WO2008065985A1 - Series axial flow fan - Google Patents

Series axial flow fan Download PDF

Info

Publication number
WO2008065985A1
WO2008065985A1 PCT/JP2007/072735 JP2007072735W WO2008065985A1 WO 2008065985 A1 WO2008065985 A1 WO 2008065985A1 JP 2007072735 W JP2007072735 W JP 2007072735W WO 2008065985 A1 WO2008065985 A1 WO 2008065985A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
axial fan
center axis
support rib
support
Prior art date
Application number
PCT/JP2007/072735
Other languages
French (fr)
Japanese (ja)
Inventor
Yusuke Yoshida
Takahiro Kikuichi
Masayuki Yamada
Kiyoto Ida
Original Assignee
Nidec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Corporation filed Critical Nidec Corporation
Priority to JP2008546974A priority Critical patent/JP5375099B2/en
Publication of WO2008065985A1 publication Critical patent/WO2008065985A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/007Axial-flow pumps multistage fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/542Bladed diffusers
    • F04D29/544Blade shapes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/64Mounting; Assembling; Disassembling of axial pumps
    • F04D29/644Mounting; Assembling; Disassembling of axial pumps especially adapted for elastic fluid pumps
    • F04D29/646Mounting or removal of fans

Definitions

  • the present invention relates to a series axial fan.
  • a cooling fan is provided to cool the electronic components inside the housing, and as the mounting density of the electronic components inside the housing increases more and more.
  • a cooling fan mounted on a relatively large electronic device such as a server is required to have a high static pressure and a large air volume.
  • a series axial fan in which two moving blades are coaxially connected along a predetermined central axis is provided (see, for example, Patent Document 1).
  • Patent Document 1 Japanese Patent No. 3717803
  • the present invention has been made in view of the above problems, and an object thereof is to regulate the outflow direction of the air flow so that the air flow of the series axial fan does not spread radially outward.
  • the serial axial fan of the present invention includes a first impeller having a plurality of first blades arranged around a rotation center axis and generating an air flow in a direction along the rotation center axis by rotation.
  • a first motor unit that rotates the first impeller about the rotation center axis, and a shaft relative to the first impeller
  • a second impeller having a plurality of second blades arranged adjacent to each other in the direction and arranged around the rotation center axis and generating an air flow in the same direction as the air flow generated by the first impeller by rotation;
  • a plurality of support ribs that are radially provided about the shaft and whose outer ends are connected to the nose and the wing and support at least the first motor unit with respect to the housing, and each support rib has an arbitrary radial direction.
  • An inclined surface facing the first impeller side of the support rib is provided by inclining so that the edge on the first impeller side in the cross section is positioned upstream of the edge on the second impeller side in the rotation direction of the first impeller. , It is characterized in that it has the angle relative to the direction of the rotation axis of the air flow generated by the angle and a first impeller with respect to the direction of the rotation axis of the inclined surface and substantially the same.
  • each first blade of the first impeller is tilted so that the blade leading edge is positioned in the rotational direction with respect to the blade trailing edge, and at least the blade of each first blade
  • the angle formed between the trailing edge and the inclined surface of the support rib can be set to 100 degrees or less. Preferably, this angle is set in the range of 80 degrees to 100 degrees.
  • the inclination angle of the inclined surface of each support rib is formed so as to decrease from the inner side to the outer side in the radial direction perpendicular to the rotation center axis.
  • Power S can be.
  • the cross section of the cylindrical surface around the rotation center axis should be different from the cross section at other positions in the extending direction.
  • Each support rib has a shape that is inclined or curved in the rotation direction or the counter-rotation direction of the first impeller with respect to a radial line perpendicular to the rotation center axis from the innermost end on the first motor unit side.
  • the shape in which the support rib is inclined or curved is intended to be a shape other than the radial straight line connecting the shortest distance from the first motor portion side to the connection end of the housing.
  • the housing in the serial axial fan of the present invention can be constituted by a first sawing member surrounding the outer periphery of the first impeller, and a second housing member surrounding the outer periphery of the second impeller.
  • the first impeller rotated by the first motor unit and the second motor unit are rotated.
  • the second impeller is to rotate in the same direction so that the directions of rotation are opposite.
  • Each of the support ribs includes a plurality of first support ribs that are provided radially from the first motor portion and are connected to the respective outer front ends of the housing and support the first motor portion with respect to the housing.
  • a force S can be formed from a plurality of second support ribs that are provided radially from the second motor portion and whose outer ends are connected to the housing and support the second motor portion with respect to the housing.
  • the first support rib and the second support rib are arranged between the first impeller and the second impeller, and the same number of first support ribs and second support ribs are provided.
  • the inclined surface may be formed by contacting the second support rib in the direction of the rotation center axis.
  • the housing surrounds the first impeller in the radial direction and is connected to the plurality of first support ribs, and surrounds the second impeller in the radial direction, and also includes a plurality of second impellers.
  • a second housing member to which the support rib is connected can be used. Also in this case, the second impeller may be rotated in the direction opposite to the rotation direction of the first impeller.
  • Another serial axial fan of the present invention has a plurality of first blades arranged around the rotation center axis, and generates a first air flow along the rotation center axis by rotation.
  • An impeller, a first motor unit that rotates the first impeller about the rotation center axis, and a plurality of second blades disposed adjacent to the first impeller in the axial direction and disposed around the rotation center axis A second impeller that generates an air flow in the same direction as the air flow generated by the first impeller by rotation, a second motor unit that rotates the second impeller about the rotation center axis, and the first impeller and
  • a cylindrical housing that surrounds the second impeller in the radial direction and a radial center about the rotation center axis between the first impeller and the second impeller, and each outer front end is connected to the housing.
  • At least the first motor section A plurality of support ribs for supporting the first impeller in an arbitrary radial cross section, and an upstream edge in the rotation direction of the first impeller from an end edge on the second impeller side in each support rib.
  • the support rib is inclined so as to face the first impeller side of the support rib, and the direction of the air flow generated by the first blade of the first impeller is substantially parallel to the inclined surface. What It is a feature.
  • the present invention not only improves the airflow characteristics (airflow and static pressure) of the series axial fan, but also suppresses the outward expansion of the airflow discharged in the radial direction. It is possible. As a result, the air flow exhausted from the serial axial fan is efficiently supplied to the object to be cooled, such as an electronic component, and the cooling efficiency is improved.
  • FIG. 1 is a perspective view showing an in-line axial fan according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of the serial axial fan of FIG.
  • FIG. 3 is a longitudinal sectional view of the series axial fan shown in FIG. 1.
  • FIG. 4 is a plan view of a first axial fan of the series axial fan shown in FIG. 1.
  • FIG. 4 is a plan view of a first axial fan of the series axial fan shown in FIG. 1.
  • FIG. 5 is a plan view of a second axial fan of the series axial fan of FIG. 1.
  • FIG. 6 is a perspective view showing a contact state between the first support rib and the second support rib in the serial axial fan of FIG.
  • FIG. 7 is a plan view of the series axial fan (without impeller) in FIG. 1.
  • FIG. 8 is a cross-sectional view of the first support rib and the second support rib in the series axial fan of FIG.
  • FIG. 9 The first blade, the first support rib, the second support rib, and the second blade in the series axial fan of FIG. 1 are cut in the axial direction along an arc of an arbitrary diameter centering on the central vehicle. It is sectional drawing.
  • FIG. 10 is a view showing a modified example of the support rib obtained by combining the first support rib and the second support rib.
  • FIG. 1 is a perspective view showing a series axial fan 1 according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view showing the serial axial fan 1.
  • the serial axial fan 1 is used as an electric cooling fan for air-cooling electronic devices such as servers, for example.
  • the series axial fan 1 is connected to the first axial fan 2 arranged on the upper side in FIG. 1 and the first axial fan 2 along the center wheel 1. 1 is provided with a second axial fan 3 arranged on the lower side.
  • the first axial fan 2 and the second axial fan 3 are connected and integrated by screws (not shown) or the like.
  • the serial axial fan 1 is fixed to the exhaust side of the first axial fan 2 with the second axial fan 3 inverted with respect to the direction of the central vehicle.
  • the serial axial fan 1 is a so-called counter-rotating axial fan, and the first impeller 21 and the second axial fan 3 of the first axial fan 2 shown in FIG.
  • the second impeller 31 and the second impeller 31 rotate in directions opposite to each other so that the upper side in FIG. 1 (that is, the first axial fan 2 Air is taken in from the side, and sent out to the bottom (ie, the second axial fan 3 side) to generate an air flow in the direction of the center car.
  • the upper side in FIG. 1 that is the side from which air is taken in is called the “intake side”, and the lower side in FIG. Call it.
  • the rotation direction of the first impeller 21 and the rotation direction of the second impeller 31 shown in FIG. 2 are opposite to each other, so that the two impellers rotate in the same direction. High static pressure and large air volume can be realized.
  • FIG. 3 is a longitudinal sectional view of the serial axial fan 1 cut along a plane including the central wheel
  • FIG. 4 is a plan view of the first axial fan 2 viewed from the intake side.
  • the first axial fan 2 includes the first impeller 21 having seven first blades 211 arranged at an equal pitch in the circumferential direction around the central vehicle, the central vehicle.
  • a plurality of first support ribs 24 are provided that extend radially from the first motor portion 22 around the central vehicle and that have respective front end portions connected to the first and wings 23 to support the first motor portion 22. .
  • the first impeller 21, the first motor portion 22, and the first support rib group are disposed inside the first housing 23.
  • An arrow R1 in FIG. 4 indicates the direction of rotation of the first impeller 21.
  • the first blade 211 and the first support rib 24 each have a schematic shape viewed from the side, and each configuration of the first motor unit 22 is shown.
  • the illustration of the parallel diagonal lines representing the cross section is omitted.
  • the second blade 311 and the second support rib 34 of the second axial fan 3 to be described later are also schematically shown as viewed from the side.
  • the configuration of the second motor unit 32 is also omitted from the illustration of the parallel diagonal lines representing the cross section.
  • the first motor unit 22 includes a stator unit 221 that is a fixed assembly, and a rotor unit 222 that is a rotating assembly.
  • the rotor unit 222 is interposed via a bearing mechanism described later.
  • the It is supported so as to be rotatable with respect to the stator portion 221 around the center wheel.
  • the force center wheel described along the center wheel with the rotor portion 222 side as the upper side and the stator portion 221 side as the lower side does not necessarily coincide with the direction of gravity.
  • Stator portion 221 includes a substantially annular base portion 2211 centered on the center wheel in plan view, and base portion 2211 includes a plurality of first support ribs 24 as shown in FIGS.
  • the stator is fixed to the substantially cylindrical inner peripheral surface 231 of the first housing 23 and holds each part of the stator part 221.
  • the base portion 2211 is made of resin, and is formed by injection molding together with a plurality of first support ribs 24 and the first housing 23 that are also made of resin.
  • a substantially cylindrical bearing holding portion 2212 that protrudes upward from the base portion 2211 (that is, the rotor portion 222 side) is fixed to the center portion of the base portion 2211. .
  • ball bearings 2213 and 2214 which are part of the bearing mechanism are provided at the upper and lower portions in the direction of the central vehicle.
  • Stator portion 221 is also connected to the armature 2215 attached to the outer periphery of bearing holding portion 2212, and to the lower side of armature 2215, and is electrically connected to the inductor of armature 2215 to energize the coil.
  • a circuit board 2216 having a substantially annular plate shape incorporating a control circuit for controlling.
  • the circuit board 2216 is connected to an external power source provided outside the series axial fan 1 via a lead wire group in which a plurality of lead wires are bundled. In FIG. 3, the illustration of the lead wires and the external power supply is omitted.
  • the rotor part 222 has a substantially cylindrical shape centering on the central wheel, and has a lid part and is formed of a magnetic metal material.
  • the rotor part 222 is fixed to the inner side surface of the peripheral wall part of the yoke 2221.
  • a substantially cylindrical field magnet 2222 facing the armature 2215 and a shaft 2223 projecting downward from the center of the lid of the yoke 2221 are provided.
  • the shaft 2223 is inserted into the bearing holding portion 2212 and is rotatably supported by the ball bearings 2213 and 2214.
  • the first axial fan 2 serves as a bearing mechanism that rotatably supports the yoke 2221 with respect to the base portion 2211 around the shaft 2223 and the ball bearings 2213 and 2214 and the center wheel.
  • the first impeller 21 extends radially from the outer side of the peripheral wall portion of the hub 212 (that is, the outer side surface), which covers the outer side of the yoke 2221 of the first motor unit 22, and the hub 212. And a plurality of first blades 211 arranged at equal intervals in the circumferential direction.
  • the hub 212 is made of resin and is formed by injection molding together with the first wing 211 made of resin.
  • the driving current is supplied to the armature 2215 via the circuit board 2216 of the first motor unit 22, and the central wheel is moved between the armature 2215 and the field magnet 2222.
  • the plurality of first blades 211 of the first impeller 21 attached to the rotor part 222 are centered on the central vehicle in FIG. It rotates at a predetermined rotation speed clockwise. In this embodiment, it rotates at about lOOOOrpm. Accordingly, air is taken in from the upper side in FIG. 3, that is, the rotor part 222 side of the first motor part 22, and is sent to the lower side, that is, the second axial fan 3 side.
  • FIG. 5 is a plan view of the second axial fan 3 as viewed from the intake side.
  • the second axial fan 3 includes a second impeller 31 disposed adjacent to the first impeller 21 along the central wheel, and the second impeller 31 includes the central wheel. It has five second blades 311 extending radially at the center and arranged at an equal pitch in the circumferential direction.
  • the second axial fan 3 also has the second impeller 31 in the direction opposite to the first impeller 21 around the center wheel, that is, counterclockwise in FIG. 5 and in the direction indicated by the arrow R2.
  • the second motor unit 32 generates a flow of air in the same direction as the flow of air by the first impeller 21 by rotating, that is, a flow of air in the center $ direction from the upper side to the lower side in FIG.
  • the second housing 33 that surrounds the second impeller 31 in the radial direction, and the lower side of the second impeller 31, that is, the second impeller 31 on the opposite side of the first impeller 21 from the second motor portion 32 is the central vehicle.
  • a plurality of second support ribs 34 that are connected to the second housing 33 and support the second motor portion 32. In the present embodiment, the number of the second support ribs 34 is four as with the first support ribs 24.
  • the second impeller 31, the second motor unit 32, and the second support rib group are disposed inside the second housing 33. Further, when viewed as a series axial fan 1 as a whole, the flow path through which the air flows inside the continuous first housing 23 and second housing 33 is in order from the upper side (ie, the intake side) in FIG.
  • the first impeller 21, the first support rib group, the second support rib group, and the second impeller 31 are arranged. At that time, the first support rib group and the second support rib Each support rib of the holding rib group abuts in the center vehicle direction.
  • the configuration of the second motor unit 32 is the same as the configuration of the first motor unit 22, and is arranged above the stator unit 321 and the stator unit 321 (ie, the intake side). And a rotor portion 322 that is rotatably supported with respect to the stator portion 321.
  • the stator portion 321 is fixed to the substantially cylindrical inner peripheral surface 331 of the second housing 33 via a plurality of second support ribs 34, and a base portion 3211 that holds each portion of the stator portion 321, and a ball bearing 3213.
  • 3214 is provided inside the substantially cylindrical bearing holding portion 3212, the armature 3215 attached to the outer periphery of the bearing holding portion 3212, and the armature 3215 is attached to the lower side of the armature 3215 and electrically connected to the coil of the armature 3215
  • a circuit board 3216 having a substantially annular plate shape and incorporating a control circuit for controlling energization to the coil.
  • the base portion 3211 is made of resin, and is formed by injection molding together with the plurality of second support ribs 34 and the second housing 33 that are also made of resin.
  • the circuit board 3216 is connected to an external power source provided outside the series axial fan 1 via a lead wire group in which a plurality of lead wires are bundled.
  • the rotor section 322 is provided with a metal yoke 3221, a field magnet 3222 fixed to the inner surface of the yoke 3221, and a shaft 3223 that protrudes downward from the 3-coque 3221 force.
  • Shaft ⁇ 3223 (Also held by the car holder ⁇ 3212 ⁇ ⁇ ⁇ / ⁇ ⁇ ⁇ 13 13 13 13 3213, 3214 Ball bearings 3213, 3214 Power center Plays as a bearing mechanism that rotatably supports the yoke 3221 with respect to the base portion 3211 around the center car.
  • the second impeller 31 includes a covered substantially cylindrical hub 312 that covers the outer side of the yoke 3221 of the second motor unit 32, and a plurality of second blades 311 that extend radially from the outer peripheral surface of the peripheral wall of the hub 312.
  • the hub 312 is made of resin, and is formed by injection molding together with the second wing 311 made of resin.
  • the plurality of second blades 311 of the second impeller 31 are predetermined counterclockwise in FIG. It rotates at the number of rotations. In this embodiment, it rotates at about 8000 rpm.
  • air is taken in from the upper side in FIG. 3, that is, the second support rib 34 side, that is, the lower side, that is, the first axial flow. Sent to fan 2 side.
  • FIG. 6 is a perspective view showing a contact state between the first support rib 24 and the second support rib 34 of the serial axial fan 1.
  • the first support rib 24 and the second support rib 34 provided in the axial fans 2 and 3, respectively, are arranged.
  • the first support ribs 24 are arranged at equal intervals in the circumferential direction
  • the second support ribs 34 are also arranged at equal intervals in the circumferential direction.
  • Each second support rib 34 is overlapped with the first support rib 24 over the entire length in a plan view, that is, when viewed from the center vehicle direction.
  • the first support rib 24 and the second support rib 34 are simply referred to as “support rib 44”.
  • the plurality of support ribs 44 including a plurality of first support ribs 24 and a plurality of second support ribs 34, and the first motor unit 22 and the second impeller 31 between the first impeller 21 and second impeller 31. 2Motor unit 32 is supported.
  • the first support rib 24 and the second support rib 34 are overlapped to form the support rib 44.
  • the support ribs 44 are overlapped at a boundary portion between the first support ribs 24 and the second support ribs 34 with almost no step.
  • a continuous surface with almost no steps is formed.
  • the support rib 44 is formed as if it was a single support rib, which was originally formed by superposing the first support rib 24 and the second support rib 34.
  • a continuous surface formed by the first support rib first side surface 241 and the second support rib first side surface 341 is referred to as a support rib first side surface 441.
  • a continuous surface formed by the first support rib second side surface 242 and the second support rib second side surface 342 is referred to as a support rib second side surface 442.
  • FIG. 7 is a plan view of the serial axial fan as viewed from the axial direction.
  • the impeller is omitted.
  • FIG. 8 is a cross-sectional view taken along the lines A—A, B—B, and C—C in FIG. 7 in the axial direction. These A-A springs, B-B springs, and CC lines show arc lines centered on the central car.
  • Fig. 9 is a cross-sectional view of the first wing 211, the support rib 44, and the second wing 311 cut in an axial direction along an arc of an arbitrary diameter centered on the center car, and is hereinafter referred to as a cross section on a cylindrical surface. That's it.
  • an arrow R1 in FIG. 9 indicates the rotational direction of the first impeller 21, and simultaneously indicates the moving direction of the first blade 211.
  • the arrow R2 indicates the direction of rotation of the second impeller 31, and simultaneously indicates the direction of movement of the second blade 311.
  • the longitudinal direction of the support rib 44 in the cross section of the cylindrical surface is inclined with respect to the central vehicle so that the upper end in the axial direction is located on the opposite side of the rotation direction of the impeller 21 from the lower end. is doing.
  • the support rib 44 is disposed so as to cross the air flow path constituted by the first housing 23 and the second housing 33. Therefore, the support ribs 44 need to be arranged so that the energy loss of the air flow is as small as possible.
  • the shape of the first blade 211 in plan view increases from the radially inner side to the outer side rather than linearly extending in the radial direction!
  • the opposite side to the rotational direction of the first impeller 21 It has a fan shape that expands toward the surface.
  • the cross-sectional shape of the first wing 211 on the cylindrical surface centered on the central wheel is as shown in Fig. 9.
  • the arcuate shape is inclined and curved so as to be located downstream of the first impeller 21 in the rotation direction.
  • the axial fan used for cooling the inside of electronic equipment is selected by the system impedance in the electronic equipment, the air flow and static pressure of the axial fan.
  • the system impedance means the relationship between the static pressure and the air volume in the electronic device, that is, the difficulty of air flow in the system, and the resistance of air flow in the system.
  • electronic components and power supplies are often confined in a narrow space, resulting in a high system impedance, often resulting in a large resistance value of airflow in the system. Therefore, a high static pressure is required for an axial fan used for cooling the inside of electronic equipment.
  • the circle of the first wing 211 The arc length of the arc-shaped portion in the cross section on the cylindrical surface should be increased from the inner side to the outer side in the radial direction.
  • the arc length of the arc-shaped portion of the first wing 211 means the length of the arc connecting the midpoints in the thickness direction of the arc-shaped portion.
  • the height of the first blade 211 in the central vehicle direction increases as it goes from the inside in the radial direction to the outside.
  • the effective volume occupied by the first blade 21 1 in the wind tunnel formed by the housing that is, the first blade viewed from the axial direction
  • the product of the area of 21 1 and the axial height of the first blade 21 1 is increased, and the first axial fan 2 that achieves a high static pressure with a high airflow is obtained.
  • the first inclination angle ⁇ As an index for realizing this, as shown in FIG. 9, in the arcuate portion of the cross section of the first blade 211 on the cylindrical surface, the inclination of the trailing edge portion with respect to the center wheel (hereinafter referred to as the first inclination angle ⁇ ).
  • This trailing edge is located downstream of the airflow and is also the part that defines the direction of airflow generation of the first impeller 21.
  • the side surface of the support rib 44 is preferably arranged so as to be substantially parallel to the flow velocity direction of the air flow generated from 2, that is, to be substantially orthogonal to the trailing edge portion of the first blade 211.
  • the support rib 44 is arranged so that the projected area of the support rib 44 is minimized when the force in the air flow direction is also viewed from the support rib 44! /.
  • the upper end surface 243 of the support rib 44 is disposed so as to face the air flow.
  • the upper end surface 243 intersects the air flow at an acute angle although it is not parallel to the air flow. Yes. For this reason, the air loss when the air flow interferes with the upper end surface 243 can be suppressed.
  • the shape of the upper end surface 243 is a plane, but is not limited to this, and for example, a curved surface may be formed.
  • the flow direction of air generated when the first impeller 21 rotates is substantially parallel to the direction of 90 degrees with respect to the rear edge portion of the first blade 211. That is, if the rear edge portion of the first blade 21 1 defining the first inclination angle ⁇ and the longitudinal direction of the cross section of the support rib 44 are configured to be 90 degrees, the first The air flow generated in the impeller 21 and the longitudinal direction of the cross section of the support rib 44 are substantially parallel. However, the flow rate and angle of this air flow vary depending on the rotational speed of the first impeller 21 and the surrounding environment.
  • the angle 0 with respect to the central axis J in the longitudinal direction of the cross section of the support rib 44 is appropriately changed according to the rotational speed of the first impeller 21 and the surrounding environment.
  • the angle formed between the trailing edge portion of the first blade 211 and the longitudinal direction of the cross section of the support rib 44 is 100 degrees or less, preferably 80 degrees to 100 degrees. That is, the sum of the first inclination angle ⁇ and the longitudinal angle / 3 of the cross section of the support rib 44 is 80 to 100 degrees.
  • the air flow generated by the rotation of the first impeller 21 passes through the support rib 44 with almost no change in the flow direction and minimal energy loss.
  • the air that has passed through the support rib 44 flows toward the second wing 311.
  • the cross-sectional shape of the second wing 311 centered on the center car is the upper edge of the second wing 311.
  • the two impellers 31 have an arcuate shape that is inclined and curved so as to be located downstream in the rotational direction.
  • the inclination of the leading edge located in the longitudinal direction of the arc-shaped cross section of the second blade 311 in the longitudinal direction, particularly on the upstream side of the air flow (hereinafter referred to as the second blade inclination angle ⁇ ), is It is set smaller than the inflow angle to the second impeller 31 (approximate to the angle / 3 of the support rib 44).
  • the air flow of the air discharged from the axial fan has three speed components. It consists of three velocity components: an axial component (flow velocity in the axial direction), a rotation component (flow velocity in the impeller rotation direction), and a centrifugal component (flow velocity outward in the radial direction).
  • an axial component flow velocity in the axial direction
  • a rotation component flow velocity in the impeller rotation direction
  • a centrifugal component flow velocity outward in the radial direction
  • Air entering the second blade 311 collides with the forward-side blade surface 3111 in the rotational direction of the second blade 311 as shown in FIG.
  • the second blade 311 is bent so that a portion extending from the middle to the rear edge of the second blade 311 is bent forward in the rotational direction, and the forward blade surface 3111 is inclined so as to face inward in the radial direction. Therefore, the air colliding with the second blade 311 is restricted to flow inward in the radial direction, and the velocity vector of the air flow is converted. Therefore, the speed of the air flow
  • the component force in the centrifugal direction is directed inward in the radial direction. For this reason, the spread of the air flow radially outward can be suppressed.
  • the rotational component of the air that has entered the second blade 311 is converted into an axial component by colliding with the forward-side blade surface 3111 of the second blade 311. Therefore, the action of the second blade 311 is to convert the turning component and the centrifugal component into the axial component of the flow velocity of the air discharged from the first blade 211. As a result, the air flow itself of the air discharged from the serial axial fan 1 is supplied to the member to be cooled without spreading radially outward.
  • the force that becomes a point here is that the flow direction of the air flow is not converted when the air discharged from the first impeller 21 passes through the support rib 44.
  • many of the already known series axial fans have a stationary blade disposed between the first impeller and the second impeller.
  • the rotating component of the flow velocity of the air discharged from the first impeller is recovered by the stationary blade and converted into the axial component.
  • the air flow converted into the axial component by the stationary blade is discharged by the second impeller force with the swirl component added by the second impeller. That is, by disposing the stationary blade between the first impeller and the second impeller, the air discharged from the series axial fan is discharged with a rotating component.
  • the first blade 211 has an arcuate cross-section that is a cross-sectional shape on a cylindrical surface with the central axis J as the center, and has an inclination angle with respect to the central vehicle direction. The bigger you go ing. Therefore, the flow velocity angle of the air flow generated from the first blade 211 due to the rotation of the first impeller 21 differs depending on the radial position. Specifically, since the inclination angle of the first blade cross section is small on the radially inner side, the air flow velocity angle has a large angle with respect to the center 3 ⁇ 4U direction, but on the radially outer side, the first blade cross section is large.
  • the air flow velocity angle is small with respect to the central vehicle direction. For this reason, in order to reduce the energy loss of the airflow by the support rib 44, it is necessary to change the inclination angle of the support rib 44 depending on the radial direction.
  • the angle formed between the rear edge portion of the first blade 211 having the first inclination angle ⁇ and the longitudinal direction of the cross section of the cylindrical surface around the central axis J of the support rib 44 is 100 degrees. It is set to be below (specifically, about 80 to 100 degrees). Ideally, the angle should be 90 degrees.
  • the airflow discharged from the first impeller 21 differs not only in the angle with respect to the central wheel but also in the flow velocity itself depending on the radial position.
  • the flow velocity On the radially outer side of the first blade 211, the flow velocity is large, and on the radially inner side, the flow velocity is small. Therefore, it is desirable to reduce the energy loss of the airflow passing through the support rib 44 on the radially outer side. Also support rib
  • the cross-sectional shape of 44 can reduce energy loss by reducing the projected area viewed from the air flow direction as it goes radially outward. That is, the cross-sectional shape of the support rib 44 may be appropriately changed depending on the radial direction.
  • the cross-sectional shape of the support rib 44 is ideally as low as possible in air resistance.
  • FIG. 10 shows a modification of the cross-sectional shape of the support rib.
  • the first support rib 24a may be a support rib in which the air flow upstream side of the first support rib 24a and the air flow downstream side of the second support rib 34a are each finished with a smooth curved surface.
  • the support ribs may be configured such that the air flow upstream side of the first support rib 24b and the air flow downstream side of the second support rib 34b each have an acute cross-sectional shape.
  • the upstream side of the air flow of the first support rib 24c may be a smooth curved surface
  • the second support rib 34c may be a support rib having a rhombus cross section.
  • the upstream side of the air flow of the first support rib 24d may be a smooth curved surface
  • the support rib may have a gradually narrowing cross section from the first support rib 24d to the second support rib 34d.
  • the cross-sectional shape may be a streamline shape like the first support rib 24e and the second support rib 34e. In this case, the energy loss of the airflow passing through the first support rib 24e and the second support rib 34e can be further suppressed.
  • any notice The support ribs are also arranged so that the flow velocity of the air flow exhausted from the first impeller 21 and the longitudinal direction of the cross section of the support rib are the same in the surface shape.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

A series axial flow fan in which the direction of outflow of air is limited so that the airflow does not expand radially outward. The series axial flow fan has support ribs (44) each extending radially from the center axis of rotation, between a first blade (211) of a first impeller of a first axial flow fan and a second blade (311) of a second impeller of a second axial flow fan, connected to a housing, and at least supporting a first motor section. The first axial flow fan and second axial flow fan are coaxially connected. A first support rib (24) and second support rib (34) are axially in contact with each other. The first support rib(24) and the second support rib (34) are superposed over each other to form each support rib (44). Each support rib (44) is formed such that there is substantially no step at the boundary between the first support rib (24) and the second support rib (34). In order that energy loss of airflow is as small as possible, the support ribs (44) are arranged substantially in parallel with the direction of the airflow produced by the first blades (211) of the first impeller.

Description

明 細 書  Specification
直列式軸流ファン  Inline axial fan
技術分野  Technical field
[0001] 本発明は、直列式軸流ファンに関する。  [0001] The present invention relates to a series axial fan.
背景技術  Background art
[0002] パーソナルコンピュータやネットワークサーバ等の電子機器では、筐体内部の電子 部品を冷却するために冷却ファンが設けられており、筐体内部の電子部品の実装密 度が益々高まることに伴って冷却ファンの性能向上がさらに要求されている。特に、 サーバ等の比較的大型の電子機器に搭載される冷却ファンには、静圧が高ぐかつ 、風量が大きい特性が求められている。このような要求に対しては、例えば、所定の 中心軸に沿って 2つの動翼を同軸に連結した直列式軸流ファンが提供されている( 例えば特許文献 1参照)。  [0002] In electronic devices such as personal computers and network servers, a cooling fan is provided to cool the electronic components inside the housing, and as the mounting density of the electronic components inside the housing increases more and more. There is a further demand for improved cooling fan performance. In particular, a cooling fan mounted on a relatively large electronic device such as a server is required to have a high static pressure and a large air volume. In response to such a requirement, for example, a series axial fan in which two moving blades are coaxially connected along a predetermined central axis is provided (see, for example, Patent Document 1).
[0003] 特許文献 1 :特許第 3717803号公報  [0003] Patent Document 1: Japanese Patent No. 3717803
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] ところで、電子機器の内部の電子部品を効果的に冷却するためには、電子部品に 対して冷却空気を直接供給する必要がある。一般的な軸流ファンにおいては、イン ペラの回転に伴う遠心力の影響により、軸流ファンからの空気流力 Sインペラの回転軸 に対して径方向外方に広がる傾向がある。このため、冷却ファンとして軸流ファンを 用いる場合には、空気流が広がることにより、電子部品に対して十分な冷却空気が 供給されない問題を有してレ、る。  [0004] Incidentally, in order to effectively cool the electronic components inside the electronic device, it is necessary to supply cooling air directly to the electronic components. In a general axial fan, the air flow force from the axial fan S tends to spread radially outward with respect to the rotating shaft of the impeller due to the influence of centrifugal force accompanying the rotation of the impeller. For this reason, when an axial fan is used as a cooling fan, there is a problem that sufficient cooling air is not supplied to the electronic components due to the wide air flow.
[0005] 本発明は、上記課題に鑑みなされたものであり、直列式軸流ファンの空気流が径 方向外方に広がらないように空気流の流出方向を規制することを目的としている。 課題を解決するための手段  [0005] The present invention has been made in view of the above problems, and an object thereof is to regulate the outflow direction of the air flow so that the air flow of the series axial fan does not spread radially outward. Means for solving the problem
[0006] 本発明の直列式軸流ファンは、回転中心軸の回りに配置された複数の第 1翼を有 し、回転により回転中心軸に沿った方向の空気流を発生させる第 1インペラと、回転 中心軸を中心として第 1インペラを回転させる第 1モータ部と、第 1インペラに対し軸 方向に隣接して配置され、回転中心軸の回りに配置された複数の第 2翼を有し、回 転により第 1インペラによる空気流と同方向の空気流を発生させる第 2インペラと、回 転中心軸を中心として第 2インペラを回転させる第 2モータ部と、第 1インペラおよび 第 2インペラを径方向において囲む筒状のハウジングと、第 1インペラと第 2インペラと の間において、回転中心軸を中心として放射状に設けられ、それぞれの外側先端が ノ、ウジングに接続されて少なくとも第 1モータ部をハウジングに対して支持する複数 の支持リブとを備え、各支持リブに、任意の径方向断面における第 1インペラ側の端 縁が第 2インペラ側の端縁より第 1インペラの回転方向における上流側に位置するよ うに傾斜して該支持リブの第 1インペラ側に面する傾斜面を設け、この傾斜面の回転 中心軸の方向に対する角度と第 1インペラによって発生する空気流の回転中心軸の 方向に対する角度とをほぼ同一としたことを特徴とするものである。 [0006] The serial axial fan of the present invention includes a first impeller having a plurality of first blades arranged around a rotation center axis and generating an air flow in a direction along the rotation center axis by rotation. A first motor unit that rotates the first impeller about the rotation center axis, and a shaft relative to the first impeller A second impeller having a plurality of second blades arranged adjacent to each other in the direction and arranged around the rotation center axis and generating an air flow in the same direction as the air flow generated by the first impeller by rotation; A rotation center between the second motor unit that rotates the second impeller about the rotation center axis, a cylindrical housing that radially surrounds the first impeller and the second impeller, and the first impeller and the second impeller. A plurality of support ribs that are radially provided about the shaft and whose outer ends are connected to the nose and the wing and support at least the first motor unit with respect to the housing, and each support rib has an arbitrary radial direction. An inclined surface facing the first impeller side of the support rib is provided by inclining so that the edge on the first impeller side in the cross section is positioned upstream of the edge on the second impeller side in the rotation direction of the first impeller. , It is characterized in that it has the angle relative to the direction of the rotation axis of the air flow generated by the angle and a first impeller with respect to the direction of the rotation axis of the inclined surface and substantially the same.
[0007] このような直列式軸流ファンにおいて、第 1インペラの各第 1翼を、翼前縁が翼後縁 に対して回転方向に位置するように傾かせ、各第 1翼の少なくとも翼後縁と支持リブ の傾斜面とのなす角度を 100度以下に設定することができ、望ましくは、この角度は 8 0度〜 100度の範囲に設定するのがよい。  [0007] In such a series axial fan, each first blade of the first impeller is tilted so that the blade leading edge is positioned in the rotational direction with respect to the blade trailing edge, and at least the blade of each first blade The angle formed between the trailing edge and the inclined surface of the support rib can be set to 100 degrees or less. Preferably, this angle is set in the range of 80 degrees to 100 degrees.
[0008] また、上述した本発明の直列式軸流ファンでは、各支持リブの傾斜面の傾斜角度 を、回転中心軸に垂直な径方向の内側から外側に行くに従い小さくなるように形成 すること力 Sできる。さらに、各支持リブの放射状に延びる方向のいずれかの位置にお いて、回転中心軸を中心とした円筒面での断面を、前記延びる方向の他の位置の断 面とは異なる形状とすることあでさる。  [0008] Further, in the above-described serial axial fan of the present invention, the inclination angle of the inclined surface of each support rib is formed so as to decrease from the inner side to the outer side in the radial direction perpendicular to the rotation center axis. Power S can be. Further, at any position in the radially extending direction of each support rib, the cross section of the cylindrical surface around the rotation center axis should be different from the cross section at other positions in the extending direction. Tomorrow.
[0009] 各支持リブは、第 1モータ部側の最内端から回転中心軸に垂直な径方向の直線に 対して第 1インペラの回転方向又は反回転方向に傾斜もしくは湾曲する形状とするこ とができる。この場合、支持リブが傾斜もしくは湾曲する形状とは、第 1モータ部側か らハウジングの接続端にかけて最短距離を結ぶ径方向直線以外の形状を意図して いる。  [0009] Each support rib has a shape that is inclined or curved in the rotation direction or the counter-rotation direction of the first impeller with respect to a radial line perpendicular to the rotation center axis from the innermost end on the first motor unit side. You can. In this case, the shape in which the support rib is inclined or curved is intended to be a shape other than the radial straight line connecting the shortest distance from the first motor portion side to the connection end of the housing.
[0010] 本発明の直列式軸流ファンにおけるハウジングは、第 1インペラの外周を囲む第 1ノ、 ウジング部材と、第 2インペラの外周を囲む第 2ハウジング部材と、で構成することが できる。また、第 1モータ部により回転される第 1インペラと第 2モータ部により回転さ れる第 2インペラとは、互いに同一方向に回転するのでもよぐ互いの回転方向が逆 になるようにすることあでさる。 [0010] The housing in the serial axial fan of the present invention can be constituted by a first sawing member surrounding the outer periphery of the first impeller, and a second housing member surrounding the outer periphery of the second impeller. The first impeller rotated by the first motor unit and the second motor unit are rotated. The second impeller is to rotate in the same direction so that the directions of rotation are opposite.
[0011] また、前記各支持リブは、第 1モータ部から放射状に設けられそれぞれの外側先端 カ 、ウジングに接続されて第 1モータ部をハウジングに対して支持する複数の第 1支 持リブと、 第 2モータ部から放射状に設けられそれぞれの外側先端がハウジングに 接続されて第 2モータ部をハウジングに対して支持する複数の第 2支持リブとから構 成すること力 Sでき、この場合、第 1支持リブおよび第 2支持リブを第 1インペラと第 2イン ペラとの間に配置し、第 1支持リブと第 2支持リブとを同一の数とするとともに、各第 1 支持リブと各第 2支持リブとを回転中心軸の方向において接触させることで前記傾斜 面を構成するようにしてもょレ、。  [0011] Each of the support ribs includes a plurality of first support ribs that are provided radially from the first motor portion and are connected to the respective outer front ends of the housing and support the first motor portion with respect to the housing. A force S can be formed from a plurality of second support ribs that are provided radially from the second motor portion and whose outer ends are connected to the housing and support the second motor portion with respect to the housing. The first support rib and the second support rib are arranged between the first impeller and the second impeller, and the same number of first support ribs and second support ribs are provided. The inclined surface may be formed by contacting the second support rib in the direction of the rotation center axis.
[0012] さらに、前記ハウジングは、第 1インペラを径方向において囲むとともに複数の第 1 支持リブが接続される第 1ハウジング部材と、第 2インペラを径方向において囲むとと もに複数の第 2支持リブが接続される第 2ハウジング部材とで構成することができる。 この場合も、第 2インペラを、第 1インペラの回転方向とは反対方向に回転するように してもよい。  [0012] Further, the housing surrounds the first impeller in the radial direction and is connected to the plurality of first support ribs, and surrounds the second impeller in the radial direction, and also includes a plurality of second impellers. A second housing member to which the support rib is connected can be used. Also in this case, the second impeller may be rotated in the direction opposite to the rotation direction of the first impeller.
[0013] 本発明の他の直列式軸流ファンは、回転中心軸の回りに配置された複数の第 1翼 を有し、回転により回転中心軸に沿った方向の空気流を発生させる第 1インペラと、 回転中心軸を中心として第 1インペラを回転させる第 1モータ部と、第 1インペラに対 し軸方向に隣接して配置され、回転中心軸の回りに配置された複数の第 2翼を有し、 回転により第 1インペラによる空気流と同方向の空気流を発生させる第 2インペラと、 回転中心軸を中心として第 2インペラを回転させる第 2モータ部と、第 1インペラおよ び第 2インペラを径方向において囲む筒状のハウジングと、第 1インペラと第 2インぺ ラとの間において、回転中心軸を中心として放射状に設けられ、それぞれの外側先 端がハウジングに接続されて少なくとも第 1モータ部をハウジングに対して支持する 複数の支持リブとを備え、各支持リブに、任意の径方向断面における第 1インペラ側 の端縁が第 2インペラ側の端縁より第 1インペラの回転方向における上流側に位置す るように傾斜して該支持リブの第 1インペラ側に面する傾斜面を設け、第 1インペラの 第 1翼によって発生する空気の空気流の方向と前記傾斜面とをほぼ平行としたことを 特徴とするものである。 [0013] Another serial axial fan of the present invention has a plurality of first blades arranged around the rotation center axis, and generates a first air flow along the rotation center axis by rotation. An impeller, a first motor unit that rotates the first impeller about the rotation center axis, and a plurality of second blades disposed adjacent to the first impeller in the axial direction and disposed around the rotation center axis A second impeller that generates an air flow in the same direction as the air flow generated by the first impeller by rotation, a second motor unit that rotates the second impeller about the rotation center axis, and the first impeller and A cylindrical housing that surrounds the second impeller in the radial direction and a radial center about the rotation center axis between the first impeller and the second impeller, and each outer front end is connected to the housing. At least the first motor section A plurality of support ribs for supporting the first impeller in an arbitrary radial cross section, and an upstream edge in the rotation direction of the first impeller from an end edge on the second impeller side in each support rib. The support rib is inclined so as to face the first impeller side of the support rib, and the direction of the air flow generated by the first blade of the first impeller is substantially parallel to the inclined surface. What It is a feature.
発明の効果  The invention's effect
[0014] 本発明では、直列式軸流ファンの風量特性(風量及び静圧)を向上させるだけでな く、直列式軸流ファン力 排出される空気流の径方向外方への広がりを抑えることが 可能である。このことにより、直列式軸流ファンから排出された空気流が電子部品等 の被冷却体に効率良く供給され、冷却効率が向上する。  [0014] The present invention not only improves the airflow characteristics (airflow and static pressure) of the series axial fan, but also suppresses the outward expansion of the airflow discharged in the radial direction. It is possible. As a result, the air flow exhausted from the serial axial fan is efficiently supplied to the object to be cooled, such as an electronic component, and the cooling efficiency is improved.
図面の簡単な説明  Brief Description of Drawings
[0015] [図 1]本発明の一つの実施の形態に係る直列式軸流ファンを示す斜視図である。  FIG. 1 is a perspective view showing an in-line axial fan according to an embodiment of the present invention.
[図 2]図 1の直列式軸流ファンの分解斜視図である。  2 is an exploded perspective view of the serial axial fan of FIG.
[図 3]図 1の直列式軸流ファンの縦断面図である。  FIG. 3 is a longitudinal sectional view of the series axial fan shown in FIG. 1.
[図 4]図 1の直列式軸流ファンの第 1軸流ファンの平面図である。  4 is a plan view of a first axial fan of the series axial fan shown in FIG. 1. FIG.
[図 5]図 1の直列式軸流ファンの第 2軸流ファンの平面図である。  FIG. 5 is a plan view of a second axial fan of the series axial fan of FIG. 1.
[図 6]図 1の直列式軸流ファンにおける第 1支持リブと第 2支持リブとの当接状態を示 す斜視図である。  FIG. 6 is a perspective view showing a contact state between the first support rib and the second support rib in the serial axial fan of FIG.
[図 7]図 1の直列式軸流ファン (インペラなし)の平面図である。  FIG. 7 is a plan view of the series axial fan (without impeller) in FIG. 1.
[図 8]図 1の直列式軸流ファンにおける第 1支持リブおよび第 2支持リブの断面図であ  8 is a cross-sectional view of the first support rib and the second support rib in the series axial fan of FIG.
[図 9]図 1の直列式軸流ファンにおける第 1翼、第 1支持リブ、第 2支持リブ、第 2翼を 中心車 を中心とした任意の径の円弧に沿って軸方向に切断した断面図である。 [FIG. 9] The first blade, the first support rib, the second support rib, and the second blade in the series axial fan of FIG. 1 are cut in the axial direction along an arc of an arbitrary diameter centering on the central vehicle. It is sectional drawing.
[図 10]第 1支持リブ、第 2支持リブを組み合わせて得られる支持リブの変形例を示す 図である。  FIG. 10 is a view showing a modified example of the support rib obtained by combining the first support rib and the second support rib.
符号の説明  Explanation of symbols
[0016] 1 直列式軸流ファン [0016] 1 In-line axial fan
21 第 1インペラ  21 First impeller
22 第 1モータ部  22 First motor section
23 第 1ハウジング  23 1st housing
24 第 1支持リブ  24 1st support rib
31 第 2インペラ 32 第 2モータ部 31 Second impeller 32 Second motor section
33 第 2ハウジング  33 Second housing
34 第 2支持リブ  34 Second support rib
211 第 1翼  211 Wing 1
243 上端面  243 Top surface
311 第 2翼  311 2nd Wing
441 支持リブ第 1側面  441 Support rib first side
442 支持リブ第 2側面  442 Support rib second side
J 中心軸  J Center axis
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 図 1〜図 10を参照して、本発明の好適な実施形態を詳細に説明する。本発明の説 明において、異なる構成要素間の位置関係および向きが「上」、「下」、「左」、「右」を 用いて記載される場合には、それらは図面における方向、向きを示すものとする。こ れらの構成要素が組み立てられた後の方向および向きを示すものではない。また、 以下の説明において、「軸方向」とは回転軸に平行な方向であり、「径方向」とは回転 軸に垂直な方向である。  [0017] A preferred embodiment of the present invention will be described in detail with reference to Figs. In the description of the present invention, when the positional relationship and orientation between different components are described using “up”, “down”, “left”, and “right”, they indicate the direction and orientation in the drawing. Shall be shown. It does not indicate the direction and orientation after these components are assembled. In the following description, the “axial direction” is a direction parallel to the rotation axis, and the “radial direction” is a direction perpendicular to the rotation axis.
[0018] 図 1は、本発明の一実施形態に係る直列式軸流ファン 1を示す斜視図である。図 2 は、直列式軸流ファン 1を分解して示す斜視図である。直列式軸流ファン 1は、例え ば、サーバ等の電子機器を空冷するための電動式冷却ファンとして用いられる。図 1 に示すように、直列式軸流ファン 1は、図 1中の上側に配置される第 1軸流ファン 2、 および、中心車 1に沿って第 1軸流ファン 2に接続されて図 1中の下側に配置される 第 2軸流ファン 3を備える。第 1軸流ファン 2および第 2軸流ファン 3はビス(図示省略) 等により連結され、一体化される。その際、図 3に示すように、直列式軸流ファン 1は、 第 2軸流ファン 3が中心車 の方向に関して反転した状態で第 1軸流ファン 2の排気側 に固定されている。  FIG. 1 is a perspective view showing a series axial fan 1 according to an embodiment of the present invention. FIG. 2 is an exploded perspective view showing the serial axial fan 1. The serial axial fan 1 is used as an electric cooling fan for air-cooling electronic devices such as servers, for example. As shown in FIG. 1, the series axial fan 1 is connected to the first axial fan 2 arranged on the upper side in FIG. 1 and the first axial fan 2 along the center wheel 1. 1 is provided with a second axial fan 3 arranged on the lower side. The first axial fan 2 and the second axial fan 3 are connected and integrated by screws (not shown) or the like. At that time, as shown in FIG. 3, the serial axial fan 1 is fixed to the exhaust side of the first axial fan 2 with the second axial fan 3 inverted with respect to the direction of the central vehicle.
[0019] 本実施の形態に係る直列式軸流ファン 1は、いわゆる二重反転式軸流ファンであり 、図 2に示す第 1軸流ファン 2の第 1インペラ 21と第 2軸流ファン 3の第 2インペラ 31と が互いに反対方向に回転することにより、図 1中の上側(すなわち、第 1軸流ファン 2 側)から空気が取り込まれ、下側(すなわち、第 2軸流ファン 3側)へと送出されて中心 車 の方向の空気流が発生する。以下の説明では、中心 $ の方向において、空気が 取り込まれる側である図 1中の上側を「吸気側」と呼び、空気が排出される側である図 1中の下側を「排気側」と呼ぶ。直列式軸流ファン 1では、図 2に示す第 1インペラ 21 の回転方向と第 2インペラ 31の回転方向とを互いに反対方向とすることにより、 2つの インペラが同方向に回転する場合に比べて、高静圧および大風量を実現することが できる。 The serial axial fan 1 according to the present embodiment is a so-called counter-rotating axial fan, and the first impeller 21 and the second axial fan 3 of the first axial fan 2 shown in FIG. The second impeller 31 and the second impeller 31 rotate in directions opposite to each other so that the upper side in FIG. 1 (that is, the first axial fan 2 Air is taken in from the side, and sent out to the bottom (ie, the second axial fan 3 side) to generate an air flow in the direction of the center car. In the following description, in the direction of the center $, the upper side in FIG. 1 that is the side from which air is taken in is called the “intake side”, and the lower side in FIG. Call it. In the axial fan 1, the rotation direction of the first impeller 21 and the rotation direction of the second impeller 31 shown in FIG. 2 are opposite to each other, so that the two impellers rotate in the same direction. High static pressure and large air volume can be realized.
[0020] 図 3は、直列式軸流ファン 1を中心車 を含む平面で切断した縦断面図であり、図 4 は、第 1軸流ファン 2を吸気側から見た平面図である。インペラ図 3および図 4に示す ように、第 1軸流ファン 2は、中心車 を中心として周方向に等ピッチにて配置された 7 枚の第 1翼 211を有する第 1インペラ 21、中心車 を中心として第 1インペラ 21を図 2 および図 4中における時計回りに回転することにより中心車 に沿った方向の空気の 流れ、すなわち、図 3中の上側から下側へと向かう空気の流れを発生させる第 1モー タ部 22、第 1インペラ 21を径方向において囲む第 1ハウジング 23、および、第 1イン ペラ 21の下側、すなわち、第 1インペラ 21と第 2インペラ 31との間において、第 1モ ータ部 22から中心車 を中心として放射状に伸びるとともにそれぞれの先端部が第 1 ノ、ウジング 23に接続されて第 1モータ部 22を支持する複数の第 1支持リブ 24を備え る。本実施の形態では、第 1支持リブ 24は 4本である。第 1軸流ファン 2では、第 1ハウ ジング 23の内側に第 1インペラ 21、第 1モータ部 22および第 1支持リブ群が配置され る。図 4中の矢印 R1は第 1インペラ 21の回転方向を示す。  FIG. 3 is a longitudinal sectional view of the serial axial fan 1 cut along a plane including the central wheel, and FIG. 4 is a plan view of the first axial fan 2 viewed from the intake side. As shown in Fig. 3 and Fig. 4, the first axial fan 2 includes the first impeller 21 having seven first blades 211 arranged at an equal pitch in the circumferential direction around the central vehicle, the central vehicle. By rotating the first impeller 21 clockwise in FIGS. 2 and 4, the air flow in the direction along the center wheel, that is, the air flow from the upper side to the lower side in FIG. The first motor section 22 to be generated, the first housing 23 that radially surrounds the first impeller 21, and the lower side of the first impeller 21, that is, between the first impeller 21 and the second impeller 31, A plurality of first support ribs 24 are provided that extend radially from the first motor portion 22 around the central vehicle and that have respective front end portions connected to the first and wings 23 to support the first motor portion 22. . In the present embodiment, there are four first support ribs 24. In the first axial fan 2, the first impeller 21, the first motor portion 22, and the first support rib group are disposed inside the first housing 23. An arrow R1 in FIG. 4 indicates the direction of rotation of the first impeller 21.
[0021] なお、図 3では、図示の都合上、第 1翼 211および第 1支持リブ 24についてはそれ ぞれ、側方から見た概略形状を示しており、第 1モータ部 22の各構成については、 断面を表す平行斜線の図示を省略している。また、後述する第 2軸流ファン 3の第 2 翼 311および第 2支持リブ 34についても、第 1翼 211および第 1支持リブ 24と同様に 、それぞれを側方から見た概略形状を示しており、第 2モータ部 32の各構成につい ても、第 1モータ部 22と同様に、断面を表す平行斜線の図示を省略している。  In FIG. 3, for convenience of illustration, the first blade 211 and the first support rib 24 each have a schematic shape viewed from the side, and each configuration of the first motor unit 22 is shown. For, the illustration of the parallel diagonal lines representing the cross section is omitted. Similarly to the first blade 211 and the first support rib 24, the second blade 311 and the second support rib 34 of the second axial fan 3 to be described later are also schematically shown as viewed from the side. As with the first motor unit 22, the configuration of the second motor unit 32 is also omitted from the illustration of the parallel diagonal lines representing the cross section.
[0022] 図 3に示すように、第 1モータ部 22は、固定組立体であるステータ部 221、および、 回転組立体であるロータ部 222を備え、ロータ部 222は、後述する軸受機構を介して 中心車 を中心にステータ部 221に対して回転可能に支持される。以下の説明では、 便宜上、中心車 に沿ってロータ部 222側を上側、ステータ部 221側を下側として説 明する力 中心車 は必ずしも重力方向と一致する必要はない。 As shown in FIG. 3, the first motor unit 22 includes a stator unit 221 that is a fixed assembly, and a rotor unit 222 that is a rotating assembly. The rotor unit 222 is interposed via a bearing mechanism described later. The It is supported so as to be rotatable with respect to the stator portion 221 around the center wheel. In the following description, for the sake of convenience, the force center wheel described along the center wheel with the rotor portion 222 side as the upper side and the stator portion 221 side as the lower side does not necessarily coincide with the direction of gravity.
[0023] ステータ部 221は、平面視において中心車 を中心とする略円環状のベース部 221 1を備え、ベース部 2211は、図 3および図 4に示すように、複数の第 1支持リブ 24を 介して第 1ハウジング 23の略円筒状の内周面 231に固定されてステータ部 221の各 部を保持する。ベース部 2211は樹脂製であり、同じく樹脂製の複数の第 1支持リブ 2 4および第 1ハウジング 23とともに射出成形により形成される。  Stator portion 221 includes a substantially annular base portion 2211 centered on the center wheel in plan view, and base portion 2211 includes a plurality of first support ribs 24 as shown in FIGS. The stator is fixed to the substantially cylindrical inner peripheral surface 231 of the first housing 23 and holds each part of the stator part 221. The base portion 2211 is made of resin, and is formed by injection molding together with a plurality of first support ribs 24 and the first housing 23 that are also made of resin.
[0024] 図 3に示すように、ベース部 2211の中央部には、ベース部 2211から上側(すなわ ち、ロータ部 222側)に突出する略円筒状の軸受保持部 2212が固定されている。軸 受保持部 2212の内側には、軸受機構の一部となる玉軸受 2213, 2214が中心車 方向の上部および下部に設けられる。  As shown in FIG. 3, a substantially cylindrical bearing holding portion 2212 that protrudes upward from the base portion 2211 (that is, the rotor portion 222 side) is fixed to the center portion of the base portion 2211. . Inside the bearing holding portion 2212, ball bearings 2213 and 2214 which are part of the bearing mechanism are provided at the upper and lower portions in the direction of the central vehicle.
[0025] ステータ部 221は、また、軸受保持部 2212の外周に取り付けられる電機子 2215、 および、電機子 2215の下側に取り付けられるとともに電機子 2215のコィノレに電気 的に接続されてコイルに対する通電を制御する制御回路を組み込んだ略円環板状 の回路基板 2216をさらに備える。回路基板 2216は、複数のリード線を束ねたリード 線群を介して直列式軸流ファン 1の外部に設けられた外部電源に接続される。なお、 図 3では、リード線群および外部電源の図示は省略して!/、る。  [0025] Stator portion 221 is also connected to the armature 2215 attached to the outer periphery of bearing holding portion 2212, and to the lower side of armature 2215, and is electrically connected to the inductor of armature 2215 to energize the coil. And a circuit board 2216 having a substantially annular plate shape incorporating a control circuit for controlling. The circuit board 2216 is connected to an external power source provided outside the series axial fan 1 via a lead wire group in which a plurality of lead wires are bundled. In FIG. 3, the illustration of the lead wires and the external power supply is omitted.
[0026] ロータ部 222は、中心車 を中心とする略円筒状であって蓋部を有し磁性を持った 金属材料により形成されたヨーク 2221、ヨーク 2221の周壁部の内側面に固定され て電機子 2215と対向する略円筒状の界磁用磁石 2222、および、ヨーク 2221の蓋 部の中心部から下向きに突出するシャフト 2223を備える。  [0026] The rotor part 222 has a substantially cylindrical shape centering on the central wheel, and has a lid part and is formed of a magnetic metal material. The rotor part 222 is fixed to the inner side surface of the peripheral wall part of the yoke 2221. A substantially cylindrical field magnet 2222 facing the armature 2215 and a shaft 2223 projecting downward from the center of the lid of the yoke 2221 are provided.
[0027] シャフト 2223は、軸受保持部 2212に揷入されて玉軸受 2213, 2214により回転 可能に支持される。第 1軸流ファン 2では、シャフト 2223および玉軸受 2213, 2214 ヽ中心車 を中心にヨーク 2221をベース部 2211に対して回転可能に支持する軸 受機構の役割を果たす。  The shaft 2223 is inserted into the bearing holding portion 2212 and is rotatably supported by the ball bearings 2213 and 2214. The first axial fan 2 serves as a bearing mechanism that rotatably supports the yoke 2221 with respect to the base portion 2211 around the shaft 2223 and the ball bearings 2213 and 2214 and the center wheel.
[0028] 第 1インペラ 21は、第 1モータ部 22のヨーク 2221の外側を覆う有蓋略円筒状のハ ブ 212、および、ハブ 212の周壁部の外側(すなわち、外側面)から放射状に伸びる と共に周方向に等間隔に配置された複数の第 1翼 211を備える。本実施形態では、 ハブ 212は樹脂製であり、同じく樹脂製の第 1翼 211とともに射出成形により形成され [0028] The first impeller 21 extends radially from the outer side of the peripheral wall portion of the hub 212 (that is, the outer side surface), which covers the outer side of the yoke 2221 of the first motor unit 22, and the hub 212. And a plurality of first blades 211 arranged at equal intervals in the circumferential direction. In this embodiment, the hub 212 is made of resin and is formed by injection molding together with the first wing 211 made of resin.
[0029] 第 1軸流ファン 2では、第 1モータ部 22の回路基板 2216を介して電機子 2215に駆 動電流が供給されて電機子 2215と界磁用磁石 2222との間で中心車 を中心とする トルクが発生し、制御回路により駆動電流を制御することにより、ロータ部 222に取り 付けられた第 1インペラ 21の複数の第 1翼 211が、中心車 を中心として図 4中におけ る時計回りに所定の回転数にて回転する。本実施形態では、約 lOOOOrpmで回転 する。これにより、図 3中の上側、すなわち、第 1モータ部 22のロータ部 222側から空 気が取り込まれて下側、すなわち、第 2軸流ファン 3側へと送られる。 [0029] In the first axial fan 2, the driving current is supplied to the armature 2215 via the circuit board 2216 of the first motor unit 22, and the central wheel is moved between the armature 2215 and the field magnet 2222. When the center torque is generated and the drive current is controlled by the control circuit, the plurality of first blades 211 of the first impeller 21 attached to the rotor part 222 are centered on the central vehicle in FIG. It rotates at a predetermined rotation speed clockwise. In this embodiment, it rotates at about lOOOOrpm. Accordingly, air is taken in from the upper side in FIG. 3, that is, the rotor part 222 side of the first motor part 22, and is sent to the lower side, that is, the second axial fan 3 side.
[0030] 図 5は、第 2軸流ファン 3を吸気側から見た平面図である。図 3および図 5に示すよう に、第 2軸流ファン 3は、中心車 に沿って第 1インペラ 21に隣接して配置される第 2ィ ンペラ 31を備え、第 2インペラ 31は、中心車 を中心として放射状に延びるとともに周 方向に等ピッチにて配列された 5枚の第 2翼 311を有する。  FIG. 5 is a plan view of the second axial fan 3 as viewed from the intake side. As shown in FIGS. 3 and 5, the second axial fan 3 includes a second impeller 31 disposed adjacent to the first impeller 21 along the central wheel, and the second impeller 31 includes the central wheel. It has five second blades 311 extending radially at the center and arranged at an equal pitch in the circumferential direction.
[0031] 第 2軸流ファン 3は、また、中心車 を中心として第 2インペラ 31を第 1インペラ 21と は反対方向、すなわち、図 5中における反時計回りであり、矢印 R2で示す方向に回 転することにより第 1インペラ 21による空気の流れと同方向の空気の流れ、すなわち 、図 3中の上側から下側へと向かう中心 $ 方向の空気の流れを発生させる第 2モー タ部 32、第 2インペラ 31を径方向において囲む第 2ハウジング 33、および、第 2イン ペラ 31の下側、すなわち、第 2インペラ 31の第 1インペラ 21とは反対側において第 2 モータ部 32から中心車 を中心として放射状に伸びるとともに第 2ハウジング 33に接 続されて第 2モータ部 32を支持する複数の第 2支持リブ 34を備える。本実施の形態 では、第 2支持リブ 34は第 1支持リブ 24と同様に 4本である。  The second axial fan 3 also has the second impeller 31 in the direction opposite to the first impeller 21 around the center wheel, that is, counterclockwise in FIG. 5 and in the direction indicated by the arrow R2. The second motor unit 32 generates a flow of air in the same direction as the flow of air by the first impeller 21 by rotating, that is, a flow of air in the center $ direction from the upper side to the lower side in FIG. The second housing 33 that surrounds the second impeller 31 in the radial direction, and the lower side of the second impeller 31, that is, the second impeller 31 on the opposite side of the first impeller 21 from the second motor portion 32 is the central vehicle. And a plurality of second support ribs 34 that are connected to the second housing 33 and support the second motor portion 32. In the present embodiment, the number of the second support ribs 34 is four as with the first support ribs 24.
[0032] 第 2軸流ファン 3では、第 2ハウジング 33の内側に第 2インペラ 31、第 2モータ部 32 および第 2支持リブ群が配置される。また、直列式軸流ファン 1全体として見た場合、 連続する第 1ハウジング 23および第 2ハウジング 33の内側において空気が流れる流 路には、図 3中の上側(すなわち、吸気側)から順に、第 1インペラ 21、第 1支持リブ 群、第 2支持リブ群、第 2インペラ 31が配置される。その際に、第 1支持リブ群と第 2支 持リブ群のそれぞれの支持リブは、中心車 方向において当接している。 In the second axial fan 3, the second impeller 31, the second motor unit 32, and the second support rib group are disposed inside the second housing 33. Further, when viewed as a series axial fan 1 as a whole, the flow path through which the air flows inside the continuous first housing 23 and second housing 33 is in order from the upper side (ie, the intake side) in FIG. The first impeller 21, the first support rib group, the second support rib group, and the second impeller 31 are arranged. At that time, the first support rib group and the second support rib Each support rib of the holding rib group abuts in the center vehicle direction.
[0033] 図 3に示すように、第 2モータ部 32の構成は第 1モータ部 22の構成と同様であり、ス テータ部 321、および、ステータ部 321の上側(すなわち、吸気側)に配置されてステ ータ部 321に対して回転可能に支持されるロータ部 322を備える。  As shown in FIG. 3, the configuration of the second motor unit 32 is the same as the configuration of the first motor unit 22, and is arranged above the stator unit 321 and the stator unit 321 (ie, the intake side). And a rotor portion 322 that is rotatably supported with respect to the stator portion 321.
[0034] ステータ部 321は、複数の第 2支持リブ 34を介して第 2ハウジング 33の略円筒状の 内周面 331に固定されてステータ部 321の各部を保持するベース部 3211、玉軸受 3213, 3214が内側に設けられる略円筒状の軸受保持部 3212、軸受保持部 3212 の外周に取り付けられる電機子 3215、および、電機子 3215の下側に取り付けられ るとともに電機子 3215のコイルに電気的に接続されてコイルに対する通電を制御す る制御回路を組み込んだ略円環板状の回路基板 3216を備える。  The stator portion 321 is fixed to the substantially cylindrical inner peripheral surface 331 of the second housing 33 via a plurality of second support ribs 34, and a base portion 3211 that holds each portion of the stator portion 321, and a ball bearing 3213. , 3214 is provided inside the substantially cylindrical bearing holding portion 3212, the armature 3215 attached to the outer periphery of the bearing holding portion 3212, and the armature 3215 is attached to the lower side of the armature 3215 and electrically connected to the coil of the armature 3215 And a circuit board 3216 having a substantially annular plate shape and incorporating a control circuit for controlling energization to the coil.
[0035] 本実施形態では、ベース部 3211は樹脂製であり、同じく樹脂製の複数の第 2支持 リブ 34および第 2ハウジング 33と共に射出成形により形成される。回路基板 3216は 、複数のリード線を束ねたリード線群を介して直列式軸流ファン 1の外部に設けられ た外部電源に接続される。  In the present embodiment, the base portion 3211 is made of resin, and is formed by injection molding together with the plurality of second support ribs 34 and the second housing 33 that are also made of resin. The circuit board 3216 is connected to an external power source provided outside the series axial fan 1 via a lead wire group in which a plurality of lead wires are bundled.
[0036] ロータ部 322は、金属製のヨーク 3221、ヨーク 3221の内側面に固定される界磁用 磁石 3222、および、 3—ク 3221力、ら下向さに突出するシャフト 3223を備免る。シャ フ卜 3223 (ま、車由受保持 ^3212内 ίこお!/ヽて玉車由受 3213, 3214ίこより回転可倉 ίこ支 持される。第 2軸流ファン 3では、シャフト 3223および玉軸受 3213, 3214力 中心 車 を中心にヨーク 3221をベース部 3211に対して回転可能に支持する軸受機構の 役割を果たす。  [0036] The rotor section 322 is provided with a metal yoke 3221, a field magnet 3222 fixed to the inner surface of the yoke 3221, and a shaft 3223 that protrudes downward from the 3-coque 3221 force. . Shaft 卜 3223 (Also held by the car holder ^ 3212 ヽ こ ヽ / ヽ 玉 由 13 13 13 13 3213, 3214 Ball bearings 3213, 3214 Power center Plays as a bearing mechanism that rotatably supports the yoke 3221 with respect to the base portion 3211 around the center car.
[0037] 第 2インペラ 31は、第 2モータ部 32のヨーク 3221の外側を覆う有蓋略円筒状のハ ブ 312、および、ハブ 312の周壁外側面から放射状に伸びる複数の第 2翼 311を備 える。ハブ 312は樹脂製であり、同じく樹脂製の第 2翼 311とともに射出成形により形 成される。  [0037] The second impeller 31 includes a covered substantially cylindrical hub 312 that covers the outer side of the yoke 3221 of the second motor unit 32, and a plurality of second blades 311 that extend radially from the outer peripheral surface of the peripheral wall of the hub 312. Yeah. The hub 312 is made of resin, and is formed by injection molding together with the second wing 311 made of resin.
[0038] 第 2軸流ファン 3では、第 2モータ部 32が駆動されることにより、第 2インペラ 31の複 数の第 2翼 311が中心車 を中心として図 5中における反時計回りに所定の回転数に て回転する。本実施の形態では、約 8000rpmで回転する。これにより、図 3中の上 側、すなわち、第 2支持リブ 34側から空気が取り込まれて下側、すなわち、第 1軸流 ファン 2側へと送られる。 [0038] In the second axial fan 3, when the second motor unit 32 is driven, the plurality of second blades 311 of the second impeller 31 are predetermined counterclockwise in FIG. It rotates at the number of rotations. In this embodiment, it rotates at about 8000 rpm. As a result, air is taken in from the upper side in FIG. 3, that is, the second support rib 34 side, that is, the lower side, that is, the first axial flow. Sent to fan 2 side.
[0039] 図 6は、直列式軸流ファン 1の第 1支持リブ 24と第 2支持リブ 34との当接状態を示 す斜視図である。図 6に示すように、第 1インペラ 21と第 2インペラ 31との間には、両 軸流ファン 2、 3がそれぞれ備える第 1支持リブ 24および第 2支持リブ 34が配置され ている。第 1支持リブ 24は周方向等間隔で配置されており、第 2支持リブ 34も周方向 等間隔で配置されている。第 1軸流ファン 2と第 2軸流ファン 3とをビス等で連結した場 合、第 1支持リブ 24と第 2支持リブ 34とは、軸方向において当接し、 4本の第 2支持リ ブ 34が 4本の第 1支持リブ 24の第 2インペラ 31側、すなわち、排気側にそれぞれ配 置される。各第 2支持リブ 34は、平面視すなわち中心車 方向から見た場合において 第 1支持リブ 24と全長に亘つて重ね合わされている。以下の説明では、第 1支持リブ 24と第 2支持リブ 34とを合わせて、単に「支持リブ 44」と呼ぶ。換言すれば、複数の 第 1支持リブ 24と複数の第 2支持リブ 34とを備える複数の支持リブ 44により、第 1イン ペラ 21と第 2インペラ 31との間において第 1モータ部 22および第 2モータ部 32が支 持される。 FIG. 6 is a perspective view showing a contact state between the first support rib 24 and the second support rib 34 of the serial axial fan 1. As shown in FIG. 6, between the first impeller 21 and the second impeller 31, the first support rib 24 and the second support rib 34 provided in the axial fans 2 and 3, respectively, are arranged. The first support ribs 24 are arranged at equal intervals in the circumferential direction, and the second support ribs 34 are also arranged at equal intervals in the circumferential direction. When the first axial fan 2 and the second axial fan 3 are connected with screws or the like, the first support rib 24 and the second support rib 34 abut on each other in the axial direction, and the four second support ribs. Are arranged on the second impeller 31 side of the four first support ribs 24, that is, on the exhaust side. Each second support rib 34 is overlapped with the first support rib 24 over the entire length in a plan view, that is, when viewed from the center vehicle direction. In the following description, the first support rib 24 and the second support rib 34 are simply referred to as “support rib 44”. In other words, the plurality of support ribs 44 including a plurality of first support ribs 24 and a plurality of second support ribs 34, and the first motor unit 22 and the second impeller 31 between the first impeller 21 and second impeller 31. 2Motor unit 32 is supported.
[0040] 上述の通り、第 1支持リブ 24と第 2支持リブ 34とが重ね合わされることによって、支 持リブ 44が構成されている。支持リブ 44は、第 1支持リブ 24と第 2支持リブ 34との境 界部において、ほぼ段差が無い状態で重ね合わされている。換言すれば、第 1支持 リブ 24の空気流の上流側に面する第 1支持リブ第 1側面 241と、第 2支持リブ 34の空 気流の上流側に面する第 2支持リブ第 1側面 341とで、ほぼ段差の無い連続的な面 が形成されている。同様に、第 1支持リブ 24の空気流の下流側に面する第 1支持リブ 第 2側面 242と、第 2支持リブ 34の空気流の下流側に面する第 2支持リブ第 2側面 34 2とで、ほぼ段差の無い連続的な面が形成されている。つまり、支持リブ 44は、本来 は第 1支持リブ 24と第 2支持リブ 34とを重ね合わせて構成したものである力 あたか も 1つの支持リブであるかのように形成される。以下、第 1支持リブ第 1側面 241と第 2 支持リブ第 1側面 341とで形成された連続面を支持リブ第 1側面 441という。また、第 1支持リブ第 2側面 242と第 2支持リブ第 2側面 342とで形成された連続面を支持リブ 第 2側面 442という。  [0040] As described above, the first support rib 24 and the second support rib 34 are overlapped to form the support rib 44. The support ribs 44 are overlapped at a boundary portion between the first support ribs 24 and the second support ribs 34 with almost no step. In other words, the first support rib first side surface 241 facing the upstream side of the air flow of the first support rib 24, and the second support rib first side surface 341 facing the upstream side of the airflow of the second support rib 34. A continuous surface with almost no steps is formed. Similarly, the first support rib second side surface 242 facing the downstream side of the air flow of the first support rib 24 and the second support rib second side surface 34 2 facing the downstream side of the air flow of the second support rib 34 2 Thus, a continuous surface having almost no step is formed. That is, the support rib 44 is formed as if it was a single support rib, which was originally formed by superposing the first support rib 24 and the second support rib 34. Hereinafter, a continuous surface formed by the first support rib first side surface 241 and the second support rib first side surface 341 is referred to as a support rib first side surface 441. A continuous surface formed by the first support rib second side surface 242 and the second support rib second side surface 342 is referred to as a support rib second side surface 442.
[0041] 図 7は、直列式軸流ファンを軸方向から見た平面図である。図 7ではインペラは省 略されている。図 8は、図 7における A— A線、 B— B線、 C— C線に沿って軸方向に 切断した各断面図である。これら A— A泉、 B— B泉、 C C線はそれぞれ、中心車 を中心とした円弧線を示している。図 9は、第 1翼 211、支持リブ 44、第 2翼 311を中 心車 を中心とした任意の径の円弧に沿って軸方向に切断した断面図であり、以下、 円筒面での断面という。また、図 9における矢印 R1は第 1インペラ 21の回転方向であ り、同時に第 1翼 211の移動方向を示す。また、矢印 R2は第 2インペラ 31の回転方 向であり、同時に第 2翼 311の移動方向を示す。図 8に示すように、支持リブ 44の前 記円筒面での断面における長手方向は、その軸方向上端が下端よりインペラ 21の 回転方向とは反対側に位置するよう、中心車 に対して傾斜している。支持リブ 44は 、第 1ハウジング 23と第 2ハウジング 33とで構成される空気流路を横切るように配置さ れている。よって、支持リブ 44はできるだけ空気流のエネルギ損失が小さくなるように 配置される必要がある。 FIG. 7 is a plan view of the serial axial fan as viewed from the axial direction. In Fig. 7, the impeller is omitted. Abbreviated. FIG. 8 is a cross-sectional view taken along the lines A—A, B—B, and C—C in FIG. 7 in the axial direction. These A-A springs, B-B springs, and CC lines show arc lines centered on the central car. Fig. 9 is a cross-sectional view of the first wing 211, the support rib 44, and the second wing 311 cut in an axial direction along an arc of an arbitrary diameter centered on the center car, and is hereinafter referred to as a cross section on a cylindrical surface. That's it. Further, an arrow R1 in FIG. 9 indicates the rotational direction of the first impeller 21, and simultaneously indicates the moving direction of the first blade 211. The arrow R2 indicates the direction of rotation of the second impeller 31, and simultaneously indicates the direction of movement of the second blade 311. As shown in FIG. 8, the longitudinal direction of the support rib 44 in the cross section of the cylindrical surface is inclined with respect to the central vehicle so that the upper end in the axial direction is located on the opposite side of the rotation direction of the impeller 21 from the lower end. is doing. The support rib 44 is disposed so as to cross the air flow path constituted by the first housing 23 and the second housing 33. Therefore, the support ribs 44 need to be arranged so that the energy loss of the air flow is as small as possible.
[0042] ここで、支持リブ 44の配置を説明する前に、第 1翼 211の構造について説明する。 Here, before describing the arrangement of the support ribs 44, the structure of the first blade 211 will be described.
第 1翼 211の平面視の形状は、図 4に示すように、径方向に直線的に延びるのでは なぐ径方向内側から外側に行くに従!、第 1インペラ 21の回転方向とは反対側に向 けて拡大するような扇形状となっている。また、第 1翼 211の中心車 を中心とした円 筒面での断面形状は、図 9に示すように、第 1翼 211の上縁つまり回転方向前縁が下 縁つまり回転方向後縁より第 1インペラ 21の回転方向下流側に位置するように傾斜 及び湾曲した弧状である。通常、電子機器内部を冷却するのに用いられる軸流ファ ンは、電子機器内のシステムインピーダンスと軸流ファンの風量及び静圧によって選 定される。ここで、システムインピーダンスとは、電子機器内での静圧と風量の関係、 つまりシステム内での空気流の流れ難さ、システム内の空気流の抵抗を意味している 。電子機器内では電子部品及び電源等が狭い空間に密集していることが多ぐ高シ ステムインピーダンスになり、システム内の空気流の抵抗値が大きい状態になることが 多い。従って、電子機器内部の冷却に用いられる軸流ファンには、高い静圧が要求 される。  As shown in FIG. 4, the shape of the first blade 211 in plan view increases from the radially inner side to the outer side rather than linearly extending in the radial direction! The opposite side to the rotational direction of the first impeller 21 It has a fan shape that expands toward the surface. In addition, the cross-sectional shape of the first wing 211 on the cylindrical surface centered on the central wheel is as shown in Fig. 9. The arcuate shape is inclined and curved so as to be located downstream of the first impeller 21 in the rotation direction. Normally, the axial fan used for cooling the inside of electronic equipment is selected by the system impedance in the electronic equipment, the air flow and static pressure of the axial fan. Here, the system impedance means the relationship between the static pressure and the air volume in the electronic device, that is, the difficulty of air flow in the system, and the resistance of air flow in the system. In electronic equipment, electronic components and power supplies are often confined in a narrow space, resulting in a high system impedance, often resulting in a large resistance value of airflow in the system. Therefore, a high static pressure is required for an axial fan used for cooling the inside of electronic equipment.
[0043] 軸流ファンにおいて高静圧を達成する方法として、第 1軸流ファン 2の平面視におけ る隣り合う第 1翼 211の間隔を小さくする方法がある。この場合、第 1翼 211の前記円 筒面での断面における弧状部分の弧長を径方向内側から外側に行くに従い長くなる ようにすれば良い。ここで、第 1翼 21 1の前記弧状部分の弧長とは、弧状部分の厚さ 方向の中間点を結ぶ弧の長さを意味している。しかし、第 1翼 21 1の前記弧状部分 の弧長を長くしていくと、第 1翼 21 1の中心車 方向の高さが径方向内側から外側に 行くに従い高くなることになる。径方向内側と外側とで第 1翼 21 1の軸方向高さの差 を小さくすることでハウジングが構成する風洞部内での第 1翼 21 1が占める有効体積 、つまり軸方向からみた第 1翼 21 1の面積と第 1翼 21 1の軸方向高さとの積が大きく なり、高風量でありながら高静圧を達成した第 1軸流ファン 2が得られる。これを実現 する一つの指標として、図 9に示すように、第 1翼 21 1の前記円筒面での断面の弧状 部分において特に後縁部分の中心車 に対する傾斜(以下、第 1傾斜角 αという)が 径方向内側から外側に行くに従って大きくなるようにすれば良い。この後縁部分は空 気流の下流側に位置し、第 1インペラ 21の空気流の発生方向を規定する部分でもあ As a method of achieving high static pressure in the axial fan, there is a method of reducing the interval between the adjacent first blades 211 in the plan view of the first axial fan 2. In this case, the circle of the first wing 211 The arc length of the arc-shaped portion in the cross section on the cylindrical surface should be increased from the inner side to the outer side in the radial direction. Here, the arc length of the arc-shaped portion of the first wing 211 means the length of the arc connecting the midpoints in the thickness direction of the arc-shaped portion. However, as the arc length of the arc-shaped portion of the first blade 211 increases, the height of the first blade 211 in the central vehicle direction increases as it goes from the inside in the radial direction to the outside. By reducing the difference in the axial height of the first blade 21 1 between the radially inner side and the outer side, the effective volume occupied by the first blade 21 1 in the wind tunnel formed by the housing, that is, the first blade viewed from the axial direction The product of the area of 21 1 and the axial height of the first blade 21 1 is increased, and the first axial fan 2 that achieves a high static pressure with a high airflow is obtained. As an index for realizing this, as shown in FIG. 9, in the arcuate portion of the cross section of the first blade 211 on the cylindrical surface, the inclination of the trailing edge portion with respect to the center wheel (hereinafter referred to as the first inclination angle α). ) Should increase from the radially inner side to the outer side. This trailing edge is located downstream of the airflow and is also the part that defines the direction of airflow generation of the first impeller 21.
[0044] 支持リブ 44による空気流損失を小さくするためには、支持リブ 44の側面つまり支持 リブ第 1側面 441、支持リブ第 2側面 442が、図 9に示すように、第 1軸流ファン 2から 発生する空気流の流速方向と略平行になるように、つまり第 1翼 21 1の後縁部分に対 し略直交するように、配置されているのが好ましい。換言すれば、空気流の流れ方向 力も支持リブ 44を見て、支持リブ 44の投影面積が最も小さくなるように支持リブ 44が 配置されて!/、るのが好まし!/、。空気流と支持リブ 44の側面とが平行である場合には、 支持リブ 44付近を通過する空気は、支持リブ第 1側面 441、支持リブ第 2側面 442に よるエネルギ損失は少ない。支持リブ 44の上端面 243は、空気流と対向するように配 置されているが、本実施形態においては空気流に対して平行ではないものの、空気 流に対して鋭角の角度で交差している。このため、空気流が上端面 243に干渉する 際の空気損失を抑えることができる。本実施形態においては、上端面 243の形状は 平面であるが、これに限定されず、例えば湾曲面が形成されても良い。 [0044] In order to reduce the airflow loss due to the support rib 44, the side surface of the support rib 44, that is, the first side surface 441 of the support rib and the second side surface 442 of the support rib, as shown in FIG. 2 is preferably arranged so as to be substantially parallel to the flow velocity direction of the air flow generated from 2, that is, to be substantially orthogonal to the trailing edge portion of the first blade 211. In other words, it is preferable that the support rib 44 is arranged so that the projected area of the support rib 44 is minimized when the force in the air flow direction is also viewed from the support rib 44! /. When the air flow and the side surface of the support rib 44 are parallel, the air passing through the vicinity of the support rib 44 has little energy loss due to the support rib first side surface 441 and the support rib second side surface 442. The upper end surface 243 of the support rib 44 is disposed so as to face the air flow. In the present embodiment, the upper end surface 243 intersects the air flow at an acute angle although it is not parallel to the air flow. Yes. For this reason, the air loss when the air flow interferes with the upper end surface 243 can be suppressed. In the present embodiment, the shape of the upper end surface 243 is a plane, but is not limited to this, and for example, a curved surface may be formed.
[0045] 第 1インペラ 21が回転した際に発生する空気の流れ方向は、第 1翼 21 1の後縁部 分に対して 90度の方向と略平行になる。つまり、第 1傾斜角 αを規定する第 1翼 21 1 の後縁部分と支持リブ 44の断面の長手方向とが 90度になるように構成すれば、第 1 インペラ 21で発生する空気流と支持リブ 44の断面の長手方向とが略平行になる。た だし、この空気流は、第 1インペラ 21の回転速度や、周囲環境によって、流速や角度 が変化する。そういった場合には、支持リブ 44の断面の長手方向の中心軸 Jに対す る角度 0は、第 1インペラ 21の回転速度や周囲環境に応じて、適宜変更される。そ の場合、第 1翼 211の後縁部分と支持リブ 44の断面の長手方向とのなす角度が 100 度以下、好ましくは、 80度〜 100度になる。つまり、第 1傾斜角 αと支持リブ 44の断 面の長手方向の角度 /3との和が 80度〜 100度となる。 [0045] The flow direction of air generated when the first impeller 21 rotates is substantially parallel to the direction of 90 degrees with respect to the rear edge portion of the first blade 211. That is, if the rear edge portion of the first blade 21 1 defining the first inclination angle α and the longitudinal direction of the cross section of the support rib 44 are configured to be 90 degrees, the first The air flow generated in the impeller 21 and the longitudinal direction of the cross section of the support rib 44 are substantially parallel. However, the flow rate and angle of this air flow vary depending on the rotational speed of the first impeller 21 and the surrounding environment. In such a case, the angle 0 with respect to the central axis J in the longitudinal direction of the cross section of the support rib 44 is appropriately changed according to the rotational speed of the first impeller 21 and the surrounding environment. In that case, the angle formed between the trailing edge portion of the first blade 211 and the longitudinal direction of the cross section of the support rib 44 is 100 degrees or less, preferably 80 degrees to 100 degrees. That is, the sum of the first inclination angle α and the longitudinal angle / 3 of the cross section of the support rib 44 is 80 to 100 degrees.
[0046] 上記の構成により、第 1インペラ 21が回転することによって発生する空気流は、流 れの方向をほとんど変えることなく且つエネルギ損失を最小限にして支持リブ 44を通 過する。支持リブ 44を通過した空気は、第 2翼 311に向けて流れる。第 2翼 311の中 心車 を中心とした円筒面での断面形状は、図 9に示すように、第 2翼 311の上縁つ まり回転方向前縁が下縁つまり回転方向後縁より第 2インペラ 31の回転方向下流側 に位置するように傾斜及び湾曲した弧状である。第 2翼 311の前記円筒面での弧状 断面の長手方向の特に空気流の上流側に位置する前縁部分の中心車 に対する傾 斜(以下、第 2翼傾斜角 γという)は、空気流の第 2インペラ 31への流入角度(支持リ ブ 44の角度 /3に近似)よりも小さく設定されている。  [0046] With the above configuration, the air flow generated by the rotation of the first impeller 21 passes through the support rib 44 with almost no change in the flow direction and minimal energy loss. The air that has passed through the support rib 44 flows toward the second wing 311. As shown in Fig. 9, the cross-sectional shape of the second wing 311 centered on the center car is the upper edge of the second wing 311. The two impellers 31 have an arcuate shape that is inclined and curved so as to be located downstream in the rotational direction. The inclination of the leading edge located in the longitudinal direction of the arc-shaped cross section of the second blade 311 in the longitudinal direction, particularly on the upstream side of the air flow (hereinafter referred to as the second blade inclination angle γ), is It is set smaller than the inflow angle to the second impeller 31 (approximate to the angle / 3 of the support rib 44).
[0047] 一般的に、軸流ファンから排出される空気の空気流は、大きく分けて 3つの速度成 分を有している。それは、軸方向成分(軸方向の流速)、旋廻成分 (インペラ回転方 向の流速)、遠心成分 (径方向外方への流速)の 3つの速度成分である。直列式軸流 ファン 1の送風特性を向上させるために、上記 3つの速度成分のうち軸方向成分の比 率を高くする必要がある。つまりは、旋廻成分および遠心成分を可能な限り軸方向成 分に変換する必要がある。  [0047] Generally, the air flow of the air discharged from the axial fan has three speed components. It consists of three velocity components: an axial component (flow velocity in the axial direction), a rotation component (flow velocity in the impeller rotation direction), and a centrifugal component (flow velocity outward in the radial direction). In order to improve the air blowing characteristics of the series axial fan 1, it is necessary to increase the ratio of the axial component among the above three speed components. In other words, it is necessary to convert the rotating component and the centrifugal component into axial components as much as possible.
[0048] 次に、前記旋廻成分および遠心成分を軸方向成分に変換する作用について説明す る。第 2翼 311に進入してくる空気は、図 9に示すように、第 2翼 311の回転方向にお ける前進側翼面 3111に衝突する。第 2翼 311は、その中腹から後縁にかかる部分が 回転方向前方に曲がるように湾曲し、前進側翼面 3111が径方向内方側に向くように 傾けられている。よって、第 2翼 311に衝突した空気は、径方向内方に向いて流れる ように規制され、空気流の速度ベクトルの変換が行われる。よって、空気流の速度成 分のうち遠心方向成分力 径方向内方に向けられる。このため、空気流の径方向外 方への広がりを抑制することができる。 [0048] Next, the operation of converting the turning component and the centrifugal component into the axial component will be described. Air entering the second blade 311 collides with the forward-side blade surface 3111 in the rotational direction of the second blade 311 as shown in FIG. The second blade 311 is bent so that a portion extending from the middle to the rear edge of the second blade 311 is bent forward in the rotational direction, and the forward blade surface 3111 is inclined so as to face inward in the radial direction. Therefore, the air colliding with the second blade 311 is restricted to flow inward in the radial direction, and the velocity vector of the air flow is converted. Therefore, the speed of the air flow The component force in the centrifugal direction is directed inward in the radial direction. For this reason, the spread of the air flow radially outward can be suppressed.
[0049] 第 2翼 311に進入した空気の旋廻成分は、第 2翼 311の前進側翼面 3111に衝突す ることにより軸方向成分に変換される。よって、第 2翼 311の作用は、第 1翼 211から 排出された空気の流速のうち、旋廻成分と遠心成分とを軸方向成分に変換すること である。これにより、直列式軸流ファン 1から排出される空気の空気流そのものが、被 冷却部材に対して、径方向外方に広がることなく供給される。  The rotational component of the air that has entered the second blade 311 is converted into an axial component by colliding with the forward-side blade surface 3111 of the second blade 311. Therefore, the action of the second blade 311 is to convert the turning component and the centrifugal component into the axial component of the flow velocity of the air discharged from the first blade 211. As a result, the air flow itself of the air discharged from the serial axial fan 1 is supplied to the member to be cooled without spreading radially outward.
[0050] 1個のインペラのみを備えた軸流ファン単品(直列式ではな!/、通常のファン)にお!/ヽ ては、最適な翼設計ができたとしても、インペラの回転に伴う旋廻成分をゼロにするこ とは不可能である。しかし、直列式軸流ファン 1においては、第 1インペラ 21で発生し た空気流の旋廻成分を第 1インペラ 21とは逆方向に回転する第 2インペラ 31によつ て回収することができ、このため、静圧特性の高い軸流ファンを提供することができる  [0050] A single axial fan with only one impeller (not in-line! /, Normal fan)! / In spite of the optimal blade design, the impeller rotates. It is impossible to make the turning component zero. However, in the axial fan 1 in series, the rotating component of the air flow generated by the first impeller 21 can be recovered by the second impeller 31 that rotates in the opposite direction to the first impeller 21. For this reason, an axial fan with high static pressure characteristics can be provided.
[0051] ここでポイントとなるの力 第 1インペラ 21から排出された空気が支持リブ 44を通過す る際に、空気流の流速方向が変換されていないことである。現在、既に公知の直列 式軸流ファンにおいては、第 1インペラと第 2インペラの間に静翼が配置されているも のが多い。この場合、第 1インペラから排出された空気の流速の旋廻成分は、静翼に よって回収され、軸方向成分に変換される。静翼によって軸方向成分に変換された 空気流は、第 2インペラによって旋廻成分が付与された状態で第 2インペラ力 排出 される。つまり、第 1インペラと第 2インペラとの間に静翼が配置されることによって、直 列式軸流ファンから排出される空気は旋廻成分を持った状態で排出されることになる 。このため、この種の直列式軸流ファンによって発生した空気流は、その旋廻成分に よって、直列式軸流ファン力 排出された後に、径方向外方に向けて広がり、被冷却 部材に対して十分に空気流を供給することができない。よって、直列式軸流ファンに お!/、ては、第 1インペラと第 2インペラとの間に静翼を設けな!/、ことが好ましレ、。 [0051] The force that becomes a point here is that the flow direction of the air flow is not converted when the air discharged from the first impeller 21 passes through the support rib 44. At present, many of the already known series axial fans have a stationary blade disposed between the first impeller and the second impeller. In this case, the rotating component of the flow velocity of the air discharged from the first impeller is recovered by the stationary blade and converted into the axial component. The air flow converted into the axial component by the stationary blade is discharged by the second impeller force with the swirl component added by the second impeller. That is, by disposing the stationary blade between the first impeller and the second impeller, the air discharged from the series axial fan is discharged with a rotating component. For this reason, the air flow generated by this type of series axial fan is exhausted by the rotating component of the series axial fan and then spreads outward in the radial direction to the member to be cooled. Insufficient air flow can be supplied. Therefore, it is preferable to install a stationary blade between the first impeller and the second impeller! /, In a series axial fan! /.
[0052] 次に、本発明における支持リブ 44の詳細形状について説明する。第 1翼 211は、上 述の通り、中心軸 Jを中心とした円筒面での断面形状である弧状断面が中心車 方向 に対する傾斜角を有しており、その傾斜角は、径方向外側に行くにつれて大きくなつ ている。そのため、第 1インペラ 21が回転することによる第 1翼 21 1から発生する空気 流の流速角度は径方向の位置によって異なる。詳しくは、径方向内側においては第 1翼断面の傾斜角が小さいため、空気流の流速角度は中心 ¾U方向に対して大きな 角度を有しているが、径方向外側においては、第 1翼断面の傾斜角が大きいため、 空気流の流速角度は中心車 方向に対して小さな角度を有している。このため、支持 リブ 44による空気流のエネルギ損失の低減を図るためには、径方向に依存して支持 リブ 44の傾斜角度を変化させる必要がある。本発明においては、第 1傾斜角 αを有 する第 1翼 21 1の後縁部分と、支持リブ 44の中心軸 Jを中心とした円筒面での断面の 長手方向とのなす角度が 100度以下 (詳しくは、 80度〜 100度程度)になるように設 定される。理想的には、その角度が 90度になることが望ましい。 [0052] Next, the detailed shape of the support rib 44 in the present invention will be described. As described above, the first blade 211 has an arcuate cross-section that is a cross-sectional shape on a cylindrical surface with the central axis J as the center, and has an inclination angle with respect to the central vehicle direction. The bigger you go ing. Therefore, the flow velocity angle of the air flow generated from the first blade 211 due to the rotation of the first impeller 21 differs depending on the radial position. Specifically, since the inclination angle of the first blade cross section is small on the radially inner side, the air flow velocity angle has a large angle with respect to the center ¾U direction, but on the radially outer side, the first blade cross section is large. Because of the large inclination angle, the air flow velocity angle is small with respect to the central vehicle direction. For this reason, in order to reduce the energy loss of the airflow by the support rib 44, it is necessary to change the inclination angle of the support rib 44 depending on the radial direction. In the present invention, the angle formed between the rear edge portion of the first blade 211 having the first inclination angle α and the longitudinal direction of the cross section of the cylindrical surface around the central axis J of the support rib 44 is 100 degrees. It is set to be below (specifically, about 80 to 100 degrees). Ideally, the angle should be 90 degrees.
[0053] また、第 1インペラ 21から排出される空気流は中心車 に対する角度だけでなく流速 そのものが径方向位置に応じて異なる。第 1翼 21 1の径方向外側においては、流速 が大きぐ径方向内側においては流速が小さい。従って、支持リブ 44を通過する空 気流のエネルギ損失は径方向外側において小さくするのが望ましい。また、支持リブ[0053] In addition, the airflow discharged from the first impeller 21 differs not only in the angle with respect to the central wheel but also in the flow velocity itself depending on the radial position. On the radially outer side of the first blade 211, the flow velocity is large, and on the radially inner side, the flow velocity is small. Therefore, it is desirable to reduce the energy loss of the airflow passing through the support rib 44 on the radially outer side. Also support rib
44の断面形状は、径方向外側に行くに従い、空気の流れ方向から見た投影面積を 小さくすればエネルギ損失を小さくすることが可能である。つまり、支持リブ 44の断面 形状は径方向によって適宜変化させてもよい。 The cross-sectional shape of 44 can reduce energy loss by reducing the projected area viewed from the air flow direction as it goes radially outward. That is, the cross-sectional shape of the support rib 44 may be appropriately changed depending on the radial direction.
[0054] 支持リブ 44の断面形状は、できるだけ空気抵抗が少ない形状が理想的である。図 1 0は、支持リブの断面形状の変形例を示している。第 1支持リブ 24aの空気流上流側 と第 2支持リブ 34aの空気流下流側とをそれぞれ滑らかな曲面に仕上げた支持リブで あってもよい。また、第 1支持リブ 24bの空気流上流側と第 2支持リブ 34bの空気流下 流側とをそれぞれ鋭角な断面形状として支持リブを構成してもよい。さらに、第 1支持 リブ 24cの空気流上流側のみ滑らかな曲面とし第 2支持リブ 34cは断面菱形とした支 持リブであってもよい。或いは、第 1支持リブ 24dの空気流上流側のみを滑らかな曲 面とする一方、第 1支持リブ 24dから第 2支持リブ 34dにかけて徐々に断面を細くする ような支持リブとしてもよい。加えて、第 1支持リブ 24eや第 2支持リブ 34eのように断 面形状を流線形状にしても良い。この場合には、第 1支持リブ 24e、第 2支持リブ 34e を通過する空気流のエネルギ損失をより抑えることが可能である。ただし、いかなる断 面形状においても第 1インペラ 21から排気された空気流の流速と支持リブ断面の長 手方向とが同一方向になるように支持リブは配置される。 [0054] The cross-sectional shape of the support rib 44 is ideally as low as possible in air resistance. FIG. 10 shows a modification of the cross-sectional shape of the support rib. The first support rib 24a may be a support rib in which the air flow upstream side of the first support rib 24a and the air flow downstream side of the second support rib 34a are each finished with a smooth curved surface. Further, the support ribs may be configured such that the air flow upstream side of the first support rib 24b and the air flow downstream side of the second support rib 34b each have an acute cross-sectional shape. Further, only the upstream side of the air flow of the first support rib 24c may be a smooth curved surface, and the second support rib 34c may be a support rib having a rhombus cross section. Alternatively, only the upstream side of the air flow of the first support rib 24d may be a smooth curved surface, and the support rib may have a gradually narrowing cross section from the first support rib 24d to the second support rib 34d. In addition, the cross-sectional shape may be a streamline shape like the first support rib 24e and the second support rib 34e. In this case, the energy loss of the airflow passing through the first support rib 24e and the second support rib 34e can be further suppressed. However, any notice The support ribs are also arranged so that the flow velocity of the air flow exhausted from the first impeller 21 and the longitudinal direction of the cross section of the support rib are the same in the surface shape.
以上、本発明の好適な実施形態を説明したが、本発明の範囲および精神を逸脱し ない範囲での様々な改変、修正は当業者には明らかなことである。したがって本発明 の範囲は、添付の請求項によってのみ規定される。  Although the preferred embodiments of the present invention have been described above, various modifications and alterations without departing from the scope and spirit of the present invention will be apparent to those skilled in the art. Accordingly, the scope of the invention is defined only by the appended claims.

Claims

請求の範囲 The scope of the claims
[1] 直列式軸流ファンであって、  [1] A series axial fan,
回転中心軸の回りに配置された複数の第 1翼を有し、回転により前記回転中心軸 に沿った方向の空気流を発生させる第 1インペラと、  A first impeller having a plurality of first blades arranged around a rotation center axis and generating an air flow in a direction along the rotation center axis by rotation;
前記回転中心軸を中心として前記第 1インペラを回転させる第 1モータ部と、 前記第 1インペラに対し軸方向に隣接して配置され、前記回転中心軸の回りに配 置された複数の第 2翼を有し、回転により前記第 1インペラによる空気流と同方向の 空気流を発生させる第 2インペラと、  A first motor for rotating the first impeller about the rotation center axis; and a plurality of second motors arranged adjacent to the first impeller in the axial direction and arranged around the rotation center axis A second impeller having blades and generating an air flow in the same direction as the air flow by the first impeller by rotation;
前記回転中心軸を中心として前記第 2インペラを回転させる第 2モータ部と、 前記第 1インペラおよび前記第 2インペラを径方向において囲む筒状のハウジング と、  A second motor unit that rotates the second impeller around the rotation center axis, a cylindrical housing that surrounds the first impeller and the second impeller in a radial direction;
前記第 1インペラと前記第 2インペラとの間において、前記回転中心軸を中心として 放射状に設けられ、それぞれの外側先端が前記ハウジングに接続されて少なくとも 前記第 1モータ部を前記ハウジングに対して支持する複数の支持リブと、  Provided radially between the first impeller and the second impeller about the rotation center axis, and each outer tip is connected to the housing to support at least the first motor portion with respect to the housing A plurality of supporting ribs,
を備え、  With
前記各支持リブは、任意の径方向断面における前記第 1インペラ側の端縁が前記 第 2インペラ側の端縁より前記第 1インペラの回転方向における上流側に位置するよ うに傾斜して該支持リブの前記第 1インペラ側に面する傾斜面を有しており、前記傾 斜面の前記回転中心軸の方向に対する角度と前記第 1インペラによって発生する空 気流の前記回転中心軸の方向に対する角度とがほぼ同一であることを特徴とする直 列式軸流ファン。  Each of the support ribs is tilted so that an end edge on the first impeller side in an arbitrary radial cross section is positioned upstream of an end edge on the second impeller side in the rotation direction of the first impeller. An inclined surface facing the first impeller side of the rib, and an angle of the inclined surface with respect to the direction of the rotation center axis and an angle of the airflow generated by the first impeller with respect to the direction of the rotation center axis Series axial fan, characterized by the fact that they are almost the same.
[2] 前記第 1インペラの前記各第 1翼は、翼前縁が翼後縁に対して回転方向に位置す るように傾いており、前記各第 1翼の少なくとも翼後縁と前記支持リブの傾斜面とのな す角度が 100度以下に設定されていることを特徴とする請求項 1に記載の直列式軸 流ファン。  [2] Each of the first blades of the first impeller is inclined such that a blade leading edge is positioned in a rotational direction with respect to the blade trailing edge, and at least the blade trailing edge of the first blade and the support The in-line axial fan according to claim 1, wherein an angle with the inclined surface of the rib is set to 100 degrees or less.
[3] 前記各第 1翼の少なくとも翼後縁と前記支持リブの傾斜面とのなす角度は 80度〜 1 00度の範囲に設定されていることを特徴とする請求項 2に記載の直列式軸流ファン [3] The series according to claim 2, wherein an angle formed between at least the trailing edge of each first blade and the inclined surface of the support rib is set in a range of 80 degrees to 100 degrees. Axial fan
[4] 前記各支持リブの傾斜面の傾斜角度は、前記回転中心軸に垂直な径方向の内側か ら外側に行くに従い小さくなるように形成されていることを特徴とする請求項 1に記載 の直列式軸流ファン。 [4] The inclination angle of the inclined surface of each of the support ribs is formed so as to decrease from the inner side to the outer side in the radial direction perpendicular to the rotation center axis. Series axial fan.
[5] 前記各支持リブの放射状に延びる方向のいずれかの位置において、前記回転中心 軸を中心とした円筒面での断面力 前記延びる方向の他の位置の断面とは異なる形 状を有して!/、ることを特徴とする直列式軸流ファン。  [5] The cross-sectional force on the cylindrical surface around the rotation center axis at any position in the radially extending direction of each support rib has a different shape from the cross-section at other positions in the extending direction. A series axial fan characterized by
[6] 前記各支持リブは、前記第 1モータ部側の最内端から前記回転中心軸に垂直な径 方向の直線に対して前記第 1インペラの回転方向又は反回転方向に傾斜もしくは湾 曲して!/、ることを特徴とする請求項 1に記載の直列式軸流ファン。 [6] Each of the support ribs is inclined or curved in the rotational direction or the counter-rotating direction of the first impeller with respect to a radial straight line perpendicular to the rotation center axis from the innermost end on the first motor unit side. The in-line axial fan according to claim 1, wherein
[7] 前記ハウジングが、前記第 1インペラの外周を囲む第 1ハウジング部材と、前記第 2ィ ンペラの外周を囲む第 2ハウジング部材と、で構成されることを特徴とする請求項 1に 記載の直列式軸流ファン。 7. The housing according to claim 1, wherein the housing includes a first housing member surrounding an outer periphery of the first impeller and a second housing member surrounding an outer periphery of the second impeller. Series axial fan.
[8] 前記第 2インペラは、前記第 1インペラの回転方向とは反対方向に回転することを特 徴とする請求項 1に記載の直列式軸流ファン。 8. The serial axial fan according to claim 1, wherein the second impeller rotates in a direction opposite to a rotation direction of the first impeller.
[9] 前記各支持リブは、 [9] Each of the supporting ribs is
前記第 1モータ部から放射状に設けられ、それぞれの外側先端が前記ハウジングに 接続されて前記第 1モータ部を前記ハウジングに対して支持する複数の第 1支持リブ と、  A plurality of first support ribs provided radially from the first motor portion, each of which has an outer end connected to the housing to support the first motor portion with respect to the housing;
前記第 2モータ部から放射状に設けられ、それぞれの外側先端が前記ハウジング に接続されて前記第 2モータ部を前記ハウジングに対して支持する複数の第 2支持リ ブと、からなり、  A plurality of second support ribs provided radially from the second motor portion, each of which has an outer end connected to the housing to support the second motor portion with respect to the housing;
前記第 1支持リブおよび前記第 2支持リブは第 1インペラと第 2インペラとの間に配置 され、  The first support rib and the second support rib are disposed between a first impeller and a second impeller;
前記第 1支持リブと前記第 2支持リブとは同一の数設けられているとともに、前記各 第 1支持リブと前記各第 2支持リブとが前記回転中心軸の方向において接触すること で前記傾斜面を構成して!/、ることを特徴とする請求項 1に記載の直列式軸流ファン。  The same number of the first support ribs and the second support ribs are provided, and the first support ribs and the second support ribs are in contact with each other in the direction of the rotation center axis, so that the inclination is achieved. 2. The in-line axial fan according to claim 1, comprising a surface! /.
[10] 前記ハウジングは、前記第 1インペラを径方向において囲むとともに前記複数の第 1支持リブが接続される第 1ハウジング部材と、前記第 2インペラを径方向において囲 むとともに前記複数の第 2支持リブが接続される第 2ハウジング部材と、で構成される ことを特徴とする請求項 9に記載の直列式軸流ファン。 [10] The housing surrounds the first impeller in the radial direction and surrounds the first impeller to which the plurality of first support ribs are connected and the second impeller in the radial direction. 10. The series axial fan according to claim 9, further comprising: a second housing member to which the plurality of second support ribs are connected.
[11] 前記第 2インペラが、前記第 1インペラの回転方向とは反対方向に回転することを特 徴とする請求項 9に記載の直列式軸流ファン。11. The serial axial fan according to claim 9, wherein the second impeller rotates in a direction opposite to a rotation direction of the first impeller.
Figure imgf000021_0001
Figure imgf000021_0001
回転中心軸の回りに配置された複数の第 1翼を有し、回転により前記回転中心軸 に沿った方向の空気流を発生させる第 1インペラと、  A first impeller having a plurality of first blades arranged around a rotation center axis and generating an air flow in a direction along the rotation center axis by rotation;
前記回転中心軸を中心として前記第 1インペラを回転させる第 1モータ部と、 前記第 1インペラに対し軸方向に隣接して配置され、前記回転中心軸の回りに配 置された複数の第 2翼を有し、回転により前記第 1インペラによる空気流と同方向の 空気流を発生させる第 2インペラと、  A first motor for rotating the first impeller about the rotation center axis; and a plurality of second motors arranged adjacent to the first impeller in the axial direction and arranged around the rotation center axis A second impeller having blades and generating an air flow in the same direction as the air flow generated by the first impeller by rotation;
前記回転中心軸を中心として前記第 2インペラを回転させる第 2モータ部と、 前記第 1インペラおよび前記第 2インペラを径方向において囲む筒状のハウジング と、  A second motor unit that rotates the second impeller about the rotation center axis, a cylindrical housing that surrounds the first impeller and the second impeller in a radial direction;
前記第 1インペラと前記第 2インペラとの間において、前記回転中心軸を中心として 放射状に設けられ、それぞれの外側先端が前記ハウジングに接続されて少なくとも 前記第 1モータ部を前記ハウジングに対して支持する複数の支持リブと、 を備え、  Provided radially between the first impeller and the second impeller about the rotation center axis, and each outer tip is connected to the housing to support at least the first motor portion with respect to the housing A plurality of supporting ribs, and
前記各支持リブは、任意の径方向断面における前記第 1インペラ側の端縁が前記第 2インペラ側の端縁より前記第 1インペラの回転方向における上流側に位置するよう に傾斜して該支持リブの前記第 1インペラ側に面する傾斜面を有しており、前記第 1 インペラの第 1翼によって発生する空気の空気流の方向と前記傾斜面とはほぼ平行 であることを特徴とする直列式軸流ファン。  Each of the support ribs is inclined and supported so that an end edge on the first impeller side in an arbitrary radial cross section is positioned upstream of an end edge on the second impeller side in the rotation direction of the first impeller. It has an inclined surface facing the first impeller side of the rib, and the direction of the air flow of the air generated by the first blade of the first impeller and the inclined surface are substantially parallel. Inline axial fan.
PCT/JP2007/072735 2006-11-27 2007-11-26 Series axial flow fan WO2008065985A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008546974A JP5375099B2 (en) 2006-11-27 2007-11-26 Inline axial fan

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-317898 2006-11-27
JP2006317898 2006-11-27

Publications (1)

Publication Number Publication Date
WO2008065985A1 true WO2008065985A1 (en) 2008-06-05

Family

ID=39467776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/072735 WO2008065985A1 (en) 2006-11-27 2007-11-26 Series axial flow fan

Country Status (3)

Country Link
JP (1) JP5375099B2 (en)
TW (1) TW200839101A (en)
WO (1) WO2008065985A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010121615A (en) * 2008-09-02 2010-06-03 Nippon Densan Corp Serial axial flow fan
CN102338124A (en) * 2010-07-20 2012-02-01 株式会社日立制作所 Axial flow fun
JP2012219712A (en) * 2011-04-08 2012-11-12 Sanyo Denki Co Ltd Counter-rotating axial flow fan
JP2014503048A (en) * 2011-01-20 2014-02-06 シー−リックス アーエス Rotor device
JP2016512586A (en) * 2013-03-14 2016-04-28 エリオット・カンパニー Vane arrangement with alternating vanes with different trailing edge profiles
EP3133292A1 (en) * 2015-08-18 2017-02-22 Sanyo Denki Co., Ltd. Axial blower and series-type axial blower
WO2020235402A1 (en) * 2019-05-20 2020-11-26 株式会社マキタ Blower device
CN116783394A (en) * 2021-01-21 2023-09-19 大金工业株式会社 Axial fan and air conditioner
JP7416161B2 (en) 2017-01-12 2024-01-17 ニデック株式会社 Series axial fan

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI504809B (en) * 2012-04-20 2015-10-21 Delta Electronics Inc Axial fan

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63295899A (en) * 1987-05-25 1988-12-02 Maruyama Seisakusho:Kk Axial fan
JPH03121296A (en) * 1989-10-05 1991-05-23 Mitsubishi Electric Corp Contra-rotating type ventilating device
WO2004081387A1 (en) * 2003-03-13 2004-09-23 Sanyo Denki Co.,Ltd. Counterrotating axial blower
US6799942B1 (en) * 2003-09-23 2004-10-05 Inventec Corporation Composite fan
JP2006046168A (en) * 2004-08-04 2006-02-16 Hitachi Ltd Axial-flow pump and mixed flow pump

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63295899A (en) * 1987-05-25 1988-12-02 Maruyama Seisakusho:Kk Axial fan
JPH03121296A (en) * 1989-10-05 1991-05-23 Mitsubishi Electric Corp Contra-rotating type ventilating device
WO2004081387A1 (en) * 2003-03-13 2004-09-23 Sanyo Denki Co.,Ltd. Counterrotating axial blower
US6799942B1 (en) * 2003-09-23 2004-10-05 Inventec Corporation Composite fan
JP2006046168A (en) * 2004-08-04 2006-02-16 Hitachi Ltd Axial-flow pump and mixed flow pump

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010121615A (en) * 2008-09-02 2010-06-03 Nippon Densan Corp Serial axial flow fan
CN102338124A (en) * 2010-07-20 2012-02-01 株式会社日立制作所 Axial flow fun
JP2014503048A (en) * 2011-01-20 2014-02-06 シー−リックス アーエス Rotor device
JP2012219712A (en) * 2011-04-08 2012-11-12 Sanyo Denki Co Ltd Counter-rotating axial flow fan
JP2016512586A (en) * 2013-03-14 2016-04-28 エリオット・カンパニー Vane arrangement with alternating vanes with different trailing edge profiles
EP3133292A1 (en) * 2015-08-18 2017-02-22 Sanyo Denki Co., Ltd. Axial blower and series-type axial blower
US10344764B2 (en) 2015-08-18 2019-07-09 Sanyo Denki Co., Ltd. Axial blower and series-type axial blower
JP7416161B2 (en) 2017-01-12 2024-01-17 ニデック株式会社 Series axial fan
WO2020235402A1 (en) * 2019-05-20 2020-11-26 株式会社マキタ Blower device
CN116783394A (en) * 2021-01-21 2023-09-19 大金工业株式会社 Axial fan and air conditioner
CN116783394B (en) * 2021-01-21 2024-04-26 大金工业株式会社 Axial fan and air conditioner

Also Published As

Publication number Publication date
TWI356879B (en) 2012-01-21
JPWO2008065985A1 (en) 2010-03-04
JP5375099B2 (en) 2013-12-25
TW200839101A (en) 2008-10-01

Similar Documents

Publication Publication Date Title
JP5375099B2 (en) Inline axial fan
JP5259416B2 (en) Series axial fan
JP5286689B2 (en) Cooling fan unit
US7946804B2 (en) Axial fan unit having reduced noise generation
JP4935051B2 (en) Centrifugal fan
US7946805B2 (en) Fan unit including tapered airflow passage
US20090155104A1 (en) Contra-rotating axial flow fan unit
JP4432989B2 (en) Centrifugal impeller, fan device and electronic equipment
US6612817B2 (en) Serial fan
JP5940266B2 (en) Centrifugal fan and method of manufacturing centrifugal fan
JP2007040299A (en) Passive fan assembly
JP2008261280A (en) Axial fan
JP5549593B2 (en) Axial fan and manufacturing method thereof
JP2008082328A (en) Centrifugal fan
JP2008175158A (en) Axial flow fan
JP6507723B2 (en) Axial fan and fan unit
US20090180901A1 (en) Fan and inner rotor motor thereof
US20070264123A1 (en) Counter-rotating fan
JP4946534B2 (en) Cooling system
JP2012013022A (en) Blower fan
JP5177501B2 (en) Axial fan
JP2009203837A (en) Centrifugal fan
JP6588999B2 (en) Centrifugal fan
JP5392330B2 (en) Centrifugal fan
JP2000179490A (en) Axial flow fan

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07832460

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008546974

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07832460

Country of ref document: EP

Kind code of ref document: A1