WO2008069062A1 - Blood flow speed image creating device - Google Patents

Blood flow speed image creating device Download PDF

Info

Publication number
WO2008069062A1
WO2008069062A1 PCT/JP2007/072907 JP2007072907W WO2008069062A1 WO 2008069062 A1 WO2008069062 A1 WO 2008069062A1 JP 2007072907 W JP2007072907 W JP 2007072907W WO 2008069062 A1 WO2008069062 A1 WO 2008069062A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood flow
flow velocity
map
pulsation
arterial
Prior art date
Application number
PCT/JP2007/072907
Other languages
French (fr)
Japanese (ja)
Inventor
Hitoshi Fujii
Kenji Okamoto
Kimihiko Fujisawa
Original Assignee
Kyushu Tlo Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Tlo Company, Limited filed Critical Kyushu Tlo Company, Limited
Priority to JP2008548238A priority Critical patent/JP4803520B2/en
Priority to US12/517,017 priority patent/US20100056936A1/en
Publication of WO2008069062A1 publication Critical patent/WO2008069062A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/12Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
    • A61B3/1241Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes specially adapted for observation of ocular blood flow, e.g. by fluorescein angiography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/704Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow using marked regions or existing inhomogeneities within the fluid stream, e.g. statistically occurring variations in a fluid parameter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/001Full-field flow measurement, e.g. determining flow velocity and direction in a whole region at the same time, flow visualisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/26Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting optical wave

Definitions

  • the present invention relates to a blood flow velocity imaging device for illuminating a biological tissue having blood cells with laser light and measuring and imaging a blood flow velocity based on a speckle signal reflected from the biological tissue. .
  • an image sensor such as a solid-state imaging device (CCD or CMOS) is formed by irradiating a living tissue having blood cells such as the fundus of the subject's eye with a laser beam and using the reflected light of the blood cell force.
  • the number of images is taken and stored continuously at predetermined time intervals, and a predetermined number of images are selected from the stored images, and the time variation of the output at each pixel of each image is selected.
  • a blood flow velocity measuring device that calculates a value obtained by integrating the amounts and calculates a blood cell velocity (blood flow velocity) from this value.
  • the blood flow distribution in the living tissue is calculated based on the calculated output fluctuation value of each pixel. It can also be displayed in color on a monitor screen as a three-dimensional image (blood flow map), and has been put into practical use, for example, as a fundus blood flow inspection apparatus.
  • Patent Document 1 Japanese Patent Publication No. 5-28133
  • Patent Document 2 Japanese Patent Publication No. 5-28134
  • Patent Document 3 Japanese Patent Laid-Open No. 4242628
  • Patent Document 4 JP-A-8-112262
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2003_164431
  • Patent Document 6 Japanese Unexamined Patent Application Publication No. 2003-180641
  • the pulsation of blood flow for each pixel of each image measured by a conventional blood flow velocity measuring device becomes blood flow data including statistical errors scattered around a certain blood flow value, and is therefore arranged in time series. In this case, it becomes a noisy profile instead of a clean pulsation profile, and it is very difficult to detect the peak time of pulsation necessary to distinguish between arterial and venous pulsatile regions. there were.
  • the present invention applies and develops a conventional blood flow velocity measuring device, suppresses noise in noisy blood flow pulsation data, and displays an arterial pulsation part and a venous pulsation part on a map. It is an object of the present invention to provide a blood flow velocity imaging apparatus capable of displaying the above.
  • the present inventor on a series of blood flow maps obtained by blood flow measurement for several seconds, shows changes in blood flow that appear periodically in synchronization with the heartbeat at each site in the observation field of view! / Analyzing and introducing a numerical value that can distinguish between an arterial sharp! / Part with a rising waveform and a part with a venous, gently rising and falling waveform, and distinguishing both parts to display a two-dimensional map It has succeeded in developing a method and apparatus that can determine which part is at risk of becoming ischemic.
  • the invention described in claim 1 of the present invention includes a laser light irradiation system for irradiating a biological tissue having blood cells with laser light, and a plurality of images for detecting reflected light from the biological tissue.
  • a light receiving system having a light receiving unit composed of an element, an image capturing unit that continuously captures a plurality of images in a predetermined time of one heartbeat or more based on a signal from the light receiving unit, and an image storage unit that stores the plurality of images
  • a calculation unit for calculating a blood flow velocity in the living tissue from a temporal change in output signals of corresponding pixels of the stored plural images, and a display for displaying a two-dimensional distribution of the calculation result as a blood flow map
  • the calculation part has a detection part for detecting arteries and veins from the plurality of images of one or more heartbeats, and the arterial is displayed on the blood flow map of the display part. Pulsating part (arterial map) and venous
  • the way of displaying the arteriovenous map on the blood flow map is not limited at all.
  • a blood flow map and an arteriovenous map can be superimposed (invented in claim 9), arranged, slidably superimposed, or combined and displayed.
  • the blood flow velocity imaging apparatus of the present invention can be added or incorporated with known mechanisms and means as required.
  • the detection unit calculates a skewness (skew value) on the basis of fluctuations in blood flow velocity arranged in time series for each pixel, so that the arterial 2.
  • a skewness skew value
  • the detection unit considers fluctuations in blood flow velocity arranged in time series for each pixel as a probability density function, and calculates an expected value of the probability density function.
  • the detection unit calculates kurtosis on the basis of fluctuations in blood flow velocity arranged in time series for each pixel, and thereby detects arterial beats.
  • the detection unit considers a fluctuation in blood flow velocity arranged in time series for each pixel as a probability density function, and estimates that the probability density function is the maximum. 2.
  • a mode value (mode) that can be calculated is calculated, and an arterial pulsation part and a venous pulsation part are detected.
  • the detection unit statistically processes a blood flow value of one or more neighboring pixels with respect to a blood flow value of each pixel including many statistical errors. Calculates the average value and outputs one or more pulsating components arranged in a time series with less noise required to detect arterial and venous pulsatile parts!
  • the blood flow velocity imaging device according to any one of claims 2 to 5.
  • the invention described in claim 7 is characterized in that the detection unit extracts a pulsation component after averaging the temporal fluctuation of the blood flow of each pixel over a plurality of heartbeats into one heartbeat. 6.
  • the blood flow velocity imaging device according to any one of claims 2 to 5, wherein the blood flow velocity is imaged.
  • the detection unit detects a time variation of blood flow of each pixel over a plurality of heartbeats, for example, an external synchronization signal synchronized with a heartbeat such as an electrocardiograph. 6.
  • a pulsation component is extracted after cutting out one heartbeat.
  • the invention described in claim 9 is characterized in that the display unit displays the arterial pulsation part and the venous pulsation part on the blood flow map in a superimposed manner.
  • the blood flow velocity imaging device according to claim 1. The invention described in claim 9 is a force in which a blood flow map and an arteriovenous map are displayed on the display unit so as to overlap each other. It is included in distinguishing and displaying the arterial pulsatile part and the venous pulsatile part above. Further, the technical feature of displaying the arterial pulsation part and the venous pulsation part on the blood flow map is described in any one of claims 2 to 8 of the present invention. It goes without saying that other inventions can be combined.
  • the ratio does not have to be 1: 1, and in order to see the ischemic state more clearly, numerical values in the respective maps are used. You can also multiply and apply weight. As a result of weighting, for example, by taking the AND of the slow part of the blood flow map and the venous part of the arteriovenous map, the part of the ischemic state on the fundus can be recognized.
  • the detection unit is specifically configured as in the invention described in claims 2 to 8, so that a plurality of blood flows of one heartbeat or more From the map, the component force obtained by distinguishing and distinguishing the arterial pulsatile part from the venous pulsatile part, and the ability to obtain an easy-to-use segmented map, the force S! /, Results are obtained.
  • the blood flow map obtained with the apparatus of the present invention shows venous pulsation, blood flow is low, and the region may be diseased. Will be medically meaningful [0019]
  • a venous pulsation can be displayed in black while a black arterial pulsation is displayed in red.
  • a blood flow map is displayed in a gray scale map, a region where the blood flow is fast is white and a region where the blood is slow is black.
  • the part where the blood flow is low and the part where the disease is recognized becomes black on the blood flow map, and the arteriovenous map also becomes venous pulsation Since it becomes black, if the arteriovenous map is displayed so as to be transparent to some extent, the diseased site displayed in black becomes easy to concentrate.
  • the above-described overlay display method is characterized in that when the maps are overlaid, the color arterio-venous vein map is transmitted translucently and the blood flow map is displayed in grayscale (monochrome).
  • the dark-colored part in the arteriovenous map is a part where a pulsation peak is particularly slow among venous pulsations, and some kind of disorder is suspected.
  • the colored part that is not black is a healthy part that is shaped like a peak in the first half of the beat.
  • the black part of the blood flow map has a fairly gentle flow, and it is considered that some kind of obstacle is blocking the blood flow, which is also a place where a disease is suspected.
  • this part is displayed in grayscale (monochrome), it is displayed as a force, a dark black. Therefore, when you look at the map where the translucent arteriovenous map that is a color map and the gray scale blood flow map are overlaid, the parts that are displayed in black are displayed black because each other's map is dark. This will clearly show the place where it is considered that there is some kind of disease.
  • FIG. 1 is a diagram showing a main part of a configuration of a blood flow velocity imaging apparatus according to the present invention.
  • FIG. 2 is a diagram showing the pulsation of blood flow in each pixel.
  • FIG. 3 is a diagram showing beats that have been smoothed and normalized.
  • FIG. 4 is a diagram (actual color map) in which the degree of distortion obtained from the present invention is mapped.
  • FIG. 5 is a diagram showing a flow for calculating skewness.
  • FIG. 6 is a diagram showing a flow for calculating a simplified skewness.
  • FIG. 7 is a black and white map of the degree of distortion obtained from the present invention.
  • FIG. 8 is a diagram showing a main part of the configuration of the blood flow velocity imaging apparatus according to claim 8.
  • FIG. 1 shows an outline of an optical system in the configuration of the blood flow velocity imaging apparatus of the present invention, wherein 1 is a laser light irradiation system, 2 is a light receiving system, and E is an eye to be examined.
  • the laser light of the laser light irradiation system 1 is irradiated, for example, onto the fundus Er, for example, as a living tissue of the eye E through the half mirror 13.
  • the light receiving system 2 includes a light receiving lens 4, a CCD (solid-state imaging device) 5 as a light receiving unit, and an amplifier circuit 6.
  • the laser reflected light from the fundus Er is focused on the CCD 5 as a biological tissue image by the light receiving lens 4.
  • the CCD 5 has a large number of pixels on its light receiving surface, converts the biological tissue image formed by the light receiving lens 4 into an electrical signal, reads out the signal charge by the frame accumulation method, and outputs it as a video signal.
  • the video signal is amplified by the signal amplification circuit 6, and the video signal amplified by the signal amplification circuit 6 is output to the analog processing means 7 that performs gain control and the like, and is converted into a digital signal by the A / D converter 8. Is done.
  • 9 is a timing pulse generator
  • 10 is an electronic shutter control means
  • 11 is a solid-state imaging element driving means
  • the timing pulse generator 9 is timed to the electronic shutter control means 10 and the signal selection means 12 Output a pulse.
  • the solid-state image sensor driving means 11 is driven based on the timing noise.
  • a digital signal as a video signal A / D converted by the A / D converter 8 is input to the signal selection means 12, and the signal selection means 12 is based on the timing norse from the timing pulse generator 9. 12 is recorded in the image recording means 13.
  • the image recording means 13 functions as an image capturing unit that captures a plurality of images at a predetermined time interval.
  • the image captured by the image recording means 13 is synthesized by the blood flow map synthesizing means 14, for example, a 1-frame image taken at 1/30 second intervals, and the 1-frame image data is an image. It is stored in the image storage 15 as a storage unit.
  • the image signal stored in the image memory 15 is input to the arithmetic unit 16, and the arithmetic unit 16 performs arithmetic processing described later.
  • Reference numeral 17 denotes a TV monitor as a display unit.
  • FIG. 2 shows a waveform of pulsation data of each pixel obtained by the blood flow velocity imaging apparatus of the present invention.
  • the horizontal axis is time
  • the vertical axis is the blood flow value.
  • a plurality of continuous blood flow maps of one heart beat or more! It is possible to trace the time fluctuation of the flow and detect the part that becomes the maximum peak, and use the part with the fastest peak time as the arterial pulsation part and the slow part as the venous pulsation part.
  • the blood flow obtained with a blood flow meter is highly dispersed due to statistical errors, so it is very difficult to detect the pulsation peak for each pixel.
  • the arterial vein is determined from the rising and falling profiles up to the peak even in a state where the statistical error is included to some extent.
  • the graphs shown in Fig. 3 were obtained by plotting on the same graph.
  • the number of pixels that can obtain the same waveform as in Fig. 3 and maintain a certain amount of blood vessel travel, for example, when the blood vessel width is 12 pixels, the number of pixels is 6 pixels centered around the pixel 36 pixels It is preferable to calculate from the above.
  • the area to be averaged is good for circles, crosses, and rhombuses that are squares.
  • the average number of pixels may be increased. For example, the structure power of tissue blood flow 3 ⁇ 40 pixel square, 10 pixels square centered on a certain pixel 100 pixels Calculate from the above.
  • the averaged area may be a circle, a cross, or a diamond shape.
  • the rise of the artery (1 in Fig. 3) has a steep rise and declines quickly after the peak, and the rise of the vein (2 in Fig. 3) is slower than that of the artery. Also, it can be seen that there is a characteristic that it falls more slowly after the peak. Arteries and veins, but also different before and after the position of the peak, to rise the way and falling how to peak, that there is a greater difference force s Such.
  • the difference between the rising methods of the two is first evaluated as one method by the skewness (skew value), which is a third-order moment generally referred to in statistics. Is worth it.
  • the skewness is a parameter that compares the target of the function. When this skewness is applied to the blood flow, it becomes a large positive value for arterial pulsations and small for venous pulsations. There is a tendency to become a value.
  • Fig. 4 shows the result of actually calculating the skewness and displaying the map.
  • the gray part is the arterial pulsation part
  • the black part is the venous pulsation part.
  • the red and warm colors are the arterial beating parts
  • the colder colors such as black and blue (black in Fig. 4).
  • It is a venous beating site.
  • the connection of the warm-colored parts is connected like a blood vessel, and this part is considered to be an artery.
  • the connection of cold-colored parts is a vein.
  • the skewness is actually calculated according to the procedure shown in FIG. That is, first, blood flow values are calculated from a plurality of speckle images by the blood flow calculation of FIG. 5, and a blood flow map arranged in time series of one heartbeat or more is obtained. Next, by smoothing, the blood flow values are averaged using the pixels around each pixel for each blood flow map obtained above. Next, in heart rate synthesis, the smoothed time series blood flow map of one or more heart beats obtained above is detected, and the map with the lowest average blood flow value of the entire map is detected to detect multiple pulsations. . The top maps of each beat are averaged to form a top map of one heart beat that is synthesized. Sequentially, the first map force and the next map are averaged to create one heartbeat data by combining the heartbeats.
  • Ik_n (m, n) a normalized blood flow value at the kth map pixel (m, n) from the head of the heart rate map synthesized into one heartbeat.
  • Ik (m, n) Blood flow value at the kth map pixel (m, n) from the top of the heart rate map synthesized for one heart rate.
  • I (m, n) min The minimum blood flow in the time-series data of the heart rate map synthesized for one heartbeat at pixel (m, n).
  • I (m, n) max Maximum blood flow in the time-series data of the heart rate map synthesized for one heartbeat at pixel (m, n).
  • Skew (m, n) Skewness at pixel (m, n).
  • A Scale factor
  • b Number of maps for one heartbeat
  • k Map order from the top of one heartbeat
  • kth Map order from the top of one heartbeat
  • ave (m, n) First moment of the profile in which blood flow values normalized to heartbeat are arranged in time series In general, it is called the expected value.
  • stdev (m, n): The square root of the secondary mode of the profile in which blood flow values normalized in heart rate are arranged in time series, and is generally called standard deviation.
  • Il_n (m, n) Normalized blood flow value at the first map pixel (m, n) from the beginning of the heart rate map synthesized for one heart rate.
  • the process in the middle of blood flow calculation and skewness calculation is omitted by the procedure shown in FIG. 6, and continuous time-series data of only one heartbeat is obtained from a plurality of heartbeat data.
  • the arteriovenous pulsatile separation is also possible by the method of calculating the extracted skewness.
  • the map is obtained by multiplying the coefficient A so that the user can easily identify the arteriovenous vein, and dividing the arteriovenous into a TV monitor or the like. indicate.
  • FIG. 7 is a black and white map of the skewness obtained as described above.
  • the expected value is a value that fluctuates depending on the position before and after the pulsation peak, and the kurtosis increases as the mode value of the pulsation is sharp! If there is a low value! /, There is a characteristic. In the case of arterial pulsation, the peak of the pulsation is sharp and the value is high. If it is a venous beat, the value is low and separation is easy.
  • the pulsation profile plots the blood flow value having a statistical error, so the mode value is not necessarily clean pulsation data. It is not only the case where the mode value of the pulsation is calculated. Therefore, in order to calculate a plausible mode value, it is preferable to average the blood flow values around the pixels according to the invention of claim 6 to reduce the noise and calculate the mode value.
  • the mode obtained from the pulsation profile averaged for each pixel is obtained in the first half of the heart rate for arterial pulsation, and venous is obtained with a slight delay, resulting in arterial and venous pulsations. Can be separated.
  • the arteriovenous pulsation distinguishing method such as the skewness is based on the ability to detect the lowest frame from a plurality of heartbeats and combine them into one heartbeat, or the time series data of one heartbeat between the lowest frames.
  • This is a method of mapping by performing skewness calculation after extracting.
  • an external heartbeat such as an electrocardiogram as in the invention described in claim 8.
  • the external synchronization signal arrives at the arithmetic unit in synchronism with the beat, with the strength of the beat having a certain propagation delay time force.
  • the calculation unit can take into account the propagation delay time, detect weak beats! /, And extract the next lowest frame from the lowest frame to create beat data for one heartbeat.
  • Figure 8 shows the procedure for this method.
  • 18 is an external synchronization signal detector.
  • a blood flow velocity imaging apparatus capable of displaying an arterial pulsation part and a venous pulsation part on a blood flow map.
  • this device not only the arteriovenous separation of blood vessels, but also the part where the blood flow is low and the part where the disease is recognized is black on the blood flow map, and the arterial vein is also black. This makes it easier to identify the affected area where damage is likely to occur. Therefore, the blood flow velocity imaging apparatus of the present invention introduces a new scale to the fundus blood flow evaluation method, and is expected as a clinically extremely useful diagnostic tool.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Hematology (AREA)
  • Multimedia (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

[PROBLEMS] A blood flow speed image creating device for automatically distinguishing between an arteria and a vein from the blood flow speed measured from a time-series blood flow map. [MEANS FOR SOLVING PROBLEMS] A blood flow speed image creating device comprises a laser beam shining system (1) for shining a laser beam onto an organism tissue having blood cells, a light-receiving system (2) having a light-receiving section (5) composed of multiple pixels for detecting reflected light from the organism tissue, an image capturing section (12) for continuously capturing images for a predetermined time longer than one heart beat from the signal from the light-receiving section (5), an image storage section (15) for storing the images, a computing section (16) for computing the blood flow speed in the organism tissue from the temporal variation of the output signal from each of the pixels corresponding to the stored images. The computing section has a detecting block for detecting an arteria and a vein from the images captured for the time longer than one heart beat and displays the arterial beating portion and the venous beating portion on a blood flow map.

Description

明 細 書  Specification
血流速度画像化装置  Blood flow velocity imaging device
技術分野  Technical field
[0001] 本発明は、血球を有する生体組織にレーザ光を照明し、その生体組織から反射され たスペックル信号に基づき、血流速度を測定し画像化するための血流速度画像化装 置に関する。  The present invention relates to a blood flow velocity imaging device for illuminating a biological tissue having blood cells with laser light and measuring and imaging a blood flow velocity based on a speckle signal reflected from the biological tissue. .
背景技術  Background art
[0002] 従来、被検眼の眼底等の血球を有する生体組織にレーザ光を照射して、その血球 力、らの反射光により形成された画像を固体撮像装置(CCDや CMOS)等のイメージ センサー上に導き、この画像を連続的に所定時間間隔で多数枚取り込み ·記憶し、 その記憶された多数の画像の中から所定枚数の画像を選択し、各画像の各画素に おける出力の時間変動量を積算した値を算出し、この値から血球の速度(血流速度) を算出する血流速度測定装置が知られている。そして、この種の血流速度測定装置 では、各画素の出力変動量が血球の移動速度に対応するので、この算出された各 画素の出力変動値に基づき、生体組織での血流分布を二次元画像(血流マップ)と してモニター画面上にカラー表示することもでき、例えば、眼底血流の検査装置とし て実用化されている。  [0002] Conventionally, an image sensor such as a solid-state imaging device (CCD or CMOS) is formed by irradiating a living tissue having blood cells such as the fundus of the subject's eye with a laser beam and using the reflected light of the blood cell force. The number of images is taken and stored continuously at predetermined time intervals, and a predetermined number of images are selected from the stored images, and the time variation of the output at each pixel of each image is selected. There is known a blood flow velocity measuring device that calculates a value obtained by integrating the amounts and calculates a blood cell velocity (blood flow velocity) from this value. In this type of blood flow velocity measuring device, since the output fluctuation amount of each pixel corresponds to the moving speed of the blood cell, the blood flow distribution in the living tissue is calculated based on the calculated output fluctuation value of each pixel. It can also be displayed in color on a monitor screen as a three-dimensional image (blood flow map), and has been put into practical use, for example, as a fundus blood flow inspection apparatus.
特許文献 1 :特公平 5— 28133号公報  Patent Document 1: Japanese Patent Publication No. 5-28133
特許文献 2:特公平 5 - 28134号公報  Patent Document 2: Japanese Patent Publication No. 5-28134
特許文献 3:特開平 4 242628号公報  Patent Document 3: Japanese Patent Laid-Open No. 4242628
特許文献 4:特開平 8— 112262号公報  Patent Document 4: JP-A-8-112262
特許文献 5:特開 2003 _ 164431号公報  Patent Document 5: Japanese Patent Application Laid-Open No. 2003_164431
特許文献 6 :特開 2003— 180641号公報  Patent Document 6: Japanese Unexamined Patent Application Publication No. 2003-180641
[0003] しかし、従来の血流速度測定装置では、血流マップを動画で観察するのみで、血流 変化を特徴づけるような物理量の検討までは行われていなかった。また、従来のもの でも、マップ上に血管走行や組織血流の血流を確認できる力 それらが動脈性の拍 動であるか又は静脈性の拍動である力、までは分からなかった。動脈性の拍動である か静脈性の拍動であるかを区別するためには、血流の時間的な変動の解析をしなけ ればならず、従来の血流速度測定装置ではかかる解析が困難であった。即ち、従来 の血流速度測定装置で測定した各画像の各画素毎の血流の拍動は、ある血流値を 中心に散らばった統計誤差を含む血流データとなるため、時系列に並べた場合、き れいな拍動プロフィールとはならずノイズの多いプロフィールとなり、動脈性と静脈性 の拍動領域を区分するために必要な、拍動のピーク時間を検出することが非常に困 難であった。 [0003] However, in the conventional blood flow velocity measuring device, only a blood flow map is observed with a moving image, and physical quantities that characterize changes in blood flow have not been studied. Moreover, even in the conventional device, the ability to confirm blood flow of blood vessels and tissue blood flow on the map was not known to the force that they were arterial pulsations or venous pulsations. Arterial pulsation In order to distinguish between pulsatile and venous pulsations, it is necessary to analyze temporal fluctuations in blood flow, and such analysis is difficult with conventional blood flow velocity measuring devices. In other words, the pulsation of blood flow for each pixel of each image measured by a conventional blood flow velocity measuring device becomes blood flow data including statistical errors scattered around a certain blood flow value, and is therefore arranged in time series. In this case, it becomes a noisy profile instead of a clean pulsation profile, and it is very difficult to detect the peak time of pulsation necessary to distinguish between arterial and venous pulsatile regions. there were.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 本発明は、従来の血流速度測定装置を応用'展開し、ノイズの多い血流拍動データ のノイズを抑制し、マップ上に動脈性の拍動部分と静脈性の拍動部分を表示すること ができる血流速度画像化装置を提供することを目的とする。 [0004] The present invention applies and develops a conventional blood flow velocity measuring device, suppresses noise in noisy blood flow pulsation data, and displays an arterial pulsation part and a venous pulsation part on a map. It is an object of the present invention to provide a blood flow velocity imaging apparatus capable of displaying the above.
課題を解決するための手段  Means for solving the problem
[0005] 本発明者は、数秒間の血流測定で得られた一連の血流マップに対して、心拍に同 期して周期的に現れる血流変化を観測視野内の各部位にお!/、て解析し、動脈性の 鋭!/、立ち上がり波形を有する部位と、静脈性の緩やかに上下する波形を有する部位 を区別できる数値を導入し、両部位を区別して二次元マップ表示することで、どの部 位が虚血状態になる危険がある力、を判断できる方式、および装置を開発することに 成功したものである。 [0005] The present inventor, on a series of blood flow maps obtained by blood flow measurement for several seconds, shows changes in blood flow that appear periodically in synchronization with the heartbeat at each site in the observation field of view! / Analyzing and introducing a numerical value that can distinguish between an arterial sharp! / Part with a rising waveform and a part with a venous, gently rising and falling waveform, and distinguishing both parts to display a two-dimensional map It has succeeded in developing a method and apparatus that can determine which part is at risk of becoming ischemic.
[0006] 本発明の、請求の範囲第 1項に記載された発明は、血球を有する生体組織にレーザ 光を照射するレーザ光照射系と、前記生体組織からの反射光を検出する多数の画 素からなる受光部を有する受光系と、前記受光部からの信号に基づき一心拍以上の 所定時間で連続的に複数の画像を取り込む画像取込部と、前記複数の画像を記憶 する画像記憶部と、該記憶された複数画像の対応する各画素の出力信号の時間的 変化から生体組織内の血流速度を演算する演算部と、該演算結果の二次元分布を 血流マップとして表示する表示部からなる血流速度画像化装置にお!/、て、前記演算 部は前記 1心拍以上の複数画像から動脈と静脈を検出する検出部を有し、前記表示 部の血流マップ上に動脈性の拍動部分 (動脈マップ)と静脈性の拍動部分(静脈マツ プ)を区別して表示することを特徴とする血流速度画像化装置である。 [0006] The invention described in claim 1 of the present invention includes a laser light irradiation system for irradiating a biological tissue having blood cells with laser light, and a plurality of images for detecting reflected light from the biological tissue. A light receiving system having a light receiving unit composed of an element, an image capturing unit that continuously captures a plurality of images in a predetermined time of one heartbeat or more based on a signal from the light receiving unit, and an image storage unit that stores the plurality of images A calculation unit for calculating a blood flow velocity in the living tissue from a temporal change in output signals of corresponding pixels of the stored plural images, and a display for displaying a two-dimensional distribution of the calculation result as a blood flow map In the blood flow velocity imaging apparatus composed of a part, the calculation part has a detection part for detecting arteries and veins from the plurality of images of one or more heartbeats, and the arterial is displayed on the blood flow map of the display part. Pulsating part (arterial map) and venous pulsating part (vein) Tsu The blood flow velocity imaging device is characterized in that it is displayed separately.
[0007] 本発明においては、動脈マップと静脈マップが区別して血流マップ上に表示される 限り、血流マップ上での動静脈マップの表示のさせ方は何ら制限されない。血流マツ プと動静脈マップを重ね合わせたり(請求の範囲第 9項に記載された発明)、並べた り、スライド可能に重ね合わせたり、あるいは、組み合わせたりして表示させることがで きる。また、本発明の血流速度画像化装置には、公知の機構や手段を、必要に応じ て付加あるいは組み込むことができるのは言うまでもなレ、。 In the present invention, as long as the arterial map and the vein map are distinguished and displayed on the blood flow map, the way of displaying the arteriovenous map on the blood flow map is not limited at all. A blood flow map and an arteriovenous map can be superimposed (invented in claim 9), arranged, slidably superimposed, or combined and displayed. Needless to say, the blood flow velocity imaging apparatus of the present invention can be added or incorporated with known mechanisms and means as required.
[0008] 請求の範囲第 2項に記載された発明は、前記検出部が、各画素について時系列に 並べた血流速度の変動を元に歪度 (スキュー値)を算出し、動脈性の拍動部分と静 脈性の拍動部分を検出することを特徴とする請求の範囲第 1項記載の血流速度画像 化装置である。 [0008] In the invention described in claim 2 of the present invention, the detection unit calculates a skewness (skew value) on the basis of fluctuations in blood flow velocity arranged in time series for each pixel, so that the arterial 2. The blood flow velocity imaging apparatus according to claim 1, wherein a pulsation part and a pulsatile pulsation part are detected.
[0009] 請求の範囲第 3項に記載された発明は、前記検出部が、各画素について時系列に 並べた血流速度の変動を確率密度関数に見立て、該確率密度関数の期待値を算 出し、動脈性の拍動部分と静脈性の拍動部分を検出することを特徴とする請求の範 囲第 1項記載の血流速度画像化装置である。  [0009] In the invention described in claim 3 of the present invention, the detection unit considers fluctuations in blood flow velocity arranged in time series for each pixel as a probability density function, and calculates an expected value of the probability density function. 2. The blood flow velocity imaging apparatus according to claim 1, wherein an arterial pulsation part and a venous pulsation part are detected.
[0010] 請求の範囲第 4項に記載された発明は、前記検出部が、各画素について時系列に 並べた血流速度の変動を元に尖度 (kurtosis)を算出し、動脈性の拍動部分と静脈性 の拍動部分を検出することを特徴とする請求の範囲第 1項記載の血流速度画像化装 置である。  [0010] In the invention described in claim 4 of the present invention, the detection unit calculates kurtosis on the basis of fluctuations in blood flow velocity arranged in time series for each pixel, and thereby detects arterial beats. 2. The blood flow velocity imaging apparatus according to claim 1, wherein a moving part and a venous pulsating part are detected.
[0011] 請求の範囲第 5項に記載された発明は、前記検出部が、各画素について時系列に 並べた血流速度の変動を確率密度関数に見立て、該確率密度関数が最大と推測で きる最頻値 (モード)を算出し、動脈性の拍動部分と静脈性の拍動部分を検出するこ とを特徴とする請求の範囲第 1項記載の血流速度画像化装置である。  [0011] In the invention described in claim 5 of the present invention, it is assumed that the detection unit considers a fluctuation in blood flow velocity arranged in time series for each pixel as a probability density function, and estimates that the probability density function is the maximum. 2. The blood flow velocity imaging apparatus according to claim 1, wherein a mode value (mode) that can be calculated is calculated, and an arterial pulsation part and a venous pulsation part are detected.
[0012] 請求の範囲第 6項に記載された発明は、前記検出部が、統計的誤差を多く含む各画 素の血流値について周辺の 1画素以上の血流値を統計的に処理し平均値を算出し 、動脈性の拍動部分と静脈性の拍動部分を検出するために必要なノイズの少な!/ヽ時 系列に並んだ一つ以上の拍動成分を出力することを特徴とする請求の範囲第 2〜5 のいずれか 1項記載の血流速度画像化装置である。 [0013] 請求の範囲第 7項に記載された発明は、前記検出部が、複数心拍にわたる各画素の 血流の時間変動を一心拍に平均化した後、拍動成分を抽出することを特徴とする請 求の範囲第 2〜5のいずれか 1項記載の血流速度画像化装置である。 [0012] In the invention described in claim 6, the detection unit statistically processes a blood flow value of one or more neighboring pixels with respect to a blood flow value of each pixel including many statistical errors. Calculates the average value and outputs one or more pulsating components arranged in a time series with less noise required to detect arterial and venous pulsatile parts! The blood flow velocity imaging device according to any one of claims 2 to 5. [0013] The invention described in claim 7 is characterized in that the detection unit extracts a pulsation component after averaging the temporal fluctuation of the blood flow of each pixel over a plurality of heartbeats into one heartbeat. 6. The blood flow velocity imaging device according to any one of claims 2 to 5, wherein the blood flow velocity is imaged.
[0014] 請求の範囲第 8項に記載された発明は、前記検出部が、複数心拍にわたる各画素の 血流の時間変動を、例えば、心電計など心拍に同期した外部からの同期信号を元に 一心拍分切り出した後、拍動成分を抽出することを特徴とする請求の範囲第 2〜5の いずれか 1項記載の血流速度画像化装置である。  [0014] In the invention described in claim 8 of the present invention, the detection unit detects a time variation of blood flow of each pixel over a plurality of heartbeats, for example, an external synchronization signal synchronized with a heartbeat such as an electrocardiograph. 6. The blood flow velocity imaging device according to any one of claims 2 to 5, wherein a pulsation component is extracted after cutting out one heartbeat.
[0015] そして、請求の範囲第 9項に記載された発明は、前記表示部において、血流マップ 上に動脈性の拍動部分と静脈性の拍動部分を重ね合わせて表示することを特徴と する請求の範囲第 1項記載の血流速度画像化装置である。請求の範囲第 9項に記 載された発明は、前記表示部において、血流マップと動静脈マップが重ね合わて表 示されるものである力 本発明においては、力、かる場合も、血流マップ上に動脈性の 拍動部分と静脈性の拍動部分を区別して表示することに含まれるものである。また、 血流マップ上に動脈性の拍動部分と静脈性の拍動部分を重ね合わせて表示すると いう技術的特徴は、本発明の請求の範囲第 2〜8項のいずれかに記載されたその他 の発明にも、組合わせること力 Sできることは言うまでもなレ、。  [0015] The invention described in claim 9 is characterized in that the display unit displays the arterial pulsation part and the venous pulsation part on the blood flow map in a superimposed manner. The blood flow velocity imaging device according to claim 1. The invention described in claim 9 is a force in which a blood flow map and an arteriovenous map are displayed on the display unit so as to overlap each other. It is included in distinguishing and displaying the arterial pulsatile part and the venous pulsatile part above. Further, the technical feature of displaying the arterial pulsation part and the venous pulsation part on the blood flow map is described in any one of claims 2 to 8 of the present invention. It goes without saying that other inventions can be combined.
[0016] 前記の血流マップと動静脈マップを重ねて表示するに際しては、その比率は 1: 1で なくても良く、より虚血状態を鮮明に見るために、それぞれのマップにある数値を乗じ てウェイトをかけるようにしても良い。ウェイトかけの結果、例えば、血流マップの遅い 部分と動静脈マップの静脈性部位の ANDをとることにより、眼底上での虚血状態の 部位を認識することができる。  [0016] When the blood flow map and the arteriovenous map are displayed in an overlapping manner, the ratio does not have to be 1: 1, and in order to see the ischemic state more clearly, numerical values in the respective maps are used. You can also multiply and apply weight. As a result of weighting, for example, by taking the AND of the slow part of the blood flow map and the venous part of the arteriovenous map, the part of the ischemic state on the fundus can be recognized.
発明の効果  The invention's effect
[0017] 本発明の血流速度画像化装置においては、検出部を、具体的には請求の範囲第 2 〜8項記載の発明のように構成したので、一心拍以上の複数枚の血流マップから、 動脈性の拍動部分と静脈性の拍動部分を区別し区分した分力、りやすい区分マップを 得ること力 Sでさると!/、う ¾]果が得られる。  [0017] In the blood flow velocity imaging apparatus of the present invention, the detection unit is specifically configured as in the invention described in claims 2 to 8, so that a plurality of blood flows of one heartbeat or more From the map, the component force obtained by distinguishing and distinguishing the arterial pulsatile part from the venous pulsatile part, and the ability to obtain an easy-to-use segmented map, the force S! /, Results are obtained.
[0018] 本発明の装置で得られた血流マップにお!/、て、静脈性の拍動を示し、血流も低レ、部 位は疾患の可能性があり、この部位の表示可視化は医学的に意味があることになる [0019] そして、請求の範囲第 9項記載の発明のような表示のさせ方を採用すると、以下のよ うな効果が得られる。例えば、静脈性の拍動は黒ぐ動脈性の拍動は赤く表示するこ とができ、一方、血流マップをグレースケールマップ表示すると、血流が速い部位は 白ぐ遅い部位は黒くなる。従って、血流マップと、動静脈マップを重ねて表示すると 、血流の低い部位かつ疾患が認められる部位は、血流マップ上で黒くなり、動静脈マ ップでも静脈性の拍動になり黒くなるので、動静脈マップをある程度透過させ重ねて 表示すると、黒く表示された疾患部位が分力、り易くなる。 [0018] The blood flow map obtained with the apparatus of the present invention shows venous pulsation, blood flow is low, and the region may be diseased. Will be medically meaningful [0019] When the display method as in the invention described in claim 9 is employed, the following effects can be obtained. For example, a venous pulsation can be displayed in black while a black arterial pulsation is displayed in red. On the other hand, when a blood flow map is displayed in a gray scale map, a region where the blood flow is fast is white and a region where the blood is slow is black. Therefore, when the blood flow map and the arteriovenous map are displayed in an overlapping manner, the part where the blood flow is low and the part where the disease is recognized becomes black on the blood flow map, and the arteriovenous map also becomes venous pulsation Since it becomes black, if the arteriovenous map is displayed so as to be transparent to some extent, the diseased site displayed in black becomes easy to concentrate.
[0020] 上記の重ねて表示させる方法においては、マップ同士を重ねるときに、カラーの動静 脈マップを半透明に透過させ、血流マップをグレースケール(モノクロ)にして重ねて 表示させるところに特徴がある。この場合、動静脈マップで色が黒い箇所は、静脈性 の拍動の中でも特に拍動ピークが遅いもので、何らかの障害が疑われる箇所である 。しかし黒でない有色の部位は、拍動の前半にピークが来ているような形をしていて 健全な箇所であると言える。一方、血流マップの黒い部分は相当ゆったりとした流れ になっていて、何らかの障害物が血流を阻害していることが考えられ、これも疾患が 疑われる箇所である。そして、この部分は、グレースケール (モノクロ)で表示するので 、力、なり黒っぽく表示される。従って、カラーマップにした半透明の動静脈マップと、グ レースケールの血流マップを重ねたマップを眺めた時、色が黒っぽく表示されている 部分は、お互いのマップが黒っぽいのでより黒く表示され、何らかの疾患があると考 えられる箇所が明瞭に表示されることになる。  [0020] The above-described overlay display method is characterized in that when the maps are overlaid, the color arterio-venous vein map is transmitted translucently and the blood flow map is displayed in grayscale (monochrome). There is. In this case, the dark-colored part in the arteriovenous map is a part where a pulsation peak is particularly slow among venous pulsations, and some kind of disorder is suspected. However, it can be said that the colored part that is not black is a healthy part that is shaped like a peak in the first half of the beat. On the other hand, the black part of the blood flow map has a fairly gentle flow, and it is considered that some kind of obstacle is blocking the blood flow, which is also a place where a disease is suspected. And since this part is displayed in grayscale (monochrome), it is displayed as a force, a dark black. Therefore, when you look at the map where the translucent arteriovenous map that is a color map and the gray scale blood flow map are overlaid, the parts that are displayed in black are displayed black because each other's map is dark. This will clearly show the place where it is considered that there is some kind of disease.
図面の簡単な説明  Brief Description of Drawings
[0021] [図 1]本発明の血流速度画像化装置の構成の要部を示す図である。  FIG. 1 is a diagram showing a main part of a configuration of a blood flow velocity imaging apparatus according to the present invention.
[図 2]各画素の血流の拍動を示す図である。  FIG. 2 is a diagram showing the pulsation of blood flow in each pixel.
[図 3]スムージングし、正規化した拍動を示す図である。  FIG. 3 is a diagram showing beats that have been smoothed and normalized.
[図 4]本発明から得られる歪度をマップ化した図(実際はカラーマップ)である。  FIG. 4 is a diagram (actual color map) in which the degree of distortion obtained from the present invention is mapped.
[図 5]歪度を計算するフローを示した図である。  FIG. 5 is a diagram showing a flow for calculating skewness.
[図 6]簡略化した歪度を計算するフローを示した図である。  FIG. 6 is a diagram showing a flow for calculating a simplified skewness.
[図 7]本発明から得られる歪度を白黒マップ化した図である。 [図 8]請求項 8に記載の血流速度画像化装置の構成の要部を示す図である。 FIG. 7 is a black and white map of the degree of distortion obtained from the present invention. FIG. 8 is a diagram showing a main part of the configuration of the blood flow velocity imaging apparatus according to claim 8.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 以下、本発明について図面を参照しながら説明する。図 1は、本発明の血流速度画 像化装置の構成のうち光学系の概要を示すもので、 1はレーザー光照射系、 2は受 光系、 Eは被検眼である。レーザー光照射系 1のレーザー光は、例えば、ハーフミラ 一 3を介して被検眼 Eの生体組織としての、例えば、眼底 Erに照射される。  Hereinafter, the present invention will be described with reference to the drawings. FIG. 1 shows an outline of an optical system in the configuration of the blood flow velocity imaging apparatus of the present invention, wherein 1 is a laser light irradiation system, 2 is a light receiving system, and E is an eye to be examined. The laser light of the laser light irradiation system 1 is irradiated, for example, onto the fundus Er, for example, as a living tissue of the eye E through the half mirror 13.
[0023] 受光系 2は受光レンズ 4、受光部としての CCD (固体撮像素子) 5、増幅回路 6を有す る。眼底 Erからのレーザー反射光は、受光レンズ 4により CCD5に生体組織像として 結像される。 CCD5はその受光面上に多数の画素を有し、受光レンズ 4により結像さ れた生体組織像を電気信号に変換し、フレーム蓄積方式で信号電荷を読み出して 映像信号として出力する。その映像信号は、信号増幅回路 6により増幅され、信号増 幅回路 6により増幅された映像信号は、利得制御等を行うアナログ処理手段 7に出力 され、 A/D変換器 8によりデジタル信号に変換される。  The light receiving system 2 includes a light receiving lens 4, a CCD (solid-state imaging device) 5 as a light receiving unit, and an amplifier circuit 6. The laser reflected light from the fundus Er is focused on the CCD 5 as a biological tissue image by the light receiving lens 4. The CCD 5 has a large number of pixels on its light receiving surface, converts the biological tissue image formed by the light receiving lens 4 into an electrical signal, reads out the signal charge by the frame accumulation method, and outputs it as a video signal. The video signal is amplified by the signal amplification circuit 6, and the video signal amplified by the signal amplification circuit 6 is output to the analog processing means 7 that performs gain control and the like, and is converted into a digital signal by the A / D converter 8. Is done.
[0024] 9はタイミングパルス発生器であり、 10は電子シャッター制御手段、 11は固体撮像素 子駆動手段であり、タイミングパルス発生器 9は、電子シャッター制御手段 10と信号 選択手段 12とにタイミングパルスを出力する。固体撮像素子駆動手段 11は、タイミン グノ ルスに基づき駆動される。  [0024] 9 is a timing pulse generator, 10 is an electronic shutter control means, 11 is a solid-state imaging element driving means, and the timing pulse generator 9 is timed to the electronic shutter control means 10 and the signal selection means 12 Output a pulse. The solid-state image sensor driving means 11 is driven based on the timing noise.
[0025] 信号選択手段 12には、 A/D変換器 8により A/D変換された映像信号としてのデジ タル信号が入力され、タイミングパルス発生器 9からのタイミングノルスに基づいて、 信号選択手段 12は、画像記録手段 13に記録される。画像記録手段 13は、所定時 間間隔で複数枚の画像を取込む画像取込部として機能する。  [0025] A digital signal as a video signal A / D converted by the A / D converter 8 is input to the signal selection means 12, and the signal selection means 12 is based on the timing norse from the timing pulse generator 9. 12 is recorded in the image recording means 13. The image recording means 13 functions as an image capturing unit that captures a plurality of images at a predetermined time interval.
[0026] 画像記録手段 13に取込まれた画像は、血流マップ合成手段 14により合成され、例 えば 1/30秒間隔で撮影した 1フレームの画像とされ、その 1フレームの画像データ は画像記憶部としての画像記憶器 15に記憶される。  [0026] The image captured by the image recording means 13 is synthesized by the blood flow map synthesizing means 14, for example, a 1-frame image taken at 1/30 second intervals, and the 1-frame image data is an image. It is stored in the image storage 15 as a storage unit.
[0027] この画像記憶器 15に記憶された画像信号は、演算部 16に入力され、演算部 16は、 後述する演算処理を行う。なお、 17は表示部としての TVモニターである。  [0027] The image signal stored in the image memory 15 is input to the arithmetic unit 16, and the arithmetic unit 16 performs arithmetic processing described later. Reference numeral 17 denotes a TV monitor as a display unit.
[0028] 図 2は、本発明の血流速度画像化装置で得られる、各画素の拍動データの波形を示 している。横軸は時間であり、縦軸は血流値である。 [0029] 血流マップから動脈性の拍動と静脈性の拍動部分を区分するためには、一心拍以 上の連続した複数枚の血流マップにお!、て、各画素毎に血流の時間変動をトレース して、最大ピークになる部分を検知し、その最大ピーク時間の早いものを動脈性の拍 動部分とし、遅い部分を静脈性の拍動部分とする方法が考えられるが、血流計で得 られる血流は、統計誤差により分散が大きレ、ため各画素毎に拍動ピークを検知する ことは非常に困難である。 FIG. 2 shows a waveform of pulsation data of each pixel obtained by the blood flow velocity imaging apparatus of the present invention. The horizontal axis is time, and the vertical axis is the blood flow value. [0029] In order to distinguish the arterial pulsation and the venous pulsation from the blood flow map, a plurality of continuous blood flow maps of one heart beat or more! It is possible to trace the time fluctuation of the flow and detect the part that becomes the maximum peak, and use the part with the fastest peak time as the arterial pulsation part and the slow part as the venous pulsation part. The blood flow obtained with a blood flow meter is highly dispersed due to statistical errors, so it is very difficult to detect the pulsation peak for each pixel.
[0030] そこで、本発明では、統計誤差の大きなデータでも動静脈部分を区分する方法とし て、ある程度統計誤差を含んだ状態でも、ピークまでの立ち上がりと立下りのプロフィ ールから、動静脈を区分できるということに着目した。そのために、先ず、この分散が 大きいデータを収束させるため各画素の近傍点で平均化し、一心拍のみを抜き出し て時系列に並べ、ある領域の平均値を、動脈に相当する部位と静脈に相当する部位 に分け、同じグラフにプロットして図 3に示したようなグラフを得た。  [0030] Therefore, in the present invention, as a method of segmenting the arteriovenous portion even with data having a large statistical error, the arterial vein is determined from the rising and falling profiles up to the peak even in a state where the statistical error is included to some extent. We focused on the fact that it can be classified. For this purpose, first, in order to converge this highly dispersed data, it is averaged at the neighboring points of each pixel, only one heartbeat is extracted and arranged in time series, and the average value of a certain region is equivalent to the part corresponding to the artery and the vein The graphs shown in Fig. 3 were obtained by plotting on the same graph.
[0031] 同様なグラフを得る手段として、時系列方向の平均化を使用する代わりに、各画素周 辺の空間的な血流値のみで平均化する手段もある(請求の範囲第 6項記載の発明) 。即ち、統計的誤差を多く含む各画素の血流値について周辺の一画素以上の血流 値を統計的に処理し平均値を算出し、動脈性の拍動部分と静脈性の拍動部分を検 出するために必要なノイズの少ない時系列に並んだ一つ以上の拍動成分を出力し ても良い。この場合、出来るだけ大きな画素数で平均化するのが好ましい。しかし大 きな画素数で平均化してしまうと、細かい血管の走行がつぶれてしまうという問題も発 生する。従って、図 3と同様な波形を得てなお且つある程度の血管走行を維持するよ うな画素数は、例えば、血管幅を 12ピクセルとした場合、画素を中心とした 6ピクセル 四方の画素数 36画素等から算出するのが好ましい。平均化する領域は四方でなぐ 円形や、十字形、菱形状にとっても良い。  [0031] As means for obtaining a similar graph, there is also means for averaging only the spatial blood flow values around each pixel instead of using averaging in the time series direction (claim 6). Invention) That is, the blood flow value of one or more neighboring pixels is statistically processed for the blood flow value of each pixel that contains a lot of statistical errors, and the average value is calculated. The arterial pulsatile part and the venous pulsatile part are It is also possible to output one or more beat components arranged in a time series with less noise required for detection. In this case, it is preferable to average with as many pixels as possible. However, if averaging is performed with a large number of pixels, there is also a problem that the running of fine blood vessels is crushed. Therefore, the number of pixels that can obtain the same waveform as in Fig. 3 and maintain a certain amount of blood vessel travel, for example, when the blood vessel width is 12 pixels, the number of pixels is 6 pixels centered around the pixel 36 pixels It is preferable to calculate from the above. The area to be averaged is good for circles, crosses, and rhombuses that are squares.
[0032] 拍動成分のノイズを十分に軽減するために平均化の画素数を大きくすると、細かい 血管などはつぶれ血管走行は認識できなくなる力 組織血流等のように広い領域の 拍動成分の動情脈性を分離するには十分な場合もある。こういった組織血流は、組 織の構造が大きいため、平均する画素数を大きくしてもよい。例えば組織血流の構造 力 ¾0ピクセル四方としたらある画素を中心とした 10ピクセル四方の画素数 100画素 等から算出する。平均化する領域は四方でなぐ円形や、十字形、菱形状にとっても 良い。 [0032] If the averaging pixel count is increased to sufficiently reduce the noise of the pulsating component, the fine blood vessels collapse and the vascular running cannot be recognized. In some cases, it is sufficient to isolate the emotional nature. Since such tissue blood flow has a large tissue structure, the average number of pixels may be increased. For example, the structure power of tissue blood flow ¾0 pixel square, 10 pixels square centered on a certain pixel 100 pixels Calculate from the above. The averaged area may be a circle, a cross, or a diamond shape.
[0033] 図 3から分かるように、動脈(図 3の 1)は立ち上がりが急峻で、ピーク後も早く落ち込 んでいく特徴があり、静脈(図 3の 2)は動脈に比べ立ち上がりがゆるぐまたピーク後 もどちらかというとゆったりと落ちる特徴があることがわかる。動脈と静脈は、ピークの 前後位置も違うが、ピークまでの立ち上がり方と立下り方に、より大きな違いがあること 力 s カゝる。 [0033] As can be seen from Fig. 3, the rise of the artery (1 in Fig. 3) has a steep rise and declines quickly after the peak, and the rise of the vein (2 in Fig. 3) is slower than that of the artery. Also, it can be seen that there is a characteristic that it falls more slowly after the peak. Arteries and veins, but also different before and after the position of the peak, to rise the way and falling how to peak, that there is a greater difference force s Such.
[0034] 本発明では、両者の立ち上がり方の違いを、具体的には、先ず、一つの方法として、 統計学で一般的に言うところの三次モーメントである歪度 (スキュー値、 skewness)で評 価するものである。歪度は関数の対象性を比較するパラメータであり、この歪度を血 流に適用した場合、動脈性の拍動であれば正の大きい値になり、静脈性の拍動にな れば小さい値になる傾向が見られる。  [0034] In the present invention, specifically, the difference between the rising methods of the two is first evaluated as one method by the skewness (skew value), which is a third-order moment generally referred to in statistics. Is worth it. The skewness is a parameter that compares the target of the function. When this skewness is applied to the blood flow, it becomes a large positive value for arterial pulsations and small for venous pulsations. There is a tendency to become a value.
[0035] 実際に歪度を計算しマップ表示した結果を図 4に示した。図 4において、グレイの部 分は、部位は動脈性の拍動部分であり、黒の部分は、静脈性の拍動部位である。実 際には、カラー表示ができ、色が赤く暖系色(図 4ではグレイ)の部位ほど動脈性の拍 動部分であり、黒や青など寒系色(図 4では黒)なところほど静脈性の拍動部位であ る。そして、暖系色の部位のつながりが血管のように連なっており、この部分が動脈で あると考えられる。また同様に寒系色の部位のつながりが静脈であると考えられる。  [0035] Fig. 4 shows the result of actually calculating the skewness and displaying the map. In Fig. 4, the gray part is the arterial pulsation part, and the black part is the venous pulsation part. Actually, it can be displayed in color, and the red and warm colors (gray in Fig. 4) are the arterial beating parts, and the colder colors such as black and blue (black in Fig. 4). It is a venous beating site. The connection of the warm-colored parts is connected like a blood vessel, and this part is considered to be an artery. Similarly, it is considered that the connection of cold-colored parts is a vein.
[0036] 歪度は、実際には、図 5に示すような手順で計算される。即ち、先ず、図 5の血流計 算で、複数枚のスペックル画像から血流値を計算し、一心拍以上の時系列に並んだ 血流マップを得る。次に、スムージングで、前記で得られた血流マップ 1枚ごとに、各 画素の周辺の画素を使って血流値を平均化する。次に、心拍合成で、前記で得られ たスムージングした一心拍以上の時系列の血流マップを、マップ全体の平均血流値 が最低になるマップを検出して、複数の拍動を検知する。それぞれの拍動の先頭マ ップ同士を平均化して、心拍合成した一心拍の先頭マップにする。順次先頭マップ 力、ら次のマップ同士を平均化して、心拍合成した一心拍のデータを作成する。  [0036] The skewness is actually calculated according to the procedure shown in FIG. That is, first, blood flow values are calculated from a plurality of speckle images by the blood flow calculation of FIG. 5, and a blood flow map arranged in time series of one heartbeat or more is obtained. Next, by smoothing, the blood flow values are averaged using the pixels around each pixel for each blood flow map obtained above. Next, in heart rate synthesis, the smoothed time series blood flow map of one or more heart beats obtained above is detected, and the map with the lowest average blood flow value of the entire map is detected to detect multiple pulsations. . The top maps of each beat are averaged to form a top map of one heart beat that is synthesized. Sequentially, the first map force and the next map are averaged to create one heartbeat data by combining the heartbeats.
[0037] 次に、以下のようにして正規化する。前記手順までで、一心拍分の各画素における 心拍データが出来上がる力 S、各画素同士は値が異なっており、心拍のプロフィール は血流値の異なる高さで振れている。従って、各画素の最大と最小値を検知して、下 記式数 1で正規化をし、各画素同士で拍動プロフィールを比較できるようにする。これ により拍動のプロフィールが強調されるようになり、歪度の値がより強調されて出力さ れるようになる。 [0037] Next, normalization is performed as follows. Up to the above procedure, the force S for generating heartbeat data at each pixel for one heartbeat, each pixel has a different value, and the heartbeat profile Are shaking at different heights of blood flow. Therefore, the maximum and minimum values of each pixel are detected and normalized with the following equation (1) so that the pulsation profiles can be compared between each pixel. As a result, the pulsation profile is emphasized, and the skewness value is more emphasized and output.
[数 1]  [Number 1]
Ik(m, )一 I(m, ή) mm Ik (m,) 1 I (m, ή) mm
/i m," imax— h m, ri) mxn  / i m, "imax— h m, ri) mxn
[0039] 上記数 1において、 Ik_n(m,n):一心拍に合成した心拍マップの先頭からの k番目のマ ップ画素 (m,n)における正規化した血流値。 [0039] In the above equation 1, Ik_n (m, n): a normalized blood flow value at the kth map pixel (m, n) from the head of the heart rate map synthesized into one heartbeat.
Ik(m,n):一心拍に合成した心拍マップの先頭からの k番目のマップ画素 (m,n)におけ る血流値。  Ik (m, n): Blood flow value at the kth map pixel (m, n) from the top of the heart rate map synthesized for one heart rate.
I(m,n)min:画素 (m,n)における一心拍に合成した心拍マップの時系列データ内での 最小血流ィ直。  I (m, n) min: The minimum blood flow in the time-series data of the heart rate map synthesized for one heartbeat at pixel (m, n).
I(m,n)max:画素 (m,n)における一心拍に合成した心拍マップの時系列データ内での 最大血流ィ直。  I (m, n) max: Maximum blood flow in the time-series data of the heart rate map synthesized for one heartbeat at pixel (m, n).
[0040] 次に、一心拍の正規化した各画素について、例えば、下記式数 2を適用して歪度を 計算する。  Next, for each normalized pixel of one heart rate, for example, the following equation 2 is applied to calculate the skewness.
[0041] [数 2] k - ave(m, n) | /  [0041] [Equation 2] k-ave (m, n) |
Skew m, ") = 〉  Skew m, ") =〉
V stdev{m, n) J Υ _ n{m, n)  V stdev (m, n) J Υ _ n (m, n)
[0042] 上記数 2において、 Skew(m,n):画素 (m,n)における歪度。 [0042] In Equation 2, Skew (m, n): Skewness at pixel (m, n).
A :縮尺係数、 b:一心拍のマップ数、 k :一心拍先頭からのマップ順番 k番目、 ave(m,n):—心拍正規化した血流値を時系列に並べたプロファイルの一次モーメント で、一般的には期待値と呼ばれる。  A: Scale factor, b: Number of maps for one heartbeat, k: Map order from the top of one heartbeat, kth, ave (m, n): —First moment of the profile in which blood flow values normalized to heartbeat are arranged in time series In general, it is called the expected value.
stdev(m,n):—心拍正規化した血流値を時系列に並べたプロファイルの二次モー トの平方根をとつたもので、一般的には標準偏差と呼ばれる。 Ik_n(m,n):一心拍に合成した心拍マップの先頭からの k番目のマップ画素 (m,n)にお ける正規化した血流値。 stdev (m, n): —The square root of the secondary mode of the profile in which blood flow values normalized in heart rate are arranged in time series, and is generally called standard deviation. Ik_n (m, n): Normalized blood flow value at the kth map pixel (m, n) from the top of the heart rate map synthesized for one heart rate.
Il_n(m,n):一心拍に合成した心拍マップの先頭からの 1番目のマップ画素 (m,n)におけ る正規化した血流値。  Il_n (m, n): Normalized blood flow value at the first map pixel (m, n) from the beginning of the heart rate map synthesized for one heart rate.
[0043] 本発明においては、また、図 6に示したような手順で、血流計算と歪度計算の途中の 処理を省略し、複数の心拍データから一心拍のみの連続した時系列データを抜き出 し歪度を計算する方法でも、動静脈性の拍動分離が可能である。  [0043] In the present invention, the process in the middle of blood flow calculation and skewness calculation is omitted by the procedure shown in FIG. 6, and continuous time-series data of only one heartbeat is obtained from a plurality of heartbeat data. The arteriovenous pulsatile separation is also possible by the method of calculating the extracted skewness.
[0044] 上記のようにして計算された歪度をもとに、利用者が容易に動静脈を識別できるよう な係数 Aを乗じて、マップ化して TVモニターなどに動静脈を区分したマップを表示 する。図 7は、以上のようにして得られた歪度を白黒マップ化した図である。  [0044] Based on the skewness calculated as described above, the map is obtained by multiplying the coefficient A so that the user can easily identify the arteriovenous vein, and dividing the arteriovenous into a TV monitor or the like. indicate. FIG. 7 is a black and white map of the skewness obtained as described above.
[0045] 動脈性の拍動と静脈性の拍動とを分離する方法として、上記の歪度は最適な手法で ある力 本発明の請求の範囲第 3項記載の発明の期待値や、請求の範囲第 4項記載 の発明のの尖度、また請求の範囲第 5項記載の発明の最頻値でも、両者を有効に分 離すること力 Sできる。期待値は統計学では一次モーメントとして知られ、尖度は四次 のモーメントとして知られて!/、る。  [0045] As a method for separating arterial pulsation and venous pulsation, the above-mentioned skewness is an optimal technique. The expected value of the invention according to claim 3 of the present invention, and the claim Even with the kurtosis of the invention as set forth in claim 4 and the mode value of the invention as set forth in claim 5, the force S can be effectively separated. Expected values are known as first moments in statistics, and kurtosis is known as fourth moment!
[0046] 期待値は、拍動ピークの前後位置により前後する値であり、尖度は、拍動の最頻値 が尖がつて!/、れば!/、るほど値が高くなり、尖がつて!/、なければ値が低くなると!/、う特徴 を有する。動脈性の拍動であれば、拍動ピークが尖がつており値が高くなる。静脈性 の拍動であれば、値が低くなり分離が容易となる。  [0046] The expected value is a value that fluctuates depending on the position before and after the pulsation peak, and the kurtosis increases as the mode value of the pulsation is sharp! If there is a low value! /, There is a characteristic. In the case of arterial pulsation, the peak of the pulsation is sharp and the value is high. If it is a venous beat, the value is low and separation is easy.
[0047] 最頻値は、ある画素の血流値を観察した場合、拍動プロフィールは統計誤差を持つ た血流値をプロットするため、必ずしもきれいな拍動データにならず、単純に各画素 の拍動の最頻値を算出すれば良い場合だけではない。従って、尤もらしい最頻値を 計算するため請求の範囲第 6項記載の発明のごとぐ画素周辺の血流値を平均化し 、ノイズを軽減し最頻値を算出するのが好ましい。各画素を平均化した拍動プロフィ ールから求めた最頻値は、動脈性の拍動であれば心拍の前半部分に、静脈性はや や遅れて得られ動脈性、静脈性の拍動を分離できる。  [0047] When the blood flow value of a certain pixel is observed, the pulsation profile plots the blood flow value having a statistical error, so the mode value is not necessarily clean pulsation data. It is not only the case where the mode value of the pulsation is calculated. Therefore, in order to calculate a plausible mode value, it is preferable to average the blood flow values around the pixels according to the invention of claim 6 to reduce the noise and calculate the mode value. The mode obtained from the pulsation profile averaged for each pixel is obtained in the first half of the heart rate for arterial pulsation, and venous is obtained with a slight delay, resulting in arterial and venous pulsations. Can be separated.
[0048] 血管走行を維持するために平均化の画素数を細力べした場合、ノイズが十分軽減さ れておらず統計的誤差を含んだ分散の大きい拍動成分が算出され、拍動内の最大 値である最頻値を平均化のみで算出することが困難な場合がある。例えば、拍動成 分のゆったりとした変化の中により速い周期での変動成分を有するような場合である 力 力、かる場合には、最適な最頻値を推定するために拍動成分中の速い周期のピー クのみから構成した包絡線を算出し、この包絡線 H (x)が最大値となる Xの値を最頻 値とすれば良い。 [0048] When the number of averaged pixels is used to maintain vessel running, noise is not sufficiently reduced, and a pulsation component with a large variance including statistical errors is calculated. Maximum of It may be difficult to calculate a mode value that is a value only by averaging. For example, the force, which is the case where there is a fluctuation component with a faster period in the gradual change of the pulsation component, in this case, in order to estimate the optimal mode value, It is only necessary to calculate an envelope composed only of peaks with a fast period and set the value of X at which the envelope H (x) is the maximum value as the mode.
[0049] 以上の手順において、歪度などの動静脈の拍動区別方法は、複数の心拍から最低 フレームを検知して一心拍にまとめる力、、又は、最低フレーム間から一心拍の時系列 データを抜き出した後に、歪度計算などを実施しマップ化する方法である。しかし、一 心拍の検出は、請求の範囲第 8項記載の発明のごとぐ心電図などの外部で心拍検 知したデータを利用することもできる。外部同期信号は、拍動に同期して、ビートの強 弱をある一定の伝播遅延時間力、かって演算部に到達する。演算部では伝播遅延時 間を考慮し、ビートの弱!/、部分を検知して最低のフレームから次の最低フレームを抜 き出し、一心拍の拍動データを作成することができる。この方法における手順を図 8 に示した。図 8において、 18が外部同期信号の検出部である。  [0049] In the above procedure, the arteriovenous pulsation distinguishing method such as the skewness is based on the ability to detect the lowest frame from a plurality of heartbeats and combine them into one heartbeat, or the time series data of one heartbeat between the lowest frames. This is a method of mapping by performing skewness calculation after extracting. However, for the detection of one heartbeat, it is also possible to use data obtained by detecting an external heartbeat such as an electrocardiogram as in the invention described in claim 8. The external synchronization signal arrives at the arithmetic unit in synchronism with the beat, with the strength of the beat having a certain propagation delay time force. The calculation unit can take into account the propagation delay time, detect weak beats! /, And extract the next lowest frame from the lowest frame to create beat data for one heartbeat. Figure 8 shows the procedure for this method. In FIG. 8, 18 is an external synchronization signal detector.
産業上の利用可能性  Industrial applicability
[0050] 本発明によると、血流マップ上に動脈性の拍動部分と静脈性の拍動部分を表示する ことができる血流速度画像化装置が提供される。本装置によると、血管の動静脈分離 はもとより、血流の低い部位かつ疾患が認められる部位は、血流マップ上で黒くなり、 動静脈も黒くなるので、重ねて表示すると黒く表示され、血行障害が発生しやすい疾 患部位がわかりやすくなる。従って、本発明の血流速度画像化装置は、眼底血流の 評価法に新しい尺度を導入するものであり、臨床上極めて有益な診断ツールとして 期待される。 [0050] According to the present invention, there is provided a blood flow velocity imaging apparatus capable of displaying an arterial pulsation part and a venous pulsation part on a blood flow map. According to this device, not only the arteriovenous separation of blood vessels, but also the part where the blood flow is low and the part where the disease is recognized is black on the blood flow map, and the arterial vein is also black. This makes it easier to identify the affected area where damage is likely to occur. Therefore, the blood flow velocity imaging apparatus of the present invention introduces a new scale to the fundus blood flow evaluation method, and is expected as a clinically extremely useful diagnostic tool.

Claims

請求の範囲 The scope of the claims
[1] 血球を有する生体組織にレーザ光を照射するレーザ光照射系と、前記生体組織から の反射光を検出する多数の画素からなる受光部を有する受光系と、前記受光部から の信号に基づき一心拍以上の所定時間で連続的に複数の画像を取り込む画像取 込部と、前記複数の画像を記憶する画像記憶部と、該記憶された複数画像の対応す る各画素の出力信号の時間的変化から生体組織内の血流速度を演算する演算部と 、該演算結果の二次元分布を血流マップとして表示する表示部からなる血流速度画 像化装置において、前記演算部は前記 1心拍以上の複数画像から動脈と静脈を検 出する検出部を有し、前記表示部の血流マップ上に動脈性の拍動部分 (動脈マップ )と静脈性の拍動部分 (静脈マップ)を区別して表示することを特徴とする血流速度画 像化装置。  [1] A laser beam irradiation system that irradiates a biological tissue having blood cells with laser light, a light receiving system that includes a light receiving unit including a plurality of pixels that detects reflected light from the biological tissue, and a signal from the light receiving unit An image capturing unit that continuously captures a plurality of images at a predetermined time of one heartbeat or more, an image storage unit that stores the plurality of images, and an output signal of each pixel corresponding to the stored plurality of images. In the blood flow velocity imaging apparatus comprising: a calculation unit that calculates a blood flow velocity in a living tissue from a temporal change; and a display unit that displays a two-dimensional distribution of the calculation result as a blood flow map. It has a detection unit that detects arteries and veins from multiple images of one heartbeat or more, and the arterial pulsation part (arterial map) and venous pulsation part (venous map) are displayed on the blood flow map of the display part. Blood flow velocity image characterized by distinguishing and displaying Apparatus.
[2] 前記検出部は、各画素について時系列に並べた血流速度の変動を元に歪度 (スキ ユー値)を算出し、動脈性の拍動部分と静脈性の拍動部分を検出することを特徴とす る請求の範囲第 1項記載の血流速度画像化装置。  [2] The detection unit calculates the skewness (schew value) based on the blood flow velocity fluctuations arranged in time series for each pixel, and detects the arterial pulsatile part and the venous pulsatile part. The blood flow velocity imaging device according to claim 1, characterized in that:
[3] 前記検出部は、各画素について時系列に並べた血流速度の変動を確率密度関数 に見立て、該確率密度関数の期待値を算出し、動脈性の拍動部分と静脈性の拍動 部分を検出することを特徴とする請求の範囲第 1項記載の血流速度画像化装置。  [3] The detection unit regards fluctuations in blood flow velocity arranged in time series for each pixel as a probability density function, calculates an expected value of the probability density function, and calculates an arterial pulsation portion and a venous pulse. The blood flow velocity imaging apparatus according to claim 1, wherein a moving part is detected.
[4] 前記検出部は、各画素について時系列に並べた血流速度の変動を元に尖度 (kurto sis)を算出し、動脈性の拍動部分と静脈性の拍動部分を検出することを特徴とする請 求の範囲第 1項記載の血流速度画像化装置。  [4] The detection unit calculates a kurtosis based on fluctuations in blood flow velocity arranged in time series for each pixel, and detects an arterial pulsation part and a venous pulsation part. The blood flow velocity imaging device according to claim 1, wherein the blood flow velocity imaging device is characterized in that:
[5] 前記検出部は、各画素について時系列に並べた血流速度の変動を確率密度関数 に見立て、該確率密度関数が最大と推測できる最頻値 (モード)を算出し、動脈性の 拍動部分と静脈性の拍動部分を検出することを特徴とする請求の範囲第 1項記載の 血流速度画像化装置。 [5] The detection unit considers fluctuations in blood flow velocity arranged in time series for each pixel as a probability density function, calculates a mode value (mode) at which the probability density function can be estimated to be maximum, and calculates arterial 2. The blood flow velocity imaging apparatus according to claim 1, wherein a pulsation part and a venous pulsation part are detected.
[6] 前記検出部は、統計的誤差を多く含む各画素の血流値について周辺の一画素以上 の血流値を統計的に処理し平均値を算出し、動脈性の拍動部分と静脈性の拍動部 分を検出するために必要なノイズの少ない時系列に並んだ一つ以上の拍動成分を 出力することを特徴とする請求の範囲第 2〜5のいずれか 1項記載の血流速度画像 化装置。 [6] The detection unit statistically processes a blood flow value of one or more neighboring pixels for each blood flow value including many statistical errors, calculates an average value, and calculates an arterial pulsation portion and a vein 6. One or more pulsating components arranged in a time series with a low noise necessary for detecting a sex pulsating part are output. Blood flow velocity image Device.
[7] 前記検出部は、複数心拍にわたる各画素の血流の時間変動を一心拍に平均化した 後、拍動成分を抽出することを特徴とする請求の範囲第 2〜 5のいずれ力、 1項記載の 血流速度画像化装置。  [7] The force according to any one of claims 2 to 5, wherein the detection unit extracts a pulsation component after averaging the temporal variation of blood flow of each pixel over a plurality of heartbeats to one heartbeat. The blood flow velocity imaging apparatus according to item 1.
[8] 前記検出部は、複数心拍にわたる各画素の血流の時間変動を、心拍に同期した外 部からの同期信号を元に一心拍分切り出した後、拍動成分を抽出することを特徴と する請求の範囲第 2〜5のいずれか 1項記載の血流速度画像化装置。  [8] The detection unit extracts a pulsation component after extracting the time fluctuation of the blood flow of each pixel over a plurality of heartbeats for one heartbeat based on a synchronization signal from the outside synchronized with the heartbeat. The blood flow velocity imaging device according to any one of claims 2 to 5.
[9] 前記表示部において、血流マップ上に動脈性の拍動部分と静脈性の拍動部分を重 ね合わせて表示することを特徴とする請求の範囲第 1項記載の血流速度画像化装 置。  [9] The blood flow velocity image according to claim 1, wherein the display unit displays the arterial pulsation portion and the venous pulsation portion on the blood flow map in a superimposed manner. Device.
PCT/JP2007/072907 2006-12-01 2007-11-28 Blood flow speed image creating device WO2008069062A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008548238A JP4803520B2 (en) 2006-12-01 2007-11-28 Blood flow velocity imaging device
US12/517,017 US20100056936A1 (en) 2006-12-01 2007-11-28 Blood flow rate imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006326370 2006-12-01
JP2006-326370 2006-12-01

Publications (1)

Publication Number Publication Date
WO2008069062A1 true WO2008069062A1 (en) 2008-06-12

Family

ID=39491963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/072907 WO2008069062A1 (en) 2006-12-01 2007-11-28 Blood flow speed image creating device

Country Status (3)

Country Link
US (1) US20100056936A1 (en)
JP (1) JP4803520B2 (en)
WO (1) WO2008069062A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010131550A1 (en) 2009-05-13 2010-11-18 国立大学法人九州工業大学 Blood flow image diagnosing device
WO2014175154A1 (en) 2013-04-23 2014-10-30 ソフトケア有限会社 Blood flow image diagnosis device and diagnosis method
US9155481B2 (en) 2009-05-28 2015-10-13 Koninklijke Philips N.V. Apparatus for monitoring a position of a tube's distal end with respect to a blood vessel
JP2016517322A (en) * 2013-03-15 2016-06-16 イースト カロライナ ユニバーシティ Non-invasive determination method, system, and computer program for blood flow distribution using speckle imaging technique and hemodynamic modeling
WO2018003139A1 (en) 2016-06-28 2018-01-04 ソフトケア有限会社 Blood flow dynamic imaging diagnosis device and diagnosis method
WO2019171986A1 (en) * 2018-03-05 2019-09-12 キヤノン株式会社 Image processing device, image processing method, and program
JP2022172134A (en) * 2012-07-25 2022-11-15 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Surgical system and method with bleeding detection unit
JP7479030B2 (en) 2020-06-11 2024-05-08 国立大学法人旭川医科大学 BLOOD FLOW ANALYSIS APPARATUS, BLOOD FLOW ANALYSIS METHOD, AND PROGRAM

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8082015B2 (en) * 2004-04-13 2011-12-20 The Trustees Of The University Of Pennsylvania Optical measurement of tissue blood flow, hemodynamics and oxygenation
CA2824134C (en) * 2011-01-10 2019-05-14 East Carolina University Methods, systems and computer program products for noninvasive determination of blood flow distribution using speckle imaging techniques and hemodynamic modeling
EP3188652A4 (en) 2014-10-14 2018-05-23 East Carolina University Methods, systems and computer program products for determining hemodynamic status parameters using signals derived from multispectral blood flow and perfusion imaging
US10722173B2 (en) 2014-10-14 2020-07-28 East Carolina University Methods, systems and computer program products for visualizing anatomical structures and blood flow and perfusion physiology using imaging techniques
US11553844B2 (en) 2014-10-14 2023-01-17 East Carolina University Methods, systems and computer program products for calculating MetaKG signals for regions having multiple sets of optical characteristics
US10390718B2 (en) 2015-03-20 2019-08-27 East Carolina University Multi-spectral physiologic visualization (MSPV) using laser imaging methods and systems for blood flow and perfusion imaging and quantification in an endoscopic design
US10058256B2 (en) 2015-03-20 2018-08-28 East Carolina University Multi-spectral laser imaging (MSLI) methods and systems for blood flow and perfusion imaging and quantification
KR101840106B1 (en) 2016-02-04 2018-04-26 가톨릭대학교 산학협력단 Method for analyzing blood flow using medical image
JP6812748B2 (en) * 2016-10-24 2021-01-13 セイコーエプソン株式会社 Measuring device and measuring method
US11607137B2 (en) * 2018-07-07 2023-03-21 Jack Leonard Feinberg System and method for noninvasive measurement of central venous pressure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000152935A (en) * 1998-11-18 2000-06-06 Ge Yokogawa Medical Systems Ltd Method and device for ultrasonic imaging
JP2002224114A (en) * 2001-01-31 2002-08-13 Toshiba Medical System Co Ltd Ultrasonic diagnostic instrument and ultrasonic diagnostic method
JP2002355218A (en) * 2001-06-01 2002-12-10 Canon Inc Eye blood flowmeter
JP2003019119A (en) * 2001-07-10 2003-01-21 Canon Inc Eyeground rheometer
JP2003052694A (en) * 2002-07-02 2003-02-25 Ge Yokogawa Medical Systems Ltd Ultrasonograph
WO2005122896A1 (en) * 2004-06-18 2005-12-29 Kyushu Institute Of Technology Personal identification method by subcutaneous bloodstream measurement and personal identification device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5638823A (en) * 1995-08-28 1997-06-17 Rutgers University System and method for noninvasive detection of arterial stenosis
US6310982B1 (en) * 1998-11-12 2001-10-30 Oec Medical Systems, Inc. Method and apparatus for reducing motion artifacts and noise in video image processing
AU2001259435A1 (en) * 2000-05-03 2001-11-12 Stephen T Flock Optical imaging of subsurface anatomical structures and biomolecules
US6708052B1 (en) * 2001-04-11 2004-03-16 Harbor Ucla Research And Education Institute Method and apparatus for cardiac imaging with minimized cardiac motion artifact
US7452333B2 (en) * 2003-12-05 2008-11-18 Edwards Lifesciences Corporation Arterial pressure-based, automatic determination of a cardiovascular parameter
US8123695B2 (en) * 2006-09-27 2012-02-28 Nellcor Puritan Bennett Llc Method and apparatus for detection of venous pulsation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000152935A (en) * 1998-11-18 2000-06-06 Ge Yokogawa Medical Systems Ltd Method and device for ultrasonic imaging
JP2002224114A (en) * 2001-01-31 2002-08-13 Toshiba Medical System Co Ltd Ultrasonic diagnostic instrument and ultrasonic diagnostic method
JP2002355218A (en) * 2001-06-01 2002-12-10 Canon Inc Eye blood flowmeter
JP2003019119A (en) * 2001-07-10 2003-01-21 Canon Inc Eyeground rheometer
JP2003052694A (en) * 2002-07-02 2003-02-25 Ge Yokogawa Medical Systems Ltd Ultrasonograph
WO2005122896A1 (en) * 2004-06-18 2005-12-29 Kyushu Institute Of Technology Personal identification method by subcutaneous bloodstream measurement and personal identification device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ISONO H. ET AL.: "Laser Speckle Flowgraphy ni yoru Myakurakumaku Junkan Sokutei", NIPPON GANKA GAKKAISHI, vol. 101, no. 8, 10 August 1997 (1997-08-10), pages 684 - 691 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010131550A1 (en) 2009-05-13 2010-11-18 国立大学法人九州工業大学 Blood flow image diagnosing device
JP5578735B2 (en) * 2009-05-13 2014-08-27 国立大学法人九州工業大学 Blood flow diagnostic equipment
US9028421B2 (en) 2009-05-13 2015-05-12 Kyushu Institute Of Technology Blood flow image diagnosing device
US9155481B2 (en) 2009-05-28 2015-10-13 Koninklijke Philips N.V. Apparatus for monitoring a position of a tube's distal end with respect to a blood vessel
JP7444932B2 (en) 2012-07-25 2024-03-06 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Systems and programs for bleeding detection systems
JP2022172134A (en) * 2012-07-25 2022-11-15 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Surgical system and method with bleeding detection unit
JP2016517322A (en) * 2013-03-15 2016-06-16 イースト カロライナ ユニバーシティ Non-invasive determination method, system, and computer program for blood flow distribution using speckle imaging technique and hemodynamic modeling
US10098592B2 (en) 2013-04-23 2018-10-16 Softcare Co., Ltd. Blood flow image diagnosing device and method
WO2014175154A1 (en) 2013-04-23 2014-10-30 ソフトケア有限会社 Blood flow image diagnosis device and diagnosis method
JPWO2018003139A1 (en) * 2016-06-28 2018-07-05 ソフトケア有限会社 Blood flow dynamic imaging diagnostic apparatus and diagnostic method
US11330995B2 (en) 2016-06-28 2022-05-17 Softcare Co., Ltd. Apparatus and method for imaging and analyzing hemodynamics
WO2018003139A1 (en) 2016-06-28 2018-01-04 ソフトケア有限会社 Blood flow dynamic imaging diagnosis device and diagnosis method
WO2019171986A1 (en) * 2018-03-05 2019-09-12 キヤノン株式会社 Image processing device, image processing method, and program
JP2019150345A (en) * 2018-03-05 2019-09-12 キヤノン株式会社 Image processing system, image processing method and program
JP7140512B2 (en) 2018-03-05 2022-09-21 キヤノン株式会社 Image processing device, image processing method and program
JP7479030B2 (en) 2020-06-11 2024-05-08 国立大学法人旭川医科大学 BLOOD FLOW ANALYSIS APPARATUS, BLOOD FLOW ANALYSIS METHOD, AND PROGRAM

Also Published As

Publication number Publication date
JP4803520B2 (en) 2011-10-26
US20100056936A1 (en) 2010-03-04
JPWO2008069062A1 (en) 2010-03-18

Similar Documents

Publication Publication Date Title
JP4803520B2 (en) Blood flow velocity imaging device
US11771381B2 (en) Device, system and method for measuring and processing physiological signals of a subject
KR102025313B1 (en) Optical central venous pressure measurement
JP6062793B2 (en) Blood flow diagnostic equipment
US20150257653A1 (en) Device, system, and method for determining blood pressure in a mammalian subject
CN113288092B (en) Blood pressure detection method and terminal for extracting pulse wave based on video
LV14514B (en) A system and a method for contactless optical control of heart rate parameters
JP6620999B2 (en) Biological information measuring device, biological information measuring program, and biological information measuring method
Yu et al. Noncontact monitoring of heart rate and heart rate variability in geriatric patients using photoplethysmography imaging
Chen et al. Respiratory rate estimation from face videos
JP5535477B2 (en) Vascular aging detection system
US11607137B2 (en) System and method for noninvasive measurement of central venous pressure
JP2010534501A (en) System and method for automatic image selection in a Doppler ultrasound imaging system
JP2019097757A5 (en)
Saiko et al. Feasibility of specular reflection imaging for extraction of neck vessel pressure waveforms
JP4417250B2 (en) Pulse wave detection system
Nahler et al. Exploring the usage of Time-of-Flight Cameras for contact and remote Photoplethysmography
JP6501432B2 (en) Hemodynamic imaging diagnostic apparatus and diagnostic method
CA3023735C (en) High resolution blood perfusion imaging using a camera and a pulse oximeter
JP2020192187A (en) Non-contact sphygmomanometer
Negoita et al. Semi-automatic vendor-independent software for assessment of local arterial stiffness
Alhammad Face detection for pulse rate measurement
JP4590609B2 (en) Ultrasonic inspection equipment
JP2021194146A (en) Blood flow analysis apparatus, blood flow analysis method and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07832629

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008548238

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12517017

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 07832629

Country of ref document: EP

Kind code of ref document: A1