WO2008062515A1 - Semiconductor manufacturing system - Google Patents

Semiconductor manufacturing system Download PDF

Info

Publication number
WO2008062515A1
WO2008062515A1 PCT/JP2006/323209 JP2006323209W WO2008062515A1 WO 2008062515 A1 WO2008062515 A1 WO 2008062515A1 JP 2006323209 W JP2006323209 W JP 2006323209W WO 2008062515 A1 WO2008062515 A1 WO 2008062515A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor manufacturing
bay
controller
scheduling
processing
Prior art date
Application number
PCT/JP2006/323209
Other languages
French (fr)
Japanese (ja)
Inventor
Tatsushi Iimori
Original Assignee
Systemv Management Inc.,
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Systemv Management Inc., filed Critical Systemv Management Inc.,
Priority to PCT/JP2006/323209 priority Critical patent/WO2008062515A1/en
Priority to JP2008545273A priority patent/JP5075835B2/en
Publication of WO2008062515A1 publication Critical patent/WO2008062515A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67745Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber characterized by movements or sequence of movements of transfer devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67196Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the transfer chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67276Production flow monitoring, e.g. for increasing throughput

Definitions

  • Patent Document 2 JP 2005-197521
  • Patent Document 4 Japanese Patent Laid-Open No. 2001-143979
  • Patent Document 5 Japanese Patent Application Laid-Open No. 11-145022
  • Patent Document 6 Japanese Patent Laid-Open No. 7-237095
  • the invention disclosed in the above patent document discloses a semiconductor manufacturing system using a flow shop system, and by using this system, the problems caused by the conventional job shop system can be solved.
  • a sufficiently short TAT can still be realized for a semiconductor production line that requires a short lot and a variety of small lots such as SOC. ⁇ .
  • the next processing step is started by an event based on a request from each semiconductor manufacturing apparatus, so that the conveyance efficiency is poor.
  • the processing time is determined by the processing time in the apparatus and the transport time to the semiconductor manufacturing apparatus that performs the next processing step. Since the processing time in the equipment depends on the specifications of the semiconductor manufacturing equipment, the processing time will not be shortened unless the semiconductor manufacturing equipment is improved. However, the conveyance time can be improved.
  • the conventional process has an event-type processing structure based on the demands of semiconductor manufacturing equipment as described above. Therefore, when a mounting Z removal request from a certain semiconductor manufacturing equipment triggers, transportation is started. The Rukoto. Therefore, means for solving the problem that waste is still occurring in the transport time
  • a control instruction is sent to the inter-bay transfer device, and the bay controller sends a control instruction to the semiconductor manufacturing apparatus and the intra-bay transfer device based on scheduling in the scheduler, Scheduling calculates the number of installed units and the number of flow steps for each of the semiconductor manufacturing apparatuses based on the operating rate of the lithography apparatus among the semiconductor manufacturing apparatuses, and is set based on the calculated number of installed units and the number of flow steps. It is a semiconductor manufacturing system.
  • the semiconductor manufacturing system can be a system based on scheduling. This makes it possible to achieve a shorter TAT than the conventional event type.
  • the number of installations, the number of flow steps, and the like are calculated based on the lithography apparatus during this scheduling, it is possible to make maximum use of an expensive and high-throughput lithography apparatus.
  • the flow shop controller and the bay controller are one or more of the semiconductor manufacturing apparatus, the intra-bay transfer apparatus, the bay, and the inter-bay transfer apparatus.
  • the flow shop controller receives one or more pieces of information of failure information, recovery information, and remaining processing time information, and the flow shop controller performs rescheduling at the timing of accessing the entrance of the flow shop.
  • This is a semiconductor manufacturing system that performs rescheduling at the timing of accessing the entrance of the bay.
  • each scheduler executes rescheduling at a predetermined timing. As a result, various kinds of information can be received in real time, and it becomes possible to flexibly cope with failures of semiconductor manufacturing equipment.
  • a semiconductor manufacturing system in which a shorter TAT is realized can be realized by using a conventional scheduling method that does not use the event type. Also, because scheduling is performed, no unnecessary WiP (Work in Progress) occurs.
  • FIG. 1 is a diagram schematically showing an example of a semiconductor manufacturing system according to the present invention.
  • FIG. 2 is a diagram schematically showing an example of a semiconductor manufacturing system when a belt conveyor is used as an inter-pay transport device.
  • FIG. 7 is a diagram schematically showing a case where an assumed operating rate is set for each semiconductor manufacturing apparatus.
  • FIG. 9 is a diagram schematically showing a case where the throughput on the four powers for each semiconductor manufacturing apparatus is calculated.
  • the semiconductor manufacturing system 1 has a plurality of pays 2 and an inter-pay transport device 3 for transporting between the pay bays.
  • the bay 2 includes at least one semiconductor manufacturing apparatus 21 that performs processing of each process in the wiring process of semiconductor manufacturing, and an intra-pay transfer apparatus that transfers between the semiconductor manufacturing apparatuses 21 in the bay 2.
  • the semiconductor manufacturing system 1 has a computer system called a flow shop controller that controls the transfer between the bay 2 and the bay, and the flow shop controller has a scheduler that schedules the transfer between the bay 2 and the bay. It has been.
  • Each bay 2 has its bay 2
  • the bay controller is equipped with a computer system called a bay controller that controls the semiconductor manufacturing device 21 and the bay transport device 22 in the bay.
  • the bay controller includes the semiconductor manufacturing device 21 and the bay transport device 22 in the bay 2. There is a schedule ruler for scheduling.
  • Predetermined data communication is possible between the bay controller and the intrabay transport controller. Therefore, the transfer command from the bay controller to the transfer controller in the bay, the transfer response to the transfer controller in the bay, the transfer response to the bay controller, the transfer robot in the bay 22 from the transfer controller in the bay to the bay controller Location information reports are performed.
  • each bay 2 includes the semiconductor manufacturing apparatus 21 and the intra-bay transfer apparatus 22, but various semiconductor manufacturing apparatuses 21 can be used for the semiconductor manufacturing apparatus 21.
  • various semiconductor manufacturing apparatuses 21 can be used for the semiconductor manufacturing apparatus 21.
  • lithography equipment (“litho” in FIG. 1) etching equipment (“etch” in FIG. 1), CVD (chemical vapor deposition) equipment (“CVD” in FIG. 1), inspection equipment (“inspection” in FIG. 1) ), Cleaning device (“Clean” in FIG. 1), annealing device (“Annel” in FIG. 1), PVD (Physical Vapor Deposition) device (“PVD” in FIG. 1), and measuring device (“Meching” in FIG. 1). )
  • Each semiconductor manufacturing apparatus 21 is provided with at least one load port for carrying out carrier loading / unloading Z with the in-pay transport apparatus 22.
  • the intra-bay transfer device 22 has a mechanism that can continuously carry out the carrier loading Z removal with the inter-bay buffer 4 and the load port of the semiconductor manufacturing device 21. For example, there are two arms in the transfer device 22 in the bay, the carrier that has been processed by one arm is taken out (received) from the semiconductor manufacturing device 21, and the carrier that has been transferred by the other arm is mounted (delivered) There is a mechanism.
  • the inter-bay transfer device 3 for transferring between the bays is shown using a transfer robot.
  • the inter-bay buffer 4 may be a transfer device on a belt conveyor.
  • the inter-bay transport places the processed carrier in the inter-bay buffer 4 and the intra-bay transport device 22 is equipped with a carrier that performs the next processing from the inter-bay buffer 4. By doing so, it can also be configured to realize the inter-bay conveyance.
  • the lithographic apparatus power used in the lithographic process S is the most expensive and has other throughputs. Higher than 21. Therefore, it is necessary to set the lithographic apparatus to have the highest operating rate based on investment efficiency.
  • the general wiring process as shown in FIG. 6, there are two lithographic processes, so two lithography apparatuses are required.
  • a processing number ratio is set that indicates how many of the mounted carriers are actually processed. This is because, in a general processing process in the wiring process, not all carriers are inspected in a force inspection process that processes all carriers, so the processing number ratio is set.
  • Figure 8 shows how this is set. Fig. 8 shows the case where the ratio of the number of processed sheets per 25 sheets is set. This is because one carrier is often composed of 25 sheets.
  • the necessary number of installed semiconductor manufacturing apparatuses 21 can be calculated as the number of installations satisfying Equation 2.
  • FIG. 10 shows the required number of installed semiconductor manufacturing apparatuses 21 used for each processing step. By performing the above processing, the required number of installed semiconductor manufacturing devices 21 can be calculated. Next, a process for determining the number of flow steps will be described.
  • t be the maximum value of the transfer time between devices by the transfer device 22 in the bay (t includes the time for taking out the carrier loaded Z with the semiconductor manufacturing device 21). If the throughput of each semiconductor manufacturing apparatus 21 is P (Wph), the processing time per one is 3600 ZP (seconds). In the process of determining the required number of installed semiconductor manufacturing apparatuses 21 described above, the models other than the lithography apparatus are set to have a larger throughput than the lithography apparatus (from Expression 2). 21 is a lithography apparatus.
  • Equation 3 the number of flow steps that satisfies Equation 3 is determined.
  • the transfer time between apparatuses is 10 seconds and each processing step is performed in the order of a CVD apparatus, a lithography apparatus, an annealing apparatus, a CMP apparatus, a cleaning apparatus, an etching apparatus, and an inspection apparatus (inspection 1)
  • the throughput is 60 Wph based on the throughput values shown in FIG. In other words, the processing time per sheet is 60 seconds.
  • Equation 3 it can be calculated from Equation 3 that the number of flow steps is 6. That is, in each processing step, six semiconductor manufacturing apparatuses 21 can be constructed to be transported by one intra-bay transport apparatus 22. This is schematically shown in Fig. 11.
  • the number of semiconductor manufacturing apparatuses 21 in charge of transport is inevitably determined by one in-bay transport apparatus 22, and therefore, how many semiconductor manufacturing apparatuses are in each bay 2. 21 can be installed, ie the layout is determined.
  • the in-bay transfer device 22 sequentially removes the carrier from each semiconductor manufacturing device 21 on the basis of a preset schedule. t Shift the time.
  • the subsequent carrier can be delivered at the timing of completion of the processing of the preceding carrier, and the apparent carrier time is the first carrier for each semiconductor manufacturing device. Except for the time to pass to 21 and the transport time to return the last carrier, it will be almost concealed.
  • Information that is the basis of scheduling is set as described above.
  • scheduling is set by the scheduler of the flow shop controller and the scheduler of the bay controller so that the transport time is concealed. Then, based on the scheduler of the flow controller, instructions related to the control processing in each bay 2 and instructions related to the control processing of the inter-bay transport device 3 are sent to the flow shop controller bay controller and inter-bay transport.
  • the bay controller controls the bay 2 based on the instruction, and the inter-pay transport controller controls the inter-pay transport device 3.
  • the bay controller sends instructions regarding control processing in the semiconductor manufacturing apparatus 21 in the bay 2 and instructions regarding control processing in the intra-pay transport apparatus 22 based on the scheduler of the bay controller. Based on the instruction, the apparatus controller controls the semiconductor manufacturing apparatus 21 and the intra-pay transport controller controls the intra-pay transport apparatus 22.
  • the scheduling in the bay controller and the flow shop controller only powers the same algorithm at different levels, so in the case of processing in the inter-bay transport device 3, the intra-bay transport device described above.
  • the processing in 22 can be similarly set by replacing the intra-bay transport device 22 with the inter-bay transport device 3 and the semiconductor manufacturing device 21 with the bay 2.
  • the semiconductor manufacturing system 1 By operating the semiconductor manufacturing system 1 using the scheduler set as described above, the semiconductor manufacturing system 1 with a shorter TAT than the conventional event-type semiconductor manufacturing system 1 is realized. I can do it.
  • the CMP apparatus has a throughput of 30 Wph, and the other semiconductors.
  • the body manufacturing apparatus 21 is 60 Wph.
  • the flattening of the processing time can be determined by the same method as the necessary algebra determination processing for each semiconductor manufacturing apparatus 21 as described above.
  • only the throughput of the CMP apparatus is affected by the other apparatus. Therefore, if two CMP devices are installed, the processing time can be flattened.
  • the throughput is 1Z3
  • three semiconductor manufacturing apparatuses 21 may be installed, and when the throughput is 1Z4, four semiconductor manufacturing apparatuses 21 may be installed.
  • the intra-bay transfer apparatus 22 sequentially transfers the carriers.
  • the in-bay transport apparatus 22 transports the carrier alternately to the two transport apparatuses.
  • the waiting time on the load port in the semiconductor manufacturing equipment 21 after processing is eliminated by alternately transferring to the three units and transferring to four units when four units are installed. I can do it.
  • rescheduling is performed at a predetermined timing.
  • Semiconductor manufacturing apparatus 21 May stay at the load port. The rescheduling in that case will be described.
  • FIG. 14 schematically shows this.
  • each semiconductor manufacturing apparatus 21 reports information on the remaining processing time of each process to the bay controller, and using this time information, the transport scheduling of the intra-pay transport apparatus 22 is performed.
  • a treatment method will be described in which the semiconductor manufacturing apparatus 21 does not stay on the load port even when a failure occurs.
  • GEM300 defined in SEMI Standard
  • each semiconductor manufacturing equipment 21 reports information on the remaining processing time of each process to the bay controller. To be configured.
  • the bay controller monitors the remaining processing time in each semiconductor manufacturing apparatus 21 and should not stay on the load port of the semiconductor manufacturing apparatus 21. Judgment is made as to whether or not the delivery is in time, and if it is judged that it is not in time, processing for changing the scheduling is performed. In the changed scheduling at this time, the retention on the load port is eliminated by performing a process of giving priority to the transfer in the semiconductor manufacturing apparatus 21 that should not stay.
  • the bay controller determines that the bay controller is not in time, if the in-bay transport apparatus 22 already has a carrier to be transported to another semiconductor manufacturing apparatus 21, priority transport cannot be performed. Therefore, if it is determined that the intra-bay transport device 22 is not in time before the access timing to the inter-bay noffer 4, it is set so that no carrier is taken from the inter-bay noffer 4. However, if it has already passed through the entrance of the bay 2, the carrier 22 in the bay needs to place this carrier in the inter-bay buffer 4 in this case. Accordingly, the determination timing is a time including this time. In the case of Figure 14, it shows the case where the time between the annealing apparatus and the CMP apparatus is constant even if a failure occurs in the lithography apparatus!
  • the semiconductor manufacturing system 1 in the flow shop method capable of processing with a shorter TAT than the conventional event type semiconductor manufacturing system 1 can be realized.
  • the semiconductor manufacturing system 1 in which a shorter TAT is realized can be realized by using a conventional scheduling method that does not use the event type. . Schedule again!
  • the flow shop controller and the bay controller can perform real-time processing by performing rescheduling at each timing. And since it is real-time processing, interrupt processing can be realized in an efficient state. That is, the shortest HotLot can be realized.

Abstract

Provided is a semiconductor manufacturing system employing a flow show system for achieving a short TAT in semiconductor manufacture in a semiconductor manufacturing facility. The semiconductor manufacturing system is provided with a plurality of bays and inter-bay transfer apparatus. The semiconductor manufacturing system is also provided with a flow shop controller having a scheduler for performing scheduling for the bays and inter-bay transfer. The bay is provided with a bay controller having a scheduler for performing scheduling for the semiconductor manufacturing apparatus and an intra-bay transfer apparatus. The flow shop controller transmits a control instruction based on the scheduling, and the bay controller transmits a control instruction based on the scheduling. The scheduling is set by having the operation rate of a lithography apparatus as reference and by calculating the number of lithography apparatuses arranged for each semiconductor manufacturing apparatus and the number of flow steps.

Description

明 細 書  Specification
半導体製造システム  Semiconductor manufacturing system
技術分野  Technical field
[0001] 本発明は、フローショップ方式における半導体製造施設において半導体を製造す る際に、短 TAT (Turn-around Time)を実現するための、半導体製造システムに関す る。  The present invention relates to a semiconductor manufacturing system for realizing a short TAT (Turn-around Time) when a semiconductor is manufactured in a semiconductor manufacturing facility using a flow shop method.
背景技術  Background art
[0002] 半導体を製造するには、半導体製造施設のクリーンルームにおいて、各種の処理 工程を実行することで製造される。このクリーンルームにおける各処理工程には、各 処理を実現する半導体製造装置が用いられる。従来は、各工程を実行する半導体 製造装置をジョブショップ方式により所要数ずつ纏めて設置して 、る。つまり従来の 半導体製造施設では、各工程を実行する半導体製造装置をジョブショップ方式によ り所要数ずつ纏めたペイと呼ばれるユニットを複数備え、そのべィ間を搬送ロボットや ベルトコンベアで搬送することによって、製造を行っている。  [0002] A semiconductor is manufactured by executing various processing steps in a clean room of a semiconductor manufacturing facility. For each processing step in this clean room, a semiconductor manufacturing apparatus that realizes each processing is used. Conventionally, a required number of semiconductor manufacturing apparatuses that perform each process are installed by the job shop method. In other words, a conventional semiconductor manufacturing facility is equipped with a plurality of units called “pays”, each of which includes a required number of semiconductor manufacturing apparatuses that execute each process using a job shop method, and the robots are transported between the bays by a transport robot or a belt conveyor. It is manufactured by.
[0003] ところがこのジョブショップ方式の場合、複数の似たような処理工程を繰り返す場合 には、べィ内での搬送やべィ間での搬送、待機などの時間が多くなることが知られて おり、生産性の低下が問題となっている。そこで、従来のジョブショップ方式に変えて 、各半導体製造装置を処理工程の順番に設置するフローショップ方式による半導体 製造システムが提案されており、その一例が下記特許文献 1乃至特許文献 6に開示 されている。  [0003] However, in the case of this job shop method, it is known that when a plurality of similar processing steps are repeated, the time required for transfer within the bay, transfer between bays, and standby is increased. The decline in productivity is a problem. Therefore, instead of the conventional job shop method, a semiconductor manufacturing system using a flow shop method in which each semiconductor manufacturing apparatus is installed in the order of processing steps has been proposed, and examples thereof are disclosed in Patent Documents 1 to 6 below. ing.
[0004] 特許文献 1 :特開 2002— 26106号公報  [0004] Patent Document 1: Japanese Patent Application Laid-Open No. 2002-26106
特許文献 2 :特開 2005— 197521号公報  Patent Document 2: JP 2005-197521
特許文献 3 :特開 2005— 197500号公報  Patent Document 3: Japanese Patent Laid-Open No. 2005-197500
特許文献 4:特開 2001— 143979号公報  Patent Document 4: Japanese Patent Laid-Open No. 2001-143979
特許文献 5:特開平 11― 145022号公報  Patent Document 5: Japanese Patent Application Laid-Open No. 11-145022
特許文献 6:特開平 7— 237095号公報  Patent Document 6: Japanese Patent Laid-Open No. 7-237095
発明の開示 発明が解決しょうとする課題 Disclosure of the invention Problems to be solved by the invention
[0005] 上記特許文献に開示の発明ではフローショップ方式による半導体製造システムが 開示されており、これを用いることによって、従来のジョブショップ方式により発生する 問題点は解決することが出来る。ところがこれらの各発明を用いたとしても、 SOCなど の小ロット多品種且つ短 TATが要求される半導体製造ラインにぉ 、ては、まだ十分 な短 TATを実現できて ヽるとまでは言えな ヽ。それは上記特許文献に記載の発明に おいても、各半導体製造装置からの要求に基づくイベントによって、次の処理工程が 開始されるため、搬送効率が悪い点にある。  [0005] The invention disclosed in the above patent document discloses a semiconductor manufacturing system using a flow shop system, and by using this system, the problems caused by the conventional job shop system can be solved. However, even if each of these inventions is used, it cannot be said that a sufficiently short TAT can still be realized for a semiconductor production line that requires a short lot and a variety of small lots such as SOC.ヽ. Even in the inventions described in the above-mentioned patent documents, the next processing step is started by an event based on a request from each semiconductor manufacturing apparatus, so that the conveyance efficiency is poor.
[0006] 即ち、処理時間(TAT)は、装置における処理時間と、次の処理工程を行う半導体 製造装置への搬送時間とによって決定される。装置における処理時間は半導体製造 装置のスペックに依存しているのでその半導体製造装置が改善されない限り、処理 時間は短くならない。しかし搬送時間については、改良することが出来る。この点、従 来は上述のように半導体製造装置力 の要求に基づくイベント型の処理構造を持つ ているので、ある半導体製造装置からの搭載 Z取出要求がトリガとなることによって、 搬送が開始されることとなる。その為、搬送時間にまだ無駄が発生していることとなる 課題を解決するための手段  That is, the processing time (TAT) is determined by the processing time in the apparatus and the transport time to the semiconductor manufacturing apparatus that performs the next processing step. Since the processing time in the equipment depends on the specifications of the semiconductor manufacturing equipment, the processing time will not be shortened unless the semiconductor manufacturing equipment is improved. However, the conveyance time can be improved. In this regard, the conventional process has an event-type processing structure based on the demands of semiconductor manufacturing equipment as described above. Therefore, when a mounting Z removal request from a certain semiconductor manufacturing equipment triggers, transportation is started. The Rukoto. Therefore, means for solving the problem that waste is still occurring in the transport time
[0007] そこで本願発明者は上記問題点に鑑み、フローショップ方式による半導体製造シス テムにおいて、短 TATを実現するために、従来のようなイベント型の処理ではなぐ スケジューリングにより搬送を行わせることで、半導体製造装置ですぐに次の処理ェ 程が開始できるように構成した半導体製造システムを発明した。  [0007] In view of the above problems, the inventor of the present application has realized that the transport is performed by scheduling rather than the conventional event type processing in order to realize a short TAT in the flow shop type semiconductor manufacturing system. The present inventors have invented a semiconductor manufacturing system configured so that the next processing process can be started immediately on the semiconductor manufacturing apparatus.
[0008] また上述のようなスケジューリングにおいて、半導体製造システムにおける半導体 製造装置の全てが同じ処理能力を備えていれば、半導体製造装置の待機時間を 0 にする(半導体製造装置において、あるキャリアの処理が終了した後、すぐに次のキ ャリアの処理を開始できる)ことも可能となるが、実際の半導体製造装置には各々の 差があるので、完全に待機時間を 0にすることは難しい。そこで、本願発明において は、半導体製造システムにおける半導体製造装置のうち、高価であるリソグラフィ装 置の稼働率をもっとも向上させた状態でスケジューリングを行うことを更に特徴とする [0009] 請求項 1の発明は、フローショップ方式による半導体製造システムであって、前記半 導体製造システムは、複数の半導体製造装置と、該半導体製造装置の間でキャリア の搬送を実行するべィ内搬送装置とを備える複数のペイと、前記べィ間のキャリアの 搬送を実行するべィ間搬送装置と、を有しており、前記半導体製造システムは、前記 ペイとべィ間搬送のスケジューリングを少なくとも実行するスケジューラを有するフロ 一ショップコントローラーを備えており、前記べィは、該べィ内の前記半導体製造装 置とべィ内搬送装置のスケジューリングを少なくとも実行するスケジューラを有するベ イコントローラーを備えており、前記フローショップコントローラは、前記スケジューラに おけるスケジューリングに基づいて前記べィと前記べィ間搬送装置に対して制御指 示を送出し、前記べイコントローラは、前記スケジューラにおけるスケジューリングに 基づいて前記半導体製造装置と前記べィ内搬送装置に対して制御指示を送出し、 前記スケジューリングは、前記半導体製造装置のうち、リソグラフィ装置の稼働率を基 準として、前記半導体製造装置毎の設置台数、フローステップ数が算出され、前記 算出された設置台数、フローステップ数に基づいて設定されている、半導体製造シス テムである。 [0008] Further, in the scheduling as described above, if all of the semiconductor manufacturing apparatuses in the semiconductor manufacturing system have the same processing capability, the standby time of the semiconductor manufacturing apparatus is set to 0 (in the semiconductor manufacturing apparatus, processing of a certain carrier) It is possible to start processing the next carrier immediately after the process is completed.) However, since there are differences in actual semiconductor manufacturing equipment, it is difficult to completely reduce the waiting time to zero. Therefore, the invention of the present application is further characterized in that scheduling is performed in a state in which the operating rate of the expensive lithography apparatus among the semiconductor manufacturing apparatuses in the semiconductor manufacturing system is most improved. [0009] The invention of claim 1 is a semiconductor manufacturing system based on a flow shop method, wherein the semiconductor manufacturing system executes a carrier transport between a plurality of semiconductor manufacturing apparatuses and the semiconductor manufacturing apparatuses. A plurality of pays each including an internal transfer device, and an inter-bay transfer device that executes transfer of carriers between the bays, and the semiconductor manufacturing system performs scheduling of the transfer between the pays and the bays. A flow shop controller having at least a scheduler for executing, and the bay has a bay controller having a scheduler for executing at least scheduling of the semiconductor manufacturing apparatus and the transfer apparatus in the bay. The flow shop controller is based on the scheduling in the scheduler. A control instruction is sent to the inter-bay transfer device, and the bay controller sends a control instruction to the semiconductor manufacturing apparatus and the intra-bay transfer device based on scheduling in the scheduler, Scheduling calculates the number of installed units and the number of flow steps for each of the semiconductor manufacturing apparatuses based on the operating rate of the lithography apparatus among the semiconductor manufacturing apparatuses, and is set based on the calculated number of installed units and the number of flow steps. It is a semiconductor manufacturing system.
[0010] 本発明のように構成することで、半導体製造システムをスケジューリングを基本とし たシステムとすることが出来る。これによつて、従来のようなイベント型よりも短 TATを 実現することが出来る。またこのスケジューリングの際に、リソグラフィ装置を基準とし て設置台数、フローステップ数などを算出しているので、高価でスループットの高いリ ソグラフィ装置を最大限に生かすことが可能となる。  By configuring as in the present invention, the semiconductor manufacturing system can be a system based on scheduling. This makes it possible to achieve a shorter TAT than the conventional event type. In addition, since the number of installations, the number of flow steps, and the like are calculated based on the lithography apparatus during this scheduling, it is possible to make maximum use of an expensive and high-throughput lithography apparatus.
[0011] 請求項 2の発明において、前記フローショップコントローラー、前記べイコントローラ 一は、前記半導体製造装置、前記べィ内搬送装置、前記べィ、前記べィ間搬送装置 のいずれか一以上から障害情報、復旧情報、処理の残り時間情報のうち一以上の情 報を受け取り、前記フローショップコントローラ一は、前記フローショップの入り口にァ クセスするタイミングで再スケジューリングを行い、前記べイコントローラーは、前記べ ィの入り口にアクセスするタイミングで再スケジューリングを行う、半導体製造システム である。 [0012] 上述の発明のように、一度スケジューリングを行った後、各スケジューラは所定のタ イミングで再スケジューリングを実行する。これによつてリアルタイムで各種の情報を 受け取ることが出来、半導体製造装置の障害などにも柔軟に対応することが可能とな る。 [0011] In the invention of claim 2, the flow shop controller and the bay controller are one or more of the semiconductor manufacturing apparatus, the intra-bay transfer apparatus, the bay, and the inter-bay transfer apparatus. The flow shop controller receives one or more pieces of information of failure information, recovery information, and remaining processing time information, and the flow shop controller performs rescheduling at the timing of accessing the entrance of the flow shop. This is a semiconductor manufacturing system that performs rescheduling at the timing of accessing the entrance of the bay. [0012] As described above, after scheduling once, each scheduler executes rescheduling at a predetermined timing. As a result, various kinds of information can be received in real time, and it becomes possible to flexibly cope with failures of semiconductor manufacturing equipment.
発明の効果  The invention's effect
[0013] 本発明のフローショップ方式による半導体製造システムにおいて、従来のようなィべ ント型ではなぐスケジューリングを行う方式を用いることによって、より短 TATが実現 された半導体製造システムが可能となる。またスケジューリングを行っているので、無 駄な WiP(Work in Progress)が発生しない。  [0013] In the semiconductor manufacturing system based on the flow shop method of the present invention, a semiconductor manufacturing system in which a shorter TAT is realized can be realized by using a conventional scheduling method that does not use the event type. Also, because scheduling is performed, no unnecessary WiP (Work in Progress) occurs.
[0014] 更にフローショップコントローラー、ベイコントローラーでは、各タイミングで再スケジ ユーリングを行うことで、リアルタイム処理が可能となる。そしてリアルタイム処理なので 、割り込み処理についても効率がよい状態で実現することが出来る。つまり、最短の HotLotが実現できる。  [0014] Further, the flow shop controller and the bay controller can perform real-time processing by performing rescheduling at each timing. And since it is real-time processing, interrupt processing can be realized in an efficient state. In short, the shortest HotLot can be realized.
図面の簡単な説明  Brief Description of Drawings
[0015] [図 1]本発明の半導体製造システムの一例を模式的に示す図である。 FIG. 1 is a diagram schematically showing an example of a semiconductor manufacturing system according to the present invention.
[図 2]ペイ間搬送装置としてベルトコンベアを用いた場合の半導体製造システムの一 例を模式的に示す図である。  FIG. 2 is a diagram schematically showing an example of a semiconductor manufacturing system when a belt conveyor is used as an inter-pay transport device.
[図 3]ペイ間バッファーを用いた場合の半導体製造システムの一例を模式的に示す 図である。  FIG. 3 is a diagram schematically showing an example of a semiconductor manufacturing system using an inter-pay buffer.
[図 4]本発明のフローショップコントローラ、ベイコントローラ、べィ間搬送コントローラ、 装置コントローラ、ベイコントローラの階層関係を模式的に示す図である。  FIG. 4 is a diagram schematically showing a hierarchical relationship among a flow shop controller, a bay controller, an inter-bay transfer controller, an apparatus controller, and a bay controller according to the present invention.
[図 5]半導体製造装置毎のスループットを模式的に示す図である。  FIG. 5 is a diagram schematically showing the throughput of each semiconductor manufacturing apparatus.
[図 6]処理工程順の半導体製造装置を模式的に示す図である。  FIG. 6 is a diagram schematically showing a semiconductor manufacturing apparatus in order of processing steps.
[図 7]半導体製造装置毎の想定稼働率を設定した場合を模式的に示す図である。  FIG. 7 is a diagram schematically showing a case where an assumed operating rate is set for each semiconductor manufacturing apparatus.
[図 8]半導体製造装置毎の処理枚数比を設定した場合を模式的に示す図である。  FIG. 8 is a diagram schematically showing a case where a processing number ratio is set for each semiconductor manufacturing apparatus.
[図 9]半導体製造装置毎の見力 4ナ上のスループットを算出した場合を模式的に示す 図である。  FIG. 9 is a diagram schematically showing a case where the throughput on the four powers for each semiconductor manufacturing apparatus is calculated.
[図 10]処理工程順の半導体製造装置の必要設置台数を算出した場合を模式的に示 す図である。 [Figure 10] Schematic representation of the required number of semiconductor manufacturing equipment installed in order of processing steps It is a figure.
[図 11]半導体製造装置のスループットが同じ場合の搬送時間の隠蔽ィ匕を模式的に 示す図である。  FIG. 11 is a diagram schematically showing the concealment time of the transport time when the throughput of the semiconductor manufacturing apparatus is the same.
[図 12]半導体製造装置のスループットが異なる場合の搬送時間の隠蔽ィ匕を模式的 に示す図である。  FIG. 12 is a diagram schematically showing the concealment time of the transport time when the throughput of the semiconductor manufacturing apparatus is different.
[図 13]半導体製造装置のレシピにより処理時間が異なる場合のロードポート待ちの 解消を模式的に示す図である。  FIG. 13 is a diagram schematically showing the elimination of the load port waiting when the processing time varies depending on the recipe of the semiconductor manufacturing apparatus.
[図 14]半導体製造装置の障害により処理時間が長くなる場合のロードポート待ちの 解消を模式的に示す図である。  FIG. 14 is a diagram schematically showing the elimination of the load port waiting when the processing time becomes long due to a failure of the semiconductor manufacturing apparatus.
符号の説明  Explanation of symbols
[0016] 1 :半導体製造システム [0016] 1: Semiconductor manufacturing system
2 :べィ  2: Bay
3 :ペイ間搬送装置  3: Pay-to-pay transport device
4 :べィ間バッファー  4: Bay buffer
21 :半導体製造装置  21: Semiconductor manufacturing equipment
22 :ペイ内搬送装置  22: In-pay transport device
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 半導体製造施設にお!ヽて半導体を製造する工程は、配線工程とトランジスタ生成 工程に大別される。本願発明の半導体製造システム 1は、そのうち配線工程におい て用いることが好適である。この配線工程における半導体製造システム 1の一例を図 1に示す。 The process of manufacturing a semiconductor at a semiconductor manufacturing facility is roughly divided into a wiring process and a transistor generation process. The semiconductor manufacturing system 1 of the present invention is preferably used in the wiring process. An example of the semiconductor manufacturing system 1 in this wiring process is shown in FIG.
[0018] 半導体製造システム 1は、複数のペイ 2と、そのべィ間の搬送を行うペイ間搬送装 置 3とを有している。またべィ 2には、半導体製造の配線工程における各工程の処理 を行う少なくとも一以上の半導体製造装置 21と、そのべィ 2内において各半導体製 造装置 21間の搬送を行うペイ内搬送装置 22とを有している。半導体製造システム 1 にはべィ 2とべィ間搬送について制御を行うフローショップコントローラと呼ばれるコン ピュータシステムを備えており、フローショップコントローラには、べィ 2とべィ間搬送の スケジューリングを行うスケジューラが備えられている。また各べィ 2には、そのべィ 2 内における半導体製造装置 21とべィ内搬送装置 22について制御を行うベイコントロ ーラと呼ばれるコンピュータシステムを備えており、ベイコントローラには、そのべィ 2 内における半導体製造装置 21とべィ内搬送装置 22のスケジューリングを行うスケジ ユーラが備えられている。 [0018] The semiconductor manufacturing system 1 has a plurality of pays 2 and an inter-pay transport device 3 for transporting between the pay bays. In addition, the bay 2 includes at least one semiconductor manufacturing apparatus 21 that performs processing of each process in the wiring process of semiconductor manufacturing, and an intra-pay transfer apparatus that transfers between the semiconductor manufacturing apparatuses 21 in the bay 2. And 22. The semiconductor manufacturing system 1 has a computer system called a flow shop controller that controls the transfer between the bay 2 and the bay, and the flow shop controller has a scheduler that schedules the transfer between the bay 2 and the bay. It has been. Each bay 2 has its bay 2 The bay controller is equipped with a computer system called a bay controller that controls the semiconductor manufacturing device 21 and the bay transport device 22 in the bay. The bay controller includes the semiconductor manufacturing device 21 and the bay transport device 22 in the bay 2. There is a schedule ruler for scheduling.
[0019] フローショップコントローラのスケジューラ、ベイコントローラのスケジューラは予め定 められたスケジュールに基づいて、べィ間搬送、べィ 2内における半導体製造装置 2 1への搭載 Z取り出し、べィ 2内搬送を実現する。このようなスケジューラを用いること で、各半導体製造装置 21やべィ間における搬送時間の隠蔽、つまり待機時間の低 減を実現することが出来る。スケジューリングについては後述する。なお一度設定さ れたスケジューリングは予め定められたタイミングで再スケジューリングされる。フロー ショップコントローラのスケジューラの場合は、べィ間搬送装置 3がフローショップの入 り口にアクセスするタイミングで再スケジューリングを行う。またべイコントローラのスケ ジユーラの場合は、べィ内搬送装置 22がべィ 2の入り口にアクセスするタイミングで 再スケジューリングを行う。  [0019] The scheduler of the flow shop controller and the scheduler of the bay controller are transported between the bays, mounted on the semiconductor manufacturing apparatus 21 in the bay 2, and taken out in the bay 2 based on a predetermined schedule. To realize. By using such a scheduler, it is possible to conceal the transfer time between the semiconductor manufacturing apparatuses 21 and the bays, that is, to reduce the standby time. Scheduling will be described later. Once set, scheduling is rescheduled at a predetermined timing. In the case of the scheduler of the flow shop controller, rescheduling is performed at the timing when the inter-bay transfer device 3 accesses the entrance of the flow shop. In the case of the scheduler controller of the bay controller, rescheduling is performed at the timing when the in-bay transport device 22 accesses the entrance of the bay 2.
[0020] べィ 2における半導体製造装置 21にはその装置の制御を行う装置コントローラ、ベ ィ内搬送装置 22にはその装置の制御を行うペイ内搬送コントローラ、ペイ間搬送装 置 3にはその装置の制御を行うべィ間搬送コントローラと呼ばれるコンピュータシステ ムが備えられており、各装置の制御を行っている。装置コントローラ、べィ内搬送コン トローラはべイコントローラ力もの指示に基づ 、てその装置制御を実現する。またべィ 間搬送コントローラはフローショップコントローラからの指示に基づいてその装置制御 を実現する。図 4に、フローショップコントローラ、ベイコントローラ、べィ間搬送コント口 ーラ、装置コントローラ、ペイ内搬送コントローラの制御階層図を示す。  [0020] The semiconductor manufacturing apparatus 21 in the bay 2 is an apparatus controller that controls the apparatus, the intra-bay transfer apparatus 22 is an intra-pay transfer controller that controls the apparatus, and the inter-pay transfer apparatus 3 is an A computer system called an inter-bay transfer controller that controls the devices is provided to control each device. The device controller and the transport controller in the bay realize device control based on instructions from the bay controller. The inter-bay transfer controller realizes device control based on instructions from the flow shop controller. Figure 4 shows the control hierarchy of the flow shop controller, bay controller, inter-bay transfer controller, equipment controller, and intra-pay transfer controller.
[0021] フローショップコントローラとべィ間搬送コントローラとの間では所定のデータ通信が 可能であって、フローショップコントローラ力 べィ間搬送コントローラへの搬送指令、 べィ間搬送コントローラ力 フローショップコントローラへの搬送応答、べィ間搬送コン トローラからフローショップコントローラへのべィ間搬送装置 3の搬送ロボットの位置情 報の報告などが行われる。 [0021] Predetermined data communication is possible between the flow shop controller and the inter-bay transfer controller, and the flow shop controller force is the transfer command to the inter-bay transfer controller, the inter-bay transfer controller force is The transfer response, the position information of the transfer robot of the inter-bay transfer device 3 from the inter-bay transfer controller to the flow shop controller are reported.
[0022] ベイコントローラとべィ内搬送コントローラとの間では所定のデータ通信が可能であ つて、ベイコントローラからべィ内搬送コントローラへの搬送指令、べィ内搬送コント口 ーラカ べイコントローラへの搬送応答、べィ内搬送コントローラからべイコントローラ へのべィ内搬送装置 22の搬送ロボットの位置情報報告などが行われる。 [0022] Predetermined data communication is possible between the bay controller and the intrabay transport controller. Therefore, the transfer command from the bay controller to the transfer controller in the bay, the transfer response to the transfer controller in the bay, the transfer response to the bay controller, the transfer robot in the bay 22 from the transfer controller in the bay to the bay controller Location information reports are performed.
[0023] またその他にも、ベイコントローラと半導体製造装置 21、フローショップコントローラ と各べイコントローラとの間でもその処理状況の情報、障害情報、復旧情報、処理の 残り時間の情報などが通信されている。  [0023] In addition, information on the processing status, fault information, recovery information, information on the remaining processing time, and the like are communicated between the bay controller and the semiconductor manufacturing apparatus 21, and the flow shop controller and each bay controller. ing.
[0024] 図 1の半導体製造システム 1においては、各べィ間の搬送についてべィ間バッファ 一 4が設けられている。べィ間バッファー 4は、べィ 2における処理の終了後、べィ間 搬送装置 3がキャリアをほかのべィ 2へ搬送するために到着し、キャリアの搬送を開始 するまでの間、一時的に待機させるための装置である。  In the semiconductor manufacturing system 1 of FIG. 1, an inter-bay buffer 14 is provided for transport between the bays. The inter-bay buffer 4 temporarily arrives after the processing in the bay 2 is completed until the inter-bay transport device 3 arrives to transport the carrier to the other bay 2 and starts transporting the carrier. It is a device for making it wait.
[0025] 上述したように、各べィ 2には半導体製造装置 21とべィ内搬送装置 22とを備えてい るが、半導体製造装置 21には様々な半導体製造装置 21を用いることが出来る。例 えばリソグラフィ装置(図 1では「リソ」)、エッチング装置(図 1では「エッチ」)、 CVD (C hemical Vapor Deposition)装置(図 1では「CVD」)、検査装置(図 1では「検査」)、洗 浄装置(図 1では「洗浄」)、ァニール装置(図 1では「ァニール」)、 PVD (Physical Va por Deposition)装置(図 1では「PVD」)、メツキ装置(図 1では「メツキ」)、 CMP (Che mical Mechanical Polising)装置(図 1では「CMP」)などがあるがこれ以外に適宜の半 導体製造装置 21を半導体製造装置 21として用いることが出来る。  As described above, each bay 2 includes the semiconductor manufacturing apparatus 21 and the intra-bay transfer apparatus 22, but various semiconductor manufacturing apparatuses 21 can be used for the semiconductor manufacturing apparatus 21. For example, lithography equipment (“litho” in FIG. 1), etching equipment (“etch” in FIG. 1), CVD (chemical vapor deposition) equipment (“CVD” in FIG. 1), inspection equipment (“inspection” in FIG. 1) ), Cleaning device (“Clean” in FIG. 1), annealing device (“Annel” in FIG. 1), PVD (Physical Vapor Deposition) device (“PVD” in FIG. 1), and measuring device (“Meching” in FIG. 1). )), A CMP (Chemical Mechanical Polising) device (“CMP” in FIG. 1), etc., but other appropriate semiconductor manufacturing devices 21 can be used as the semiconductor manufacturing device 21.
[0026] 各半導体製造装置 21には、ペイ内搬送装置 22との間でキャリアの搭載 Z取り出し を行うためのロードポートを少なくとも一以上備える。またべィ内搬送装置 22は、べィ 間バッファー 4、半導体製造装置 21のロードポートでキャリアの搭載 Z取り出しを連 続して行うことが出来る機構を備えている。例えば、べィ内搬送装置 22のアームを 2 本とし、一本のアームで処理終了したキャリアを半導体製造装置 21から取り出し (受 け取り)、他方のアームで搬送してきたキャリアを搭載する(渡す)機構がある。あるい は、アームが一本の場合、べィ内搬送装置 22に 2つのステージを備え、空いている 一つのステージに、処理が終了して半導体製造装置 21から取り出したキャリアを置 いた後、搭載すべきキャリアを載せたステージから、当該キャリアを半導体製造装置 2 1に搭載する機構などもある。 [0027] べィ間搬送装置 3についても、べィ内搬送装置 22と同様に、キャリアの搭載 Z取り 出しを連続して行う機構を備える。 Each semiconductor manufacturing apparatus 21 is provided with at least one load port for carrying out carrier loading / unloading Z with the in-pay transport apparatus 22. In addition, the intra-bay transfer device 22 has a mechanism that can continuously carry out the carrier loading Z removal with the inter-bay buffer 4 and the load port of the semiconductor manufacturing device 21. For example, there are two arms in the transfer device 22 in the bay, the carrier that has been processed by one arm is taken out (received) from the semiconductor manufacturing device 21, and the carrier that has been transferred by the other arm is mounted (delivered) There is a mechanism. Or, if there is only one arm, the conveyor device 22 in the bay is equipped with two stages, and after placing the carrier taken out from the semiconductor manufacturing device 21 after the processing is finished on one vacant stage, There is also a mechanism for mounting the carrier on the semiconductor manufacturing apparatus 21 from the stage on which the carrier to be mounted is placed. [0027] Similarly to the intra-bay transfer device 22, the inter-bay transfer device 3 includes a mechanism for continuously carrying out the carrier loading Z.
[0028] 図 1の半導体製造システム 1では各べィ間の搬送を行うべィ間搬送装置 3について 、搬送ロボットを用いた場合を示しているが、図 2に示すようにべィ間搬送装置 3をべ ルトコンベア上の搬送装置にしてもよい。この場合には、ベルトコンベア自体がべィ 間バッファー 4と同様の機能を果たすことから、べィ間バッファー 4は不要となる。また 図 3に示すように、べィ間の搬送はべィ間バッファー 4に処理済みのキャリアを待機さ せ、べィ内搬送装置 22がべィ間バッファー 4から次に処理を行うキャリアを搭載する ことによって、実質的にべィ間搬送を実現するように構成することも出来る。  [0028] In the semiconductor manufacturing system 1 in FIG. 1, the inter-bay transfer device 3 for transferring between the bays is shown using a transfer robot. As shown in FIG. 3 may be a transfer device on a belt conveyor. In this case, since the belt conveyor itself performs the same function as the inter-bay buffer 4, the inter-bay buffer 4 becomes unnecessary. Also, as shown in Fig. 3, the inter-bay transport places the processed carrier in the inter-bay buffer 4 and the intra-bay transport device 22 is equipped with a carrier that performs the next processing from the inter-bay buffer 4. By doing so, it can also be configured to realize the inter-bay conveyance.
[0029] なお本明細書では説明の便宜上、図 1の半導体製造システム 1の場合を用いて説 明するが、図 2及び図 3、あるいはほかの半導体製造システム 1であっても同様に処 理を実現することは可能である。  In this specification, for convenience of explanation, the case of the semiconductor manufacturing system 1 in FIG. 1 is used for explanation, but the same processing is performed in FIGS. 2 and 3 or other semiconductor manufacturing systems 1. Can be realized.
[0030] 次にフローショップコントローラのスケジューラ、ベイコントローラのスケジューラでス ケジユーリングを行う際に必要となる、半導体製造システム 1において各半導体製造 装置 21の設置台数、一台のペイ内搬送装置 22が対象とする装置台数 (これをけ口 一ステップ数」と呼ぶ)や装置レイアウトを決定するための処理フローを説明する。こ れは、フローショップコントローラ、ベイコントローラなどの任意のコンピュータシステム で実行することが出来る。  [0030] Next, the number of each semiconductor manufacturing device 21 installed in the semiconductor manufacturing system 1 and one intra-pay transport device 22 are required in the semiconductor manufacturing system 1, which is required when scheduling is performed by the scheduler of the flow shop controller and the scheduler of the bay controller. A processing flow for determining the number of devices (referred to as “the number of steps per exit”) and device layout will be described. This can be done on any computer system, such as a flow shop controller or bay controller.
[0031] なお本明細書の半導体製造システム 1において実行する配線工程の半導体製造 装置 21として、リソグラフィ装置、 CVD装置、 PVD装置、ァニーノレ装置、洗浄装置、 エッチング装置、 CMP装置、メツキ装置、検査装置 (検査 1〜検査 4)の場合を説明 する(図 5)。また配線工程の処理フローとして図 6の順であるとする。図 5及び図 6に おいて、各半導体製造装置 21のあとのカツコ書きは、同一の処理について同様の処 理工程を施すことを意味しており、例えばリソグラフィ(1)、リソグラフィ(2)は、リソダラ フィ装置における 1回目の処理工程、 2回目の処理工程を意味している。  [0031] It should be noted that the semiconductor manufacturing apparatus 21 of the wiring process executed in the semiconductor manufacturing system 1 of the present specification includes a lithography apparatus, a CVD apparatus, a PVD apparatus, an annealing apparatus, a cleaning apparatus, an etching apparatus, a CMP apparatus, a plating apparatus, and an inspection apparatus. The case of (Inspection 1 to Inspection 4) will be explained (Fig. 5). Also assume that the processing flow of the wiring process is in the order shown in FIG. In FIG. 5 and FIG. 6, the cut-out after each semiconductor manufacturing apparatus 21 means that the same processing is performed for the same processing. For example, lithography (1) and lithography (2) This means the first processing step and the second processing step in the lithosphere device.
[0032] まず各半導体製造装置 21の設置台数を決定する処理を説明する。  First, processing for determining the number of installed semiconductor manufacturing apparatuses 21 will be described.
[0033] 半導体製造システム 1における半導体製造装置 21の中では、リソグラフイエ程で用 いるリソグラフィ装置力 Sもっとも高価であり、またスループットもほかの半導体製造装置 21よりも高い。そこで投資効率を踏まえて、リソグラフィ装置の装置稼働率をもっとも 高くするように設定する必要がある。ここで、一般的な配線工程では、図 6に示すよう に、リソグラフイエ程が 2回あるので、リソグラフィ装置は 2台必要となる。 [0033] Among the semiconductor manufacturing apparatuses 21 in the semiconductor manufacturing system 1, the lithographic apparatus power used in the lithographic process S is the most expensive and has other throughputs. Higher than 21. Therefore, it is necessary to set the lithographic apparatus to have the highest operating rate based on investment efficiency. Here, in the general wiring process, as shown in FIG. 6, there are two lithographic processes, so two lithography apparatuses are required.
[0034] 次に各半導体製造装置 21における装置稼働率を設定する。この装置稼働率の一 例は図 7に示す。この装置稼働率は過去の経験などを踏まえて、任意に設定すること が好ましい。 Next, the apparatus operating rate in each semiconductor manufacturing apparatus 21 is set. Figure 7 shows an example of this equipment availability. It is preferable to arbitrarily set this equipment operating rate based on past experience.
[0035] 次に各半導体製造装置 21において、搭載されたキャリアのうち実際にどれだけの 枚数を処理するかを示す、処理枚数比を設定する。これは配線工程における一般的 な処理工程では全てのキャリアを処理する力 検査工程などでは、全てのキャリアを 検査するわけではないので、その処理枚数比を設定することとなる。これが設定され た状態を図 8に示す。図 8では 25枚あたりの処理枚数比を設定した場合を示してい る。これは 1つのキャリアが 25枚で構成されていることが多いためである。  Next, in each semiconductor manufacturing apparatus 21, a processing number ratio is set that indicates how many of the mounted carriers are actually processed. This is because, in a general processing process in the wiring process, not all carriers are inspected in a force inspection process that processes all carriers, so the processing number ratio is set. Figure 8 shows how this is set. Fig. 8 shows the case where the ratio of the number of processed sheets per 25 sheets is set. This is because one carrier is often composed of 25 sheets.
[0036] このように各半導体製造装置 21あたりの想定稼働率、処理枚数比を設定すると、 下記の数 1を用いることにより、各半導体製造装置 21あたりの見かけ上のスループッ トを算出する。  [0036] When the assumed operation rate and the processing number ratio per semiconductor manufacturing apparatus 21 are set in this way, the apparent throughput per semiconductor manufacturing apparatus 21 is calculated by using the following formula 1.
(数 1)  (Number 1)
見かけ上のスループット =スループット X (想定稼働率 ÷ 100) X (1 ÷処理枚数比 Apparent throughput = Throughput X (Estimated operating rate ÷ 100) X (1 ÷ Processing quantity ratio
) )
[0037] 半導体製造装置 21あたりの見かけ上のスループットが設定された状態が図 9である  FIG. 9 shows a state in which the apparent throughput per semiconductor manufacturing apparatus 21 is set.
[0038] 以上のようにして各半導体製造装置 21の見かけ上のスループットを算出すると、各 半導体製造装置 21の必要設置台数については、数 2を充足する設置台数として算 出することが出来る。 When the apparent throughput of each semiconductor manufacturing apparatus 21 is calculated as described above, the necessary number of installed semiconductor manufacturing apparatuses 21 can be calculated as the number of installations satisfying Equation 2.
(数 2)  (Equation 2)
見かけ上のスループット X設置台数≥リソグラフィ装置の見かけ上スループット [0039] 処理工程毎に用いる半導体製造装置 21の必要設置台数を示したのが図 10である 。以上のような処理を行うことで各半導体製造装置 21の必要設置台数が算出できる [0040] 次にフローステップ数を決定する処理を説明する。 Apparent throughput X Installed number ≥ Apparent throughput of lithography apparatus [0039] FIG. 10 shows the required number of installed semiconductor manufacturing apparatuses 21 used for each processing step. By performing the above processing, the required number of installed semiconductor manufacturing devices 21 can be calculated. Next, a process for determining the number of flow steps will be described.
[0041] まずべィ内搬送装置 22による装置間搬送時間の最大値を tとする (tには半導体製 造装置 21とのキャリア搭載 Z取り出し時間も含む)。そして各半導体製造装置 21の スループットを P (Wph)とすると、 1枚あたりの処理時間は 3600ZP (秒)となる。上述 の各半導体製造装置 21の必要設置台数の決定処理において、リソグラフィ装置以 外の機種がリソグラフィ装置より大きなスループットとなるように設定されて 、るので( 数 2より)、最小スループットの半導体製造装置 21は、リソグラフィ装置となる。  [0041] First, let t be the maximum value of the transfer time between devices by the transfer device 22 in the bay (t includes the time for taking out the carrier loaded Z with the semiconductor manufacturing device 21). If the throughput of each semiconductor manufacturing apparatus 21 is P (Wph), the processing time per one is 3600 ZP (seconds). In the process of determining the required number of installed semiconductor manufacturing apparatuses 21 described above, the models other than the lithography apparatus are set to have a larger throughput than the lithography apparatus (from Expression 2). 21 is a lithography apparatus.
[0042] 搬送時間を隠蔽するためには、数 3を充足するようなフローステップ数を決定する。  [0042] In order to conceal the transfer time, the number of flow steps that satisfies Equation 3 is determined.
(数 3)  (Equation 3)
(t X搬送対象フローステップ数)≤ 1枚あたりの処理時間  (t X number of flow steps to be transported) ≤ processing time per sheet
[0043] 例えば装置間搬送時間が 10秒であり、 CVD装置、リソグラフィ装置、ァニール装置 、 CMP装置、洗浄装置、エッチング装置、検査装置 (検査 1)の順で各処理工程を実 行する場合、そのスループットは、図 9などのスループットの値から、 60Wphとなる。 つまり 1枚あたりの処理時間は 60秒となる。そうなると、数 3よりフローステップ数は 6で あることが算出できる。つまり、この各処理工程では、 6台の半導体製造装置 21を 1台 のべィ内搬送装置 22で搬送するように構築することが出来る。これを模式的に示す のが図 11である。 [0043] For example, when the transfer time between apparatuses is 10 seconds and each processing step is performed in the order of a CVD apparatus, a lithography apparatus, an annealing apparatus, a CMP apparatus, a cleaning apparatus, an etching apparatus, and an inspection apparatus (inspection 1), The throughput is 60 Wph based on the throughput values shown in FIG. In other words, the processing time per sheet is 60 seconds. Then, it can be calculated from Equation 3 that the number of flow steps is 6. That is, in each processing step, six semiconductor manufacturing apparatuses 21 can be constructed to be transported by one intra-bay transport apparatus 22. This is schematically shown in Fig. 11.
[0044] フローステップ数が決定すれば、必然的に 1台のべィ内搬送装置 22で搬送を担当 する半導体製造装置 21数が決定されるので、各べィ 2に何台の半導体製造装置 21 が設置できるか、即ちレイアウトが決定される。  [0044] Once the number of flow steps is determined, the number of semiconductor manufacturing apparatuses 21 in charge of transport is inevitably determined by one in-bay transport apparatus 22, and therefore, how many semiconductor manufacturing apparatuses are in each bay 2. 21 can be installed, ie the layout is determined.
[0045] このようにしてフローステップ数を決定すると、搬送時間を隠蔽するための方法を設 定することとなる。まずべィ内搬送装置 22は予め設定されたスケジュールに基づいて 各半導体製造装置 21へ順次キャリアの取り出し Z搭載を行うタイミングを上述の t時 間ずらして行い、各半導体製造装置 21の処理開始も t時間ずらして行う。これによつ て、連続して処理されるキャリアがある場合、先行キャリアの処理終了のタイミングで 後続キャリアを受け渡すことが出来、見かけ上の搬送時間は最初のキャリアが各半導 体製造装置 21に渡されるまでの時間と、最後のキャリアが戻される搬送時間を除き、 ほぼ隠蔽ィ匕されることとなる。 [0046] 以上のようにしてスケジューリングの基本となる情報が設定される。この設定された 情報に基づいて、搬送時間が隠蔽されるようにスケジューリングがフローショップコン トローラのスケジューラ、ベイコントローラのスケジューラで設定される。そしてフローシ ョップコントローラのスケジューラに基づいて各べィ 2での制御処理に係る指示、べィ 間搬送装置 3の制御処理に力かる指示をフローショップコントローラ力 ベイコントロ ーラ、べィ間搬送コントローラに送出し、その指示に基づいてベイコントローラがべィ 2を制御し、ペイ間搬送コントローラがペイ間搬送装置 3を制御する。またべイコントロ ーラのスケジューラに基づいてべィ 2内における半導体製造装置 21での制御処理に 係る指示、ペイ内搬送装置 22の制御処理に係る指示をべイコントローラが、装置コン トローラ、べィ内搬送コントローラに送出し、その指示に基づいて装置コントローラが 半導体製造装置 21を制御し、ペイ内搬送コントローラがペイ内搬送装置 22を制御す る。なおべイコントローラ、フローショップコントローラにおけるスケジューリングは同一 のアルゴリズムを、異なる階層で動力しているだけであるので、べィ間搬送装置 3にお ける処理の場合には、上述のべィ内搬送装置 22における処理について、ベィ内搬 送装置 22をべィ間搬送装置 3、半導体製造装置 21をべィ 2と読み替えて同様に設 定可能である。 [0045] When the number of flow steps is determined in this way, a method for concealing the transport time is set. First, the in-bay transfer device 22 sequentially removes the carrier from each semiconductor manufacturing device 21 on the basis of a preset schedule. t Shift the time. As a result, if there is a carrier that is processed continuously, the subsequent carrier can be delivered at the timing of completion of the processing of the preceding carrier, and the apparent carrier time is the first carrier for each semiconductor manufacturing device. Except for the time to pass to 21 and the transport time to return the last carrier, it will be almost concealed. [0046] Information that is the basis of scheduling is set as described above. Based on this set information, scheduling is set by the scheduler of the flow shop controller and the scheduler of the bay controller so that the transport time is concealed. Then, based on the scheduler of the flow controller, instructions related to the control processing in each bay 2 and instructions related to the control processing of the inter-bay transport device 3 are sent to the flow shop controller bay controller and inter-bay transport. The bay controller controls the bay 2 based on the instruction, and the inter-pay transport controller controls the inter-pay transport device 3. In addition, the bay controller sends instructions regarding control processing in the semiconductor manufacturing apparatus 21 in the bay 2 and instructions regarding control processing in the intra-pay transport apparatus 22 based on the scheduler of the bay controller. Based on the instruction, the apparatus controller controls the semiconductor manufacturing apparatus 21 and the intra-pay transport controller controls the intra-pay transport apparatus 22. Note that the scheduling in the bay controller and the flow shop controller only powers the same algorithm at different levels, so in the case of processing in the inter-bay transport device 3, the intra-bay transport device described above. The processing in 22 can be similarly set by replacing the intra-bay transport device 22 with the inter-bay transport device 3 and the semiconductor manufacturing device 21 with the bay 2.
[0047] 以上のように設定されたスケジューラを用いて半導体製造システム 1を稼動させるこ とで、従来のイベント型の半導体製造システム 1よりも短 TATィ匕された半導体製造シ ステム 1を実現することが出来る。  [0047] By operating the semiconductor manufacturing system 1 using the scheduler set as described above, the semiconductor manufacturing system 1 with a shorter TAT than the conventional event-type semiconductor manufacturing system 1 is realized. I can do it.
[0048] なお上述のフローステップ数の決定処理の方法では、各半導体製造装置 21のス ループットが同じである場合を説明した力 半導体製造装置 21によってはそのスル 一プットが異なる場合もあり得る。この場合には、半導体製造装置 21で処理が終了し たキャリアが、半導体製造装置 21のロードポートで滞留することとなる。以下にこのよ うなロードポート待ちを解消する処理を説明する。このロードポート待ちは、ベィ間搬 送装置 3、べィ内搬送装置 22における搬送を、フローショップコントローラにおける適 切なスケジューリング、ベイコントローラにおける適切なスケジューリングをすることで 解消できる。この場合を模式的に示す図を図 12に示す。  In the above-described method for determining the number of flow steps, the force described for the case where the throughput of each semiconductor manufacturing apparatus 21 is the same may differ depending on the semiconductor manufacturing apparatus 21. In this case, the carrier that has been processed in the semiconductor manufacturing apparatus 21 stays in the load port of the semiconductor manufacturing apparatus 21. The process for eliminating such load port waiting is described below. This waiting for the load port can be eliminated by carrying out appropriate scheduling in the flow shop controller and appropriate scheduling in the bay controller for transfer in the inter-bay transfer device 3 and in-bay transfer device 22. A diagram schematically showing this case is shown in FIG.
[0049] 図 12の場合では、 CMP装置のみスループットが 30Wphであり、それ以外の半導 体製造装置 21は 60Wphである。そうするとまず処理時間の平坦ィ匕を行う必要がある 。処理時間の平坦化は、上述のように各半導体製造装置 21毎の必要代数の決定処 理と同様の方法で決定することが出来、図 12の例では、 CMP装置のスループットだ けがほかの装置の半分なので、当該 CMP装置を 2台設置すれば処理時間を平坦化 することが出来る。同様にスループットが 1Z3の時には当該半導体製造装置 21を 3 台、スループットが 1Z4の時には当該半導体製造装置 21を 4台設置すればよい。 [0049] In the case of FIG. 12, only the CMP apparatus has a throughput of 30 Wph, and the other semiconductors. The body manufacturing apparatus 21 is 60 Wph. In this case, it is necessary to first flatten the processing time. The flattening of the processing time can be determined by the same method as the necessary algebra determination processing for each semiconductor manufacturing apparatus 21 as described above. In the example of FIG. 12, only the throughput of the CMP apparatus is affected by the other apparatus. Therefore, if two CMP devices are installed, the processing time can be flattened. Similarly, when the throughput is 1Z3, three semiconductor manufacturing apparatuses 21 may be installed, and when the throughput is 1Z4, four semiconductor manufacturing apparatuses 21 may be installed.
[0050] 次にスケジューリングによるロードポート待ち解消の処理を説明する。まず複数台設 置した半導体製造装置 21については、順にべィ内搬送装置 22がキャリアを搬送す ることとなる。図 12の場合では、 CMP装置を 2台設置しているので、べィ内搬送装置 22はキャリアをこの 2台の搬送装置に交互に搬送することとなる。なお 3台設置した場 合にはその 3台に交互に、 4台設置した場合にはその 4台に搬送することによって、 処理終了後の半導体製造装置 21におけるロードポート上の待ち時間を解消すること が出来る。 [0050] Next, a load port wait cancellation process by scheduling will be described. First, for the semiconductor manufacturing apparatus 21 provided with a plurality of units, the intra-bay transfer apparatus 22 sequentially transfers the carriers. In the case of FIG. 12, since two CMP apparatuses are installed, the in-bay transport apparatus 22 transports the carrier alternately to the two transport apparatuses. When three units are installed, the waiting time on the load port in the semiconductor manufacturing equipment 21 after processing is eliminated by alternately transferring to the three units and transferring to four units when four units are installed. I can do it.
[0051] 更に、上述のスケジューリングは、所定のタイミングで再スケジューリングが行われる 力 再スケジューリングにおいて、レシピによる処理時間が異なる場合にも、半導体製 造装置 21で処理が終了したキャリア力 半導体製造装置 21のロードポートで滞留す る場合があり得る。その場合の再スケジューリングを説明する。  [0051] Further, in the above-mentioned scheduling, rescheduling is performed at a predetermined timing. In the power rescheduling, the carrier force that has been processed in the semiconductor manufacturing apparatus 21 even when the processing time according to the recipe is different. Semiconductor manufacturing apparatus 21 May stay at the load port. The rescheduling in that case will be described.
[0052] 例えばリソグラフィ装置におけるレシピ処理時間が 60秒から 80秒のように長くなる 場合、そのまま続けて搬送すると、半導体製造装置 21間の待ち時間がばらつき、口 ードポートで滞留することがあり得る。一つの解決方法としては、次のようなものがある 。処理プロセス上、搬送対象となる全ての半導体製造装置 21間において、半導体製 造装置 21のロードポート上で滞留しないことが求められる場合においては、先行する キャリアがべィ 2内における全半導体製造装置 21の処理を終えてから、後述するキヤ リアの処理を開始する必要がある力 通常の処理プロセスにおいて、全工程につい てこのような要求がされることは少なぐある工程間について要求されることが想定さ れる。この場合、上述のように、先行キャリアが全ての半導体製造装置 21の処理を終 了するのを待機すると、トータル ·スループットが非常に悪くなつてしまう。  [0052] For example, when the recipe processing time in the lithography apparatus is increased from 60 seconds to 80 seconds, if the wafer is continuously conveyed as it is, the waiting time between the semiconductor manufacturing apparatuses 21 may vary and may stay in the port port. One solution is as follows. If the processing process requires that all semiconductor manufacturing equipment 21 to be transported not stay on the load port of the semiconductor manufacturing equipment 21, the preceding carrier is all semiconductor manufacturing equipment in the bay 2. Force required to start carrier processing, which will be described later, after the processing of 21 is completed.In a normal processing process, such a request is required for all processes, but it is required for a few processes. Is assumed. In this case, as described above, when waiting for the preceding carrier to finish the processing of all the semiconductor manufacturing apparatuses 21, the total throughput becomes very bad.
[0053] そこで上述の場合にも上記とは異なる方法でスケジューリングをすることが求められ る。以下にこのようなロードポート待ちを解消する処理を説明する。この場合の処理を 図 13に模式的に示す。 [0053] Therefore, also in the above case, it is required to perform scheduling by a method different from the above. The A process for eliminating such load port waiting will be described below. The process in this case is schematically shown in FIG.
[0054] 上述のような場合には、先行するキャリアが当該工程の半導体製造装置 21に搭載 された時点で、当該半導体製造装置 21の処理開始時間を調整するスケジューリング を行うことで、処理終了後の待機状態を解消する。例えば図 13に示した場合では、 先行するキャリア 2より後続するキャリア 3の方がリソグラフィ装置の処理時間が 20秒 長 、場合にぉ 、て、ァニール装置力 CMP装置間の時間を一定 (即ちァニール装 置での処理終了後のロードポート上の処理待ち時間をなくす)にする場合を示してい る。  [0054] In the case described above, after the preceding carrier is mounted on the semiconductor manufacturing apparatus 21 in the process, scheduling is performed to adjust the processing start time of the semiconductor manufacturing apparatus 21. The waiting state of is canceled. For example, in the case shown in FIG. 13, the processing time of the lithographic apparatus is 20 seconds longer in the succeeding carrier 3 than in the preceding carrier 2, so that the annealing apparatus force has a constant time between CMP apparatuses (ie, annealing). (This eliminates the waiting time for processing on the load port after the end of processing on the device).
[0055] この場合、処理時間の長い後続するキャリアがリソグラフィ装置に搭載されるサイク ルで、ァニール装置に搭載された処理時間の短い先行キャリアがァニール装置に搭 載される時点において、処理開始を 20秒遅延させるスケジューリングを行う。これに よって次の搬送サイクルでのリソグラフィ装置でのキャリア受け取りが 20秒遅延するも のの、ァニール装置では処理終了タイミングでキャリアの取り出しが可能となり、結果 としてロードポート待ちが解消されることとなる。  In this case, when the subsequent carrier having a long processing time is mounted on the lithography apparatus and the preceding carrier having a short processing time mounted on the annealing apparatus is mounted on the annealing apparatus, the processing start is started. Schedule a delay of 20 seconds. This delays carrier reception by the lithography apparatus in the next transport cycle by 20 seconds, but the annealing apparatus can take out the carrier at the end of processing, and as a result, wait for the load port is eliminated. .
[0056] 更に再スケジューリングにおいて、各半導体製造装置 21に発生した障害により処 理時間が長くなる場合のロードポート待ちを解消する処理プロセスを以下に説明する 。これを模式的に示す図が図 14である。  [0056] Further, in the rescheduling, a processing process for eliminating the load port waiting when the processing time becomes long due to a failure occurring in each semiconductor manufacturing apparatus 21 will be described below. FIG. 14 schematically shows this.
[0057] 図 14では、各半導体製造装置 21からべイコントローラに対して、各処理の処理残り 時間の情報を報告し、この時間の情報を用いてペイ内搬送装置 22の搬送スケジュ 一リングを行うことで、半導体製造装置 21に障害が発生した場合にもロードポート上 で滞留しな ヽ処理方法を説明する。  In FIG. 14, each semiconductor manufacturing apparatus 21 reports information on the remaining processing time of each process to the bay controller, and using this time information, the transport scheduling of the intra-pay transport apparatus 22 is performed. A treatment method will be described in which the semiconductor manufacturing apparatus 21 does not stay on the load port even when a failure occurs.
[0058] 上述のように、ベイコントローラと半導体製造装置 21の間では予め定められた規格  [0058] As described above, there is a predetermined standard between the bay controller and the semiconductor manufacturing apparatus 21.
(例えば SEMIの Standardで定義された GEM300)により情報通信が行われて 、るが 、更に、そこに各半導体製造装置 21からべイコントローラに対して、各処理の処理残 り時間の情報を報告するように構成する。  (For example, GEM300 defined in SEMI Standard) is used for information communication, and each semiconductor manufacturing equipment 21 reports information on the remaining processing time of each process to the bay controller. To be configured.
[0059] ベイコントローラは各半導体製造装置 21における処理残り時間を監視し、半導体 製造装置 21のロードポート上で滞留してはならな 、半導体製造装置 21にお 、て搬 送が間に合うか否かの判定を行い、間に合わないと判定された場合には、スケジユー リングを変更する処理を行う。この際の変更したスケジューリングでは、滞留してはな らない半導体製造装置 21における搬送を優先させる処理を行うことで、ロードポート 上での滞留を解消させる。 [0059] The bay controller monitors the remaining processing time in each semiconductor manufacturing apparatus 21 and should not stay on the load port of the semiconductor manufacturing apparatus 21. Judgment is made as to whether or not the delivery is in time, and if it is judged that it is not in time, processing for changing the scheduling is performed. In the changed scheduling at this time, the retention on the load port is eliminated by performing a process of giving priority to the transfer in the semiconductor manufacturing apparatus 21 that should not stay.
[0060] 但し、ベイコントローラが間に合わないと判定するタイミングにおいて、べィ内搬送 装置 22が既にほかの半導体製造装置 21に搬送すべきキャリアを持っていると、優先 する搬送が行えない。そこでべィ内搬送装置 22がべィ間ノ ッファー 4にアクセスする タイミング以前に間に合わないと判定された場合は、べィ間ノ ッファー 4からキャリア をとらないように設定する。しかし既にべィ 2入り口を通過していた場合においては、 べィ内搬送装置 22がこの場合はべィ間バッファー 4にいつたんこのキャリアを置く必 要がある。従って、判定するタイミングはこの時間も織り込んだ時間とする。図 14の場 合では、リソグラフィ装置に障害が発生しても、ァニール装置力 CMP装置間の時 間を一定にする場合を示して!/ヽる。  However, if the bay controller determines that the bay controller is not in time, if the in-bay transport apparatus 22 already has a carrier to be transported to another semiconductor manufacturing apparatus 21, priority transport cannot be performed. Therefore, if it is determined that the intra-bay transport device 22 is not in time before the access timing to the inter-bay noffer 4, it is set so that no carrier is taken from the inter-bay noffer 4. However, if it has already passed through the entrance of the bay 2, the carrier 22 in the bay needs to place this carrier in the inter-bay buffer 4 in this case. Accordingly, the determination timing is a time including this time. In the case of Figure 14, it shows the case where the time between the annealing apparatus and the CMP apparatus is constant even if a failure occurs in the lithography apparatus!
[0061] 以上のように半導体製造システム 1を構成することで、従来のイベント型の半導体製 造システム 1よりも短 TATで処理が可能なフローショップ方式における半導体製造シ ステム 1が可能となる。  By configuring the semiconductor manufacturing system 1 as described above, the semiconductor manufacturing system 1 in the flow shop method capable of processing with a shorter TAT than the conventional event type semiconductor manufacturing system 1 can be realized.
産業上の利用可能性  Industrial applicability
[0062] 本発明のフローショップ方式による半導体製造システム 1において、従来のようなィ ベント型ではなぐスケジューリングを行う方式を用いることによって、より短 TATが実 現された半導体製造システム 1が可能となる。またスケジューリングを行って!/ヽるので[0062] In the semiconductor manufacturing system 1 based on the flow shop method of the present invention, the semiconductor manufacturing system 1 in which a shorter TAT is realized can be realized by using a conventional scheduling method that does not use the event type. . Schedule again!
、無駄な WiP(Work in Progress)が発生しない。 , Useless WiP (Work in Progress) does not occur.
[0063] 更にフローショップコントローラ、ベイコントローラでは、各タイミングで再スケジユーリ ングを行うことで、リアルタイム処理が可能となる。そしてリアルタイム処理なので、割り 込み処理についても効率力 い状態で実現することが出来る。つまり、最短の HotL otが実現できる。 [0063] Furthermore, the flow shop controller and the bay controller can perform real-time processing by performing rescheduling at each timing. And since it is real-time processing, interrupt processing can be realized in an efficient state. That is, the shortest HotLot can be realized.

Claims

請求の範囲 The scope of the claims
[1] フローショップ方式による半導体製造システムであって、  [1] A semiconductor manufacturing system using a flow shop method,
前記半導体製造システムは、  The semiconductor manufacturing system includes:
複数の半導体製造装置と、該半導体製造装置の間でキャリアの搬送を実行するべィ 内搬送装置とを備える複数のペイと、  A plurality of pays comprising a plurality of semiconductor manufacturing apparatuses and an in-bay transfer apparatus for transferring carriers between the semiconductor manufacturing apparatuses;
前記べィ間のキャリアの搬送を実行するべィ間搬送装置と、を有しており、 前記半導体製造システムは、前記べィとべィ間搬送のスケジューリングを少なくとも実 行するスケジューラを有するフローショップコントローラーを備えており、  A flow shop controller having a scheduler that executes at least scheduling of the transfer between the bays. With
前記べィは、該べィ内の前記半導体製造装置とペイ内搬送装置のスケジューリング を少なくとも実行するスケジューラを有するベイコントローラーを備えており、 前記フローショップコントローラは、前記スケジューラにおけるスケジューリングに基づ いて前記ペイと前記べィ間搬送装置に対して制御指示を送出し、  The bay includes a bay controller having a scheduler that executes at least scheduling of the semiconductor manufacturing apparatus and the intra-pay transport apparatus in the bay, and the flow shop controller is configured to perform the scheduling based on the scheduling in the scheduler. Sends a control instruction to the inter-pay device.
前記べイコントローラは、前記スケジューラにおけるスケジューリングに基づいて前記 半導体製造装置と前記べィ内搬送装置に対して制御指示を送出し、  The bay controller sends a control instruction to the semiconductor manufacturing apparatus and the intra-bay transport apparatus based on scheduling in the scheduler,
前記スケジューリングは、  The scheduling is
前記半導体製造装置のうち、リソグラフィ装置の稼働率を基準として、前記半導体製 造装置毎の設置台数、フローステップ数が算出され、前記算出された設置台数、フロ 一ステップ数に基づ 、て設定されて 、る、  Among the semiconductor manufacturing apparatuses, the number of installations and the number of flow steps for each semiconductor manufacturing apparatus are calculated based on the operation rate of the lithography apparatus, and are set based on the calculated number of installations and the number of flow steps. Have been
ことを特徴とする半導体製造システム。  A semiconductor manufacturing system characterized by that.
[2] 前記フローショップコントローラー、前記べイコントローラーは、  [2] The flow shop controller and the bay controller are
前記半導体製造装置、前記べィ内搬送装置、前記べィ、前記べィ間搬送装置のい ずれか一以上から障害情報、復旧情報、処理の残り時間情報のうち一以上の情報を 受け取り、  Receiving at least one of failure information, recovery information, and remaining processing time information from at least one of the semiconductor manufacturing apparatus, the intra-bay transfer apparatus, the bay, and the inter-bay transfer apparatus;
前記フローショップコントローラ一は、前記フローショップの入り口にアクセスするタイミ ングで再スケジューリングを行 、、  The flow shop controller performs rescheduling at the timing of accessing the entrance of the flow shop,
前記べイコントローラーは、前記べィの入り口にアクセスするタイミングで再スケジユー リングを行う、  The bay controller reschedules at the timing of accessing the bay entrance.
ことを特徴とする請求項 1に記載の半導体製造システム。  The semiconductor manufacturing system according to claim 1.
PCT/JP2006/323209 2006-11-21 2006-11-21 Semiconductor manufacturing system WO2008062515A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2006/323209 WO2008062515A1 (en) 2006-11-21 2006-11-21 Semiconductor manufacturing system
JP2008545273A JP5075835B2 (en) 2006-11-21 2006-11-21 Semiconductor manufacturing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/323209 WO2008062515A1 (en) 2006-11-21 2006-11-21 Semiconductor manufacturing system

Publications (1)

Publication Number Publication Date
WO2008062515A1 true WO2008062515A1 (en) 2008-05-29

Family

ID=39429456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/323209 WO2008062515A1 (en) 2006-11-21 2006-11-21 Semiconductor manufacturing system

Country Status (2)

Country Link
JP (1) JP5075835B2 (en)
WO (1) WO2008062515A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010225992A (en) * 2009-03-25 2010-10-07 Dainippon Screen Mfg Co Ltd Scheduling method for substrate processing apparatus, and program thereof
JP2010238919A (en) * 2009-03-31 2010-10-21 Dainippon Screen Mfg Co Ltd Scheduling method for substrate processing apparatus, and program thereof
CN114500488A (en) * 2022-01-05 2022-05-13 珠海埃克斯智能科技有限公司 Semiconductor cleaning equipment communication method, system and computer readable storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5751580A (en) * 1996-07-26 1998-05-12 Chartered Semiconductor Manufacturing, Ltd. Fuzzy logic method and system for adjustment of priority rating of work in process in a production line
JPH11145022A (en) * 1997-11-13 1999-05-28 Matsushita Electron Corp Facility for manufacturing semiconductor
JP2002026106A (en) * 2000-07-07 2002-01-25 Matsushita Electric Ind Co Ltd Semiconductor device manufacturing equipment
JP2005190031A (en) * 2003-12-25 2005-07-14 Renesas Technology Corp Bottleneck formation avoidance method and system in manufacturing of semiconductor device
JP2006269449A (en) * 2005-03-22 2006-10-05 Renesas Technology Corp Semiconductor manufacturing system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5751580A (en) * 1996-07-26 1998-05-12 Chartered Semiconductor Manufacturing, Ltd. Fuzzy logic method and system for adjustment of priority rating of work in process in a production line
JPH11145022A (en) * 1997-11-13 1999-05-28 Matsushita Electron Corp Facility for manufacturing semiconductor
JP2002026106A (en) * 2000-07-07 2002-01-25 Matsushita Electric Ind Co Ltd Semiconductor device manufacturing equipment
JP2005190031A (en) * 2003-12-25 2005-07-14 Renesas Technology Corp Bottleneck formation avoidance method and system in manufacturing of semiconductor device
JP2006269449A (en) * 2005-03-22 2006-10-05 Renesas Technology Corp Semiconductor manufacturing system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010225992A (en) * 2009-03-25 2010-10-07 Dainippon Screen Mfg Co Ltd Scheduling method for substrate processing apparatus, and program thereof
JP2010238919A (en) * 2009-03-31 2010-10-21 Dainippon Screen Mfg Co Ltd Scheduling method for substrate processing apparatus, and program thereof
CN114500488A (en) * 2022-01-05 2022-05-13 珠海埃克斯智能科技有限公司 Semiconductor cleaning equipment communication method, system and computer readable storage medium
CN114500488B (en) * 2022-01-05 2023-09-15 珠海埃克斯智能科技有限公司 Semiconductor cleaning apparatus communication method, system and computer readable storage medium

Also Published As

Publication number Publication date
JPWO2008062515A1 (en) 2010-03-04
JP5075835B2 (en) 2012-11-21

Similar Documents

Publication Publication Date Title
JP4353903B2 (en) Cluster tool processing system
US8019467B2 (en) Scheduling method for processing equipment
US7522968B2 (en) Scheduling method for processing equipment
JP2003188229A (en) System and method for manufacturing wafer
US7310563B2 (en) Fabrication system and fabrication method
US8047762B2 (en) Method and system for locally buffering substrate carriers in an overhead transport system for enhancing input/output capabilities of process tools
WO2008075404A1 (en) Semiconductor manufacturing system
US20080051930A1 (en) Scheduling method for processing equipment
US7571020B2 (en) Method and system for controlling process tools by interrupting process jobs depending on job priority
US9632499B2 (en) Work-in-progress substrate processing methods and systems for use in the fabrication of integrated circuits
US20130079913A1 (en) Methods and systems for semiconductor fabrication with local processing management
US9218994B2 (en) Two-dimensional transfer station used as interface between a process tool and a transport system and a method of operating the same
US9250623B2 (en) Methods and systems for fabricating integrated circuits utilizing universal and local processing management
KR101430053B1 (en) Polishing apparatus and program for the same
JP5075835B2 (en) Semiconductor manufacturing system
US20080133041A1 (en) Method and system for controlling substrate handling at substrate buffers by interrupting process jobs depending on job priority
US6996448B2 (en) Transport system with multiple-load-port stockers
JP4477982B2 (en) Cluster tool processing system and dwell time monitoring program
JP2003316421A (en) Production method of semiconductor device, semiconductor equipment, and conveyance control method of production line
Rothe et al. Novel approaches to optimizing carrier logistics in semiconductor manufacturing
US20130226325A1 (en) Methods and systems for fabricating integrated circuits with local processing management
JP2020205338A (en) Control system for controlling semiconductor manufacturing device system, and control method of semiconductor manufacturing device system
Xiong et al. An efficient scheduling method for single-arm cluster tools with multifunctional process modules
JP2009076495A (en) Vacuum processing apparatus
JP2002026106A (en) Semiconductor device manufacturing equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06833055

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008545273

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06833055

Country of ref document: EP

Kind code of ref document: A1