system would reduce the complexity of the maintenance, upgrading, and operation of even the more basic needs addressed by emerging digital endpomt devices and networks. Approaches that suggest greater functionality in home-based appliances fail to reduce or address the complexity of managing and provisioning those appliances. For example, while the home gateway server appliance described in US Patent No. 6,930,598 enables networked electronic devices to communicate with each other without the direct interaction with external networks, and provides a mechanism whereby a member of the household may be informed of certain network related events without having to use their home computer or other client devices, it does not provide a convenient or simplified way of managing the services and applications executed by, or associated with, that device. Thus, an unmet need exists for a device associated within a user's premises that has robust functionality but does not require sophisticated or inordinate attention from the user to manage, provision, and utilize.
A media content manager residing at a user premises having a tuner coupled to at least one media source operable to selectively receive at least one media stream of at least one type of media content. The media content manager also including a media processor coupled to the tuner and operable to receive the at least one media stream and convert the media stream to a predetermined data format Additionally, the media content manages has a media manager coupled to the media processor and operable to receive the at least one media stream in the predetermined data format and direct the media stream to a selected media player device coupled to the media processor. Furthermore, the media content manager includes a storage device coupled to the media manager and operable to receive and store the at least one media stream in the predetermined data format.
A gateway device residing at a user premises having an application service module with at least one application. In addition, the gateway device has a user module having a user interface that is associated with the at least one application, wherein the user module enables bi-directional communications with the at least one media player device. Furthermore, the gateway device includes a network module having the connection that enables bi-directional communications with a remote service manager. There is an interface boundary between the application service module and the network module forming a network service provider demarcation. Additionally, the gateway device has a tuner coupled to at least one media source via the network module and operable to selectively receive at least one media stream of at least one type of media content. Also, the gateway device includes a media processor coupled to the tuner and operable to receive the at least one media stream and convert the media stream to a predetermined data format. The gateway device also includes a media manager coupled to the media processor and operable to receive the at least one media stream in the predetermined data format and direct the media stream to a selected media player device coupled to the media processor via the user module. Finally, the gateway device has a storage device coupled to the media manager and operable to receive and store the at least one media stream in the predetermined data format.
A method of aggregating, managing and distributing media content, involving the selection of at least one media source and selectively receiving at least one media stream of at least one type of media content. The method further comprises the conversion of the media stream to a r^Hptprrmnpri rlptn format. The at least one media stream includes metadata. Additionally, the methods involves directing the media stream to a selected one of a plurality of media player devices coupled to the media processor.
A computer-readable medium having encoded thereon a method of aggregating, managing and distributing media content, the encoded method includes selecting at least one media source and selectively receiving at least one media stream of at least one type of media content. The method further includes converting the media stream to a predetermined data format. The at least one media stream includes metadata. Additionally, the method involves directing the media stream to a selected one of a plurality of media player devices coupled to the media processor. Finally, the method includes storing the at least one media stream in the predetermined data format.
A system comprises a remote service manager, a gateway device residing at a user premises and coupled to the remote service manager via a network, where the gateway device comprises an application service module being remotely managed by the remote service manager via a connection, the application service module residing on a user premises side of a network service provider demarcation, and a network module having the connection that enables bi-directional communications with the remote service manager. The gateway device further comprises a tuner in communication with at least one media source operable to selectively receive at least one media stream of at least one type of media content, a media processor coupled to the tuner and operable to receive the at least one media stream and convert the media stream to a predetermined data format, a media manager coupled to the media processor and operable to receive the at least one media stream in the predetermined data format and direct the media stream to a selected media player device coupled to the media processor, and a storage device coupled to the media manager and operable to receive and store the at least one media stream in the predetermined data format.
A system comprises a media source having media content and associated metadata, a media server having access to the media source, a media player device coupled to the media source, the media player being operable to display media content and metadata to the user, and a media adaptor coupled to the media server and media player, the media adaptor comprising a predictive cache, the media adaptor operable to receive user queries related to media content at the media source, transmit the user queries to the media server for processing, and the predictive cache being operable to transmit anticipatory queries related to the user queries to the media server, and cache anticipatory search results supplied by the media server. Brief Description of the Drawings
The drawing figures depict one or more implementations in accord with the present teachings, by way of example only, not by way of limitation. In the figures, like reference numerals refer to the same or similar elements.
FIG. l is a network diagram of an embodiment of an exemplary system having a service management center connected to gateway devices that are connected to respective endpomt devices at the user premises.
FIG. 2 is a high-level block diagram of an embodiment of the architecture of the exemplary system showing the demarcation between a gateway device and the service management center in reference to a network service provider demarcation.
FIG. 3 is a high-level block diagram of an embodiment of the software and hardware components of a gateway device together with a network service provider termination apparatus, and shows a network service provider demarcation as well as an application service provider demarcation.
FIGS. 4A and 4B are more detailed logical diagrams of an embodiment of an exemplary gateway device.
FIG. 5 is a high-level architectural overview of an exemplary system to manage the multiplicity of media storage devices and sources in a way that provides a centralized, logical view of all media, and corresponding metadata, available to the user.
FIG. 6 is a data flow diagram that descπbes the process of the exemplary system that allows management of multiple media storage devices and sources in a way that provides a centralized, logical view of all media and corresponding metadata available to the user.
FIG. 7 is a data flow diagram for an exemplary embodiment of a predictive media cache.
Detailed Description
In the following detailed description, numerous specific details are set forth by way of examples in order to provide a thorough understanding of the relevant teachings. However, it should be apparent to those skilled in the art that the present teachings may be practiced without such details. In other instances, well known methods, procedures, components, and circuitry have been described at a relatively high-level, without detail, in order to avoid unnecessarily obscuring aspects of the present teachings.
In practice, a customer typically subscribes to basic transport services from a network service provider (e.g., ISP - Internet Service Provider, cable provider, fixed wireless providers, ILEC - Incumbent Local Exchange Carrier, or CLEC - Competitive Local Exchange Carrier). For example, a customer may have broadband Internet access, via cable modem, digital subscriber line service or the like. Digital video service may be provided separately. The network service provider manages these basic services, at the logical network layer, typically at layers 1 , 2 and 3 of the Open Systems Interconnection (OSI) model. While network services and associated devices may operate minimally at those levels, they operate at those levels to support operations at OSI layers 1, 2 and 3. Many applications, however, involve higher level service logic for applications that view the network transport as simply a transport pipe. The current Internet applications delivery and management architecture, and many devices or management systems based on it, require a server with robust processing and storage capability to be located at the network operations center, not in the home. For Voice Over Internet Protocol (VoIP) type telephone service, for example, the VoIP service provider operates a session initiation protocol (SIP) server or the like, and each user has only client functionality. The network transport layers are transparent to the Internet Protocol (IP) packets containing the voice and related signaling data. The SEP server, however, controls the call set-up, tear-down, billing and the like for the voice call services. With such a legacy architecture, the major capabilities and functionalities connected with providing application services from the server throughout the network reside on the server and supporting elements, all of which are located in the network operations center of the network service provider.
FIG. l is a network diagram of an embodiment of an exemplary system having a service management center 201 connected to gateway devices 10 that are connected to respective endpoint devices 11 at the user premises. This secure platform for building and providing multiple application services for digital endpoints 11 associated with a gateway device 10 requires connectivity between the gateway device 10 and each of a user's endpoint devices 11. As shown in FIG. 1 , this connectivity may be provided by network interfaces such as one or more USB interfaces 13, wired Local Area Network (LAN) connections such as provided by an Ethernet LAN interface 16, a wireless network interface via a WiFi LAN access point 62, other LAN transport technologies such as HPNA or HomePlugAV, or other technologies now available or hereafter developed. The WiFi connection may be implemented for example, in accordance with the I.E.E.E. 802.11 b/g/n wireless network communications standard. These interfaces provide the required network interconnectivity for the endpoint devices 11 to connect to the gateway device 10 tπ access, miiitinie flnniication services residing on the gateway device 10. The connectivity between digital endpoint devices 11 and the gateway device 10 may be accomplished by other suitable means now known or to be developed, including, by way of example, through of a virtual private area network connection accessed through a WAN interface.
Exemplary endpoint devices 11, with which the gateway device 10 may communicate via the USB interface 13, include, for example, a home automation networking device 20 (e.g. XlO, Z-Wave or ZigBee) for wired or wireless home network automation. The device 20 which in turn controls devices such as a switch controller 22, sensor devices 23, automatically-controlled window blinds 24, and a controlled lighting or lamp unit 25, for example. Furthermore, the gateway device 10 may communicate via the Ethernet LAN interface 16 across a local IP network 60 or via the WiFi LAN access point 62 to reach personal computing (PC) and laptop/mobile devices 30a,...,30c that serve as file sources, control points and hosts for various other endpoint devices 11. In addition, the gateway device 10 may communicate via Ethernet LAN interface 16 across a local EP network 60 or via WiFi LAN access point 62 to access one or more television display devices 32 including the associated set top boxes (STB) 35a or digital media adapters (DMA) 35b. As further examples, one or more SEP phones (or VoEP phone devices) 40, or other devices that convert IP interfaces to Public Switched Telephone Network (PSTN) Foreign eXchange Office (FXO) and Foreign eXchange Subscriber (FXS) interfaces may be accessed by gateway device 10 via Ethernet LAN interface 16 across a local EP network 60 or via WiFi LAN access point 62. The endpoint devices 11 shown in FIG. 1 and the respective interfaces used by gateway device 10 to reach the endpoint devices 11 are not intended to be comprehensive and one skilled in the art can appreciate other endpoint devices 11 as well as other methods to allow gateway device 10 to communicate with potential endpoint devices 11 within this exemplary system.
As noted earlier, the gateway device 10 may access the DMA 35b for a television display device 32, which enables bidirectional wireline or wireless communication. The DMA 35b supports several functions for multiple services including, but not limited to: media (e.g., video and music) by enabling the transfer of media (e.g., video and music) to the TV; voice services, by providing for Calling Line Identification (CLED) and for voice mail control; and provide Home Automation Services including status and control of networked home automation devices. The DMA 35b converts audio and video (optionally) to a format suitable for a TV. Ln addition, the DMA 35b may be capable of receiving context-sensitive commands from a remote control device (not shown) and forwarding those commands to the gateway device 10. This enables the use of menus on the television display device 32 for controlling application services and various features functions thereof, as offered by the gateway device 10. Therefore, the combination of the gateway device 10, DMA 35, and the television display device 32 one is able to provide the following features inriiiHinσ hni nnt limited to: display of media; media control functions, when enabled (FF, REW, STOP, PAUSE, etc); display of CLID; control of voicemail; picture viewing; control of home automation; and user functions for the gateway device 10.
A set top box 35a is in communication with the gateway device 10 via the wireless access point 62. The set top box 35a also may handle media format conversion (for example NTSC to ATSC television RF signals), digital decryption and other DRM (digital rights management) functions, Video On Demand Purchases, etc. The combination of the Set Top Box 35a with the television display device 32 may enable, by way of example, Media format conversion (for example NTSC to ATSC); decryption; other DRM functions (such as expiry of leases), prohibition of copying to digital outputs, function restriction, etc.; Video On Demand Purchases; and media control functions (e.g., FF, REW, STOP, PAUSE, etc.).
Whether provided by the DMA 35b and the television display device 32 or by the set-top-box 35a and the television display device 32, the communications to and from the television display device 32 provide a user interface for interaction with the gateway device 10. The software/firmware of the gateway device 10 supports, among other things, a graphical user interface (GUI) via the television display device 32, sometimes referred to as the "ten-foot" interface.
The PCs 30a,..., 30c shown in FIG. 1 interface with the gateway device 10 and serve as, among other things, file sources, control points and hosts for various software clients. The gateway device 10 may access PC device 30b via Ethernet LAN interface 16 across a local IP network 60 or via WiFi LAN access point 62. The gateway device 10 accessing the PC may provide for the bidirectional moving of files, and status and control for the endpomt devices 11 , including for example, status and control of networked home automation devices. In addition, using the PCs 30a,..., 30c, users may access the gateway device 10 for any number of reasons, such as for example, share files on the gateway device 10 with other endpomt devices 11, back-up or transfer files to the gateway device 10 or other endpomt devices 11 having storage capabilities; access personal page for notifications, receive RDF site summary (RSS) or Atom feeds, share photos, and receive voicemail messages. In addition to the Instant Messaging and SIP capabilities of the gateway device 10, as will be described in more detail below, PCs 30a,..., 30c may also serve as a host for IM and SIP soft phone clients and other endpomt devices 11. The client-server interaction of the PCs 30a,..., 30c with the gateway device 10 offers an alternative GUI for at least some of the services. The PC based GUI is sometimes referred to as the "two-foot" interface.
Although not shown in FIG. 1, other digital endpomt devices 11 for which connectivity may be established with the gateway device 10 include, but are not limited to, media player devices (audio, VIHPΓ. flnrhn/viHen with or without metadata), hi-fi audio equipment with media streaming capability, game stations, Internet radio devices, WiFi phones, WiFi or other wirelessly enabled digital cameras, facsimile machines, electronic picture frames, health monitors (sensor and monitoring devices) and devices now known or to be developed. In addition to endpoint devices coupled via the LAN, the endpoint devices may be directly coupled to the gateway device off the Internet or private IP networks.
Although based on a client-server architecture, the exemplary system disclosed in FIG. 1 moves substantial functions performed by the typical network server into the user premises 70 by incorporating those functions into a gateway device 10, but in a way that allows for the server functionality to be externally managed by a service management center 201 , which may in turn be operated by a third-party application service provider 98. Moreover, the architecture of the exemplary system does not require identity of the provider/manufacturer of the gateway device, the service management center or the third-party application service provider. Thus, a gateway device may be manufactured under the control of one entity, for distribution to one or more service management entities (each of which operates its own service management center). The gateway device may then be activated with a particular service management center under the control of a particular system management entity. A system management entity may be the entity that determines the mix of application services to which the user subscribes, or this "retail" function for application services may be performed by one or more application service providers, one or more of whom the user may subscribe to depending on the mix of application services offered by each application service provider. The term "application service provider" is used herein to refer to various entities up and down the "supply chain" and include, but are not limited to, manufacturers of the gateway device and endpoint devices, suppliers of the gateway device and endpoint devices, entities that provide, operate or manage application services, network service providers (described above), and entities that provide the activation manager function described in detail below. These entities in the supply chain may or may not operate or function independently of one another. Hereinafter, the term "remote service manager" is also used to refer to the service management center 201 and/or application service provider 98.
The server functionality residing in the gateway device 10 is not only located in the user premises 70 but it now resides on the user premises side of the traditional network service provider demarcation 312. The exemplary system shown in FIG. 1 does not just move server functionality from the servers in a traditional network operations center, where they were previously located, to the home; but it also moves the logical position of the execution of application services logic of the server to the user premises 70 side of the network service provider demarcation 312 and provides logical hooks to enable the external service manager to perform its function(s) on that side of the Hemarr.atinn Fnr example, application service logic transmitted by application service provider 98 related to the use of one or more gateway devices 10 and/or endpoint devices 11 can now be provisioned, serviced and managed on the user premises 70 side of the network service provider demarcation 312, albeit by an external service management center 201 operated by or on behalf of a third-party application service provider 98. The application software architecture, coupled with the specific managed hardware implementation at the user premises 70, enables a single service provider to provide the network services such as IP network 99, whereas one or more application services providers 98 (possibly including the network service provider) can provide the applications services to the customer independently of providing the network service
By distributing the application services to the user premises 70, but retaining a central management feature through the service management center 201 and the application service provider(s) 98, the disclosed exemplary system in FIG. 1 addresses network computing and traffic capacity and latency challenges of providing application services at the network level. The exemplary architecture thus results in significantly reduced latency and improved reliability.
Another aspect of the exemplary system in FIG. 1 is that it enables the application service provider 98 through the use of the service management center 201 to control hardware elements (endpomt devices 11 ) of various types located on the user premises 70 side of the network service provider demarcation 312 by communicating through the gateway device 10. The robustness of the gateway device 10, coupled with the central management capabilities of the service management center 201 and application service provider 98, allow the system to register, configure, provision, and enable inter-communication among, a wide variety of endpomt devices 11, such as TV, cell phone, radios, PC, and digital picture frames. Furthermore, the exemplary system can gather operational information such as billing records, alarms, statistical data, and log information associated with gateway device 10 and the endpomt devices 11 connected to gateway device 10. Such a centralized management greatly reduces the burden on end users in managing their equipment or network and provides an application service provider 98 through the service management center 201 the ability to optimize service delivery.
As previously mentioned, FIG.1 demonstrates the exemplary network configuration. Broadly speaking the major components of the exemplary system are gateway device 10 which is connected to services management center 201 and thereby application service provider 98 via a wide area network, such as, by way of example, IP network 99. Furthermore, the exemplary system has gateway device 10 located on the user premises 70 associated with various endpomt devices 11. As discussed in more detail below, the novel system architecture of the exemplary network configuration as shown in FIG. 1 allows for the management of services for the gateway device 10 and endpoint devices 11 and facilitates the easy addition of new services or modification of existing services on the gateway 10 and endpoint devices 11 via application service provider 98 through service management center 201. Such services may include, for example, facility management (home automation), media content downloading and Digital Rights Management (DRM), device updates, data backups, file sharing, media downloading, and transmission. AU these services may be provided, from the user's perspective, without the intermediary of a plurality of external service providers who may typically provide these individual services for every endpoint device 11 in the user premises 70; rather, the user may receive, through the system architecture, application services for all these devices, which application services may be managed through the system architecture by a network service provider.
The software/firmware for these services resides m the gateway device 10. The gateway device 10 is integrated with hardware and software modules and respective interfaces that handle all aspects of home automation and digital endpoint service and management for the home in a manner without having to rely on external service providers and in a manner that is essentially seamless to the user. This is advantageously provided by the service management center 201 which is able to access regions of the gateway device 10 that are not accessible to the user for controlling the transport and storage of digital content and enabling service applications and upgrades that provide largely invisible support for many tasks performed by users through their endpoint devices 11.
As seen in FIG. 1, the gateway device 10 connects the various endpoint devices 11 together for enabling the user to expeπence a connected digital home, where information from one endpoint device 11 (for example voicemail from SIP Phone 40) can be viewed and acted on at another endpoint device 11 (for example the TV 32). The gateway device 10 thus hosts the various in- home endpoint devices 11 and facilitates the moving of information from one endpoint device 11 to another endpoint device 11. Some of the in-home endpoint devices 11 processing duties performed by the gateway device 10 include, but are not limited to, 1) detecting new devices and provide IP addresses dynamically or statically; 2) functioning as a (Network Address Translator) NAT, router and firewall; 3) providing a centralized disk storage in the home; 4) obtaining configuration files from the service management center and configuring all in-home devices; 5) acting as a registrar for SIP -based devices; 6) receiving calls from and delivering calls to voice devices, providing voicemail services; 7) decrypting and securely streaming media having digital rights management encoding; 8) distributing media to an appropriate endpoint device; 9) compressing and encrypting files for network back-up; 10) backmg-up files to the service management center, to other elements within the svstem or other off-site storage centers provided by third parties directly from the gateway device; 11) handling home automation schedules and changes in status; 12) providing in- home personal web-based portals for each user; 13) providing parental control services (e.g. URL filtering, etc.); 14) creating and transmitting billing records of endpoint devices 11 including, recording and uploading multi-service billing event records; 15) distributing a PC client to PCs 30a,..., 30c in the home, used in support of the various services such as monitoring events or diagnostic agents; 16) storing and presenting games that users and buddies can play; 17) delivering context-sensitive advertising to the various endpoint devices 11; 18) delivering notifications to the endpoint devices 11; and 19) enabling remote access through the web and Instant Messaging (EVI) as an example. Other duties the gateway device 10 may perform include: service maintenance features such as setting and reporting of alarms and statistics for aggregation, perform accessibility testing; notify a registration server (and location server) of the ports it is "listening" on; utilize IM or like peer and presence communications protocol information for call processing and file sharing services; receive provisioning information via the registration server; utilize a SIP directory server to make/receive calls via the SBC network element to/from the PSTN and other gateway device devices; and download DRM and non-DRM based content and facilitating the DRM key exchanges with media endpoints.
As will be described in greater detail herein below, the service management center 201 generally provides a communications and processing infrastructure for supporting the variety of application services and related communications residing at the gateway devices 10, 1O1...1On. In an exemplary embodiment, this infrastructure may be configured to provide a secure environment and may be IP -based. Preferably, this support architecture is designed for high availability, redundancy, and cost-effective scaling.
The application service provider 98 in conjunction with the service management center 201, depicted in FIG. 1 , manages application services for a number of gateway devices 10, 1O1...1On located at various users' premises 70. Connectivity for the various gateway devices 10, 101...1 On to the service management center 201 and thereby the application service provider 98 is provided, in one embodiment, via a WAN termination interface, such as Ethernet WAN 53 over a broadband connection via the IP network 99, or, for example, via a wireless EvDO (Evolution Data Optimized) Internet data interface embodied as a PCMCIA (personal computer memory) wireless card 56, or a WiMax interface.
The gateway device 10 includes both a hardware and software infrastructure that enables a bridging of the WAN and LAN networks, e.g. a proxy function, such that control of any endpoint device 11 at any user premises 70 via the gateway device 10 using, optionally, a secure peer and presence tvne messaging infrastructure or other communications protocols, e.g. HTTPS. For example, as seen in FIG. 1 , via any IM capable device or client 80a, 80b respectively connected with an EVI or XMPP (Extensible Messaging and Presence Protocol) network messaging infrastructure, e.g. EVI networks 99a, 99b such as provided by YAHOO, MICROSOFT (MSN), SKYPE, AMERICA ONLINE, ICQ, and the like, a user may access any type of functionality at a subordinate digital endpomt device 11 at and user premises 70 via the gateway devices 10, 10!... 1On and service management center 201 by simple use of peer and presence messaging protocols. In one exemplary embodiment, a peer and presence communications protocol may be used such as Jabber and/or XMPP. Particularly, Jabber is a set of streaming XML (Extensible Markup Language) protocols and technologies that enable any two entities on the Internet to exchange messages, presence, and other structured information in close to real time. The Internet Engineering Task Force (IETF) has formalized the core XML streaming protocols as an approved instant messaging and presence technology under the name of XMPP (Extensible Messaging and Presence Protocol), the XMPP specifications of which are incorporated by reference herein as IETF RFC 3920 and RFC 3921. Thus, the gateway device is provided with functionality for enabling a user to remotely tap into and initiate functionality of a digital endpomt devices 11 or the respective applications of the endpomt devices 11 at the premises via the EVI networks 99a and 99b.
In addition, the gateway device 10 and network connectivity to the novel service management center 201, provides, in a preferred embodiment, a secure peer and presence messaging framework, enabling real-time communications among peers via other gateway devices 101...1 On. For instance, the device 10 provides the ability to construct communication paths between peers with formal communications exchanges available between, for example, one gateway device 1O1 at user premises 7O1 and a second gateway device 1On located at user premises 7On. Thus, such an infrastructure provides for content addressing, enabling peers through remote gateway devices 10] ...1 On to supply and request content such as files, media content or other resources of interest to a community of interest.
To further demonstrate the novel architecture between the gateway device 10 and service management center 201 reference to FIG. 2 is now made. FIG. 2 is a high-level block diagram of an embodiment of the architecture of the exemplary system showing the demarcation between a gateway device 10 and the service management center 201 in reference to a network service provider demarcation 312. The logical network service provider demarcation 312 is formed at the edge of the wide area network at the user premises, between the wide area network and the equipment in the user premises. In a typical scenaπo, a network service provider takes responsibility for managing resources on the network side of the network service provider demarcation 312, leaving the user to manage everything on the user premises side. However, the gateway device 10 is implemented in such a manner as to offer its user many of the applications services, that were previously offered from network-side servers, from the user premises.
FIG. 2 shows that, in the exemplary architecture, many of these application service functionalities that were previously offered from the service provider network 318 exist across the network service provider demarcation 312 and logically reside at the application services layer 314 in the user premises network 316 on the hardware components located in the gateway device 10. In particular, the software/firmware that implements application services is logically positioned on the user premises network 316 of the network service provider demarcation 312.
The application services layer 314 shown in FIG. 2 represents the functional layers that provides access to applications services by application clients. These application services exist on a managed application service delivery platform (ASD) 326. The ASD 326 may include three functional modules, namely the application service enforcement (ASE) module 320, the application service logic (ASL) module 322, and the application service management (ASM) module 324.
On the user premises network 316 with respect to the ASD 326, the application services layer 314 includes the ASL module 322 which executes the application services that the gateway device 10 or endpoint devices 11 request. Such services may include parental control 322a, backup 322b, advertising server 322c, presence and peered networking 322d, media distribution 322e, call processing 322f, and file sharing 322g. Also, on the user premises network 316 with respect to the ASD is the ASE module 320. The ASE module 320 is responsible for enforcing the relevant application privileges to the application services. The ASE module 320 and the ASL module 322 must interact with each other so that the ASL module 322 can provide access to the client applications that have passed the policy enforcement procedures set forth in the ASE module 320. Additionally, a firewall 330 to protect the application client from application level attacks from the open Internet is located on the user premises network 316 within the application service layer 314.
Other elements shown in FIG. 2 that may reside in the gateway device 10 and logically positioned on the user premises network 316 include a network function layer 328 comprised of, but not limited to, a switch 328a, router 328b and/or a bridge 328c. The switch, router and bridge may optionally reside outside of the gateway device 10 and the functions thereof be performed elsewhere. Additionally, a LAN termination interfaces 332 located within the network interconnect layer 334 on the user premises network 316 may optionally include, but not be limited to the following interfaces: WiFi 332a, Ethernet 332b, Multimedia Over Coax Alliance (MOCA) 332c, Home Phonelme Networking Alliance (HPNA) 332d, HomePlug 332e, and Asynchronous Transfer Mode CATMI 332f Other interfaces currently known or to be developed may be included. The various LAN termination interfaces 332 allows bi -directional network layer communications on the user's side of the premises with one or more of the associated endpoint devices 1 1.
FIG. 2 also shows the WAN termination interfaces 336 at the network interconnect layer 334 on gateway device 10, but on the service provider network 318 side of the network service provider demarcation 312. The WAN termination 336 may include, but not limited to the following interfaces Digital Subscriber Line (DSL) modem 336a, Passive Optical Network (PON) 336b, cellular packets 336c, Data Over Cable Service Interface Specification (DCSIS) modem 336d, and Worldwide Interoperability for Microwave Access (WiMAX) 336e. Other interfaces now known or to be developed may be included. The WAN termination 336 provides connectivity to the wide area network (WAN) 338 at the network function layer 328 on the service provider network 318. The WAN 338 may include, but not limited to, the Internet 338a and a private data network 338b, for example. The WAN termination 336 enables bi-directional network layer communications for the associated endpoint devices 11 via a WAN and enables bi-directional communications between the gateway device 10 and the service management center 201 via the WAN.
With further reference to FIG. 2, the core of the logical capacities of the service management center 201 resides on the Service provider network 318, and is depicted as the Application Service Management (ASM) 324 portion of the application service delivery platform 326 m the application services layer 314. The ASM module 324 is implemented in the service management center 201, which is external to the user premises, and on the service provider network 318 side of the network service provider demarcation 312. The ASM module 324 may include functions such as provisioning 324a, subscnption 324b, and monitoring 324c, for example.
Examples of vaπous ASM module 324 functionalities performed at the service management center 201, from the service provider network 318 regime, include but are not limited to, initializing service in the gateway devices, providing security for the gateway devices and the network support infrastructure, enabling real time secure access and control to and from the gateway devices, distributing updates and new service options to the gateway devices, providing service access to and from the gateway devices and remote access to the gateway devices, for example. In support of these services, the service management center 201 provides the following exemplary additional services and features: authentication, multi-service registration, subscription control, service authorization, alarm management, remote diagnostic support, billing collection and management, web services access, remote access to gateway devices (e.g. via SIP or Internet/web based communications), reachability to access challenged gateway devices, software updates, service data distribution, location service for all services, SIP VoIP service, media services, backup services, shaπng services, provisioning, gateway interfaces to other service providers (northbound and peeπng), load balancing, pπvacy, security, and network protection.
The logical network architecture for the service management center network 201 delivering these capabilities is illustrated and described in greater detail in the above-identified related applications.
The ASM module 324 is operable to provide the necessary data to the ASE 320 and ASL modules 322 for them to carry out their respective functions. Specifically, the ASE module 320 receives the policies and permissions of each application client from the ASM module 324 (such as provisioning data and subscription data) and enforces those policies against the requested actions by the client application. Furthermore, the ASL module 322 may interact with the ASM module 324 for monitoring purposes and status information such as call data recording and billing. The ASM module 324 also manages the overall security and integrity of the ASD 326.
Furthermore, the ASL module 322 and ASE module 320 maintain logical connectivity or interaction with the ASM module 324 in the service management center 201, typically via communication through WAN 338. This logical connectivity is established through an always-on (or on an as needed, periodic basis), secure control channel 210 between the application services layer 314 (ASL and ASE) of the user premises network 316 and the application services layer 314 (ASM) of the service provider network 318. The control channel 210 is established through the network function layer 328 and the network interconnect layer 334. Through the control channel 210, the service management center 201 communicates with one or more of the gateway devices 10 thereby providing an infrastructure to support and/or manage the application services offered to endpomt devices 11 and their users by logic implemented in the gateway device(s). This logic is called the gateway operational management software and will be further described below. Effectively, the ASD 326, considered in its entirety, extends all the way from the service provider network 318 to the user premises network 316 by traversing the network service provider demarcation 312.
FIG. 2 also introduces a logical platform manager layer 340 to the user premises network 316, which allows for mter-layer allocation of local resources. The platform manager layer 340 guarantees access between the ASL module 322 on the user premises network 316 and the ASM module 324 in the service management center 201 by assuring that the local user premises hardware and software modules are functioning at a required state (CPU and memory usage, bandwidth usage, QoS settings, etc.) in order for the ASL module 322 to have the necessary resources to establish its required communications path to the ASM module 324. Note that the ASE, ASL and ASM modules are only examples of functions that may be logically bundled; other bundles, and other means of bundling these functions, are possible.
The platform manager layer 340, seen in FIG. 2, is also responsible for implementing that part of the managed application services to be performed by the gateway device 10. In that regard, the platform manager layer 340 secures and manages the overall hardware platform, given that in this scenario, the network function layer 328 and the application services layer 314 reside on one hardware platform. This secure hardware platform provides a robust and secure operating environment for the application services layer 314. Thus, to establish a secure and robust hardware operating environment, the platform manager layer 340 must interface (represented by arrows 1, 2, and 3) with all the layers above it and allow for bi-directional operational information flow among all of the functions including application services.
Application services represent functionalities, implemented in the upper layer(s) of the protocol or logical stack above the network layer(s) that may extend up to the application layer (layer 7 of the OSI model). An application service, for example, provides application server communication with a client functionality of one or more endpomt devices, for the respective service, communicated on top of network layer communications through the interfaces. In the exemplary system, the services are provided on a subscription service basis to users at the premises. The ASE module 320 provides enforcement regarding authorization, authentication, configuration, and/or use of the respective application service via the endpoint devices 11. The application service includes service and feature functions, implemented and controlled by the ASL module 322. Management of the application service is based on communications with the ASM 324 housed within service management center 201 via the WAN 338.
Examples of application services include, but are not limited to one or more of: media delivery, content management, access control and use tracking, file sharing, and protection and back-up services of both Internet/Web-generated digital media content and user generated digital media content. The disclosed gateway 10 device thus is configured and programmed to simplify various aspects of managing the emerging home/business digital networks including the myriad of interconnected digital endpoint devices 11 associated with the gateway device 10. The endpoint devices 11 need not reside within, or be located at, the premises to maintain their association with the gateway device 10. Application service functionality of the gateway device 10, as provided by the exemplary system, is enabled/disabled and configured by an application service provider 98 (FIG. 1), via communications between the gateway device 10 and the service management center 201 As shown by the discussion of FIG. 2, application service software/firmware is logically positioned on the user premises network 316, that is to say on the user premises side of the network service provider demarcation 312. The gateway device 10 software/firmware however, also defines a logical service provider-user demarcation between the user premises and the application service provider, as will be described in more detail with regard to FIG. 3.
Thus referring to FIGS. 1 and 2, the gateway device 10 and service management center 201 move substantial functions performed by the typical network server into the user premises by incorporating those functions in a way that allows for the server functionality to be externally managed by the service management center 201 which may be operated by a third-party service provider such as an application service provider 98. In this exemplary system, both the server functionality and the application services offered via the gateway device 10 may be managed by the service management center 201. Moreover, the server function residing in the gateway device 10 is not only located on the user premises but it now resides logically on the user premises side of the network service provider demarcation 312 and on the service provider side of the applications service provider demarcation 392 (see further discussion below in reference to FIG. 3).
FIG. 3 is a high-level block diagram of an embodiment of the software and hardware components of a gateway device together with a network service provider termination apparatus 344, and shows a network service provider demarcation 312 as well as an application service provider demarcation 392. At the physical/network layer 342, the drawing shows an example of user premises hardware components required for delivering data services (i.e. Internet connectivity) along with a separate, non-integrated managed hardware used in delivering a set of managed application services (e.g. IM, VOD, IP telephony). The Network Service Provider Wide Area Network Termination Apparatus (NSP-TA) 344 allows for a typical termination of WAN 338 at a network service provider interface 346 for such services as DSL, cable, and fiber. Additional components within the NSP-TA 344 may include a CPU 346, power 348, memory 350, routing/bridging module 352, and a user premises network interface 354, for example. The NSP-TA 344 may be an existing user-premises device, provided by the carrier supplying network services to the premises. FIG. 3 also depicts the network service provider demarcation 312 at the hardware level.
In order for network service providers to deliver managed services, they typically require a management element controlled by the CPU 346 on the NSP-TA 344. To depict these logical elements residing on the hardware components, FIG. 3 includes a representation of the application services layer 314 above the physical/network layer 342. This layer corresponds to the application services layer 314 of FIG. 2, but without reference to any logical elements residing at the network services πrovider The management element, represented by the network service provider managed application 356, allows the network service provider to determine the status of the network hardware device and interfaces as well as maintain a certain degree of security enforcement at the customer premises.
As noted, the network service functionality is at the network interconnect layer 334 and network function layer 328 (displayed in FIG 2) and generally does not extend to the application services layer 314 beyond basic authentication, authorization and state management as depicted by network services user authentication application module 358. As with the hardware components, the logical elements also have a network service provider demarcation 312. On the WAN side, depicted as the network service provider managed applications 356 side, of the network service provider demarcation 312, resides withm the network service provider management application module 360 the applications that are managed by the network service provider logic 362 The network service provider logic 362 allows the network service provider the exclusive control over the applications withm the portion of the network service provider management application module 360 that are logically on the network service provider managed applications 356 side.
The user interface to managed applications 364 is present on the LAN side of the network service provider demarcation 312 withm the application services layer 314. Within this interface resides software/firmware and logic available to users other than the network service provider referred to as the network user controlled logic 366. The network user controlled logic 366 provides a user interface to the network service provider logic 362 and, to the extent permitted by the network service provider logic 362, interaction with or communication between the user and network service provider through the network user controlled logic 366 and the network service provider logic 362, and to the NSP-TA 344 hardware components. The network user controlled logic 366 allows the user of the NSP-TA 344 to make certain minimal software/firmware changes relevant to their preferences (e g , user name and password changes, local IP addresses changes, local interface selection). All user devices typically can only communicate with the NSP-TA 344 through one or more of the user premises network interfaces 354. The user can modify the network user controlled logic 366 through the user premises network Interface 354. The network service provider demarcation 312 is typically within the NSP-TA 344, logically dividing the network service provider interface 346 and the user premises network interface modules 354. The network service provider does not have any in-depth visibility or significant responsibility beyond the network service provider demarcation 312.
Additionally, shown on the right hand side of FIG. 3 is the User Network and Application Delivery Apparatus (UNA-DA) 368, which is depicted as a separate managed gateway device 10 (but as described below mav optionally be combined with elements of the NSF-TA 344) that a managed- service provider (which may be different than the network service provider) would control in delivering a set of application services to the user premises 70 (FIG 1). FIG. 3 illustrates the logical architecture of the software and hardware of the gateway device 10 together with a NSP-TA 344 for broadband connection to WAN 338. The gateway device 10 is an application delivery apparatus, for delivering application services to endpomt devices 11 using network layer communications through the network interface 153. FIG. 3 also illustrates two relevant demarcations and a termination which delineate control/management access with respect to the functionalities of the gateway device 10. To be described further below, FIG. 3 shows the arrangement of the ASL module 322 and the ASE module 320 of FIG. 2 as being logically positioned between these two demarcations which results in significant management control by the application service provider 98 and relieve the user of significant burdens in arranging and configuring the systems/services at the user premises 70 (FIG. 1).
With respect to the two demarcations 312 and 392 shown in FIG. 3, one of the demarcations as outlined above is the network service provider demarcation 312. To identify the separation of, and distinguish between, the software/firmware and hardware components subject to control by the application service provider 98 and those subject to control by the user at the user premises, FIG. 3 identifies a dividing line across the logical elements of the UNA-DA 368, and a corresponding dividing line across hardware components, referred to as the applications service provider demarcation 392. The arrows at the top of FIG. 3 thus show the delineations in management responsibility created by the two logical demarcations 312 and 392. The covered area to the left of the network service provider demarcation 312 as depicted by arrow 384 is the network service provider's responsibility. By contrast, the area covered by arrow 390 which represents anything to the right of the application service provider demarcation 392 is the end user's responsibility. However, the logic and hardware between these two demarcations, as depicted by arrow 386, is the application service provider's 98 responsibility. This arrangement of two demarcations and the attendant logical demarcations in management access to the hardware resources at the premises result in significant management control by the application service provider 98 and relieve the user of significant burdens in arranging and configuring the systems/services at the premises.
It should be noted that the logical connection 388 between the network service provider management application 360 and the platform management 110 may be provided to the NSP-TA 344 to enable the application service provider 98 to assume any user's responsibility in managing the network user control logic 366 of the NSP-TA 344. Therefore, the end user would no longer be responsible for managing any element with respect to the NSP-TA 344. Referring to FIG. 3, the managed gateway device 10 is composed of several elements at both the physical/network layer 342 and the application services layer 314. At the physical/network layer 342, the device 10 includes its own dedicated CPU 152, memory 370, packet/cell switching fabric 374, data traffic module 376 and power 378 as well as its own dedicated set of interfaces. The UNA-DA 368 includes one or more network interfaces 153 providing connectivity to the NSP-TA 344 as well as to user premises endpoint devices 11. One skilled in the art will readily recognize, however, that the physical connection 151 that connects the UNA-DA 368 to the NSP-TA 344 also provides connectivity for the UNA-DA 368 to the WAN 338, and is the means by which the UNA- DA 368 accesses the WAN 338.
Programming elements of the UNA-DA 368 in the gateway device 10 are depicted at the application services layer 314 of the UNA-DA 368. The software/firmware corresponding to the ASL module 322 and the ASE module 320 of FIG. 2 reside on the application service provider managed applications and platform 380 (FIG. 3). The application service provider managed applications and platform 380 is managed by the managed application service provider 98 in conjunction with the service management center 201 housing the ASM module 324. The application service provider 98 accesses the application service provider managed applications and platform 380 by means of control channel 210 through the WAN 338.
Other logical elements that form the application service provider managed applications and platform 380 include, but are not limited to, device drivers 104, operating system 106, system service 108, and platform module 109. These logical elements are described with respect to FIGS. 4A and 4B below. Another logical element that forms the application service provider managed applications and platform 380 includes the application service interface 140. The application service interface 140 enables communications from user endpoint devices 11 with the application service provider managed applications and platform 380.
The application service provider managed applications and platform 380 includes a platform management module 110 that, with other software/firmware in the platform and the ASM 324, allows the managed application service provider 98 to control the hardware elements of the UNA- DA 368 in addition to other relevant application services logic or hardware that may reside on the user premises. For example, this software/firmware enables a managed application service provider 98 to control and manage the hardware elements on the UNA-DA 368 to ensure proper use and allocation of the UNA-DA 's processing, memory, storage, and bandwidth, to monitor local hardware security and generate needed alarms or protection sequences, and to prioritize applications based on a set of established policies. The user would have control over specific parameters of application services obtained through the UNA-DA 368, through the user interface and platform to managed applications 382 shown in FIG. 3. These parameters allow the user to control the local behavior of the interfaces and to configure the specific applications to implement the user preferences for those applications.
The application service provider 98 can interact with the network service provider's managed applications through the network service provider management application 360. This is an optional function but it helps show how the gateway device 10 can interface with a network device, such as the NSP-TA 344, from a network service provider, and provide a unified application interface. The logical connection 388 represent this management relationship between platform management logic module 110 in the gateway device 10 and the network service provider management application 360 in the NSP-TA 344. In effect, the application service provider 98 manages the NSP-TA 344 for the user, even though it is not the application service provider's hardware In the case where the application service provider is a network service provider as well, then it would work in practically the same way. If the NSP-TA is the application service provider's own hardware, the degree of integration and control can be elevated even more.
FIG. 3 also shows how the software/firmware elements on the gateway device 10 effectively partitions the hardware at the application service provider demarcation 392, which gives the application service provider 98 the ability to provide a managed Peer-to-Peer private service that will enable that provider to use the gateway device 10 for performing distributed computing, search, indexing, file backup, sharing, etc., all managed and controlled by the application service provider 98 through service management center 201.
In another embodiment, the two hardware regimes described above (NSP-TA 344 and the UNA- DA 368) may be combined into one managed hardware platform. This would in effect replace the "user" access with a managed "machine" access, for aspects of the NSP-TA 344, as well as aspects of the application services offered through the UNA-DA 368. Thus, the combination creates an integral gateway device 10 providing both network service and application services, under centralized management. Although integrated, network interconnect functions of the NSP-TA 344 may still be managed by the network service provider, as in the example of FIG. 3. Those skilled in the art will readily see additional suitable combinations and configurations for the hardware comprising the NSP-TA 344 and the UNA-DA 368. For example, in a further embodiment, all the hardware dedicated to the network service provider interface 346 may reside and be integral with the hardware comprising the UNA-DA 368. Thus, the network service provider interface 346 may reside on the UNA-DA 368. The composition of the premises gateway device 10, earlier described with reference to FIG 3, is now described in greater detail with reference to FIGS. 4A and 4B. FIGS 4A and 4B are more detailed logical diagrams of an embodiment of an exemplary gateway device 10. As shown in FIGS. 4A and 4B, the gateway device 10 utilizes a layered architecture, which enables the encapsulation of similar functionality and the minimization of dependencies between functions in different layers. FIG. 4A shows the lower portion of the layered architecture, and FIG. 4B shows the upper portion of the layered architecture. The completed set of layers can be conceptualized as if FIG. 4B was combined with FIG. 4A, with the layers of FIG. 4B above those of FIG. 4A. FIGS. 4A and 4B also depict exemplary functionality (hardware and logical) resident in each of the layers.
The layered architecture includes, but not limited to, a hardware components layer 102, hardware driver layer 104, base operating system layer 106, system services layer 108, platform modules layer 109, platform management layer 110, services framework layer 120, application services layer 130, and application services interfaces layer 140. These layers combined represent the layered architecture of the exemplary gateway device 10.
An overview of FIGS. 4A and 4B made in reference to FIGS. 2 and 3 is provided for oπentation purposes. The logical elements of the network interconnect Layer 334 residing on the gateway device 10 (FIG. 2) are found in the hardware drivers layer 104 in FIG. 4A, which govern the operation of the hardware components layer 102. The processor runs a base operating system shown in FIG. 4A at layer 106, which plays a role in each of the network interconnect 334, network function 328, application services 314 and platform manager layer 340 (FIG. 2). Logical elements represented by the network function layer 328 (FIG. 2) comprise elements from the system services layer 108 (FIG. 4A). In a similar fashion, the platform manager layer 340 (FIG. 1) is implemented in the exemplary architecture of FIGS. 4A and 4B by the platform modules 109 and the platform management layer 110. Particular logical elements comprising the ASL module 322 and ASE module 320 of the application services layer 314 (FIG. 2) are shown in FIG. 4B as comprising logical elements from each of services framework 120 and application services 130. The layered architecture displayed in FIG. 4B facilitates reuse or sharing of logic across the layers to provide a managed services framework 120. Finally, application services interface 140 enables communications from user endpomt devices 11 (FIG. 1) within their respective service environments.
As shown in FIG. 4A, the hardware components layer 102 includes a central processing unit (CPU) 152, which may be a system on a chip that includes processing elements, digital signal processor resources and memory. The implementation of functions and the related control such as a router (with quality of service (QoS)), firewall, VoIP gateway, voice services and voice mail may be embodied and performed withm the CPU 152.
The CPU 152 is also coupled to a random access memory (RAM) 170 and additionally, nonvolatile hard dπve/disk magnetic and/or optical disk memory storage 154. Generally, the hard drive/disk magnetic and/or optical disk memory storage 154 provides non-volatile storage of computer readable instructions, data structures, program modules, objects, service configuration data and other data for use by the gateway device 10. The non- volatile hard dπve/disk magnetic and/or optical disk memory storage 154 may be partitioned into a network side which is the repository for stoπng all of the service logic and data associated with executing services subscribed to by the user, and, is invisible to the user, and, a user side for storing user generated content and applications in which the user has visibility. Although not shown, the CPU 152 may be coupled to a microcontroller for controlling a display device and/or other devices.
Additional hardware components include one or more Ethernet LAN and WAN interface cards 155, 156 (e.g. 802.11, Tl, T3, 56 kb, X.25, DSL or xDSL) which may include broadband connections (e.g. ISDN, Frame Relay, ATM, Gigabit Ethernet, Ethernet over SONET, etc.), wireless connections, or some combination of any or all of the above. For wireless connections, the cards would be associated with WiFi LAN access point 62 to enable a wireless connection. The Ethernet LAN interface 155 provides data communication connectivity withm the user premises, essentially, for communication with any endpomt devices operating within the premises. The Ethernet WAN interface 156 provides data communication connectivity for the gateway device 10 and endpoint devices 11 (not shown) communicating through the device 10, with the wide area network like IP network 99 shown in FIG. 1.
For additional or alternative customer premises communications, the hardware components 102 may also include one or more USB interfaces 158. Furthermore, for additional or alternative communications with the wide area network, the hardware components may also include the PCMCIA EvDO interface card 160.
A data encryption/decryption unit 162 is additionally provided as part of the architecture for providing data security features. A watchdog timer element or like timer reset element 164 is provided as is one or more LED devices 166 for indicating status and other usable information to users of the gateway device 10. The hardware layer 102 may also include an option module 168. The hardware components at layer 102 have multiple interfaces for connection to such an option module 168. These interfaces, by way of example, could be a data bus (e.g. PCI, etc), network interface (e.g. Ethernet (RJ45), MoCA/HPNA (Coax)) and Power feeds. The option module 168 allows additional functionality to be added to the gateway device 10 at the hardware layer 102. For example, this additional functionality could be everything from support for a variety of extra WAN interfaces (e.g. xDSL, DOCSIS, Fiber (PON), cellular packet, WiMAX, etc.), media processing (e.g. Cable TV termination, Digital Video Recording, Satellite TV Termination, over-the-air broadcasting, etc), to voice processing (FXS, FXO, Speech Detection, Voice to Text, etc). The option module 168 may have its own standalone CPU, memory, mputs/outputs, storage, or provide additional functionality by its use of the CPU, memory, inputs/outputs, and storage facilities off of the other hardware layer 102 components. The option module 168 may be managed indirectly by the platform manager layer 340 (FIG. 2).
The discussion of the gateway hardware layer above and the illustration thereof in the drawings provides a high-level functional disclosure of an example of the hardware that may be used in the gateway device Those skilled in the art will recognize that the gateway device may utilize other hardware platforms or configurations.
As further shown in FIG. 4A, the hardware drivers layer 104 comprises a multitude of driver interfaces including but not limited to: a PCMCIA driver 104a, for enabling low level communication between the gateway CPU 152 and the PCMCIA network interface card wireless interface, an IDE driver 104b for enabling low level communication between the gateway CPU 152 and the local mass memory storage element, and LAN/WAN Ethernet drivers 104c for enabling low level communication between the gateway CPU 152 and the respective network interface cards 155 and 156. The exemplary driver layer also includes, but not limited to an LED driver/controller 104d for driving LED(s) 166, a USB driver 104e allowing CPU 152 to communicate via USB interface 158, and an 802.11 b/g (or n) wireless network driver 104f for allowing the CPU 152 to communicate via the WiFi LAN access point 62. The drivers provide the logical connectivity between the low level hardware devices 102 and the base operating system 106.
The base operating 106 controls the execution of computer programs and provides scheduling, mput-output control, file and data management, memory management, and communication control and related services for the gateway device 10. With respect to the base operating system 106, the gateway device 10 architecture may support any embedded operating system, any real-time ODeratme system, anv open source operating system, any proprietary operating system, or even any operating systems for mobile computing devices as long as the operational needs of the client discussed herein below can be met. Exemplary operating systems that may be employed include WINDOWS, MACINTOSH, LINUX or UNIX or even an embedded Lmux operating system. For instance, the gateway device 10 may be advantageously provided with an embedded base operating system 106 that provides operating system functions such as multiple threads, first-in first-out or round robin scheduling, semaphores, mutexes, condition variables, and message queues, for example.
Built upon the base operating system 106, as shown in FIG. 4A, is a system services support layer 108 providing both client-like and server-like functions that enable a wide range of functionality for the types of services capable of being managed by the gateway device 10. For instance, a Dynamic Host Configuration Protocol (DHCP) client 108a and server 108b software modules are provided. The DHCP client particularly requests via a UDP/IP (User Datagram Protocol/Internet Protocol (e.g , IPv4, IPv6, etc.) configured connection information such as the IP address that the gateway device 10 has been dynamically assigned by a DHCP service (not shown), and/or any the subnet mask information the gateway device should be using. The DHCP server dynamically assigns or allocates network IP addresses to subordinate endpoints 11 on a leased basis. A Virtual Private Network (VPN) client 108c may communicate via a proxy server in the service management center 201, according to a VPN protocol or some other tunneling or encapsulation protocol. An SMTP client 108d handles incoming/outgoing email over TCP, in accordance with the Simple Mail Transfer protocol. A Network Time Protocol (NTP) 108e (RFC 1305) generates and correlates timestamps for network events and generally provides time synchronization and distribution for the Internet. A Domain Name Server (DNS) client 108f and server 108g combination are used by the IP stack to resolve fully-qualified host or symbolic names, i.e. mapping host names to IP addresses.
An HTTP(S) server 108h handles secure Hypertext Transfer Protocol (HTTP) (Secure Sockets Layer) communications and provides a set of rules for exchanges between a browser client and a server over TCP. It provides for the transfer of information such as hypertext and hypermedia, and for the recognition of file types. HTTP provides stateless transactions between the client and server.
A Secure File Transfer Protocol (SFTP) client 108i and server 108j combination govern the ability for file transfer over TCP. A SAMBA 108k server is an open source program providing Common Internet Files Services (CIFS) including, but not limited to file and pπnt services, authentication and authorization, name resolution, and service announcement (browsing). An EvDO/PPP driver 1081 includes a Pomt-to-Point Protocol (PPP) daemon configuration for wireless broadband services. A PPPoE (Point-to-Point Protocol over Ethernet) client 108m combines the Point-to- Point Protocol (PPP), commonly used in dialup connections, with the Ethernet protocol. The PPPoE client 108m supports and provides authentication and management of multiple broadband subscribers in a local area network without any special support required from either the telephone company or an Internet service provider (ISP). The gateway device 10 is thus adapted for connecting multiple computer users on an Ethernet local area network to a remote site through the gateway 10 and can be used to enable all users of an office or home to share a common Digital Subscπber Line (DSL), cable modem, or wireless connection to the Internet. A Secure Shell or SSH 108n server implemented with HTTP protocol provides network protocol functionality adapted for establishing a secure channel between a local and a remote computer and encrypts traffic between secure devices by using public-key cryptography to authenticate the remote computer and (optionally) to allow the remote computer to authenticate the user.
Additionally provided as part of the system services layer 108 is intelligent routing capability provided by an intelligent router device 185 that provides Quality of Service (QoS, guaranteed bandwidth) intelligent routing services, for example, by enforcing routing protocol rules and supporting unlimited multiple input sources and unlimited multiple destinations and, particularly, for routing communications to networked digital endpomt devices subordinate to the gateway device 10. A central database server 183 handles all of the database aspects of the system. For example, the database server 183 maintains and updates registries and status of connected digital endpoint devices 11 (FIG. 1), maintains and updates service configuration data, services specific data (e.g. indexes of backed-up files, other service specific indexes, metadata related to media services, etc.) and firmware configurations for endpomt devices 11 (FIG. 1). The database server 183 may also store billing and transaction detail records and performance diagnostics. The database server logic 183 also satisfies all other database storage needs as will be described in greater detail herein.
Built on top of the system services layer 108 is the platform module layer 109 as seen in FIG. 4A. The platform module layer 109 provides a software framework for base operating system layer 106 and communications level platform functionality such as CPU management 109a, timer management 109b, memory management functions 109c, a firewall 109d; a web wall 109e for providing seamless WWW access over visual displays via access technologies enumerated herein, (e.g., HTTP, SMS (Short Messaging Service) and WAP (Wireless Access Protocol)), QoS management features 109f, bandwidth management features 109g, and hard disk dπve management features 109h The layered architecture further provides a platform management layer 110 as shown in FIG. 4B, which together with the platform modules 109 implement the platform manager layer 340 discussed earlier (FIG. 2). In the layered architecture, the platform management layer 110 and elements shown above it in FIG. 4B are built upon the platform modules 109. The features and functions in platform management layer 110 include a platform manager module 110a which will implement unique rules based notification services. On operational failure, for example, when one of the components or services fails, the platform manager module 110a would detect this failure and take appropriate action such as implement a sequence of rules to provide notification to a user. Another module withm platform management layer 110 is a scheduler manager module 1 10b. Scheduler manager module 110b manages scheduled device maintenance, managing scheduled services, e.g. back-up services, etc. The layer 110 also includes a diagnostics manager module 110c and a firmware upgrades manager module HOd for managing firmware upgrades. A resource manager module 11Oe manages system resources and digital contention amongst the various resources (e.g. CPU/bandwidth utilization) withm platform management layer 110. A display manager module 11Of and a logger manager module 11Og store and track gateway log-in activity of users and applications, e.g. voice call logs, at the user premises.
The platform management layer HO m concert with resource manager module 11Oe and the platform manager module 110a enforce the separation of network-side managed service control and user-side delegations depending upon service subscπptions and configurations. For example, the platform manager module 110a and resource manager module 11Oe encompass rules and guidelines provided according to subscribed services that act to enforce, manage, and control the input/output operations and use of hard drives space. Thus, the operation of the platform manager module 110a and resource manager module 11Oe help to determine the line between what is "owned by" the customer and what is "owned by" the application service provider thereby establishing the application service provider demarcation 392 as seen in FIG. 3.
In general, the logical platform management layer 110 allows for mter-layer allocation of local resources. This function guarantees access between the application services/management logic implemented at the higher layers of the architecture withm the gateway device 10 and the applications service management function in the service management center 201, by assuπng that the local user premises hardware and software modules are functioning at a required state (CPU and memory usage, bandwidth usage, QoS settings, etc.). The platform management layer 110 is also responsible for implementing that part of the managed application services to be performed by the gateway device 10. hi that regard, the platform management layer 110 secures and manages the overall hardware platform, given that in this scenario, the network function layer and the application service laver reside on one hardware platform. This secure hardware platform provides a robust and secure operating environment for the application services layer. So, to establish a secure and robust hardware operating environment, the platform management layer 110 must interface with all the layers above it and allow for bi-directional operational information flow among all of the functions.
Referring back to FIG. 4B, built on top of the platform management layer 110 is the Services Framework Layer 120, which provides a library of application support service processes that facilitate data collection and data distribution to and from the endpomt devices (FIG. 1). The application support service processes include, but are not limited to, a device authentication manager 12Og for use in authenticating devices connected to the gateway device and the user of the gateway device, a billing manager 120a for collecting and formatting service records and service usage by endpomt devices, (e.g., calls, back-up services etc.), a fault manager 120b for detecting and managing determined system and/or service faults that are monitored and used for performance monitoring and diagnostics, a database manager 120c, a control channel interface 12Oh via which the gateway initiates secure communications with the operations support infrastructure, a configuration manager 12Od for tracking and maintaining device configuration, a user manager 12Oe, a service manager 12Oi for managing service configuration and firmware versions for subscribed services provided at the gateway device, and a statistics manager 12Of for collecting and formatting features associated with the gateway device. Statistics may relate to the use of one or more services and associated time-stamped events that are tracked. Finally, the layered service architecture shown in FIG. 4B additionally provides the gateway device 10 with mtra-process communication and inter-process communication amongst the many services and modules in the service framework layer 120 that enables the provisioning, management and execution of many applications and services at the application services layer 130.
As seen in FIG. 4B, next to the Services Framework layer 120 is the application services layer 130 providing library of user application services and application support threads including, but not limited to, file share manager 130a, backup server 130b, home storage 130c, network device manager 130d, basic photo editor 130e, home automation controller 130f, media services module 130g, call processing module 130h, voice mail and interactive voice response (IVR) server 130i, presence and networking 13 Oj, parental control 130k, and intelligent ads manager 1301.
The gateway device 10, shown in FIG. 4B, further provides application service interfaces 140 that are used to enable a variety of user applications and communications modalities. Furthermore, the application service interfaces 140 enable communications from user endpomt devices 11 (FIG. 1) within service environments. In that regard, the application service interfaces 140 enable the application services 130 to act as an appropπate server with respect to client device application or service functionality of the endpoint devices 11 (FIG. 1). The application service interfaces 140 also enable corresponding interfaces for the application services with aspects of service environments implemented outside the user premises. In that regard, the interfaces 140 enable the application services layer 130 to act as an appropriate client, for extending the application or service related communications to a server accessed via a wide area network, such as a server of the service management center 201 (FIG. 1).
Specific application service interfaces 140 might include a Session Initiation Protocol (SIP) Interface 141 SIP interface 141 is an interface to the generic transactional model defined by the session initiation protocol that provides a standard for initiating, modifying or terminating interactive user sessions that involve one or more multimedia elements that can include voice, video, instant messaging, online games, etc., by providing access to dialog functionality from the transaction interface. For instance a SIP signaling interface enables connection to a SIP network that is served by a SIP directory server via a session border controller element in the service management center 201 (FIG. 1).
Additionally, application service interfaces layer 140 may include the web interface 142 that enables HTTP interactions (requests and responses) between two applications Also, the Web services interface 149 that provides the access interface and manages authentication as gateway device 10 access the service management center 201 via web services may be included in the application service interface layer 140. The IM Interface 144, which can optionally be located within the application service interface layer 140, is a client that enables the gateway device 10 to connect to one or more specific EVI network(s). As further shown in FIG. 4B within the application service interface layer 140, the UPnP (Universal Plug and Play) interface 147 enables connectivity to other stand-alone devices and PCs from many different vendors.
The XMPP interface 145, within the application service interface layer 140, is provided to implement the protocol for streaming (XML) elements via the gateway device 10, m order to exchange messages and presence information in close to real time, e.g. between two gateway devices. The core features of XMPP interface 145 provide the building blocks for many types of near-real-time applications, which may be layered as application services on top of the base TCP/IP transport protocol layers by sending application-specific data qualified by particular XML namespaces. For example, the XMPP interface 145 provides the basic functionality expected of an EvI and presence application that enable users to perform the following functions including, but not limited to, 1) exchange messages with other users, 2) exchange presence information with other devices, 3) manage subscriptions to and from other users, 4) manage items m a contact list (in XMPP this is called a "roster"), 5) block communications to or from specific other users by assigning and enforcing privileges to communicate and send or share content amongst users (buddies) and other devices, and 6) communicating with applications in the service management center and vice versa. The synchronization of allowed services and features and the real-time notification of service and configuration changes can be communicated through this interface.
Within the novel architecture of the exemplary system (FIG. 1), the gateway device 10 is enabled to aggregate all types of media, such as real time broadcast media, Internet-based streamed media, pull and push video-on-demand, or to aggregate and distribute personal media located on the user premises. The disclosed invention is directed to the ability of the exemplary system to obtain/acquire media content and/or associated metadata, to store and aggregate that content and/or metadata, and then efficiently distribute or access the content for streaming to endpomt devices 11 associated with, and managed by, the gateway device 10.
An end user has many endpomt devices 11 at their user premises that, for example, provide access to music, movies, photos, and other forms of media and their associated metadata. In addition, a user, via an endpomt device 11, can access additional media and metadata outside of the user premises, for example, through the Internet, satellite services, and other terrestrial mechanisms. This invention provides a system and methods to manage the multiplicity of media storage devices and sources in a way that provides a centralized, logical view of all media and corresponding metadata available to the user.
One key component of this invention is the Digital Media Server (DMS) that can provide access to, find, collect, aggregate, store, and share digital media such as, but not limited to, music, movies, photos, and/or any other media data file via endpomt devices 11 and gateway devices 10 within the exemplary system (FIG. 1). A DMS may be implemented either as a standalone device, or as firmware/software running on a gateway device 10 or endpomt device 11.
Another key component to this invention is a Digital Media Adapter (such as DMA 35b of FIG. 1), which browses and plays media that resides on one or more DMS devices. The DMA 35b allows the user via an endpomt device 11, such as television display devices 32 (FIG. 1), to browse media that is stored on the DMS by presenting icons and navigation artifacts as a series of "pages" (i.e. menus) that are displayed on the television display devices 32, for example. The media that the DMA 35b is accessing on the DMS includes metadata. Metadata is information that describes the content, quality, condition, origin, and/or other characteristics of the media content or other pieces of data. Examples of metadata include: title, location of media, type, size, duration, resolution, genre, content rating, copyright information (such as for DRM), language, author/artist/actor/director names, year of publication/release, graphical elements (album art, for example), parental control parameters, user "tag" data, and other data downloaded from the Internet. The DMS is responsible for finding, collecting, aggregating, storing and managing the metadata associated with the media. It should be noted that the DMA functionality may be implemented either as a standalone device, or as firmware/software running on a gateway device 10 or endpomt device 11.
Within the exemplary system of FIG. 1, the gateway device 10 may serve as both a DMA and a DMS. The gateway device 10 may be given the capabilities of a DMA device and/or DMS device, such as for example, the functionalities of media and metadata collection, aggregation and distribution by adding media content processing capabilities. These may include, for example: (a) video encoding/decodmg/transcodmg by way of hardware/firmware; (b) media management, such as firmware/software that permits metadata and media file aggregation, organization, and distribution; and (c) digital rights management (DRM), such as decrypting/encryption, and transcription, and the secure handling of media files on a secure hardware platform. The DMA and DMS functions can be added in whole or in part to the gateway device 10 to achieve a desired service definition. Therefore, it is not necessary to implement all functions concurrently. Furthermore, there may be more than one endpoint device 11, gateway device 10, or other device withm the exemplary system serving as a DMA or DMS. In the preferred embodiment, the overall implementation takes into account the possible inclusion of all such capabilities at some point.
FIG. 5 is a high-level architectural overview of an exemplary system to manage the multiplicity of media storage devices and sources in a way that provides a centralized, logical view of all media and corresponding metadata available to the user. For exemplary purposes, the gateway device 10 is acting as a DMA and the DMS. As previously described with reference to FIG. 1, the gateway device 10 is connected to the IP network 99, for example, and to various endpoint devices 11 via a LAN connection 60. Through the IP network 99 the gateway device 10 has access to media and the associated metadata on servers residing within the service management center 201, application service provider 98, and or any other entity that is accessible through the exemplary system depicted in FIG. 1. Specifically, the media sources 500 (via the IP network connection, the WAN connection 338 (FIG.2), and the option module 168 (FIG. 4) allow the gateway device 10 to receive media and the associated metadata from sources within and beyond the user premises, for example, the Internet, satellite television providers, other real-time video providers, media associated with other gateway devices 10 on other user premises, etc.
The connections to LAN 60 and the WAN 338 (FIG. 2) depicted in FIG. 5 allow the gateway device 10 to communicate with vanous endpomt devices 11. Within this exemplary architecture, endpoint devices 11 may be charactenzed as, but not limited to, media storage devices and media player devices. The term "media storage devices" is used to refer to endpomt devices 11 or other gateway devices 10 that have the capability of stoπng media content and associated metadata that can be accessed by gateway device 10 or other endpomt devices. The media storage devices depicted in FIG. 5 include, but not limited to, a network attached storage (NAS) 503 and a personal computer (PC) 30a. The term "media player devices" is used to refer to endpomt devices 11 or other gateway devices 10 that are capable of rendering (by displaying or playing) media, including audio, video, audio/video, images, with or without the associated metadata. Media player devices may include, but are not limited to, stand alone television display devices 32, personal computers, and properly-enabled audio equipment. These media player devices include the necessary hardware to receive the media stream and render the media stream for user consumption. The media player devices may incorporate DMA functionalities or be coupled to a DMA device that provides DMA capability.
With respect to the gateway device 10 depicted in FIG. 5, it comprises a media processor 501, a media manager 507, a network module 502, a tuner module 506, and a storage device such as hard drive 154. The media processor 501 decodes/encodes and decrypts/encrypts the media content sent through the gateway device 10 and make the necessary protocol translation and/or media format conversion. For example, the media processor may convert the media stream into IP data packets. Additionally, the media processor 501 may handle DRM processing. The media manager 507 receives the IP data packets and directs the IP data packets to the appropπate endpomt device 11 , other gateway device 10, or any other entity within the exemplary system that may be communicated with through network module 502. The media manager also tracks and monitors the media played on all media player devices. The media manager thus also associates the media played to users associated with these media player devices. The usage tracking data may stored in the hard drive device in the gateway device, and may be used to customize and personalize the media content and user experience provided by the gateway device (including parental control functionality, paid targeted advertisement, etc.). The media usage data may be transmitted to the service management center for analysis, and may be aggregated across all gateway devices. The network module 502 provides the interface to the IP network 99 and LAN 60. The tuner module 506 provides the capability for selectively receiving television signals, such as, but not limited to, direct broadcast satellite (DBS), cable, and/or Internet protocol television (IPTV). The tuner module 506 may select between IP "stations" by associating with the correct multicast stream, for example. The tuner 506 modulates those source signals into a form suitable for processing by the media processor 501 and transmission by the media manager 507 within the exemplary system. The hard dπve 154 is preferably non-volatile memory used for storing media and the associated metadata within the exemplary system. The hard drive 154 may serve as a "cache" to buffer the media before it is streamed to the media player devices to provide digital video recorder (DVR) functionalities. Further, the hard drive may be used for consistent playback if there is a mismatch in transmission speed between the endpoint device and the media source.
FIG. 6 is a data flow diagram that descπbes the process of the exemplary system that allows management of multiple media storage devices and sources in a way that provides a centralized, logical view of all media and corresponding metadata available to the user. At step 601, the gateway device 10 is plugged into the LAN 60 and IP network 99 on the user premises. Connecting the gateway device 10 to the LAN 60 and IP network 99 enables the gateway device 10 to be connected to various network devices including, but not limited to, endpomt devices 11 and other gateway device 10. Next (step 602), the gateway device 10 automatically discovers endpomt devices 11 on the LAN 60 and IP network 99 that are associated with gateway device 10 In this example, the gateway device acts as the router and DHCP server in the customer premises and provides the IP address. The endpoint devices, using various well-known mechanisms and protocols, then identify the gateway device and start communication with it. As mentioned previously, endpomt devices 11 may serve as media storage devices 505 and media player devices 504. Furthermore, endpomt devices 11 can store and serve media (i.e. send media across the exemplary system from one endpoint device 11 to another endpomt device 11).
The discovery of the endpoint devices 11 at step 602 may be done through open protocols, such as universal plug and play (UPnP), or through proprietary protocols supported by the gateway device 10. UPnP refers to a protocol used for streaming media or advertising/collecting media and device information over a LAN. Although the details of choosing and implementing the protocols are managed by the gateway device 10, and typically hidden from the end user so that the experience is an integrated and uniform expeπence across all the associated endpomt devices 11, it is possible for the user to manually add devices that do not support a discovery protocol. For example, an end user may manually input into the gateway device 10 specific information about a particular endpomt device 11, such as its IP address, MAC address, and the communications protocol (i.e. SMB, NFS, etc.) that is associated with that endpoint, so that an endpomt device 11 is associated with a particular gateway device 10.
Step 603 involves the user establishing preferences on gateway device 10 for the media content and associated metadata that meet their preference. Specifically, the end user, via an endpomt device 11 such as a properly-enabled television display device 32, accesses the gateway device 10 to enter user preferences for media content and the associated metadata they want to access and use. The user can specify whether to download and store the media content and associated metadata on the gateway device's hard drive 154 (FIG. 5). The sources for the media content and metadata may include, but is not limited to, the Internet or from multiple Internet-based subscription services, broadcast media such as cable TV and satellite TV, endpoint devices 11 associated with the gateway device 10, and other gateway devices 10 through peer-to-peer networking across IP network 99.
As part of the media content retrieval and/or collection and storage process occurring at step 603, the gateway device 10 may, in addition to or in lieu of, download media content to its hard drive 154, scan the media that resides on each endpoint device 11, other gateway devices 10, and/or from other sources that are available over IP network 99, and build a comprehensive database of metadata for all media. Using this metadata database, the gateway device 10 can search for, organize and query the metadata to enable the user to utilize the metadata to find media content. The metadata contained in the metadata database on the gateway device 10 also contains information (such as pointers) necessary to access the media, regardless of whether the media resides on an associated endpoint device 11, the gateway device 10 itself, or on another device that is accessible via the LAN 60 and/or IP network 99.
At step 604, the end user, via an endpoint device 11 with DMA functionality, such as the television display device 32, may send a request for media content by entering information or menu selection associated with the media content. The information is sent to the gateway device 10. The gateway device 10, acting as a DMS, receives the request and processes the request at step 605. When processing the request, the gateway device 10 will use the user-supplied information to search its own hard drive for the location of the media as well as all associated endpoint devices 11 and any external source that may be accessible to the gateway device 10. It should be noted, that the gateway device 10 during the searching process for the media, scans its metadata database to determine the location of the media. Then the gateway device 10 accesses the media via the location indicated in the metadata database.
Upon locating the media based on the user-supplied information, the compatibility of the found media content is compared to the rendering capabilities of the endpoint point device 11 (step 606). Because the media content may be formatted according to protocols inconsistent with the media- rendering capabilities on the associated endpoint device 11, the gateway device 10 may serve as a transcoder (i.e. decoder/encoder). The gateway device 10 may be programmed so that it possesses the ability to convert the media content in a manner suitable for display/rendering/playing on the associated digital end point device 11 that will receive the media content. For example, if an endpoint device 11, serving as a media player device 504 device, can only play MPEG2 video format, then any MPEG4 videos will have to be transcoded by the gateway device 10, so that the endpoint device 11 may render/display the video to the end user. Alternatively, the gateway device 10, by using the user-supplied information, can determine if a rendering endpomt device 11 supports the format of the media content from the source storing the media content. If the rendering endpomt device 1 1 does not support the format indicated in the metadata, the gateway device 10 can then, for example, reference the metadata to locate the source of the media content, and obtain the alternative encoding. Then the media content is made available m the alternative encoding that is capable of being rendered/played on the receiving endpomt device 11.
After resolving media content compatibility issues, at step 607a the gateway device 10 may then receive and stream/distribute, via the LAN 60 or IP network 99, the stored media content to any compatible endpomt devices 11 and/or other gateway device 10. The streaming of media content need not be performed concurrently with the acquisition of the content; rather the media content may be downloaded or encoded and stored on the hard drive 154 of gateway device 10 which may then be shared and streamed to the associated endpomt devices 11 and/or other gateway devices 10.
The gateway device 10 manages the streaming, including digital rights authorizations. In an example, the user may assign a media stream to a selected television display devices 32 in the house. In the particular example where the media content is a video protected by DRM, the gateway device 10 may be provisioned to, for example, 1) transcribe the DRM to make sure the media source encryption format is compatible with the endpomt DRM capabilities, and 2) signal the endpomt device that DRM is needed and redirect the endpomt device to the location on the IP network where it may acquire the proper license to unlock the DRM.
Alternatively as seen in step 607b, the gateway device 10 does not have to download the media to its hard drive 154. The gateway device 10 may also manage the streaming and rendering of media content not stored on it. With the assistance of the metadata database, the gateway device 10 may manage and control the streaming and rendering of media content stored on associated endpomt devices 11 and/or other gateway devices 10. For example, the gateway device 10 may control one endpomt device 11 or another gateway device 10 to directly stream/distribute media content to another endpomt device 11 and/or gateway device 10. Thus, the user may utilize existing media content storage on associated endpomt devices 11 and/or other gateway devices 10 to access media content and storage, and avoid the need for complete media file transfer to the gateway device 10 (and the concomitant burden on the gateway's resources). Finally, at step 608 the media and its associated metadata arrives at the endpomt device 11. The end user, via their initial request for the media content, indicated which endpomt device 11 is supposed to receive the media content and associated metadata. At this point, the endpomt device 11 renders the media and its associated metadata and completes the process flow depicted in FIG. 6.
Thus, the process flow depicted in FIG. 6 demonstrates that gateway device 10 may be used to redirect output and to allow, from a central location, selection and control of: (i) the media content to be displayed on a particular endpomt device 11 ; (n) the endpomt devices 11 registered with the gateway device 10 that store and/or render the media content; and (in) sources outside the user premises, such as other endpomt devices 11 and/or other gateway devices 10, by utilizing the peer- to-peer capabilities of the system architecture to access media content and the associated metadata stored on those additional resources.
It should be noted that the process flow described in FIG. 6 is for exemplary purposes and is no way to be construed as a limitation. There are many other methods for handling the management of media content within the exemplary system. For example, the user when making the request for media content at step 604, may dictate where the media content and its associated metadata will be sent to by the gateway device 10 serving as the DMS. In other words, a user making a request from one endpomt device 11 serving as a DMA does not mean the gateway device 10 serving as the DMS must automatically send the response to the requesting endpomt device 11. Instead, the exemplary system allows for the gateway device 10 serving as the DMA to send media content and its associated metadata from a request for such data to any endpomt device 11 , other gateway device 10, or any other device that is associated with gateway device 10 via the LAN 60 or IP network 99.
Applying the process flow of FIG. 6 and the exemplary system architecture described in FIG. 1 and 5, examples of the management of media content are described below. For example, referring to FIG. 5, a DMA 35b attached to a television display device 32 may be configured to control a television feed from a satellite or cable provider, for example. The DMA 35b in turn is connected to the gateway device's tuner module 506 via LAN 60. The DMA 35b, as previously described, renders a "page" (i.e. menu) displayed on the television display device 32. The menu includes metadata provided by the gateway device 10, which it collects from an Internet service that is aware of the television channel lme-ups in a specific region. The end user may utilize the menu to control changing channels on the tuner module 506 mside the gateway device 10. Once the user selects a "channel", or media source, the gateway device 10 proceeds to take the necessary steps to stream the video content to the DMA 35b for displaying on the television display device 32. Steps taken by the gateway device 10 may include one or all of the following: decrypt/encrypt, decode/encode, record, and/or stream.
Another example of the functionality of the exemplary system, a user of a DMA 35b in combination with a television display device 32 may browse "peer" video content on a "peer" gateway device 10. Specifically, the gateway device 10 residing on the user premises is in peer-to- peer networking relationship with another gateway device 1On residing in another user premises 70 (FIG. 1). In this scenaπo, the gateway device 10, using metadata, collates and prepares that video content for local consumption by, among other things, downloading and/or streaming the selected video content from the peer gateway device 1On. Specifically, the video content on gateway device 1On may be downloaded to gateway device 10 and then sent to the DMA 35b for viewing on television display device 32, or the video content on gateway device 1On could be streamed directly from gateway device 1On across IP network 99 to the DMA 35b for viewing on television display device 32.
Extending the previous example, the user may decide to redirect the selected "peer" video content to another rendering endpomt device 11 on the user premises other than the DMA 35b and television display device 32 combination. For example, referring to FIG. 5, the redirected peer video could be sent to television display device 32a, NAS 503, and/or PC 30a. If the endpoint device 11 selected for video display does not implement the same streaming protocols that the local DMA 35b is using, the task may be completed, nonetheless, because the gateway device 10 through which the video is being streamed, includes hardware/firmware/software that allows it to support various protocols and convert between media formats.
The above examples are in no way to be construed as limitations or a complete list of all the functions of the exemplary system with respect to media content management. The examples are for the benefit of one having skill in the art to be understand the application of the claimed invention. The novelty of the architecture described above allows the user to manage media content associated with gateway device 10 and endpoint device 11 through various interfaces, most preferably, an interface presented on the TV. It should also be noted that the services above can also be managed through a mobile device, such as a data enabled mobile phone, which is not directly attached to LAN 60, and is accessing the system externally through IP network 99. The mobile device, or other local or non local devices, can use the gateway device 10 as a control point to manage the streaming of content residing locally on the gateway device 10 or content on other attached devices, which are managed by the gateway device 10 through its LAN 60 or IP network 99 connections. As previously discussed, the metadata database stores metadata associated with media content the gateway device 10 has access to from other gateway devices 10, endpoint devices 11, and other media sources. Depending on the administrative configuration of the gateway device 10, certain end users may be able to augment the metadata database, e.g., to add user voting, user "tags," etc. Because all desired metadata may not be obtained from the device on which the media content is stored, the gateway device 10 may search for and utilize services on the Internet to augment the metadata within the database. For example, metadata for album art and lyrics may not be part of the metadata imbedded with the media content. The gateway can utilize external sites to obtain the additional metadata for album art and lyrics. By updating the metadata stored withm the metadata database the gateway device 10 can provide faster and more accurate access to media content.
The metadata database can also be used as a resource to determine whether a particular endpoint device 11 or another gateway device 10 has access to transfer, store, and/or render media content, for example. This capability may be exercised with respect to media residing on the gateway device 10 or on the associated endpoint devices 11. Specifically, the metadata with respect to a particular media content may be updated such that a particular endpomt device 11 and/or gateway device 10 is blocked from accessing the media content associated with the metadata. For example, some media may be tagged as being unavailable to children in the household. When a dedicated endpomt device 11 (such as a child's PC) or a common endpomt device 11 (such as the living room DMA) wishes to access media, the gateway device 10, acting as a cleaπnghouse, might consult the metadata to determine if the desired access is allowed.
The use of the metadata database also allows the gateway device 10 to efficiently and quickly manage the streaming of media content stored on endpoint devices 11. By providing essential information regarding the media content, such as identity and location, the metadata database allows the gateway device 10 to quickly locate the media content. Thus, to access and implement the advantages of the media content management of the gateway device 10, the user is not required to store the media content on the gateway device 10. The gateway device 10 is then allowed to leverage its resources by utilizing endpoint device's 11 storage that is holding the media content.
Additionally, a predictive media cache may be implemented on every DMA withm the exemplary system to increase the efficiency and effectiveness of media content management experienced by the end user. FIG. 7 is a data flow diagram for an exemplary embodiment of a predictive media cache. The goal of the predictive media cache is to anticipate the next query of the end user through the use of the DMA. Predictive caching thus takes advantage of the likelihood that the answer for one query determines the possible queries that immediately follow. At step 701, the DMA is associated with a particular DMS as described above with respect to FIG. 5. The user makes a DMA initiated query, at step 702, by inputting information into the DMA requesting media content and/or metadata from a DMS. At step 703, the predictive media cache (implemented as hardware, software, or a combination thereof) of the DMA determines whether the answer to the query is already cached. If so, the answer to the DMA initiated query is presented to the DMA at step 704a, which is viewed by the user. If the answer to the DMA initiated query is not cached, at step 704b, the DMA initiated request is sent to the DMS and the subsequent answer to the query (i.e. metadata and/or media content) is presented to the DMA for viewing by the end user.
In either case, while the end user is viewing the response to the DMA initiated request, at step 705, the predictive media cache begins queuing a small number of background queries that correspond to the media content and/or metadata associated with the DMA initiated request. A predictive query queue keeps track of all background queries since the last DMA initiated query. The background queπes are processed by the DMA duπng idle processing cycles. Specifically, at step 706, the predictive media cache sends background queries to the DMS and receives from the DMS the answer to those queπes before the end user actually makes the next DMA initiated query. In other words, during step 706, the predictive media cache increases the effectiveness and efficiency of media content management for an end user to predict future DMA initiated queπes made by the user, so that the answer to a future DMA initiated query already resides within the predictive media cache.
Step 707, involves the user making a new DMA initiated query for additional media content and/or metadata from the DMS. If any of the previous background queries made at step 705 accurately predicted the users DMA initiated query then the answer already resides in the predictive media cache. Therefore, as indicated in Fig. 7, the predictive media cache checks at step 703 again to determine whether the answer is cached. If the answer is cached, at Step 704a, the DMA would be presented with the answer, which is then viewed by the user. If on the other hand, none of the background queπes were successful in predicting the DMA initiated query then the DMA initiated request is sent to the DMS and the subsequent answer to the query (i.e. metadata and/or media content) is presented to the DMA for viewing by the end user as shown in step 704b. Again in either case, as the end user is reviewing the answer to their DMA initiated query, the predictive media cache is queuing background queries (step 705) and sending background queπes to the DMS and receiving from the DMS the answer to those queπes (step 706) before the end user actually makes the next DMA initiated query (step 707). The predictive media caching process outlined above can be repeated over and over again depending upon how often the end user makes a DMA initiated reαuest. Applying the process flow described in Fig. 7, an example of a DMA initiated query at step 702 might be, "What are the first six music albums in the database containing tracks by the artist named 'Gene Krupa'?" The predictive media cache determines whether the answer to this exemplary query is cached (step 703). If the answer to the query is cached then the end user is presented the answer (i.e. the first six music albums in the database containing tracks by the artist named "Gene Krupa") at step 704a. If the answer is not cached then the DMA initiated query is sent to the DMS, the answer to the query is sent back to the DMA (step 704b), and the end user is presented the answer to the DMA initiated query (step 704a). Accordingly, while the end user is reviewing the answer to the DMA initiated query, the predictive media cache initiates (step 705) and processes (step 706) one or more background queries, each reflecting a possible query that may be asked next with reference to the answer received from the DMA initiated query made at step 702. By way of example, the background queries may include, but not limited to, a query for the artwork and track information associated with the six requested albums and/or the metadata and media content associated with seventh through twelfth music albums by the artist named "Gene Krupa."
At step 707 when the end user makes an additional DMA initiated query, after reviewing the response to their initial DMA initiated query, the predictive media cache at step 703 determines whether the answer to the additional DMA initiated query is already cached based on the previous background queries. If the query involved a request for the artwork and track information associated with the six requested albums and/or the metadata and media content associated with seventh through twelfth music albums by the artist named "Gene Krupa" then the answer would already reside in the predictive media cache and be presented to the end user (step 704a). If on the other hand, the background queries were not successful in predicting the DMA initiated query then the DMA initiated request is sent to the DMS and the subsequent answer to the query (i.e. metadata and/or media content) is sent back to the DMA for viewing by the end user as shown in step 704b. Again in either case, as the end user is reviewing the answer to their additional DMA initiated query, the predictive media cache is queuing background queries (step 705) and sending background queπes to the DMS and receiving from the DMS the answer to those queries (step 706) before the end user actually makes the next DMA initiated query (step 707).
It should be noted on the DMA that the predictive queue keeps track of all queπes waiting for processing. In all cases, the DMA balances responsiveness to a DMA initiated query (i.e. user input query) while still providing sufficient processing cycles to the predictive media cache so it may service the background queπes. In order to increase the effectiveness and efficiency of the predictive media cache, the predictive media cache establishes multiple connections to the DMS. This allows multiple background queπes to be transmitted with minimal additional overhead. Furthermore, a small number of background quenes are pipelined on each connection, based on the number of connections available and the size of the query in the predictive query queue. Finally, through judicious implementation, the predictive cache's processing needs can be met especially by exploiting the time slot available while an end user is reviewing the answer to their DMA initiated queue.
As an additional method to enhance the end user's experience in managing their media content and associated metadata, a background query may be established each time a user enters a keystroke into the DMA device while trying to run a DMA initiated query. In other words, a separate background query would run every time a user enters a keystroke as part of a DMA initiated query. Alternatively, a DMA could be setup to perform a background query after a small period of time (e.g. 250 milliseconds) has elapsed where no additional keystrokes have been entered by the end user for a DMA initiated query. These additional approaches would also increase the effectiveness and efficiency of the exemplary system with respect to managing the media content stored on the DMS and subsequently accessed by the DMA.
It should be noted that the predictive media cache preferably has read-only access to the media metadata it stores. Accordingly, when another process on the DMS updates the metadata within the metadata database on the DMS, a notification is sent to the DMA that a portion of its predictive media cache may be invalid. When the DMA communicates this information to its predictive media cache, the cache flushes the appropriate answers it is storing and the associated entries, if any, in the predictive query queue, and then resends the appropπate queπes from the predictive query queue in order to refresh the cache.
The gateway device 10 and its interactions with various endpomt devices 11, service management center 201, and application service provider 98 have been described with reference to diagrams of methods, apparatus (systems) and computer program products. It will be understood that elements and functions illustrated in the diagrams, can be implemented by computer program instructions running on one or more appropπately configured hardware platforms, e.g. to operate as a gateway device 10 or as one or more systems implementing functions of the service management center 201. Hence, operations described above may be carried out by execution of software, firmware, or microcode operating on a computer other programmable device of any type. Additionally, code for implementing such operations may comprise computer instruction in any form (e.g. source code, object code, interpreted code, etc.) stored in or earned by any computer or machine readable medium. Program aspects of the technology may be thought of as "products," typically in the form of executable code and/or associated data for implementing desired functionality, which is carried on or embodied in a type of machine readable medium. In this way, computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, embedded processor or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, so as to implement functions described above.
Terms regarding computer or machine "readable medium" (or media) as used herein therefore relate to any storage medium and any physical or earner wave transmission medium, which participates in providing instructions or code or data to a processor for execution or processing Storage media include any or all of the memory of the gateway device 10 or associated modules thereof or any of the hardware platforms as may be used m the service management center 201, such as various semiconductor memories, tape drives, disk drives and the like, which may provide storage at any time for the software programming. All or portions of the software may at times be communicated through the Internet or various other telecommunication networks Such communications, for example, may enable loading of the software from one computer into another computer, for example, from gateway device 10 or from another source mto an element of the service management center 201. Thus, another type of media that may bear the software elements includes optical, electrical and electromagnetic waves, such as used across physical interfaces between local devices, through wired and optical landline networks and over various air-lmks. The physical elements that carry such waves, such as wired or wireless links, optical links or the like, also may be considered as media beaπng the software Hence, the broad class of media that may bear the instructions or data encompass many forms, including but not limited to, non-volatile storage media, volatile storage media as well as carrier wave and physical forms of transmission media.
Those skilled in the art will recognize that the teachings of this disclosure may be modified, extended and/or applied in a variety of ways. An extension of the system architecture, for example, provides the ability of various and disparate third-party application service providers 98 to provide multiple application services independently. Application services are managed by the application service provider 98 through the service management center 201, meaning, generally, authorizing, provisioning, and monitoring the usage of a particular application service. This can be accomplished in a variety of ways with varying degrees of involvement of, or coordination with, the service management center 201. The service management center 201 could manage these items "soup-to-nuts" or have minimal involvement. For example, the service management center 201 could deal directly with the third-party application service provider 98 to acquire application services at the request of a user and manage the delivery, authorization, usage-monitoring and upgrading of the application service. At the other end of the spectrum, a service provider may have arrangements with the third-party application service provider 98 by which orders or requests from the users may come directly to the third-party application service provider 98, and services are delivered to the user by the third-party service provider who in turn coordinates with the managed service provider to register and monitor the particular application service placed in the gateway device 10. It should be noted that this ability to manage application services extends through the gateway device 10 into the endpoint devices 11 registered or associated with the gateway device 10 or service management center 201.
While embodiments of the invention have been illustrated and described in detail in the disclosure, the disclosure is to be considered as illustrative and not restrictive in character. All changes and modifications that come within the spirit of the invention are to be considered within the scope of the disclosure.
The foregoing has described what are considered to be the best mode and/or other examples, it is understood that various modifications may be made therein and that the subject matter disclosed herein may be implemented in various forms and examples, and that the teachings may be applied in numerous applications, only some of which have been described herein. It is intended by the following claims to claim any and all applications, modifications and variations that fall within the true scope of the present teachings.

Claims

What is Claimed is:
1. A media content manager residing at a user premises, comprising: a tuner in communication with at least one media source operable to selectively receive at least one media stream of at least one type of media content; a media processor coupled to the tuner and operable to receive the at least one media stream and convert the media stream to a predetermined data format; a media manager coupled to the media processor and operable to receive the at least one media stream in the predetermined data format and direct the media stream to a selected media player device coupled to the media processor; and a storage device coupled to the media manager and operable to receive and store the at least one media stream in the predetermined data format.
2. The media content manager of claim 1, further comprising an application service module being remotely managed by the remote service manager via a connection, the application service module residing on a user premises side of a network service provider demarcation.
3. The media content manager of claim 1, wherein the media processor is further operable to receive metadata associated with the media stream.
4. The media content manager of claim 1, wherein the media manager is operable to generate data associated with what media stream is played on which media player device.
5. The media content manager of claim 3, wherein the media manager is further operable to associate the media usage data with a specific user.
6. The media content manager of claim 1, wherein the media player device has a memory, and the media manager is operable to direct the at least one media stream to the selected media player device, and the storage device is operable to store the metadata associated with the at least one media stream and a location pointer indicative of a location in the memory storing the media content of the at least one media stream.
7. The media content manager of claim 1, wherein the storage device is operable to store a current pointer indicative of a current location within the at least one media stream being played by the selected media player device.
8. The media content manager of claim 1, wherein the media manager is operable to direct the at least one media stream to a selected network attached storage device coupled to the media manager.
9. The media content manager of claim 1, wherein the media manager is operable to direct the at least one media stream to a selected network attached storage device coupled to the media manager, and further direct the at least one media stream stored in the selected network attached storage device to stream to a selected media player device.
10. The media content manager of claim 1, wherein the media manager is operable to direct the at least one media stream to a set-top box coupled to a media player device.
11 The media content manager of claim 1 , wherein the selected media player device is selected from the group consisting of a television set, a monitor coupled to a computer, a digital picture frame, a stereo receiver, a gaming console, and a digital jukebox.
12. The media content manager of claim 1, wherein the metadata comprises data associated with the at least one media content and are selected from the group consisting of title, location of media, type, size, duration, resolution, genre, content rating, copyright information, language, author/artist/actor/director names, year of publication/release, graphical elements, parental control parameters, user "tag" data, and other data downloaded from a global network.
13. The media content manager of claim 1, wherein the media processor further comprises a decoder operable to decode the media content of the at least one media stream and an encoder operable to encode the media content of the at least one media stream to be played on a selected media player device.
14. The media content manager of claim 1, wherein the media processor further comprises a decryptor operable to decrypt the media content of the at least one media stream and an encoder operable to encrypt the media content.
15. The media content manager of claim 1 , wherein the media manager is operable to translate the at least one media stream from a first protocol to a second protocol.
16. The media content manager of claim 1, wherein the media manager is operable to convert the at least one media stream from a first media format to a second media format.
17. The media content manager of claim 2, wherein the media manager enables a user to direct a selected media content to be played on a selected media player device by using the metadata.
18. The media content manager of claim 2, wherein the media manager enables a user to browse and search stored media content based on stored metadata.
19. The media content manager of claim 1, wherein the media manager enables a user to discover, access and stream media content associated with a remote peer media content manger.
20. The media content manager of claim 1, wherein the media player device comprises a predictive cache operable to retrieve media content selected in response to media content being queried by a user.
21. The media content manager of claim 1, wherein the media manager is operable to discover media content stored on external devices coupled to the media content manager via a computer network.
22 The media content manager of claim 1 , wherein the media manager is operable to implement digital rights management.
23. A gateway device residing at a user premises, comprising: an application service module having at least one application; a user module having a user interface that is associated with the at least one application, wherein the user module enables bi-directional communications with the at least one media player device; a network module having the connection that enables bi-directional communications with a remote service manager, and an interface boundary between the application service module and the network module forming a network service provider demarcation; a tuner coupled to at least one media source via the network module and operable to selectively receive at least one media stream of at least one type of media content; a media processor coupled to the tuner and operable to receive the at least one media stream and convert the media stream to a predetermined data format; a media manager coupled to the media processor and operable to receive the at least one media stream in the predetermined data format and direct the media stream to a selected media player device coupled to the media processor via the user module; and a storage device coupled to the media manager and operable to receive and store the at least one media stream in the predetermined data format.
24. The gateway device of claim 23, wherein the tuner is operable to selectively receive the at least one media stream comprising metadata
25. The gateway device of claim 23, wherein the media manager is operable to direct the at least one media stream to the selected media player device having a memory, and the storage device is operable to store the metadata associated with the at least one media stream and a location pointer indicative of a location m the memory storing the media content of the at least one media stream.
26. The gateway device of claim 23, wherein the storage device is operable to store a current pointer indicative of a current location within the at least one media stream being played by the selected media player device.
27. The gateway device of claim 23, wherein the media manager is operable to direct the at least one media stream to a selected network attached storage device coupled to the media manager.
28. The gateway device of claim 23, wherein the media manager is operable to direct the at least one media stream to a selected network attached storage device coupled to the media manager, and further direct the at least one media stream stored in the selected network attached storage device to stream to a selected media player device.
29. The gateway device of claim 23, wherein the media manager is operable to direct the at least one media stream to a set-top box coupled to a media player device.
30. The gateway device of claim 23, wherein the selected media player device is selected from the group consisting of a television set, a monitor coupled to a computer, a digital picture frame, a stereo receiver, a gaming console, and a digital jukebox.
31. The gateway device of claim 23, wherein the metadata comprises data associated with the at least one media content and are selected from the group consisting of title, location of media, type, size, duration, resolution, genre, content rating, copyright information, language, author/artist/actor/director names, year of publication/release, graphical elements, parental control oarameters. user "tas" data, and other data downloaded from a global network.
32. The gateway device of claim 23, wherein the media processor further comprises a decoder operable to decode the media content of the at least one media stream and an encoder operable to encode the media content of the at least one media stream to be played on a selected media player device.
33. The gateway device of claim 23, wherein the media processor further comprises a decryptor operable to decrypt the media content of the at least one media stream and an encoder operable to encrypt the media content.
34. The gateway device of claim 23, wherein the media manager is operable to perform protocol translation and media format conversion.
35. The gateway device of claim 23, wherein the media manager enables a user to direct a selected media content to be played on a selected media player device by using the metadata.
36. A method of aggregating, managing and distributing media content, comprising: selecting at least one media source and selectively receiving at least one media stream of at least one type of media content; converting the media stream to a predetermined data format, the at least one media stream comprising metadata; directing the media stream to a selected one of a plurality of media player devices coupled to the media processor.
37. The method of claim 36, further comprising: tracking what media stream content is played on which media player device; associating the media stream played to a particular user; and generating and storing media usage data.
38. The method of claim 36, further comprising transmitting the media usage data to a remote service manager via a gateway device.
39. The method of claim 38, further comprising: receiving, by the remote service manager, media usage data from a plurality of gateway devices; and aggregating and analyzing, at the remote service manager, media usage data across the plurality of gateway devices.
40. The method of claim 38, further comprising directing targeted advertisement to a media player device in response to the media usage data.
41 The method of claim 36, further comprising stoπng the metadata associated with the at least one media stream and a location pointer indicative of a location in the memory stoπng the media content of the at least one media stream.
42. The method of claim 36, further comprising storing a current pointer indicative of a current location within the at least one media stream being played by the selected media player device
43. The method of claim 36, wherein directing the media stream comprises directing the at least one media stream to a selected network attached storage device coupled to the media manager.
44. The method of claim 36, wherein directing the media stream comprises directing the at least one media stream to a selected network attached storage device coupled to the media manager, and further directing the at least one media stream stored in the selected network attached storage device to stream to the selected media player device.
45. The method of claim 36, wherein directing the media stream comprises directing the at least one media stream to a set-top box coupled to a media player device
46. The method of claim 36, wherein directing the media stream comprises directing the media stream to a selected media player device selected from the group consisting of a television set, a monitor coupled to a computer, a digital picture frame, a stereo receiver, a gaming console, and a digital jukebox.
47. The method of claim 36, wherein the metadata comprises data associated with the at least one media content and are selected from the group consisting of title, location of media, type, size, duration, resolution, genre, content rating, copyright information, language, author/artist/actor/director names, year of publication/release, graphical elements, parental control parameters, user "tag" data, and other data downloaded from a global network.
48. The method of claim 36, further comprising decoding the media content of the at least one media stream and encoding the media content of the at least one media stream to be played on the selected media player device.
49. The method of claim 36, further comprising enabling a user to direct a selected media content to be played on a selected media player device by using the metadata.
50. The method of claim 35, further comprising enabling a user to browse and search stored media content based on the metadata.
51. The method of claim 36, further comprising enabling a user to discover, access and stream media content associated with a remote peer media content manger.
52. The method of claim 36, further comprising retrieving media content selected m response to media content being queπed by a user.
53. The method of claim 36, further comprising discoveπng media content stored on external devices coupled to the media content manager via a computer network
54. The method of claim 36, further comprising implementing digital rights management.
55. The method of claim 36, further comprising requesting for the media content in a different format in response to an incapability of converting the media stream to the different format.
56. A computer-readable medium having encoded thereon a method of aggregating, managing and distributing media content, the encoded method comprising selecting at least one media source and selectively receiving at least one media stream of at least one type of media content; converting the media stream to a predetermined data format, the at least one media stream comprising metadata; directing the media stream to a selected one of a plurality of media player devices coupled to the media processor; and storing the at least one media stream in the predetermined data format.
57. A system comprising: a remote service manager; a gateway device residing at a user premises and coupled to the remote service manager via a network, the gateway device comprises: an application service module being remotely managed by the remote service manager via a connection, the application service module residing on a user premises side of a network service provider demarcation; a network module having the connection that enables bi-directional communications with the remote service manager, a tuner in communication with at least one media source operable to selectively receive at least one media stream of at least one type of media content; a media processor coupled to the tuner and operable to receive the at least one media stream and convert the media stream to a predetermined data format; a media manager coupled to the media processor and operable to receive the at least one media stream in the predetermined data format and direct the media stream to a selected media player device coupled to the media processor; and a storage device coupled to the media manager and operable to receive and store the at least one media stream in the predetermined data format.
58. A system, comprising: a media source having media content and associated metadata; a media server having access to the media source; a media player device coupled to the media source, the media player being operable to display media content and metadata to the user; and a media adaptor coupled to the media server and media player, the media adaptor comprising a predictive cache, the media adaptor operable to receive user queries related to media content at the media source, transmit the user queries to the media server for processing, and the predictive cache being operable to transmit anticipatory queries related to the user queries to the media server, and cache anticipatory search results supplied by the media server.
PCT/US2007/089227 2006-12-29 2007-12-31 System and method to acquire, aggregate, manage, and distribute media WO2008083384A2 (en)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US88286206P 2006-12-29 2006-12-29
US88286506P 2006-12-29 2006-12-29
US60/882,862 2006-12-29
US60/882,865 2006-12-29
US11/966,936 2007-12-28
US11/966,936 US8031726B2 (en) 2006-12-29 2007-12-28 Billing, alarm, statistics and log information handling in multi-services gateway device at user premises
US11/966,945 US7987490B2 (en) 2006-12-29 2007-12-28 System and method to acquire, aggregate, manage, and distribute media
US11/966,945 2007-12-28
US11/966,884 US8205240B2 (en) 2006-12-29 2007-12-28 Activation, initialization, authentication, and authorization for a multi-services gateway device at user premises
US11/966,884 2007-12-28

Publications (2)

Publication Number Publication Date
WO2008083384A2 true WO2008083384A2 (en) 2008-07-10
WO2008083384A3 WO2008083384A3 (en) 2008-10-09

Family

ID=39327122

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/US2007/089227 WO2008083384A2 (en) 2006-12-29 2007-12-31 System and method to acquire, aggregate, manage, and distribute media
PCT/US2007/089230 WO2008083385A1 (en) 2006-12-29 2007-12-31 Billing, alarm. statistics and log information handling in multi-services gateway device at user premises
PCT/US2007/089232 WO2008083387A2 (en) 2006-12-29 2007-12-31 Activation, intialization, authentication, and authorization for a multi-services gateway device at user premises

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/US2007/089230 WO2008083385A1 (en) 2006-12-29 2007-12-31 Billing, alarm. statistics and log information handling in multi-services gateway device at user premises
PCT/US2007/089232 WO2008083387A2 (en) 2006-12-29 2007-12-31 Activation, intialization, authentication, and authorization for a multi-services gateway device at user premises

Country Status (1)

Country Link
WO (3) WO2008083384A2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8180735B2 (en) 2006-12-29 2012-05-15 Prodea Systems, Inc. Managed file backup and restore at remote storage locations through multi-services gateway at user premises
US8422397B2 (en) 2007-12-28 2013-04-16 Prodea Systems, Inc. Method and apparatus for rapid session routing
US8649386B2 (en) 2007-09-11 2014-02-11 Prodea Systems, Inc Multi-interface wireless adapter and network bridge
US9569587B2 (en) 2006-12-29 2017-02-14 Kip Prod Pi Lp Multi-services application gateway and system employing the same
US9602880B2 (en) 2006-12-29 2017-03-21 Kip Prod P1 Lp Display inserts, overlays, and graphical user interfaces for multimedia systems
US10051338B2 (en) 2015-10-21 2018-08-14 At&T Intellectual Property I, L.P. System and method for coordinating back-up services for land based content subscribers
US11201800B2 (en) * 2019-04-03 2021-12-14 Cisco Technology, Inc. On-path dynamic policy enforcement and endpoint-aware policy enforcement for endpoints
US11316688B2 (en) 2006-12-29 2022-04-26 Kip Prod P1 Lp Multi-services application gateway and system employing the same
US11783925B2 (en) 2006-12-29 2023-10-10 Kip Prod P1 Lp Multi-services application gateway and system employing the same
US11943351B2 (en) 2006-12-29 2024-03-26 Kip Prod P1 Lp Multi-services application gateway and system employing the same

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100125438A1 (en) 2008-11-15 2010-05-20 Mathieu Audet Method of scanning, analyzing and identifying electro magnetic field sources
US8862802B2 (en) 2011-12-30 2014-10-14 Bedrock Automation Platforms Inc. Switch fabric having a serial communications interface and a parallel communications interface
US10834820B2 (en) 2013-08-06 2020-11-10 Bedrock Automation Platforms Inc. Industrial control system cable
US11144630B2 (en) 2011-12-30 2021-10-12 Bedrock Automation Platforms Inc. Image capture devices for a secure industrial control system
US8868813B2 (en) 2011-12-30 2014-10-21 Bedrock Automation Platforms Inc. Communications control system with a serial communications interface and a parallel communications interface
US11314854B2 (en) 2011-12-30 2022-04-26 Bedrock Automation Platforms Inc. Image capture devices for a secure industrial control system
US9191203B2 (en) 2013-08-06 2015-11-17 Bedrock Automation Platforms Inc. Secure industrial control system
US9727511B2 (en) 2011-12-30 2017-08-08 Bedrock Automation Platforms Inc. Input/output module with multi-channel switching capability
US8971072B2 (en) 2011-12-30 2015-03-03 Bedrock Automation Platforms Inc. Electromagnetic connector for an industrial control system
US9600434B1 (en) 2011-12-30 2017-03-21 Bedrock Automation Platforms, Inc. Switch fabric having a serial communications interface and a parallel communications interface
US11967839B2 (en) 2011-12-30 2024-04-23 Analog Devices, Inc. Electromagnetic connector for an industrial control system
US10834094B2 (en) 2013-08-06 2020-11-10 Bedrock Automation Platforms Inc. Operator action authentication in an industrial control system
US9437967B2 (en) 2011-12-30 2016-09-06 Bedrock Automation Platforms, Inc. Electromagnetic connector for an industrial control system
CN103078748B (en) * 2013-01-11 2015-08-19 华为技术有限公司 Double machine switching method in charge system and relevant device, system
KR20160040277A (en) * 2013-08-06 2016-04-12 베드락 오토메이션 플렛폼즈 인크. Secure industrial control system
US10613567B2 (en) 2013-08-06 2020-04-07 Bedrock Automation Platforms Inc. Secure power supply for an industrial control system
CN105610862A (en) * 2016-02-02 2016-05-25 成都蓝码科技发展有限公司 Integrated digital application terminal and system, and application method implemented by system
FR3105688B1 (en) * 2019-12-19 2023-04-28 Orange Method and device for managing a home network.
CN113625691B (en) * 2021-08-20 2023-04-07 深圳市元征科技股份有限公司 Vehicle diagnosis method, vehicle diagnosis equipment and vehicle gateway

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6016520A (en) * 1995-07-14 2000-01-18 Microsoft Corporation Method of viewing at a client viewing station a multiple media title stored at a server and containing a plurality of topics utilizing anticipatory caching
WO2001093533A2 (en) * 2000-06-01 2001-12-06 Aerocast.Com, Inc. Preloading content objects on content exchanges
US6622168B1 (en) * 2000-04-10 2003-09-16 Chutney Technologies, Inc. Dynamic page generation acceleration using component-level caching
US20040073867A1 (en) * 2002-06-20 2004-04-15 Kausik Balas Natarajan Precomputation of web documents
US20040133657A1 (en) * 2003-01-03 2004-07-08 Broadq, Llc Digital media system and method therefor
US6871193B1 (en) * 2000-11-29 2005-03-22 Verizon Corporate Services Group Method and system for partitioned service-enablement gateway with utility and consumer services
US20050216949A1 (en) * 2004-03-23 2005-09-29 Ray Candelora Systems and methods for a universal media server with integrated networking and telephony

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2304214C (en) * 1997-09-16 2006-05-23 Transnexus, Llc Internet telephony call routing engine
US6889321B1 (en) * 1999-12-30 2005-05-03 At&T Corp. Protected IP telephony calls using encryption
EP1394986B1 (en) * 2002-09-02 2005-11-09 Sony Deutschland GmbH Service gateway for controlling audio/video devices in a local network
CN101213817B (en) * 2005-06-30 2011-08-03 艾利森电话股份有限公司 Mapping original MAC address of terminal to unique locally administrated virtual MAC address

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6016520A (en) * 1995-07-14 2000-01-18 Microsoft Corporation Method of viewing at a client viewing station a multiple media title stored at a server and containing a plurality of topics utilizing anticipatory caching
US6622168B1 (en) * 2000-04-10 2003-09-16 Chutney Technologies, Inc. Dynamic page generation acceleration using component-level caching
WO2001093533A2 (en) * 2000-06-01 2001-12-06 Aerocast.Com, Inc. Preloading content objects on content exchanges
US6871193B1 (en) * 2000-11-29 2005-03-22 Verizon Corporate Services Group Method and system for partitioned service-enablement gateway with utility and consumer services
US20040073867A1 (en) * 2002-06-20 2004-04-15 Kausik Balas Natarajan Precomputation of web documents
US20040133657A1 (en) * 2003-01-03 2004-07-08 Broadq, Llc Digital media system and method therefor
US20050216949A1 (en) * 2004-03-23 2005-09-29 Ray Candelora Systems and methods for a universal media server with integrated networking and telephony

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10646897B2 (en) 2006-12-29 2020-05-12 Kip Prod P1 Lp Display inserts, overlays, and graphical user interfaces for multimedia systems
US9569587B2 (en) 2006-12-29 2017-02-14 Kip Prod Pi Lp Multi-services application gateway and system employing the same
US8281010B2 (en) 2006-12-29 2012-10-02 Prodea Systems, Inc. System and method for providing network support services and premises gateway support infrastructure
US8280978B2 (en) 2006-12-29 2012-10-02 Prodea Systems, Inc. Demarcation between service provider and user in multi-services gateway device at user premises
US8369326B2 (en) 2006-12-29 2013-02-05 Prodea Systems, Inc. Multi-services application gateway
US8386465B2 (en) 2006-12-29 2013-02-26 Prodea Systems, Inc. System and method to manage and distribute media using a predictive media cache
US8397264B2 (en) 2006-12-29 2013-03-12 Prodea Systems, Inc. Display inserts, overlays, and graphical user interfaces for multimedia systems
US8543665B2 (en) 2006-12-29 2013-09-24 Prodea Systems, Inc. Multi-services application gateway and system employing the same
US8856289B2 (en) 2006-12-29 2014-10-07 Prodea Systems, Inc. Subscription management of applications and services provided through user premises gateway devices
US8971341B2 (en) 2006-12-29 2015-03-03 Prodea Systems, Inc. Demarcation between service provider and user in multi-services gateway device at user premises
US9209995B2 (en) 2006-12-29 2015-12-08 Prodea Systems, Inc. Presence status notification from digital endpoint devices through a multi-services gateway device at the user premises
US9253150B2 (en) 2006-12-29 2016-02-02 Prodea Systems, Inc. Multi-services gateway device at user premises
US9270492B2 (en) 2006-12-29 2016-02-23 Prodea Systems, Inc. System and method for providing network support services and premises gateway support infrastructure
US10630501B2 (en) 2006-12-29 2020-04-21 Kip Prod P1 Lp System and method for providing network support services and premises gateway support infrastructure
US9602880B2 (en) 2006-12-29 2017-03-21 Kip Prod P1 Lp Display inserts, overlays, and graphical user interfaces for multimedia systems
US9736028B2 (en) 2006-12-29 2017-08-15 Kip Prod P1 Lp System and method for providing network support services and premises gateway support infrastructure
US9924235B2 (en) 2006-12-29 2018-03-20 Kip Prod P1 Lp Display inserts, overlays, and graphical user interfaces for multimedia systems
US10027500B2 (en) 2006-12-29 2018-07-17 Kip Prod Pi Lp System and method for providing network support services and premises gateway support infrastructure
US10069643B2 (en) 2006-12-29 2018-09-04 Kip Prod P1 Lp Display inserts, overlays, and graphical user interfaces for multimedia systems
US10071395B2 (en) 2006-12-29 2018-09-11 Kip Prod P1 Lp Display inserts, overlays, and graphical user interfaces for multimedia systems
US10097367B2 (en) 2006-12-29 2018-10-09 Kip Prod Pi Lp System and method for providing network support services and premises gateway support infrastructure
US10166572B2 (en) 2006-12-29 2019-01-01 Kip Prod P1 Lp Display inserts, overlays, and graphical user interfaces for multimedia systems
US10225096B2 (en) 2006-12-29 2019-03-05 Kip Prod Pi Lp System and method for providing network support services and premises gateway support infrastructure
US10263803B2 (en) 2006-12-29 2019-04-16 Kip Prod P1 Lp System and method for providing network support services and premises gateway support infrastructure
US8180735B2 (en) 2006-12-29 2012-05-15 Prodea Systems, Inc. Managed file backup and restore at remote storage locations through multi-services gateway at user premises
US10374821B2 (en) 2006-12-29 2019-08-06 Kip Prod P1 Lp System and method for providing network support services and premises gateway support infrastructure
US11943351B2 (en) 2006-12-29 2024-03-26 Kip Prod P1 Lp Multi-services application gateway and system employing the same
US11876637B2 (en) 2006-12-29 2024-01-16 Kip Prod P1 Lp System and method for providing network support services and premises gateway support infrastructure
US11792035B2 (en) 2006-12-29 2023-10-17 Kip Prod P1 Lp System and method for providing network support services and premises gateway support infrastructure
US11783925B2 (en) 2006-12-29 2023-10-10 Kip Prod P1 Lp Multi-services application gateway and system employing the same
US10403394B2 (en) 2006-12-29 2019-09-03 Kip Prod P1 Lp Multi-services application gateway and system employing the same
US10530598B2 (en) 2006-12-29 2020-01-07 Kip Prod P1 Lp Voice control of endpoint devices through a multi-services gateway device at the user premises
US10897373B2 (en) 2006-12-29 2021-01-19 Kip Prod P1 Lp System and method for providing network support services and premises gateway support infrastructure
US8205240B2 (en) 2006-12-29 2012-06-19 Prodea Systems, Inc Activation, initialization, authentication, and authorization for a multi-services gateway device at user premises
US10361877B2 (en) 2006-12-29 2019-07-23 Kip Prod P1 Lp System and method for providing network support services and premises gateway support infrastructure
US10673645B2 (en) 2006-12-29 2020-06-02 Kip Prod Pi Lp Systems and method for providing network support services and premises gateway support infrastructure
US10672508B2 (en) 2006-12-29 2020-06-02 Kip Prod P1 Lp Multi-services application gateway and system employing the same
US10728051B2 (en) 2006-12-29 2020-07-28 Kip Prod Pi Lp System and method for providing network support services and premises gateway support infrastructure
US10785050B2 (en) 2006-12-29 2020-09-22 Kip Prod P1 Lp Multi-services gateway device at user premises
US10812283B2 (en) 2006-12-29 2020-10-20 Kip Prod P1 Lp System and method for providing network support services and premises gateway support infrastructure
US10530600B2 (en) 2006-12-29 2020-01-07 Kip Prod P1 Lp Systems and method for providing network support services and premises gateway support infrastructure
US11032097B2 (en) 2006-12-29 2021-06-08 Kip Prod P1 Lp System and method for providing network support services and premises gateway support infrastructure
US11057237B2 (en) 2006-12-29 2021-07-06 Kip Prod Pi Lp System and method for providing network support services and premises gateway support infrastructure
US11102025B2 (en) 2006-12-29 2021-08-24 Kip Prod P1 Lp System and method for providing network support services and premises gateway support infrastructure
US11164664B2 (en) 2006-12-29 2021-11-02 Kip Prod P1 Lp Multi-services application gateway and system employing the same
US11173517B2 (en) 2006-12-29 2021-11-16 Kip Prod P1 Lp Display inserts, overlays, and graphical user interfaces for multimedia systems
US11183282B2 (en) 2006-12-29 2021-11-23 Kip Prod Pi Lp Multi-services application gateway and system employing the same
US11184188B2 (en) 2006-12-29 2021-11-23 Kip Prod Pi Lp System and method for providing network support services and premises gateway support infrastructure
US11750412B2 (en) 2006-12-29 2023-09-05 Kip Prod P1 Lp System and method for providing network support services and premises gateway support infrastructure
US11316688B2 (en) 2006-12-29 2022-04-26 Kip Prod P1 Lp Multi-services application gateway and system employing the same
US11323281B2 (en) 2006-12-29 2022-05-03 Kip Prod P1 Lp System and method for providing network support services and premises gateway support infrastructure
US11329840B2 (en) 2006-12-29 2022-05-10 Kip Prod P1 Lp Voice control of endpoint devices through a multi-services gateway device at the user premises
US11362851B2 (en) 2006-12-29 2022-06-14 Kip Prod Pi Lp System and method for providing network support services and premises gateway support infrastructure
US11363318B2 (en) 2006-12-29 2022-06-14 Kip Prod Pi Lp Display inserts, overlays, and graphical user interfaces for multimedia systems
US11381414B2 (en) 2006-12-29 2022-07-05 Kip Prod P1 Lp System and method for providing network support services and premises gateway support infrastructure
US11457259B2 (en) 2006-12-29 2022-09-27 Kip Prod P1 Lp Display inserts, overlays, and graphical user interfaces for multimedia systems
US11489689B2 (en) 2006-12-29 2022-11-01 Kip Prod Pi Lp System and method for providing network support services and premises gateway support infrastructure
US11527311B2 (en) 2006-12-29 2022-12-13 Kip Prod P1 Lp Multi-services application gateway and system employing the same
US11533190B2 (en) 2006-12-29 2022-12-20 Kip Prod P1 Lp System and method for providing network support services and premises gateway support infrastructure
US11582057B2 (en) 2006-12-29 2023-02-14 Kip Prod Pi Lp Multi-services gateway device at user premises
US11588658B2 (en) 2006-12-29 2023-02-21 Kip Prod P1 Lp System and method for providing network support services and premises gateway support infrastructure
US11695585B2 (en) 2006-12-29 2023-07-04 Kip Prod P1 Lp System and method for providing network support services and premises gateway support infrastructure
US8649386B2 (en) 2007-09-11 2014-02-11 Prodea Systems, Inc Multi-interface wireless adapter and network bridge
US8422397B2 (en) 2007-12-28 2013-04-16 Prodea Systems, Inc. Method and apparatus for rapid session routing
US10390099B2 (en) 2015-10-21 2019-08-20 At&T Intellectual Property I, L.P. System and method for coordinating back-up services for land based content subscribers
US10051338B2 (en) 2015-10-21 2018-08-14 At&T Intellectual Property I, L.P. System and method for coordinating back-up services for land based content subscribers
US11743141B2 (en) 2019-04-03 2023-08-29 Cisco Technology, Inc. On-path dynamic policy enforcement and endpoint-aware policy enforcement for endpoints
US11201800B2 (en) * 2019-04-03 2021-12-14 Cisco Technology, Inc. On-path dynamic policy enforcement and endpoint-aware policy enforcement for endpoints

Also Published As

Publication number Publication date
WO2008083384A3 (en) 2008-10-09
WO2008083387A3 (en) 2008-12-18
WO2008083385A1 (en) 2008-07-10
WO2008083387A2 (en) 2008-07-10

Similar Documents

Publication Publication Date Title
US7987490B2 (en) System and method to acquire, aggregate, manage, and distribute media
WO2008083384A2 (en) System and method to acquire, aggregate, manage, and distribute media
US11457259B2 (en) Display inserts, overlays, and graphical user interfaces for multimedia systems
US20230057851A1 (en) Display inserts, overlays, and graphical user interfaces for multimedia systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07870145

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07870145

Country of ref document: EP

Kind code of ref document: A2