WO2008038642A1 - Sample analyzing method, and analyzing apparatus - Google Patents

Sample analyzing method, and analyzing apparatus Download PDF

Info

Publication number
WO2008038642A1
WO2008038642A1 PCT/JP2007/068612 JP2007068612W WO2008038642A1 WO 2008038642 A1 WO2008038642 A1 WO 2008038642A1 JP 2007068612 W JP2007068612 W JP 2007068612W WO 2008038642 A1 WO2008038642 A1 WO 2008038642A1
Authority
WO
WIPO (PCT)
Prior art keywords
analysis
pulse laser
laser
ultrashort pulse
sample
Prior art date
Application number
PCT/JP2007/068612
Other languages
French (fr)
Japanese (ja)
Inventor
Toshiyuki Kato
Yukari Matsuo
Tohru Kobayashi
Mizuki Nishimura
Jun Kawai
Yoshihide Hayashizaki
Original Assignee
Riken
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken filed Critical Riken
Publication of WO2008038642A1 publication Critical patent/WO2008038642A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/16Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission
    • H01J49/161Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission using photoionisation, e.g. by laser
    • H01J49/164Laser desorption/ionisation, e.g. matrix-assisted laser desorption/ionisation [MALDI]

Definitions

  • the present invention relates to a sample analysis method and apparatus for a micro region using laser ablation and mass spectrometry.
  • Analyzes are performed by irradiating a polymer to be analyzed with an ultrashort pulse laser beam such as a femtosecond laser and ablating it to atomize the polymer into constituent elements and at the same time ionize and analyze the ionized constituent elements
  • an ultrashort pulse laser beam such as a femtosecond laser
  • eni chi Watanaoe, et al. Improvement or resonant laser ablation mass spectrometry usi ng high-repetition-rate and short-pulse tunable laser.
  • system Spectrochemica Acta Part B 58 (2003) 1163-1169 describes that, among ions and neutral atoms generated by femtosecond laser irradiation, ions are removed by methods such as electric field, and only neutral atoms are ionized again. And how to analyze is described. The ionization again, typically nanosecond laser resonance wavelength is used.
  • Patent Document 1 Japanese Patent No. 3640387
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-212215
  • Non-Patent Document 1 Mass Spectrometry Reviews 25 (2006) 551-572
  • Non-Patent Document 2 Analytical Chemistry 75 (2003) 3435-3439
  • Non-Patent Document 3 Spectrochemica Acta Part B 58 (2003) 1163-1169 Disclosure of the invention
  • the method of ionizing only neutral atoms requires a device for ionization again, and the ionization efficiency of the sample is poor because it undergoes a two-stage process of neutral atom generation from the sample and its ionization.
  • resonance ionization using laser light of a specific wavelength is used again as an ionization technique, it is impossible to comprehensively analyze all elements in the entire mass region.
  • the present invention provides a method and apparatus capable of mass spectrometry by taking in monoatomic ions or molecular ions in plasma generated by laser ablation by irradiation with ultrashort pulse laser light such as a femtosecond laser with high efficiency.
  • the purpose is to provide.
  • a sample is monoatomically ionized by irradiating one pulse of an ultrashort pulse laser such as a femtosecond laser, and elemental analysis or mass analysis of the entire mass region is performed with a time-of-flight mass analyzer.
  • an ultrashort pulse laser such as a femtosecond laser
  • elemental analysis or mass analysis can be performed with a mass analyzer located in the normal direction of the sample surface. I made it.
  • the present invention can be applied to solid, liquid, and powder samples.
  • FIG. 1 is a schematic diagram showing a configuration example of a microregion trace element analyzer according to the present invention.
  • FIG. 2 is an enlarged schematic view of a femtosecond laser ablation ion source according to the present invention.
  • FIG. 3A is a diagram showing an example of a mass spectrum measured by the apparatus of the present invention.
  • FIG. 3B is a diagram showing an example of a mass spectrum measured by the apparatus of the present invention.
  • FIG. 4A is a diagram showing an example of a mass spectrum measured by the apparatus of the present invention.
  • FIG. 4B is a diagram showing an example of a mass spectrum measured by the apparatus of the present invention.
  • FIG. 4C is a diagram showing an example of a mass spectrum measured by the apparatus of the present invention.
  • FIG. 4D is a diagram showing an example of a mass spectrum measured by the apparatus of the present invention.
  • FIG. 1 is a schematic diagram showing a configuration example of a microregion trace element analyzer according to the present invention.
  • This apparatus includes a femtosecond laser generator 10, an XY stage 21, a sample mount 22 held on the XY stage 21, and an ion acceleration electrode 23 that is arranged in parallel with the sample mount 22 and generates an accelerating electric field between the sample mount 23 And a reflective time-of-flight mass analyzer 30.
  • the XY stage 21, the sample mount 22, and the ion acceleration electrode 23 constitute a femtosecond laser single abrasion ion source section 20.
  • a femtosecond laser ablation ion source unit 20, an ion reflection electrode 31 and an ion detector 32 that constitute a reflection time-of-flight (TOF) mass analyzer 30 are arranged in a vacuum vessel 25.
  • the sample to be analyzed is solid, it is fixed to the sample mount 22 as it is and placed on the XY stage 21.
  • the sample mount 22 made of a silicon substrate or the like is applied and dried, and then the sample mount 22 is placed on the XY stage 21.
  • the sample is powder, wipe it onto the sample mount, or apply it to the sample mount with solvent and dry it, then place the sample mount on the XY stage 21.
  • a laser pulse emitted from the femtosecond laser generator 10 is converted into a double wave by a non-linear optical element 11 such as a BiBO crystal and then cut out by one pulse by a mechanical shutter 12.
  • the 1-pulse femtosecond laser beam 18 becomes an appropriate laser power by a laser power attenuator 15 such as an ND filter, passes through the MgF window 16 of the vacuum vessel 25, and is focused by the focusing lens 17, on the XY stage 21.
  • the focusing lens 17 may be in a vacuum or in the atmosphere.
  • the photodiode 13 detects and monitors a small part of the laser pulse reflected by the half mirror 14.
  • the allowable conditions of the laser pulse irradiated to the sample surface are that the wavelength is controlled to the entire range, the pulse width is 10 4 femtoseconds or less, and 1 pulse.
  • a group of ions originating from a sample atomized by laser ablation by femtosecond laser irradiation is accelerated by an accelerating electric field formed between the sample mount 22 and an electrode 23 placed in parallel therewith. Introduced into 30 and mass analyzed.
  • FIG. 2 is an enlarged schematic view of a femtosecond laser ablation ion source section according to the present invention.
  • the ion acceleration electrode is a mesh electrode will be described.
  • the sample When a sample is irradiated with a femtosecond laser and ablated, the sample is atomized into constituent elements and simultaneously ionized (monoatomic ionization), and the generated monoatomic ions generate plasma together with electrons to form a surrounding solid substance.
  • a sheath layer on which an external electric field acts is formed between them. The width of the sheath layer, that is, the length of the device, which is the distance that the external electric field can penetrate into the plasma, is
  • the device length ⁇ of the abrasion plasma is changed to the mesh hole diameter of the ion acceleration electrode. Make it larger than (radius).
  • conditional expression (1) When this conditional expression (1) is satisfied, the electric field formed between the sample mount and the ion accelerating electrode penetrates into the plasma sheath having a Debye length, and all the ions in the plasma are accelerated by the electric field. Therefore, analysis of product ions becomes possible by TOF mass spectrometry with forward electric field acceleration. If conditional expression (1) is not satisfied, the generated high-density neutral plasma cannot be uniformly accelerated by the accelerating electric field. As deviating from the conditional expression (1), ions that cannot be time converged by the time-of-flight mass analyzer and ions are increased and the mass spectrum is disturbed, so that ions cannot be identified.
  • the time-converged ion peak may be identified in the background of ions that have not time-converged.
  • conventional femtosecond laser ablation As for the conditions of the laser, the laser spot size is about 120 ⁇ ⁇ , the laser power is 220 ⁇ J, and the resulting device plasma length is estimated to be less than 20 m, and the mesh electrode hole diameter is 500 m. The accelerating electrode was not in a state that could satisfy the conditional expression (1).
  • the present invention all the ions in the plasma generated by femtosecond laser ablation, which was impossible in the past, can be accelerated and analyzed by time-of-flight mass spectrometry. It is presumed that the electron density in the plasma was decreased by reducing the total number of ions while maintaining the same ion emission angle distribution by reducing the power. On the other hand, the problem of the present invention can also be solved by using a fine mesh of the eyes and a large mesh for the electrode.
  • the ion generated by the abrasion is obtained by reducing the irradiation laser energy level and reducing the laser spot size while ensuring the peak energy at which plasma is generated by the laser abrasion.
  • the plasma density was reduced by decreasing the number of plasmas, and the plasma sheath on which the external electric field acts was increased accordingly.
  • the sample was subjected to laser ablation using a femtosecond laser having a laser power sufficient to generate a plasma having a sufficiently long Debye length and to generate single atom ionization.
  • ions derived from a sample can be detected with high detection efficiency.
  • the local range of the sample can be analyzed by laser pinpoint irradiation.
  • the dimension corresponding to the mesh interval d in the conditional expression (1) is the grid interval in the case of the grid electrode, and the pinhole diameter in the case of the pinhole electrode.
  • the laser power needs to be smaller than 200 J per pulse.
  • the plasma density increases.
  • the external electric field is shielded.
  • the ablation plasma generated with 220 J laser power has already become a high density neutral plasma! /, And since it could not be accelerated by applying a forward electric field, the laser power should be lower than that. There is a need . Therefore, the upper limit of the laser power for realizing the method of the present invention is 200 J.
  • this technique can be applied even when the laser fluence is typically a force that can use lj / cm 2 is approximately 0.1 lj / cm 2 . If the laser power is assumed to be about 200 J, the laser size at that time will be several hundreds of micrometer diameters. Therefore, the laser condensing size should be less than lmm in diameter! /.
  • the Eu (Europium) standard solution was analyzed using the apparatus shown in FIG.
  • the Eu standard solution used for the analysis is a europium standard solution for atomic absorption analysis manufactured by Wako Pure Chemical Industries, Ltd. Eu: l, 000 mg / L (Eu (NO) in lmol / L-HNO).
  • a pulse with a wavelength of 800 nm and a pulse width of 120 fs emitted from a femtosecond laser generator at 500 Hz was converted into a laser beam with a wavelength of 400 nm through a BiBO crystal.
  • a sample obtained by applying 10 L of a Eu standard solution diluted with ultrapure water on a silicon substrate and vacuum-drying the sample was irradiated with a femtosecond laser, and a mass spectrum was measured.
  • a mesh electrode as the ion accelerating electrode 23 was placed 6 mm in front of the silicon substrate, and a voltage of 5000 V was applied between the sample mount 22 and the mesh electrode.
  • FIGS. 3A and 3B The measured mass spectrum is shown in FIGS. 3A and 3B.
  • the spectrum was obtained with a single laser pulse.
  • Two stable isotopes of Eu can be observed by sandwiching the low mass side and the high mass side between silicon cluster ions.
  • the experimental conditions in FIGS. 3A and 3B are as follows.
  • the device length of the laser ablation plasma can be estimated to be 20 Hm or less in the case of FIG. 3A.
  • the laser ablation plasma is observed by the laser induced fluorescence (LIF) method, the volume of the plasma is measured, the number of atoms blown off from the ablation mark is measured, and the LIF method is used. The ionization rate was measured.
  • the electron density was estimated to be approximately 6 X 10 9 mm 3 .
  • the electron temperature is estimated to be 10eV or less.
  • the experiment of FIG. 3A does not satisfy the above-described conditional expression (1)! /, But the experiment of FIG. 3B is performed in a state satisfying the conditional expression (1).
  • a mesh electrode having a mesh pore diameter of 500 m was used as the ion acceleration electrode.
  • a voltage of 0 V was applied to the mesh electrode.
  • the laser ablation plasma has a denomination length that is equal to or larger than the mesh hole radius as shown in Experimental Example 1, and satisfies the above conditional expression (1).
  • Ions generated by femtosecond laser ablation were accelerated toward the surface of the sample substrate by a +5 kV voltage applied to the sample mount, and were elementally discriminated by a reflective TOF mass spectrometer.
  • FIG. 4A-4D show the resulting mass spectra.
  • the force S is shown as a mass vector divided into four graphs. These mass spectra were obtained from a single analysis using one pulse of laser. Also, the magnification of the vertical axis representing the amplitude in each graph is different to make the spectrum easier to see. As shown in Figures 4A-4D, this analysis can identify the following elements: H, C, N, 0, F, S, Na, Mg, Al, Si, K, Ti, Fe, Zn, Ba did it. At this time, the powder sample irradiated per pulse is equivalent to 0.3 ng.
  • the molecule when a molecule is abraded with an ultrashort pulse laser beam, the molecule is irradiated with one shot (one pulse) of the ultrashort pulse laser beam.
  • a molecule that is not limited to this may be irradiated with a plurality of shots (multiple pulses) of ultrashort pulse laser light, and the number of shots of the ultrashort pulse laser light applied to the molecule may be appropriately selected.
  • the ultrashort pulse laser preferably has a nose time width of 1 nanosecond or less, and in particular, a laser usually referred to as a femtosecond laser of 1 femtosecond or more and 1 picosecond or less. It is appropriate to use.
  • Its peak value output (power after passing through ND filter 15) ) Is preferably 10 kilowatts or more, particularly 1 megawatt or more and 2 gigawatts or less.
  • a picosecond laser, a nanosecond laser, or an attosecond laser can also be used.
  • the wavelength of the ultrashort pulse laser beam is not particularly limited, and an arbitrary wavelength may be appropriately selected according to the analysis target. That is, as the ultrashort pulse laser beam, for example, a laser beam having a wavelength region from X-rays to far infrared rays, preferably a wavelength region of 11 ⁇ m or less can be used.
  • the wavelength region from X-rays to far infrared rays is a wavelength region that can be output by a free electron laser, for example.
  • the wavelength region of l l ⁇ m or less is the wavelength region of a commercially available pulse laser (11 m or less).
  • force S using a reflection-type time-of-flight mass analyzer as a mass analyzer, a quadrupole mass analyzer and an ion cyclotron type are not limited thereto.
  • Various mass spectrometers such as Fourier transform mass spectrometer can be used
  • mass spectrometry is described as a molecular analysis method.
  • the present invention is not limited to this, and the present invention may be used for analysis other than mass spectrometry. .
  • the sample is fixed on the silicon substrate.
  • the material of the sample substrate that supports the sample is not limited to this, and is a semiconductor or It may be a metal or an insulator. Depending on the type of sample, it may not be necessary to use a sample substrate.
  • the sample may be an inorganic substance such as a metal, a semiconductor, or an insulator, or an organic substance such as a plastic or a biopolymer, and is not limited thereto. Samples may be in the form of solids, powders, liquids or solutions, or those applied to a solid substrate, but are not limited to this!
  • the ultrashort pulse laser beam for ablating the molecule and the molecule to be analyzed are moved by moving at least one of them.
  • the analysis may be performed by ablating the molecule to be analyzed without omission or duplication using an ultrashort pulse laser beam for ablating the molecule.
  • a moving means for moving the sample or a moving means for moving the irradiation position of the ultrashort pulse laser light target is provided, it is particularly effective in high-speed analysis of microarray samples. .
  • the configuration of the above-described analyzer is not particularly limited.
  • a microscope device for observing a sample, an image of the sample observed with the microscope device, and the analysis result are displayed. You may make it arrange
  • a mesh electrode is used as the ion acceleration electrode, and the force distance in which the mesh electrode is arranged 6 mm away from the sample mount may be any number of mm.
  • An lmm force of 10 cm is particularly preferred.
  • a voltage of 5000 V was applied between the sample mount and the ion accelerating electrode, the applied voltage is not particularly limited. Particularly preferred is lkV to 30 kV.
  • the voltage may be constantly applied or may be applied in a Norse manner.
  • the electric field may be applied to the ions existing between the electrodes! /, Or at a constant voltage! //, but the electric field may be generated by being divided in time by a no-less voltage.
  • the mesh electrode is used as the ion acceleration electrode in the above-described embodiment, the present invention is not limited to this.
  • the ion accelerating electrode any shape can be used as long as it has an opening through which ions can pass.
  • no other electrode is disposed in the region of the forward electric field formed by the sample mount as the first electrode and the mesh electrode.
  • another electrode may be arranged in the forward electric field region, and the potential gradient may be provided in multiple steps in the forward electric field region.
  • potential gradients are provided in multiple steps in the forward electric field region in this way, ions can be selectively accelerated by applying a voltage with a pulse, and mass resolution can be improved.

Abstract

Monoatomic ions in a plasma generated from a sample by a laser abrasion according to an ultrashort pulse laser irradiation are highly efficiently introduced for mass spectrometry. The sample is ionized into the monoatoms by irradiating it with one pulse of the ultrashort pulse laser so that the elements of the whole mass region are analyzed by a time-of-flight mass spectrometer (30). An ion acceleration electrode (23) has its mesh hole diameter set smaller than the Debye length of the plasma which has been generated by the ultrashort pulse laser abrasion ionization.

Description

明 細 書  Specification
試料分析方法及び分析装置  Sample analysis method and analyzer
技術分野  Technical field
[0001] 本発明は、レーザーアブレーシヨンと質量分析法を利用した微小領域の試料分析 方法及び装置に関する。  [0001] The present invention relates to a sample analysis method and apparatus for a micro region using laser ablation and mass spectrometry.
背景技術  Background art
[0002] フェムト秒レーザー等の超短パルスレーザー光を分析対象である高分子に照射し てアブレーシヨンすることにより、高分子を構成元素に原子化すると同時にイオン化し 、イオン化した構成元素を分析する分析方法が特許第 3640387号公報、特開 200 4— 212215号公報に記載されている。フェムト秒レーザーの照射によって生成する イオンは高い運動エネルギーを持ち、試料面法線方向を中心に飛び出すため、飛 び出したイオンを試料面と平行の方向から質量分析する方法が Roland Hergenroder , et al., Femtosecond Laser Aolation elemental Mass Spectrometry, Mass spectro metry Reviews 25(2006)551—572ある!/、(ま Vanja Margetic, et al., "Application of Fe mtosecond Laser Ablation Time-of Flight Mass Spectrometry to In-Depth Multilaye r Analysis", Analytical Chemistry 75(2003)3435-3439に記載されている。また、 eni chi Watanaoe, et al., Improvement or resonant laser ablation mass spectrometry usi ng high-repetition-rate and short-pulse tunable laser system, Spectrochemica Acta Part B 58(2003)1163-1169には、フェムト秒レーザーの照射によって生成したイオン と中性原子のうち、イオンは電界などの方法で除き、中性原子だけを再度イオン化し て分析する方法が記載されている。再度のイオン化には、一般的には共鳴波長のナ ノ秒レーザーが用いられる。  [0002] Analyzes are performed by irradiating a polymer to be analyzed with an ultrashort pulse laser beam such as a femtosecond laser and ablating it to atomize the polymer into constituent elements and at the same time ionize and analyze the ionized constituent elements The method is described in Japanese Patent No. 3640387 and Japanese Patent Application Laid-Open No. 2004-212215. Since ions generated by femtosecond laser irradiation have high kinetic energy and jump out around the normal direction of the sample surface, a method for mass analysis of the emitted ions from a direction parallel to the sample surface is Roland Hergenroder, et al ., Femtosecond Laser Aolation elemental Mass Spectrometry, Mass spectro metry Reviews 25 (2006) 551—572! /, (Ma Vanja Margetic, et al., "Application of Femtosecond Laser Ablation Time-of Flight Mass Spectrometry to In-Depth Multilayr analysis ", Analytical Chemistry 75 (2003) 3435-3439. Also, eni chi Watanaoe, et al., Improvement or resonant laser ablation mass spectrometry usi ng high-repetition-rate and short-pulse tunable laser. system, Spectrochemica Acta Part B 58 (2003) 1163-1169 describes that, among ions and neutral atoms generated by femtosecond laser irradiation, ions are removed by methods such as electric field, and only neutral atoms are ionized again. And how to analyze is described. The ionization again, typically nanosecond laser resonance wavelength is used.
特許文献 1:特許第 3640387号公報  Patent Document 1: Japanese Patent No. 3640387
特許文献 2:特開 2004— 212215号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 2004-212215
非特許文献 1 : Mass Spectrometry Reviews 25(2006)551-572  Non-Patent Document 1: Mass Spectrometry Reviews 25 (2006) 551-572
非特許文献 2 : Analytical Chemistry 75(2003)3435-3439  Non-Patent Document 2: Analytical Chemistry 75 (2003) 3435-3439
非特許文献 3: Spectrochemica Acta Part B 58(2003)1163-1169 発明の開示 Non-Patent Document 3: Spectrochemica Acta Part B 58 (2003) 1163-1169 Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] フェムト秒レーザー等の超短パルスレーザー光照射による試料のレーザーアブレ ーシヨンの場合、試料から生成したイオンが電子と共にプラズマを形成し、外部電場 による制御が困難になる。また、試料から飛び出てくるイオンの運動エネルギーが大 きいため、制御が困難であるという問題がある。試料面に平行な方向から運動エネル ギ一の低いイオンのみを質量分析計に取り込むようにすれば質量分析は可能である 1S 大半の生成イオンは観測に力、からないことになり分析効率は非常に悪い。中性 原子だけを再度イオン化する方法は、再度のイオン化のための装置が必要であると 共に、試料からの中性原子生成とそのイオン化という二段階の過程を経るため試料 のイオン化効率が悪い。また、再度イオン化の手法として特定波長のレーザー光によ る共鳴イオン化を用いた場合、全質量領域の全元素を網羅的に分析することは不可 能である。 [0003] In the case of laser ablation of a sample by irradiation with an ultrashort pulse laser beam such as a femtosecond laser, ions generated from the sample form a plasma together with electrons, and control by an external electric field becomes difficult. In addition, there is a problem that control is difficult because the kinetic energy of ions jumping out of the sample is large. Mass analysis is possible if only ions with low kinetic energy are taken into the mass spectrometer from the direction parallel to the sample surface. 1S Most of the generated ions are difficult to observe and analysis efficiency is very high. It ’s bad. The method of ionizing only neutral atoms requires a device for ionization again, and the ionization efficiency of the sample is poor because it undergoes a two-stage process of neutral atom generation from the sample and its ionization. In addition, when resonance ionization using laser light of a specific wavelength is used again as an ionization technique, it is impossible to comprehensively analyze all elements in the entire mass region.
[0004] 本発明は、フェムト秒レーザー等の超短パルスレーザー光照射によるレーザーアブ レーシヨンによって試料力 発生したプラズマ中の単原子イオン又は分子イオンを高 い効率で取り込んで質量分析できる方法及び装置を提供することを目的とする。 課題を解決するための手段  [0004] The present invention provides a method and apparatus capable of mass spectrometry by taking in monoatomic ions or molecular ions in plasma generated by laser ablation by irradiation with ultrashort pulse laser light such as a femtosecond laser with high efficiency. The purpose is to provide. Means for solving the problem
[0005] 本発明では、フェムト秒レーザー等の超短パルスレーザーを 1パルス照射すること で試料を単原子イオン化し、飛行時間質量分析器で全質量領域の元素分析又は質 量分析を行う。試料表面に発生するプラズマ中のイオンを全て電場で加速できる条 件でフェムト秒レーザーアブレーシヨンイオン化を行うことで、試料面法線方向に位置 する質量分析器での元素分析又は質量分析を可能にした。この結果、単原子化され たイオンの検出効率が向上し、微量試料や微小領域試料の局所分析が可能になつ た。本発明は、固体、液体、粉末試料への適用が可能である。  [0005] In the present invention, a sample is monoatomically ionized by irradiating one pulse of an ultrashort pulse laser such as a femtosecond laser, and elemental analysis or mass analysis of the entire mass region is performed with a time-of-flight mass analyzer. By performing femtosecond laser ablation ionization under the condition that all ions in the plasma generated on the sample surface can be accelerated by an electric field, elemental analysis or mass analysis can be performed with a mass analyzer located in the normal direction of the sample surface. I made it. As a result, the detection efficiency of ions atomized has improved, and local analysis of trace samples and microregion samples has become possible. The present invention can be applied to solid, liquid, and powder samples.
[0006] 従来、フェムト秒レーザーアブレーシヨンでは高密度プラズマが発生するため、プラ ズマの電場遮蔽効果によってそれに順電場を印加することができず、質量分析でき ない、というのが当技術分野における常識であつたが、本発明はこの常識を乗り越え て完成されたものである。 発明の効果 [0006] Conventionally, in femtosecond laser ablation, a high-density plasma is generated, so that a forward electric field cannot be applied to the plasma due to the electric field shielding effect of plasma, and mass spectrometry cannot be performed in this technical field. Although common sense, the present invention has been completed by overcoming this common sense. The invention's effect
[0007] 本発明によると、簡便な装置構成で極微少量の試料を効率よく高感度で質量分 又は元素分析することが可能になる。  [0007] According to the present invention, it becomes possible to perform mass analysis or elemental analysis of a very small amount of sample efficiently and with high sensitivity with a simple apparatus configuration.
図面の簡単な説明  Brief Description of Drawings
[0008] [図 1]本発明による微小領域微量元素分析装置の構成例を示す概略図。  [0008] FIG. 1 is a schematic diagram showing a configuration example of a microregion trace element analyzer according to the present invention.
[図 2]本発明によるフェムト秒レーザーアブレーシヨンイオン源部の拡大模式図。  FIG. 2 is an enlarged schematic view of a femtosecond laser ablation ion source according to the present invention.
[図 3A]本発明の装置によって測定した質量スペクトルの例を示す図。  FIG. 3A is a diagram showing an example of a mass spectrum measured by the apparatus of the present invention.
[図 3B]本発明の装置によって測定した質量スペクトルの例を示す図。  FIG. 3B is a diagram showing an example of a mass spectrum measured by the apparatus of the present invention.
[図 4A]本発明の装置によって測定した質量スペクトルの例を示す図。  FIG. 4A is a diagram showing an example of a mass spectrum measured by the apparatus of the present invention.
[図 4B]本発明の装置によって測定した質量スペクトルの例を示す図。  FIG. 4B is a diagram showing an example of a mass spectrum measured by the apparatus of the present invention.
[図 4C]本発明の装置によって測定した質量スペクトルの例を示す図。  FIG. 4C is a diagram showing an example of a mass spectrum measured by the apparatus of the present invention.
[図 4D]本発明の装置によって測定した質量スペクトルの例を示す図。  FIG. 4D is a diagram showing an example of a mass spectrum measured by the apparatus of the present invention.
符号の説明  Explanation of symbols
[0009] 10 :フェムト秒レーザー発生装置  [0009] 10: Femtosecond laser generator
11 :非線形光学素子  11: Nonlinear optical element
12 :メカ二カノレシャッター  12 : Mechanical double shutter
15 :レーザーパワー減衰装置  15: Laser power attenuation device
16 : MgF窓  16: MgF window
2  2
17 :集束レンズ  17: Focusing lens
18 : 1パルスのフェムト秒レーザー光  18: 1 pulse femtosecond laser light
20 :フェムト秒レーザーアブレーシヨンィ:すン源部  20: Femtosecond laser abrasion: Sun source
21 : XYステージ  21: XY stage
22 :試料マウント  22: Sample mount
23 :イオン加速電極  23: Ion acceleration electrode
25 :真空容器  25: Vacuum container
30 :反射型飛行時間質量分析器  30: Reflection time-of-flight mass spectrometer
31 :イオン反射電極  31: Ion reflection electrode
32 :イオン検出器 発明を実施するための最良の形態 32: Ion detector BEST MODE FOR CARRYING OUT THE INVENTION
[0010] 以下、図面を参照して本発明の実施の形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0011] 図 1は、本発明による微小領域微量元素分析装置の構成例を示す概略図である。  FIG. 1 is a schematic diagram showing a configuration example of a microregion trace element analyzer according to the present invention.
この装置は、フェムト秒レーザー発生装置 10、 XYステージ 21、 XYステージ 21上に 保持された試料マウント 22、試料マウント 22と平行に配置され試料マウントとの間に 加速電場を発生するイオン加速電極 23、及び反射型飛行時間質量分析器 30を備 える。 XYステージ 21、試料マウント 22及びイオン加速電極 23は、フェムト秒レーザ 一アブレーシヨンイオン源部 20を構成する。フェムト秒レーザーアブレーシヨンイオン 源部 20、及び反射型飛行時間 (TOF)質量分析器 30を構成するイオン反射電極 31 、イオン検出器 32は、真空容器 25中に配置されている。  This apparatus includes a femtosecond laser generator 10, an XY stage 21, a sample mount 22 held on the XY stage 21, and an ion acceleration electrode 23 that is arranged in parallel with the sample mount 22 and generates an accelerating electric field between the sample mount 23 And a reflective time-of-flight mass analyzer 30. The XY stage 21, the sample mount 22, and the ion acceleration electrode 23 constitute a femtosecond laser single abrasion ion source section 20. A femtosecond laser ablation ion source unit 20, an ion reflection electrode 31 and an ion detector 32 that constitute a reflection time-of-flight (TOF) mass analyzer 30 are arranged in a vacuum vessel 25.
[0012] 分析対象試料は、固体であればそのまま試料マウント 22に固定して XYステージ 2 1に設置される。液体試料の場合には、シリコン基板等からなる試料マウント 22に塗 布 ·乾燥した後、試料マウント 22を XYステージ 21上に設置する。また、試料が粉末 の場合には、それを試料マウントへふき付け、あるいは溶媒に溶力もて試料マウント に塗布 '乾燥した後、その試料マウントを XYステージ 21上に設置する。  [0012] If the sample to be analyzed is solid, it is fixed to the sample mount 22 as it is and placed on the XY stage 21. In the case of a liquid sample, the sample mount 22 made of a silicon substrate or the like is applied and dried, and then the sample mount 22 is placed on the XY stage 21. Also, if the sample is powder, wipe it onto the sample mount, or apply it to the sample mount with solvent and dry it, then place the sample mount on the XY stage 21.
[0013] フェムト秒レーザー発生装置 10から出たレーザーパルスは、 BiBO結晶等の非線 形光学素子 11によって 2倍波に変換された後、メカニカルシャッター 12によって 1パ ルスだけ切り出される。 1パルスのフェムト秒レーザー光 18は、 NDフィルターなどの レーザーパワー減衰装置 15によって適切なレーザーパワーとなり、真空容器 25の M gF窓 16を通り、集束レンズ 17によって集束されて、 XYステージ 21上の試料マウン [0013] A laser pulse emitted from the femtosecond laser generator 10 is converted into a double wave by a non-linear optical element 11 such as a BiBO crystal and then cut out by one pulse by a mechanical shutter 12. The 1-pulse femtosecond laser beam 18 becomes an appropriate laser power by a laser power attenuator 15 such as an ND filter, passes through the MgF window 16 of the vacuum vessel 25, and is focused by the focusing lens 17, on the XY stage 21. Sample mount
2 2
ト 22に保持された試料表面へ照射される。集束レンズ 17は、真空中にあってもよいし 、大気中にあってもよい。フォトダイオード 13は、ハーフミラー 14によって反射された レーザーパルスのごく一部を検出し、モニターする。  Irradiate the sample surface held by The focusing lens 17 may be in a vacuum or in the atmosphere. The photodiode 13 detects and monitors a small part of the laser pulse reflected by the half mirror 14.
[0014] 試料表面へ照射されるレーザーパルスの許容条件は、波長:全範囲、パルス幅: 1 04フェムト秒以下、 1パルスに制御されること、である。フェムト秒レーザー照射による レーザーアブレーシヨンによって単原子イオン化した試料起因のイオン群は、試料マ ゥント 22とそれと平行に設置した電極 23間に形成された加速電場によって加速され 、反射型 TOF質量分析器 30に導入されて質量分析される。 [0015] 図 2は、本発明によるフェムト秒レーザーアブレーシヨンイオン源部の拡大模式図で ある。ここでは、イオン加速電極がメッシュ電極である場合について説明する。試料に フェムト秒レーザーを照射してアブレーシヨンすると、試料は構成元素に原子化され ると同時にイオン化され(単原子イオン化)、生じた単原子イオンは電子と共にプラズ マを生成し、周囲の固体物質との間に外部電場の作用するシース層を形成する。シ ース層の幅すなわちプラズマに外部電場が浸透できる距離であるデバィ長え は次 [0014] The allowable conditions of the laser pulse irradiated to the sample surface are that the wavelength is controlled to the entire range, the pulse width is 10 4 femtoseconds or less, and 1 pulse. A group of ions originating from a sample atomized by laser ablation by femtosecond laser irradiation is accelerated by an accelerating electric field formed between the sample mount 22 and an electrode 23 placed in parallel therewith. Introduced into 30 and mass analyzed. FIG. 2 is an enlarged schematic view of a femtosecond laser ablation ion source section according to the present invention. Here, a case where the ion acceleration electrode is a mesh electrode will be described. When a sample is irradiated with a femtosecond laser and ablated, the sample is atomized into constituent elements and simultaneously ionized (monoatomic ionization), and the generated monoatomic ions generate plasma together with electrons to form a surrounding solid substance. A sheath layer on which an external electric field acts is formed between them. The width of the sheath layer, that is, the length of the device, which is the distance that the external electric field can penetrate into the plasma, is
D  D
式で表される。  It is expressed by a formula.
 Country
ITIT
XD = aA— [m] X D = aA— [m]
V n  V n
n :電子密度 [ιι 3] n: electron density [ιι 3 ]
Te:電子温度 [ e V] T e : electron temperature [e V]
a = 7 . 4 5 X 1 O 3 a = 7.4 5 X 1 O 3
[0016] 本発明では、フェムト秒レーザーの照射径を小さくし、試料と基板材料の組合せに 合ったレーザーパワー密度で照射することにより、アブレーシヨンプラズマのデバィ長 λ をイオン加速電極のメッシュ孔径(半径)よりも大きくする。すなわち、イオン加速In the present invention, by reducing the irradiation diameter of the femtosecond laser and irradiating with the laser power density corresponding to the combination of the sample and the substrate material, the device length λ of the abrasion plasma is changed to the mesh hole diameter of the ion acceleration electrode. Make it larger than (radius). Ion acceleration
D D
電極のメッシュ間隔を d、メッシュ孔径を d/2とするとき、次式を満たすような条件でフ ェムト秒レーザーアブレーシヨンイオン化を行う。  When the electrode mesh interval is d and the mesh hole diameter is d / 2, femtosecond laser ablation ionization is performed under the conditions that satisfy the following equation.
[0017] λ > d/2 …ひ) [0017] λ> d / 2… hi)
D  D
この条件式 (1)が満たされる場合、試料マウントとイオン加速電極の間に形成される 電場がデバイ長の厚さを有するプラズマシースに浸透し、プラズマ内のイオンを全て 電場で加速することができ、順電場加速の TOF質量分析法により生成イオンの分析 が可能になる。条件式 (1)が満たされない場合、生成した高密度中性プラズマを加速 電場によって一様に加速することができない。条件式 (1)から逸脱するにつれ、飛行 時間質量分析器で時間収束できなレ、イオンが増え質量スペクトルが乱されるため、ィ オンを同定することができなくなる。従って、条件式 (1)からあまり逸脱していない条件 の場合には、時間収束しなかったイオンによるバックグラウンドの中に、時間収束した イオンのピークを同定できることもある。ちなみに、従来のフェムト秒レーザーアブレ ーシヨンの条件は、レーザースポットサイズが 120 πι φ程度、レーザーパワーが 22 0〃 Jであり、それによつて発生したプラズマのデバィ長は 20 mより小さいと推定さ れ、メッシュ電極孔径が 500 mの加速電極では到底条件式 (1)を満足できる状態で はなかった。 When this conditional expression (1) is satisfied, the electric field formed between the sample mount and the ion accelerating electrode penetrates into the plasma sheath having a Debye length, and all the ions in the plasma are accelerated by the electric field. Therefore, analysis of product ions becomes possible by TOF mass spectrometry with forward electric field acceleration. If conditional expression (1) is not satisfied, the generated high-density neutral plasma cannot be uniformly accelerated by the accelerating electric field. As deviating from the conditional expression (1), ions that cannot be time converged by the time-of-flight mass analyzer and ions are increased and the mass spectrum is disturbed, so that ions cannot be identified. Therefore, in the case of conditions that do not deviate too much from conditional expression (1), the time-converged ion peak may be identified in the background of ions that have not time-converged. By the way, conventional femtosecond laser ablation As for the conditions of the laser, the laser spot size is about 120 πι φ, the laser power is 220 〃 J, and the resulting device plasma length is estimated to be less than 20 m, and the mesh electrode hole diameter is 500 m. The accelerating electrode was not in a state that could satisfy the conditional expression (1).
[0018] 本発明によって、従来は不可能であったフェムト秒レーザーアブレーシヨンによって 発生したプラズマ中のイオンを全て加速して飛行時間質量分析法で分析できる理由 は、レーザースポットを小さくする ·レーザーパワーを低くするなどの操作で、イオン放 出角度分布は同じままにイオン総数を減少させたことにより、プラズマ中の電子密度 が下がったためであると推測される。また一方で、 目の細力、いメッシュを電極に用いる ことでも、本発明の課題を解決することができる。  [0018] According to the present invention, all the ions in the plasma generated by femtosecond laser ablation, which was impossible in the past, can be accelerated and analyzed by time-of-flight mass spectrometry. It is presumed that the electron density in the plasma was decreased by reducing the total number of ions while maintaining the same ion emission angle distribution by reducing the power. On the other hand, the problem of the present invention can also be solved by using a fine mesh of the eyes and a large mesh for the electrode.
[0019] すなわち、本発明では、レーザーアブレーシヨンによってプラズマが発生する程度 の尖頭エネルギーを確保しつつ、照射レーザーエネルギーレベルを下げ、レーザー スポットサイズを小さくすることによって、アブレーシヨンで生成されるイオンの個数を 減らしてプラズマ密度を下げ、それによつて外部電場が作用するプラズマシースを大 きくした。換言すれば、デバイ長が十分長いプラズマが生成し、かつ、単原子イオン 化が生じる程度のレーザーパワーを有するフェムト秒レーザーを用いて試料をレーザ 一アブレーシヨンするようにした。  [0019] That is, in the present invention, the ion generated by the abrasion is obtained by reducing the irradiation laser energy level and reducing the laser spot size while ensuring the peak energy at which plasma is generated by the laser abrasion. The plasma density was reduced by decreasing the number of plasmas, and the plasma sheath on which the external electric field acts was increased accordingly. In other words, the sample was subjected to laser ablation using a femtosecond laser having a laser power sufficient to generate a plasma having a sufficiently long Debye length and to generate single atom ionization.
[0020] このように、本発明によると、高い検出効率で試料由来のイオンを検出できる。また 、レーザーのピンポイント照射により試料の局所的範囲を分析できる。典型的には、 例えば直径 15 m程度の微小領域に含まれる微量試料を分析することが可能であ る。溶液試料の場合には、乾燥させて塗布したとき例えば直径 15 mの範囲に入る 程度の微量試料を分析することが可能になる。 Thus, according to the present invention, ions derived from a sample can be detected with high detection efficiency. In addition, the local range of the sample can be analyzed by laser pinpoint irradiation. Typically, it is possible to analyze a small amount of sample contained in a minute region having a diameter of, for example, about 15 m. In the case of a solution sample, it is possible to analyze a small amount of sample that falls within a range of, for example, a diameter of 15 m when applied after drying.
[0021] なお、メッシュ電極に代えて、グリッド型、ピンホール型などイオン通過孔のある他の 形状の電極を用いてもよい。このとき、条件式 (1)のメッシュ間隔 dに相当する寸法は、 グリッド電極の場合にはグリッド間隔、ピンホール電極の場合にはピンホールの直径 である。 [0021] Note that instead of the mesh electrode, an electrode having another shape such as a grid type or a pinhole type and having an ion passage hole may be used. At this time, the dimension corresponding to the mesh interval d in the conditional expression (1) is the grid interval in the case of the grid electrode, and the pinhole diameter in the case of the pinhole electrode.
[0022] 本発明の方法を実現するには、レーザーパワーが 1パルス当り 200 Jより小さいこ とが必要である。 1パルスのレーザーパワーが高くなるに従いプラズマの密度が上が り、外部電場が遮蔽されるようになる。例えば、 110 Jのレーザーパワーでもイオン の同定ができたといえる(後述の実験例 1)。また、 220 Jのレーザーパワーで生成 したアブレーシヨンプラズマは既に高密度中性プラズマとなって!/、て、順電場をかけ て加速することができなかったため、レーザーパワーはそれよりも低くする必要がある 。よって、本発明の方法を実現するレーザーパワーの上限値は 200 Jである。 [0022] In order to realize the method of the present invention, the laser power needs to be smaller than 200 J per pulse. As the laser power of one pulse increases, the plasma density increases. As a result, the external electric field is shielded. For example, it can be said that ions could be identified even with a laser power of 110 J (Experiment 1 described later). In addition, the ablation plasma generated with 220 J laser power has already become a high density neutral plasma! /, And since it could not be accelerated by applying a forward electric field, the laser power should be lower than that. There is a need . Therefore, the upper limit of the laser power for realizing the method of the present invention is 200 J.
[0023] レーザー集光サイズに関して述べると、レーザーフルーエンスは典型的には lj/c m2を用いることができる力 おおよそ 0. lj/cm2であっても本手法が適用できた。レ 一ザ一パワーを 200 J程度と仮定すれば、その時のレーザーサイズは直径数百マ イク口メートルとなる。よってレーザー集光サイズの条件は直径 lmm以下がよ!/、。 [0023] With regard to the laser condensing size, this technique can be applied even when the laser fluence is typically a force that can use lj / cm 2 is approximately 0.1 lj / cm 2 . If the laser power is assumed to be about 200 J, the laser size at that time will be several hundreds of micrometer diameters. Therefore, the laser condensing size should be less than lmm in diameter! /.
[0024] 以下に、本発明による微量試料の分析例について説明する。  [0024] Hereinafter, an example of analysis of a trace amount sample according to the present invention will be described.
[0025] [実験例 1]  [0025] [Experiment 1]
図 1に示した装置を用いて、 Eu (ユーロピウム)標準液を分析した。分析に用いた E u標準液は、和光純薬製、原子吸光分析用ユーロピウム標準液、 Eu : l , 000mg/L (Eu (NO ) in lmol/L-HNO )である。フェムト秒レーザー発生装置から 500Hz で出た波長 800nm、パルス幅 120fsのパルスを、 BiBO結晶を通して波長 400nm のレーザー光に変換して使用した。試料として、シリコン基板上に Eu標準液を超純 水で希釈したもの 10 Lを塗布、真空乾燥したものを用い、その一部へフェムト秒レ 一ザ一を照射し、質量スペクトルを測定した。イオン加速電極 23としてメッシュ電極を シリコン基板の前方 6mmの位置に配置し、試料マウント 22とメッシュ電極の間に 500 0Vの電圧を印加した。  The Eu (Europium) standard solution was analyzed using the apparatus shown in FIG. The Eu standard solution used for the analysis is a europium standard solution for atomic absorption analysis manufactured by Wako Pure Chemical Industries, Ltd. Eu: l, 000 mg / L (Eu (NO) in lmol / L-HNO). A pulse with a wavelength of 800 nm and a pulse width of 120 fs emitted from a femtosecond laser generator at 500 Hz was converted into a laser beam with a wavelength of 400 nm through a BiBO crystal. A sample obtained by applying 10 L of a Eu standard solution diluted with ultrapure water on a silicon substrate and vacuum-drying the sample was irradiated with a femtosecond laser, and a mass spectrum was measured. A mesh electrode as the ion accelerating electrode 23 was placed 6 mm in front of the silicon substrate, and a voltage of 5000 V was applied between the sample mount 22 and the mesh electrode.
[0026] ここでは実験条件を 2通りに変えて測定を行った。測定された質量スペクトルを図 3 A, 3Bに示す。スペクトルはレーザーパルス 1回照射によって得られたものである。低 質量側と高質量側をシリコンクラスターイオンに挟まれて Euの 2つの安定同位体を観 測できる。図 3A及び図 3Bの実験条件は、以下の通りである。  [0026] Here, the measurement was performed by changing the experimental conditions in two ways. The measured mass spectrum is shown in FIGS. 3A and 3B. The spectrum was obtained with a single laser pulse. Two stable isotopes of Eu can be observed by sandwiching the low mass side and the high mass side between silicon cluster ions. The experimental conditions in FIGS. 3A and 3B are as follows.
[表 1]
Figure imgf000010_0001
[table 1]
Figure imgf000010_0001
[0027] レーザーアブレーシヨンプラズマのデバィ長は、図 3Aの場合、 20 H m以下と推定 できる。デバィ長を見積もるに当たっては、 LIF (Laser Induced Fluoresence)法でレ 一ザ一アブレーシヨンプラズマの観測をしてプラズマの体積を測定し、アブレーシヨン 跡から吹き飛んだ原子の数を測定し、 LIF法によってイオン化率を測定した。これに よって電子密度はおよそ 6 X 109mm 3と見積もった。また電子温度は 10eV以下だと 推測されるためである。図 3Bの場合、吹き飛ばされた原子数が約 1/512に減ったこ とからデバィ長は少なくとも 22倍以上になったと推測できる。従って、図 3Aの実験は 上記した条件式( 1 )を満足しな!/、が、図 3Bの実験は条件式( 1 )を満たす状態で行わ れ 。 [0027] The device length of the laser ablation plasma can be estimated to be 20 Hm or less in the case of FIG. 3A. In estimating the device length, the laser ablation plasma is observed by the laser induced fluorescence (LIF) method, the volume of the plasma is measured, the number of atoms blown off from the ablation mark is measured, and the LIF method is used. The ionization rate was measured. As a result, the electron density was estimated to be approximately 6 X 10 9 mm 3 . And the electron temperature is estimated to be 10eV or less. In the case of Fig. 3B, it can be inferred that the device length has been increased by at least 22 times since the number of blown atoms has been reduced to about 1/512. Therefore, the experiment of FIG. 3A does not satisfy the above-described conditional expression (1)! /, But the experiment of FIG. 3B is performed in a state satisfying the conditional expression (1).
[0028] 図 3Aと図 3Bを比較すると明らかなように、条件式(1)を満足しない図 3Aのスぺタト ルでは、正常な時間収束ができていないためバックグラウンドが多ぐまた質量分解 能が低下するためシリコンクラスターのピークも同位体を識別できない。また、外部電 場による加速効果がプラズマの大きさに影響を受けるため、レーザー照射ごとにスぺ タトルを観察すると、 TOF (飛行時間)値が前後にずれることがあった。一方、条件式 (1)を満たす状態で行われた図 3Bのスペクトルでは、イオンがきれいに時間収束し ており、シリコンクラスターの同位体も識別できる。また、イオンの時間収束が良いた め検出感度も向上し、最大感度の測定では照射領域から lppb相当の Eu元素が検 出された。また、レーザー照射ごとの TOF値も一定で、レーザーショット毎のぶれは 皆無であった。  [0028] As is clear from the comparison of Fig. 3A and Fig. 3B, the spectrum of Fig. 3A, which does not satisfy the conditional expression (1), has a large background due to the failure of normal time convergence. The peak of the silicon cluster cannot identify the isotope because the performance decreases. In addition, since the acceleration effect of the external electric field is affected by the plasma size, the TOF (time-of-flight) value sometimes shifted back and forth when the spectrum was observed for each laser irradiation. On the other hand, in the spectrum of Fig. 3B, which was performed in a state satisfying conditional expression (1), the ions converged cleanly in time, and the isotopes of silicon clusters can be identified. In addition, detection sensitivity was improved due to good time convergence of ions, and Eu element equivalent to lppb was detected from the irradiated region in the maximum sensitivity measurement. In addition, the TOF value for each laser irradiation was constant, and there was no blurring for each laser shot.
[0029] [実験例 2]  [0029] [Experiment 2]
図 1に示した装置を用いて市販化粧品(ファンデーション)の分析を行った。市販化 粧品からなる粉末試料をベンゼンに溶かし、 10 Lを金蒸着石英基板に塗布して真 空中で乾燥固化させ、真空中の XYステージへ設置した。フェムト秒レーザー発生装 置力、ら 500Hzで出た波長 800nm、パルス幅 120fsのレーザーパルスを、 BiBO結晶 を通して波長 400nmのレーザー光に変換した。レーザーは 1パルスだけ力 Sメカ二力 ルシャッターを通り、 NDフィルターでレーザーパワーが 2 Jに減衰され、真空中に 置かれた集束レンズによって試料表面で 15 m φのレーザースポットサイズに集束 された。イオン加速電極としては、メッシュ孔径 500 mのメッシュ電極を用いた。メッ シュ電極には 0Vの電圧を印加した。このときのレーザーアブレーシヨンプラズマのデ ノ ィ長は実験例 1で示したようにメッシュ孔半径と同程度以上であり、上記条件式(1) を満たしている。フェムト秒レーザーアブレーシヨンによって生成したイオンは、試料 マウントに印加した + 5kVの電圧によって試料基板の面方向に加速され、反射型 T OF質量分析装置で元素弁別された。 Analysis of commercial cosmetics (foundation) was performed using the apparatus shown in FIG. Commercially available powder samples made of cosmetics are dissolved in benzene, and 10 L is applied to a gold-deposited quartz substrate. It was dried and solidified in the air and placed on a vacuum XY stage. A femtosecond laser generator, a laser pulse with a wavelength of 800 nm and a pulse width of 120 fs emitted at 500 Hz was converted into a laser beam with a wavelength of 400 nm through a BiBO crystal. The laser passes only one pulse, S mechanical double force, the laser power is attenuated to 2 J by the ND filter, and is focused to a laser spot size of 15 mφ on the sample surface by a focusing lens placed in a vacuum. . A mesh electrode having a mesh pore diameter of 500 m was used as the ion acceleration electrode. A voltage of 0 V was applied to the mesh electrode. At this time, the laser ablation plasma has a denomination length that is equal to or larger than the mesh hole radius as shown in Experimental Example 1, and satisfies the above conditional expression (1). Ions generated by femtosecond laser ablation were accelerated toward the surface of the sample substrate by a +5 kV voltage applied to the sample mount, and were elementally discriminated by a reflective TOF mass spectrometer.
[0030] レーザー 1パルスで質量スペクトルを全質量領域で取得した。図 4A— 4Dに、得ら れた質量スペクトルを示す。図 4A— 4Dには、便宜上、 4つのグラフに分けて質量ス ベクトルを示した力 S、これらの質量スペクトルはレーザー 1パルスを用いる 1回の分析 で得られたものである。また、各グラフで振幅を表す縦軸の倍率は、スペクトルを見や すくするため、それぞれ異なっている。図 4A—4Dに示すように、この分析によって次 の元素: H、 C、 N、 0、 F、 S、 Na、 Mg、 Al、 Si、 K、 Ti、 Fe、 Zn、 Baを同定すること ができた。このとき 1パルスあたり照射された粉末試料は 0. 3ngに相当する。  [0030] A mass spectrum was acquired in the entire mass region with one pulse of laser. Figures 4A-4D show the resulting mass spectra. In Figure 4A-4D, for convenience, the force S is shown as a mass vector divided into four graphs. These mass spectra were obtained from a single analysis using one pulse of laser. Also, the magnification of the vertical axis representing the amplitude in each graph is different to make the spectrum easier to see. As shown in Figures 4A-4D, this analysis can identify the following elements: H, C, N, 0, F, S, Na, Mg, Al, Si, K, Ti, Fe, Zn, Ba did it. At this time, the powder sample irradiated per pulse is equivalent to 0.3 ng.
[0031] 以上において説明した実施の形態は、以下の(1)〜(9)に説明するように変形して も良い。  [0031] The embodiment described above may be modified as described in the following (1) to (9).
[0032] (1)上記した実施の形態においては、超短パルスレーザー光により分子をアブレ一 シヨンする際には、分子に超短パルスレーザー光を 1ショット(1パルス)照射するよう にしたが、これに限られるものでなぐ分子に超短パルスレーザー光を複数ショット( 複数パルス)照射してもよく、分子へ照射する超短パルスレーザー光のショット数は適 宜に選択すればよい。  [0032] (1) In the embodiment described above, when a molecule is abraded with an ultrashort pulse laser beam, the molecule is irradiated with one shot (one pulse) of the ultrashort pulse laser beam. However, a molecule that is not limited to this may be irradiated with a plurality of shots (multiple pulses) of ultrashort pulse laser light, and the number of shots of the ultrashort pulse laser light applied to the molecule may be appropriately selected.
[0033] なお、超短パルスレーザーとは、ノ ルス時間幅が 1ナノ秒以下であることが好ましく 、特に、 1フェムト秒以上 1ピコ秒以下の通常はフェムト秒レーザーと称されるレーザ 一を用いるのが適当である。その尖頭値出力(NDフィルター 15を通った後のパワー )としては、 10キロワット以上が好ましぐ特に、 1メガワット以上 2ギガワット以下が好ま しい。 [0033] It should be noted that the ultrashort pulse laser preferably has a nose time width of 1 nanosecond or less, and in particular, a laser usually referred to as a femtosecond laser of 1 femtosecond or more and 1 picosecond or less. It is appropriate to use. Its peak value output (power after passing through ND filter 15) ) Is preferably 10 kilowatts or more, particularly 1 megawatt or more and 2 gigawatts or less.
[0034] なお、本発明者による実験によれば、例えば、ノ ルス時間幅が 120フェムト秒、尖 頭値出力が 10メガワットの場合に、極めて良好な結果を得ることができた。  [0034] According to an experiment by the present inventor, for example, a very good result could be obtained when the pulse width was 120 femtoseconds and the peak output was 10 megawatts.
[0035] また、上記したフェムト秒レーザーの他に、ピコ秒レーザーやナノ秒レーザーやアツ ト秒レーザーを用いることも可能である。  In addition to the femtosecond laser described above, a picosecond laser, a nanosecond laser, or an attosecond laser can also be used.
[0036] 超短パルスレーザー光の波長は特に限定されるものではなぐ分析対象などに応じ て適宜に任意の波長を選択すればよい。すなわち、超短パルスレーザー光としては 、例えば、 X線から遠赤外線までの波長領域、好ましくは、 1 1 μ m以下の波長領域の ものを用いること力 Sできる。ここで、 X線から遠赤外線までの波長領域は、例えば自由 電子レーザーで出力可能な波長領域である。また、 l l ^ m以下の波長領域は、巿 販のパルスレーザーの波長(11 m以下)の波長領域である。  [0036] The wavelength of the ultrashort pulse laser beam is not particularly limited, and an arbitrary wavelength may be appropriately selected according to the analysis target. That is, as the ultrashort pulse laser beam, for example, a laser beam having a wavelength region from X-rays to far infrared rays, preferably a wavelength region of 11 μm or less can be used. Here, the wavelength region from X-rays to far infrared rays is a wavelength region that can be output by a free electron laser, for example. The wavelength region of l l ^ m or less is the wavelength region of a commercially available pulse laser (11 m or less).
[0037] (2)上記した実施の形態においては、質量分析器として反射型飛行時間質量分析 器を用いるようにした力 S、これに限られるものではなぐ四重極質量分析器やイオンサ イクロトロン型フーリエ変換質量分析器など、各種の質量分析装置を使用可能である  [0037] (2) In the above-described embodiment, force S using a reflection-type time-of-flight mass analyzer as a mass analyzer, a quadrupole mass analyzer and an ion cyclotron type are not limited thereto. Various mass spectrometers such as Fourier transform mass spectrometer can be used
[0038] また、上記した実施の形態においては、分子の分析方法として質量分析に関して 説明したが、これに限られるものではなぐ質量分析以外の分析に関して本発明を用 レヽるようにしてあよレヽ。 [0038] In the above-described embodiment, mass spectrometry is described as a molecular analysis method. However, the present invention is not limited to this, and the present invention may be used for analysis other than mass spectrometry. .
[0039] (3)上記した実施の形態においては、試料をシリコン基板上に固定されるようにした 、これに限られるものではなぐ試料を支持する試料基板の材質は、半導体、ある いは、金属や絶縁体であってもよい。試料の種類によっては、試料基板を用いる必 要がない場合もある。ここで、試料とは、金属や半導体や絶縁物などの無機物、また は、プラスチックや生体高分子などの有機物であってもよぐまたそれに限られるもの ではない。試料は、固体、粉末、液体又は溶液の形態、あるいはそれを固体基板に 塗布した形態があるが、それに限られるものではな!/、。  (3) In the above-described embodiment, the sample is fixed on the silicon substrate. However, the material of the sample substrate that supports the sample is not limited to this, and is a semiconductor or It may be a metal or an insulator. Depending on the type of sample, it may not be necessary to use a sample substrate. Here, the sample may be an inorganic substance such as a metal, a semiconductor, or an insulator, or an organic substance such as a plastic or a biopolymer, and is not limited thereto. Samples may be in the form of solids, powders, liquids or solutions, or those applied to a solid substrate, but are not limited to this!
[0040] (4)上記した実施の形態において、分子をアブレーシヨンする超短パルスレーザー 光と分析対象である分子とは、少なくともいずれか一方を移動させることにより、当該 分子をアブレーシヨンする超短パルスレーザー光により当該分析の対象である分子 を遺漏、重複なくアブレーシヨンして分析を行うように構成してもよい。すなわち、試料 を移動する移動手段や、超短パルスレーザー光のターゲットへの照射位置を移動す る移動手段を設けるようにすれば、マイクロアレイ状試料の高速分析への応用におい て、特に有効である。 (4) In the above-described embodiment, the ultrashort pulse laser beam for ablating the molecule and the molecule to be analyzed are moved by moving at least one of them. The analysis may be performed by ablating the molecule to be analyzed without omission or duplication using an ultrashort pulse laser beam for ablating the molecule. In other words, if a moving means for moving the sample or a moving means for moving the irradiation position of the ultrashort pulse laser light target is provided, it is particularly effective in high-speed analysis of microarray samples. .
[0041] また、上記した分析装置の構成も特に限定されるものではなぐ例えば、試料を観 察するための顕微鏡装置と、当該顕微鏡装置で観察した試料の像を解析するととも にその解析結果を表示する表示部を備えた画像解析装置とを配設するようにしても よい。  [0041] Further, the configuration of the above-described analyzer is not particularly limited. For example, a microscope device for observing a sample, an image of the sample observed with the microscope device, and the analysis result are displayed. You may make it arrange | position with the image-analysis apparatus provided with the display part to perform.
[0042] (5)上記した実施の形態においては、イオン加速電極としてメッシュ電極を使用し、メ ッシュ電極を試料マウントから 6mm離して配置した力 距離は何 mmでもよい。 lmm 力、ら 10cmが特に好ましい。また、試料マウントとイオン加速電極の間に 5000Vの電 圧を印加したが、印加電圧に特に制限はない。 lkVから 30kVが特に好ましい。  [0042] (5) In the embodiment described above, a mesh electrode is used as the ion acceleration electrode, and the force distance in which the mesh electrode is arranged 6 mm away from the sample mount may be any number of mm. An lmm force of 10 cm is particularly preferred. In addition, although a voltage of 5000 V was applied between the sample mount and the ion accelerating electrode, the applied voltage is not particularly limited. Particularly preferred is lkV to 30 kV.
[0043] (6)上記した実施の形態においては、その詳細な説明は省略したが、電圧は常時印 カロするようにしてもよいし、ノ ルス的に印加するようにしてもよい。すなわち、電極間に 存在して!/、るイオンに対して定電圧で電場を与えてもよ!/、が、電場はノ^レス電圧で 時間的に区切って発生させるようにしてもよい。  (6) In the above-described embodiment, the detailed description thereof is omitted, but the voltage may be constantly applied or may be applied in a Norse manner. In other words, the electric field may be applied to the ions existing between the electrodes! /, Or at a constant voltage! //, but the electric field may be generated by being divided in time by a no-less voltage.
[0044] (7)上記した実施の形態においては、イオン加速電極としてメッシュ電極を用いたが 、これに限られるものではない。イオン加速電極としては、イオンが通過可能な開口を 備えたものであるならばいずれの形状のものも用いることができる。  (7) Although the mesh electrode is used as the ion acceleration electrode in the above-described embodiment, the present invention is not limited to this. As the ion accelerating electrode, any shape can be used as long as it has an opening through which ions can pass.
[0045] (8)上記した実施の形態においては、第 1の電極としての試料マウントとメッシュ電極 とにより形成される順電場の領域には他の電極を配置していない。し力、しながら、順 電場の領域に他の電極を配置して、順電場の領域に多段的に電位勾配を設けるよう にしてもよい。このように順電場の領域に多段的に電位勾配を設けると、電圧をパル スで印加することにより選択的にイオンを加速でき、また、質量分解能を向上させると いう作用効果がある。  (8) In the above-described embodiment, no other electrode is disposed in the region of the forward electric field formed by the sample mount as the first electrode and the mesh electrode. However, another electrode may be arranged in the forward electric field region, and the potential gradient may be provided in multiple steps in the forward electric field region. When potential gradients are provided in multiple steps in the forward electric field region in this way, ions can be selectively accelerated by applying a voltage with a pulse, and mass resolution can be improved.
[0046] (9)上記した実施の形態ならびに上記(1)乃至(8)に示す変形例は、適宜に組み合 わせるようにしてあよレヽ。  [0046] (9) The above-described embodiment and the modifications shown in the above (1) to (8) may be appropriately combined.

Claims

請求の範囲 The scope of the claims
[1] 分析対象に超短パルスレーザー光を照射してアブレーシヨンすることにより前記分 析対象を原子又は分子にしてイオン化する工程と、  [1] An ionization process by irradiating an object to be analyzed with an ultra-short pulse laser beam to ablate the object to be analyzed.
前記イオン化によって生じたイオンを前記分析対象の表面法線方向に順電場をか けて加速する工程と、  Accelerating the ions generated by the ionization by applying a forward electric field in the surface normal direction of the analysis object;
前記加速されたイオンを質量分析装置で質量分析又は元素分析する工程と を有することを特徴とする分析方法。  And a step of performing mass analysis or elemental analysis of the accelerated ions with a mass spectrometer.
[2] 請求項 1に記載の分析方法にお!/、て、前記アブレーシヨンにより前記分析対象を構 成原子に原子化することを特徴とする分析方法。  [2] The analysis method according to claim 1, wherein the analysis target is atomized into constituent atoms by the abrasion.
[3] 請求項 1又は 2に記載の分析方法において、前記アブレーシヨンにより得られたィ オンはプラズマを構成しており、前記プラズマに前記順電場を作用させて該プラズマ を構成するイオンを加速することを特徴とする分析方法。 [3] The analysis method according to claim 1 or 2, wherein the ions obtained by the abrasion constitute a plasma, and the forward electric field is applied to the plasma to accelerate ions constituting the plasma. An analysis method characterized by that.
[4] 請求項 1〜3のいずれか 1項に記載の分析方法において、前記超短パルスレーザ 一のレーザーパワーが 1パルス当り 200 J以下であることを特徴とする分析方法。 [4] The analysis method according to any one of claims 1 to 3, wherein the laser power of the ultrashort pulse laser is 200 J or less per pulse.
[5] 請求項 1〜4のいずれか 1項に記載の分析方法において、前記超短パルスレーザ 一の前記分析対象上での集光サイズが直径 lmm以下であることを特徴する分析方 法。 [5] The analysis method according to any one of claims 1 to 4, wherein a condensing size of the ultrashort pulse laser on the object to be analyzed is 1 mm or less in diameter.
[6] 請求項 1〜3のいずれか 1項に記載の分析方法において、前記超短パルスレーザ 一のレーザーパワー力 パルス当り 200 J以下でかつ前記超短パルスレーザーの 前記分析対象上での集光サイズが直径 lmm以下であることを特徴とする分析方法。  [6] The analysis method according to any one of claims 1 to 3, wherein the laser power of the ultrashort pulse laser is 200 J or less per pulse, and the ultrashort pulse laser is collected on the object to be analyzed. An analysis method characterized in that the light size is 1 mm or less in diameter.
[7] 請求項 3〜6のいずれ力、 1項に記載の分析方法において、前記プラズマは、前記分 析対象に隣接して配置され前記順電場をかけるためのイオン通過孔のある電極を通 過する時に、大部分が外部電場の力、かる領域たるシース部からなることを特徴とする 分析方法。  [7] The analysis method according to any one of claims 3 to 6, wherein the plasma passes through an electrode having an ion passage hole disposed adjacent to the analysis target and applying the forward electric field. The analysis method is characterized by comprising a sheath part which is the force of the external electric field and the area to be covered.
[8] 請求項 3〜6のいずれか 1項に記載の分析方法において、前記順電場は、前記分 析対象に隣接して配置されたイオン通過孔のある電極によって作用させることを特徴 とする分析方法。  [8] The analysis method according to any one of claims 3 to 6, wherein the forward electric field is caused to act by an electrode having an ion passage hole disposed adjacent to the analysis target. Analysis method.
[9] 請求項 1〜8のいずれか 1項に記載の分析方法において、前記超短パルスレーザ 一光は、パルス時間幅が 10ピコ秒以下であることを特徴とする分析方法。 [9] The analysis method according to any one of claims 1 to 8, wherein the ultrashort pulse laser is used. One light has a pulse time width of 10 picoseconds or less.
[10] 請求項 1〜9のいずれ力、 1項に記載の分析方法において、前記分析対象は、固体[10] The analysis method according to any one of claims 1 to 9, wherein the analysis target is a solid.
、粉末、液体又は溶液の形態、あるいはそれを固体基板に塗布した形態を有するこ とを特徴とする分析方法。 An analysis method characterized by having a form of powder, liquid or solution, or a form in which it is applied to a solid substrate.
[11] 超短パルスレーザー光発生装置と、 [11] Ultrashort pulse laser generator,
試料保持部と、  A sample holder,
前記超短パルスレーザー光発生装置から発生された超短パルスレーザー光を前 記試料保持部に保持された試料に集光する光学系と、  An optical system that focuses the ultrashort pulse laser beam generated from the ultrashort pulse laser beam generator onto the sample held in the sample holder;
前記超短パルスレーザー光照射によるレーザーアブレーシヨンによって生じたプラ ズマ中のイオンに順電場を印加して加速するための、イオン通過孔を有し前記試料 保持部に隣接して配置された加速電極と、  Acceleration provided with ion passage holes and adjacent to the sample holder for applying a forward electric field to the ions in the plasma generated by laser ablation caused by the ultrashort pulse laser irradiation for acceleration. Electrodes,
前記加速電極を通過したイオンを質量分析するための質量分析装置と、 前記試料保持部、前記加速電極及び前記質量分析装置を収容する真空容器と を有することを特徴とする分析装置。  An analyzer comprising: a mass spectrometer for mass-analyzing ions that have passed through the acceleration electrode; and a vacuum container that accommodates the sample holder, the acceleration electrode, and the mass spectrometer.
[12] 請求項 11に記載の分析装置にお!/、て、前記アブレーシヨンにより前記試料保持部 に保持された分析対象を構成原子に原子化することを特徴とする分析装置。 [12] The analyzer according to claim 11, wherein the analysis target held in the sample holder by the abrasion is atomized into constituent atoms.
[13] 請求項 11又は 12に記載の分析装置において、前記超短パルスレーザーのレーザ 一パワーが 1パルス当り 200 J以下であることを特徴とする分析装置。 13. The analyzer according to claim 11 or 12, wherein the laser power of the ultrashort pulse laser is 200 J or less per pulse.
[14] 請求項 11〜; 13のいずれ力、 1項に記載の分析装置において、前記超短パルスレー ザ一の前記試料保持部に保持された分析対象上での集光サイズが直径 lmm以下 であることを特徴する分析装置。 [14] The analysis device according to any one of claims 11 to 13, wherein the condensing size on the analysis object held in the sample holding part of the ultrashort pulse laser is 1 mm or less in diameter. Analytical device characterized by being.
[15] 請求項 11又は 12に記載の分析装置において、前記超短パルスレーザーのレーザ 一パワーが 1パルス当り 200 J以下でかつ前記超短パルスレーザーの前記試料保 持部に保持された分析対象上での集光サイズが直径 lmm以下であることを特徴と する分析装置。 [15] The analysis apparatus according to claim 11 or 12, wherein the laser power of the ultrashort pulse laser is 200 J or less per pulse and is held in the sample holding portion of the ultrashort pulse laser. An analyzer characterized in that the condensing size above is less than lmm in diameter.
[16] 請求項 11に記載の分析装置にお!/、て、前記プラズマは、前記加速電極を通過す る時に、大部分が外部電場の力、かる領域たるシース部からなることを特徴とする分析 装置。 [16] In the analyzer according to claim 11, when the plasma passes through the accelerating electrode, most of the plasma is composed of a sheath part which is a force of an external electric field and a covered area. Analysis equipment.
[17] 請求項 11に記載の分析装置において、試料表面に発生するプラズマ中のイオンを 全て前記順電場加速できる条件で前記レーザーアブレーシヨンによる単原子イオン 化を行うことを特徴とする分析装置。 [17] The analyzer according to [11], wherein the ionization by the laser ablation is performed under the condition that all ions in the plasma generated on the sample surface can be accelerated by the forward electric field. .
[18] 請求項 11〜; 17のいずれ力、 1項に記載の分析装置において、前記超短パルスレー ザ一光は、パルス時間幅が 10ピコ秒以下であることを特徴とする分析装置。  [18] The analysis apparatus according to any one of [11] to [17], wherein the ultrashort pulse laser beam has a pulse time width of 10 picoseconds or less.
PCT/JP2007/068612 2006-09-27 2007-09-26 Sample analyzing method, and analyzing apparatus WO2008038642A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006263153 2006-09-27
JP2006-263153 2006-09-27

Publications (1)

Publication Number Publication Date
WO2008038642A1 true WO2008038642A1 (en) 2008-04-03

Family

ID=39230078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/068612 WO2008038642A1 (en) 2006-09-27 2007-09-26 Sample analyzing method, and analyzing apparatus

Country Status (1)

Country Link
WO (1) WO2008038642A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014063585A (en) * 2012-09-20 2014-04-10 Shimadzu Corp Support structure of xy stage in vacuum chamber and laser desorption ionization apparatus
JP2015152370A (en) * 2014-02-13 2015-08-24 株式会社ニコン Detection device, microscope and processing device
JP2016225108A (en) * 2015-05-29 2016-12-28 国立研究開発法人日本原子力研究開発機構 Mass spectrometer and ion irradiation device
CN112730593A (en) * 2020-11-26 2021-04-30 长春理工大学光电信息学院 Method for ionizing organochlorine pesticide by ultrashort pulse laser

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1090226A (en) * 1996-09-11 1998-04-10 Shimadzu Corp Method for determining amino acid sequence in peptide
JP2003247983A (en) * 2002-02-25 2003-09-05 Nippon Laser & Electronics Lab Target substance mass spectrometric system
JP2004212215A (en) * 2002-12-27 2004-07-29 Institute Of Physical & Chemical Research Laser ablation polymer analyzing apparatus
JP2004257973A (en) * 2003-02-27 2004-09-16 Jsr Corp Method and apparatus for analyzing shape/structure of small object
WO2005074003A1 (en) * 2004-01-28 2005-08-11 Kyoto University Laser analyzing device and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1090226A (en) * 1996-09-11 1998-04-10 Shimadzu Corp Method for determining amino acid sequence in peptide
JP2003247983A (en) * 2002-02-25 2003-09-05 Nippon Laser & Electronics Lab Target substance mass spectrometric system
JP2004212215A (en) * 2002-12-27 2004-07-29 Institute Of Physical & Chemical Research Laser ablation polymer analyzing apparatus
JP2004257973A (en) * 2003-02-27 2004-09-16 Jsr Corp Method and apparatus for analyzing shape/structure of small object
WO2005074003A1 (en) * 2004-01-28 2005-08-11 Kyoto University Laser analyzing device and method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KATO T. ET AL.: "Kibanjo Shiryo ni Okeru Femtosecond to Nanosecond Laser Ablation no Hikaku", DAI 53 KAI OYO BUTSURIGAKU KANKEI RENGO KOENKAI, 22 March 2006 (2006-03-22), pages 1208 + ABSTR. NO. 25P-L-9, XP003021925 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014063585A (en) * 2012-09-20 2014-04-10 Shimadzu Corp Support structure of xy stage in vacuum chamber and laser desorption ionization apparatus
JP2015152370A (en) * 2014-02-13 2015-08-24 株式会社ニコン Detection device, microscope and processing device
JP2016225108A (en) * 2015-05-29 2016-12-28 国立研究開発法人日本原子力研究開発機構 Mass spectrometer and ion irradiation device
CN112730593A (en) * 2020-11-26 2021-04-30 长春理工大学光电信息学院 Method for ionizing organochlorine pesticide by ultrashort pulse laser
CN112730593B (en) * 2020-11-26 2024-01-19 长春理工大学光电信息学院 Method for ionizing organic chlorine pesticide by ultra-short pulse laser

Similar Documents

Publication Publication Date Title
US6137110A (en) Focused ion beam source method and apparatus
WO2011093285A1 (en) Ultrafast electron diffraction device
Krzywinski et al. Conductors, semiconductors, and insulators irradiated with short-wavelength free-electron laser
Brummel et al. Ion beam induced desorption with postionization using high repetition femtosecond lasers
US20210217598A1 (en) System and Method for Loading an Ion Trap
JP2007057432A (en) Extraction method of ions and extractor of ions
Andreev et al. Ultrafast transmission electron microscope for studying the dynamics of the processes induced by femtosecond laser beams
WO2008038642A1 (en) Sample analyzing method, and analyzing apparatus
Robinson et al. A compact electron gun for time-resolved electron diffraction
TWI243901B (en) Analysis method of macromolecule using laser ablation and system of the same
Henyk et al. Laser-induced ion emission from dielectrics
JP4777006B2 (en) Three-dimensional fine region elemental analysis method
CA2992756A1 (en) A method and system for analysis of objects
Bleiner et al. Soft X-ray laser ablation for nano-scale chemical mapping microanalysis
JPWO2005074003A1 (en) Laser analysis apparatus and method
DE102021105327B3 (en) Desorption ion source with post-desorption ionization in transmission geometry
Deuzeman Generation and interactions of energetic tin ions
Ding Generation, Handling and Transport of Laser-Driven Heavy Ion Beams
JP6309381B2 (en) Mass spectrometer and mass spectrometry method
Sokollik Investigations of field dynamics in laser plasmas with proton imaging
Reijnders Ion beams from laser-cooled gases
Mihaila et al. Generation of Picosecond Ion Pulses by Ultrafast Electron-Stimulated Desorption
US5796101A (en) Method of processing nucleic acids
Schröder et al. Surface analysis by laser ionization
Rahman A Laser Ion Source for Thin Film Deposition: Characterization of Source and Growth Conditions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07828385

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07828385

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP