WO2008069105A1 - Radio transmission device, radio reception device, radio transmission method, and radio reception method - Google Patents

Radio transmission device, radio reception device, radio transmission method, and radio reception method Download PDF

Info

Publication number
WO2008069105A1
WO2008069105A1 PCT/JP2007/073101 JP2007073101W WO2008069105A1 WO 2008069105 A1 WO2008069105 A1 WO 2008069105A1 JP 2007073101 W JP2007073101 W JP 2007073101W WO 2008069105 A1 WO2008069105 A1 WO 2008069105A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
channel estimation
interpolation
signal
unit
Prior art date
Application number
PCT/JP2007/073101
Other languages
French (fr)
Japanese (ja)
Inventor
Takaaki Kishigami
Hidenori Kayama
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2007307757A external-priority patent/JP5159274B2/en
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to CN200780029495.9A priority Critical patent/CN101502029B/en
Priority to US12/377,362 priority patent/US8300725B2/en
Publication of WO2008069105A1 publication Critical patent/WO2008069105A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • H04L25/023Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols
    • H04L25/0232Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols by interpolation between sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • the present invention relates to a wireless transmission device, a wireless reception device, a wireless transmission method, and a wireless reception method.
  • the present invention relates to a radio transmission apparatus, radio reception apparatus, radio transmission method, and radio reception method that transmit and receive signals during spatial multiplexing transmission using a multicarrier modulation scheme, and in particular, channel estimation technology and channel compensation.
  • the present invention relates to a wireless transmission device, a wireless reception device, a wireless transmission method, and a wireless reception method using technology.
  • this antenna When this antenna is used, a signal arriving from a desired direction is strongly received by adjusting the amplitude and phase by a weighting coefficient to be multiplied to the received signal (hereinafter, this weighting coefficient is referred to as "weight"). be able to. Then, interference component signals such as multipath interference and co-channel interference can be suppressed. Such interference suppression effect can improve the communication capacity of the communication system.
  • spatial multiplexing technology that transmits different data sequences to the same terminal device using physical channels of the same time, the same frequency, and the same code.
  • there are the following methods using such a spatial multiplexing technique for example, Non-Patent Document 1). That is, both the transmitter and the receiver are equipped with multiple antennas.
  • spatial multiplexing transmission can be realized in a propagation environment where the correlation of received signals between antennas is low.
  • the S / N ratio (signal-to-noise ratio) is sufficiently high and a large number of scatterers between the transceivers.
  • the communication capacity can be expanded in proportion to the number of antennas.
  • a spatial multiplexing transmission system a multicarrier modulation system using orthogonal frequency division multiplexing (OFDM) is often used.
  • OFDM orthogonal frequency division multiplexing
  • the signal received by the receiver antenna is frequency-converted into a baseband signal. Then, OFDM demodulation processing is performed.
  • the multicarrier modulation scheme is a transmission scheme using a plurality of subcarriers.
  • the input data signal to each subcarrier is modulated by M-QQAM modulation or the like to become a subcarrier signal.
  • M-QQAM modulation or the like to become a subcarrier signal.
  • the frequency of each subcarrier is orthogonal, and subcarrier signals with different frequencies are converted at once using a fast Fourier transform (FFT) circuit.
  • FFT fast Fourier transform
  • Non-patent document 2 describes OFDM modulation and OFDM demodulation.
  • a channel estimation value has been obtained by a two-stage channel estimation process (for example, Patent Document 1). Specifically, first, a received signal corresponding to a reference signal for channel estimation is divided for each subset of transmitting antennas. As the first stage of channel estimation, the first stage of channel estimation is performed based on the reference sequence. Thus, provisional estimation of the channel response in the first dimension (eg, subcarrier direction) is calculated using interpolation processing for each subset of transmitting antennas. [0012] Next, as the second-stage channel estimation, channel estimation in different dimension directions (for example, time direction) is performed for each antenna using a temporary estimation value interpolated in a one-dimensional direction.
  • first dimension eg, subcarrier direction
  • the channel estimation value of the data portion existing between the reference signal and the temporary estimation value is obtained using inner interpolation, and the channel estimation values of the other data portions are obtained uniformly using outer interpolation.
  • the power to obtain the channel estimation directly becomes S Kurakura.
  • Patent Document 1 Japanese Translation of Special Publication 2006—515481
  • Patent 1 G.J.roschini, Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas, "Bell Labs Tech. J., pp.41-59, Autumn 1996
  • Non-Patent Document 2 Tomohiro Oo, Kenji Ueda "OFDM system technology and MATLAB simulation commentary, ... Trikes, 2002
  • a channel estimation value obtained by outer interpolation is less accurate than a channel estimation value obtained by inner interpolation. For this reason, in the channel estimation method described in Patent Document 1, since the channel estimation value by the outer interpolation is uniformly applied, the accuracy of channel estimation is reduced and the reception quality is reduced.
  • An object of the present invention is to provide a wireless transmission device, a wireless reception device, a wireless transmission method, and a wireless reception method that can improve the accuracy of channel estimation and improve reception quality.
  • the radio reception apparatus of the present invention receives a data sequence to which a reference signal for channel estimation of a spatial propagation path is added at a predetermined interval, and the reception unit A channel that estimates a channel fluctuation state based on the reference signal in the received data sequence and outputs a channel estimation value obtained by interpolation or outer interpolation for the data sequence based on the fluctuation state Using the estimation unit and the channel estimation value of the inner or outer interpolation or the deviation of the channel estimation, the data series And a demodulation / decoding processing unit for performing the demodulation / decoding process.
  • the wireless transmission device of the present invention is a wireless transmission device that uses a transmission format in which a subframe includes a plurality of OFDM symbol powers, and has a spatial propagation path.
  • a generating unit that generates a reference signal for channel estimation, an allocating unit that allocates a data signal to subcarriers of an OFDM symbol, and a transmission power of the reference signal that is greater than a transmission power of the data signal.
  • a power adjustment unit that adjusts transmission power of a reference signal and the reference signal whose transmission power is adjusted by the power adjustment unit are arranged at a predetermined interval in the frequency axis direction of the subcarrier of the OFDM symbol, or Assigned to the reference signal multiplexing unit and OFDM symbol subcarriers arranged at predetermined intervals in the time axis direction. It said data signal and subjected to OFDM modulation to the reference signal, employs a configuration that includes a transmitter for transmitting the OFDM modulation signal obtained, the.
  • the wireless reception method of the present invention includes a step of receiving a data sequence to which reference signals for channel estimation of a spatial propagation path are added at a predetermined interval; Demodulating the data sequence; estimating a fluctuation state of a propagation path based on the reference signal in the demodulated data series; and based on the fluctuation situation, internal interpolation or external interpolation for the data series Outputting a channel estimation value obtained by the above-mentioned method, and performing a demodulation decoding process of the data sequence using the channel estimation value of the inner / outer interpolation or the difference between the inner / outer interpolations. It was.
  • a radio transmission method of the present invention is a radio transmission method using a transmission format in which a subframe includes a plurality of OFDM symbol powers, and includes a spatial propagation path. Generating a reference signal for channel estimation, assigning a data signal to subcarriers of an OFDM symbol, and transmitting the reference signal so that a transmission power of the reference signal is larger than a transmission power of the data signal.
  • the step of adjusting transmission power and the reference signal whose transmission power has been adjusted by the power adjustment unit are arranged at predetermined intervals in the frequency axis direction of subcarriers of OFDM symbols, or predetermined in the time axis direction Steps that are spaced apart And a step of performing OFDM modulation on the data signal and the reference signal assigned to subcarriers of the OFDM symbol and transmitting the obtained OFDM modulated signal.
  • a data sequence is decoded using a channel estimation value obtained by inner interpolation or outer interpolation based on the propagation state of the propagation path. This improves the accuracy of channel estimation and improves the reception quality.
  • FIG. 1 is a diagram showing a configuration example of a radio transmission apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram showing an example of a frame structure of a multiplexed signal of a reference signal multiplexing unit
  • FIG. 3 is a diagram illustrating a configuration example of a wireless transmission device in the first embodiment
  • FIG. 4A is a diagram showing a simulation result in the first embodiment.
  • FIG. 4B shows another simulation result in the first embodiment.
  • FIG. 5 is a diagram illustrating another configuration example of the wireless transmission device according to the first embodiment.
  • FIG. 6 is a diagram showing another frame configuration of the multiplexed signal of the reference signal multiplexing unit.
  • FIG. 7 is a diagram illustrating another configuration example of the wireless reception device in the first embodiment
  • FIG. 8 is a diagram showing a configuration example of a channel estimation unit of a wireless reception device in Embodiment 2 of the present invention
  • FIG. 9 shows a frame structure of a multiplexed signal in Embodiment 3 of the present invention.
  • FIG. 10 is a diagram illustrating a configuration example of a wireless reception device in a third embodiment
  • FIG. 11 is a diagram illustrating a configuration example of a wireless transmission device according to a fourth embodiment of the present invention.
  • FIG. 12 is a diagram illustrating a configuration example of a wireless reception device in a fourth embodiment
  • FIG. 13 is a diagram illustrating an example of transmission power when the reference signal transmission power is increased by method (1) in the fourth embodiment.
  • FIG. 14 is a diagram showing another example of transmission power when the reference signal transmission power is increased by method (1) in the fourth embodiment.
  • FIG. 15 is a diagram illustrating an example of transmission power when reference signal transmission power is increased by method (2) in the fourth embodiment.
  • FIG. 16 is a diagram showing another example of transmission power when the reference signal transmission power is increased by method (2) in the fourth embodiment.
  • FIG. 17 is a diagram showing another frame configuration of the multiplexed signal of the reference signal multiplexing unit
  • FIG. 18 is a diagram illustrating a configuration example of a wireless transmission device according to method (2) in the fourth embodiment.
  • FIG. 19 is a diagram illustrating a configuration example of a wireless reception device according to method (2) in the fourth embodiment.
  • FIG. 20 is a diagram illustrating a configuration example of a wireless transmission device according to the fifth embodiment of the present invention.
  • FIG. 21 is a diagram illustrating a configuration example of a wireless reception device in a fifth embodiment
  • FIG. 1 is a diagram showing a configuration example of a wireless transmission device (wireless communication device) 100 according to Embodiment 1 of the present invention.
  • radio transmission apparatus 100 will be described as adopting, for example, an OFDM multi-carrier transmission scheme.
  • a wireless transmission device 100 includes a reference signal generation unit 101, reference signal multiplexing units 102 and 103, OFDM modulation units 104 and 105, transmission units 106 and 107, and transmission antennas 108 and 109.
  • the force transmitting antenna described in the case of two transmitting antennas may be changed to one or three or more.
  • Reference signal generation section 101 generates a reference signal composed of a predetermined sequence signal known to the receiving side, and outputs the reference signal to reference signal multiplexing sections 102 and 103.
  • the reference signal is for channel estimation.
  • Reference signal multiplexing section 102 receives data signal dl and the reference signal, and multiplexes the reference signal.
  • Each data signal dl, d2 includes a predetermined notification signal, control signal data, and the like.
  • the multiplexing method is not limited to, for example, the power of using FDM (Frequency Division Multiplexing).
  • FDM Frequency Division Multiplexing
  • TDM Time Division Multiplexing
  • CDM Code Division Multiplexing
  • FIG. 1 An example of an output signal (data system IJ) of reference signal multiplexing section 102 is shown in FIG. Note that the reference signal multiplexing unit 103 also multiplexes in the same manner as the reference signal multiplexing unit 102.
  • the output signal in FIG. 2, that is, the multiplexed signal dlOO is composed of frames including a plurality (Ns) of subframes.
  • One subframe includes Nf OFDM symbols.
  • the subframe is composed of a data signal portion including a reference signal and other control signals.
  • the reference signal is inserted (intermittently) at predetermined intervals in the subcarrier direction (frequency direction) and the time direction (OFDM symbol direction), respectively.
  • One OF DM symbol includes a plurality (Nc) of subcarriers.
  • the insertion position of the reference signal differs depending on each transmission antenna to be transmitted. For example, if a reference signal is inserted in a transmission signal from another transmission antenna, it is set as a null carrier that does not perform transmission using that subcarrier. As a result, during spatial multiplexing, reference signals from different antennas are transmitted using different subcarriers, so that they are frequency division multiplexed (FDM) and can be separately received during reception.
  • FDM frequency division multiplexed
  • each of the OFDM modulation sections 104 and 105 receives the output signal of the reference signal multiplexing section, that is, the multiplexed signal, and performs OFDM modulation. Specifically, each of the OFDM modulation sections 104 and 105 performs IFFT (Inverse Fast Fourier Transform) processing for converting a subcarrier signal into a time domain signal. Then, each OFDM modulation section 104, 105 outputs a time domain signal with a guard interval (GI: Guard Interval) added for multipath countermeasures.
  • GI Guard Interval
  • Each transmission unit 106, 107 performs band limitation processing on the output signal from each corresponding OFDM modulation unit 104, 105 using a band limitation filter (not shown). Then, each transmitting section 106 and 107 frequency-converts the band-limited signal to a predetermined carrier frequency. Further, each of the transmission units 106 and 107 amplifies and outputs the frequency-converted signal using an amplifier (not shown).
  • Each transmitting antenna 108, 109 is a data system that is the output of each corresponding transmitting unit 106, 107. Radiate the column into the air. As a result, radio receiving apparatus 200 receives the data series.
  • FIG. 3 is a diagram showing a configuration example of the wireless reception device (wireless communication device) 200 according to Embodiment 1 of the present invention.
  • radio receiving apparatus 200 employs, for example, an OFDM multi-carrier transmission scheme.
  • radio receiving apparatus 200 includes receiving antennas 201 and 202, receiving units 203 and 204, and OFDM demodulating units 205 and 206. Radio receiving apparatus 200 further includes a reference signal extraction unit 207, a channel estimation unit 208, a signal separation unit 209, and a decoding processing unit (demodulation decoding processing unit) 210.
  • Each receiving antenna 201, 202 receives a high-frequency signal in a desired carrier frequency band.
  • Each receiving unit 203, 204 performs amplification processing, band limiting processing, and frequency conversion processing on each high frequency signal received by each receiving antenna 201, 202.
  • Each of the receiving antennas 201 and 202 outputs a complex baseband signal including an in-phase signal and a quadrature phase signal to each of the OFDM demodulating units 205 and 206.
  • Each OFDM demodulator 205, 206 performs time and frequency synchronization processing, GI (guided interpolation) removal processing, FFT processing, and serial / parallel conversion processing for each input baseband signal. . Specifically, each OFDM demodulation section 205, 206 performs OFDM demodulation on the baseband signal. Then, each OFDM demodulation section 205, 206 outputs a symbol data sequence for each of Nc subcarriers.
  • GI guided interpolation
  • Y (k, fs) when expressed, it means the following symbol data series. That is, the symbol data sequence of the fsth subcarrier at the time of receiving the kth OFDM symbol in the subframe.
  • Y (k, fs) represents a column vector including, as elements, signals received by Nr receiving antennas. That is, the signal y (k, fs) output from the OFD M demodulator that receives the signal received by the mth receiving antenna is used as the mth element.
  • transmission sequence X (k, fs) of the fs subcarrier is an element.
  • X (k, fs) [x (k, fs),..., X (k, fs)] T
  • the superscript T represents a vector transposition operator.
  • x n (k, fs) represents the transmission sequence of the fs subcarrier in the kth OFDM symbol in the subframe transmitted from each transmission antenna.
  • the subcarrier unit is flat. It can be treated as a fading propagation environment. In such a case, frequency synchronization can be ideally performed by the wireless receiver.
  • GI guard interval
  • H (k, fs) is a channel response matrix indicating a propagation path variation received by a data sequence (transmission sequence) X (k, fs) transmitted by radio transmitting apparatus 100.
  • H (k, fs) is a matrix (hereinafter referred to as a channel matrix) composed of (number of reception antennas Nr of radio reception apparatus 200) ⁇ X (number of transmission antennas Nt of radio transmission apparatus 100) ⁇ IJ.
  • the matrix element h of i rows and j columns of H (k, fs) represents the propagation path variation when the signal X (k, fs) is received by the i-th receiving antenna of the wireless receiver. .
  • X (k, fs) represents a signal transmitted from the j-th transmission antenna of the wireless transmission device.
  • n (k, fs) represents an Nt-order noise component vector.
  • n (k, fs) a vector whose elements are noise components added when received by Nr receive antennas of the wireless receiver.
  • Reference signal extraction section 207 extracts an OFDM symbol including a reference signal from a framed signal in a subframe. In addition, reference signal extraction Unit 207 extracts a subcarrier including a reference signal from the extracted OFDM symbol.
  • the reference signal transmitted from the m-th transmission antenna in the j-th OFDM symbol is represented as g (j, G (s)).
  • g (j, G (s) the reference signal transmitted from the m-th transmission antenna in the j-th OFDM symbol.
  • the reception result at the n-th receiving antenna for m jm m jm ⁇ ) is expressed as y (j, G (s)).
  • G (s) represents the sth subcarrier number of the reference signal transmitted from the mth transmission antenna in the jth OFDM symbol.
  • s is a natural number of Ng (j, m) or less.
  • Channel estimation section 208 estimates the propagation state of the propagation path based on the reference signal in the demodulated (received) data sequence, and based on the variation state, internal interpolation or external interpolation for the data sequence is performed. The channel estimation value obtained by interpolation is output.
  • channel estimation section 208 includes channel fluctuation status detection section 2081, frequency direction interpolation section 2082, inner side interpolation unit 2083, outer side interpolation unit 2084, and output replacement unit (estimated value output unit) 2085.
  • the frequency direction interpolation unit 2082 uses the reference signal extracted by the reference signal extraction unit 207 to calculate the estimation ⁇ IH (k, fs) of the channel matrix H (k, fs) shown in Equation (1). Calculate
  • the reference signal is intermittently inserted in the subcarrier direction (frequency direction) and the time direction (see FIG. 2). For this reason, interpolation processing in the subcarrier direction is used for subcarriers for which no reference signal is inserted.
  • the OFDM symbol in which the preceding and following reference signals are inserted is used in the time direction (OFDM symbol direction). ) Is used to calculate channel estimates for all subcarriers and OFDM symbols.
  • frequency direction interpolation section 2082 calculates channel estimation value h (j, G (s)) for the subcarrier in which the reference signal is transmitted, in the OFDM symbol including the reference signal. This calculation formula is shown in Formula (2). [0058] [Equation 2]
  • Equation (2) n represents a natural number equal to or less than Nr, m represents a natural number equal to or less than Nt, and j represents a symbol number of an OFDM symbol including a reference signal.
  • G (s) represents the sth subcarrier number of the reference signal transmitted from the mth transmission antenna to the jth OFDM symbol! /.
  • s is a natural number of Ng (j m) or less.
  • the frequency direction interpolation unit 2082 calculates the reference signal nm jm based on h (j G (s)) in the equation (2).
  • Channel estimation values are interpolated in the frequency direction for subcarriers that do not contain a signal. Note that, as described in Patent Document 1, interpolation processing of frequency direction channel estimation values is performed in the frequency domain or the time domain.
  • Inner eye interpolation unit 2083 estimates the first channel estimation value by inner eye interpolation. Specifically, the inner interpolation unit 2083 uses the OFDM symbol channel estimation values h (j fs) and h (j fs) for the k th OFDM symbol that does not include the reference signal. nm 2
  • the inner interpolation interval means, for example, the 2nd power and the j-1st OFDM symbol interval.
  • Outer interpolation unit 2084 estimates the second channel estimation value by outer interpolation. Specifically, the outer interpolation unit 2084 is not sandwiched between OFDM symbols including a reference signal and does not include a reference signal in a subframe.
  • the channel estimation value (second channel estimation nm 3) is calculated by external interpolation using the channel estimation value h (j fs) of the OFDM symbol including the reference signal before it in the time axis direction.
  • the outer interpolation interval means, for example, the j + 1st and subsequent OFDM symbol intervals.
  • the line fluctuation state detection unit 2081 detects the fluctuation state D (j, j,) of the propagation path. This nm 2 1
  • Equation (3) and Equation (4) the asterisk (*) represents the complex conjugate operator, and Re [X] represents the real part of X, respectively. Also, j ⁇ ].
  • the fluctuation state D (j, j, fs) may be detected for each subcarrier, or a plurality of nm 2 1
  • this detection may be performed using a part of subcarriers other than all subcarriers, or subcarriers may be grouped and an average value for each group may be performed as a representative value.
  • subcarriers can be grouped, and the grouped subcarriers near the center can be detected as representative values of the group.
  • the output replacement unit 2085 performs nm 2 1 for internal interpolation based on the fluctuation state D (j, j, fs) of the propagation path.
  • output substitution section 2085 outputs the calculation result (channel estimation value) in frequency direction interpolation section 2082 in the case of an OFDM symbol including a reference signal.
  • the output replacement unit 2085 Regardless of the fluctuation state in the line fluctuation state detection unit 2081, the calculation result channel estimation value in the inner frame interpolation unit 2083 is output as it is.
  • Output substitution unit 2085 is based on the detection result of line fluctuation status detection unit 2081, that is, fluctuation status D (j, j, fs). Perform the following channel estimation value replacement process:
  • the fluctuation state D (j, j, fs) has a predetermined value Ld (predetermined 1 nm 2 1
  • h (k, fs) is the maximum nm nm 2 where j is k
  • a natural number of ⁇ uses a value in the vicinity thereof.
  • the output replacement unit 2085 transmits the nm 2 1
  • Signal demultiplexing section 209 performs demultiplexing and reception processing of the spatially multiplexed signal using the channel estimation value that is the output of channel estimation section 208 (inner interpolation section or outer interpolation section). This separation reception process adopts the method described in Non-Patent Document 1.
  • the signal separation unit 209 uses the channel estimation value H (for each subcarrier obtained by the channel estimation unit 208 (
  • Equation (5) For e k, fs, an inverse matrix is calculated, and the transmission symbol sequence X (k, fs) is received separately.
  • the formula for calculating the inverse matrix is shown in Equation (5).
  • the signal separation method based on the ZF method has been described, but the present invention is not limited to the ZF method, and a method such as MMSE (mean square error minimization) or MLD (Maximum likelihood Detection) is applied. May be.
  • Decoding processing section 210 performs decoding processing of a data sequence using the channel estimation value of V or shift of inner interpolation or outer interpolation output from output replacement section 2085. [0081] Specifically, decoding processing section 210 performs a transmission bit sequence on the output signal of signal separation section 209 based on the encoded modulation information of the transmission signal included in the transmitted subframe (control signal). Receive processing to restore. In this reception process, the decoding processing unit 210 performs a de-mapping process, a dingter bar process, a correction decoding process, and the like. The demapping process is a process of converting a symbol data string by a predetermined modulation method into a bit data string.
  • the dingter processing is processing for restoring the bit order by performing an operation reverse to the interleaving performed in the wireless transmission device 100, for example.
  • the correction decoding process is a process for performing error correction decoding on an input bit data string.
  • a data sequence (multiplexed signal) to which a reference signal is added at a predetermined interval is received by a plurality of receiving antennas 201 and 202, and the data sequence is received.
  • the OFDM demodulation sections 205 and 206 are demodulated by the OFDM demodulation sections 205 and 206.
  • the channel estimator 208 Based on the reference signal in the data sequence demodulated (received) by the channel estimator 208, the channel fluctuation state D (j, j, fs) is estimated based on the reference signal in the demodulated (received) data sequence.
  • the data nm 2 1 nm 2 1 Based on situation D (j, j, fs), the data nm 2 1 nm 2 1
  • a channel estimation value obtained by inner interpolation or outer interpolation for the sequence is output. Further, decoding processing section 210 performs iterative decoding processing of the data sequence using either channel estimation values of inner-side interpolation or outer-side interpolation.
  • the channel fluctuation status detection unit 2081 detects the fluctuation status of the propagation path (see formulas (3) and (4)).
  • the output replacement unit 2085 outputs an OFDM symbol (for example, j + 1 in FIG. 2) obtained by outer interpolation.
  • the channel estimation value of the subsequent symbols is replaced with the channel estimation value obtained by the interpolation of the OFDM symbol preceding the OFDM symbol (for example, the i 1st symbol in Fig. 2) and output.
  • the output replacement unit 2085 outputs the channel estimation by the outer interpolation without performing the channel estimation value replacement.
  • the channel estimation value obtained by outer interpolation in which the accuracy of channel estimation is deteriorated compared to inner interpolation, is not used as much as possible depending on the propagation state of the propagation path.
  • the channel estimation error is reduced, and as a result, the reception quality is improved.
  • CNR Carrier to Noise Ratio
  • PER Packet Error Rate
  • the simulation results are shown in FIG. Here, three types of patterns under the same simulation conditions are shown. That is, in the case of the ideal channel estimation method, in the case of the channel estimation method of the present invention, the case of the conventional channel estimation method (a method that uniformly uses channel estimation values by external interpolation) as a comparative example.
  • the channel estimation method of the present invention shows that the PER characteristic is improved and the reception characteristic is improved as compared with the case of the conventional channel estimation method.
  • FIG. 5 is a diagram illustrating a configuration example of the wireless transmission device 100A.
  • the wireless transmission device 100A in FIG. 5 has a reference signal generation unit 101, a reference signal multiplexing unit 102, an OFDM modulation unit 104, a transmission unit 106, and one transmission. Only antenna 108 is provided.
  • Reference signal generation section 101 generates a reference signal composed of a predetermined sequence signal and outputs the reference signal to reference signal multiplexing section 102. Then, the reference signal multiplexing unit 102 As in the first embodiment, the data signal dl and the reference signal are input, and the reference signal is multiplexed and output.
  • FIG. 6 An example of the multiplexed signal at this time is shown in FIG. Unlike the case of FIG. 2, the multiplexed signal dlOl in FIG. 6 has only the first reference signal inserted.
  • the first reference signal is
  • the configuration of other radio transmitting apparatus 100A is the same as that of radio transmitting apparatus 100 in FIG.
  • FIG. 7 is a diagram illustrating a configuration example of the wireless reception device 200A.
  • the force is S, and the receiving antenna may be changed to one or more than three! /.
  • Channel compensation section 211 uses the channel estimation value that is the output of channel estimation section 208 (output replacement section 2085) to compensate for channel fluctuations in the signal received by reception antenna 201.
  • the channel compensation unit 211 calculates the calculation formula shown in Equation (6) for the channel estimation value H (k, fs) for each subcarrier obtained by the channel estimation unit 208.
  • decoding processing section 210 performs reception processing for restoring the transmission bit sequence on the output signal of circuit compensation section 211.
  • the reception characteristics are further improved by the reception process.
  • channel estimation section 208 calculates the channel estimation value using the reception result of the OFDM symbol including the reference signal in the subframe. It is not limited to the method. For example, the channel estimation unit 208 indicates the reception result of the OFDM symbol including the reference signal that appears at the beginning of the next subframe. In addition, the channel estimation value may be calculated.
  • the channel estimation of the OFDM symbol existing between the channel estimation value calculated based on the reception result is calculated by interpolation. For this reason, channel estimation accuracy can be improved and reception quality can be improved.
  • line fluctuation state detection section 2081 detects the fluctuation state of the channel estimation value in the time axis direction.
  • the output replacement unit 2085 replaces the channel estimation value of the OFD M symbol calculated by the channel estimation value obtained by the outer interpolation with the channel estimation value obtained by the inner interpolation.
  • the channel estimation value used for detecting the fluctuation state may be applied to the frequency direction not in the time axis direction.
  • the line fluctuation state detection unit 2081 detects the fluctuation state of the channel estimation value in the frequency direction.
  • the output replacement unit 2085 obtains the OFDM symbol channel estimation value calculated by the channel estimation value obtained by frequency direction outer interpolation by frequency direction inner interpolation. Replace with channel estimate. With the above replacement method, it is possible to improve the accuracy of channel estimation in the frequency direction and improve the reception quality.
  • the channel estimation is calculated by separating it into a phase component and an amplitude component, thereby improving the accuracy of channel estimation. Therefore, the configuration of the channel estimation unit will be mainly described below.
  • FIG. 8 is a diagram illustrating a configuration example of the channel estimation unit 208A of the radio reception device according to Embodiment 2 of the present invention.
  • the channel estimation unit 208A in Fig. 8 uses the reference signal extracted by the reference signal extraction unit 207 to estimate the channel matrix H (k, fs) shown in Equation (1) ⁇ IH (k, fs) e
  • the reference signal in the present embodiment is intermittent in the frequency direction and the time direction. It is assumed that Therefore, first, channel estimation section 208A performs interpolation processing in the frequency direction for subcarriers into which no reference signal is inserted.
  • channel estimation section 208A performs an interpolation process in the time direction on the OFDM symbol in which the reference signal is not inserted, using the OFDM symbol in which the preceding and following reference signals are inserted. Then, channel estimation section 208A calculates OFDM symbol channel estimation values for all subcarriers.
  • the channel estimation unit 208A includes a frequency direction interpolation unit 2082, a phase component separation unit 2086, an amplitude component separation unit 2087, and a first inner interpolation unit (phase component time direction inner interpolation unit) 2088. And a first outer interpolation unit (phase component time direction outer interpolation unit) 2089.
  • the channel estimation unit 208A includes a second inner interpolation unit (amplitude component time direction inner interpolation unit) 2090, a second outer interpolation unit (amplitude component time direction outer interpolation unit) 2091, and an interpolation interpolation unit.
  • Frequency direction interpolation section 2082 uses channel estimation values h (j, G (s)) for the subcarriers to which the reference signal is transmitted for OFDM symbols including the reference signal.
  • Equation (2) Calculate nm jm. This calculation formula is as shown in Formula (2). Then, the frequency direction interpolation unit 2082 circulates the subcarriers that do not include the reference signal based on h (j, G (s)) in Equation (2).
  • Interpolation processing of channel estimation values in the wavenumber direction is performed (refer to the method described in Patent Document 1 for this interpolation processing).
  • n represents a natural number equal to or less than Nr
  • m represents a natural number equal to or less than Nt
  • j represents an OF DM symbol number including a reference signal.
  • G (s) represents the sth subcarrier number of the reference signal transmitted from the mth transmission antenna in the jth OFDM symbol.
  • s is a natural number of Ng (j, m) or less.
  • Phase component separation section 2086 separates the phase component of channel estimation obtained from the reference signal. Specifically, the phase component separation unit 2086 outputs the phase components ⁇ (j, fs), ⁇ (j of the channel estimation values h (j, fs), h (j, fs) of the OFDM symbol including the reference signal.
  • the amplitude component separation unit 2087 separates the amplitude component of the channel estimation obtained from the reference signal. Specifically, the amplitude component separation unit 2087 includes an OFDM including a reference signal. Symbol channel estimates h (j, fs), amplitude components of h (j, fs) I h (j, fs) I, I
  • the first internal interpolation unit 2088 calculates the phase components of the two channel estimation values h (j, fs) and h (j, fs) for the kth OFDM symbol not including the reference signal. ⁇ (j, fs)
  • the first outer interpolation unit 2089 includes the k-th OFDM symbol in the subframe.
  • the channel estimation straight h (j, fs) is
  • linear interpolation Lagrange interpolation, or the like can be applied to the outer interpolation.
  • the second inner interpolation unit 2090 calculates each amplitude component of two channel estimation values h (j, fs) and h (j, fs) for the kth OFDM symbol not including the reference signal. I h (j, fs
  • I h (j, fs) I is used to calculate the amplitude of the channel estimate h (k,) by internal interpolation.
  • the second outer interpolation unit 2091 includes the kth OFDM symbol in the subframe. For the channel estimation value h (j, fs) using the amplitude component I h (j, fs) I
  • the amplitude component I h (k,) I of the channel estimation value h (k, fs) is calculated according to the interval.
  • the kth OFDM symbol is sandwiched between OFDM symbols including a reference signal.
  • the channel estimate h (j, fs) is
  • Ne interpolation or the like can be applied.
  • the inner interpolation interpolation unit 2092 synthesizes a channel estimation value by inner interpolation based on the phase component and the amplitude component.
  • the inner interpolation interpolation unit 2092 outputs the phase component ⁇ (k, fs) of the channel estimation value h (k, fs), which is the output of the first inner interpolation unit 2088, and the first 2 internal interpolation unit 2090 output
  • Outer interpolation synthesis section 2093 synthesizes a channel estimation value by outer interpolation based on the phase component and the amplitude component.
  • the outer interpolation interpolation unit 2093 outputs the phase component ⁇ (k, fs) of the channel estimation value h (k, fs) that is the output of the first outer interpolation unit 2089, and the first 2 Outer interpolation unit 2091 output
  • the output replacement unit 2085 outputs the channel estimation value based on the inner interpolation or the channel estimation value based on the outer interpolation based on the propagation state of the propagation path.
  • the output replacement unit 2085 outputs the channel estimation value h (k,) that is the output of the inner interpolation interpolation synthesis unit 2092 and the channel estimation value h (nm that is the output of the outer interpolation interpolation synthesis unit 2093. nm k, fs). Then, output substitution section 2085 outputs the final channel estimation value by the same method as in the first embodiment. [0133] For example, in the case of an OFDM symbol including a reference signal, the output replacement unit 2085 outputs the calculation result channel estimation value) in the frequency direction interpolation unit 2082.
  • the output replacement unit 2085 Regardless of the situation, the inner channel interpolation unit 2083 outputs the calculation result channel estimation value) as it is.
  • the configuration of the channel estimation unit including the other channel fluctuation state detection unit 2081 is the same as that of the first embodiment in FIG.
  • channel estimation is calculated separately for phase components and amplitude components, the accuracy of channel estimation is further improved.
  • Embodiment 3 is a case where a frame different from the multiplexed signal of Embodiment 1 in FIG. 2 is used.
  • FIG. 9 is a diagram showing a frame structure of a multiplexed signal in the third embodiment.
  • the multiplexed signal dl02 (l frame) shown in Fig. 9 includes a plurality (Ns) of subframes.
  • One subframe includes Nf OFDM symbols.
  • the subframe is composed of a data signal portion including a reference signal and other control signals.
  • the reference signals are all inserted in the frequency direction of one OFDM symbol and inserted intermittently in the time direction.
  • One OFDM symbol includes a plurality of Nc subcarriers.
  • the subcarrier insertion positions of reference signals of transmission signals transmitted from different transmission antennas are shifted for each transmission antenna.
  • the insertion position of the reference signal differs depending on each transmission antenna to be transmitted. For example, if a reference signal is inserted in a transmission signal from another transmission antenna, it is set as a null carrier that does not perform transmission using that subcarrier.
  • reference signals from different antennas are transmitted using different subcarriers, so that they are frequency division multiplexed (FDM) and received separately when received. That power s.
  • FDM frequency division multiplexed
  • FIG. 10 is a diagram illustrating a configuration example of radio receiving apparatus 200B in the third embodiment.
  • Radio reception apparatus 200B in FIG. 10 has provisional estimated value calculation section (temporary estimated value calculation section) 2094 instead of frequency direction interpolation section 2082 in FIG.
  • Other configurations are the same as those in the first embodiment.
  • Temporary estimation value calculation section 2094 calculates channel estimation value h (j G (s)) for the subcarrier on which the reference signal is transmitted, for the OFDM symbol including the reference signal.
  • nm jm Calculate nm jm. This calculation formula is as shown in Formula (2). Then, the temporary estimated value calculation unit 2094 calculates the frequency direction nm jm for subcarriers not including the reference signal based on h (j G (s)).
  • the channel estimation value is interpolated (see the method described in Patent Document 1 for this interpolation processing)
  • temporary estimated value calculation section 2094 outputs the result of the interpolation processing to inner eye interpolation section 2083 and outer eye interpolation section 2084.
  • Inner side interpolation unit 2083 and outer side interpolation unit 2084 each perform the same processing as in Embodiment 1 using the result of the interpolation processing in temporary estimated value calculation unit 2094.
  • the ratio of the reference signal in the subframe is increased, so that the data transmission efficiency is reduced, but the following effects are obtained.
  • the channel estimation value is calculated without performing interpolation processing in the frequency direction for the OFDM symbol including the reference signal. For this reason, the accuracy of channel estimation is improved.
  • Embodiment 4 is for a case where a reference signal having a transmission power larger than that of a data signal section is transmitted in a radio transmission apparatus.
  • FIG. 11 is a diagram illustrating a configuration example of a wireless transmission device 100B in the fourth embodiment.
  • Radio transmitting apparatus 100B in FIG. 11 further includes power control section 112 and two multiplying sections 110 111 in radio transmitting apparatus 100 in Embodiment 1 in FIG.
  • the configuration of other radio transmission apparatuses is the same as that of the radio transmission apparatus in the first embodiment. Therefore, the following description will focus on the differences from the first embodiment.
  • the power control section 112 outputs a weighting factor for changing the transmission power of the reference signal included in the OFDM symbol to each of the multiplication sections 110, 111.
  • Each multiplier 1 10, 1 1 1 multiplies the weighting factor that is the output of the power controller 1 12 by the reference signal that is the output of the reference signal generator 101, and each corresponding reference signal. It outputs to the number multiplexing part 102,103. Thereafter, each reference signal multiplexing section 102, 103 multiplexes the reference signal based on the output of each multiplication section 1 10, 1 1 1 1, as in the case of Embodiment 1, and each OFDM modulation section 104, Output to 105.
  • each reference signal multiplexing section 102, 103 when multiplexing a reference signal, includes power information including a weighting factor (eg, / 3) and the position of the reference signal (OFDM symbol position). Is inserted into the control information.
  • the weighting factor is a factor (for example, / 3 times, 1) such that the transmission power of the reference signal is larger than that of the data signal part (the last OFDM symbol including the reference signal in a certain subframe). ⁇ ). This increases the possibility of receiving the reference signal in the wireless reception device.
  • FIG. 12 is a diagram illustrating a configuration example of radio receiving apparatus 200C in the fourth embodiment.
  • Radio reception apparatus 200C in FIG. 12 further includes power information extraction section 212 in radio reception apparatus 200 in Embodiment 1 in FIG.
  • Other configurations of the radio receiving apparatus are the same as those of the radio receiving apparatus in the first embodiment. Therefore, the following description will focus on the parts different from the first embodiment.
  • the power information extraction unit 212 extracts the power information from the control information added to the data sequence transmitted from the wireless transmission device 100B (respective transmission antennas 108 and 109) in FIG. Note that the power information includes a weighting coefficient (for example, / 3) and the position of the reference signal.
  • Frequency direction interpolation section 2082 uses the reference information for the OFDM symbol including the reference signal based on the power information (weight coefficient (/ 3), position of reference signal) obtained from power information extraction section 212.
  • Channel estimation for the subcarrier on which is transmitted Calculate the value h (j, G (s)). This calculation formula is shown in Formula (7).
  • n represents a natural number of Nr or less
  • m represents a natural number of Nt or less
  • j represents an OFDM symbol number including a reference signal.
  • G (s) represents the sth subcarrier number of the reference signal transmitted from the mth transmission antenna for the jth OFDM symbol.
  • s is a natural number of Ng (j, m) or less.
  • the frequency direction interpolation unit 2082 uses the reference signal h (j, G (s)) in Equation (7).
  • Channel estimation values are interpolated in the frequency direction for subcarriers that do not contain a signal (refer to the method described in Patent Document 1 for this interpolation processing).
  • power control section 112 of radio transmitting apparatus 100B outputs a weighting factor (/ 3 times) so that the transmission power of the reference signal is larger than that of the data signal section. This increases the transmission power of the reference signal and increases the accuracy of channel estimation.
  • the power control unit 112 uses the following first to fourth control methods,
  • the transmission power of the signal may be controlled.
  • the power control unit 112 In the case of the first control method, the power control unit 112
  • the transmission power of the last OFDM symbol including the signal may be controlled so as to be larger than other OFDM symbols (the weight coefficient of the last OFDM symbol is set to / 3). in this case
  • radio receiving apparatus 200C it is possible to improve the accuracy of channel estimation of OFDM symbols obtained by outer interpolation.
  • the power control section 112 has the transmission power of the last OFDM symbol including the reference signal larger than that of other OFDM symbols in the last subframe of the user's personal data. (The last OFDM symbol)
  • the weighting factor of the router is / 3). Also in this case, it is possible to improve the accuracy of channel estimation of OFDM symbols obtained by outer interpolation.
  • the second control method increases the transmission power of the reference signal with respect to the minimum OFDM symbol. For this reason, it is possible to prevent the transmission power distribution of the data signal part in the data series from being lowered. Therefore, a decrease in data transmission efficiency can be suppressed.
  • the power control unit 112 of the wireless transmission device 100B is the wireless reception device.
  • the wireless reception device 200C further includes a feedback unit (detection result transmission unit: not shown) that transmits the detection result of the line fluctuation state detection unit 2081 to the wireless transmission device 100B (power control unit 112).
  • a feedback unit detection result transmission unit: not shown
  • Radio transmission apparatus 100B controls the transmission power according to the detection result. For example, only when the line fluctuation indicated in the detection result is larger than a predetermined value, the wireless transmission device 100B (power control unit 112) causes the weighting factor (// so that the transmission power of the reference signal is larger than that of the data signal unit. 3 times).
  • the wireless transmission device 100B is different from the third control method in that the reverse link (wireless reception from the wireless transmission device 100B) is performed. It further has a fading fluctuation status detection unit (not shown) that detects a fading fluctuation status based on a received signal from the transmission link to the device 200C and the radio link in the reverse direction.
  • a fading fluctuation status detection unit not shown
  • the fading fluctuation status in the radio reception device 200C (reception side) is detected in the fading fluctuation status detection unit (not shown) of the radio transmission device 100B by using the relativity of the propagation paths. (Line fluctuation) can be detected.
  • Radio transmitting apparatus 100B (power control unit 112) controls the transmission power of the reference signal according to the fading fluctuation state. Even in this case, the same effect as in the third control method can be obtained.
  • method (1) when transmitting a reference signal having higher transmission power than the data signal unit in radio transmission apparatus 100B, the transmission power of the data signal unit is not changed as shown in FIG.
  • the method for increasing the reference signal transmission power for transmission (hereinafter referred to as “method (1)”) has been described.
  • the bandwidth for increasing the transmission power of the reference signal is the entire bandwidth in the communication operation bandwidth (all subcarriers used for data transmission in OFDM). In this case, the transmission power of the OFDM symbol including the reference signal is increased as compared to the OFDM symbol not including the reference signal.
  • the transmission power distribution of the data signal section and the reference signal is made variable so that the sum of the transmission powers of the subcarrier signals included in the OFDM symbol is substantially constant. Also good. That is, the transmission power obtained by adding “the total transmission power of all subcarrier signals allocated except for the reference signal” to the “total transmission power of all subcarrier signals allocated as reference signals” within the subframe. Send it so that it is almost constant.
  • Fig. 14 shows the reference signal and the data signal section when the transmission power distribution of the data signal section and the reference signal is varied so that the sum of the transmission power of the subcarrier signals included in the OFDM symbol is substantially constant. 2 shows an example of the relationship between the transmission powers. As can be seen from FIG. 14, since the total transmission power is made constant in the subframe, the transmission power of the data signal section decreases, but the data signal whose transmission power decreases as described later. The effect can be reduced by inserting a signal with a small deterioration in reception quality into the part.
  • a partial band (hereinafter referred to as "subband"), which is selected from all bands, is used for data transmission in OFDM. It is also possible to apply a method of increasing the reference signal transmission power for transmission (hereinafter referred to as “method (2)”). ⁇ ).
  • method (2) a method of increasing the reference signal transmission power for transmission
  • the transmission power of the reference signal is increased only in the subband (method (2))
  • the transmission power distribution of the data signal section and the reference signal may be varied so that the sum of the two becomes substantially constant.
  • FIG. 16 in this case, when the transmission power of the reference signal is increased, the transmission power of the data signal portion is reduced, but the data signal portion where the transmission power is reduced is less deteriorated in reception quality. The effect can be reduced by inserting a signal.
  • the band for increasing the transmission power of the reference signal is the entire band (method (1)) in the communication operation band, or a partial band (subband) selected from all bands. There is a method of transmitting by limiting (method (2)).
  • the band for increasing the transmission power of the reference signal is limited to subbands (method
  • FIG. 16 shows the reference signals arranged intermittently and the transmission signal level of the data signal when transmission is limited to the subband.
  • a plurality of reference signals with higher transmission power are assigned only to a specific subband.
  • data signals that are sandwiched between subcarriers of the reference signal with increased transmission power are allocated! /, And only a plurality of subcarriers (reference signal transmission power increased partial band) are compared to other data signals.
  • the channel estimation value for the data signal part whose transmission power was reduced at a constant rate was extracted, and only the subbands to which a plurality of reference signals with increased transmission power were assigned were extracted.
  • interpolation is performed, and further, the reference signal transmission power offset amount is used and multiplied by a coefficient considering the offset amount. Details of the channel estimation value calculation method will be described later.
  • the channel estimation accuracy can be improved and the sub-carrier sandwiched between the reference signal sub-carriers. Since the carrier transmission power is reduced or increased at a certain rate, the configuration of the channel estimation unit can be simplified.
  • the reception characteristics can be improved by improving the channel estimation accuracy.
  • transmission is performed by limiting the transmission power of the reference signal to the subband (method (2)), and the following two subband limiting methods (a) and subband limiting method (b) Apply power S with power S.
  • the subband that increases the reference signal transmission power is fixedly assigned to a specific subband in the communication operation band.
  • the subband for increasing the transmission power of the reference signal is fixed, so that only the information related to the transmission power of the reference signal is notified from the wireless transmission device to the wireless reception device. It is not necessary to notify the information on the position of the subcarrier that increases the power.
  • the transmission power of the reference signal is adaptively changed, information on the transmission power is notified whenever the transmission power of the reference signal fluctuates or periodically (for each subframe or frame period). .
  • frequency resource allocation may be performed in which a radio reception device at a cell edge is preferentially allocated to a subband in which reference signal transmission power is increased.
  • the subband that increases the transmission power of the reference signal is dynamically allocated to the subband in the communication operation band.
  • transmission power control for increasing transmission power may be performed on a reference signal included in a subband to which a wireless reception device satisfying a specific condition is assigned.
  • a specific condition for example, a radio receiving apparatus that reduces reception power (reception quality) such as a cell edge is selected. This improves the estimation accuracy of the channel estimation value in the wireless receiver that satisfies the specific condition, and improves the reception quality with the power S.
  • subband limiting method (b) every time the subband for increasing the transmission power of the reference signal fluctuates, or Information on the transmission power of the reference signal is notified from the wireless transmission device to the wireless reception device periodically (subframe or every frame period).
  • subband limiting method (b) the amount of information to be reported is increased compared to subband limiting method (a), but the reference is based on the number of wireless receivers that satisfy specific conditions in the communication area. The effect is that the setting of the subband for increasing the transmission power of the signal can be made flexible.
  • FIG. 17 shows an example of the frame structure of the multiplexed signal in the present embodiment.
  • a signal modulated with a low MCS that can ensure reception quality even with a low SNR (a signal modulated with a low modulation index and low coding rate) is used.
  • Signals modulated with a low MCS include individual control signals, shared control signals, and broadcast signals.
  • the data signal to the radio receiver at the cell edge modulated by MCS may be used.
  • data signal section A sets the MCS and transmits a data signal by the conventional method.
  • the subcarrier signal other than the reference signal is a signal modulated using MCS that is low and / or MCS that can ensure reception quality even with low signal and SNR. It is possible to reduce the influence of degradation of reception quality due to a decrease in transmission power of subcarrier signals other than.
  • the above-mentioned subband limiting methods (a) and (b) are effective when a cell edge radio receiver is allocated to a subband that increases the transmission power of the reference signal and a low MCS data signal is transmitted. With these methods, it is possible to reduce the deterioration of the reception quality of the data signal.
  • FIG. 18 is a diagram illustrating a configuration of a wireless transmission device 100C that transmits a reference signal transmission power increase limited to a subband (method (2)).
  • Radio transmission apparatus 100C in FIG. 18 further includes frequency resource allocation control section 120, frequency resource allocation section 121, and multiplication sections 123 and 124 for data signals, in addition to radio transmission apparatus 100B shown in FIG.
  • the configuration of the other wireless transmission device 100C is the same as that of the wireless transmission device 100B. Therefore, the following description will focus on the parts that are different from radio transmitting apparatus 100B.
  • Frequency resource allocation control section 120 uses the reception quality information (information such as SIR and SINR) notified from the radio reception apparatus so that it is at the cell edge in the subband that increases the transmission power of the reference signal. Radio frequency resources are allocated to preferentially assign radio receivers with low reception quality (low SIR).
  • the subband for increasing the transmission power of the reference signal may be fixedly set in advance (subband limiting method (a)), or according to the frequency resource allocation status for the radio receiving apparatus. Depending on the situation, you may change the setting dynamically! /, (Subband limiting method (b)).
  • Frequency resource allocating section 121 receives data signals including data to be transmitted to different radio receiving apparatuses based on the frequency resource allocation information output from frequency resource allocation control section 120.
  • the data signal is assigned to the subcarrier included in the specified frequency resource.
  • Power control section 112a outputs a weighting coefficient (for example, / 3) for changing the transmission power of the reference signal included in the OFDM symbol to each of multiplication sections 110 and 111. Further, a weighting coefficient (for example, ⁇ ) for changing the transmission power of a signal (data signal or control signal) other than the reference signal included in the OFDM symbol is output to each of the multipliers 123 and 124.
  • the reference signal included in the subband that increases the transmission power of the reference signal is multiplied by a weight coefficient of 1 or more (/ 3 ⁇ 1).
  • a signal other than the reference signal included in the subband that increases the transmission power of the reference signal is multiplied by a weighting factor ( ⁇ 1) of 1 or less.
  • the power control unit 112a outputs the power control information to the control information generation unit 122.
  • the control information generating unit 122 generates a control signal based on the control information including the power control information. For example, when each of the reference signal multiplexing units 102 and 103 multiplexes the reference signal, the control information generating unit 122 uses the power information ( ⁇ , / 3) regarding the reference signal transmission power offset amount Lp and the position of the reference signal. The control signal is generated using the reference signal power information including (OFDM symbol position) as control information.
  • the transmission power information included in the reference signal power information uses an offset amount based on the transmission power of the data signal section. For example, when the transmission power of the data signal part is reduced, an offset value of the transmission power based on the data signal part of the transmission power is used for the transmission power information.
  • the receiving side can estimate the transmission power offset amount of the data signal section based on the reception result of the reference signal, and even if the transmission power between the reference signal and the data signal section is variable, Demodulation can be performed without degrading the data signal using the transmission power information included in the signal power information.
  • Each multiplying section 110, 111 multiplies the weighting factor / 3 that is the output of power control section 112a by the reference signal that is the output of reference signal generating section 101, and each corresponding reference signal multiplexing section 102. , Output to 103.
  • each of the multiplying units 123 and 124 multiplies the weighting factor ⁇ that is the output of the power control unit 112a and the output signal of the frequency resource allocating unit 121, to the corresponding reference signal multiplexing units 102 and 103. Output.
  • each reference signal multiplexing section 102, 103 is replaced with each multiplication section 110, 111 and each multiplication section.
  • the reference signal and signals other than the reference signal are multiplexed and output to OFDM modulation sections 104 and 105, respectively.
  • each of the reference signal multiplexing units 102 and 103 receives the control information including the control information and the data signal for the reference signal transmission power offset amount Lp.
  • a reference signal is further multiplexed on the included signal.
  • the amount of information notified as power control information is reduced by using the following method.
  • the power to do S Specifically, the reference signal Only a plurality of subcarriers (reference signal transmission power increasing partial band) to which data signals are allocated, which are sandwiched between carriers, reduce the transmission power at a certain rate, thereby increasing the transmission power of the reference signal.
  • the ability to uniquely relate the number of subcarriers of signals (data signals and control signals) with reduced transmission power other than the reference signal to the number of carriers. In other words, as shown in Equation (8), when / 3 is determined, ⁇ is determined, so that the amount of information notified as power control information can be reduced.
  • N is the reference signal transmission power increasing partial band.
  • N Indicates the number of subcarriers to which the reference signal is assigned.N is the reference signal.
  • N is a known constant value
  • N is a known constant value
  • Resource allocation control section 120 When using the subband limiting method (b) and dynamically changing the setting of the subband to which the reference signal with increased transmission power is added according to the frequency resource allocation situation for the radio receiver, Resource allocation control section 120 outputs subband information including a reference signal with increased transmission power to control information generation section 122.
  • Control information generation section 122 generates a control signal based on control information including power control information and subband information including a reference signal with increased transmission power.
  • the information regarding the position of the reference signal for changing the transmission power may be assigned with a variable band, or the band may be divided into N in advance and the number of the divided band may be transmitted. In the latter case, although the band division is fixed, the amount of control information related to the reference position included in the reference signal power information can be reduced.
  • the division band number can be sent by fixedly setting the division band to increase the transmission power in advance. The ability to make it unnecessary S Alternatively, transmission can be performed using 1-bit information indicating whether transmission to increase transmission power is performed or transmission to increase transmission power is not performed.
  • FIG. 19 is a diagram illustrating a configuration example of a wireless reception device 200D with respect to the wireless transmission device 100C of FIG.
  • Radio receiving apparatus 200D in Fig. 19 further includes power information extracting section 212 and transmission power offset compensating section 213 in radio receiving apparatus 200B in Fig. 10.
  • the configuration of other radio reception apparatuses is the same as that of the radio reception apparatus in the first embodiment. Therefore, the following description will focus on the differences from the first embodiment.
  • the power information extraction unit 212 uses the control information added to the data sequence transmitted from the wireless transmission device 100C in Fig. 18 to obtain the transmission power information and subband information including the reference signal with increased transmission power. Extract.
  • the transmission power information includes ( ⁇ , / 3) or information on the reference signal transmission power offset amount Lp.
  • the frequency direction interpolation unit 2082 transmits a reference signal with increased transmission power for the OFDM symbol including the reference signal.
  • the channel estimation value h (j, G (s)) is calculated using equation (9) in consideration of the increase in transmission power.
  • n represents a natural number equal to or less than Nr
  • m represents a natural number equal to or less than Nt
  • j represents an OFDM symbol number including a reference signal.
  • G (s) represents the sth subcarrier number of the reference signal with increased transmission power transmitted from the mth transmission antenna for the jth OFDM symbol.
  • s is a natural number equal to or less than Np (j, m) subcarriers of the reference signal with increased transmission power.
  • the frequency resource allocation for the radio receiving device When the subcarrier allocation that increases the transmission power of the reference signal is dynamically changed according to this situation, the reference signal that increases the transmission power is transmitted and the subcarrier varies. Therefore, transmission power information (s), 13 (s)) obtained from the power information extraction unit 212 changes depending on the subcarrier number s. Therefore, frequency direction interpolation section 2082 uses equation (10) to calculate the channel estimation value h nm for the subcarrier including the reference signal.
  • channel estimation section 208 performs the same operation as in Embodiment 1, and calculates and outputs a channel estimation value.
  • Transmission power offset compensation section 213 is a signal (data signal, control signal) in which transmission power other than the reference signal included in the reference signal transmission power increased partial band is changed with respect to the output of signal separation section 209 To compensate for the offset.
  • This offset is caused by the fact that the transmission power change in the data signal and control signal is not considered in the channel estimation value that is the output of the channel estimation unit 208. That is, the transmission power offset compensation unit 213 uses the offset amount (with respect to the subcarrier signal included in the reference signal transmission power increase partial band of the signals output from the signal separation unit 209 based on the power control information ⁇ . a) Multiply by 1/2 .
  • the power information extraction unit 212 uses the subband information that is extracted from the control signal and includes the reference signal with increased transmission power to transmit. The above operation of the power offset compensation unit 213 is performed.
  • a reference signal having a transmission power larger than that of the data signal unit is radiated in the air from each of the transmission antennas 108 and 109 of the wireless transmission device 100C.
  • the weighting factor is such that the transmission power of the reference signal is the data signal part (a certain subframe).
  • the coefficient is such that the power is larger than the last OFDM symbol including the reference signal) (eg, / 3 times, 1/3).
  • a reference signal with increased transmission power is not arranged on both sides of a data signal with variable transmission power, for example, one side is a reference signal with increased transmission power and the other side is with transmission power.
  • the frequency direction interpolation unit 2082 in the channel estimation unit 208 may use the following method as the frequency direction interpolation processing. That is, a method may be used in which interpolation processing in the frequency direction is interpolated in band units in subband units including a reference signal with increased transmission power. As a result, the channel estimation value of the reference signal with increased transmission power can be used to interpolate the estimation result in subband units, so that the channel estimation accuracy can be improved.
  • a subband that increases the transmission power of the reference signal is shared between cells. Then, by changing the frequency subcarrier position where the reference signal is inserted in the subband or the temporal OFDM symbol position for each cell, the subcarrier position where the reference signal is transmitted between different cells or Make sure the times do not match. Alternatively, shift the frequency signal subcarrier insertion position of the reference signal and temporal OFDM symbol position for each cell, including the inside and outside of the subband, and then move the subband that increases the reference signal transmission power between cells. Make common.
  • the data signal in the subband that increases the transmission power of the reference signal may be a low MCS modulation signal.
  • the frequency signal subcarrier insertion positions and temporal OFDM symbol positions of the reference signals differ between adjacent cells, reducing interference between reference signals with increased transmission power. I can do it.
  • the interference S between the reference signal with increased transmission power and the data signal becomes a problem.
  • subbands that increase the transmission power of the reference signal are arranged differently between cells.
  • the reference signal can be changed. make sure that the frequency positions transmitted do not match.
  • the subband for increasing the transmission power of the reference signal is made common between cells after shifting the insertion position of the frequency signal subcarrier of the reference signal for each cell including inside and outside the subband.
  • the data signal is a low MCS modulation signal.
  • the insertion positions of the frequency subcarriers of the reference signal are different between adjacent cells, so that it is possible to reduce interference between reference signals with increased transmission power. it can.
  • interference between the reference signal with higher transmission power and the data signal is a problem, but the subband increases the transmission power of the reference signal in the neighboring cell.
  • the tolerance to the interference signal can be improved.
  • Embodiment 5 is for changing the position of a reference signal in an OFDM symbol.
  • FIG. 20 is a diagram illustrating a configuration example of a wireless transmission device 100D in the fifth embodiment.
  • Radio transmitting apparatus 100D in FIG. 20 is different from radio transmitting apparatus 100 in Embodiment 1 in FIG.
  • the transmission position control unit 130 is further included.
  • the configuration of the other radio transmission apparatus is the same as that of the radio transmission apparatus in the first embodiment. Therefore, the following description will focus on the parts different from the first embodiment.
  • Transmission position control section 130 transmits position information (control signal) indicating the transmission position of the transmission reference signal to each reference signal multiplexing section for the OFDM symbol including the reference signal.
  • the position information is associated in advance with the state of line fluctuation (see equations (3) and (4)) in radio receiving apparatus 200C (line fluctuation state detection unit 2081: see FIG. 21). Specifically, a predetermined value (which is set in advance) indicating the state of line fluctuation (see equations (3) and (4)) and the transmission position in the data sequence (for example, the Nf-th item in FIG. 2). Etc.)
  • the transmission position control unit 130 changes the channel fluctuation status (formula (Equation ( 3) and Equation (4)) are input, and when the state of the line fluctuation indicates a low speed (predetermined value set in advance), the transmission position control unit 130 Nf-th (Fig. 2) is output.
  • the transmission position control unit 130 when the state of line fluctuation indicates medium-speed / high-speed (predetermined preset value), the transmission position control unit 130, for example, the i-th to Nf-th associated with medium-speed / high-speed (See Figure 2) Output position information indicating one of the following.
  • Each reference signal multiplexing section 102, 103 receives position information from transmission position control section 130. Then, each of the reference signal multiplexing units 102 and 103 arranges and multiplexes the reference signal at the transmission position (change in time) indicated by the position information, and outputs the multiplexed signal to each of the OFDM modulation units 104 and 105. At this time, the position information is included in the control information in the data series.
  • each reference signal multiplexing unit transmits the reference signal included in the last subframe to be transmitted as the subframe.
  • the other multiplexed signal configurations are as shown in Fig. 2.
  • Each OFDM modulation section 104, 105 performs the same processing as in Embodiment 1 based on the output signal (multiplexed signal) of each corresponding reference signal multiplexing section 102, 103. After that, each OF DM modulation section 104, 105, each transmission section 106, 107, and each transmission antenna 108, 109 perform the same processing as in Embodiment 1, and the data series including the position information is transmitted to each transmission antenna 10. 8 and 109 are emitted into the air. As a result, radio receiving apparatus 200E receives a data sequence including position information.
  • FIG. 21 is a diagram illustrating a configuration example of a wireless reception device 200E in the fifth embodiment.
  • Radio reception apparatus 200E in FIG. 21 further includes position information extraction section 215 and feedback section 214 in radio reception apparatus 200 in Embodiment 1 in FIG.
  • the configuration of the other radio reception apparatuses is the same as that of the radio transmission apparatus in the first embodiment. Therefore, the following description will focus on the differences from the first embodiment.
  • Position information extraction section 215 inputs a data sequence including position information from each of OFDM demodulation sections 205 and 206. Then, the position information extraction unit 215 extracts position information from the data series and outputs it to the frequency direction interpolation unit 2082.
  • Frequency direction interpolation section 2082 performs channel estimation for the subcarrier on which the reference signal is transmitted for the OFDM symbol including the reference signal indicated by the position information obtained from position information extraction section 215! Calculate the value h (j, G (s)). This formula is
  • the frequency direction interpolation unit 2082 performs the redirection based on h (j, G (s)).
  • the feedback unit 214 acquires the detection result of the line fluctuation state detection unit 2081, and radiates the line fluctuation state (see equations (3) and (4)) indicated in the detection result into the air. .
  • radio transmitting apparatus 100D transmission position control unit 130: see FIG. 20 acquires the state of line fluctuation and controls the transmission position of the reference signal according to the state.
  • radio transmission apparatus 100D (transmission position control section 130) includes a reference signal located at the end of a subframe as the channel fluctuation (see equations (3) and (4)) is smaller.
  • the position information of the reference signal is set so that the OFDM symbol position is multiplexed in the time direction.
  • the transmission position control unit 130 of the wireless transmission device 100D performs line fluctuations from the wireless reception device 200E (feedback unit 214) (see Equations (3) and (4)).
  • the position information of the reference signal is controlled according to For this reason, in addition to the effects of the first embodiment, the following effects are also obtained.
  • the position of the reference signal included in the subframe positioned at the end of the subframe to be transmitted is The last symbol is set to the OFDM symbol located in the direction of delay in the time direction (the other frames are as shown in Fig. 2).
  • the channel estimation value calculated based on the reception result of the OFDM symbol including the reference signal located at the end in the subframe, and the next sub Channel estimation of the OFDM symbol existing between the channel estimation value calculated based on the reception result of the OFDM symbol including the reference signal located at the beginning of the frame is obtained by internal interpolation.
  • the position of the reference signal is located at the end of the subframe (the position in the direction delayed in the time direction) OFDM symbol.
  • the wireless transmission device 100D (transmission position control unit 130) is connected to the wireless reception device 200.
  • E Obtain the line fluctuation (see Equations (3) and (4)) from the feedback unit 214, and the smaller the line fluctuation force S, the more the position of the OFDM symbol including the reference signal located at the end of the subframe.
  • the position information is output so as to be delayed in the time direction.
  • the radio reception apparatus, radio transmission apparatus, radio reception method, and radio transmission method of the present invention include, in particular, a radio reception apparatus, radio transmission apparatus, and radio reception in spatial multiplexing transmission in which channel estimation is performed using a reference signal. This method is useful for a method and a wireless transmission method.

Abstract

It is possible to provide a radio reception device, a radio transmission device, a radio reception method, and a radio transmission method which can improve the channel estimation accuracy and the reception quality. The radio reception device (200) includes: reception units (203, 204) which receive a data sequence added by a reference signal for channel estimation of a spatial propagation path at a predetermined interval; demodulation units (205, 206) which demodulate the data sequence; a channel estimation unit (208) which estimates a propagation path fluctuation state according to the reference signal in the data sequence and outputs a channel estimation value obtained by interpolating or extrapolating the data sequence; and a decoding processing unit (210) which decodes the data sequence by using the interpolated or extrapolated channel estimation value.

Description

明 細 書  Specification
無線送信装置、無線受信装置、無線送信方法、及び、無線受信方法 技術分野  TECHNICAL FIELD The present invention relates to a wireless transmission device, a wireless reception device, a wireless transmission method, and a wireless reception method.
[0001] 本発明は、マルチキャリア変調方式を用いた空間多重伝送時の信号を送受信する 無線送信装置、無線受信装置、無線送信方法、及び、無線受信方法に関し、特にチ ャネル推定技術や回線補償技術を用いる無線送信装置、無線受信装置、無線送信 方法、及び、無線受信方法に関する。  TECHNICAL FIELD [0001] The present invention relates to a radio transmission apparatus, radio reception apparatus, radio transmission method, and radio reception method that transmit and receive signals during spatial multiplexing transmission using a multicarrier modulation scheme, and in particular, channel estimation technology and channel compensation. The present invention relates to a wireless transmission device, a wireless reception device, a wireless transmission method, and a wireless reception method using technology.
背景技術  Background art
[0002] 近年、無線通信の大容量化および高速化の要求に伴い、有限な周波数資源の利 用効率を更に向上させる技術研究が盛んに行われている。空間領域を利用する手 法はその中でも注目を集めている。その手法のひとつとして、ァダプティブアレーアン テナ (適応アンテナ)がある。  [0002] In recent years, with the demand for higher capacity and higher speed of wireless communication, research on technology for further improving the utilization efficiency of limited frequency resources has been actively conducted. The method of using the space domain is attracting attention. One such technique is an adaptive array antenna (adaptive antenna).
[0003] このアンテナを用いると、受信信号に乗算する重み付け係数 (以下、この重み付け 係数を「重み」という。)により、振幅および位相を調整して、所望の方向から到来する 信号を強く受信することができる。そして、マルチパス干渉や同一チャネル干渉とい つた干渉成分の信号を抑圧することができる。このような干渉抑圧効果により、通信シ ステムの通信容量を改善することが可能となる。  [0003] When this antenna is used, a signal arriving from a desired direction is strongly received by adjusting the amplitude and phase by a weighting coefficient to be multiplied to the received signal (hereinafter, this weighting coefficient is referred to as "weight"). be able to. Then, interference component signals such as multipath interference and co-channel interference can be suppressed. Such interference suppression effect can improve the communication capacity of the communication system.
[0004] また、空間領域を利用した別の技術として、伝搬路における空間的な直交性を利 用するものに、 2つの技術がある。その一つは、同一時刻、同一周波数および同一符 号の物理チャネルを用いて異なるデータ系列を、同一の端末装置に対して伝送する 空間多重技術である。このような空間多重技術を用いるものとして、一般的には次の ようなものがある(例えば、非特許文献 1)。すなわち、送信機および受信機が共に複 数のアンテナを備える。そして、アンテナ間での受信信号の相関性が低い伝搬環境 下におレ、て空間多重伝送が実現できる。  [0004] Further, as another technique using the spatial domain, there are two techniques that use spatial orthogonality in the propagation path. One is spatial multiplexing technology that transmits different data sequences to the same terminal device using physical channels of the same time, the same frequency, and the same code. In general, there are the following methods using such a spatial multiplexing technique (for example, Non-Patent Document 1). That is, both the transmitter and the receiver are equipped with multiple antennas. In addition, spatial multiplexing transmission can be realized in a propagation environment where the correlation of received signals between antennas is low.
[0005] ここで、送信時においては、送信機における複数のアンテナから、アンテナ素子ご とに、同一時刻、同一周波数および同一符号の物理チャネルを用いて異なるデータ 系列を送信する。すると、受信機の各アンテナが、伝搬路特性の推定値 (以下、チヤ ネル推定値)を基に、そのデータ系列を分離して受信する。これにより、空間多重チ ャネルを複数用いることで多値変調を用いることなぐ伝送処理の高速化が可能とな [0005] Here, at the time of transmission, different data sequences are transmitted from a plurality of antennas in a transmitter using physical channels of the same time, the same frequency, and the same code for each antenna element. Then, each antenna of the receiver receives an estimate of the propagation path characteristics (hereinafter referred to as the The data series are separated and received based on the channel estimation value). This makes it possible to increase the speed of transmission processing without using multilevel modulation by using multiple spatial multiplexing channels.
[0006] また、送信機および受信機が共に同数のアンテナを備えて空間多重伝送を行うとき に、 S/N比 (信号対雑音比)が十分高ぐかつ、送受信機間に多数の散乱体が存在 する環境下においては、アンテナ数に比例した通信容量の拡大が可能となる。このよ うな空間多重伝送方式としては、直交周波数分割多重(OFDM : Orthogonal Freque ncy Division Multiplexing)を用いたマルチキャリア変調方式が用いられることが多い[0006] In addition, when both the transmitter and the receiver are equipped with the same number of antennas and perform spatial multiplexing transmission, the S / N ratio (signal-to-noise ratio) is sufficiently high and a large number of scatterers between the transceivers. In an environment where there is, the communication capacity can be expanded in proportion to the number of antennas. As such a spatial multiplexing transmission system, a multicarrier modulation system using orthogonal frequency division multiplexing (OFDM) is often used.
Yes
[0007] これは、次のような理由からである。すなわち、無線伝搬路のマルチパス遅延が、ガ ードインターバル時間内であれば、各サブキャリアが受ける伝搬路変動はフラットフエ 一ジングとして扱える。このため、マルチパス等価処理が不要となり、空間多重伝送さ れた信号の分離処理が軽減されるからである。  [0007] This is for the following reason. In other words, if the multipath delay of the wireless propagation path is within the guard interval time, the propagation path fluctuation received by each subcarrier can be treated as flat fading. This eliminates the need for multipath equivalent processing and reduces the separation processing of a spatially multiplexed signal.
[0008] 一方、受信時においては、受信機のアンテナで受信された信号がベースバンド信 号に周波数変換される。そして、 OFDM復調処理が行われる。  [0008] On the other hand, at the time of reception, the signal received by the receiver antenna is frequency-converted into a baseband signal. Then, OFDM demodulation processing is performed.
[0009] ここで、マルチキャリア変調方式は、複数のサブキャリアを用いる伝送方式である。  Here, the multicarrier modulation scheme is a transmission scheme using a plurality of subcarriers.
各サブキャリアへの入力データ信号は、 M直 QAM変調等で変調されて、サブキヤリ ァ信号となる。 OFDMは、各サブキャリアの周波数が直交関係にあり、高速フーリエ 変換 (FFT)回路を用いて、周波数の異なるサブキャリア信号を一括変換する。  The input data signal to each subcarrier is modulated by M-QQAM modulation or the like to become a subcarrier signal. In OFDM, the frequency of each subcarrier is orthogonal, and subcarrier signals with different frequencies are converted at once using a fast Fourier transform (FFT) circuit.
[0010] これにより、サブキャリア信号が時間軸の信号に変換された後、キャリア周波数帯に 周波数変換されてアンテナから送信される。 OFDM変調および OFDM復調に関し ては、非特許文献 2に記載のとおりである。  [0010] Thus, after the subcarrier signal is converted into a time-axis signal, the frequency is converted into the carrier frequency band and transmitted from the antenna. Non-patent document 2 describes OFDM modulation and OFDM demodulation.
[0011] 従来、このような状況下において、 2段階のチャンネル推定処理によりチャネル推定 値を得ていた (例えば、特許文献 1)。具体的には、まず、チャネル推定用のリファレ ンス信号に対する受信信号について、送信アンテナのサブセットごとに分割する。そ して、チャネル推定の第 1段階として、リファレンス系列を基に第 1段階のチャネル推 定を行う。これにより、第 1次元(例えばサブキャリア方向)におけるチャネル応答の仮 推定について、送信アンテナのサブセット単位に補間処理を用いて算出する。 [0012] 次に、第 2段階のチャネル推定として、各アンテナに対し、一次元方向に補間した 仮推定値を用いて、異なる次元方向(例えば時間方向)におけるチャネル推定を行う 。このように、リファレンス信号と仮推定値との間に存在するデータ部のチャネル推定 値は内揷補間を用い、それ以外のデータ部のチャネル推定値は一律に外揷補間を 用いて得る。これにより、送信アンテナのサブセットのアンテナごとに、チャネル推定 ィ直を得ること力 S可倉 となる。 Conventionally, under such circumstances, a channel estimation value has been obtained by a two-stage channel estimation process (for example, Patent Document 1). Specifically, first, a received signal corresponding to a reference signal for channel estimation is divided for each subset of transmitting antennas. As the first stage of channel estimation, the first stage of channel estimation is performed based on the reference sequence. Thus, provisional estimation of the channel response in the first dimension (eg, subcarrier direction) is calculated using interpolation processing for each subset of transmitting antennas. [0012] Next, as the second-stage channel estimation, channel estimation in different dimension directions (for example, time direction) is performed for each antenna using a temporary estimation value interpolated in a one-dimensional direction. In this way, the channel estimation value of the data portion existing between the reference signal and the temporary estimation value is obtained using inner interpolation, and the channel estimation values of the other data portions are obtained uniformly using outer interpolation. As a result, for each antenna in the subset of transmit antennas, the power to obtain the channel estimation directly becomes S Kurakura.
特許文献 1 :特表 2006— 515481号公報  Patent Document 1: Japanese Translation of Special Publication 2006—515481
^特許文 1: G.J.roschini, Layered space-time architecture for wireless communi cation in a fading environment when using multi-element antennas," Bell Labs Tech. J., pp.41 - 59, Autumn 1996  ^ Patent 1: G.J.roschini, Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas, "Bell Labs Tech. J., pp.41-59, Autumn 1996
非特許文献 2 :尾知博、上田健二" OFDMシステム技術と MATLABシミュレーション 解説,,、トリケップス、 2002年  Non-Patent Document 2: Tomohiro Oo, Kenji Ueda "OFDM system technology and MATLAB simulation commentary, ... Trikes, 2002
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0013] 一般的に、外揷補間により得られるチャネル推定値は、内揷補間により得られたチ ャネル推定値よりも精度が低くなる。このため、特許文献 1に記載のチャネル推定方 法では、外揷補間によるチャネル推定値を一律に適用するので、チャネル推定の精 度が低下し、受信品質が低下する。 [0013] Generally, a channel estimation value obtained by outer interpolation is less accurate than a channel estimation value obtained by inner interpolation. For this reason, in the channel estimation method described in Patent Document 1, since the channel estimation value by the outer interpolation is uniformly applied, the accuracy of channel estimation is reduced and the reception quality is reduced.
[0014] 本発明の目的は、チャネル推定の精度を向上させ、受信品質を向上させることがで きる無線送信装置、無線受信装置、無線送信方法、及び、無線受信方法を提供する ことである。 An object of the present invention is to provide a wireless transmission device, a wireless reception device, a wireless transmission method, and a wireless reception method that can improve the accuracy of channel estimation and improve reception quality.
課題を解決するための手段  Means for solving the problem
[0015] 前記課題を解決するために、本発明の無線受信装置は、空間伝搬路のチャネル 推定用のリファレンス信号が所定の間隔を隔てて付加されたデータ系列を受信する 受信部と、前記受信されたデータ系列中の前記リファレンス信号に基づいて伝搬路 の変動状況を推定し、前記変動状況に基づいて、当該データ系列に対する内揷補 間または外揷補間により得られるチャネル推定値を出力するチャネル推定部と、前記 内揷補間または外揷補間のレ、ずれかのチャネル推定値を用いて、前記データ系列 の復調復号処理を行う復調復号処理部と、を含む。 [0015] In order to solve the above-described problem, the radio reception apparatus of the present invention receives a data sequence to which a reference signal for channel estimation of a spatial propagation path is added at a predetermined interval, and the reception unit A channel that estimates a channel fluctuation state based on the reference signal in the received data sequence and outputs a channel estimation value obtained by interpolation or outer interpolation for the data sequence based on the fluctuation state Using the estimation unit and the channel estimation value of the inner or outer interpolation or the deviation of the channel estimation, the data series And a demodulation / decoding processing unit for performing the demodulation / decoding process.
[0016] また、前記課題を解決するために、本発明の無線送信装置は、サブフレームが複 数の OFDMシンボル力、ら構成される伝送フォーマットを用いる無線送信装置であつ て、空間伝搬路のチャネル推定用のリファレンス信号を生成する生成部と、データ信 号を OFDMシンボルのサブキャリアに割り当てる割り当て部と、前記リファレンス信号 の送信電力が、前記データ信号の送信電力よりも大きくなるように、前記リファレンス 信号の送信電力を調整する電力調整部と、前記電力調整部により送信電力が調整 された前記リファレンス信号を、 OFDMシンボルのサブキャリアの周波数軸方向に所 定の間隔を隔てて配置する、又は、時間軸方向に所定の間隔を隔てて配置する、リ ファレンス信号多重部と、 OFDMシンボルのサブキャリアに割り当てられた前記デー タ信号及び前記リファレンス信号に対し OFDM変調を施し、得られた OFDM変調信 号を送信する送信部と、を具備する構成を採る。  [0016] In order to solve the above-described problem, the wireless transmission device of the present invention is a wireless transmission device that uses a transmission format in which a subframe includes a plurality of OFDM symbol powers, and has a spatial propagation path. A generating unit that generates a reference signal for channel estimation, an allocating unit that allocates a data signal to subcarriers of an OFDM symbol, and a transmission power of the reference signal that is greater than a transmission power of the data signal. A power adjustment unit that adjusts transmission power of a reference signal and the reference signal whose transmission power is adjusted by the power adjustment unit are arranged at a predetermined interval in the frequency axis direction of the subcarrier of the OFDM symbol, or Assigned to the reference signal multiplexing unit and OFDM symbol subcarriers arranged at predetermined intervals in the time axis direction. It said data signal and subjected to OFDM modulation to the reference signal, employs a configuration that includes a transmitter for transmitting the OFDM modulation signal obtained, the.
[0017] また、前記課題を解決するために、本発明の無線受信方法は、空間伝搬路のチヤ ネル推定用のリファレンス信号が所定の間隔を隔てて付加されたデータ系列を受信 するステップと、前記データ系列を復調するステップと、前記復調されたデータ系列 中の前記リファレンス信号に基づいて伝搬路の変動状況を推定し、前記変動状況に 基づいて、当該データ系列に対する内揷補間または外揷補間により得られるチヤネ ル推定値を出力するステップと、前記内揷補間または外揷補間のレ、ずれかのチヤネ ル推定値を用いて、前記データ系列の復調復号処理を行うステップと、を含むように した。  [0017] In addition, in order to solve the above-described problem, the wireless reception method of the present invention includes a step of receiving a data sequence to which reference signals for channel estimation of a spatial propagation path are added at a predetermined interval; Demodulating the data sequence; estimating a fluctuation state of a propagation path based on the reference signal in the demodulated data series; and based on the fluctuation situation, internal interpolation or external interpolation for the data series Outputting a channel estimation value obtained by the above-mentioned method, and performing a demodulation decoding process of the data sequence using the channel estimation value of the inner / outer interpolation or the difference between the inner / outer interpolations. It was.
[0018] また、前記課題を解決するために、本発明の無線送信方法は、サブフレームが複 数の OFDMシンボル力、ら構成される伝送フォーマットを用いる無線送信方法であつ て、空間伝搬路のチャネル推定用のリファレンス信号を生成するステップと、データ 信号を OFDMシンボルのサブキャリアに割り当てるステップと、前記リファレンス信号 の送信電力が、前記データ信号の送信電力よりも大きくなるように、前記リファレンス 信号の送信電力を調整するステップと、前記電力調整部により送信電力が調整され た前記リファレンス信号を、 OFDMシンボルのサブキャリアの周波数軸方向に所定 の間隔を隔てて配置する、又は、時間軸方向に所定の間隔を隔てて配置するステツ プと、 OFDMシンボルのサブキャリアに割り当てられた前記データ信号及び前記リフ アレンス信号に対し OFDM変調を施し、得られた OFDM変調信号を送信するステツ プと、を含むようにした。 [0018] In addition, in order to solve the above-described problem, a radio transmission method of the present invention is a radio transmission method using a transmission format in which a subframe includes a plurality of OFDM symbol powers, and includes a spatial propagation path. Generating a reference signal for channel estimation, assigning a data signal to subcarriers of an OFDM symbol, and transmitting the reference signal so that a transmission power of the reference signal is larger than a transmission power of the data signal. The step of adjusting transmission power and the reference signal whose transmission power has been adjusted by the power adjustment unit are arranged at predetermined intervals in the frequency axis direction of subcarriers of OFDM symbols, or predetermined in the time axis direction Steps that are spaced apart And a step of performing OFDM modulation on the data signal and the reference signal assigned to subcarriers of the OFDM symbol and transmitting the obtained OFDM modulated signal.
発明の効果  The invention's effect
[0019] 本発明によれば、伝搬路の変動状況に基づいて、内揷補間または外揷補間により 得られるチャネル推定値を用いてデータ系列の復号を行う。このため、チャネル推定 の精度が向上し、受信品質が向上する。  [0019] According to the present invention, a data sequence is decoded using a channel estimation value obtained by inner interpolation or outer interpolation based on the propagation state of the propagation path. This improves the accuracy of channel estimation and improves the reception quality.
図面の簡単な説明  Brief Description of Drawings
[0020] [図 1]本発明の実施の形態 1における無線送信装置の構成例を示す図  FIG. 1 is a diagram showing a configuration example of a radio transmission apparatus according to Embodiment 1 of the present invention.
[図 2]リファレンス信号多重部の多重化信号のフレーム構成例を示す図  FIG. 2 is a diagram showing an example of a frame structure of a multiplexed signal of a reference signal multiplexing unit
[図 3]実施の形態 1における無線送信装置の構成例を示す図  FIG. 3 is a diagram illustrating a configuration example of a wireless transmission device in the first embodiment
[図 4A]実施の形態 1におけるシミュレーション結果を示す図  FIG. 4A is a diagram showing a simulation result in the first embodiment.
[図 4B]実施の形態 1における他のシミュレーション結果を示す図  FIG. 4B shows another simulation result in the first embodiment.
[図 5]実施の形態 1における無線送信装置の他の構成例を示す図  FIG. 5 is a diagram illustrating another configuration example of the wireless transmission device according to the first embodiment.
[図 6]リファレンス信号多重部の多重化信号の他のフレーム構成を示す図  FIG. 6 is a diagram showing another frame configuration of the multiplexed signal of the reference signal multiplexing unit.
[図 7]実施の形態 1における無線受信装置の他の構成例を示す図  FIG. 7 is a diagram illustrating another configuration example of the wireless reception device in the first embodiment
[図 8]本発明の実施の形態 2における無線受信装置のチャネル推定部の構成例を示 す図  FIG. 8 is a diagram showing a configuration example of a channel estimation unit of a wireless reception device in Embodiment 2 of the present invention
[図 9]本発明の実施の形態 3における多重化信号のフレーム構成を示す図  FIG. 9 shows a frame structure of a multiplexed signal in Embodiment 3 of the present invention.
[図 10]実施の形態 3における無線受信装置の構成例を示す図  FIG. 10 is a diagram illustrating a configuration example of a wireless reception device in a third embodiment
[図 11]本発明の実施の形態 4における無線送信装置の構成例を示す図  FIG. 11 is a diagram illustrating a configuration example of a wireless transmission device according to a fourth embodiment of the present invention.
[図 12]実施の形態 4における無線受信装置の構成例を示す図  FIG. 12 is a diagram illustrating a configuration example of a wireless reception device in a fourth embodiment
[図 13]実施の形態 4における方法(1)によりリファレンス信号の送信電力を増加した 場合の送信電力の一例を示す図  FIG. 13 is a diagram illustrating an example of transmission power when the reference signal transmission power is increased by method (1) in the fourth embodiment.
[図 14]実施の形態 4における方法(1)によりリファレンス信号の送信電力を増加した 場合の送信電力の別の一例を示す図  FIG. 14 is a diagram showing another example of transmission power when the reference signal transmission power is increased by method (1) in the fourth embodiment.
[図 15]実施の形態 4における方法(2)によりリファレンス信号の送信電力を増加した 場合の送信電力の一例を示す図 [図 16]実施の形態 4における方法(2)によりリファレンス信号の送信電力を増加した 場合の送信電力の別の一例を示す図 FIG. 15 is a diagram illustrating an example of transmission power when reference signal transmission power is increased by method (2) in the fourth embodiment. FIG. 16 is a diagram showing another example of transmission power when the reference signal transmission power is increased by method (2) in the fourth embodiment.
[図 17]リファレンス信号多重部の多重化信号の他のフレーム構成を示す図  FIG. 17 is a diagram showing another frame configuration of the multiplexed signal of the reference signal multiplexing unit
[図 18]実施の形態 4における方法(2)による無線送信装置の構成例を示す図  FIG. 18 is a diagram illustrating a configuration example of a wireless transmission device according to method (2) in the fourth embodiment.
[図 19]実施の形態 4における方法(2)による無線受信装置の構成例を示す図  FIG. 19 is a diagram illustrating a configuration example of a wireless reception device according to method (2) in the fourth embodiment.
[図 20]本発明の実施の形態 5における無線送信装置の構成例を示す図  FIG. 20 is a diagram illustrating a configuration example of a wireless transmission device according to the fifth embodiment of the present invention.
[図 21]実施の形態 5における無線受信装置の構成例を示す図  FIG. 21 is a diagram illustrating a configuration example of a wireless reception device in a fifth embodiment
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 以下、本発明の実施の形態について、図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0022] (実施の形態 1) [0022] (Embodiment 1)
[無線送信装置の構成]  [Configuration of wireless transmitter]
まず、無線送信装置 100の構成について説明する。  First, the configuration of radio transmitting apparatus 100 will be described.
[0023] 図 1は、本発明の実施の形態 1における無線送信装置(無線通信装置) 100の構成 例を示す図である。ここでは、無線送信装置 100は、例えば、 OFDMのマルチキヤリ ァ伝送方式を採用するものとして説明する。  FIG. 1 is a diagram showing a configuration example of a wireless transmission device (wireless communication device) 100 according to Embodiment 1 of the present invention. Here, radio transmission apparatus 100 will be described as adopting, for example, an OFDM multi-carrier transmission scheme.
[0024] 図 1において、無線送信装置 100は、リファレンス信号生成部 101、各リファレンス 信号多重部 102、 103、各 OFDM変調部 104、 105、各送信部 106、 107および各 送信アンテナ 108、 109を有する。本実施の形態では、送信アンテナが 2本(送信ァ ンテナ数 Nt = 2)の場合について説明する力 送信アンテナは 1本または 3本以上に 変更してもよい。  In FIG. 1, a wireless transmission device 100 includes a reference signal generation unit 101, reference signal multiplexing units 102 and 103, OFDM modulation units 104 and 105, transmission units 106 and 107, and transmission antennas 108 and 109. Have. In the present embodiment, the force transmitting antenna described in the case of two transmitting antennas (the number of transmitting antennas Nt = 2) may be changed to one or three or more.
[0025] リファレンス信号生成部 101は、受信側に既知である所定の系列信号からなるリフ アレンス信号を生成して各リファレンス信号多重部 102、 103に出力する。リファレン ス信号は、チャネル推定用のものである。  [0025] Reference signal generation section 101 generates a reference signal composed of a predetermined sequence signal known to the receiving side, and outputs the reference signal to reference signal multiplexing sections 102 and 103. The reference signal is for channel estimation.
[0026] リファレンス信号多重部 102は、データ信号 dlおよび上記リファレンス信号を入力 し、リファレンス信号を多重化する。各データ信号 dl、 d2は、所定の報知信号や制御 信号データなどを含んで構成されてレ、る。 [0026] Reference signal multiplexing section 102 receives data signal dl and the reference signal, and multiplexes the reference signal. Each data signal dl, d2 includes a predetermined notification signal, control signal data, and the like.
[0027] なお、本実施の形態では、多重化方法としては、例えば、 FDM (Frequency Divisio n Multiplexing)を用いることとする力 これに限られない。例えば、 TDM (Time Divisi on Multiplexing), CDM (Code Division Multiplexing)を用いて多重化してもよい。 In the present embodiment, the multiplexing method is not limited to, for example, the power of using FDM (Frequency Division Multiplexing). For example, TDM (Time Divisi on Multiplexing) and CDM (Code Division Multiplexing).
[0028] リファレンス信号多重部 102の出力信号 (データ系歹 IJ)の一例を図 2に示す。なお、 リファレンス信号多重部 103も、リファレンス信号多重部 102と同様の方法で多重化 する。 An example of an output signal (data system IJ) of reference signal multiplexing section 102 is shown in FIG. Note that the reference signal multiplexing unit 103 also multiplexes in the same manner as the reference signal multiplexing unit 102.
[0029] 図 2の出力信号、すなわち多重化信号 dlOOは、複数 (Ns個)のサブフレームを含 むフレームで構成されている。そして、一個のサブフレームには、 Nf個の OFDMシ ンボルが含まれる。サブフレームは、リファレンス信号とそれ以外の制御信号とを含む データ信号部から構成される。  [0029] The output signal in FIG. 2, that is, the multiplexed signal dlOO is composed of frames including a plurality (Ns) of subframes. One subframe includes Nf OFDM symbols. The subframe is composed of a data signal portion including a reference signal and other control signals.
[0030] リファレンス信号は、サブキャリア方向(周波数方向)および時間方向(OFDMシン ボル方向)に、それぞれ所定の間隔を隔てて(間欠的に)揷入されている。 1つの OF DMシンボルには、複数(Nc個)のサブキャリアが含まれる。  The reference signal is inserted (intermittently) at predetermined intervals in the subcarrier direction (frequency direction) and the time direction (OFDM symbol direction), respectively. One OF DM symbol includes a plurality (Nc) of subcarriers.
[0031] リファレンス信号の揷入位置は、送信される各送信アンテナに応じて、異なる。例え ば、他の送信アンテナからの送信信号にリファレンス信号が揷入されている場合、そ のサブキャリアを用いた送信を行わないヌルキャリアとする。これにより空間多重時に は、異なるアンテナからのリファレンス信号は異なるサブキャリアを用いて送信するこ とで、周波数分割多重 (FDM)され、受信時にそれぞれ分離受信することができる。  [0031] The insertion position of the reference signal differs depending on each transmission antenna to be transmitted. For example, if a reference signal is inserted in a transmission signal from another transmission antenna, it is set as a null carrier that does not perform transmission using that subcarrier. As a result, during spatial multiplexing, reference signals from different antennas are transmitted using different subcarriers, so that they are frequency division multiplexed (FDM) and can be separately received during reception.
[0032] 図 1に戻って、各 OFDM変調部 104、 105は、リレファレンス信号多重部の出力信 号、すなわち多重化信号を入力して OFDM変調する。具体的には、各 OFDM変調 部 104、 105は、サブキャリア信号を時間領域信号に変換する IFFT(Inverse Fast F ourier Transform)処理を行う。そして、各 OFDM変調部 104、 105は、マルチパス対 策のために、時間領域信号にガードインターバル(GI : Guard Interval)を付加して出 力する。なお、 OFDM変調方法については、非特許文献 1に記載のとおりである。  Returning to FIG. 1, each of the OFDM modulation sections 104 and 105 receives the output signal of the reference signal multiplexing section, that is, the multiplexed signal, and performs OFDM modulation. Specifically, each of the OFDM modulation sections 104 and 105 performs IFFT (Inverse Fast Fourier Transform) processing for converting a subcarrier signal into a time domain signal. Then, each OFDM modulation section 104, 105 outputs a time domain signal with a guard interval (GI: Guard Interval) added for multipath countermeasures. The OFDM modulation method is as described in Non-Patent Document 1.
[0033] 各送信部 106、 107は、対応する各 OFDM変調部 104、 105からの出力信号に対 して、帯域制限フィルタ(不図示)を用いて帯域制限処理を行う。そして、各送信部 1 06、 107は、帯域制限した信号を、所定のキャリア周波数に周波数変換する。さらに 、各送信部 106、 107は、周波数変換した信号を増幅器 (不図示)を用いて増幅して 出力する。  [0033] Each transmission unit 106, 107 performs band limitation processing on the output signal from each corresponding OFDM modulation unit 104, 105 using a band limitation filter (not shown). Then, each transmitting section 106 and 107 frequency-converts the band-limited signal to a predetermined carrier frequency. Further, each of the transmission units 106 and 107 amplifies and outputs the frequency-converted signal using an amplifier (not shown).
[0034] 各送信アンテナ 108、 109は、対応する各送信部 106、 107の出力であるデータ系 列を空中に放射する。これにより、無線受信装置 200が、データ系列を受信する。 [0034] Each transmitting antenna 108, 109 is a data system that is the output of each corresponding transmitting unit 106, 107. Radiate the column into the air. As a result, radio receiving apparatus 200 receives the data series.
[0035] [無線受信装置の構成]  [Configuration of Wireless Receiver]
次に、無線受信装置 200の構成につ!/、て説明する。  Next, the configuration of radio receiving apparatus 200 will be described.
[0036] 図 3は、本発明の実施の形態 1における無線受信装置(無線通信装置) 200の構成 例を示す図である。ここでは、無線受信装置 200は、例えば、 OFDMのマルチキヤリ ァ伝送方式を採用するものとして説明する。  FIG. 3 is a diagram showing a configuration example of the wireless reception device (wireless communication device) 200 according to Embodiment 1 of the present invention. Here, description will be made assuming that radio receiving apparatus 200 employs, for example, an OFDM multi-carrier transmission scheme.
[0037] 図 3において、無線受信装置 200は、各受信アンテナ 201、 202、各受信部 203、 204および各 OFDM復調部 205、 206を有する。さらに、無線受信装置 200は、リフ アレンス信号抽出部 207、チャネル推定部 208、信号分離部 209および復号処理部 (復調復号処理部) 210を有する。本実施の形態では、受信アンテナが 2本(受信ァ ンテナ数 Nt = 2)の場合について説明する力 S、受信アンテナは 3本以上に変更しても よい。  In FIG. 3, radio receiving apparatus 200 includes receiving antennas 201 and 202, receiving units 203 and 204, and OFDM demodulating units 205 and 206. Radio receiving apparatus 200 further includes a reference signal extraction unit 207, a channel estimation unit 208, a signal separation unit 209, and a decoding processing unit (demodulation decoding processing unit) 210. In the present embodiment, the force S described for the case of two receiving antennas (the number of receiving antennas Nt = 2) may be changed to three or more receiving antennas.
[0038] 各受信アンテナ 201、 202は、所望のキャリア周波数帯の高周波信号を受信する。  [0038] Each receiving antenna 201, 202 receives a high-frequency signal in a desired carrier frequency band.
各受信部 203、 204は、各受信アンテナ 201、 202で受信された各高周波信号につ いて、増幅処理、帯域制限処理および周波数変換処理を行う。そして、各受信アン テナ 201、 202は、同相(In phase)信号及び直交(Quadrature Phase)信号からなる 複素のベースバンド信号として、各 OFDM復調部 205、 206に出力する。  Each receiving unit 203, 204 performs amplification processing, band limiting processing, and frequency conversion processing on each high frequency signal received by each receiving antenna 201, 202. Each of the receiving antennas 201 and 202 outputs a complex baseband signal including an in-phase signal and a quadrature phase signal to each of the OFDM demodulating units 205 and 206.
[0039] 各 OFDM復調部 205、 206は、入力した各ベースバンド信号について、時間およ び周波数の同期処理、 GI (ガイドインターノ^レ)の除去処理、 FFT処理および直列 並列変換処理を行う。具体的には、各 OFDM復調部 205、 206は、ベースバンド信 号に対し OFDM復調を行う。そして、各 OFDM復調部 205、 206は、 Nc個のサブキ ャリア毎のシンボルデータ系列を出力する。  [0039] Each OFDM demodulator 205, 206 performs time and frequency synchronization processing, GI (guided interpolation) removal processing, FFT processing, and serial / parallel conversion processing for each input baseband signal. . Specifically, each OFDM demodulation section 205, 206 performs OFDM demodulation on the baseband signal. Then, each OFDM demodulation section 205, 206 outputs a symbol data sequence for each of Nc subcarriers.
[0040] なお、以下において、 Y (k、 fs)と表記したときは、次のようなシンボルデータ系列を 意味する。すなわち、サブフレーム中の第 k番目の OFDMシンボル受信時における 第 fs番目のサブキャリアのシンボルデータ系列である。  [0040] In the following, when Y (k, fs) is expressed, it means the following symbol data series. That is, the symbol data sequence of the fsth subcarrier at the time of receiving the kth OFDM symbol in the subframe.
[0041] ここで、 Y (k、 fs)は、 Nr個の受信アンテナで受信された信号を要素として含む列べ タトルを表す。すなわち、第 mの受信アンテナで受信された信号を入力とする OFD M復調部から出力される信号 y (k、 fs)を第 m番目の要素とする。ただし、 k= l〜N s、 fs = l〜Ncである。 [0041] Here, Y (k, fs) represents a column vector including, as elements, signals received by Nr receiving antennas. That is, the signal y (k, fs) output from the OFD M demodulator that receives the signal received by the mth receiving antenna is used as the mth element. Where k = l to N s, fs = 1 to Nc.
[0042] 例えば、無線送信装置 100が、複数の送信アンテナから、 Nt個の空間多重ストリー ムを送信する空間多重伝送を行う場合、第 fsサブキャリアの送信系列 X (k、 fs)を要 素とする送信系列ベクトル X (k、 f s)を、 X (k、 f s) = [x (k、 f s)、 · . . 、 x (k、 fs) ]T[0042] For example, when radio transmitting apparatus 100 performs spatial multiplexing transmission of transmitting Nt spatial multiplexing streams from a plurality of transmission antennas, transmission sequence X (k, fs) of the fs subcarrier is an element. Let X (k, fs) = [x (k, fs),..., X (k, fs)] T
1 Nt 表す。なお、上付き添え字 Tは、ベクトル転置演算子を表す。 xn (k、 fs)は、各送信ァ ンテナから送信されるサブフレーム中の第 k番目の OFDMシンボルにおける第 fsサ ブキャリアの送信系列を表す。 Represents 1 Nt. The superscript T represents a vector transposition operator. x n (k, fs) represents the transmission sequence of the fs subcarrier in the kth OFDM symbol in the subframe transmitted from each transmission antenna.
[0043] 伝搬路上におけるマルチパスの先行波からの相対的な遅延時間がガードインター バル (GI)範囲内であれば、電波伝搬路が周波数選択性フェージング環境であって も、サブキャリア単位ではフラットフェージング伝搬環境として扱うことができる。そのよ うな場合、無線受信装置で周波数同期が理想的に行える。 [0043] If the relative delay time from the multipath preceding wave on the propagation path is within the guard interval (GI) range, even if the radio wave propagation path is in a frequency selective fading environment, the subcarrier unit is flat. It can be treated as a fading propagation environment. In such a case, frequency synchronization can be ideally performed by the wireless receiver.
[0044] ここで、送受信間でのサンプリングクロックのジッタが存在しな!/、場合にお!/、て、第 k 番目の OFDMシンボルを受信したサブキャリア fsのデータ系列(受信信号ベクトル)[0044] Here, there is no sampling clock jitter between transmission and reception! /, In this case! /, And the data sequence (received signal vector) of subcarrier fs that received the kth OFDM symbol.
Y (k、 fs)は式(1)で表される。 Y (k, fs) is expressed by equation (1).
[0045] 國 [0045] country
Y(k s) = H(k,fs )X (k s) + n(k s ) … ( 1 ) Y (k s ) = H (k, f s ) X (k s ) + n (k s )… (1)
[0046] 式(1)中、 H (k、 fs)は、無線送信装置 100が送信するデータ系列(送信系列) X (k 、 fs)が受ける伝搬路変動を示すチャネル応答行列である。 H (k、 fs)は(無線受信装 置 200の受信アンテナ数 Nr)行 X (無線送信装置 100における送信アンテナ数 Nt) 歹 IJからなる行列(以下、チャネル行列)である。  In equation (1), H (k, fs) is a channel response matrix indicating a propagation path variation received by a data sequence (transmission sequence) X (k, fs) transmitted by radio transmitting apparatus 100. H (k, fs) is a matrix (hereinafter referred to as a channel matrix) composed of (number of reception antennas Nr of radio reception apparatus 200) × X (number of transmission antennas Nt of radio transmission apparatus 100) 歹 IJ.
[0047] H (k、 fs)の i行 j列の行列要素 hは、信号 X (k、 fs)が、無線受信装置の第 i番目の 受信アンテナで受信される場合の伝搬路変動を表す。 X (k、 fs)は、無線送信装置 の第 j番目の送信アンテナから送信された信号を表す。  [0047] The matrix element h of i rows and j columns of H (k, fs) represents the propagation path variation when the signal X (k, fs) is received by the i-th receiving antenna of the wireless receiver. . X (k, fs) represents a signal transmitted from the j-th transmission antenna of the wireless transmission device.
[0048] また、式(1)中、 n (k、 fs)は Nt次の雑音成分ベクトルを表す。 n (k、 fs)、無線受信 装置の Nr個の受信アンテナで受信したときにそれぞれ付加される雑音成分を要素と するベクトルを表す。 [0048] In equation (1), n (k, fs) represents an Nt-order noise component vector. n (k, fs), a vector whose elements are noise components added when received by Nr receive antennas of the wireless receiver.
[0049] リファレンス信号抽出部 207は、サブフレーム中のフレーム構成された信号から、リ ファレンス信号が含まれる OFDMシンボルを抽出する。さらに、リファレンス信号抽出 部 207は、抽出した OFDMシンボルから、リファレンス信号を含むサブキャリアを抽 出する。 [0049] Reference signal extraction section 207 extracts an OFDM symbol including a reference signal from a framed signal in a subframe. In addition, reference signal extraction Unit 207 extracts a subcarrier including a reference signal from the extracted OFDM symbol.
[0050] 以下では、第 j番目の OFDMシンボルにおける第 m番目の送信アンテナから送信 されたリファレンス信号を g (j、G (s))として表す。そして、 g (j、G  [0050] In the following, the reference signal transmitted from the m-th transmission antenna in the j-th OFDM symbol is represented as g (j, G (s)). And g (j, G
m jm m jm ω)に対する第 n番目の受信アンテナにおける受信結果を y (j、G (s))として表す。  The reception result at the n-th receiving antenna for m jm m jm ω) is expressed as y (j, G (s)).
n jm  n jm
[0051] G (s)は、第 j番目の OFDMシンボルにおける第 m番目の送信アンテナから送信さ れるリファレンス信号の第 s番目のサブキャリア番号を表す。 sは、 Ng (j、 m)個以下の 自然数とする。  [0051] G (s) represents the sth subcarrier number of the reference signal transmitted from the mth transmission antenna in the jth OFDM symbol. s is a natural number of Ng (j, m) or less.
[0052] チャネル推定部 208は、復調(受信)されたデータ系列中のリファレンス信号に基づ いて伝搬路の変動状況を推定し、変動状況に基づいて、当該データ系列に対する 内揷補間または外揷補間により得られるチャネル推定値を出力する。  [0052] Channel estimation section 208 estimates the propagation state of the propagation path based on the reference signal in the demodulated (received) data sequence, and based on the variation state, internal interpolation or external interpolation for the data sequence is performed. The channel estimation value obtained by interpolation is output.
[0053] 具体的には、チャネル推定部 208は、回線変動状況検出部 2081、周波数方向補 間部 2082、内揷補間部 2083、外揷補間部 2084および出力置換部(推定値出力 部) 2085を有する。  [0053] Specifically, channel estimation section 208 includes channel fluctuation status detection section 2081, frequency direction interpolation section 2082, inner side interpolation unit 2083, outer side interpolation unit 2084, and output replacement unit (estimated value output unit) 2085. Have
[0054] 周波数方向補間部 2082は、リファレンス信号抽出部 207で抽出されたリファレンス 信号を用いて、式(1)に示したチャネル行列 H (k、 fs)の推定 ^IH (k、 fs)を算出す  [0054] The frequency direction interpolation unit 2082 uses the reference signal extracted by the reference signal extraction unit 207 to calculate the estimation ^ IH (k, fs) of the channel matrix H (k, fs) shown in Equation (1). Calculate
e  e
[0055] 本実施の形態において、リファレンス信号は、サブキャリア方向(周波数方向)およ び時間方向に間欠的に挿入されていることとする(図 2参照)。そのため、リファレンス 信号が揷入されていないサブキャリアに対しては、サブキャリア方向での補間処理を 用いる。 In this embodiment, it is assumed that the reference signal is intermittently inserted in the subcarrier direction (frequency direction) and the time direction (see FIG. 2). For this reason, interpolation processing in the subcarrier direction is used for subcarriers for which no reference signal is inserted.
[0056] また、リファレンス信号が揷入されて!/、な!/、OFDMシンボルに対しては、前後のリフ アレンス信号が揷入されている OFDMシンボルを用いて、時間方向(OFDMシンポ ル方向)の補間処理を用いて、すべてのサブキャリア、 OFDMシンボルにおけるチヤ ネル推定値を算出する。  [0056] For the! /, NA! /, OFDM symbol with the reference signal inserted, the OFDM symbol in which the preceding and following reference signals are inserted is used in the time direction (OFDM symbol direction). ) Is used to calculate channel estimates for all subcarriers and OFDM symbols.
[0057] さらに、周波数方向補間部 2082は、リファレンス信号を含む OFDMシンボルにお いて、リファレンス信号が送信されているサブキャリアに対するチャネル推定値 h (j、 G (s))を算出する。この算出式を式 (2)に示す。 [0058] [数 2] [0057] Further, frequency direction interpolation section 2082 calculates channel estimation value h (j, G (s)) for the subcarrier in which the reference signal is transmitted, in the OFDM symbol including the reference signal. This calculation formula is shown in Formula (2). [0058] [Equation 2]
( 2 ) (2)
[0059] 式(2)中、 nは Nr以下の自然数、 mは Nt以下の自然数、 jはリファレンス信号を含む OFDMシンボルのシンボル番号をそれぞれ表す。 G (s)は、第 j番目の OFDMシン ボルにお!/、て、第 m番目の送信アンテナから送信されるリファレンス信号の第 s番目 のサブキャリア番号を表す。 sは、 Ng (j m)個以下の自然数とする。 In Equation (2), n represents a natural number equal to or less than Nr, m represents a natural number equal to or less than Nt, and j represents a symbol number of an OFDM symbol including a reference signal. G (s) represents the sth subcarrier number of the reference signal transmitted from the mth transmission antenna to the jth OFDM symbol! /. s is a natural number of Ng (j m) or less.
[0060] そして、周波数方向補間部 2082は、式(2)の h (j G (s))を基に、リファレンス信 nm jm  [0060] Then, the frequency direction interpolation unit 2082 calculates the reference signal nm jm based on h (j G (s)) in the equation (2).
号を含まないサブキャリアに対し、周波数方向にチャネル推定値の補間処理を行う。 なお、周波数方向のチャネル推定値の補間処理は、特許文献 1に記載のとおり、周 波数領域または時間領域で行う。  Channel estimation values are interpolated in the frequency direction for subcarriers that do not contain a signal. Note that, as described in Patent Document 1, interpolation processing of frequency direction channel estimation values is performed in the frequency domain or the time domain.
[0061] 内揷補間部 2083は、内揷補間により第 1のチャネル推定値を推定する。具体的に は、内揷補間部 2083は、リファレンス信号を含まない第 k番目の OFDMシンボルに 対し、 OFDMシンボルのチャネル推定値 h (j fs)および h (j fs)を用いて、内 nm 1 nm 2  [0061] Inner eye interpolation unit 2083 estimates the first channel estimation value by inner eye interpolation. Specifically, the inner interpolation unit 2083 uses the OFDM symbol channel estimation values h (j fs) and h (j fs) for the k th OFDM symbol that does not include the reference signal. nm 2
揷補間によりチャネル推定値 (第 1のチャネル推定値) h (kl fs)を算出する。なお nm  チ ャ ネ ル Channel estimation value (first channel estimation value) h (kl fs) is calculated by interpolation. Nm
J <k <jとする。内揷補間は、線形補間やラグランジェ補間などを適用することが Let J <k <j. For internal interpolation, linear interpolation or Lagrange interpolation can be applied.
1 1 2 1 1 2
可能である。  Is possible.
[0062] 図 2では、内揷補間の区間は、例えば第 2番目力、ら第 j—1番目までの OFDMシン ボル区間を意味する。  [0062] In Fig. 2, the inner interpolation interval means, for example, the 2nd power and the j-1st OFDM symbol interval.
[0063] 外揷補間部 2084は、外揷補間により第 2のチャネル推定値を推定する。具体的に は、外揷補間部 2084は、サブフレーム内において、リファレンス信号を含む OFDM シンボルに挟まれず、かつ、リファレンス信号を含まない第 k番目の OFDMシンボル  [0063] Outer interpolation unit 2084 estimates the second channel estimation value by outer interpolation. Specifically, the outer interpolation unit 2084 is not sandwiched between OFDM symbols including a reference signal and does not include a reference signal in a subframe.
2  2
に対し、時間軸方向で、それより前のリファレンス信号を含む OFDMシンボルのチヤ ネル推定値 h (j fs)を用いて、外揷補間によりチャネル推定値 (第 2のチャネル推 nm 3  On the other hand, the channel estimation value (second channel estimation nm 3) is calculated by external interpolation using the channel estimation value h (j fs) of the OFDM symbol including the reference signal before it in the time axis direction.
定値) h (k fs)を算出する。なお、 j <kとする。外揷補間は、線形補間やラグラ nm 2 3 2  Fixed value) h (k fs) is calculated. Note that j <k. Outer interpolation is linear interpolation or lagra nm 2 3 2
ンジェ補間などを適用することが可能である。  It is possible to apply non-linear interpolation.
[0064] 図 2では、外揷補間の区間は、例えば第 j + 1番目以降の OFDMシンボル区間を 意味する。 [0065] 回線変動状況検出部 2081は、伝搬路の変動状況 D (j 、j 、 )を検出する。この nm 2 1 [0064] In Fig. 2, the outer interpolation interval means, for example, the j + 1st and subsequent OFDM symbol intervals. [0065] The line fluctuation state detection unit 2081 detects the fluctuation state D (j, j,) of the propagation path. This nm 2 1
とき、回線変動状況検出部 2081は、リファレンス信号を含む第 j番目および第 j番目  When the line fluctuation status detection unit 2081 includes the reference signal, the jth and jth
1 2 の OFDMシンボル間のチャネル推定値 h (j 、 )と、 h (j 、 )との内積演算を行 nm 1 nm 2  1 Calculate the inner product of the channel estimate h (j,) and h (j,) between the OFDM symbols of 2 nm nm 1 nm 2
う。この演算式を式(3)または式(4)に表す。なお、 j <jとする。  Yeah. This arithmetic expression is expressed by Expression (3) or Expression (4). Note that j <j.
1 2  1 2
[0066] [数 3]
Figure imgf000014_0001
[0066] [Equation 3]
Figure imgf000014_0001
[0067] [数 4] [0067] [Equation 4]
Dnm{h s) = R^" ' ( Λ)] … (4 ) D nm (h s ) = R ^ "'( Λ) ]… (4)
[0068] 式(3)および式 (4)中、アスタリスク(* )は複素共役演算子、 Re [X]は Xの実部をそ れぞれ表す。また、 j ≠]とする。 [0068] In Equation (3) and Equation (4), the asterisk (*) represents the complex conjugate operator, and Re [X] represents the real part of X, respectively. Also, j ≠].
1 2  1 2
[0069] 式(3)および式 (4)から、伝搬路の変動状況 D (j 、j 、fs)が 1より小さくなればな nm 2 1  [0069] From equation (3) and equation (4), if the propagation path fluctuation state D (j, j, fs) is smaller than 1, nm 2 1
るほど、伝搬路のフエージング変動が大きくなる。そして、 D (j 、 j 、 fs)が 1に近似 nm 2 1  The more the fading fluctuation of the propagation path increases. And D (j, j, fs) approximates 1 nm 2 1
するほど、伝搬路の変動が小さレヽとみなすこと力 sできる。  The more you do, the more you can assume that the fluctuation of the propagation path is small.
[0070] なお、変動状況 D (j 、 j 、 fs)の検出は、サブキャリアごとに行ってもよいし、複数 nm 2 1 [0070] It should be noted that the fluctuation state D (j, j, fs) may be detected for each subcarrier, or a plurality of nm 2 1
のサブキャリアの変動状況を平均した値として行ってもよい。あるいは、この検出は、 全てのサブキャリアではなぐ一部のサブキャリアを用いても行ってもよいし、また、サ ブキャリアをグループ化して、グループ毎の平均値を代表値として行ってもよい。さら に、サブキャリアをグループ化し、グループ化された中心近傍のサブキャリアをそのグ ループの代表値としても検出してもよレ、。  You may carry out as a value which averaged the fluctuation condition of the subcarrier of. Alternatively, this detection may be performed using a part of subcarriers other than all subcarriers, or subcarriers may be grouped and an average value for each group may be performed as a representative value. Furthermore, subcarriers can be grouped, and the grouped subcarriers near the center can be detected as representative values of the group.
[0071] 出力置換部 2085は、伝搬路の変動状況 D (j 、 j 、 fs)に基づいて、内揷補間に nm 2 1 [0071] The output replacement unit 2085 performs nm 2 1 for internal interpolation based on the fluctuation state D (j, j, fs) of the propagation path.
よるチャネル推定値、または、外揷補間によるチャネル推定値を選択して最終的なチ ャネル推定値を出力する。  Select the channel estimation value or channel estimation value by external interpolation and output the final channel estimation value.
[0072] 具体的には、出力置換部 2085は、リファレンス信号を含む OFDMシンボルの場合 は、周波数方向補間部 2082における算出結果(チャネル推定値)を出力する。 [0072] Specifically, output substitution section 2085 outputs the calculation result (channel estimation value) in frequency direction interpolation section 2082 in the case of an OFDM symbol including a reference signal.
[0073] 他方、出力置換部 2085は、リファレンス信号を含まない第 k番目の OFDMシンポ ルの場合(時間軸方向で前後にリファレンス信号を含む OFDMシンボルの場合)、 回線変動状況検出部 2081における変動状況によらず、内揷補間部 2083における 算出結果げャネル推定値)をそのまま出力する。 [0073] On the other hand, in the case of the kth OFDM symbol not including the reference signal (in the case of the OFDM symbol including the reference signal before and after in the time axis direction), the output replacement unit 2085 Regardless of the fluctuation state in the line fluctuation state detection unit 2081, the calculation result channel estimation value in the inner frame interpolation unit 2083 is output as it is.
[0074] あるいは、サブフレーム内の時間軸方向において、リファレンス信号を含まない第 k 番目の OFDMシンボルの後続に、リファレンス信号を含む OFDMシンボルが存在し なレ、場合(リファレンス信号を含む OFDMシンボル間に挟まれて!/、な!/、OFDMシン ボルの場合)、出力置換部 2085は、回線変動状況検出部 2081の検出結果、すな わち変動状況 D (j 、 j 、 fs)に基づき、次のようなチャネル推定値の置換処理を行う  [0074] Alternatively, in the time axis direction in the subframe, when there is no OFDM symbol including the reference signal following the k-th OFDM symbol not including the reference signal, between the OFDM symbols including the reference signal Output substitution unit 2085 is based on the detection result of line fluctuation status detection unit 2081, that is, fluctuation status D (j, j, fs). Perform the following channel estimation value replacement process:
[0075] すなわち、出力置換部 2085は、変動状況 D (j 、 j 、 fs)が所定値 Ld (所定 1 nm 2 1 That is, in the output replacement unit 2085, the fluctuation state D (j, j, fs) has a predetermined value Ld (predetermined 1 nm 2 1
)よりも大きい場合、伝搬路の変動が比較的小さいと判断し、内揷補間部 2083にお いて得られたチャネル推定値 h (k、 fs)を出力する。 h (k、 fs)は、 j く kとなる最大 nm nm 2  Is greater than), it is determined that the propagation path fluctuation is relatively small, and the channel estimation value h (k, fs) obtained by the inner interpolation unit 2083 is output. h (k, fs) is the maximum nm nm 2 where j is k
の自然数あるレヽはその近傍の値を用いる。  A natural number of ヽ uses a value in the vicinity thereof.
[0076] 一方、変動状況 D (j 、 j 、 fs)が所定値 Ld以下の場合、出力置換部 2085は、伝 nm 2 1  On the other hand, when the fluctuation state D (j, j, fs) is equal to or less than the predetermined value Ld, the output replacement unit 2085 transmits the nm 2 1
搬路の変動が比較的大きいと判断し、外揷補間部 2084において得られたチャネル 推定値 h (k、 )を出力する。  It is determined that the change in the transport path is relatively large, and the channel estimation value h (k,) obtained by the outer interpolation unit 2084 is output.
nm  nm
[0077] 信号分離部 209は、チャネル推定部 208 (内揷補間部または外揷補間部)の出力 であるチャネル推定値を用いて、空間多重伝送された信号の分離受信処理を行う。 こ分離受信処理にっレ、ては、非特許文献 1に記載の方法を採用する。  [0077] Signal demultiplexing section 209 performs demultiplexing and reception processing of the spatially multiplexed signal using the channel estimation value that is the output of channel estimation section 208 (inner interpolation section or outer interpolation section). This separation reception process adopts the method described in Non-Patent Document 1.
[0078] 例えば、 ZF (Zero Forcing :ゼロフォーシング)法により分離受信する場合、信号分 離部 209は、チャネル推定部 208で得られたサブキャリアごとのチャネル推定値 H (  [0078] For example, in the case of separate reception using the ZF (Zero Forcing) method, the signal separation unit 209 uses the channel estimation value H (for each subcarrier obtained by the channel estimation unit 208 (
e k、 fs)に対し、逆行列を算出して、送信シンボル系列 X (k, fs)を分離受信する。逆 行列の算出式を式(5)に表す。なお、本実施の形態では、例えば、 ZF法に基づく信 号分離法について説明したが、 ZF法に限定されず、 MMSE (平均二乗誤差最小化 )、 MLD (Maximum likelihood Detection)などの方法を適用してもよい。  For e k, fs), an inverse matrix is calculated, and the transmission symbol sequence X (k, fs) is received separately. The formula for calculating the inverse matrix is shown in Equation (5). In this embodiment, for example, the signal separation method based on the ZF method has been described, but the present invention is not limited to the ZF method, and a method such as MMSE (mean square error minimization) or MLD (Maximum likelihood Detection) is applied. May be.
[0079] [数 5コ  [0079] [Number 5
x(k s) = HA syl Y(k,fs) … ( 5 ) x (k s ) = HA sy l Y (k, f s )… (5)
[0080] 復号処理部 210は、出力置換部 2085から出力された内揷補間または外揷補間の V、ずれかのチャネル推定値を用いて、データ系列の復号処理を行う。 [0081] 具体的には、復号処理部 210は、信号分離部 209の出力信号に対し、送信された サブフレーム (制御信号)に含まれる送信信号の符号化変調情報に基づき、送信ビッ ト系列を復元する受信処理を行う。この受信処理に際して、復号処理部 210は、デマ ッビング処理やディンタリーバ処理、訂正復号処理などを行う。デマッピング処理は、 所定の変調方式によるシンボルデータ列からビットデータ列に変換する処理である。 [0080] Decoding processing section 210 performs decoding processing of a data sequence using the channel estimation value of V or shift of inner interpolation or outer interpolation output from output replacement section 2085. [0081] Specifically, decoding processing section 210 performs a transmission bit sequence on the output signal of signal separation section 209 based on the encoded modulation information of the transmission signal included in the transmitted subframe (control signal). Receive processing to restore. In this reception process, the decoding processing unit 210 performs a de-mapping process, a dingter bar process, a correction decoding process, and the like. The demapping process is a process of converting a symbol data string by a predetermined modulation method into a bit data string.
[0082] ディンタリーバ処理は、例えば無線送信装置 100において行われるインターリーブ と逆の動作を行うことによりビット順を復元する処理である。訂正復号処理は、入力さ れるビットデータ列に対して誤り訂正復号を行う処理である。  The dingter processing is processing for restoring the bit order by performing an operation reverse to the interleaving performed in the wireless transmission device 100, for example. The correction decoding process is a process for performing error correction decoding on an input bit data string.
[0083] 以上のように本実施の形態によると、リファレンス信号が所定の間隔を隔てて付加さ れたデータ系列(多重化信号)を複数の受信アンテナ 201、 202で受信し、そのデー タ系列を各 OFDM復調部 205、 206で復調する。そして、チャネル推定部 208にお V、て、復調(受信)されたデータ系列中のリファレンス信号に基づ!/、て伝搬路の変動 状況 D (j 、 j 、 fs)を推定し、その変動状況 D (j 、 j 、 fs)に基づいて、当該データ nm 2 1 nm 2 1  As described above, according to the present embodiment, a data sequence (multiplexed signal) to which a reference signal is added at a predetermined interval is received by a plurality of receiving antennas 201 and 202, and the data sequence is received. Are demodulated by the OFDM demodulation sections 205 and 206. Based on the reference signal in the data sequence demodulated (received) by the channel estimator 208, the channel fluctuation state D (j, j, fs) is estimated based on the reference signal in the demodulated (received) data sequence. Based on situation D (j, j, fs), the data nm 2 1 nm 2 1
系列に対する内揷補間または外揷補間により得られるチャネル推定値を出力する。 さらに、復号処理部 210において、内揷補間または外揷補間のいずれかのチャネル 推定値を用いて、データ系列の反復復号処理を行う。  A channel estimation value obtained by inner interpolation or outer interpolation for the sequence is output. Further, decoding processing section 210 performs iterative decoding processing of the data sequence using either channel estimation values of inner-side interpolation or outer-side interpolation.
[0084] この場合、回線変動状況検出部 2081において伝搬路の変動状況(式(3)、式 (4) 参照)を検出する。そして、フェージング等に起因する伝搬路の変動が所定レベル( 所定値)よりも小さい場合、出力置換部 2085は、外揷補間により得られた OFDMシ ンボル(例えば、図 2の j + 1個目以降のシンボル)のチャネル推定値を、当該 OFDM シンボルよりも前の OFDMシンボル(例えば、図 2の i 1個目のシンボル)の内揷補 間により得られたチャネル推定値と置き換えて出力する。  In this case, the channel fluctuation status detection unit 2081 detects the fluctuation status of the propagation path (see formulas (3) and (4)). When the propagation path variation due to fading or the like is smaller than a predetermined level (predetermined value), the output replacement unit 2085 outputs an OFDM symbol (for example, j + 1 in FIG. 2) obtained by outer interpolation. The channel estimation value of the subsequent symbols is replaced with the channel estimation value obtained by the interpolation of the OFDM symbol preceding the OFDM symbol (for example, the i 1st symbol in Fig. 2) and output.
[0085] 一方、フェージング等に起因する伝搬路の変動が所定レベルよりも大きい場合、出 力置換部 2085は、チャネル推定値の置換を行わず、外揷補間によるチャネル推定 をそのまま出力する。  [0085] On the other hand, when the fluctuation of the propagation path due to fading or the like is larger than a predetermined level, the output replacement unit 2085 outputs the channel estimation by the outer interpolation without performing the channel estimation value replacement.
[0086] 上記説明により、チャネル推定の精度が内揷補間よりも劣化する外揷補間により得 たチャネル推定値については、伝搬路の変動状況に応じて、できるだけ用いないこと となる、このため、チャネル推定の誤差が小さくなりその結果、受信品質が向上する。 [シミュレーション条件 ·結果] [0086] According to the above description, the channel estimation value obtained by outer interpolation, in which the accuracy of channel estimation is deteriorated compared to inner interpolation, is not used as much as possible depending on the propagation state of the propagation path. The channel estimation error is reduced, and as a result, the reception quality is improved. [Simulation condition · Result]
ここで、本発明により得られたチャネル推定値を用いた場合の CNR (Carrier to Noi se Ratio :受信搬送波電力対受信機内熱雑音電力比)および PER (Packet Error Rat e :パケットエラーレート) (CNR, PERを受信品質という)のシミュレーションを行った。 シミュレーション条件として、 2 X 2MIMO (Multiple Input Multiple Output)、 MLDに よる分離アルゴリズムの使用、 64QAMの変調方式、ターボ符号 (符号化率 R= 3/
Figure imgf000017_0001
Here, CNR (Carrier to Noise Ratio) and PER (Packet Error Rate) (CNR) when the channel estimation value obtained by the present invention is used. , PER is called reception quality). Simulation conditions include 2 X 2 MIMO (Multiple Input Multiple Output), use of MLD separation algorithm, 64QAM modulation method, turbo code (coding rate R = 3 /
Figure imgf000017_0001
[0088] このシミュレーション結果を図 4に示す。ここでは、同一のシミュレーション条件にお ける 3種類のパターンを示した。すなわち、理想のチャネル推定方法の場合、本発明 のチャネル推定方法の場合、比較例として従来のチャネル推定方法 (外揷補間によ るチャネル推定値を一律に用いる方法)の場合である。  The simulation results are shown in FIG. Here, three types of patterns under the same simulation conditions are shown. That is, in the case of the ideal channel estimation method, in the case of the channel estimation method of the present invention, the case of the conventional channel estimation method (a method that uniformly uses channel estimation values by external interpolation) as a comparative example.
[0089] ドップラーフェージング周波数 fd = 5. 6Hzとした場合のシミュレーション結果を図 4 Aに示し、 fd = 55. 6Hzとした場合のシミュレーション結果を図 4Bに示す。  [0089] FIG. 4A shows the simulation result when the Doppler fading frequency is fd = 5.6 Hz, and FIG. 4B shows the simulation result when fd = 55.6 Hz.
[0090] 図 4A、図 4B力 、本発明のチャネル推定方法の場合、従来のチャネル推定方法 の場合に比べて、 PER特性が良くなり、受信特性が改善することがわかる。例えば、 本発明のチャネル推定方法の場合は、従来の場合よりも、 PER= 10% (PER = 0. 1 )において、 CNRが 2dB程度良くなる。よって、受信特性の改善効果を得ることがわ かる。  4A and 4B, the channel estimation method of the present invention shows that the PER characteristic is improved and the reception characteristic is improved as compared with the case of the conventional channel estimation method. For example, in the case of the channel estimation method of the present invention, the CNR is improved by about 2 dB at PER = 10% (PER = 0. 1) compared to the conventional case. Therefore, it can be seen that the effect of improving the reception characteristics can be obtained.
[0091] [無線送信装置および無線受信装置の変形例]  [0091] [Modification of Radio Transmission Device and Radio Reception Device]
本実施の形態では、無線送信装置 100および無線受信装置 200が空間多重伝送 を行う場合について説明した力 空間多重伝送を行わなくてもよい。以下、このときの 無線送信装置 100Aおよび無線受信装置 200Aの構成例について説明する。  In the present embodiment, force spatial multiplexing transmission described in the case where radio transmitting apparatus 100 and radio receiving apparatus 200 perform spatial multiplexing transmission need not be performed. Hereinafter, configuration examples of radio transmitting apparatus 100A and radio receiving apparatus 200A at this time will be described.
[0092] 図 5は、無線送信装置 100Aの構成例を示す図である。  FIG. 5 is a diagram illustrating a configuration example of the wireless transmission device 100A.
[0093] 図 5の無線送信装置 100Aは、図 1の無線送信装置 100の場合と異なり、リファレン ス信号生成部 101、リファレンス信号多重部 102、 OFDM変調部 104、送信部 106 および 1本の送信アンテナ 108のみを有する。  [0093] Unlike the case of the wireless transmission device 100 in FIG. 1, the wireless transmission device 100A in FIG. 5 has a reference signal generation unit 101, a reference signal multiplexing unit 102, an OFDM modulation unit 104, a transmission unit 106, and one transmission. Only antenna 108 is provided.
[0094] リファレンス信号生成部 101は、所定の系列信号からなるリファレンス信号を生成し てリファレンス信号多重部 102に出力する。そして、リファレンス信号多重部 102は、 実施の形態 1の場合と同様に、データ信号 dlおよび上記リファレンス信号を入力し、 リファレンス信号を多重化して出力する。 [0094] Reference signal generation section 101 generates a reference signal composed of a predetermined sequence signal and outputs the reference signal to reference signal multiplexing section 102. Then, the reference signal multiplexing unit 102 As in the first embodiment, the data signal dl and the reference signal are input, and the reference signal is multiplexed and output.
[0095] このときの多重化信号の一例を図 6に示す。図 6の多重化信号 dlOlは、図 2の場 合と異なり、第 1のリファレンス信号のみが挿入されている。第 1のリファレンス信号はAn example of the multiplexed signal at this time is shown in FIG. Unlike the case of FIG. 2, the multiplexed signal dlOl in FIG. 6 has only the first reference signal inserted. The first reference signal is
、周波数方向および時間方向に所定の間隔を隔てて揷入されている。 They are inserted at a predetermined interval in the frequency direction and the time direction.
[0096] その他の無線送信装置 100Aの構成は、図 1の無線送信装置 100の構成と同様で ある。 The configuration of other radio transmitting apparatus 100A is the same as that of radio transmitting apparatus 100 in FIG.
[0097] 図 7は、無線受信装置 200Aの構成例を示す図である。図 7の無線受信装置 200A の受信アンテナは、 2本(受信アンテナ数 Nt = 2)の場合について説明する力 S、受信 アンテナは 1本あるいは 3本以上に変更してもよ!/、。  FIG. 7 is a diagram illustrating a configuration example of the wireless reception device 200A. The radio receiving device 200A shown in Fig. 7 has two receiving antennas (the number of receiving antennas Nt = 2). The force is S, and the receiving antenna may be changed to one or more than three! /.
[0098] 図 7において、無線受信装置 200Aは、図 3の無線受信装置 200の信号分離部 20 9に代えて、回線補償部 211を有する。なお、図 7のチャネル推定部 208は、上記 Nt および Nrをそれぞれ、 Nt= 1および Nr= 1と読み替えて適用する。  In FIG. 7, radio receiving apparatus 200A has line compensation section 211 instead of signal demultiplexing section 209 of radio receiving apparatus 200 in FIG. Note that the channel estimation unit 208 in FIG. 7 applies the above Nt and Nr as Nt = 1 and Nr = 1, respectively.
[0099] 回線補償部 211は、チャネル推定部 208 (出力置換部 2085)の出力であるチヤネ ル推定値を用いて、受信アンテナ 201で受信した信号の回線変動を補償する。  [0099] Channel compensation section 211 uses the channel estimation value that is the output of channel estimation section 208 (output replacement section 2085) to compensate for channel fluctuations in the signal received by reception antenna 201.
[0100] 例えば、 ZFにより分離受信する場合、回線補償部 211は、チャネル推定部 208で 得られたサブキャリアごとのチャネル推定値 H (k、 fs)に対し、式(6)に示す算定式 e  [0100] For example, in the case of separate reception by ZF, the channel compensation unit 211 calculates the calculation formula shown in Equation (6) for the channel estimation value H (k, fs) for each subcarrier obtained by the channel estimation unit 208. e
を用いて、回線変動を補償する。  To compensate for line fluctuations.
[0101] [数 6] / J ) - ( 6 ) [0101] [Equation 6] / J)-(6)
[0102] このようにして、回線補償部 211が回線変動を補償した後、復号処理部 210は、回 線補償部 211の出力信号に対し、送信ビット系列を復元する受信処理を行う。上記 受信処理により、受信特性がより向上する。 In this way, after channel compensation section 211 compensates for line fluctuations, decoding processing section 210 performs reception processing for restoring the transmission bit sequence on the output signal of circuit compensation section 211. The reception characteristics are further improved by the reception process.
[0103] なお、実施の形態 1 (変形例を含む)では、チャネル推定部 208は、サブフレーム内 のリファレンス信号を含む OFDMシンボルの受信結果を用いて、チャネル推定値を 算出したが、上記算出方法に限られない。例えば、チャネル推定部 208は、次のサ ブフレームの最初に現れるリファレンス信号を含む OFDMシンボルの受信結果をさ らに用いて、チャネル推定値を算出してもよい。 [0103] In Embodiment 1 (including the modified example), channel estimation section 208 calculates the channel estimation value using the reception result of the OFDM symbol including the reference signal in the subframe. It is not limited to the method. For example, the channel estimation unit 208 indicates the reception result of the OFDM symbol including the reference signal that appears at the beginning of the next subframe. In addition, the channel estimation value may be calculated.
[0104] この場合、サブフレーム内の最後に現れるリファレンス信号を含む OFDMシンボル の受信結果を基に算出されたチャネル推定値と、その次のサブフレームの最初に現 れるリファレンス信号を含む OFDMシンボルの受信結果を基に算出されたチャネル 推定値との間に存在する OFDMシンボルのチャネル推定が、内挿補間により算出さ れる。このため、チャネル推定精度が向上し、受信品質の改善を図ることができる。  [0104] In this case, the channel estimation value calculated based on the reception result of the OFDM symbol including the reference signal that appears last in the subframe, and the OFDM symbol including the reference signal that appears first in the next subframe. The channel estimation of the OFDM symbol existing between the channel estimation value calculated based on the reception result is calculated by interpolation. For this reason, channel estimation accuracy can be improved and reception quality can be improved.
[0105] また、実施の形態 1 (変形例を含む)では、まず、回線変動状況検出部 2081は、時 間軸方向のチャネル推定値の変動状況を検出する。そして、変動状況が小さい場合 、出力置換部 2085は、外揷補間により得られたチャネル推定値で算出される OFD Mシンボルのチャネル推定値を、内揷補間により得られるチャネル推定値に置換す る。ただし、変動状況の検出に用いられるチャネル推定値は、時間軸方向ではなぐ 周波数方向のものに適用してもよい。  [0105] Also, in Embodiment 1 (including the modification), first, line fluctuation state detection section 2081 detects the fluctuation state of the channel estimation value in the time axis direction. When the fluctuation state is small, the output replacement unit 2085 replaces the channel estimation value of the OFD M symbol calculated by the channel estimation value obtained by the outer interpolation with the channel estimation value obtained by the inner interpolation. . However, the channel estimation value used for detecting the fluctuation state may be applied to the frequency direction not in the time axis direction.
[0106] この場合、まず、回線変動状況検出部 2081は、周波数方向のチャネル推定値の 変動状況を検出する。そして、変動状況が小さい場合、出力置換部 2085は、周波 数方向の外揷補間により得られたチャネル推定値で算出される OFDMシンボルの チャネル推定値を、周波数方向の内揷補間により得られたチャネル推定値に置換す る。上記置換方法により、周波数方向におけるチャネル推定の精度を高め、受信品 質の改善を図ることができる。  [0106] In this case, first, the line fluctuation state detection unit 2081 detects the fluctuation state of the channel estimation value in the frequency direction. When the fluctuation state is small, the output replacement unit 2085 obtains the OFDM symbol channel estimation value calculated by the channel estimation value obtained by frequency direction outer interpolation by frequency direction inner interpolation. Replace with channel estimate. With the above replacement method, it is possible to improve the accuracy of channel estimation in the frequency direction and improve the reception quality.
[0107] (実施の形態 2)  [Embodiment 2]
実施の形態 2は、チャネル推定を位相成分および振幅成分に分離して算出し、チ ャネル推定の精度を向上させるものである。そこで、以下、チャネル推定部の構成を 中心に説明する。  In the second embodiment, the channel estimation is calculated by separating it into a phase component and an amplitude component, thereby improving the accuracy of channel estimation. Therefore, the configuration of the channel estimation unit will be mainly described below.
[0108] 図 8は、本発明の実施の形態 2における無線受信装置のチャネル推定部 208Aの 構成例を示す図である。  [0108] FIG. 8 is a diagram illustrating a configuration example of the channel estimation unit 208A of the radio reception device according to Embodiment 2 of the present invention.
[0109] 図 8のチャネル推定部 208Aは、リファレンス信号抽出部 207で抽出されたリファレ ンス信号を用いて、式(1)に示したチャネル行列 H (k、 fs)の推定 ^IH (k、 fs)を算 e [0109] The channel estimation unit 208A in Fig. 8 uses the reference signal extracted by the reference signal extraction unit 207 to estimate the channel matrix H (k, fs) shown in Equation (1) ^ IH (k, fs) e
出する。  Put out.
[0110] 本実施の形態におけるリファレンス信号は、周波数方向および時間方向に間欠的 に揷入されているものとする。そこで、まず、チャネル推定部 208Aは、リファレンス信 号が挿入されていないサブキャリアに対しては、周波数方向に補間処理を行う。 [0110] The reference signal in the present embodiment is intermittent in the frequency direction and the time direction. It is assumed that Therefore, first, channel estimation section 208A performs interpolation processing in the frequency direction for subcarriers into which no reference signal is inserted.
[0111] そして、チャネル推定部 208Aは、リファレンス信号が揷入されていない OFDMシ ンボルに対し、前後のリファレンス信号が揷入されている OFDMシンボルを用いて、 時間方向に補間処理を行う。そして、チャネル推定部 208Aは、すべてのサブキヤリ ァについての OFDMシンボルのチャネル推定値を算出する。  [0111] Then, channel estimation section 208A performs an interpolation process in the time direction on the OFDM symbol in which the reference signal is not inserted, using the OFDM symbol in which the preceding and following reference signals are inserted. Then, channel estimation section 208A calculates OFDM symbol channel estimation values for all subcarriers.
[0112] 具体的には、チャネル推定部 208Aは、周波数方向補間部 2082、位相成分分離 部 2086、振幅成分分離部 2087、第 1の内揷補間部 (位相成分時間方向内揷補間 部) 2088および第 1の外揷補間部 (位相成分時間方向外揷補間部) 2089を有する 。さらに、チャネル推定部 208Aは、第 2の内揷補間部(振幅成分時間方向内揷補間 部) 2090、第 2の外揷補間部 (振幅成分時間方向外揷補間部) 2091、内挿補間合 成部 2092、外揷補間合成部 2093および出力置換部 2085を有する。  [0112] Specifically, the channel estimation unit 208A includes a frequency direction interpolation unit 2082, a phase component separation unit 2086, an amplitude component separation unit 2087, and a first inner interpolation unit (phase component time direction inner interpolation unit) 2088. And a first outer interpolation unit (phase component time direction outer interpolation unit) 2089. In addition, the channel estimation unit 208A includes a second inner interpolation unit (amplitude component time direction inner interpolation unit) 2090, a second outer interpolation unit (amplitude component time direction outer interpolation unit) 2091, and an interpolation interpolation unit. A generation unit 2092, an outer interpolation synthesis unit 2093, and an output replacement unit 2085.
[0113] 周波数方向補間部 2082は、リファレンス信号を含む OFDMシンボルについて、リ ファレンス信号が送信されているサブキャリアに対するチャネル推定値 h (j、 G (s))  [0113] Frequency direction interpolation section 2082 uses channel estimation values h (j, G (s)) for the subcarriers to which the reference signal is transmitted for OFDM symbols including the reference signal.
nm jm を算出する。この算出式は式(2)のとおりである。そして、周波数方向補間部 2082は 、式(2)の h (j、G (s))を基に、リファレンス信号を含まないサブキャリアに対し、周  Calculate nm jm. This calculation formula is as shown in Formula (2). Then, the frequency direction interpolation unit 2082 circulates the subcarriers that do not include the reference signal based on h (j, G (s)) in Equation (2).
nm jm  nm jm
波数方向のチャネル推定値の補間処理を行う(この補間処理は特許文献 1に記載の 方法を参照)。  Interpolation processing of channel estimation values in the wavenumber direction is performed (refer to the method described in Patent Document 1 for this interpolation processing).
[0114] なお、 nは Nr以下の自然数、 mは Nt以下の自然数、 jはリファレンス信号を含む OF DMシンボル番号をそれぞれ表す。 G (s)は、第 j番目の OFDMシンボルにおける第 m番目の送信アンテナから送信されるリファレンス信号の第 s番目のサブキャリア番号 を表す。 sは Ng (j、 m)個以下の自然数とする。  [0114] Note that n represents a natural number equal to or less than Nr, m represents a natural number equal to or less than Nt, and j represents an OF DM symbol number including a reference signal. G (s) represents the sth subcarrier number of the reference signal transmitted from the mth transmission antenna in the jth OFDM symbol. s is a natural number of Ng (j, m) or less.
[0115] 位相成分分離部 2086は、リファレンス信号から得られるチャネル推定の位相成分 を分離する。具体的には、位相成分分離部 2086は、リファレンス信号を含む OFDM シンボルのチャネル推定値 h (j 、 fs)、 h (j 、 fs)の位相成分 Θ (j 、 fs)、 θ (j  [0115] Phase component separation section 2086 separates the phase component of channel estimation obtained from the reference signal. Specifically, the phase component separation unit 2086 outputs the phase components Θ (j, fs), θ (j of the channel estimation values h (j, fs), h (j, fs) of the OFDM symbol including the reference signal.
nm 1 nm 2 nm 1 nm 2 nm 1 nm 2 nm 1 nm 2
、 )を分離して出力する。 ,) Are separated and output.
[0116] 振幅成分分離部 2087は、リファレンス信号から得られるチャネル推定の振幅成分 を分離する。具体的には、振幅成分分離部 2087は、リファレンス信号を含む OFDM シンボルのチャネル推定値 h (j 、 fs)、 h (j 、 fs)の振幅成分 I h (j 、 fs) I 、 I [0116] The amplitude component separation unit 2087 separates the amplitude component of the channel estimation obtained from the reference signal. Specifically, the amplitude component separation unit 2087 includes an OFDM including a reference signal. Symbol channel estimates h (j, fs), amplitude components of h (j, fs) I h (j, fs) I, I
nm 1 nm 2 nm 1  nm 1 nm 2 nm 1
(j 、 fs) Iを分離して出力する。  (j, fs) I is separated and output.
nm 2  nm 2
[0117] 第 1の内揷補間部 2088は、リファレンス信号を含まない第 k番目の OFDMシンポ ルに対し、 2つのチャネル推定値 h (j 、 fs)、 h (j 、 fs)の各位相成分 Θ (j 、 fs)  [0117] The first internal interpolation unit 2088 calculates the phase components of the two channel estimation values h (j, fs) and h (j, fs) for the kth OFDM symbol not including the reference signal. Θ (j, fs)
nm 1 nm 2 nm 1 nm 1 nm 2 nm 1
、 Θ (j 、 fs)を用いて、内揷補間によりチャネル推定値 h (k、 fs)の位相成分 Θ nm 2 nm nm, Θ (j, fs), and phase component of channel estimate h (k, fs) by internal interpolation Θ nm 2 nm nm
(k、fs)を算出する。 Calculate (k, fs).
[0118] 各チャネル推定値 h (j 、 fs)、 h (j 、 fs)は、時間軸方向において、その前後のリ  [0118] Each channel estimation value h (j, fs), h (j, fs)
nm 1 nm 2  nm 1 nm 2
ファレンス信号を含む OFDMシンボルのチャネル推定値をそれぞれ表す。このとき、 j <k <jとする。  Represents the channel estimation value of the OFDM symbol including the reference signal. At this time, j <k <j.
1 1 2  1 1 2
[0119] なお、内揷補間は、線形補間やラグランジェ補間などを適用することが可能である。  [0119] Note that linear interpolation, Lagrange interpolation, or the like can be applied to the inner interpolation.
[0120] 第 1の外揷補間部 2089は、サブフレーム内において、第 k番目の OFDMシンポ [0120] The first outer interpolation unit 2089 includes the k-th OFDM symbol in the subframe.
2  2
ルに対し、チャネル推定値 h (j 、 fs)の位相成分 Θ (j 、 fs)を用いて、外揷補間  The outer phase interpolation using the phase component Θ (j, fs) of the channel estimate h (j, fs)
nm 3 nm 3  nm 3 nm 3
によりチャネル推定値 h (k、 fs)の位相成分 Θ (k、 fs)を算出する。このとき、 j <  To calculate the phase component Θ (k, fs) of the channel estimation value h (k, fs). At this time, j <
nm 2 nm 3 kとする。  nm 2 nm 3 k.
2  2
[0121] 第 k番目の〇FDMシンボルは、リファレンス信号を含む〇FDMシンボルに挟まれ  [0121] The kth ○ FDM symbol is sandwiched between ○ FDM symbols including the reference signal
2  2
ず、かつ、リファレンス信号を含まないシンボルである。チャネル推定ィ直 h (j 、 fs)は  And a symbol that does not include a reference signal. The channel estimation straight h (j, fs) is
nm 3 nm 3
、時間軸方向で、第 k番目の OFDMシンボルより前のリファレンス信号を含む OFD OFD including the reference signal before the kth OFDM symbol in the time axis direction
2  2
Mシンボルのチャネル推定値である。  This is a channel estimation value of M symbols.
[0122] なお、外揷補間は、線形補間やラグランジェ補間などを適用することが可能である。  [0122] Note that linear interpolation, Lagrange interpolation, or the like can be applied to the outer interpolation.
[0123] 第 2の内揷補間部 2090は、リファレンス信号を含まない第 k番目の OFDMシンポ ルに対し、 2つのチャネル推定値 h (j 、 fs)、 h (j 、 fs)の各振幅成分 I h (j 、 fs [0123] The second inner interpolation unit 2090 calculates each amplitude component of two channel estimation values h (j, fs) and h (j, fs) for the kth OFDM symbol not including the reference signal. I h (j, fs
nm 1 nm 2 nm 1 nm 1 nm 2 nm 1
) I 、 I h (j 、 fs) Iを用いて、内揷補間によりチャネル推定値 h (k、 )の振幅成 ) I, I h (j, fs) I is used to calculate the amplitude of the channel estimate h (k,) by internal interpolation.
nm 2 nm 分 I h (k、 fs) Iを算出する。  nm 2 nm min I h (k, fs) I is calculated.
nm 1  nm 1
[0124] 各チャネル推定値 h (j 、 fs)、 h (j 、 fs)は、時間軸方向において、その前後のリ  [0124] Each channel estimation value h (j, fs), h (j, fs)
nm 1 nm 2  nm 1 nm 2
ファレンス信号を含む OFDMシンボルのチャネル推定値をそれぞれ表す。このとき、 j <k <jとする。内揷補間は、線形補間やラグランジェ補間などを適用することが可 Represents the channel estimation value of the OFDM symbol including the reference signal. At this time, j <k <j. For internal interpolation, linear interpolation or Lagrange interpolation can be applied.
1 1 2 1 1 2
能である。  Noh.
[0125] 第 2の外揷補間部 2091は、サブフレーム内において、第 k番目の OFDMシンポ ルに対し、チャネル推定値 h (j 、 fs)の振幅成分 I h (j 、 fs) Iを用いて、外揷補 [0125] The second outer interpolation unit 2091 includes the kth OFDM symbol in the subframe. For the channel estimation value h (j, fs) using the amplitude component I h (j, fs) I
nm nm  nm nm
間によりチャネル推定値 h (k 、 fs)の振幅成分 I h (k、 ) Iを算出する。  The amplitude component I h (k,) I of the channel estimation value h (k, fs) is calculated according to the interval.
nm 2 nm 2  nm 2 nm 2
[0126] 第 k番目の OFDMシンボルは、リファレンス信号を含む OFDMシンボルに挟まれ  [0126] The kth OFDM symbol is sandwiched between OFDM symbols including a reference signal.
2  2
ず、かつ、リファレンス信号を含まないシンボルである。チャネル推定値 h (j 、 fs)は  And a symbol that does not include a reference signal. The channel estimate h (j, fs) is
nm 3 nm 3
、時間軸方向で、第 k番目の OFDMシンボルより前のリファレンス信号を含む OFD OFD including the reference signal before the kth OFDM symbol in the time axis direction
2  2
推定値である。このとき、 j <kとする。外揷補間は、線形補間  Estimated value. At this time, j <k. Outer interpolation is linear interpolation
3 2  3 2
ンェ補間などを適用することが可能である。  Ne interpolation or the like can be applied.
[0127] 内揷補間合成部 2092は、上記位相成分および上記振幅成分に基づいて、内揷 補間によりチャネル推定値を合成する。 The inner interpolation interpolation unit 2092 synthesizes a channel estimation value by inner interpolation based on the phase component and the amplitude component.
[0128] 具体的には、内揷補間合成部 2092は、第 1の内揷補間部 2088の出力であるチヤ ネル推定値 h (k、 fs)の位相成分 Θ (k、 fs)と、第 2の内揷補間部 2090の出力で Specifically, the inner interpolation interpolation unit 2092 outputs the phase component Θ (k, fs) of the channel estimation value h (k, fs), which is the output of the first inner interpolation unit 2088, and the first 2 internal interpolation unit 2090 output
nm nm  nm nm
あるチャネル推定値 h (k、 fs)の振幅成分 I h (k、 fs) Iとを基に、チャネル推定  Channel estimation based on the amplitude component I h (k, fs) I of a certain channel estimation value h (k, fs)
nm nm  nm nm
値 h (k、 fs) = I h (k、 fs) I exp (j Θ (k、 fs) )を合成して出力置換部 2085に nm nm nm  The value h (k, fs) = I h (k, fs) I exp (j Θ (k, fs)) is synthesized into the output substitution unit 2085 nm nm nm
出力する。  Output.
[0129] 外揷補間合成部 2093は、上記位相成分および上記振幅成分に基づ!/、て、外揷 補間によりチャネル推定値を合成する。  Outer interpolation synthesis section 2093 synthesizes a channel estimation value by outer interpolation based on the phase component and the amplitude component.
[0130] 具体的には、外揷補間合成部 2093は、第 1の外揷補間部 2089の出力であるチヤ ネル推定値 h (k、 fs)の位相成分 Θ (k、 fs)と、第 2の外揷補間部 2091の出力で [0130] Specifically, the outer interpolation interpolation unit 2093 outputs the phase component Θ (k, fs) of the channel estimation value h (k, fs) that is the output of the first outer interpolation unit 2089, and the first 2 Outer interpolation unit 2091 output
nm nm  nm nm
あるチャネル推定値 h (k、 fs)の振幅成分 I h (k、 fs) Iとを基に、チャネル推定  Channel estimation based on the amplitude component I h (k, fs) I of a certain channel estimation value h (k, fs)
nm nm  nm nm
値 h (k、 fs) = I h (k、 fs) I exp (j Θ (k、 fs) )を合成して出力置換部 2085に nm nm nm  The value h (k, fs) = I h (k, fs) I exp (j Θ (k, fs)) is synthesized into the output substitution unit 2085 nm nm nm
出力する。  Output.
[0131] 上記チャネル推定値の合成により、出力置換部 2085は、伝搬路の変動状況に基 づレ、て、内揷補間によるチャネル推定値または外揷補間によるチャネル推定値を出 力する。  [0131] By synthesizing the channel estimation values, the output replacement unit 2085 outputs the channel estimation value based on the inner interpolation or the channel estimation value based on the outer interpolation based on the propagation state of the propagation path.
[0132] 具体的には、出力置換部 2085は、内揷補間合成部 2092の出力であるチャネル 推定値 h (k、 )、および外揷補間合成部 2093の出力であるチャネル推定値 h ( nm nm k、 fs)を入力する。そして、出力置換部 2085は、実施の形態 1の場合と同様の方法 で、最終的なチャネル推定値を出力する。 [0133] 例えば、出力置換部 2085は、リファレンス信号を含む OFDMシンボルの場合は、 周波数方向補間部 2082における算出結果げャネル推定値)を出力する。 [0132] Specifically, the output replacement unit 2085 outputs the channel estimation value h (k,) that is the output of the inner interpolation interpolation synthesis unit 2092 and the channel estimation value h (nm that is the output of the outer interpolation interpolation synthesis unit 2093. nm k, fs). Then, output substitution section 2085 outputs the final channel estimation value by the same method as in the first embodiment. [0133] For example, in the case of an OFDM symbol including a reference signal, the output replacement unit 2085 outputs the calculation result channel estimation value) in the frequency direction interpolation unit 2082.
[0134] 他方、出力置換部 2085は、リファレンス信号を含まない第 k番目の OFDMシンポ ルの場合(時間軸方向で前後にリファレンス信号を含む OFDMシンボルの場合)、 回線変動状況検出部 2081における変動状況によらず、内揷補間部 2083における 算出結果げャネル推定値)をそのまま出力する。 On the other hand, in the case of the kth OFDM symbol that does not include the reference signal (in the case of the OFDM symbol that includes the reference signal before and after in the time axis direction), the output replacement unit 2085 Regardless of the situation, the inner channel interpolation unit 2083 outputs the calculation result channel estimation value) as it is.
[0135] その他の回線変動状況検出部 2081を含むチャネル推定部の構成は、図 3の実施 の形態 1の場合と同様である。 [0135] The configuration of the channel estimation unit including the other channel fluctuation state detection unit 2081 is the same as that of the first embodiment in FIG.
[0136] 以上のように本実施の形態では、チャネル推定を位相成分および振幅成分に分離 独立して算出するので、チャネル推定の精度がより向上する。 [0136] As described above, in the present embodiment, since channel estimation is calculated separately for phase components and amplitude components, the accuracy of channel estimation is further improved.
[0137] (実施の形態 3) [0137] (Embodiment 3)
実施の形態 3は、図 2の実施の形態 1の多重化信号とは別のフレームを用いた場合 のものである。  Embodiment 3 is a case where a frame different from the multiplexed signal of Embodiment 1 in FIG. 2 is used.
[0138] 図 9は、実施の形態 3における多重化信号のフレーム構成を示す図である。  [0138] FIG. 9 is a diagram showing a frame structure of a multiplexed signal in the third embodiment.
[0139] 図 9に示す多重化信号 dl02 (lつのフレーム)は、複数(Ns個)のサブフレームを含 んで構成されている。そして、 1つのサブフレームには、 Nf個の OFDMシンボルを含 んでいる。サブフレームは、リファレンス信号とそれ以外の制御信号とを含むデータ 信号部から構成される。 [0139] The multiplexed signal dl02 (l frame) shown in Fig. 9 includes a plurality (Ns) of subframes. One subframe includes Nf OFDM symbols. The subframe is composed of a data signal portion including a reference signal and other control signals.
[0140] リファレンス信号は、 1つの OFDMシンボルの周波数方向にすべて揷入され、時間 方向に間欠的に挿入されている。 1つの OFDMシンボルには、複数の Nc個のサブ キャリアを含む。  [0140] The reference signals are all inserted in the frequency direction of one OFDM symbol and inserted intermittently in the time direction. One OFDM symbol includes a plurality of Nc subcarriers.
[0141] 空間多重伝送の場合、異なる送信アンテナから送信される送信信号のリファレンス 信号のサブキャリア揷入位置は、送信アンテナごとにずらして配置される。  [0141] In the case of spatial multiplexing transmission, the subcarrier insertion positions of reference signals of transmission signals transmitted from different transmission antennas are shifted for each transmission antenna.
[0142] リファレンス信号の揷入位置は、送信される各送信アンテナに応じて、異なる。例え ば、他の送信アンテナからの送信信号にリファレンス信号が揷入されている場合、そ のサブキャリアを用いた送信を行わないヌルキャリアとする。上記揷入位置方法により 空間多重時には、異なるアンテナからのリファレンス信号は異なるサブキャリアを用い て送信することで、周波数分割多重 (FDM)され、受信時にそれぞれ分離受信する こと力 sできる。その他のリファレンス信号を含む無線送信装置の構成は、図 1および 図 2の実施の形態 1の場合と同様である。 [0142] The insertion position of the reference signal differs depending on each transmission antenna to be transmitted. For example, if a reference signal is inserted in a transmission signal from another transmission antenna, it is set as a null carrier that does not perform transmission using that subcarrier. When spatial multiplexing is performed using the above insertion position method, reference signals from different antennas are transmitted using different subcarriers, so that they are frequency division multiplexed (FDM) and received separately when received. That power s. The configuration of the wireless transmission device including other reference signals is the same as that of the first embodiment shown in FIGS.
[0143] 図 10は、実施の形態 3における無線受信装置 200Bの構成例を示す図である。 [0143] FIG. 10 is a diagram illustrating a configuration example of radio receiving apparatus 200B in the third embodiment.
[0144] 図 10の無線受信装置 200Bは、図 3の周波数方向補間部 2082に代えて、仮推定 値算出部 (周波数仮推定値算出部) 2094を有する。その他の構成は、実施の形態 1 と同様である。 Radio reception apparatus 200B in FIG. 10 has provisional estimated value calculation section (temporary estimated value calculation section) 2094 instead of frequency direction interpolation section 2082 in FIG. Other configurations are the same as those in the first embodiment.
[0145] 仮推定値算出部 2094は、リファレンス信号を含む OFDMシンボルについて、リフ アレンス信号が送信されているサブキャリアに対するチャネル推定値 h (j G (s))を  [0145] Temporary estimation value calculation section 2094 calculates channel estimation value h (j G (s)) for the subcarrier on which the reference signal is transmitted, for the OFDM symbol including the reference signal.
nm jm 算出する。この算出式は、式(2)のとおりである。そして、仮推定値算出部 2094は、 h (j G (s))を基に、リファレンス信号を含まないサブキャリアに対し、周波数方向 nm jm  Calculate nm jm. This calculation formula is as shown in Formula (2). Then, the temporary estimated value calculation unit 2094 calculates the frequency direction nm jm for subcarriers not including the reference signal based on h (j G (s)).
のチャネル推定値の補間処理を行う(この補間処理は特許文献 1に記載の方法を参 昭)  The channel estimation value is interpolated (see the method described in Patent Document 1 for this interpolation processing)
[0146] さらに、仮推定値算出部 2094は、補間処理の結果を内揷補間部 2083および外 揷補間部 2084に出力する。内揷補間部 2083および外揷補間部 2084は、それぞ れ、仮推定値算出部 2094における補間処理の結果を用いて、実施の形態 1と同様 の処理を行う。  Furthermore, temporary estimated value calculation section 2094 outputs the result of the interpolation processing to inner eye interpolation section 2083 and outer eye interpolation section 2084. Inner side interpolation unit 2083 and outer side interpolation unit 2084 each perform the same processing as in Embodiment 1 using the result of the interpolation processing in temporary estimated value calculation unit 2094.
[0147] 以上のように構成することにより、サブフレーム中のリファレンス信号の割合が増加 するため、データ伝送効率が低下するものの、次のような効果を得る。すなわち、リフ アレンス信号を含む OFDMシンボルについて、周波数方向に補間処理を行うことな ぐチャネル推定値を算出する。このため、チャネル推定の精度が向上する。  [0147] With the configuration as described above, the ratio of the reference signal in the subframe is increased, so that the data transmission efficiency is reduced, but the following effects are obtained. In other words, the channel estimation value is calculated without performing interpolation processing in the frequency direction for the OFDM symbol including the reference signal. For this reason, the accuracy of channel estimation is improved.
[0148] (実施の形態 4)  [Embodiment 4]
実施の形態 4は、無線送信装置においてデータ信号部よりも送信電力を大きいリフ アレンス信号を送信する場合のものである。  Embodiment 4 is for a case where a reference signal having a transmission power larger than that of a data signal section is transmitted in a radio transmission apparatus.
[0149] 図 11は、実施の形態 4における無線送信装置 100Bの構成例を示す図である。  [0149] FIG. 11 is a diagram illustrating a configuration example of a wireless transmission device 100B in the fourth embodiment.
[0150] 図 11の無線送信装置 100Bは、図 1の実施の形態 1における無線送信装置 100に 、電力制御部 112および 2つの乗算部 110 111をさらに有する。その他の無線送信 装置の構成は、実施の形態 1における無線送信装置と同様の構成である。そこで、 以下、実施の形態 1と異なる部分を中心に説明する。 [0151] 電力制御部 1 12は、 OFDMシンボルに含まれるリファレンス信号の送信電力を可 変するための重み係数を各乗算部 1 10、 1 1 1に出力する。 Radio transmitting apparatus 100B in FIG. 11 further includes power control section 112 and two multiplying sections 110 111 in radio transmitting apparatus 100 in Embodiment 1 in FIG. The configuration of other radio transmission apparatuses is the same as that of the radio transmission apparatus in the first embodiment. Therefore, the following description will focus on the differences from the first embodiment. [0151] The power control section 112 outputs a weighting factor for changing the transmission power of the reference signal included in the OFDM symbol to each of the multiplication sections 110, 111.
[0152] 各乗算部 1 10、 1 1 1は、電力制御部 1 12の出力である重み係数と、リファレンス信 号生成部 101の出力であるリファレンス信号とを乗算して、対応する各リファレンス信 号多重部 102、 103に出力する。以降、各リファレンス信号多重部 102、 103が、各 乗算部 1 10、 1 1 1の出力に基づいて、実施の形態 1の場合と同様に、リファレンス信 号を多重化して各 OFDM変調部 104、 105に出力する。なお、本実施の形態では、 各リファレンス信号多重部 102、 103は、リファレンス信号を多重化する場合、重み係 数 (例えば /3 )および当該リファレンス信号の位置(OFDMシンボルの位置)を含む 電力情報を制御情報に挿入する。  [0152] Each multiplier 1 10, 1 1 1 multiplies the weighting factor that is the output of the power controller 1 12 by the reference signal that is the output of the reference signal generator 101, and each corresponding reference signal. It outputs to the number multiplexing part 102,103. Thereafter, each reference signal multiplexing section 102, 103 multiplexes the reference signal based on the output of each multiplication section 1 10, 1 1 1 1, as in the case of Embodiment 1, and each OFDM modulation section 104, Output to 105. In the present embodiment, each reference signal multiplexing section 102, 103, when multiplexing a reference signal, includes power information including a weighting factor (eg, / 3) and the position of the reference signal (OFDM symbol position). Is inserted into the control information.
[0153] このように構成することにより、以降、各送信アンテナ 108、 109から、データ信号部 よりも送信電力の大きいリファレンス信号が空中に放射される。  [0153] With this configuration, a reference signal having a transmission power larger than that of the data signal unit is radiated from the transmission antennas 108 and 109 into the air.
[0154] ここで、上記重み係数は、リファレンス信号の送信電力がデータ信号部(あるサブフ レームにおいてリファレンス信号を含む最後の OFDMシンボル)よりも大きな電力と なるような係数 (例えば /3倍、 1 < β )である。これにより、無線受信装置において、リ ファレンス信号を受信する可能性が大きくなる。  [0154] Here, the weighting factor is a factor (for example, / 3 times, 1) such that the transmission power of the reference signal is larger than that of the data signal part (the last OFDM symbol including the reference signal in a certain subframe). <β). This increases the possibility of receiving the reference signal in the wireless reception device.
[0155] 図 12は、実施の形態 4における無線受信装置 200Cの構成例を示す図である。  [0155] FIG. 12 is a diagram illustrating a configuration example of radio receiving apparatus 200C in the fourth embodiment.
[0156] 図 12の無線受信装置 200Cは、図 3の実施の形態 1における無線受信装置 200に 、電力情報抽出部 212をさらに有する。その他の無線受信装置の構成は、実施の形 態 1における無線受信装置と同様の構成である。そこで、以下、実施の形態 1と異な る部分を中心に説明する。  Radio reception apparatus 200C in FIG. 12 further includes power information extraction section 212 in radio reception apparatus 200 in Embodiment 1 in FIG. Other configurations of the radio receiving apparatus are the same as those of the radio receiving apparatus in the first embodiment. Therefore, the following description will focus on the parts different from the first embodiment.
[0157] 電力情報抽出部 212は、図 1 1の無線送信装置 100B (各送信アンテナ 108、 109) から送信されるデータ系列に付加された制御情報から、上記電力情報を抽出する。 なお、電力情報は、重み係数 (例えば /3 )およびリファレンス信号の位置を含んで構 成されている。  [0157] The power information extraction unit 212 extracts the power information from the control information added to the data sequence transmitted from the wireless transmission device 100B (respective transmission antennas 108 and 109) in FIG. Note that the power information includes a weighting coefficient (for example, / 3) and the position of the reference signal.
[0158] 周波数方向補間部 2082は、電力情報抽出部 212から得られた電力情報(重み係 数( /3 )、リファレンス信号の位置)に基づき、当該リファレンス信号を含む OFDMシン ボルについて、リファレンス信号が送信されているサブキャリアに対するチャネル推定 値 h (j、G (s))を算出する。この算出式を式 (7)に表す。 [0158] Frequency direction interpolation section 2082 uses the reference information for the OFDM symbol including the reference signal based on the power information (weight coefficient (/ 3), position of reference signal) obtained from power information extraction section 212. Channel estimation for the subcarrier on which is transmitted Calculate the value h (j, G (s)). This calculation formula is shown in Formula (7).
nm jm  nm jm
[0159] [数 7]  [0159] [Equation 7]
, A (J, rG» ,、、 y" , Gj sy) … ( ( ? ) , A ( J, rG »,, y", G j s y)… ((?)
[0160] 式(7)中、 nは Nr以下の自然数、 mは Nt以下の自然数、 jはリファレンス信号を含む OFDMシンボル番号をそれぞれ表す。 G (s)は、第 j番目の OFDMシンボルにつ!/ヽ て、第 m番目の送信アンテナから送信されるリファレンス信号の第 s番目のサブキヤリ ァ番号を表す。 sは Ng (j、 m)個以下の自然数とする。 [0160] In equation (7), n represents a natural number of Nr or less, m represents a natural number of Nt or less, and j represents an OFDM symbol number including a reference signal. G (s) represents the sth subcarrier number of the reference signal transmitted from the mth transmission antenna for the jth OFDM symbol. s is a natural number of Ng (j, m) or less.
[0161] そして、周波数方向補間部 2082は、式(7)の h (j、 G (s))を基に、リファレンス信  [0161] Then, the frequency direction interpolation unit 2082 uses the reference signal h (j, G (s)) in Equation (7).
nm jm  nm jm
号を含まないサブキャリアに対し、周波数方向にチャネル推定値の補間処理を行う ( この補間処理は特許文献 1に記載の方法を参照)。  Channel estimation values are interpolated in the frequency direction for subcarriers that do not contain a signal (refer to the method described in Patent Document 1 for this interpolation processing).
[0162] 以上のように構成することにより、実施の形態 1の効果を奏するほか、リファレンス信 号の送信電力を大きくでき、チャネル推定の精度を高めることが可能となる。よって、 受信品質の改善を図ることができる。 [0162] With the configuration as described above, the effects of Embodiment 1 can be obtained, and the transmission power of the reference signal can be increased, and the accuracy of channel estimation can be improved. Therefore, the reception quality can be improved.
[0163] 具体的には、無線送信装置 100Bの電力制御部 112が、リファレンス信号の送信電 力をデータ信号部よりも大きくなるように重み係数(/3倍)を出力する。これにより、リフ アレンス信号の送信電力が大きくなり、チャネル推定の精度が高まる。 [0163] Specifically, power control section 112 of radio transmitting apparatus 100B outputs a weighting factor (/ 3 times) so that the transmission power of the reference signal is larger than that of the data signal section. This increases the transmission power of the reference signal and increases the accuracy of channel estimation.
[0164] [他の送信電力の制御方法] [0164] [Other transmission power control methods]
なお、電力制御部 112は、次の第 1ないし第 4の制御方法を用いて、  The power control unit 112 uses the following first to fourth control methods,
号の送信電力を制御するようにしてもよい。  The transmission power of the signal may be controlled.
[0165] 第 1の制御方法の場合、電力制御部 112は、サブフレームについて、 [0165] In the case of the first control method, the power control unit 112
信号を含む最後の OFDMシンボルの送信電力が他の OFDMシンボルよりも大きく なるように制御してもよい(最後の OFDMシンボルの重み係数を /3とする)。この場合 The transmission power of the last OFDM symbol including the signal may be controlled so as to be larger than other OFDM symbols (the weight coefficient of the last OFDM symbol is set to / 3). in this case
、無線受信装置 200Cにおいて、外揷補間により得られる OFDMシンボルのチヤネ ル推定の精度を向上させることができる。 In radio receiving apparatus 200C, it is possible to improve the accuracy of channel estimation of OFDM symbols obtained by outer interpolation.
[0166] 第 2の制御方法の場合、電力制御部 112は、ユーザ個人のデータについて、その 最後のサブフレーム中、リファレンス信号を含む最後の OFDMシンボルの送信電力 が他の OFDMシンボルよりも大きくなるように制御してもよい(最後の OFDMシンポ ルの重み係数を /3倍とする)。この場合も、外揷補間により得られる OFDMシンボル のチャネル推定の精度を向上させることが可能となる。 [0166] In the case of the second control method, the power control section 112 has the transmission power of the last OFDM symbol including the reference signal larger than that of other OFDM symbols in the last subframe of the user's personal data. (The last OFDM symbol) The weighting factor of the router is / 3). Also in this case, it is possible to improve the accuracy of channel estimation of OFDM symbols obtained by outer interpolation.
[0167] さらに、第 2の制御方法の場合、第 1の制御方法と異なり、最小限の OFDMシンポ ルに対してリファレンス信号の送信電力を増加させる。このため、データ系列中のデ ータ信号部の送信電力の配分が低くなることを防止することができる。よって、データ の送信効率の低下を抑えることができる。  [0167] Further, unlike the first control method, the second control method increases the transmission power of the reference signal with respect to the minimum OFDM symbol. For this reason, it is possible to prevent the transmission power distribution of the data signal part in the data series from being lowered. Therefore, a decrease in data transmission efficiency can be suppressed.
[0168] 第 3の制御方法の場合、無線送信装置 100Bの電力制御部 112は、無線受信装置  [0168] In the case of the third control method, the power control unit 112 of the wireless transmission device 100B is the wireless reception device.
200Cにおける回線変動の状況(式(3)、式 (4)参照)に応じて、リファレンス信号の 送信電力を制御する。この場合、無線受信装置 200Cは、回線変動状況検出部 208 1の検出結果を無線送信装置 100B (電力制御部 112)に送信するフィードバック部( 検出結果送信部:不図示)をさらに有する。  Controls the transmission power of the reference signal according to the line fluctuation situation at 200C (see Equations (3) and (4)). In this case, the wireless reception device 200C further includes a feedback unit (detection result transmission unit: not shown) that transmits the detection result of the line fluctuation state detection unit 2081 to the wireless transmission device 100B (power control unit 112).
[0169] そして、無線送信装置 100B (電力制御部 112)は、その検出結果に応じて、上記 送信電力を制御する。例えば、検出結果に示された回線変動が所定値よりも大きい 場合のみ、無線送信装置 100B (電力制御部 112)は、リファレンス信号の送信電力 をデータ信号部よりも大きくなるように重み係数(/3倍)を出力する。  [0169] Radio transmission apparatus 100B (power control unit 112) controls the transmission power according to the detection result. For example, only when the line fluctuation indicated in the detection result is larger than a predetermined value, the wireless transmission device 100B (power control unit 112) causes the weighting factor (// so that the transmission power of the reference signal is larger than that of the data signal unit. 3 times).
[0170] これにより、回線変動が所定値より大きい場合は、リファレンス信号の送信電力が増 加する。このため、特に、外揷補間により得られる OFDMシンボルのチャネル推定の 精度を高めることができる。  [0170] Thereby, when the line fluctuation is larger than a predetermined value, the transmission power of the reference signal is increased. For this reason, in particular, the accuracy of channel estimation of OFDM symbols obtained by outer interpolation can be improved.
[0171] 他方、回線変動が所定値より小さい場合は、リファレンス信号の送信電力が増加し ないので、実施の形態 1と同様の効果 (特性改善効果)を得ることができる。  On the other hand, when the line fluctuation is smaller than the predetermined value, the transmission power of the reference signal does not increase, so that the same effect (characteristic improvement effect) as in Embodiment 1 can be obtained.
[0172] 第 4の制御方法の場合(TDD (Time Division Duplex)伝送の場合)、無線送信装 置 100Bは、第 3の制御方法の場合と異なり、リバースリンク(無線送信装置 100Bか ら無線受信装置 200Cへの送信方向と、逆方向の無線リンク)からの受信信号に基 づくフエージング変動状況を検出するフェージング変動状況検出部(不図示)をさら に有する。  [0172] In the case of the fourth control method (TDD (Time Division Duplex) transmission), the wireless transmission device 100B is different from the third control method in that the reverse link (wireless reception from the wireless transmission device 100B) is performed. It further has a fading fluctuation status detection unit (not shown) that detects a fading fluctuation status based on a received signal from the transmission link to the device 200C and the radio link in the reverse direction.
[0173] このように構成しても、伝搬路の相対性を利用することにより、無線送信装置 100B のフェージング変動状況検出部(不図示)において、無線受信装置 200C (受信側) におけるフェージング変動状況(回線変動)を検出することが可能となる。このため、 無線送信装置 100B (電力制御部 112)は、そのフェージング変動状況に応じて、リ ファレンス信号の送信電力を制御する。このようにしても、第 3の制御方法の場合と同 様の効果を得る。 [0173] Even with this configuration, the fading fluctuation status in the radio reception device 200C (reception side) is detected in the fading fluctuation status detection unit (not shown) of the radio transmission device 100B by using the relativity of the propagation paths. (Line fluctuation) can be detected. For this reason, Radio transmitting apparatus 100B (power control unit 112) controls the transmission power of the reference signal according to the fading fluctuation state. Even in this case, the same effect as in the third control method can be obtained.
[0174] [さらに別の送信電力の制御方法]  [0174] [Another Transmission Power Control Method]
なお、上述した本実施の形態では、無線送信装置 100Bにおいてデータ信号部よ りも、送信電力の大きいリファレンス信号を送信する場合、図 13に示すように、データ 信号部の送信電力を変化させずに、リファレンス信号の送信電力を増加して送信す る方法について説明した(以下「方法(1)」という)。方法(1)では、リファレンス信号の 送信電力増大を行う帯域は、通信運用帯域中の全帯域 (OFDMでデータ伝送に用 いる全サブキャリア)を用いる。この場合、リファレンス信号を含む OFDMシンボルの 送信電力は、リファレンス信号を含まない OFDMシンボルよりも増加することになる。  In the present embodiment described above, when transmitting a reference signal having higher transmission power than the data signal unit in radio transmission apparatus 100B, the transmission power of the data signal unit is not changed as shown in FIG. The method for increasing the reference signal transmission power for transmission (hereinafter referred to as “method (1)”) has been described. In method (1), the bandwidth for increasing the transmission power of the reference signal is the entire bandwidth in the communication operation bandwidth (all subcarriers used for data transmission in OFDM). In this case, the transmission power of the OFDM symbol including the reference signal is increased as compared to the OFDM symbol not including the reference signal.
[0175] なお、方法(1)において、 OFDMシンボル内に含まれるサブキャリア信号の送信電 力の総和がほぼ一定になるように、データ信号部とリファレンス信号の送信電力配分 を可変するようにしてもよい。すなわち、「リファレンス信号として割り当てられた総ての サブキャリア信号の総送信電力」に、「リファレンス信号以外が割り当てられた全ての サブキャリア信号の総送信電力」を加えた送信電力がサブフレーム内においてほぼ 一定となるように送信する。  [0175] In method (1), the transmission power distribution of the data signal section and the reference signal is made variable so that the sum of the transmission powers of the subcarrier signals included in the OFDM symbol is substantially constant. Also good. That is, the transmission power obtained by adding “the total transmission power of all subcarrier signals allocated except for the reference signal” to the “total transmission power of all subcarrier signals allocated as reference signals” within the subframe. Send it so that it is almost constant.
[0176] 図 14は、 OFDMシンボル内に含まれるサブキャリア信号の送信電力の総和がほぼ 一定になるように、データ信号部とリファレンス信号の送信電力配分を可変した場合 のリファレンス信号とデータ信号部の送信電力の関係の一例を示す。図 14から分か るように、総送信電力がサブフレーム内において一定となるようにしたので、データ信 号部の送信電力は低下するものの、後述するように、送信電力が低下するデータ信 号部に、受信品質の劣化が小さい信号を揷入することで、その影響を低減することが できる。  [0176] Fig. 14 shows the reference signal and the data signal section when the transmission power distribution of the data signal section and the reference signal is varied so that the sum of the transmission power of the subcarrier signals included in the OFDM symbol is substantially constant. 2 shows an example of the relationship between the transmission powers. As can be seen from FIG. 14, since the total transmission power is made constant in the subframe, the transmission power of the data signal section decreases, but the data signal whose transmission power decreases as described later. The effect can be reduced by inserting a signal with a small deterioration in reception quality into the part.
[0177] 方法(1)とは別な方法として、図 15に示すように、全帯域から一部を選定した部分 的な帯域(以下、「サブバンド」と呼び、 OFDMでデータ伝送に用いるすべてのサブ キャリアのうちの一部を対象とする。)に限定して、リファレンス信号の送信電力を増加 して送信を行う方法を適用することも可能である(以下「方法(2)」とレヽぅ)。 [0178] なお、サブバンドに限定してリファレンス信号の送信電力を増加して送信する場合( 方法(2) )、図 16に示すように、 OFDMシンボル内に含まれるサブキャリア信号の送 信電力の総和がほぼ一定になるように、データ信号部とリファレンス信号の送信電力 配分を可変するようにしてもよい。図 16から分かるように、この場合、リファレンス信号 の送信電力の増加時に、データ信号部の送信電力は低下する関係となるものの、送 信電力が低下するデータ信号部に、受信品質の劣化が小さい信号を挿入することで 、その影響を低減することができる。 [0177] As a method different from method (1), as shown in Fig. 15, a partial band (hereinafter referred to as "subband"), which is selected from all bands, is used for data transmission in OFDM. It is also possible to apply a method of increasing the reference signal transmission power for transmission (hereinafter referred to as “method (2)”).ぅ). [0178] Note that, when the transmission power of the reference signal is increased only in the subband (method (2)), the transmission power of the subcarrier signal included in the OFDM symbol as shown in FIG. The transmission power distribution of the data signal section and the reference signal may be varied so that the sum of the two becomes substantially constant. As can be seen from FIG. 16, in this case, when the transmission power of the reference signal is increased, the transmission power of the data signal portion is reduced, but the data signal portion where the transmission power is reduced is less deteriorated in reception quality. The effect can be reduced by inserting a signal.
[0179] このように、リファレンス信号の送信電力増大を行う帯域を、通信運用帯域中の全 帯域 (方法(1) )、あるいは、全帯域から一部を選定した部分的な帯域 (サブバンド) に限定 (方法(2) )して送信を行う方法がある。  [0179] As described above, the band for increasing the transmission power of the reference signal is the entire band (method (1)) in the communication operation band, or a partial band (subband) selected from all bands. There is a method of transmitting by limiting (method (2)).
[0180] 以下では、リファレンス信号の送信電力増大を行う帯域をサブバンドに限定し (方法  [0180] In the following, the band for increasing the transmission power of the reference signal is limited to subbands (method
(2) )、さらに、総送信電力をサブフレーム内で一定とする場合について、図 16を用 いて補足説明をする。  (2)) In addition, a supplementary explanation will be given using FIG. 16 for the case where the total transmission power is constant in the subframe.
[0181] 図 16は、サブバンドに限定して送信を行う場合に、間欠的に配置されたリファレン ス信号と、データ信号の送信信号レベルを示す。図 16に示す例では、特定のサブバ ンドに限定して、複数の送信電力を高めたリファレンス信号が割り当てられる。また、 それらの送信電力を高めたリファレンス信号のサブキャリアで挟まれる、データ信号 が割り当てられて!/、る複数のサブキャリア (リファレンス信号送信電力増大部分帯域) のみ他のデータ信号に対して、送信電力を一定の割合で低減する。これにより、「リフ アレンス信号として割り当てられた総てのサブキャリア信号の総送信電力」に、「リファ レンス信号以外が割り当てられた全てのサブキャリア信号の総送信電力」を加えた送 信電力がサブフレーム内において一定となる関係を満たすように送信できる。  [0181] FIG. 16 shows the reference signals arranged intermittently and the transmission signal level of the data signal when transmission is limited to the subband. In the example shown in FIG. 16, a plurality of reference signals with higher transmission power are assigned only to a specific subband. In addition, data signals that are sandwiched between subcarriers of the reference signal with increased transmission power are allocated! /, And only a plurality of subcarriers (reference signal transmission power increased partial band) are compared to other data signals. Reduce transmission power at a constant rate. As a result, the transmission power obtained by adding “the total transmission power of all subcarrier signals allocated to other than the reference signal” to “the total transmission power of all subcarrier signals allocated as the reference signal”. Transmission can be performed so as to satisfy a constant relationship within a subframe.
[0182] このような送信方法により、送信電力が一定の割合で低減されたデータ信号部に対 するチャネル推定値を、複数の送信電力を高めたリファレンス信号が割り当てられた サブバンドのみを取り出した上で、内揷補間し、さらに、リファレンス信号送信電力ォ フセット量を用いて、オフセット量を考慮した係数を乗算することで、算出することがで きる。チャネル推定値の算出方法の詳細については、後述する。これにより、チヤネ ル推定精度の向上が図れるとともに、リファレンス信号のサブキャリアで挟まれるサブ キャリアの送信電力が一定の割合で低減あるいは増減されるので、チャネル推定部 の構成を簡易化することができる。また、チャネル推定精度の向上により、受信特性 の改善を図ることができる。 [0182] With such a transmission method, the channel estimation value for the data signal part whose transmission power was reduced at a constant rate was extracted, and only the subbands to which a plurality of reference signals with increased transmission power were assigned were extracted. In the above calculation, interpolation is performed, and further, the reference signal transmission power offset amount is used and multiplied by a coefficient considering the offset amount. Details of the channel estimation value calculation method will be described later. As a result, the channel estimation accuracy can be improved and the sub-carrier sandwiched between the reference signal sub-carriers. Since the carrier transmission power is reduced or increased at a certain rate, the configuration of the channel estimation unit can be simplified. In addition, the reception characteristics can be improved by improving the channel estimation accuracy.
[0183] なお、リファレンス信号の送信電力増大をサブバンドに限定して送信を行う場合 (方 法(2) )、さらに以下の 2つのサブバンド限定方法(a)、サブバンド限定方法 (b)を適 用すること力 Sでさる。  [0183] It should be noted that transmission is performed by limiting the transmission power of the reference signal to the subband (method (2)), and the following two subband limiting methods (a) and subband limiting method (b) Apply power S with power S.
[0184] [サブバンド限定方法(a) ]  [0184] [Subband limitation method (a)]
リファレンス信号の送信電力増大を行うサブバンドを、通信運用帯域中の特定のサ ブバンドに固定的に割当てる。これにより、リファレンス信号の送信電力増大を行うサ ブバンドが固定的となるため、無線送信装置から無線受信装置には、リファレンス信 号の送信電力に関する情報のみを通知するだけでよぐリファレンス信号の送信電力 増大を行うサブキャリアの位置の情報に関する通知が不要になる。なお、リファレンス 信号の送信電力を適応的に可変する場合には、リファレンス信号の送信電力が変動 する度に、あるいは定期的(サブフレーム、あるいは、フレーム周期毎)に、送信電力 に関する情報を通知する。  The subband that increases the reference signal transmission power is fixedly assigned to a specific subband in the communication operation band. As a result, the subband for increasing the transmission power of the reference signal is fixed, so that only the information related to the transmission power of the reference signal is notified from the wireless transmission device to the wireless reception device. It is not necessary to notify the information on the position of the subcarrier that increases the power. When the transmission power of the reference signal is adaptively changed, information on the transmission power is notified whenever the transmission power of the reference signal fluctuates or periodically (for each subframe or frame period). .
[0185] また、リファレンス信号の送信電力増大を行うサブバンドに、セルエッジにある無線 受信装置を優先的に割り当てる周波数リソース割当を行っても良い。これにより、チヤ ネル推定精度に特に課題を生じるセルエッジにある無線受信装置におけるチャネル 推定値を改善し、受信品質の改善を図ることができる。  [0185] Further, frequency resource allocation may be performed in which a radio reception device at a cell edge is preferentially allocated to a subband in which reference signal transmission power is increased. As a result, it is possible to improve the channel estimation value in the radio reception apparatus at the cell edge that causes a particular problem in channel estimation accuracy, and to improve the reception quality.
[0186] [サブバンド限定方法 (b) ]  [0186] [Subband limitation method (b)]
リファレンス信号の送信電力増大を行うサブバンドを、通信運用帯域中のサブバン ドに動的に割当てる。この場合、特定の条件を満たす無線受信装置が割り当てられ るサブバンドに含まれるリファレンス信号に対し、送信電力の増大を行う送信電力制 御を行っても良い。ここで、特定の条件としては、例えば、セルエッジなど特に受信電 力(受信品質)が低下する無線受信装置を選定する。これにより特定の条件を満たす 無線受信装置におけるチャネル推定値の推定精度を改善し、受信品質の改善を図 ること力 Sでさる。  The subband that increases the transmission power of the reference signal is dynamically allocated to the subband in the communication operation band. In this case, transmission power control for increasing transmission power may be performed on a reference signal included in a subband to which a wireless reception device satisfying a specific condition is assigned. Here, as the specific condition, for example, a radio receiving apparatus that reduces reception power (reception quality) such as a cell edge is selected. This improves the estimation accuracy of the channel estimation value in the wireless receiver that satisfies the specific condition, and improves the reception quality with the power S.
[0187] なお、リファレンス信号の送信電力増大を行うサブバンドが変動する度に、あるいは 定期的(サブフレーム、あるいは、フレーム周期毎)に、リファレンス信号の送信電力 に関する情報を、無線送信装置から無線受信装置に通知する。サブバンド限定方法 (b)では、サブバンド限定方法(a)に比べて、通知する情報量が増加するものの、通 信エリア内の、特定の条件を満たす無線受信装置の多寡に応じた、リファレンス信号 の送信電力増大を行うサブバンドの設定を柔軟にできるという効果が得られる。 [0187] It should be noted that every time the subband for increasing the transmission power of the reference signal fluctuates, or Information on the transmission power of the reference signal is notified from the wireless transmission device to the wireless reception device periodically (subframe or every frame period). In subband limiting method (b), the amount of information to be reported is increased compared to subband limiting method (a), but the reference is based on the number of wireless receivers that satisfy specific conditions in the communication area. The effect is that the setting of the subband for increasing the transmission power of the signal can be made flexible.
[0188] なお、この場合、周波数方向に間欠的に挿入されているリファレンス信号の送信電 力を高めことで、同一 OFDMシンボル内におけるリファレンス信号以外のサブキヤリ ァ信号の送信電力は低減することとなる。しかし、リファレンス信号以外の信号は、送 信電力を低減しても受信品質の劣化が小さい信号を挿入することで、その影響を低 減すること力 Sできる。以下、図 17を用いて説明する。  [0188] In this case, by increasing the transmission power of the reference signal intermittently inserted in the frequency direction, the transmission power of the subcarrier signal other than the reference signal in the same OFDM symbol is reduced. . However, for signals other than the reference signal, it is possible to reduce the effect by inserting a signal with little degradation in reception quality even if the transmission power is reduced. This will be described below with reference to FIG.
[0189] 図 17に、本実施の形態における多重化信号のフレーム構成の一例を示す。図中 のデータ信号部 Bには、低い SNRでも受信品質を確保できる低い MCSを用いて変 調された信号 (低変調指数、低符号化率を用いて変調された信号)を用いる。低い M CSで変調される信号として、個別制御信号、共有制御信号、報知信号がある。ある いは低!/、MCSで変調されるセルエッジにある無線受信装置へのデータ信号を用い ても良い。図 17において、データ信号部 Aは、従来どおりの方法により、 MCSを設 定してデータ信号を送信する。このように、同一の OFDMシンボルにおいて、リファレ ンス信号以外のサブキャリア信号を、低レ、SNRでも受信品質が確保できる低!/、MC Sを用いて変調された信号とすることで、リファレンス信号以外のサブキャリア信号の 送信電力が低減することによる受信品質の劣化の影響を低減することができる。  FIG. 17 shows an example of the frame structure of the multiplexed signal in the present embodiment. In the data signal part B in the figure, a signal modulated with a low MCS that can ensure reception quality even with a low SNR (a signal modulated with a low modulation index and low coding rate) is used. Signals modulated with a low MCS include individual control signals, shared control signals, and broadcast signals. Alternatively, the data signal to the radio receiver at the cell edge modulated by MCS may be used. In FIG. 17, data signal section A sets the MCS and transmits a data signal by the conventional method. In this way, in the same OFDM symbol, the subcarrier signal other than the reference signal is a signal modulated using MCS that is low and / or MCS that can ensure reception quality even with low signal and SNR. It is possible to reduce the influence of degradation of reception quality due to a decrease in transmission power of subcarrier signals other than.
[0190] 上述したサブバンド限定方法(a)、 (b)は、リファレンス信号の送信電力増大を行う サブバンドに、セルエッジの無線受信装置を割り当て、低い MCSのデータ信号を送 る場合に有効であり、これらの方法によりデータ信号の受信品質の劣化を低減するこ とができる効果が得られる。  [0190] The above-mentioned subband limiting methods (a) and (b) are effective when a cell edge radio receiver is allocated to a subband that increases the transmission power of the reference signal and a low MCS data signal is transmitted. With these methods, it is possible to reduce the deterioration of the reception quality of the data signal.
[0191] また、以上の方法を用いる場合、各 OFDMシンボルの平均送信電力が一定となる ようにすることで、無線送信装置が最大送信電力で送信している場合にも適用するこ と力 Sできる。  [0191] Also, when the above method is used, by making the average transmission power of each OFDM symbol constant, the power that can be applied even when the wireless transmission device is transmitting at the maximum transmission power S it can.
[0192] 以下、方法(2)を適用する無線送信装置の構成、及び無線受信装置の構成につ いて説明する。 [0192] The configuration of the wireless transmission device to which the method (2) is applied and the configuration of the wireless reception device are described below. And explain.
[0193] [無線送信装置の構成]  [Configuration of wireless transmission device]
図 18は、リファレンス信号の送信電力増大をサブバンドに限定して送信する(方法( 2) )無線送信装置 100Cの構成を示す図である。図 18の無線送信装置 100Cは、図 11で示した無線送信装置 100Bに、周波数リソース割当制御部 120、周波数リソース 割当部 121、及びデータ信号に対する乗算部 123、 124をさらに有する。その他の 無線送信装置 100Cの構成は、無線送信装置 100Bと同様の構成である。そこで、 以下、無線送信装置 100Bと異なる部分を中心に説明する。  FIG. 18 is a diagram illustrating a configuration of a wireless transmission device 100C that transmits a reference signal transmission power increase limited to a subband (method (2)). Radio transmission apparatus 100C in FIG. 18 further includes frequency resource allocation control section 120, frequency resource allocation section 121, and multiplication sections 123 and 124 for data signals, in addition to radio transmission apparatus 100B shown in FIG. The configuration of the other wireless transmission device 100C is the same as that of the wireless transmission device 100B. Therefore, the following description will focus on the parts that are different from radio transmitting apparatus 100B.
[0194] 周波数リソース割当制御部 120は、無線受信装置から通知される受信品質情報(S IR、 SINRなどの情報)を用いて、リファレンス信号の送信電力増大を行うサブバンド に、セルエッジにあるような受信品質低い (低 SIRである)無線受信装置を優先的に 割り当てる周波数リソース割当を行う。ここで、リファレンス信号の送信電力の増大を 行うサブバンドは、予め固定的に設定するようにしておいてもよいし(サブバンド限定 方法(a) )、あるいは無線受信装置に対する周波数リソース割当状況に応じて、動的 に設定を変更するようにしてもよ!/、(サブバンド限定方法 (b) )。  [0194] Frequency resource allocation control section 120 uses the reception quality information (information such as SIR and SINR) notified from the radio reception apparatus so that it is at the cell edge in the subband that increases the transmission power of the reference signal. Radio frequency resources are allocated to preferentially assign radio receivers with low reception quality (low SIR). Here, the subband for increasing the transmission power of the reference signal may be fixedly set in advance (subband limiting method (a)), or according to the frequency resource allocation status for the radio receiving apparatus. Depending on the situation, you may change the setting dynamically! /, (Subband limiting method (b)).
[0195] 周波数リソース割当部 121は、異なる無線受信装置へ送信するデータを含むデー タ信号に対し、周波数リソース割当制御部 120から出力される周波数リソース割当情 報を基に、異なる無線受信装置のデータ信号を指定の周波数リソースに含まれるサ ブキャリアに割り当てる。  [0195] Frequency resource allocating section 121 receives data signals including data to be transmitted to different radio receiving apparatuses based on the frequency resource allocation information output from frequency resource allocation control section 120. The data signal is assigned to the subcarrier included in the specified frequency resource.
[0196] 電力制御部 112aは、 OFDMシンボルに含まれるリファレンス信号の送信電力を可 変するための重み係数 (例えば /3 )を各乗算部 110、 111に出力する。また、さらに、 OFDMシンボルに含まれるリファレンス信号以外の信号(データ信号、あるいは制御 信号)の送信電力を可変するための重み係数 (例えば α )を各乗算部 123、 124に 出力する。本実施の形態では、リファレンス信号の送信電力増大を行うサブバンドに 含まれるリファレンス信号に対して、 1以上の重み係数(/3≥1)が乗算される。また、リ ファレンス信号の送信電力増大を行うサブバンドに含まれるリファレンス信号以外の 信号に対して、 1以下の重み係数(α≤1)が乗算される。なお、先に示した図 13〜 図 16の Lpは、リファレンス信号送信電力オフセット量を示し、電力情報(α、 /3 )とは 、 Lp = /3 の関係がある。電力制御部 112aは、電力制御情報を、制御情報生成 部 122に出力する。 [0196] Power control section 112a outputs a weighting coefficient (for example, / 3) for changing the transmission power of the reference signal included in the OFDM symbol to each of multiplication sections 110 and 111. Further, a weighting coefficient (for example, α) for changing the transmission power of a signal (data signal or control signal) other than the reference signal included in the OFDM symbol is output to each of the multipliers 123 and 124. In the present embodiment, the reference signal included in the subband that increases the transmission power of the reference signal is multiplied by a weight coefficient of 1 or more (/ 3≥1). Also, a signal other than the reference signal included in the subband that increases the transmission power of the reference signal is multiplied by a weighting factor (α≤1) of 1 or less. Note that Lp in FIG. 13 to FIG. 16 indicates the reference signal transmission power offset amount, and is the power information (α, / 3). , Lp = / 3. The power control unit 112a outputs the power control information to the control information generation unit 122.
[0197] 制御情報生成部 122は、電力制御情報を含めた制御情報を基にして、制御信号を 生成する。例えば、各リファレンス信号多重部 102、 103が、リファレンス信号を多重 する場合、制御情報生成部 122は、リファレンス信号送信電力オフセット量 Lpに関す る電力情報(α、 /3 )および当該リファレンス信号の位置(OFDMシンボルの位置)を 含むリファレンス信号電力情報を制御情報として、制御信号を生成する。リファレンス 信号電力情報に含まれる送信電力情報には、データ信号部の送信電力を基準とし たオフセット量を用いる。例えば、データ信号部の送信電力を下げる場合は、送信電 力のデータ信号部を基準とした送信電力のオフセット値を、送信電力情報に用いる。 これにより、受信側では、リファレンス信号の受信結果を基に、データ信号部の送信 電力のオフセット量を見積もることができ、リファレンス信号とデータ信号部との送信 電力を可変している場合でも、リファレンス信号電力情報に含まれる送信電力情報を 用いて、データ信号を劣化させることなく復調を行うことができる。  [0197] The control information generating unit 122 generates a control signal based on the control information including the power control information. For example, when each of the reference signal multiplexing units 102 and 103 multiplexes the reference signal, the control information generating unit 122 uses the power information (α, / 3) regarding the reference signal transmission power offset amount Lp and the position of the reference signal. The control signal is generated using the reference signal power information including (OFDM symbol position) as control information. The transmission power information included in the reference signal power information uses an offset amount based on the transmission power of the data signal section. For example, when the transmission power of the data signal part is reduced, an offset value of the transmission power based on the data signal part of the transmission power is used for the transmission power information. As a result, the receiving side can estimate the transmission power offset amount of the data signal section based on the reception result of the reference signal, and even if the transmission power between the reference signal and the data signal section is variable, Demodulation can be performed without degrading the data signal using the transmission power information included in the signal power information.
[0198] 各乗算部 110、 111は、電力制御部 112aの出力である重み係数 /3と、リファレンス 信号生成部 101の出力であるリファレンス信号とを乗算して、対応する各リファレンス 信号多重部 102、 103に出力する。また、同様に各乗算部 123、 124は、電力制御 部 112aの出力である重み係数 αと、周波数リソース割当部 121の出力信号とを乗算 して、対応する各リファレンス信号多重部 102、 103に出力する。  [0198] Each multiplying section 110, 111 multiplies the weighting factor / 3 that is the output of power control section 112a by the reference signal that is the output of reference signal generating section 101, and each corresponding reference signal multiplexing section 102. , Output to 103. Similarly, each of the multiplying units 123 and 124 multiplies the weighting factor α that is the output of the power control unit 112a and the output signal of the frequency resource allocating unit 121, to the corresponding reference signal multiplexing units 102 and 103. Output.
[0199] 以降、各リファレンス信号多重部 102、 103が、各乗算部 110、 111及び各乗算部  [0199] Thereafter, each reference signal multiplexing section 102, 103 is replaced with each multiplication section 110, 111 and each multiplication section.
123、 124の出力に基づいて、リファレンス信号及びリファレンス信号以外の信号(デ ータ信号 dl、制御信号 d3)を多重化して各 OFDM変調部 104、 105に出力する。  Based on the outputs of 123 and 124, the reference signal and signals other than the reference signal (data signal dl, control signal d3) are multiplexed and output to OFDM modulation sections 104 and 105, respectively.
[0200] このようにして、各リファレンス信号多重部 102、 103は、リファレンス信号送信電力 オフセット量 Lpに関する電力情報 、 /3 )につ!/、ての制御情報を含む制御信号と、 データ信号が含まれる信号に更に、リファレンス信号を多重する。  [0200] In this way, each of the reference signal multiplexing units 102 and 103 receives the control information including the control information and the data signal for the reference signal transmission power offset amount Lp. A reference signal is further multiplexed on the included signal.
[0201] なお、サブバンド限定方法(a)を用いて、送信電力を高めたリファレンス信号を送信 する際には、以下のような方法を用いることにより、電力制御情報として通知する情報 量を低減すること力 Sできる。具体的には、送信電力を高めたリファレンス信号のサブ キャリアで挟まれる、データ信号が割り当てられている複数のサブキャリア(リファレン ス信号送信電力増大部分帯域)のみ、送信電力を一定の割合で低減することで、送 信電力を高めたリファレンス信号のサブキャリア数に対する、リファレンス信号以外の 送信電力が低減された信号 (データ信号、制御信号)のサブキャリア数を一意に関係 付けること力 Sできる。すなわち、式(8)に示すように /3を決めると αが決定する関係と なるので、電力制御情報として通知する情報量を低減することができるようになる。 [0201] When transmitting a reference signal with increased transmission power using the subband limiting method (a), the amount of information notified as power control information is reduced by using the following method. The power to do S. Specifically, the reference signal Only a plurality of subcarriers (reference signal transmission power increasing partial band) to which data signals are allocated, which are sandwiched between carriers, reduce the transmission power at a certain rate, thereby increasing the transmission power of the reference signal. The ability to uniquely relate the number of subcarriers of signals (data signals and control signals) with reduced transmission power other than the reference signal to the number of carriers. In other words, as shown in Equation (8), when / 3 is determined, α is determined, so that the amount of information notified as power control information can be reduced.
[0202] [数 8] [0202] [Equation 8]
ad - NDS - ) = pNPRS … ( 8 ) ad - N DS -) = pN PRS ... (8)
[0203] なお、式(8)において、 N は、リファレンス信号送信電力増大部分帯域における  [0203] In Equation (8), N is the reference signal transmission power increasing partial band.
PRS  PRS
リファレンス信号が割り当てられているサブキャリア数を示し、 N は、リファレンス信  Indicates the number of subcarriers to which the reference signal is assigned.N is the reference signal.
DS  DS
号のサブキャリア方向における揷入間隔である。リファレンス信号送信電力増大部分 帯域が固定の場合、 N は既知の一定値であり、 N は既知の一定値である。  Is the insertion interval in the subcarrier direction. Reference signal transmission power increasing portion When the bandwidth is fixed, N is a known constant value, and N is a known constant value.
PRS DS  PRS DS
[0204] また、サブバンド限定方法 ωを用いる場合には、リファレンス信号以外の送信電力 が低減された信号の位置に関する情報の通知が不要となるので、データ伝送時の効 率低下を抑えることができる。  [0204] Also, when the subband limiting method ω is used, notification of information on the position of a signal whose transmission power other than the reference signal has been reduced is not required, so that it is possible to suppress a reduction in efficiency during data transmission. it can.
[0205] なお、重み係数を変更せずに予め既知の重み係数により送信する場合は、さらに、 電力制御情報( α、 β )の通知を不要にすることができる。  [0205] If transmission is performed using a known weighting factor in advance without changing the weighting factor, notification of power control information (α, β) can be further eliminated.
[0206] サブバンド限定方法 (b)を用い、無線受信装置に対する周波数リソース割当状況 に応じて、送信電力を高めたリファレンス信号を付加するサブバンドを動的に設定変 更する場合には、周波数リソース割当制御部 120は、送信電力を高めたリファレンス 信号が含まれるサブバンド情報を、制御情報生成部 122に出力する。  [0206] When using the subband limiting method (b) and dynamically changing the setting of the subband to which the reference signal with increased transmission power is added according to the frequency resource allocation situation for the radio receiver, Resource allocation control section 120 outputs subband information including a reference signal with increased transmission power to control information generation section 122.
[0207] 制御情報生成部 122は、電力制御情報及び送信電力を高めたリファレンス信号が 含まれるサブバンド情報を含む制御情報を基にして、制御信号を生成する。また、送 信電力を可変するリファレンス信号の位置に関する情報は、帯域を可変に割り当てて も良いし、予め帯域を N分割して、その分割帯域の番号を送信することでもよい。後 者の場合、帯域の分割が固定化されてしまうものの、リファレンス信号電力情報に含 まれるリファレンス位置に関する制御情報の情報量を低減することができる。また、送 信電力を高める分割帯域を予め固定的に設定することで、分割帯域番号の送付を 不要にすること力 Sできる。あるいは、送信電力を高める送信を実行するか、送信電力 を高める送信を実行しないかの、 1ビットの情報を用いて送信することができる。 [0207] Control information generation section 122 generates a control signal based on control information including power control information and subband information including a reference signal with increased transmission power. In addition, the information regarding the position of the reference signal for changing the transmission power may be assigned with a variable band, or the band may be divided into N in advance and the number of the divided band may be transmitted. In the latter case, although the band division is fixed, the amount of control information related to the reference position included in the reference signal power information can be reduced. In addition, the division band number can be sent by fixedly setting the division band to increase the transmission power in advance. The ability to make it unnecessary S Alternatively, transmission can be performed using 1-bit information indicating whether transmission to increase transmission power is performed or transmission to increase transmission power is not performed.
[0208] このように構成することにより、以降、各送信アンテナ 108、 109から、データ信号部 よりも送信電力の大きいリファレンス信号が空中に放射される。  [0208] With this configuration, a reference signal having a transmission power larger than that of the data signal unit is radiated from the transmission antennas 108 and 109 into the air.
[0209] [無線受信装置]  [0209] [Wireless receiver]
次に、無線受信装置の構成を示す。図 19は、図 18の無線送信装置 100Cに対す る無線受信装置 200Dの構成例を示す図である。  Next, the configuration of the wireless reception device is shown. FIG. 19 is a diagram illustrating a configuration example of a wireless reception device 200D with respect to the wireless transmission device 100C of FIG.
[0210] 図 19の無線受信装置 200Dは、図 10における無線受信装置 200Bに、電力情報 抽出部 212、送信電力オフセット補償部 213をさらに有する。その他の無線受信装 置の構成は、実施の形態 1における無線受信装置と同様の構成である。そこで、以 下、実施の形態 1と異なる部分を中心に説明する。  [0210] Radio receiving apparatus 200D in Fig. 19 further includes power information extracting section 212 and transmission power offset compensating section 213 in radio receiving apparatus 200B in Fig. 10. The configuration of other radio reception apparatuses is the same as that of the radio reception apparatus in the first embodiment. Therefore, the following description will focus on the differences from the first embodiment.
[0211] 電力情報抽出部 212は、図 18の無線送信装置 100Cから送信されるデータ系列に 付加された制御情報から、上記送信電力情報及び、送信電力を高めたリファレンス 信号を含むサブバンド情報を抽出する。なお、送信電力情報は、(《、 /3 )あるいは、 リファレンス信号送信電力オフセット量 Lpの情報を含む。  [0211] The power information extraction unit 212 uses the control information added to the data sequence transmitted from the wireless transmission device 100C in Fig. 18 to obtain the transmission power information and subband information including the reference signal with increased transmission power. Extract. The transmission power information includes (<<, / 3) or information on the reference signal transmission power offset amount Lp.
[0212] 周波数方向補間部 2082は、電力情報抽出部 212から得られた送信電力情報( α 、 /3 )に基づき、当該リファレンス信号を含む OFDMシンボルについて、送信電力を 増大したリファレンス信号が送信されているサブキャリアに対しては、式(9)を用いて 、送信電力の増分を考慮して、チャネル推定値 h (j、 G (s))を算出する。  [0212] Based on the transmission power information (α, / 3) obtained from the power information extraction unit 212, the frequency direction interpolation unit 2082 transmits a reference signal with increased transmission power for the OFDM symbol including the reference signal. For the subcarriers that are present, the channel estimation value h (j, G (s)) is calculated using equation (9) in consideration of the increase in transmission power.
nm jm  nm jm
[0213] [数 9コ  [0213] [Numerical 9
, ,、ヽ „U,Gjm ^)) , Ω,, ヽ „U, G jm ^)), Ω ,
AJ,Gjn i) = … ( 9 ) AJ, G jn i) =… (9)
[0214] 式(9)中、 nは Nr以下の自然数、 mは Nt以下の自然数、 jはリファレンス信号を含む OFDMシンボル番号をそれぞれ表す。 G (s)は、第 j番目の OFDMシンボルにつ!/ヽ て、第 m番目の送信アンテナから送信される送信電力を増大したリファレンス信号の 第 s番目のサブキャリア番号を表す。 sは、送信電力を増大したリファレンス信号のサ ブキャリア数 Np (j、 m)個以下の自然数とする。 [0214] In equation (9), n represents a natural number equal to or less than Nr, m represents a natural number equal to or less than Nt, and j represents an OFDM symbol number including a reference signal. G (s) represents the sth subcarrier number of the reference signal with increased transmission power transmitted from the mth transmission antenna for the jth OFDM symbol. s is a natural number equal to or less than Np (j, m) subcarriers of the reference signal with increased transmission power.
[0215] なお、サブバンド限定方法 (b)のように、無線受信装置に対する周波数リソース割 当状況に応じて、リファレンス信号の送信電力を増大するサブキャリア割当を動的に 変更する場合、送信電力を増大するリファレンス信号が送信されてレ、るサブキャリア が変動する。そのため、電力情報抽出部 212から得られた送信電力情報 (s)、 13 (s) )は、サブキャリア番号 sに依存して変化する。そこで、周波数方向補間部 2082は 、式(10)を用いて、リファレンス信号を含むサブキャリアに対するチャネル推定値 h nm[0215] As in the subband limiting method (b), the frequency resource allocation for the radio receiving device When the subcarrier allocation that increases the transmission power of the reference signal is dynamically changed according to this situation, the reference signal that increases the transmission power is transmitted and the subcarrier varies. Therefore, transmission power information (s), 13 (s)) obtained from the power information extraction unit 212 changes depending on the subcarrier number s. Therefore, frequency direction interpolation section 2082 uses equation (10) to calculate the channel estimation value h nm for the subcarrier including the reference signal.
(j、 G ω)を算出し、リファレンス信号を含まないサブキャリアに対し、周波数方向に チャネル推定値の補間処理を行う。以降、チャネル推定部 208は、実施の形態 1と同 様な動作を行い、チャネル推定値を算出して出力する。 (j, G ω) is calculated, and channel estimation value interpolation processing is performed in the frequency direction for subcarriers that do not include a reference signal. Thereafter, channel estimation section 208 performs the same operation as in Embodiment 1, and calculates and outputs a channel estimation value.
[0216] [数 10] [0216] [Equation 10]
( G (s))  (G (s))
KM,Gjm {s)) - 1 0 ) KM, G jm (s))- 1 0 )
Λ] β ( , (  Λ] β (, (
gmr ( g mr (
(j, GJm (s)) (j, G Jm (s))
[0217] 送信電力オフセット補償部 213は、信号分離部 209の出力に対し、リファレンス信 号送信電力増大部分帯域に含まれる、リファレンス信号以外の送信電力が変更され た信号 (データ信号、制御信号)に対するオフセットを補償する。このオフセットは、チ ャネル推定部 208の出力であるチャネル推定値に、上記のデータ信号、制御信号に おける送信電力変化分が考慮されていないことにより生じるものである。すなわち、送 信電力オフセット補償部 213は、電力制御情報 αに基づき、信号分離部 209から出 力される信号のうち、リファレンス信号送信電力増大部分帯域に含まれるサブキヤリ ァ信号に対し、オフセット量( a ) 1/2を乗算する。 [0217] Transmission power offset compensation section 213 is a signal (data signal, control signal) in which transmission power other than the reference signal included in the reference signal transmission power increased partial band is changed with respect to the output of signal separation section 209 To compensate for the offset. This offset is caused by the fact that the transmission power change in the data signal and control signal is not considered in the channel estimation value that is the output of the channel estimation unit 208. That is, the transmission power offset compensation unit 213 uses the offset amount (with respect to the subcarrier signal included in the reference signal transmission power increase partial band of the signals output from the signal separation unit 209 based on the power control information α. a) Multiply by 1/2 .
[0218] なお、サブバンド限定方法 (b)を用いる場合、無線受信装置に対する周波数リソー ス割当状況に応じて、送信電力を増大したリファレンス信号のサブバンドが動的に変 更し、送信電力を増大したリファレンス信号が送信されてレ、るサブキャリアが変動する ので、電力情報抽出部 212が、制御信号から抽出した、送信電力を高めたリファレン ス信号が含まれるサブバンド情報を用いて、送信電力オフセット補償部 213の上記 の動作を行う。  [0218] Note that, when the subband limiting method (b) is used, the subband of the reference signal whose transmission power is increased dynamically changes according to the frequency resource allocation status for the radio reception apparatus, and the transmission power is reduced. Since the increased reference signal is transmitted and the subcarrier fluctuates, the power information extraction unit 212 uses the subband information that is extracted from the control signal and includes the reference signal with increased transmission power to transmit. The above operation of the power offset compensation unit 213 is performed.
[0219] このように構成することにより、無線送信装置 100Cの各送信アンテナ 108、 109か ら、データ信号部よりも送信電力の大きいリファレンス信号が空中に放射される。ここ で、上記重み係数は、リファレンス信号の送信電力がデータ信号部(あるサブフレー ムにおいてリファレンス信号を含む最後の OFDMシンボル)よりも大きな電力となるよ うな係数 (例えば /3倍、 1く /3 )とする。これにより、無線受信装置 200Dにおいて、リ ファレンス信号の受信品質(SNR、 SINR)を良好にすることができる。 [0219] With this configuration, a reference signal having a transmission power larger than that of the data signal unit is radiated in the air from each of the transmission antennas 108 and 109 of the wireless transmission device 100C. Here, the weighting factor is such that the transmission power of the reference signal is the data signal part (a certain subframe). The coefficient is such that the power is larger than the last OFDM symbol including the reference signal) (eg, / 3 times, 1/3). Thereby, in radio receiving apparatus 200D, the reception quality (SNR, SINR) of the reference signal can be improved.
[0220] また、全ての通信運用帯域ではなぐ一部のサブバンドに対し、リファレンス信号の 送信電力を高める場合、図 16に示すように、送信電力を可変したデータ信号のその 両側に対し、送信電力を高めたリファレンス信号を配置するように送信する。このよう に配置することで、送信電力を高めたリファレンス信号のチャネル推定値を用いて、 その推定結果を内揷補間することで、送信電力が低下した部分のチャネル推定値を 、内挿ネ甫間により推定することカでさる。  [0220] Also, when the transmission power of the reference signal is increased for some subbands in all communication operation bands, as shown in Fig. 16, transmission is performed to both sides of the data signal with variable transmission power. A reference signal with increased power is transmitted so as to be arranged. With this arrangement, the channel estimation value of the reference signal whose transmission power is increased is used to internally interpolate the estimation result, so that the channel estimation value of the portion where the transmission power is reduced Estimate more quickly.
[0221] これに対し、送信電力を可変したデータ信号のその両側に対し、送信電力を高め たリファレンス信号を配置しない場合、例えば、片側が送信電力を高めたリファレンス 信号で、もう片側が送信電力を高めていないリファレンス信号に挟まれたデータ信号 に対しては、 1)送信電力を高めたリファレンス信号に基づき外揷補間によりチャネル 推定値を算出するか、 2)送信電力を高めたリファレンス信号と、送信電力を高めてい ないリファレンス信号間での内揷補間によりチャネル推定値を算出することになるた め、補間によるチャネル推定精度が不十分となってしまう。具体的には、 1)の場合は 、外揷補間により推定精度が劣化し、 2)の場合は、送信電力を高めていないリファレ ンス信号に付加される雑音成分の影響により推定精度が劣化してしまう。なお、この 場合には、チャネル推定部 208における周波数方向補間部 2082において周波数 方向の補間処理として、次のような方法を用いるようにしても良い。すなわち、送信電 力を高めたリファレンス信号を含むサブバンド単位で、周波数方向の補間処理を帯 域単位で補間する方法を用いてもよい。これにより、送信電力を高めたリファレンス信 号のチャネル推定値を用いて、その推定結果をサブバンド単位で、内揷補間するこ とができるので、チャネル推定精度を高めることができる。  [0221] On the other hand, when a reference signal with increased transmission power is not arranged on both sides of a data signal with variable transmission power, for example, one side is a reference signal with increased transmission power and the other side is with transmission power. For a data signal sandwiched between reference signals that do not increase the signal, 1) calculate the channel estimation value by external interpolation based on the reference signal with increased transmission power, or 2) with the reference signal with increased transmission power Since the channel estimation value is calculated by internal interpolation between reference signals whose transmission power is not increased, the channel estimation accuracy by interpolation becomes insufficient. Specifically, in the case of 1), the estimation accuracy deteriorates due to external interpolation, and in the case of 2), the estimation accuracy deteriorates due to the influence of the noise component added to the reference signal whose transmission power is not increased. End up. In this case, the frequency direction interpolation unit 2082 in the channel estimation unit 208 may use the following method as the frequency direction interpolation processing. That is, a method may be used in which interpolation processing in the frequency direction is interpolated in band units in subband units including a reference signal with increased transmission power. As a result, the channel estimation value of the reference signal with increased transmission power can be used to interpolate the estimation result in subband units, so that the channel estimation accuracy can be improved.
[0222] なお、本実施の形態を複数のセルを構成するセルラーシステムに適用する場合、 セル間干渉を考慮する必要がある。この場合、以下の手法を適用することにより、セ ル間干渉の影響を低減し、システムのスループットの改善を図ることができる。  [0222] When this embodiment is applied to a cellular system that configures a plurality of cells, it is necessary to consider inter-cell interference. In this case, by applying the following method, the effect of inter-cell interference can be reduced and the system throughput can be improved.
[0223] 具体的には、リファレンス信号の送信電力を増大するサブバンドをセル間で共通に し、サブバンド内でリファレンス信号を揷入する周波数サブキャリア位置、あるいはま た時間的な OFDMシンボル位置をセル毎に変化させることで、異なるセル間でリファ レンス信号が送信されるサブキャリア位置又は時間が一致しないようにする。あるい は、サブバンド内外を含めて、セル毎にリファレンス信号の周波数サブキャリア揷入 位置や時間的な OFDMシンボル位置をずらした上で、リファレンス信号の送信電力 を増大するサブバンドをセル間で共通にする。 [0223] Specifically, a subband that increases the transmission power of the reference signal is shared between cells. Then, by changing the frequency subcarrier position where the reference signal is inserted in the subband or the temporal OFDM symbol position for each cell, the subcarrier position where the reference signal is transmitted between different cells or Make sure the times do not match. Alternatively, shift the frequency signal subcarrier insertion position of the reference signal and temporal OFDM symbol position for each cell, including the inside and outside of the subband, and then move the subband that increases the reference signal transmission power between cells. Make common.
[0224] また、リファレンス信号の送信電力を増大するサブバンドにおけるデータ信号を低 MCSの変調信号とするようにしてもよい。このようにすることで、隣接するセル間で、リ ファレンス信号の周波数サブキャリアの揷入位置や時間的な OFDMシンボル位置が 異なる配置となるため、送信電力を高めたリファレンス信号間の干渉を低減すること 力できる。一方で、送信電力を高めたリファレンス信号と、データ信号との干渉が課題 となる力 S、他セルからの干渉信号増大により SINRが劣化しても、リファレンス信号の 送信電力を増大するサブバンドにおけるデータ信号を低 MCSの変調信号とし、受信 特性への影響が比較的小さい低 MCSの変調信号を送信することで、干渉信号に対 する耐性を向上させることができる。  [0224] Further, the data signal in the subband that increases the transmission power of the reference signal may be a low MCS modulation signal. By doing this, the frequency signal subcarrier insertion positions and temporal OFDM symbol positions of the reference signals differ between adjacent cells, reducing interference between reference signals with increased transmission power. I can do it. On the other hand, in the subband where the transmission power of the reference signal is increased even if SINR deteriorates due to an increase in the interference signal from other cells S, the interference S between the reference signal with increased transmission power and the data signal becomes a problem. By using a low MCS modulation signal as the data signal and transmitting a low MCS modulation signal that has a relatively small influence on the reception characteristics, tolerance against interference signals can be improved.
[0225] また、別な方法として、以下のような方法が考えられる。例えば、リファレンス信号の 送信電力を増大するサブバンドをセル間で異なるように配置する。あるいは、リファレ ンス信号の送信電力を増大するサブバンドをセル間で共通にし、サブバンド内でリフ アレンス信号を揷入する周波数位置(サブキャリア)をセル毎に変化させることで、リフ アレンス信号が送信される周波数位置が一致しないようにする。あるいは、サブバンド 内外を含めて、セル毎にリファレンス信号の周波数サブキャリアの揷入位置をずらし た上で、リファレンス信号の送信電力を増大するサブバンドをセル間で共通にする。 また、隣接セルでリファレンス信号の送信電力を増大するサブバンドと重複する自セ ルのサブバンドでは、データ信号を低 MCSの変調信号とする。  [0225] As another method, the following method can be considered. For example, subbands that increase the transmission power of the reference signal are arranged differently between cells. Alternatively, by making the subband that increases the transmission power of the reference signal common between cells and changing the frequency position (subcarrier) for inserting the reference signal within the subband for each cell, the reference signal can be changed. Make sure that the frequency positions transmitted do not match. Alternatively, the subband for increasing the transmission power of the reference signal is made common between cells after shifting the insertion position of the frequency signal subcarrier of the reference signal for each cell including inside and outside the subband. In the subband of the own cell that overlaps the subband that increases the transmission power of the reference signal in the adjacent cell, the data signal is a low MCS modulation signal.
[0226] このようにすることで、隣接するセル間で、リファレンス信号の周波数サブキャリアの 揷入位置が異なる配置となるので、送信電力を高めたリファレンス信号間の干渉を低 減すること力 Sできる。一方で、送信電力を高めたリファレンス信号と、データ信号との 干渉が課題となるが、隣接セルでリファレンス信号の送信電力を増大するサブバンド では、受信特性への影響が比較的小さい低 MCSの変調信号を送信することで、他 セルからの干渉信号増大により SINRが劣化した場合においても、干渉信号に対す る耐性を向上させることができる。 [0226] By doing so, the insertion positions of the frequency subcarriers of the reference signal are different between adjacent cells, so that it is possible to reduce interference between reference signals with increased transmission power. it can. On the other hand, interference between the reference signal with higher transmission power and the data signal is a problem, but the subband increases the transmission power of the reference signal in the neighboring cell. In this case, by transmitting a low MCS modulated signal that has a relatively small influence on the reception characteristics, even if SINR deteriorates due to an increase in the interference signal from other cells, the tolerance to the interference signal can be improved. .
[0227] (実施の形態 5) [0227] (Embodiment 5)
実施の形態 5は、 OFDMシンボルにおけるリファレンス信号の位置を可変させる場 合のものである。  Embodiment 5 is for changing the position of a reference signal in an OFDM symbol.
[0228] 図 20は、実施の形態 5における無線送信装置 100Dの構成例を示す図である。  [0228] FIG. 20 is a diagram illustrating a configuration example of a wireless transmission device 100D in the fifth embodiment.
[0229] 図 20の無線送信装置 100Dは、図 1の実施の形態 1における無線送信装置 100にRadio transmitting apparatus 100D in FIG. 20 is different from radio transmitting apparatus 100 in Embodiment 1 in FIG.
、送信位置制御部 130をさらに有する。その他の無線送信装置の構成は、実施の形 態 1における無線送信装置と同様の構成である。そこで、以下、実施の形態 1と異な る部分を中心に説明する。 The transmission position control unit 130 is further included. The configuration of the other radio transmission apparatus is the same as that of the radio transmission apparatus in the first embodiment. Therefore, the following description will focus on the parts different from the first embodiment.
[0230] 送信位置制御部 130は、リファレンス信号を含む OFDMシンボルについて、送信リ ファレンス信号の送信位置を示す位置情報 (制御信号)を各リファレンス信号多重部[0230] Transmission position control section 130 transmits position information (control signal) indicating the transmission position of the transmission reference signal to each reference signal multiplexing section for the OFDM symbol including the reference signal.
102、 103に出力する。 Output to 102 and 103.
[0231] 位置情報は、あらかじめ、無線受信装置 200C (回線変動状況検出部 2081:図 21 参照)における回線変動の状況 (式 (3)、式 (4)参照)と対応付けられている。具体的 には、回線変動の状況(式(3)、式 (4)参照)を示す所定値 (あらかじめ設定されたも の)と、データ系列中の送信位置 (例えば、図 2の Nf個目など)とが対応付けられてい  [0231] The position information is associated in advance with the state of line fluctuation (see equations (3) and (4)) in radio receiving apparatus 200C (line fluctuation state detection unit 2081: see FIG. 21). Specifically, a predetermined value (which is set in advance) indicating the state of line fluctuation (see equations (3) and (4)) and the transmission position in the data sequence (for example, the Nf-th item in FIG. 2). Etc.)
[0232] なお、このような対応付けは、例えば、送信位置制御部 130内部のテーブル (メモリ )を用いて行われている。これにより、例えば、送信位置制御部 130が、無線受信装 置 (フィードバック部 214 :図 21参照)から、回線変動状況検出部 2081 (図 21参照) の検出結果を示す回線変動の状況(式(3)、式 (4)参照)を入力し、当該回線変動の 状況が低速(あらかじめ設定された所定値)を示すときは、送信位置制御部 130は、 低速に対応付けられた Nf番目(図 2参照)の位置情報を出力する。 Note that such association is performed using, for example, a table (memory) in the transmission position control unit 130. As a result, for example, the transmission position control unit 130 changes the channel fluctuation status (formula (Equation ( 3) and Equation (4)) are input, and when the state of the line fluctuation indicates a low speed (predetermined value set in advance), the transmission position control unit 130 Nf-th (Fig. 2) is output.
[0233] あるいは、回線変動の状況が中速 ·高速(あらかじめ設定された所定値)を示すとき は、送信位置制御部 130は、例えば、中速 ·高速に対応付けられた i番目〜 Nf番目( 図 2参照)のうちのいずれかを示す位置情報を出力する。 [0234] 各リファレンス信号多重部 102、 103は、送信位置制御部 130から位置情報を入力 する。そして、各リファレンス信号多重部 102、 103は、この位置情報に示された送信 位置(時間的に変化)にリファレンス信号を配置して多重化して各 OFDM変調部 10 4、 105に出力する。このとき、位置情報は、データ系列中の制御情報に含められる。 [0233] Alternatively, when the state of line fluctuation indicates medium-speed / high-speed (predetermined preset value), the transmission position control unit 130, for example, the i-th to Nf-th associated with medium-speed / high-speed (See Figure 2) Output position information indicating one of the following. [0234] Each reference signal multiplexing section 102, 103 receives position information from transmission position control section 130. Then, each of the reference signal multiplexing units 102 and 103 arranges and multiplexes the reference signal at the transmission position (change in time) indicated by the position information, and outputs the multiplexed signal to each of the OFDM modulation units 104 and 105. At this time, the position information is included in the control information in the data series.
[0235] 例えば、複数のサブフレームが特定のユーザ用端末に対して送信される場合、各リ ファレンス信号多重部は、その送信対象となる最後のサブフレームに含まれるリファ レンス信号を、そのサブフレームの最後に位置する OFDMシンボルの位置に設定す る。その他の多重化信号の構成は、図 2に示したとおりである。  [0235] For example, when a plurality of subframes are transmitted to a specific user terminal, each reference signal multiplexing unit transmits the reference signal included in the last subframe to be transmitted as the subframe. Set to the position of the OFDM symbol located at the end of the frame. The other multiplexed signal configurations are as shown in Fig. 2.
[0236] 各 OFDM変調部 104、 105は、対応する各リファレンス信号多重部 102、 103の出 力信号 (多重化信号)に基づいて、実施の形態 1と同様の処理を行う。その後、各 OF DM変調部 104、 105、各送信部 106、 107および各送信アンテナ 108、 109は、実 施の形態 1と同様の処理を行い、位置情報を含むデータ系列が、各送信アンテナ 10 8、 109から空中に放射される。これにより、無線受信装置 200Eが、位置情報を含む データ系列を受信する。  [0236] Each OFDM modulation section 104, 105 performs the same processing as in Embodiment 1 based on the output signal (multiplexed signal) of each corresponding reference signal multiplexing section 102, 103. After that, each OF DM modulation section 104, 105, each transmission section 106, 107, and each transmission antenna 108, 109 perform the same processing as in Embodiment 1, and the data series including the position information is transmitted to each transmission antenna 10. 8 and 109 are emitted into the air. As a result, radio receiving apparatus 200E receives a data sequence including position information.
[0237] 図 21は、実施の形態 5における無線受信装置 200Eの構成例を示す図である。  [0237] FIG. 21 is a diagram illustrating a configuration example of a wireless reception device 200E in the fifth embodiment.
[0238] 図 21の無線受信装置 200Eは、図 3の実施の形態 1における無線受信装置 200に 、位置情報抽出部 215およびフィードバック部 214をさらに有する。その他の無線受 信装置の構成は、実施の形態 1における無線送信装置と同様の構成である。そこで 、以下、実施の形態 1と異なる部分を中心に説明する。  Radio reception apparatus 200E in FIG. 21 further includes position information extraction section 215 and feedback section 214 in radio reception apparatus 200 in Embodiment 1 in FIG. The configuration of the other radio reception apparatuses is the same as that of the radio transmission apparatus in the first embodiment. Therefore, the following description will focus on the differences from the first embodiment.
[0239] 位置情報抽出部 215は、各 OFDM復調部 205、 206から、位置情報を含むデータ 系列を入力する。そして、位置情報抽出部 215は、データ系列から、位置情報を抽 出して周波数方向補間部 2082に出力する。  [0239] Position information extraction section 215 inputs a data sequence including position information from each of OFDM demodulation sections 205 and 206. Then, the position information extraction unit 215 extracts position information from the data series and outputs it to the frequency direction interpolation unit 2082.
[0240] 周波数方向補間部 2082は、位置情報抽出部 215から得られた位置情報に示され たリファレンス信号を含む OFDMシンボルにつ!/、て、リファレンス信号が送信されて いるサブキャリアに対するチャネル推定値 h (j、G (s))を算出する。この算出式は、  [0240] Frequency direction interpolation section 2082 performs channel estimation for the subcarrier on which the reference signal is transmitted for the OFDM symbol including the reference signal indicated by the position information obtained from position information extraction section 215! Calculate the value h (j, G (s)). This formula is
nm jm  nm jm
式(2)のとおりである。そして、周波数方向補間部 2082は、 h (j、G (s))を基に、リ  It is as Formula (2). Then, the frequency direction interpolation unit 2082 performs the redirection based on h (j, G (s)).
nm jm  nm jm
ファレンス信号を含まないサブキャリアに対し、周波数方向にチャネル推定値の補間 処理 (この補間処理は特許文献 1に記載の処理を参照)を行う。 [0241] フィードバック部 214は、回線変動状況検出部 2081の検出結果を取得し、その検 出結果に示された回線変動の状況(式(3)、式 (4)参照)を空中に放射する。これに より、無線送信装置 100D (送信位置制御部 130 :図 20参照)が、回線変動の状況を 取得し、当該状況に応じて、リファレンス信号の送信位置を制御する。 Interpolation processing of the channel estimation value is performed in the frequency direction for the subcarriers not including the reference signal (see the processing described in Patent Document 1 for this interpolation processing). [0241] The feedback unit 214 acquires the detection result of the line fluctuation state detection unit 2081, and radiates the line fluctuation state (see equations (3) and (4)) indicated in the detection result into the air. . As a result, radio transmitting apparatus 100D (transmission position control unit 130: see FIG. 20) acquires the state of line fluctuation and controls the transmission position of the reference signal according to the state.
[0242] 例えば、無線送信装置 100D (送信位置制御部 130)は、回線変動(式(3)、式 (4) 参照)が小さければ小さいほど、サブフレームの最後に位置するリファレンス信号を含 む OFDMシンボルの位置を時間方向に遅らせて多重化するように、リファレンス信号 の位置情報を設定する。  [0242] For example, radio transmission apparatus 100D (transmission position control section 130) includes a reference signal located at the end of a subframe as the channel fluctuation (see equations (3) and (4)) is smaller. The position information of the reference signal is set so that the OFDM symbol position is multiplexed in the time direction.
[0243] 以上のように実施の形態 5によると、無線送信装置 100Dの送信位置制御部 130が 、無線受信装置 200E (フィードバック部 214)からの回線変動(式(3)、式 (4)参照) に応じて、リファレンス信号の位置情報を制御する。このため、実施の形態 1の効果 のほか、次のような効果も得る。  [0243] As described above, according to Embodiment 5, the transmission position control unit 130 of the wireless transmission device 100D performs line fluctuations from the wireless reception device 200E (feedback unit 214) (see Equations (3) and (4)). The position information of the reference signal is controlled according to For this reason, in addition to the effects of the first embodiment, the following effects are also obtained.
[0244] 例えば、複数のサブフレームが特定のユーザ用端末に対して送信される場合、送 信対象となるサブフレームの最後に位置するサブフレームに含まれるリファレンス信 号の位置を、サブフレームの最後ほたは時間方向に遅れる方向の位置)に位置す る OFDMシンボルに設定される(その他のフレームは図 2のとおり)。  [0244] For example, when a plurality of subframes are transmitted to a specific user terminal, the position of the reference signal included in the subframe positioned at the end of the subframe to be transmitted is The last symbol is set to the OFDM symbol located in the direction of delay in the time direction (the other frames are as shown in Fig. 2).
[0245] これにより、実施の形態 1の場合と同様、サブフレーム内の最後に位置するリファレ ンス信号を含む OFDMシンボルの受信結果を基に算出されたチャネル推定値と、後 続する次のサブフレームの最初に位置するリファレンス信号を含む OFDMシンボル の受信結果を基に算出されたチャネル推定値との間に存在する OFDMシンボルの チャネル推定が、内揷補間により得られる。  [0245] Thus, as in Embodiment 1, the channel estimation value calculated based on the reception result of the OFDM symbol including the reference signal located at the end in the subframe, and the next sub Channel estimation of the OFDM symbol existing between the channel estimation value calculated based on the reception result of the OFDM symbol including the reference signal located at the beginning of the frame is obtained by internal interpolation.
[0246] さらに、特定ユーザ向けの複数のサブフレーム中、最後に位置する OFDMシンポ ルに対しては、リファレンス信号の位置力 サブフレームの最後ほたは時間方向に 遅れる方向の位置)の OFDMシンボルに設定される。このため、外揷補間によりチヤ ネル推定値を得ずにほたは外揷補間の対象区間 OFDMシンボル期間を減らすこと で)、チャネル推定の特性の劣化を抑えることができる。その結果、受信品質の改善 を図ること力 Sでさる。  [0246] In addition, for the OFDM symbol located at the end of a plurality of subframes for a specific user, the position of the reference signal is located at the end of the subframe (the position in the direction delayed in the time direction) OFDM symbol. Set to For this reason, the channel estimation characteristics can be prevented from degrading without obtaining the channel estimation value by outer interpolation, or by reducing the OFDM symbol period subject to outer interpolation). As a result, the power S can be improved to improve the reception quality.
[0247] また、例えば、無線送信装置 100D (送信位置制御部 130)が、無線受信装置 200 E (フィードバック部 214)から回線変動 (式(3)、式 (4)参照)を取得し、その回線変動 力 S小さいほど、サブフレームの最後に位置するリファレンス信号を含む OFDMシンポ ルの位置を時間方向に遅らすように位置情報を出力する。 [0247] Also, for example, the wireless transmission device 100D (transmission position control unit 130) is connected to the wireless reception device 200. E Obtain the line fluctuation (see Equations (3) and (4)) from the feedback unit 214, and the smaller the line fluctuation force S, the more the position of the OFDM symbol including the reference signal located at the end of the subframe. The position information is output so as to be delayed in the time direction.
[0248] これにより、伝搬路の変動が比較的小さい場合は、内揷補間により得られるチヤネ ル推定値の OFDMシンボル区間が長くなる。つまり、外揷補間により得られるチヤネ ル推定値のシンボル区間が短くなる。よって、チャネル推定の精度が劣化することを 抑えること力 Sできる。よって、受信品質の改善を図ることができる。  [0248] As a result, when the fluctuation of the propagation path is relatively small, the OFDM symbol interval of the channel estimation value obtained by the inner interpolation is lengthened. That is, the symbol interval of the channel estimation value obtained by the outer interpolation is shortened. Therefore, it is possible to suppress the degradation of channel estimation accuracy. Therefore, the reception quality can be improved.
[0249] 2006年 11月 30曰出願の特願 2006— 324522及び 2007年 11月 28曰出願の特 願 2007— 307757に含まれる明細書、図面及び要約書の開示内容は、すべて本願 に援用される。  [0249] Japanese Patent Application No. 2006-324522 for Nov. 30 2006 and Japanese Patent Application No. 2007- No. 307757 for Nov. 2007 2007—All the disclosures in the description, drawings and abstract contained in 307757 are incorporated herein by reference. The
産業上の利用可能性  Industrial applicability
[0250] 本発明の無線受信装置、無線送信装置、無線受信方法、及び、無線送信方法は、 特に、リファレンス信号を用いてチャネル推定を行う空間多重伝送における無線受信 装置、無線送信装置、無線受信方法、及び、無線送信方法に有用である。  [0250] The radio reception apparatus, radio transmission apparatus, radio reception method, and radio transmission method of the present invention include, in particular, a radio reception apparatus, radio transmission apparatus, and radio reception in spatial multiplexing transmission in which channel estimation is performed using a reference signal. This method is useful for a method and a wireless transmission method.

Claims

請求の範囲 The scope of the claims
[1] 空間伝搬路のチャネル推定用のリファレンス信号が所定の間隔を隔てて付加され たデータ系列を受信する受信部と、  [1] A receiving unit that receives a data sequence to which a reference signal for channel estimation of a spatial propagation path is added at a predetermined interval;
前記受信されたデータ系列中の前記リファレンス信号に基づいて伝搬路の変動状 況を推定し、前記変動状況に基づいて、当該データ系列に対する内揷補間または 外揷補間により得られるチャネル推定値を出力するチャネル推定部と、  Based on the reference signal in the received data series, the fluctuation state of the propagation path is estimated, and based on the fluctuation state, a channel estimation value obtained by internal interpolation or external interpolation for the data series is output. A channel estimator to perform,
前記内揷補間または外揷補間のいずれかのチャネル推定値を用いて、前記データ 系列の復調復号処理を行う復調復号処理部と、  A demodulation / decoding processing unit that performs demodulation / decoding processing of the data series using the channel estimation value of either the inner interpolation or outer interpolation,
を含む無線受信装置。  Including a wireless receiver.
[2] 前記チャネル推定部は、  [2] The channel estimation unit includes:
前記内挿補間により第 1のチャネル推定値を推定する内挿補間部と、  An interpolation unit that estimates a first channel estimation value by the interpolation, and
前記外揷補間により第 2のチャネル推定値を推定する外揷補間部と、  An outer interpolation unit that estimates a second channel estimation value by the outer interpolation,
前記変動状況に基づいて、前記第 1のチャネル推定値または前記第 2のチャネル 推定値を選択して出力する推定値出力部と、を有する、  An estimated value output unit that selects and outputs the first channel estimated value or the second channel estimated value based on the fluctuation state;
請求項 1に記載の無線受信装置。  The wireless receiver according to claim 1.
[3] 前記推定値出力部は、前記変動状況が所定レベルよりも小さ!/、場合、前記第 2の チャネル推定値を前記第 1のチャネル推定値に置き換えて出力する、 [3] When the fluctuation state is smaller than a predetermined level! /, The estimated value output unit replaces the second channel estimated value with the first channel estimated value and outputs the result.
請求項 2に記載の無線受信装置。  The wireless receiver according to claim 2.
[4] 前記チャネル推定部は、前記リファレンス信号から得られるチャネル推定の位相お よび振幅の成分別に独立して補間処理を行って前記チャネル推定値を得る、 請求項 1に記載の無線受信装置。 4. The radio reception apparatus according to claim 1, wherein the channel estimation unit obtains the channel estimation value by performing interpolation processing independently for each phase and amplitude component of channel estimation obtained from the reference signal.
[5] 前記チャネル推定部は、 [5] The channel estimation unit includes:
前記リファレンス信号から得られるチャネル推定の位相成分を分離する位相成分分 離部と、  A phase component separating unit for separating a phase component of channel estimation obtained from the reference signal;
前記リファレンス信号から得られるチャネル推定の振幅成分を分離する振幅成分分 離部と、  An amplitude component separation unit for separating the amplitude component of channel estimation obtained from the reference signal;
前記位相成分および前記振幅成分に基づいて、前記内揷補間により第 1のチヤネ ル推定値を合成する内挿補間合成部と、 前記位相成分および前記振幅成分に基づ!/、て、前記外揷補間により第 2のチヤネ ル推定値を合成する外揷補間合成部と、 An interpolation interpolating and synthesizing unit that synthesizes a first channel estimated value by the inner interpolation based on the phase component and the amplitude component; Based on the phase component and the amplitude component! /, A gutter interpolation synthesizer that synthesizes a second channel estimated value by the gutter interpolation;
前記変動状況に基づいて、前記第 1のチャネル推定値または前記第 2のチャネル 推定値を出力する推定値出力部と、を有する、  An estimated value output unit that outputs the first channel estimated value or the second channel estimated value based on the fluctuation state;
請求項 4に記載の無線受信装置。  The wireless receiver according to claim 4.
[6] 前記データ系列は、前記リファレンス信号と、前記リファレンス信号よりも送信電力 が低!/、データ信号とを含んで構成されてレ、る、 [6] The data sequence includes the reference signal and a data signal having transmission power lower than that of the reference signal! /
請求項 1に記載の無線受信装置。  The wireless receiver according to claim 1.
[7] 前記所定の間隔は、前記変動状況に応じて可変するように設定されている、 [7] The predetermined interval is set to be variable according to the fluctuation state.
請求項 1に記載の無線受信装置。  The wireless receiver according to claim 1.
[8] 前記データ系列は、 OFDM信号であり、前記リファレンス信号は、前記データ系列 の周波数軸方向および時間軸方向に所定の間隔を隔てて前記 OFDM信号に揷入 されている、 [8] The data sequence is an OFDM signal, and the reference signal is inserted into the OFDM signal at a predetermined interval in the frequency axis direction and the time axis direction of the data sequence.
請求項 1に記載の無線受信装置。  The wireless receiver according to claim 1.
[9] 前記 OFDM信号の伝送フォーマットは、所定数のサブキャリアおよび所定数の OF[9] The transmission format of the OFDM signal includes a predetermined number of subcarriers and a predetermined number of OFs.
DMシンボルから構成され、時間的に連続して伝送されるサブフレームを最小単位 に、複数のユーザに対する個別データを伝送する伝送フォーマットである、 請求項 8に記載の無線受信装置。 9. The radio reception apparatus according to claim 8, wherein the radio reception apparatus is a transmission format for transmitting individual data for a plurality of users by using subframes composed of DM symbols and transmitted continuously in time as a minimum unit.
[10] 前記内挿補間合成部は、 [10] The interpolation interpolation synthesis unit
異なる前記サブフレームに存在する前記リファレンス信号を用いて、当該リファレン ス信号間に存在する OFDMシンボルのチャネル推定値を内挿補間により算出する、 請求項 9に記載の無線受信装置。  10. The radio reception apparatus according to claim 9, wherein channel estimation values of OFDM symbols existing between the reference signals are calculated by interpolation using the reference signals existing in different subframes.
[11] 前記所定の間隔は、前記サブフレーム中のリファレンス信号が含まれる最後の OF DMシンボルの揷入位置を、伝搬路の変動が小さい場合、時間方向に遅らせて揷入 する、 [11] The predetermined interval is inserted by delaying the insertion position of the last OF DM symbol including the reference signal in the subframe in the time direction when the propagation path variation is small.
請求項 9に記載の無線受信装置。  The wireless receiver according to claim 9.
[12] サブフレームが複数の OFDMシンボルから構成される伝送フォーマットを用いる無 線送信装置であって、 空間伝搬路のチャネル推定用のリファレンス信号を生成する生成部と、 データ信号を OFDMシンボルのサブキャリアに割り当てる割り当て部と、 前記リファレンス信号の送信電力が、前記データ信号の送信電力よりも大きくなるよ うに、前記リファレンス信号の送信電力を調整する電力調整部と、 [12] A radio transmission apparatus using a transmission format in which a subframe is composed of a plurality of OFDM symbols, A generating unit that generates a reference signal for channel estimation of a spatial propagation path, an allocating unit that allocates a data signal to subcarriers of an OFDM symbol, and a transmission power of the reference signal is larger than a transmission power of the data signal. A power adjusting unit for adjusting the transmission power of the reference signal;
前記電力調整部により送信電力が調整された前記リファレンス信号を、 OFDMシ ンボルのサブキャリアの周波数軸方向に所定の間隔を隔てて配置する、又は、時間 軸方向に所定の間隔を隔てて配置する、リファレンス信号多重部と、  The reference signals, the transmission power of which has been adjusted by the power adjustment unit, are arranged at a predetermined interval in the frequency axis direction of subcarriers of the OFDM symbol, or are arranged at a predetermined interval in the time axis direction A reference signal multiplexing unit;
OFDMシンボルのサブキャリアに割り当てられた前記データ信号及び前記リファレ ンス信号に対し OFDM変調を施し、得られた OFDM変調信号を送信する送信部と を具備する無線送信装置。  A radio transmission apparatus comprising: a transmission unit that performs OFDM modulation on the data signal and the reference signal allocated to subcarriers of an OFDM symbol and transmits the obtained OFDM modulation signal.
[13] 前記所定の間隔は、伝搬路の変動状況に応じて可変するように設定されている、 請求項 12に記載の無線送信装置。 13. The radio transmission apparatus according to claim 12, wherein the predetermined interval is set so as to vary according to propagation path fluctuation conditions.
[14] 前記リファレンス信号多重部は、周波数軸方向の特定の領域に、前記リファレンス 信号を配置する、 [14] The reference signal multiplexing unit arranges the reference signal in a specific region in the frequency axis direction.
請求項 12に記載の無線送信装置。  The wireless transmission device according to claim 12.
[15] 前記周波数軸方向の特定の領域は、セル毎に割り当てられる領域であって、隣接 セル毎に異なる、 [15] The specific region in the frequency axis direction is a region assigned to each cell, and is different for each adjacent cell.
請求項 14に記載の無線送信装置。  The wireless transmission device according to claim 14.
[16] 前記周波数軸方向の特定の領域は、セル毎に割り当てられる領域であって、隣接 セルで共通である、 [16] The specific region in the frequency axis direction is a region assigned to each cell, and is common to adjacent cells.
請求項 14に記載の無線送信装置。  The wireless transmission device according to claim 14.
[17] 前記周波数軸方向の特定の領域において、前記リファレンス信号よりも送信電力が 低い前記データ信号は、 2値又は 4値の変調数の変調信号を含んで構成される、 請求項 14に記載の無線送信装置。 17. The data signal having lower transmission power than the reference signal in a specific region in the frequency axis direction is configured to include a modulation signal having a binary or quaternary modulation number. Wireless transmitter.
[18] 前記周波数軸方向の特定の領域内の前記データ信号の送信電力は、前記周波数 軸方向の特定の領域外の前記データ信号の送信電力より低い、 [18] The transmission power of the data signal in the specific region in the frequency axis direction is lower than the transmission power of the data signal outside the specific region in the frequency axis direction.
請求項 14に記載の無線送信装置。 The wireless transmission device according to claim 14.
[19] 前記伝送フォーマットは、時間的に連続して伝送されるサブフレームを最小単位に 、複数のユーザに対する個別データを割り当てるフォーマットである、 [19] The transmission format is a format in which individual data is assigned to a plurality of users, with subframes transmitted continuously in time as a minimum unit.
請求項 12に記載の無線送信装置。  The wireless transmission device according to claim 12.
[20] 前記サブフレームには、伝搬路の変動が小さいほど、前記サブフレームに配置され る最後の前記リファレンス信号が、時間軸方向により離れた前記 OFDMシンボルに 配置されている、 [20] In the subframe, as the propagation path variation is smaller, the last reference signal arranged in the subframe is arranged in the OFDM symbol further away in the time axis direction.
請求項 12に記載の無線送信装置。  The wireless transmission device according to claim 12.
[21] 空間伝搬路のチャネル推定用のリファレンス信号が所定の間隔を隔てて付加され たデータ系列を受信するステップと、 [21] receiving a data sequence in which a reference signal for channel estimation of a spatial propagation path is added at a predetermined interval;
前記データ系列を復調するステップと、  Demodulating the data sequence;
前記復調されたデータ系列中の前記リファレンス信号に基づいて伝搬路の変動状 況を推定し、前記変動状況に基づいて、当該データ系列に対する内揷補間または 外揷補間により得られるチャネル推定値を出力するステップと、  Based on the reference signal in the demodulated data sequence, the fluctuation state of the propagation path is estimated, and based on the fluctuation state, a channel estimation value obtained by internal interpolation or external interpolation for the data sequence is output. And steps to
前記内揷補間または外揷補間のいずれかのチャネル推定値を用いて、前記データ 系列の復調復号処理を行うステップと、  Performing demodulation decoding processing of the data sequence using the channel estimation value of either the inner interpolation or outer interpolation,
を含む無線受信方法。  A wireless reception method including:
[22] サブフレームが複数の OFDMシンボルから構成される伝送フォーマットを用いる無 線送信方法であって、  [22] A radio transmission method using a transmission format in which a subframe is composed of a plurality of OFDM symbols,
空間伝搬路のチャネル推定用のリファレンス信号を生成するステップと、 データ信号を OFDMシンボルのサブキャリアに割り当てるステップと、  Generating a reference signal for channel estimation of a spatial propagation path, assigning a data signal to subcarriers of an OFDM symbol,
前記リファレンス信号の送信電力が、前記データ信号の送信電力よりも大きくなるよ うに、前記リファレンス信号の送信電力を調整するステップと、  Adjusting the transmission power of the reference signal such that the transmission power of the reference signal is larger than the transmission power of the data signal;
前記電力調整部により送信電力が調整された前記リファレンス信号を、 OFDMシ ンボルのサブキャリアの周波数軸方向に所定の間隔を隔てて配置する、又は、時間 軸方向に所定の間隔を隔てて配置するステップと、  The reference signals, the transmission power of which has been adjusted by the power adjustment unit, are arranged at a predetermined interval in the frequency axis direction of subcarriers of the OFDM symbol, or are arranged at a predetermined interval in the time axis direction Steps,
OFDMシンボルのサブキャリアに割り当てられた前記データ信号及び前記リファレ ンス信号に対し OFDM変調を施し、得られた OFDM変調信号を送信するステップと を含む無線送信方法。 Performing OFDM modulation on the data signal and the reference signal allocated to subcarriers of the OFDM symbol, and transmitting the obtained OFDM modulated signal; A wireless transmission method including:
PCT/JP2007/073101 2006-11-30 2007-11-29 Radio transmission device, radio reception device, radio transmission method, and radio reception method WO2008069105A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200780029495.9A CN101502029B (en) 2006-11-30 2007-11-29 Radio transmission device and method
US12/377,362 US8300725B2 (en) 2006-11-30 2007-11-29 Radio transmission device, radio reception device, radio transmission method, and radio reception method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-324522 2006-11-30
JP2006324522 2006-11-30
JP2007-307757 2007-11-28
JP2007307757A JP5159274B2 (en) 2006-11-30 2007-11-28 Wireless transmission apparatus and wireless transmission method

Publications (1)

Publication Number Publication Date
WO2008069105A1 true WO2008069105A1 (en) 2008-06-12

Family

ID=39492003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/073101 WO2008069105A1 (en) 2006-11-30 2007-11-29 Radio transmission device, radio reception device, radio transmission method, and radio reception method

Country Status (1)

Country Link
WO (1) WO2008069105A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009157520A1 (en) * 2008-06-27 2009-12-30 京セラ株式会社 Radio communication device and radio communication method
EP2333976A1 (en) * 2008-09-30 2011-06-15 Fujitsu Limited Propagation path estimation device, receiver, and propagation path estimation method
US20110222416A1 (en) * 2009-09-15 2011-09-15 Qualcomm Incorporated Systems and methods for over the air load indicator for wireless scheduling
US8868091B2 (en) 2010-01-18 2014-10-21 Qualcomm Incorporated Methods and apparatus for facilitating inter-cell interference coordination via over the air load indicator and relative narrowband transmit power

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1198102A (en) * 1997-09-25 1999-04-09 Sanyo Electric Co Ltd Ofdm receiver
JP2000151548A (en) * 1998-11-05 2000-05-30 Matsushita Electric Ind Co Ltd Ofdm communication apparatus
JP2003087213A (en) * 2001-09-14 2003-03-20 Fujitsu Ltd Method and device for receiving ofdm
WO2004064295A2 (en) * 2003-01-07 2004-07-29 Qualcomm, Incorporated Pilot transmission schemes for wireless multi-carrier communication systems
WO2004077728A2 (en) * 2003-02-24 2004-09-10 Flarion Technologies, Inc. Pilot signals for use in multi-sector cells
JP2005124125A (en) * 2003-09-26 2005-05-12 Nippon Hoso Kyokai <Nhk> Carrier arrangement method, transmission device, and receiving device in ofdm transmission system
WO2005094023A1 (en) * 2004-03-05 2005-10-06 Qualcomm Incorporated Pilot transmission and channel estimation for miso and mimo system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1198102A (en) * 1997-09-25 1999-04-09 Sanyo Electric Co Ltd Ofdm receiver
JP2000151548A (en) * 1998-11-05 2000-05-30 Matsushita Electric Ind Co Ltd Ofdm communication apparatus
JP2003087213A (en) * 2001-09-14 2003-03-20 Fujitsu Ltd Method and device for receiving ofdm
WO2004064295A2 (en) * 2003-01-07 2004-07-29 Qualcomm, Incorporated Pilot transmission schemes for wireless multi-carrier communication systems
WO2004077728A2 (en) * 2003-02-24 2004-09-10 Flarion Technologies, Inc. Pilot signals for use in multi-sector cells
JP2005124125A (en) * 2003-09-26 2005-05-12 Nippon Hoso Kyokai <Nhk> Carrier arrangement method, transmission device, and receiving device in ofdm transmission system
WO2005094023A1 (en) * 2004-03-05 2005-10-06 Qualcomm Incorporated Pilot transmission and channel estimation for miso and mimo system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009157520A1 (en) * 2008-06-27 2009-12-30 京セラ株式会社 Radio communication device and radio communication method
US8665978B2 (en) 2008-06-27 2014-03-04 Kyocera Corporation Wireless communication apparatus and wireless communication method
EP2333976A1 (en) * 2008-09-30 2011-06-15 Fujitsu Limited Propagation path estimation device, receiver, and propagation path estimation method
EP2333976A4 (en) * 2008-09-30 2015-01-28 Fujitsu Ltd Propagation path estimation device, receiver, and propagation path estimation method
US20110222416A1 (en) * 2009-09-15 2011-09-15 Qualcomm Incorporated Systems and methods for over the air load indicator for wireless scheduling
US8559325B2 (en) * 2009-09-15 2013-10-15 Qualcomm Incorporated Systems and methods for over the air load indicator for wireless scheduling
US8868091B2 (en) 2010-01-18 2014-10-21 Qualcomm Incorporated Methods and apparatus for facilitating inter-cell interference coordination via over the air load indicator and relative narrowband transmit power

Similar Documents

Publication Publication Date Title
JP5159274B2 (en) Wireless transmission apparatus and wireless transmission method
US20200177422A1 (en) Method and System for Combining DFT-Transformed OFDM and Non-Transformed OFDM
JP5366494B2 (en) Multi-carrier transmitter
US10374851B2 (en) Communication system, communication device and communication method that can improve frequency use efficiency
US8107356B2 (en) Method and apparatus for transmitting/receiving a signal in an FFH-OFDM communication system
JP4415061B2 (en) Transmission signal generation method and transmission signal generation apparatus
CN102447656B (en) Method for processing received OFDM data symbols and OFDM baseband receiver
US8526512B2 (en) Transmitting apparatus and receiving apparatus
AU2005318997A1 (en) Constrained hopping in wireless communication systems
JP2006238215A (en) Wireless communication apparatus and wireless communication method
US8824600B2 (en) Multiuser MIMO system, receiver, and transmitter
WO2008069105A1 (en) Radio transmission device, radio reception device, radio transmission method, and radio reception method
EP2553832A1 (en) Channel quality estimation for mlse receiver
WO2011129403A1 (en) Wireless communication system, wireless communication apparatus, program and transmission method
Bhuvanasundaram et al. non-orthogonal Multiple Access Schemes for next-Generation 5G networks: A Survey
KR101232132B1 (en) Apparatus and method for receiving signal of acquiring antenna diversity in a ofdm system
KR100602890B1 (en) Orthogonal Frequency Division Multiplexing Receiving System Using Adaptive Array Antennas And Method Thereof
WO2022241711A1 (en) Methods and apparatus for using a phase tracking reference signal with a single carrier waveform
KR100430524B1 (en) Orthogonal Frequency Division Multiplexing Receiving System Using Adaptive Array Antennas And Method Thereof
JP4679262B2 (en) Transmission method and apparatus, reception method and apparatus, and communication system using them
JP2007110203A (en) Radio communication system, radio communication equipment and wireless communication method, and computer program
JP2006521711A (en) Filtering method and filter device for transmission processing in orthogonal frequency division multiplexing communication system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780029495.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07832801

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12377362

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07832801

Country of ref document: EP

Kind code of ref document: A1