WO2008038588A1 - Method for manufacturing organic material apparatus - Google Patents

Method for manufacturing organic material apparatus Download PDF

Info

Publication number
WO2008038588A1
WO2008038588A1 PCT/JP2007/068393 JP2007068393W WO2008038588A1 WO 2008038588 A1 WO2008038588 A1 WO 2008038588A1 JP 2007068393 W JP2007068393 W JP 2007068393W WO 2008038588 A1 WO2008038588 A1 WO 2008038588A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
organic
material layer
organic material
photoresist
Prior art date
Application number
PCT/JP2007/068393
Other languages
French (fr)
Japanese (ja)
Inventor
Naotoshi Suganuma
Noriyuki Shimoji
Yoshiaki Oku
Original Assignee
Rohm Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co., Ltd. filed Critical Rohm Co., Ltd.
Publication of WO2008038588A1 publication Critical patent/WO2008038588A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • H10K71/221Changing the shape of the active layer in the devices, e.g. patterning by lift-off techniques
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • H10K71/231Changing the shape of the active layer in the devices, e.g. patterning by etching of existing layers
    • H10K71/233Changing the shape of the active layer in the devices, e.g. patterning by etching of existing layers by photolithographic etching

Definitions

  • the present invention relates to a method for manufacturing an organic material device having a pattern of another material layer on an organic material layer.
  • a top contact type organic transistor is manufactured by forming source and drain electrodes on an organic semiconductor layer. More specifically, for example, a gate electrode is formed on a substrate such as a glass substrate, a plastic substrate, or a silicon substrate, and a gate insulating film is formed so as to cover the gate electrode. Further, an organic semiconductor layer is deposited on the gate insulating film, and a metal layer as a source / drain electrode is formed on the organic semiconductor layer.
  • a vacuum deposition method is generally applied to the formation of the metal layer. More specifically, a deposition source is disposed in the vacuum chamber, and a substrate on which the gate insulating film and the organic semiconductor layer are formed is disposed so as to face the deposition source. Further, a shadow mask is disposed between the substrate and the evaporation source. In the shadow mask, a fine opening corresponding to the pattern of the metal layer (source / drain electrode pattern) to be formed on the organic semiconductor layer is formed. The metal material molecules that evaporate in the vapor deposition source and fly toward the organic semiconductor layer reach the surface of the organic semiconductor layer through the opening of the shadow mask and adhere to form a pattern of the metal layer.
  • Patent Document 1 JP 2005-038638 Koyuki
  • the photoresist used in the photolithography process is generally diluted with an organic solvent and applied onto the substrate.
  • the organic solvent may erode the organic semiconductor layer and impair its electrical characteristics.
  • the above-described problem is not limited to the case of forming a metal layer, but after forming an organic material layer on a substrate and patterning another material layer (for example, an organic material layer, an insulating film, etc.) Is a common problem.
  • an object of the present invention is to provide a method for manufacturing an organic material device capable of forming a fine pattern of another material layer on the substrate while suppressing or preventing the influence on the organic material layer on the substrate. It is in.
  • the organic material device manufacturing method of the present invention includes a step of forming a sacrificial layer made of an inorganic material on a first material layer having an organic material force formed on a substrate, and the substrate including the sacrificial layer.
  • the second material layer on the resist is lifted off by dissolving the resist and the sacrificial layer directly below the developer with an aqueous solution capable of dissolving the sacrificial layer.
  • the resist is formed (applied) in a state where the first material layer is protected by the sacrificial layer made of an inorganic material
  • the organic solvent force in the resist can be protected from the first material layer.
  • the sacrificial layer can avoid contact between the first material layer and the resist.
  • the first It is possible to form (pattern) the second material layer on the substrate while suppressing or preventing the influence on the material layer.
  • the second material layer can be patterned by photolithography, the substrate with the first material layer formed on the second material layer, which is significantly finer than the conventional technology using a shadow mask, is used. Can be formed on top.
  • the materials used for the second material layer there are no strict restrictions on the materials used for the second material layer.
  • the second material layer may be formed by, for example, a vapor deposition method.
  • the formation pattern of the second material layer may be a pattern having a contact portion with respect to the first material layer, or may be a pattern having no contact portion with the first material layer.
  • the organic material device manufacturing method exposes the unexposed portion of the resist remaining on the substrate after the development step, and the resist is chemically soluble in a developer used in the lift-off step. It is preferable to further include an all resist exposure process to be changed, and after this all resist exposure process, a process of forming the second material layer is performed.
  • the resist in the unexposed portion remaining on the substrate after the development process is exposed, and this resist is chemically changed to a property soluble in the developer used in the lift-off process.
  • An exposure process is performed. Therefore, in the lift-off process, all resists on the substrate can be surely dissolved, and unnecessary portions of the second material layer can be precisely lifted off together with the resist.
  • the developer used in the developing process and the lift-off process is V and the deviation is an alkaline aqueous solution.
  • the resist is designed to be soluble in an alkaline aqueous solution, and an alkaline developer is often used in the development process after exposure. Therefore, in the lift-off process
  • the sacrificial layer is preferably a metal layer. Yes.
  • a metal layer such as an aluminum layer is formed as the sacrificial layer.
  • metals such as aluminum are soluble in an alkaline aqueous solution. Therefore, for example, when an alkaline aqueous solution is used as the developer in the lift-off process, the sacrificial layer formed on the organic material layer can be easily dissolved and removed together with the resist.
  • the first material layer is preferably an organic semiconductor material layer.
  • the second material layer having a fine pattern can be formed on the organic semiconductor material layer without impairing the electrical characteristics of the organic semiconductor material layer. As a result, an organic semiconductor device having excellent electrical characteristics can be realized.
  • an organic transistor using an organic semiconductor layer as a semiconductor active layer may emit light by causing recombination of electrons and holes in the organic semiconductor light emitting layer. Name the organic semiconductor light-emitting device that wakes up (organic electoluminescence (EL) device).
  • organic semiconductor light-emitting device that wakes up (organic electoluminescence (EL) device).
  • the second material layer preferably includes a metal layer.
  • the second material layer is formed to include a metal layer, for example, a metal electrode. Therefore, for example, a top contact type device in which an electrode is formed on an organic material layer such as an organic semiconductor material layer can be manufactured.
  • a metal film having a fine pattern can be formed on the substrate (for example, on the organic material layer) without impairing the electrical characteristics of the organic material layer, the device can be miniaturized and highly integrated.
  • the second material layer includes an organic material layer of a different type from the organic material layer constituting the first material layer.
  • the second material layer is formed so as to include an organic material layer of a different type from the organic material layer constituting the first material layer.
  • the first material layer is It is made of P-type organic semiconductor material and the second material layer is made of N-type organic semiconductor material.
  • both P-type and N-type organic semiconductor material layers can be formed on the substrate in a fine pattern. Therefore, for example, an organic transistor element of P channel type operation and an organic transistor element of N channel type operation can be formed in a fine pattern on a substrate, and these can be integrated on the substrate.
  • the first material layer preferably has a laminated structure of a plurality of organic material layers.
  • the first material layer is formed as a laminated structure of a plurality of organic material layers, for example, it can be suitably employed as a method for manufacturing an organic electoluminescence device.
  • the second material layer preferably has a laminated structure of a plurality of organic material layers.
  • the second material layer is formed as a laminated structure of a plurality of organic material layers, for example, it can be suitably employed as a method for manufacturing an organic electoluminescence device. More specifically, for example, a plurality of micro organic luminescence elements can be arranged at high density on a substrate, and a high-definition display device can be realized.
  • FIG. 1 is a cross-sectional view schematically showing a configuration of an organic material device to which a method according to a first embodiment of the present invention is applied.
  • FIGS. 2A to 2G are schematic sectional views showing a method of manufacturing the organic transistor of FIG.
  • FIG. 3 is an illustrative cross-sectional view for explaining the configuration of an organic material device to which a method according to a second embodiment of the present invention is applied.
  • FIGS. 4A to 4F are schematic sectional views showing a method of manufacturing the organic transistor integrated circuit element of FIG. 3 in the order of steps.
  • FIGS. 5G to 5L are schematic sectional views showing a method of manufacturing the organic transistor integrated circuit element of FIG. 3 in the order of steps.
  • FIGS. 7A to 7E are schematic sectional views showing the manufacturing method of the RGB light emitting device of FIG. 6 in the order of steps.
  • FIGS. 8F to 8I are schematic sectional views showing the manufacturing method of the RGB light emitting device of FIG. 6 in the order of steps.
  • FIGS. 9J to 9M are schematic cross-sectional views showing the method of manufacturing the RGB light emitting device of FIG. 6 in the order of steps.
  • FIGS. 10N to 10Q are schematic cross-sectional views showing the manufacturing method of the RGB light emitting device of FIG. 6 in the order of steps.
  • FIGS. 11R to 11U are schematic cross-sectional views showing the manufacturing method of the RGB light emitting device of FIG. 6 in the order of steps.
  • Sono 12 is a schematic cross-sectional view for explaining the structure of an organic material device to which a method according to a fourth embodiment of the present invention is applied.
  • FIGS. 13A to 13D are schematic sectional views showing a method of manufacturing the organic transistor integrated circuit element of FIG. 12 in the order of steps.
  • FIGS. 14E to 14H are schematic sectional views showing the method of manufacturing the organic transistor integrated circuit element of FIG. 12 in the order of steps.
  • FIGS. 15I to 15L are schematic sectional views showing a method of manufacturing the organic transistor integrated circuit element of FIG. 12 in the order of steps.
  • FIG. 16 A schematic cross-sectional view for explaining a configuration of an organic material device to which the method according to the fifth embodiment of the present invention is applied.
  • FIGS. 17A to 17F are schematic sectional views showing the method of manufacturing the organic transistor of FIG. 16 in the order of steps.
  • FIGS. 18G to 18M are schematic sectional views showing the method of manufacturing the organic transistor of FIG. 16 in the order of steps.
  • FIGS. 19N to 19S are schematic sectional views showing the method of manufacturing the organic transistor of FIG. 16 in the order of steps.
  • FIG. 20 is a schematic cross-sectional view for explaining the configuration of an organic material device to which a method according to a sixth embodiment of the present invention is applied.
  • 21A to 21F are schematic cross-sectional views showing a method of manufacturing the composite integrated device of FIG. 20 in the order of steps.
  • 22G to 22K are schematic cross-sectional views showing the method of manufacturing the composite integrated device of FIG. 20 in the order of steps.
  • FIGS. 23L to 23P are schematic sectional views showing a method of manufacturing the composite integrated device of FIG. 20 in the order of steps.
  • FIGS. 24Q to 24S are schematic sectional views showing a method of manufacturing the composite integrated device of FIG. 20 in the order of steps.
  • FIG. 1 is a cross-sectional view schematically showing the configuration of an organic material device to which the method according to the first embodiment of the present invention is applied.
  • This organic material device is an organic transistor 1 having a basic structure as a FET (field effect transistor).
  • the organic transistor 1 includes a gate electrode 2 which also serves as a substrate, a goot insulating film 3 stacked on the got electrode 2, an organic material layer 4 stacked on the gate insulating film 3, and an organic material layer 4 And a pair of electrodes 5 and 6 (source and drain electrodes) formed at a predetermined interval (for example, 10 m). That is, in this organic transistor 1, the electrodes 5 and 6 are arranged on the opposite side of the organic material layer 4 from the gate electrode 2. It has a so-called top contact type structure.
  • one of the pair of electrodes 5 and 6 is a carrier injection electrode 5 that injects a carrier (electrons or holes) into the organic material layer 4, and the other is a carrier lead that receives the carrier from the organic material layer 4.
  • the gate electrode 2 is an electrode composed of an impurity diffusion layer formed by introducing an N-type impurity at a high concentration into the surface layer portion of the silicon substrate.
  • a plastic substrate may be used as the substrate, and a metal film such as nickel (M) or aluminum (A1) may be formed on the substrate to form the gate electrode 2.
  • the gate electrode 2 is provided on the substrate so as to face the organic material layer 4 through the gate insulating film 3 in at least the interelectrode region 7 between the electrodes 5 and 6.
  • the gate insulating film 3 is made of, for example, silicon oxide (SiO 2), tantalum pentoxide (Ta 0), an oxide of aluminum (A 1 0), a polymer such as a nopolac resin and polyimide, and the like.
  • the organic material layer 4 may be a P-type organic semiconductor layer made of a P-type organic semiconductor material (hole transporting organic material) that can move holes injected from the carrier injection electrode 5! /, And may be an N-type organic semiconductor layer made of an N-type organic semiconductor material (electron transporting organic material) that can move electrons injected from the carrier injection electrode 5. Further, the organic material layer 4 can be composed of a bipolar organic semiconductor layer made of a bipolar organic semiconductor material capable of moving both holes and electrons.
  • the electrodes 5 and 6 are both carrier injection electrodes, one of which is a hole injection electrode that injects holes into the organic material layer 4, and the other is an electron injection that injects electrons into the organic material layer 4. It becomes an electrode.
  • a typical P-type organic semiconductor material is pentacene, and the organic material layer 4 can be composed of a pentacene layer having a layer thickness of 50 nm.
  • any material selected from the following P-type organic semiconductor materials can be used as a constituent material.
  • Pentacene, Tetracene, Antnracene and other materials Phthalononin yarn with Copper Phthalocyamne 1 ⁇ 4 material.
  • Oligothiophene materials such as a_sexithiophene, a, ⁇ _Dihexyi_sexithiophene, dihexy 1-anthradithiophene Bis (dithienothiophene), a, ⁇ -Dihexy quinquethiophene. poly (3_hexylthiophene), poly (3_butylthiophene), etc. Thiophene material.
  • low molecular weight materials such as oligophenylene ⁇ oligophenylenevinylene TPD, a_NPD, m-MTDATA, TPAC, TCTA, poly (phenylenevinylene), poly (thie nylenevinylene), polyacetylene, poly, vinylcarbazole, and more.
  • any material selected from the following N-type organic semiconductor materials can be used as a constituent material.
  • NTCDI materials such as NTCDI, C-NTC, C-NTC, F-octy to NTC, F-MeBn-NTC.
  • Electrodes 5 and 6 can be composed of platinum (Pt), ITO (solid solution of indium oxide (In 0) and tin oxide (SnO)), etc.
  • the carrier injection electrode 5 side is positive between the electrodes 5 and 6 in the organic transistor 1 during semiconductor operation.
  • a voltage is applied.
  • a negative voltage is applied to the gate electrode 2 in this state, a channel is formed in the organic material layer 4 between the electrodes 5 and 6.
  • the electrodes 5 and 6 are electrically connected.
  • the voltage applied to the gate electrode 2 is removed, the channel in the organic material layer 4 disappears and the electrodes 5 and 6 are blocked. Electrodes 5, 6 The current between them varies depending on the voltage applied to the gate electrode 2. In this way, the transistor operation is performed.
  • FIG. 2A to 2G are schematic cross-sectional views showing the method of manufacturing the organic transistor of FIG. 1 in the order of steps.
  • a gate insulating film 3 is formed on a gate electrode 2 that also serves as a substrate, and an organic material layer 4 (first material layer) is formed on the gate insulating film 3 to form a layer.
  • an organic material layer 4 (first material layer) is formed on the gate insulating film 3 to form a layer.
  • a sacrificial layer 8 is formed on the organic material layer 4 in a laminated manner.
  • the sacrificial layer 8 is an inorganic material that is chemically stable with respect to the photoresist 9 described later, for example, a periodic table such as aluminum (A1), gallium (Ga), indium (In), and thallium (T1). (IUPAC, 1990) Examples include the metal materials belonging to the ⁇ family, aluminum tantalum (A to Ta) alloys. In general, since metals such as aluminum are soluble in an alkaline aqueous solution, if the sacrificial layer 8 is such a metal, the sacrificial layer 8 can be easily dissolved and removed together with the photoresist 9 at the time of lift-off described later. Thus, the sacrificial layer 8 can be prevented from remaining in the organic material layer 4.
  • a photoresist 9 is applied on the sacrificial layer 8.
  • the organic material layer 4 is protected by the sacrificial layer 8
  • contact between the organic material layer 4 and the photoregister 9 can be avoided. That is, the organic solvent in the photoresist 9 does not erode the organic material layer 4.
  • the photoresist 9 a material that undergoes a chemical change to a property soluble in an alkali developer upon exposure to ultraviolet light is used.
  • a photomask 10A is disposed above the substrate in this state, and the photoresist 9 is selectively used.
  • the photomask 10A is formed with openings 10a and 10b having shapes corresponding to the electrodes 5 and 6, respectively, and the photoresist 9 in a region corresponding to the openings 10a and 10b is selectively formed.
  • UV exposure selective exposure process
  • the portions of the photoresist 9 corresponding to the openings 10a and 10b are chemically changed to a property soluble in an alkali developer.
  • the photoresist 9 is developed using an alkaline developer, for example, TMAH (tetramethyl ammonium hydroxide), so that the regions where the electrodes 5 and 6 are to be formed are developed.
  • TMAH tetramethyl ammonium hydroxide
  • the organic material layer 4 is exposed (development process).
  • FIG. 2E the entire surface is exposed to ultraviolet light, and all the photoresist 9 remaining on the substrate is exposed to ultraviolet light (all resist exposure process).
  • electrodes 5 and 6 (second material layer), which are metal layers, are vapor-deposited on the entire surface. Further, as shown in FIG. Resist 9 is dissolved. Thereby, unnecessary portions of the electrodes 5 and 6 are lifted off together with the photoresist 9 (lift-off process), and the organic transistor 1 is completed.
  • the sacrificial layer 8 can prevent the photoresist 9 diluted in the organic solvent from coming into contact with the organic material layer 4, so that the influence on the organic material layer 4 is suppressed or prevented.
  • the fine patterns of the electrodes 5 and 6 can be formed on the organic material layer 4 by photolithography without impairing the electrical characteristics of the organic material layer 4. Also, by using an alkaline aqueous solution at the time of lift-off, the selectivity of the photoresist 9 with respect to the organic material layer 4 can be increased, and precise lift-off can be achieved.
  • FIG. 3 is a schematic cross-sectional view for explaining the configuration of an organic material device to which the method according to the second embodiment of the present invention is applied.
  • This organic material device is an organic transistor integrated circuit element 29 in which a plurality of (for example, two) organic transistors 12P and 12N are formed on a substrate 11 (for example, a glass substrate, a silicon substrate, or a plastic substrate). is there.
  • a substrate 11 for example, a glass substrate, a silicon substrate, or a plastic substrate.
  • Each organic transistor 12P, 12N includes a gate electrode 13, 14 formed on the substrate 11, a gate insulating film 15 stacked on the gate electrode 13, 14, and a predetermined on the gate insulating film 15. Electrodes 16P, 17, 16N formed with a gap (for example, 10 m), and organic semiconductor layers 18, 18 formed on these electrodes 16P, 17, 16N and arranged opposite to the gate electrodes 13, 14 19 and. That is, the organic transistor integrated circuit element 29 has a so-called bottom contact type structure in which the electrodes 16P, 17, 16N force S and the organic semiconductor layers 18, 19 are disposed on the same side as the gate electrodes 13, 14. is doing. The electrode 17 is shared by the pair of organic transistors 12P and 12N and connects them to each other.
  • One organic semiconductor layer 18 is a P-type organic semiconductor layer (first material layer), and the other organic semiconductor layer 19 is an N-type organic semiconductor layer (second material layer). That is, in this embodiment, a circuit having a complementary metal oxide semiconductor (CMOS) structure is formed on the substrate 11. Can be made.
  • the P-type organic semiconductor layer 18 can be composed of the aforementioned P-type organic semiconductor material, and the same N-type organic semiconductor layer 19 can be composed of the aforementioned N-type organic semiconductor material.
  • Examples of the material of the gate electrodes 13 and 14 include the same material as that of the gate electrode 2 in the first embodiment described above.
  • the gate insulating film 15 can be made of the same material as the gate insulating film 3 in the first embodiment described above.
  • the electrode 16P is a hole injection electrode that injects holes into the P-type organic semiconductor layer 18, and the electrode 16N is an electron injection electrode that injects electrons into the N-type organic semiconductor layer 19.
  • Examples of the material of the electrodes 16P, 17 and 16N include the same materials as the electrodes 5 and 6 in the first embodiment described above.
  • the P-type organic semiconductor layer 18 and the N-type organic semiconductor layer 19 are composed of different types of organic materials.
  • adjacent P-type organic semiconductor layer 18 and N-type organic semiconductor layer 19 are mutually connected for the purpose of element isolation for electrically separating individual organic transistors 12P, 12N. Separated with a gap D.
  • This distance D is, for example, on the order of 1 micrometer, and this constitutes a submicron rule organic transistor integrated circuit element 29! /.
  • FIGS. 4A to 4F and FIGS. 5G to 5L are schematic sectional views showing a method of manufacturing the organic transistor integrated circuit element of FIG. 3 in the order of steps.
  • FIGS. 4A to 4F and FIGS. 5G to 5L parts corresponding to those shown in FIGS. 2A to 2G are denoted by the same reference numerals as in FIGS. 2A to 2G.
  • gate electrodes 13 and 14, gate insulating film 15 and electrodes 16P, 17 and 16N were formed (gate electrodes 13 and 14 were patterned by photolithography, for example. Formation)
  • Photoresist 20 is applied to the entire surface of the substrate 11 (more precisely, the surfaces of the gate insulating film 15 and the electrodes 16P, 17, 16N), and appropriate beta treatment is performed.
  • a photomask 10B is disposed above the substrate 11 in this state, and the photoresist 20 is selectively exposed. That is, the photomask 10B has a P-type organic semiconductor layer 18
  • An opening 10c having a corresponding shape is formed, and the photoresist 20 in a region corresponding to the opening 10c is selectively exposed to ultraviolet rays.
  • the entire surface is exposed to ultraviolet rays, and all the photoresists 20 on the substrate 11 are exposed to ultraviolet rays.
  • a P-type organic semiconductor layer 18 is deposited on the entire surface, and further, as shown in FIG. 4E, the photoresist 20 is dissolved using an alkali developer. As a result, unnecessary portions of the P-type organic semiconductor layer 18 are lifted off. Since the photoresist 20 has been previously exposed to ultraviolet rays in the step of FIG. 4C, it is easily dissolved in an alkaline developer and removed with a high selectivity with respect to the P-type organic semiconductor layer 18.
  • the bond between the P-type organic semiconductor layer 18 and the gate insulating film 15 and the electrodes 16P and 17 is also achieved at the time of lift-off. Firmly held. In this manner, the P-type organic semiconductor layer 18 in contact with these electrodes 16P and 17 can be formed in a region extending between the electrodes 16P and 17 of the organic transistor 12P.
  • a sacrificial layer 8 is formed on the entire surface including the P-type organic semiconductor layer 18.
  • a photoresist 9 is applied on the sacrificial layer 8 as shown in FIG. 5G.
  • the P-type organic semiconductor layer 18 is protected by the sacrificial layer 8, contact between the P-type organic semiconductor layer 18 and the photoresist 9 can be avoided. That is, the organic solvent in the photoresist 9 does not erode the P-type organic semiconductor layer 18.
  • a photomask 10C is arranged above the substrate in this state, and the photoresist 9 is selectively exposed.
  • the photomask 10C has an N-type organic half
  • An opening 10d having a shape corresponding to the conductor layer 19 is formed, and the photoresist 9 in a region corresponding to the opening 10d is selectively exposed to ultraviolet rays (selective exposure step).
  • the portion of the photoresist 9 corresponding to the opening 10d is chemically changed to a property soluble in an alkali developer.
  • the N-type organic semiconductor layer 19 is formed by developing the photoresist 9 using an alkali developer, for example, TMAH (tetramethyl ammonium hydroxide).
  • TMAH tetramethyl ammonium hydroxide
  • the electrodes 16N and 17 in the region to be exposed are exposed (development process).
  • the entire surface is exposed to ultraviolet rays, and all of the photoresist 9 remaining on the substrate is exposed to ultraviolet rays (total resist exposure step).
  • an N-type organic semiconductor layer 19 is deposited on the entire surface, and further, as shown in FIG. 5L, the photoresist 9 is dissolved using an alkaline developer. As a result, an unnecessary portion of the N-type organic semiconductor layer 19 is lifted off together with the photoresist 9 (lift-off process), and an organic transistor integrated circuit element 29 in which a plurality of types of organic transistors 12P and 12N are formed on the same substrate is obtained. Complete.
  • the sacrificial layer 8 can prevent the photoresist 9 diluted in the organic solvent from coming into contact with the P-type organic semiconductor layer 18 and the N-type organic semiconductor layer 19; While suppressing or preventing the influence on the semiconductor layer 18 and the N-type organic semiconductor layer 19, that is, by photolithography that impairs the electrical characteristics of the P-type organic semiconductor layer 18 and the N-type organic semiconductor layer 19, In addition, both the P-type organic semiconductor layer 18 and the N-type organic semiconductor layer 19 can be formed in a fine pattern.
  • FIG. 6 is a schematic cross-sectional view for explaining the configuration of an organic material device to which the method according to the third embodiment of the present invention is applied.
  • This organic material device is an RGB light emitting element 30 in which a plurality of colors (for example, three colors) of red organic ELs 22R, 22G, and 22B (collectively referred to as “organic EL22”) are formed on a substrate 21.
  • a plurality of colors for example, three colors
  • red organic ELs 22R, 22G, and 22B collectively referred to as “organic EL22”
  • the substrate 21 is made of a material having a high light transmittance, such as a glass substrate or a plastic substrate. As a result, light generated in the organic EL 22 passes through the substrate 21 and is extracted outside.
  • Organic EL22 has different types of luminescent dyes that emit red (R), green (G), and blue (B) colors. Therefore, they cannot be formed at the same time, and are formed separately into red organic EL22R, green organic EL22G, and blue organic EL22B.
  • Each organic EL 22 includes a signal electrode 23 (anode) formed on the substrate 21, a red organic layer 24R, a green organic layer 24G, and a blue organic layer 24B (collectively referred to as “organic layer 24”).
  • An electron injection layer 25 and a scanning electrode 26 are provided. More specifically, the signal electrodes 23 are formed on the substrate 21 so as to be separated from each other at three positions, and an organic layer 24 is formed so as to cover each signal electrode 23, and an electron is formed on each organic layer 24. An injection layer 25 is formed. The scan electrode 26 is formed so as to cover the upper and side surfaces of the electron injection layer 25 and the side surface of the organic layer 24, and the scan electrode 26 and the signal electrode 23 are separated from each other by the organic layer 24. Contact is avoided.
  • the signal electrode 23 is an electrode for injecting holes into the organic layer 24.
  • ITO solid solution of indium oxide (In 0) and tin oxide (SnO)
  • IZO indium zinc oxide
  • ZnO zinc oxide
  • the organic layer 24 is a light emitting portion in the organic EL 22, and includes a hole transport layer 241, red, green, and blue light emitting layers 242R, 242G, and 242B (collectively, “light emitting layer 242”), and electron transport.
  • the layer 243 is stacked on the signal electrode 23.
  • the hole transport layer 241 is a layer for transporting holes injected from the signal electrode 23 to the light emitting layer 242.
  • a _NPD a jamin material such as TPD, or m-TDATA Etc.
  • a hole injection layer may be interposed between the hole transport layer 241 and the signal electrode 23.
  • the material for such a hole injection layer include Copper Phthalocyanine, m_MTD ATA (for example, a layer thickness of In m or less).
  • the light emitting layer 242 receives light from the hole transport layer 241 and receives electrons from the electron transport layer 243 to recombine these holes and electrons to generate light.
  • the red light emitting layer 242R, the green light emitting layer 242G, and the blue light emitting layer 242B are configured corresponding to each organic EL 22 formed separately.
  • Each light emitting layer 242 has a carrier (hole or electron) transport capability! /, Which need not be! / Organic semiconductor materials with higher emission quantum efficiency than the hole transport layer 241 and electron transport layer 243, and the ability to be comprised of S.
  • a metal complex material exhibiting fluorescence such as Alq is doped with a fluorescent dye. Composed.
  • red light emitting layer 242R Alq is doped with DCM, for example, green light emitting layer 242G is as Alq is doped with Coumaline, for example, as blue light emitting layer 242B And Alq doped with Perylene.
  • the electron transport layer 243 is a layer for transporting electrons injected from the scan electrode 26 through the electron injection layer 25, and is made of, for example, a metal complex material such as Alq.
  • the electron injection layer 25 is a layer that acts to relax the energy barrier between the scan electrode 26 and the electron transport layer 243, and the electron injection layer 25 is interposed between the scan electrode 26 and the electron transport layer 243. Thus, electrons can be easily injected into the electron transport layer 243.
  • Materials for the electron injection layer 25 include layers in which an electron transporting organic semiconductor such as Alq or Bathophenanthroline is doped with an alkali metal such as lithium (Li) or cesium (Cs), or lithium fluoride (LiF). Alkali metal / alkaline earth metal fluoride, germanium oxide (GeO), aluminum oxide (A1 0) and the like can be mentioned.
  • the scan electrode 26 is an electrode for injecting electrons into the electron transport layer 243 via the electron injection layer 25, and is a metal that easily injects electrons into the electron transport layer 243 with high conductivity.
  • aluminum (A1) aluminum (A1), calcium (Ca) magnesium aluminum (Mg-Al) alloy, aluminum lithium (A to Li) alloy, and the like.
  • a positive voltage is applied to the signal electrode 23 and holes are injected into the hole transport layer 241.
  • a negative voltage is applied to the scan electrode 26, and electrons are injected into the electron transport layer 243 through the electron injection layer 25. Then, these electrons and holes are transported through each layer and recombine in the organic material layer 4 to emit light. The emitted light passes through the signal electrode 23 and the substrate 21 and is extracted outside.
  • a two-dimensional color display device can be configured by arranging a plurality of pixels configured in the structure shown in FIG. 6 on the substrate 21 in a matrix.
  • FIGS. 7A to 7E, FIGS. 8F to 8I, FIGS. 9J to 9M, FIGS. ION to 10Q, and FIGS. 11R to 11U are schematic cross-sectional views showing the method of manufacturing the RGB light emitting device of FIG.
  • This figure 7A ⁇ 7E, Figures 8F to 8I, Figures 9J to 9M, Figures ION to 10Q and Figures 11R to 11U, corresponding to the parts shown in Figures 2A to 2G, Figures 4A to 4F and Figures 5G to 5L described above Are denoted by the same reference numerals as in FIGS. 2A to 2G, FIGS. 4A to 4F and FIGS. 5G to 5L.
  • the surface of the substrate 21 on which the signal electrodes 23 are formed at a predetermined interval (for example, formed by patterning by photolithography) (more precisely, the substrate 21)
  • Photoresist 20 is applied to the entire surface of the signal electrode 23 and an appropriate beta treatment.
  • a photomask 10D is disposed above the substrate 21 in this state, and the photoresist 20 is selectively exposed. That is, an opening 10e having a shape corresponding to the red organic EL 22R is formed in the photomask 10D, and the photoresist 20 in a region corresponding to the opening 10e is selectively exposed to ultraviolet rays.
  • the signal electrode 23 corresponding to the red organic EL 22R is exposed by developing the photoresist 20 using an alkaline developer. At this time, the photoresist 20 is developed into a pattern (reversal pattern) obtained by reversing the pattern of the red organic EL 22R to be formed.
  • the entire surface is exposed to ultraviolet rays, and all the photoresists 20 on the substrate 21 are exposed to ultraviolet rays.
  • a hole transport layer 241, a red light emitting layer 242 R, and an electron transport layer 243 are continuously deposited on the entire surface while switching the deposition source, and a red organic layer is formed on the signal electrode 23.
  • the layer 24R (first material layer) is formed to have a stacked structure.
  • the photoresist 20 is dissolved using an alkaline developer. As a result, unnecessary portions of the red organic layer 24R are lifted off.
  • the sacrificial layer 8 is formed on the entire surface of the substrate 21 and the red organic layer 24R.
  • a photoresist 9 is applied on the sacrificial layer 8 as shown in FIG. 8G.
  • the red organic layer 24R is protected by the sacrificial layer 8
  • contact between the red organic layer 24R and the photoresist 9 can be avoided. That is, the organic solvent in the photoresist 9 does not erode the red organic layer 24R.
  • a photomask 10E is disposed above the substrate in this state, and the photoresist 9 is selectively used. Exposed.
  • the photomask 10E has an opening 10f having a shape corresponding to the green organic layer 24G, and the photoresist 9 in the region corresponding to the opening 10f is selectively exposed to ultraviolet rays (selective exposure step). ).
  • the portion corresponding to the opening 1 Of of the photoresist 9 is chemically changed to a property soluble in the alkaline developer.
  • a region in which the green organic layer 24 G is to be formed is developed by developing the photoresist 9 using an alkaline developer, for example, TMAH (tetramethylammonium hydroxide).
  • TMAH tetramethylammonium hydroxide
  • a hole transport layer 241, a green light emitting layer 242 G, and an electron transport layer 243 are continuously deposited on the entire surface while switching the deposition source.
  • the layer 24G (second material layer) is formed to have a stacked structure.
  • the photoresist 9 is dissolved using an alkaline developer. This lifts off unnecessary portions of the green organic layer 24G.
  • the sacrificial layer 8 is formed on the entire surface of the organic layer 24 and the substrate 21.
  • a photoresist 9 is applied on the sacrificial layer 8. At this time, since the organic layer 24 is protected by the sacrificial layer 8, contact between the organic layer 24 and the photoresist 9 can be avoided. That is, the organic solvent in the photoresist 9 does not erode the organic layer 24.
  • a photomask 10F is disposed above the substrate 21, and the photoregister 9 is selectively exposed. That is, openings 10g to 10i having a shape corresponding to the electron injection layer 25 are formed in the photomask 10F, and the photoresist 9 in a region corresponding to the openings 10g to 10i is selectively exposed to ultraviolet rays.
  • the photoresist 9 should be developed using an alkaline developer. As a result, the organic layer 24 is exposed. Thereafter, as shown in FIG. 11R, the entire surface is exposed to ultraviolet rays, and all the photoresists 9 on the substrate 21 are exposed to ultraviolet rays.
  • an electron injection layer 25 is formed in each organic layer 24, and as shown in FIG. 11T, the photoresist 9 is dissolved using an alkali developer. Thereby, an unnecessary portion of the electron injection layer 25 is lifted off.
  • the scanning electrode 26 is formed, and the RGB light emitting element 30 in which a plurality of organic ELs are formed on the same substrate is completed.
  • the action of the sacrificial layer 8 can prevent the photoresist 9 diluted in an organic solvent from coming into contact with each organic layer 24, so that the influence on the organic layer 24 is suppressed or prevented.
  • Each organic layer 24 can be formed into a fine pattern by photolithography without impairing the electrical characteristics of the organic layer 24. As a result, a high-definition and high-quality 2D display device can be realized.
  • FIG. 12 is a schematic cross-sectional view for explaining the configuration of an organic material device to which the method according to the fourth embodiment of the present invention is applied.
  • portions corresponding to the respective portions shown in FIG. 1 are denoted by the same reference numerals as in FIG.
  • This organic material device is an organic transistor integrated circuit element 31 in which a plurality of organic transistors 32 (three actually shown in FIG. 12, but actually more) are integrated.
  • Each organic transistor 32 has substantially the same configuration as the organic transistor 1 shown in FIG. 1, and the gate electrode 2 is integrally formed with the substrate 33 (for example, a glass substrate, a silicon substrate, or a plastic substrate). First, it differs from the organic transistor 1 in FIG. 1 in that it is formed separately on the substrate 33. Some of the electrodes 6 are shared by a pair of adjacent organic transistors 32, which are connected to each other! /.
  • FIGS. 13A to 13D, FIGS. 14E to 14H, and FIGS. 151 to 15L are schematic cross-sectional views showing a method of manufacturing the organic transistor integrated circuit device of FIG. 13A to 13D, 14E to 14H and 151 to 15L, FIGS. 2A to 2G, FIGS. 4A to 4F, and 5G to 5L correspond to the parts shown in FIGS. 2A to 2G, 4A to 4F and FIGS. 5G to 5L are denoted by the same reference numerals.
  • the gate electrode 2 and the gate insulating film 3 are formed (the gate electrode 2
  • photoresist 20 is applied to the entire surface of the substrate 33 (formed by patterning by photolithography) (more precisely, the surface of the gate insulating film 3), and an appropriate beta treatment is performed.
  • a photomask 10G is disposed above the substrate 33 in this state, and the photoresist 20 is selectively exposed. That is, openings 10j to 101 having a shape corresponding to the organic material layer 4 are formed in the photomask 10G, and the photoresist 20 in a region corresponding to the openings 10j to 101 is selectively exposed to ultraviolet rays.
  • a portion of the gate insulating film 3 is exposed by developing the photoresist 20 using an alkaline developer.
  • the photoresist 20 is developed into a pattern (reversal pattern) obtained by reversing the pattern of the organic material layer 4 to be formed.
  • the entire surface is exposed to ultraviolet rays, and all the photoresists 20 on the substrate 33 are exposed to ultraviolet rays.
  • an organic material layer 4 (first material layer) is deposited on the entire surface, and as shown in FIG. 14E, the photoresist 20 is dissolved using an alkali developer. . As a result, the unnecessary partial force S of the organic material layer 4 is lifted off.
  • a sacrificial layer 8 is formed on the entire surface including the organic material layer 4.
  • a photoresist 9 is applied on the sacrificial layer 8. At this time, since the organic material layer 4 is protected by the sacrificial layer 8, contact between the organic material layer 4 and the photoresist 9 can be avoided. That is, the organic solvent in the photoresist 9 does not erode the organic material layer 4.
  • a photomask 10H is disposed above the substrate in this state, and the photoresist 9 is selectively exposed.
  • the photomask 10H has openings 10m to 10q having shapes corresponding to the electrodes 5 and 6, respectively, and the photoresist 9 in a region corresponding to the openings 10m to 10q is selectively exposed to ultraviolet rays. (Selective exposure step).
  • the portion corresponding to the openings 10m to 10q of the photoresist 9 is chemically changed to a property soluble in an alkali developer.
  • an alkaline developer such as TMAH (tetramethylammonium
  • TMAH tetramethylammonium
  • the photoresist 9 is developed using the (Nymhydride mouth oxide) to expose the organic material layer 4 in the region where the electrodes 5 and 6 are to be formed (development process).
  • electrodes 5 and 6 (second material layer), which are metal layers, are vapor-deposited on the entire surface. Further, as shown in FIG. 15L, using an alkali developer, Photoresist 9 is dissolved. As a result, unnecessary portions of the electrodes 5 and 6 are lifted off together with the photoresist 9 (lift-off process), and an organic transistor integrated circuit element 31 in which a plurality of organic transistors 32 are integrated is completed.
  • the action of the sacrificial layer 8 can prevent the photoresist 9 diluted in the organic solvent from coming into contact with the organic material layer 4, thereby suppressing or preventing the influence on the organic material layer 4.
  • the fine patterns of the electrodes 5 and 6 can be formed on the organic material layer 4 by photolithography without impairing the electrical characteristics of the organic material layer 4.
  • the device can be miniaturized and highly integrated.
  • FIG. 16 is an illustrative cross-sectional view for explaining the configuration of an organic material device to which the method according to the fifth embodiment of the present invention is applied.
  • portions corresponding to the respective portions shown in FIG. 1 are denoted by the same reference numerals as in FIG.
  • This organic material device is a top contact type organic transistor 35 in which a plurality of (for example, two) electrodes of different materials are formed in contact with the upper surface of the organic material layer 4.
  • the organic transistor 35 has substantially the same configuration as the organic transistor 1 shown in FIG. 1, and the gate electrode 2 is formed integrally with a substrate 36 (for example, a glass substrate, a silicon substrate, or a plastic substrate).
  • the organic transistor 1 is different from the organic transistor 1 of FIG. 1 in that it is formed separately on the substrate 36 and the electrodes 5 and 6 are formed of different materials.
  • FIGS. 17A to 17F, FIGS. 18G to 18M and FIGS. 19N to 19S are schematic cross-sectional views illustrating the method of manufacturing the organic transistor of FIG. 16 in the order of steps. 17F, 17G, 18G and 18M and 19N and 19S, the parts corresponding to the parts shown in FIGS. 2A to 2G, 4A to 4F and 5G to 5L described above are shown in FIG. For 2G, Figures 4A-4F and Figures 5G-5L The same reference numerals are attached and shown.
  • the surface of the substrate 36 on which the gate electrode 2 and the gate insulating film 3 are formed (for example, the gate electrode 2 is formed by patterning by photolithography) (precisely, Photoresist 20 is applied to the entire surface of the gate insulating film 3) and appropriate beta treatment is performed.
  • a photomask 101 is disposed above the substrate 36 in this state, and the photoresist 20 is selectively exposed. That is, an opening 10r having a shape corresponding to the organic material layer 4 is formed in the photomask 101, and the photoresist 20 in a region corresponding to the opening 10r is selectively exposed to ultraviolet rays.
  • each part of the gate insulating film 3 is exposed by developing the photoresist 20 using an alkali developer.
  • the photoresist 20 is developed into a pattern (reversal pattern) obtained by reversing the pattern of the organic material layer 4 to be formed.
  • the entire surface is exposed to ultraviolet rays, and all the photoresists 20 on the substrate 36 are exposed to ultraviolet rays.
  • an organic material layer 4 (first material layer) is deposited on the entire surface, and as shown in FIG. 17E, the photoresist 20 is dissolved using an alkali developer. . As a result, the unnecessary partial force S of the organic material layer 4 is lifted off.
  • a sacrificial layer 8 is formed on the entire surface including the organic material layer 4.
  • a photoresist 9 is applied on the sacrificial layer 8 as shown in FIG. 18G.
  • the organic material layer 4 is protected by the sacrificial layer 8
  • contact between the organic material layer 4 and the photoresist 9 can be avoided. That is, the organic solvent in the photoresist 9 does not erode the organic material layer 4.
  • a photomask 10J is disposed above the substrate in this state, and the photoresist 9 is selectively exposed. Lighted. That is, an opening 10s having a shape corresponding to the electrode 5 is formed in the photomask 10J, and the photoresist 9 in a region corresponding to the opening 10s is selectively exposed to ultraviolet rays (selective exposure step). As a result, the portion of the photoresist 9 corresponding to the opening 10s is chemically changed to a property soluble in the alkaline developer.
  • an organic material in a region where the electrode 5 is to be formed is developed by developing the photoresist 9 using an alkaline developer, for example, TMAH (tetramethyl ammonium hydroxide). Layer 4 is exposed (development process).
  • TMAH tetramethyl ammonium hydroxide
  • an electrode 5 (second material layer), which is a metal layer, is vapor-deposited on the entire surface. Further, as shown in FIG. Is dissolved. As a result, the unnecessary portion of the electrode 5 is lifted off together with the photoresist 9 (lift-off process).
  • a sacrificial layer 8 is formed on the entire surface including the organic material layer 4.
  • a photoresist 9 is applied on the sacrificial layer 8. At this time, since the organic material layer 4 is protected by the sacrificial layer 8, contact between the organic material layer 4 and the photoresist 9 can be avoided. That is, the organic solvent in the photoresist 9 does not erode the organic material layer 4.
  • a photomask 10K is placed above the substrate in this state, and the photoresist 9 is selectively exposed. . That is, an opening 10t having a shape corresponding to the electrode 6 is formed in the photomask 10K, and the photoresist 9 in a region corresponding to the opening 10t is selectively exposed to ultraviolet rays (selective exposure step). As a result, the portion of the photoresist 9 corresponding to the opening 10t is chemically changed to a property soluble in the alkaline developer.
  • the organic material in the region where the electrode 6 is to be formed is developed by developing the photoresist 9 using an alkaline developer, for example, TMAH (tetramethyl ammonium hydroxide). Layer 4 is exposed (development process).
  • TMAH tetramethyl ammonium hydroxide
  • the entire surface is exposed to ultraviolet rays, and all of the photoresist 9 remaining on the substrate is exposed to ultraviolet rays (entire resist exposure step).
  • an electrode 6 that is a metal layer is deposited on the entire surface.
  • the material of the electrode 6 a material different from the material used for the evaporation of the electrode 5 is used.
  • the electrode 5 is made of gold (Au) and the electrode 6 is made of calcium (Ca).
  • Au gold
  • Ca calcium
  • the photoresist 9 is dissolved using an alkaline developer.
  • unnecessary portions of the electrode 6 are lifted off together with the photoresist 9 (lift-off process), and the organic transistor 35 in which a plurality of electrodes of different materials are formed is completed.
  • the sacrificial layer 8 can prevent the photoresist 9 diluted in the organic solvent from coming into contact with the organic material layer 4, so that the influence on the organic material layer 4 is suppressed or prevented.
  • the fine patterns of the electrodes 5 and 6 can be formed on the organic material layer 4 by photolithography without impairing the electrical characteristics of the organic material layer 4.
  • FIG. 20 is a schematic cross-sectional view for explaining the configuration of an organic material device to which the method according to the sixth embodiment of the present invention is applied.
  • FIG. 20 portions corresponding to the respective portions shown in FIG. 6 and FIG. 12 described above are denoted by the same reference numerals as those in FIG. 6 and FIG.
  • This organic material device is a composite integrated element 38 having an organic transistor and an organic EL.
  • the composite integrated element 38 includes an organic transistor 32 shown in FIG. 12 and a red organic EL 22R shown in FIG. 6 on a substrate 39 (for example, a glass substrate or a plastic substrate) at a predetermined interval. Yes.
  • a transparent electrode material that is the same material as the signal electrode 23 described above is used.
  • FIGS. 21A to 21F, FIGS. 22G to 22K, FIGS. 23L to 23P, and FIGS. 24Q to 24S are schematic cross-sectional views illustrating the method of manufacturing the composite integrated device of FIG. Figures 21A to 21F, Figures 22G to 22K, Figures 23 to 23P, and Figures 24Q to 24S (see Figure 7A to 7E, Figures 8F to 81, Figures 9J to 9M, Figures ION to 10Q, and 11R) ⁇ Figure 11U and Figure 13A ⁇ Figure 13D, Figure 14E ⁇ ; 14H and the parts corresponding to those shown in Figure 151 ⁇ Figure 15L are shown in Figure 7 A-7E, 8F-8I, 9J-9M, ION-10Q and 11R-11U, 13A-13D, 14E-14H and 151-15L. Attached is shown.
  • FIG. 21A to FIG. 21E the same steps as FIG. 13A to FIG. 13D and FIG. 14E are performed, and the organic material layer 4 is formed on the substrate 39.
  • a sacrificial layer 8 is formed on the entire surface including the organic material layer 4.
  • a photoresist 9 is applied on the sacrificial layer 8 as shown in FIG. 22G.
  • contact between the organic material layer 4 and the photoresist 9 can be avoided. That is, the organic solvent in the photoresist 9 does not erode the organic material layer 4.
  • a photomask 10M is disposed above the substrate in this state, and the photoresist 9 is selectively exposed.
  • the photomask 10M has openings 10v and 10w having shapes corresponding to the electrodes 5, 6 (23), respectively, and the photoresist 9 in the region corresponding to the openings lOv and lOw is selectively formed.
  • UV exposure selective exposure process.
  • the portions of the photoresist 9 corresponding to the openings lOv and lOw are chemically changed to properties soluble in an alkali developer.
  • electrodes 5 and 6 (2 3) are formed by developing photoresist 9 using an alkali developer, for example, TMAH (tetramethyl ammonium hydroxide).
  • TMAH tetramethyl ammonium hydroxide
  • electrodes 5, 6 (23) are vapor-deposited on the entire surface, and further, as shown in FIG. 23L, the photoresist 9 is dissolved using an alkali developer. . Thus, unnecessary portions of the electrodes 5, 6 (23) are lifted off together with the photoresist 9 (lift-off process).
  • a sacrificial layer 8 is formed on the entire surface including the organic material layer 4.
  • a photoresist 9 is applied on the sacrificial layer 8. The At this time, since the organic material layer 4 is protected by the sacrificial layer 8, contact between the organic material layer 4 and the photoresist 9 can be avoided. That is, the organic solvent in the photoresist 9 does not erode the organic material layer 4.
  • the photomask 10N is disposed above the substrate in this state, and the photoresist 9 is selectively exposed. That is, an opening ⁇ having a shape corresponding to the photomask 10N and the red organic layer 24R is formed, and the photoresist 9 in a region corresponding to the opening ⁇ is selectively exposed to ultraviolet rays (selective exposure step). As a result, the portion of the photoresist 9 corresponding to the opening 1 Ox is chemically changed to a property soluble in an alkaline developer.
  • the photoresist 9 is developed using an alkaline developer, for example, TMAH (tetramethyl ammonium hydroxide), so that the red organic layer 24R is formed.
  • TMAH tetramethyl ammonium hydroxide
  • the electrode 6 (23) is exposed (development process).
  • the hole transport layer 241, the red light emitting layer 242 R, and the electron transport layer 243 are continuously deposited on the entire surface while switching the deposition source, so that the electrode 6 (23)
  • the red organic layer 24R is formed to have a laminated structure.
  • the electron injection layer 25 and the scan electrode 26 are formed on the red organic layer 24R.
  • the photoresist 9 is dissolved using an alkali developer. As a result, the unnecessary portion of the red organic layer 24R is coffed off (lift-off process), and the composite integrated device 38 having the organic transistor and the organic EL is completed.
  • the sacrificial layer 8 can prevent the photoresist 9 diluted in the organic solvent from coming into contact with the organic material layer 4 and the red organic layer 24R, and thus the organic material layer 4 and the red organic layer.
  • Both organic material layer 4 and red organic layer 24R are made fine by photolithography while suppressing or preventing the effect on layer 24R, that is, without damaging the electrical properties of organic material layer 4 and red organic layer 24R. Can be formed into a pattern. Therefore, a high-definition composite integrated device can be realized.
  • red organic EL22R was formed as organic EL22.
  • the green organic EL22G and blue organic EL22B shown in Fig. 6 can also be formed.
  • a film made of TPD / Copper Phthalocyanine (CuPc) or the like can be formed as a protective film in order to flatten the surface of the organic material layer and prevent pinholes from occurring in the sacrificial layer.
  • CuPc Copper Phthalocyanine

Abstract

This invention provides a method for manufacturing an organic material apparatus, comprising a step of forming a sacrifice layer formed of an inorganic material on a first material layer formed of an organic material provided on a substrate, a step of forming a resist in the area on the substrate including the top of the sacrifice layer, a selective exposure step of for selectively exposing the resist to form a predetermined pattern, a development step of dissolving, with a developing solution comprising an aqueous solution which can dissolve the sacrifice layer, the resist part exposed in the selective exposure step and the sacrifice layer provided just under the resist part, and a step of forming the second material layer on the substrate after the development step, and a lift-off step of dissolving, with a developing solution comprising an aqueous solution which can dissolve the sacrifice layer, the resist and the sacrifice layer just under the resist to lift off the second material layer on the resist to pattern the second material layer.

Description

明 細 書  Specification
有機材料装置の製造方法  Manufacturing method of organic material device
技術分野  Technical field
[0001] この発明は、有機材料層上に、別の材料層のパターンを有する有機材料装置の製 造方法に関する。  The present invention relates to a method for manufacturing an organic material device having a pattern of another material layer on an organic material layer.
背景技術  Background art
[0002] 半導体活性層に有機半導体材料を用いた有機トランジスタが提案されて!/、る。有 機トランジスタの一つの構造は、いわゆるトップコンタクト型である。トップコンタクト型 の有機トランジスタは、有機半導体層上にソース'ドレイン電極を形成して作製される 。より具体的には、たとえば、ガラス基板、プラスチック基板、シリコン基板などの基板 上に、ゲート電極が形成され、これを覆うようにゲート絶縁膜が形成される。さらに、こ のゲート絶縁膜上に有機半導体層が蒸着され、この有機半導体層上にソース'ドレイ ン電極としての金属層が形成される。  An organic transistor using an organic semiconductor material for a semiconductor active layer has been proposed! /. One structure of the organic transistor is a so-called top contact type. A top contact type organic transistor is manufactured by forming source and drain electrodes on an organic semiconductor layer. More specifically, for example, a gate electrode is formed on a substrate such as a glass substrate, a plastic substrate, or a silicon substrate, and a gate insulating film is formed so as to cover the gate electrode. Further, an organic semiconductor layer is deposited on the gate insulating film, and a metal layer as a source / drain electrode is formed on the organic semiconductor layer.
[0003] この金属層の形成には、一般に真空蒸着法が適用される。より具体的には、真空チ ヤンバ内に蒸着源が配置され、これに対向するように前記ゲート絶縁膜および有機 半導体層が形成された基板が配置される。さらに、この基板と蒸着源との間にシャド ゥマスクが配置される。シャドウマスクには、有機半導体層上に形成すべき金属層の パターン(ソース'ドレイン電極のパターン)に対応した微細な開口が形成されている 。蒸着源において蒸発し、有機半導体層に向かって飛来する金属材料分子は、シャ ドウマスクの開口を通って、有機半導体層の表面に達して付着し、金属層のパターン を形成する。  [0003] A vacuum deposition method is generally applied to the formation of the metal layer. More specifically, a deposition source is disposed in the vacuum chamber, and a substrate on which the gate insulating film and the organic semiconductor layer are formed is disposed so as to face the deposition source. Further, a shadow mask is disposed between the substrate and the evaporation source. In the shadow mask, a fine opening corresponding to the pattern of the metal layer (source / drain electrode pattern) to be formed on the organic semiconductor layer is formed. The metal material molecules that evaporate in the vapor deposition source and fly toward the organic semiconductor layer reach the surface of the organic semiconductor layer through the opening of the shadow mask and adhere to form a pattern of the metal layer.
特許文献 1 :特開 2005— 038638号公幸  Patent Document 1: JP 2005-038638 Koyuki
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] し力、し、シャドウマスクを用いた前述の方法では、極微細な金属層のパターンを形 成することができず、数 mオーダーのパターンが微細化の限界である。したがって 、素子の微細化および高集積化には、必ずしも適した方法であるとは言えない。 そこで、素子を微細化するための方法として、インクジェットパターユングを適用する ことが提案されてレ、るが、インクジェットパターユングのインクとなりうる金属材料として は、たとえば、ナノ微粒子である必要がある。それ以外の材料であれば、ラインエッジ の凹凸が大きぐパターン精度が悪くなる。 [0004] With the above-described method using a shadow force and a shadow mask, an extremely fine metal layer pattern cannot be formed, and a pattern on the order of several meters is the limit of miniaturization. Therefore, it is not necessarily a suitable method for miniaturization and high integration of elements. Therefore, it has been proposed to apply ink jet patterning as a method for miniaturizing the element. However, as a metal material that can be ink for ink jet patterning, for example, it is necessary to be nano fine particles. For other materials, the line edge irregularities are large and the pattern accuracy is poor.
[0005] 一方、金属膜のパターユングにフォトリソグラフイエ程を適用して、パターンの微細 化を図ることが考えられる力、もしれない。しかし、フォトリソグラフイエ程において用いら れるフォトレジストは、一般に、有機溶剤で希釈して基板上に塗布される。ところが、 有機溶剤で希釈したフォトレジストを有機半導体層上に塗布すれば、その有機溶剤 が有機半導体層を浸食し、その電気的特性を損なわせるおそれがある。  [0005] On the other hand, it may be possible to apply a photolithographic process to the patterning of a metal film to reduce the size of the pattern. However, the photoresist used in the photolithography process is generally diluted with an organic solvent and applied onto the substrate. However, if a photoresist diluted with an organic solvent is applied on the organic semiconductor layer, the organic solvent may erode the organic semiconductor layer and impair its electrical characteristics.
[0006] 前述した問題は、金属層を形成する場合に限らず、基板上に有機材料層を形成し た後に、他の材料層(たとえば、有機材料層、絶縁膜など)をパターン形成する場合 に共通の問題である。  [0006] The above-described problem is not limited to the case of forming a metal layer, but after forming an organic material layer on a substrate and patterning another material layer (for example, an organic material layer, an insulating film, etc.) Is a common problem.
そこで、この発明の目的は、基板上の有機材料層に対する影響を抑制または防止 しつつ、当該基板上に別の材料層の微細パターンを形成することができる有機材料 装置の製造方法を提供することにある。  Accordingly, an object of the present invention is to provide a method for manufacturing an organic material device capable of forming a fine pattern of another material layer on the substrate while suppressing or preventing the influence on the organic material layer on the substrate. It is in.
課題を解決するための手段  Means for solving the problem
[0007] この発明の有機材料装置の製造方法は、基板上に形成された有機材料力 なる第 1材料層上に無機材料からなる犠牲層を形成する工程と、前記犠牲層上を含む前記 基板上の領域にレジストを形成する工程と、このレジストを所定パターンに選択露光 する選択露光工程と、前記犠牲層を溶解させることができる水溶液からなる現像液で [0007] The organic material device manufacturing method of the present invention includes a step of forming a sacrificial layer made of an inorganic material on a first material layer having an organic material force formed on a substrate, and the substrate including the sacrificial layer. A step of forming a resist in the upper region, a selective exposure step of selectively exposing the resist in a predetermined pattern, and a developer comprising an aqueous solution capable of dissolving the sacrificial layer.
、前記選択露光工程にお!、て露光されたレジスト部分およびその直下の犠牲層を溶 解させる現像工程と、この現像工程の後の前記基板上に、第 2材料層を形成するェ 程と、前記犠牲層を溶解させることができる水溶液からなる現像液で、前記レジストお よびその直下の犠牲層を溶解させることによって、当該レジスト上の第 2材料層をリフ トオフし、前記第 2材料層をパターユングするリフトオフ工程とを含む。 A development step for dissolving the resist portion exposed in the selective exposure step and the sacrificial layer immediately below the resist portion, and a step of forming a second material layer on the substrate after the development step. The second material layer on the resist is lifted off by dissolving the resist and the sacrificial layer directly below the developer with an aqueous solution capable of dissolving the sacrificial layer. A lift-off process for patterning.
[0008] この方法によれば、第 1材料層を無機材料からなる犠牲層で保護した状態でレジス トが形成 (塗布)されるので、第 1材料層をレジスト中の有機溶媒力も保護できる。す なわち、犠牲層によって、第 1材料層とレジストとの接触を回避できる。その結果、第 1 材料層に対する影響を抑制または防止しつつ、基板上に第 2材料層を形成 (パター ユング)すること力 Sできる。しかも、フォトリソグラフィ技術によって第 2材料層をパター ユングできるので、シャドウマスクを用いる従来技術に比較して格段に微細化された ノ ターンの第 2材料層を、第 1材料層が形成された基板上に形成することができる。 むろん、インクジェットパターユングの場合とは異なり、第 2材料層の使用材料に対す る厳しい制限もない。 [0008] According to this method, since the resist is formed (applied) in a state where the first material layer is protected by the sacrificial layer made of an inorganic material, the organic solvent force in the resist can be protected from the first material layer. In other words, the sacrificial layer can avoid contact between the first material layer and the resist. As a result, the first It is possible to form (pattern) the second material layer on the substrate while suppressing or preventing the influence on the material layer. In addition, since the second material layer can be patterned by photolithography, the substrate with the first material layer formed on the second material layer, which is significantly finer than the conventional technology using a shadow mask, is used. Can be formed on top. Of course, unlike the case of inkjet patterning, there are no strict restrictions on the materials used for the second material layer.
[0009] 前記現像工程と前記リフトオフ工程との現像液は、同種のものでも異種のものでも よい。また、前記第 2材料層は、たとえば、蒸着法により形成されてもよい。第 2材料 層の形成パターンは、前記第 1材料層に対する接触部を有するパターンでもよいし、 前記第 1材料層とは接触部を有しないパターンでもよい。  [0009] Developers in the developing step and the lift-off step may be the same type or different types. The second material layer may be formed by, for example, a vapor deposition method. The formation pattern of the second material layer may be a pattern having a contact portion with respect to the first material layer, or may be a pattern having no contact portion with the first material layer.
前記有機材料装置の製造方法は、前記現像工程後に前記基板上に残って!/、る未 露光部分のレジストを露光して、このレジストを前記リフトオフ工程で用いる現像液に 可溶な性質に化学変化させる全レジスト露光工程をさらに含み、この全レジスト露光 工程の後に、前記第 2材料層を形成する工程を行うことが好ましい。  The organic material device manufacturing method exposes the unexposed portion of the resist remaining on the substrate after the development step, and the resist is chemically soluble in a developer used in the lift-off step. It is preferable to further include an all resist exposure process to be changed, and after this all resist exposure process, a process of forming the second material layer is performed.
[0010] この方法によれば、現像工程後に基板上に残っている未露光部分のレジストを露 光して、このレジストをリフトオフ工程で用いる現像液に可溶な性質に化学変化される 全レジスト露光工程が行われる。そのため、リフトオフ工程において、基板上の全レジ ストを確実に溶解させることができ、レジストと共に第 2材料層の不要部分を精密にリ フトオフできる。  [0010] According to this method, the resist in the unexposed portion remaining on the substrate after the development process is exposed, and this resist is chemically changed to a property soluble in the developer used in the lift-off process. An exposure process is performed. Therefore, in the lift-off process, all resists on the substrate can be surely dissolved, and unnecessary portions of the second material layer can be precisely lifted off together with the resist.
[0011] また、前記有機材料装置の製造方法において、前記現像工程およびリフトォフエ 程にぉレ、て用いられる前記現像液は、 V、ずれもアルカリ性水溶液であることが好まし い。  [0011] In addition, in the method for manufacturing the organic material device, it is preferable that the developer used in the developing process and the lift-off process is V and the deviation is an alkaline aqueous solution.
一般に、レジストは、アルカリ性水溶液に可溶であるように設計され、露光後の現像 工程では、アルカリ現像液が用いられることが多い。したがって、リフトオフ工程にお In general, the resist is designed to be soluble in an alkaline aqueous solution, and an alkaline developer is often used in the development process after exposure. Therefore, in the lift-off process
V、てアルカリ性水溶液を用い、有機材料層としてアルカリ性水溶液に不溶な材料を 用いることによって、有機材料層に対するレジストの選択比を大きくとることができ、精 密なリフトオフが可能になる。 By using an alkaline aqueous solution and a material insoluble in the alkaline aqueous solution as the organic material layer, it is possible to increase the resist selection ratio with respect to the organic material layer, thereby enabling precise lift-off.
[0012] また、前記有機材料装置の製造方法は、前記犠牲層が金属層であることが好まし い。 [0012] In the method for manufacturing the organic material device, the sacrificial layer is preferably a metal layer. Yes.
この方法によれば、犠牲層として金属層、たとえば、アルミニウムの層などが形成さ れる。一般に、アルミニウムなどの金属は、アルカリ性水溶液に可溶である。そのため 、リフトオフ工程における現像液として、たとえば、アルカリ性水溶液を用いた場合、 有機材料層に形成された犠牲層を、レジストと共に容易に溶解除去することができる  According to this method, a metal layer such as an aluminum layer is formed as the sacrificial layer. In general, metals such as aluminum are soluble in an alkaline aqueous solution. Therefore, for example, when an alkaline aqueous solution is used as the developer in the lift-off process, the sacrificial layer formed on the organic material layer can be easily dissolved and removed together with the resist.
[0013] また、前記有機材料装置の製造方法は、前記第 1材料層が有機半導体材料層で あることが好ましい。 [0013] In the method for manufacturing the organic material device, the first material layer is preferably an organic semiconductor material layer.
この方法によれば、犠牲層の働きにより、レジストが有機半導体材料層に接触する ことを回避できるため、レジスト中の有機溶剤による有機半導体材料層に対する影響 を抑制または防止できる。これにより、有機半導体材料層の電気的特性を損なうこと なぐ有機半導体材料層の上に微細パターンの第 2材料層を形成することができる。 その結果、優れた電気的特性の有機半導体装置を実現できる。  According to this method, it is possible to prevent the resist from coming into contact with the organic semiconductor material layer by the action of the sacrificial layer, so that the influence of the organic solvent in the resist on the organic semiconductor material layer can be suppressed or prevented. Thus, the second material layer having a fine pattern can be formed on the organic semiconductor material layer without impairing the electrical characteristics of the organic semiconductor material layer. As a result, an organic semiconductor device having excellent electrical characteristics can be realized.
[0014] 有機半導体装置の例としては、半導体活性層として有機半導体層を用いた有機ト ランジスタゃ、有機半導体発光層にお!/、て電子および正孔の再結合を生じさせて発 光を起こす有機半導体発光素子(有機エレクト口ルミネッセンス (EL)素子)を挙げる こと力 Sでさる。 [0014] As an example of an organic semiconductor device, an organic transistor using an organic semiconductor layer as a semiconductor active layer may emit light by causing recombination of electrons and holes in the organic semiconductor light emitting layer. Name the organic semiconductor light-emitting device that wakes up (organic electoluminescence (EL) device).
また、前記有機材料装置の製造方法は、前記第 2材料層が金属層を含むことが好 ましい。  In the method for manufacturing the organic material device, the second material layer preferably includes a metal layer.
[0015] この方法によれば、第 2材料層が金属層、たとえば、金属電極を含むものとして形 成される。したがって、たとえば、有機半導体材料層等の有機材料層上に電極を形 成したトップコンタクト型デバイスを製造することができる。この場合に、有機材料層の 電気的特性を損なうことなく微細パターンの金属膜を基板上 (たとえば有機材料層上 )に形成できるので、デバイスの微細化および高集積化を図ることができる。  [0015] According to this method, the second material layer is formed to include a metal layer, for example, a metal electrode. Therefore, for example, a top contact type device in which an electrode is formed on an organic material layer such as an organic semiconductor material layer can be manufactured. In this case, since a metal film having a fine pattern can be formed on the substrate (for example, on the organic material layer) without impairing the electrical characteristics of the organic material layer, the device can be miniaturized and highly integrated.
[0016] また、前記有機材料装置の製造方法は、前記第 2材料層が、前記第 1材料層を構 成する有機材料層とは別の種類の有機材料層を含むことが好ましい。  [0016] In the method for manufacturing the organic material device, it is preferable that the second material layer includes an organic material layer of a different type from the organic material layer constituting the first material layer.
この方法によれば、第 2材料層が、第 1材料層を構成する有機材料層とは別の種類 の有機材料層を含むものとして形成される。より具体的には、たとえば、第 1材料層が P型有機半導体材料で形成され、第 2材料層が N型有機半導体材料で形成される。 これにより、基板上に P型および N型の有機半導体材料層をいずれも微細パターン に形成すること力できる。したがって、たとえば、 Pチャンネル型動作の有機トランジス タ素子と Nチャンネル型動作の有機トランジスタ素子とを基板上に微細パターンに形 成し、これらを基板上で集積化したりすることができる。 According to this method, the second material layer is formed so as to include an organic material layer of a different type from the organic material layer constituting the first material layer. More specifically, for example, the first material layer is It is made of P-type organic semiconductor material and the second material layer is made of N-type organic semiconductor material. As a result, both P-type and N-type organic semiconductor material layers can be formed on the substrate in a fine pattern. Therefore, for example, an organic transistor element of P channel type operation and an organic transistor element of N channel type operation can be formed in a fine pattern on a substrate, and these can be integrated on the substrate.
[0017] また、前記有機材料装置の製造方法は、前記第 1材料層が、複数の有機材料層の 積層構造を有することが好ましレ、。 [0017] Further, in the method of manufacturing the organic material device, the first material layer preferably has a laminated structure of a plurality of organic material layers.
この方法によれば、第 1材料層が複数の有機材料層の積層構造として形成される ので、たとえば、有機エレクト口ルミネッセンス素子の製造方法として好適に採用する こと力 Sでさる。  According to this method, since the first material layer is formed as a laminated structure of a plurality of organic material layers, for example, it can be suitably employed as a method for manufacturing an organic electoluminescence device.
[0018] また、前記有機材料装置の製造方法は、前記第 2材料層が、複数の有機材料層の 積層構造を有することが好ましレ、。  [0018] In the method for manufacturing the organic material device, the second material layer preferably has a laminated structure of a plurality of organic material layers.
この方法によれば、第 2材料層が複数の有機材料層の積層構造として形成される ので、たとえば、有機エレクト口ルミネッセンス素子の製造方法として好適に採用する こと力 Sできる。より具体的には、たとえば、基板上に複数の微小有機ルミネッセンス素 子を高密度で配置することが可能になり、高精細な表示装置を実現することができる According to this method, since the second material layer is formed as a laminated structure of a plurality of organic material layers, for example, it can be suitably employed as a method for manufacturing an organic electoluminescence device. More specifically, for example, a plurality of micro organic luminescence elements can be arranged at high density on a substrate, and a high-definition display device can be realized.
Yes
[0019] 本発明における上述の、またはさらに他の目的、特徴および効果は、添付図面を 参照して次に述べる実施形態の説明により明らかにされる。  [0019] The above-described or other objects, features, and effects of the present invention will become apparent from the following description of embodiments with reference to the accompanying drawings.
図面の簡単な説明  Brief Description of Drawings
[0020] [図 1]この発明の第 1実施形態に係る方法が適用される有機材料装置の構成を図解 的に示す断面図である。  FIG. 1 is a cross-sectional view schematically showing a configuration of an organic material device to which a method according to a first embodiment of the present invention is applied.
[図 2]図 2A〜2Gは、図 1の有機トランジスタの製造方法を工程順に示す図解的な断 面図である。  [FIG. 2] FIGS. 2A to 2G are schematic sectional views showing a method of manufacturing the organic transistor of FIG.
[図 3]この発明の第 2の実施形態に係る方法が適用される有機材料装置の構成を説 明するための図解的な断面図である。  FIG. 3 is an illustrative cross-sectional view for explaining the configuration of an organic material device to which a method according to a second embodiment of the present invention is applied.
[図 4]図 4A〜4Fは、図 3の有機トランジスタ集積回路素子の製造方法を工程順に示 す図解的な断面図である。 園 5]図 5G〜5Lは、図 3の有機トランジスタ集積回路素子の製造方法を工程順に示 す図解的な断面図である。 [FIG. 4] FIGS. 4A to 4F are schematic sectional views showing a method of manufacturing the organic transistor integrated circuit element of FIG. 3 in the order of steps. 5] FIGS. 5G to 5L are schematic sectional views showing a method of manufacturing the organic transistor integrated circuit element of FIG. 3 in the order of steps.
園 6]この発明の第 3の実施形態に係る方法が適用される有機材料装置の構成を説 明するための図解的な断面図である。 6] An illustrative cross-sectional view for explaining the configuration of an organic material device to which the method according to the third embodiment of the present invention is applied.
園 7]図 7A〜7Eは、図 6の RGB発光素子の製造方法を工程順に示す図解的な断 面図である。 7] FIGS. 7A to 7E are schematic sectional views showing the manufacturing method of the RGB light emitting device of FIG. 6 in the order of steps.
園 8]図 8F〜8Iは、図 6の RGB発光素子の製造方法を工程順に示す図解的な断面 図である。 8] FIGS. 8F to 8I are schematic sectional views showing the manufacturing method of the RGB light emitting device of FIG. 6 in the order of steps.
[図 9]図 9J〜9Mは、図 6の RGB発光素子の製造方法を工程順に示す図解的な断面 図である。  FIGS. 9J to 9M are schematic cross-sectional views showing the method of manufacturing the RGB light emitting device of FIG. 6 in the order of steps.
[図 10]図 10N〜; 10Qは、図 6の RGB発光素子の製造方法を工程順に示す図解的な 断面図である。  [FIG. 10] FIGS. 10N to 10Q are schematic cross-sectional views showing the manufacturing method of the RGB light emitting device of FIG. 6 in the order of steps.
園 11]図 11R〜; 11Uは、図 6の RGB発光素子の製造方法を工程順に示す図解的な 断面図である。 11] FIGS. 11R to 11U are schematic cross-sectional views showing the manufacturing method of the RGB light emitting device of FIG. 6 in the order of steps.
園 12]この発明の第 4の実施形態に係る方法が適用される有機材料装置の構成を説 明するための図解的な断面図である。 Sono 12] is a schematic cross-sectional view for explaining the structure of an organic material device to which a method according to a fourth embodiment of the present invention is applied.
園 13]図 13A〜; 13Dは、図 12の有機トランジスタ集積回路素子の製造方法を工程 順に示す図解的な断面図である。 13] FIGS. 13A to 13D are schematic sectional views showing a method of manufacturing the organic transistor integrated circuit element of FIG. 12 in the order of steps.
園 14]図 14E〜; 14Hは、図 12の有機トランジスタ集積回路素子の製造方法を工程 順に示す図解的な断面図である。 14] FIGS. 14E to 14H are schematic sectional views showing the method of manufacturing the organic transistor integrated circuit element of FIG. 12 in the order of steps.
[図 15]図 15I〜 15Lは、図 12の有機トランジスタ集積回路素子の製造方法を工程順 に示す図解的な断面図である。  FIGS. 15I to 15L are schematic sectional views showing a method of manufacturing the organic transistor integrated circuit element of FIG. 12 in the order of steps.
園 16]この発明の第 5の実施形態に係る方法が適用される有機材料装置の構成を説 明するための図解的な断面図である。 16] A schematic cross-sectional view for explaining a configuration of an organic material device to which the method according to the fifth embodiment of the present invention is applied.
園 17]図 17A〜; 17Fは、図 16の有機トランジスタの製造方法を工程順に示す図解的 な断面図である。 17] FIGS. 17A to 17F are schematic sectional views showing the method of manufacturing the organic transistor of FIG. 16 in the order of steps.
[図 18]図 18G〜; 18Mは、図 16の有機トランジスタの製造方法を工程順に示す図解 的な断面図である。 [図 19]図 19N〜 19Sは、図 16の有機トランジスタの製造方法を工程順に示す図解 的な断面図である。 [FIG. 18] FIGS. 18G to 18M are schematic sectional views showing the method of manufacturing the organic transistor of FIG. 16 in the order of steps. FIGS. 19N to 19S are schematic sectional views showing the method of manufacturing the organic transistor of FIG. 16 in the order of steps.
[図 20]この発明の第 6の実施形態に係る方法が適用される有機材料装置の構成を説 明するための図解的な断面図である。  FIG. 20 is a schematic cross-sectional view for explaining the configuration of an organic material device to which a method according to a sixth embodiment of the present invention is applied.
[図 21]図 21A〜21Fは、図 20の複合集積素子の製造方法を工程順に示す図解的 な断面図である。  21A to 21F are schematic cross-sectional views showing a method of manufacturing the composite integrated device of FIG. 20 in the order of steps.
[図 22]図 22G〜22Kは、図 20の複合集積素子の製造方法を工程順に示す図解的 な断面図である。  22G to 22K are schematic cross-sectional views showing the method of manufacturing the composite integrated device of FIG. 20 in the order of steps.
[図 23]図 23L〜23Pは、図 20の複合集積素子の製造方法を工程順に示す図解的 な断面図である。  FIGS. 23L to 23P are schematic sectional views showing a method of manufacturing the composite integrated device of FIG. 20 in the order of steps.
[図 24]図 24Q〜24Sは、図 20の複合集積素子の製造方法を工程順に示す図解的 な断面図である。  [FIG. 24] FIGS. 24Q to 24S are schematic sectional views showing a method of manufacturing the composite integrated device of FIG. 20 in the order of steps.
符号の説明  Explanation of symbols
[0021] 1···有機トランジスタ、 4···有機材料層、 5···電極、 6···電極、 8···犠牲層、 9··  [0021] 1 ... Organic transistor, 4 ... Organic material layer, 5 ... Electrode, 6 ... Electrode, 8 ... Sacrificial layer, 9 ...
'フォトレジスト、 10···フォトマスク、 11···基板、 16Ρ···電極、 16Ν···電極、 17·· •電極、 18· ·,Ρ型有機半導体層、 19· ·,Ν型有機半導体層、 21···基板、 24··,有 機層、 29···有機トランジスタ集積回路素子、 30· "RGB発光素子、 31···有機トラ ンジスタ集積回路素子、 33···基板、 35···有機トランジスタ、 36···基板、 38···複 合集積素子、 39·· '基板  'Photoresist, 10 ··· Photomask, 11 ··· Substrate, 16Ρ ··· Electrode, 16Ν ··· Electrode, 17 ··· Electrode, 18 ···, vertical organic semiconductor layer, 19 ··· Ν Type organic semiconductor layer, 21 ... substrate, 24 ... organic layer, 29 ... organic transistor integrated circuit element, 30 "RGB light emitting element, 31 ... organic transistor integrated circuit element, 33 ... ... Board, 35 ... Organic transistor, 36 ... Board, 38 ... Composite integrated device, 39 ... Board
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 図 1は、この発明の第 1実施形態に係る方法が適用される有機材料装置の構成を 図解的に示す断面図である。 FIG. 1 is a cross-sectional view schematically showing the configuration of an organic material device to which the method according to the first embodiment of the present invention is applied.
この有機材料装置は、 FET (電界効果型トランジスタ)としての基本構造を有する有 機トランジスタ 1である。有機トランジスタ 1は、基板を兼ねるゲート電極 2と、このグー ト電極 2上に積層されたグート絶縁膜 3と、ゲート絶縁膜 3上に積層された有機材料 層 4と、この有機材料層 4上に所定の間隔(たとえば、 10 m)を空けて形成された一 対の電極 5, 6 (ソース'ドレイン電極)とを備えている。すなわち、この有機トランジスタ 1は、電極 5, 6が、有機材料層 4に対してゲート電極 2とは反対側に配置された、い わゆるトップコンタクト型の構造を有している。たとえば、一対の電極 5, 6のうちの一 方は、有機材料層 4にキヤリャ(電子または正孔)を注入するキヤリャ注入電極 5であ り、他方は有機材料層 4からキヤリャを受け取るキヤリャ引き出し電極 6である。 This organic material device is an organic transistor 1 having a basic structure as a FET (field effect transistor). The organic transistor 1 includes a gate electrode 2 which also serves as a substrate, a goot insulating film 3 stacked on the got electrode 2, an organic material layer 4 stacked on the gate insulating film 3, and an organic material layer 4 And a pair of electrodes 5 and 6 (source and drain electrodes) formed at a predetermined interval (for example, 10 m). That is, in this organic transistor 1, the electrodes 5 and 6 are arranged on the opposite side of the organic material layer 4 from the gate electrode 2. It has a so-called top contact type structure. For example, one of the pair of electrodes 5 and 6 is a carrier injection electrode 5 that injects a carrier (electrons or holes) into the organic material layer 4, and the other is a carrier lead that receives the carrier from the organic material layer 4. Electrode 6.
[0023] ゲート電極 2は、シリコン基板の表層部に高濃度に N型不純物を導入して形成され た不純物拡散層からなる電極である。むろん、たとえば、基板としてプラスチック基板 を用い、この基板上にニッケル (M)、アルミニウム (A1)などの金属膜を形成してゲート 電極 2とすることもできる。ゲート電極 2は、少なくとも電極 5, 6の間の電極間領域 7に おいて、ゲート絶縁膜 3を介して有機材料層 4に対向するように基板上に設けられて いる。 The gate electrode 2 is an electrode composed of an impurity diffusion layer formed by introducing an N-type impurity at a high concentration into the surface layer portion of the silicon substrate. Of course, for example, a plastic substrate may be used as the substrate, and a metal film such as nickel (M) or aluminum (A1) may be formed on the substrate to form the gate electrode 2. The gate electrode 2 is provided on the substrate so as to face the organic material layer 4 through the gate insulating film 3 in at least the interelectrode region 7 between the electrodes 5 and 6.
[0024] ゲート絶縁膜 3は、たとえば、酸化シリコン(SiO )、五酸化タンタル(Ta 0 )、酸化ァ ノレミニゥム(A1 0 )ならびに、ノポラック樹脂およびポリイミドなどのポリマー、などから 構成される。  The gate insulating film 3 is made of, for example, silicon oxide (SiO 2), tantalum pentoxide (Ta 0), an oxide of aluminum (A 1 0), a polymer such as a nopolac resin and polyimide, and the like.
有機材料層 4は、キヤリャ注入電極 5から注入される正孔を移動させることができる P型有機半導体材料 (正孔輸送性有機材料)で構成された P型有機半導体層であつ てもよ!/、し、キヤリャ注入電極 5から注入される電子を移動させることができる N型有 機半導体材料 (電子輸送性有機材料)で構成された N型有機半導体層であってもよ い。また、正孔および電子の両方を移動させることができるバイポーラ型有機半導体 材料からなるバイポーラ型有機半導体層で有機材料層 4を構成することもできる。こ の場合、電極 5, 6は、いずれもキヤリャ注入電極となり、その一方は正孔を有機材料 層 4に注入する正孔注入電極となり、他方は電子を有機材料層 4に注入する電子注 入電極となる。  The organic material layer 4 may be a P-type organic semiconductor layer made of a P-type organic semiconductor material (hole transporting organic material) that can move holes injected from the carrier injection electrode 5! /, And may be an N-type organic semiconductor layer made of an N-type organic semiconductor material (electron transporting organic material) that can move electrons injected from the carrier injection electrode 5. Further, the organic material layer 4 can be composed of a bipolar organic semiconductor layer made of a bipolar organic semiconductor material capable of moving both holes and electrons. In this case, the electrodes 5 and 6 are both carrier injection electrodes, one of which is a hole injection electrode that injects holes into the organic material layer 4, and the other is an electron injection that injects electrons into the organic material layer 4. It becomes an electrode.
[0025] 典型的な P型有機半導体材料は、ペンタセンであり、層厚 50nmのペンタセン層で 有機材料層 4を構成することができる。その他、次のような P型有機半導体材料のな 力、から任意に選択したものを構成材料として用いることができる。  [0025] A typical P-type organic semiconductor material is pentacene, and the organic material layer 4 can be composed of a pentacene layer having a layer thickness of 50 nm. In addition, any material selected from the following P-type organic semiconductor materials can be used as a constituent material.
Pentacene、 Tetracene、 Antnraceneなどのノ'でン系材料。 Copper Phthalocyamneな とのフタロンノニン糸 ¼料。 a _sexithiophene、 a , ω _Dihexyi_sexithiophene、 dihexy 1-anthradithiophene Bis(dithienothiophene)、 a , ω -Dihexyト quinquethiopheneなど のオリゴチォフェン材料。 poly(3_hexylthiophene)、 poly(3_butylthiophene)などのポリ チォフェン材料。その他、 oligophenylene^ oligophenylenevinylene TPD、 a _NPD、 m -MTDATA, TPAC、 TCTAなどの低分子材料や、 poly(phenylenevinylene)、 poly(thie nylenevinylene)、 polyacetylene、 poly、vinylcarbazoleノ , どの尚 -十ォ料。 Pentacene, Tetracene, Antnracene and other materials. Phthalononin yarn with Copper Phthalocyamne ¼ material. Oligothiophene materials such as a_sexithiophene, a, ω_Dihexyi_sexithiophene, dihexy 1-anthradithiophene Bis (dithienothiophene), a, ω-Dihexy quinquethiophene. poly (3_hexylthiophene), poly (3_butylthiophene), etc. Thiophene material. In addition, low molecular weight materials such as oligophenylene ^ oligophenylenevinylene TPD, a_NPD, m-MTDATA, TPAC, TCTA, poly (phenylenevinylene), poly (thie nylenevinylene), polyacetylene, poly, vinylcarbazole, and more.
[0026] また、 N型有機半導体材料としては、次のような N型有機半導体材料のなかから任 意に選択したものを構成材料として用いることができる。 [0026] Further, as the N-type organic semiconductor material, any material selected from the following N-type organic semiconductor materials can be used as a constituent material.
NTCDI, C - NTC、 C - NTC、 F - octyト NTC、 F - MeBn- NTC等の NTCDI系材料。 P  NTCDI materials such as NTCDI, C-NTC, C-NTC, F-octy to NTC, F-MeBn-NTC. P
6 8 15 3  6 8 15 3
TCDI、 C -PTC, C -PTC, C -PTC, C -PTC, Bu-PTC. F Bu - PTC、 Ph - PTC、 F P  TCDI, C -PTC, C -PTC, C -PTC, C -PTC, Bu-PTC.F Bu-PTC, Ph-PTC, F P
6 8 12 13 7 5 h- PTC等の PTCDI系材料。その他、 TCNQ、 C フラーレン、 F - CuPc、 F -Pentacen  6 8 12 13 7 5 h- PTCDI materials such as PTC. Others, TCNQ, C Fullerene, F-CuPc, F-Pentacen
60 16 14 e等。  60 16 14 e etc.
[0027] さらにまた、バイポーラ型有機半導体材料としては、 α NPD、 Alq (Tris(8-hydro  [0027] Further, as bipolar organic semiconductor materials, α NPD, Alq (Tris (8-hydro
3  Three
xyquinonnato alminum(III))、 CBP (4,4 _Bis(carbazoト 9_yl)bipnenyl)、 B¾A— lm(9, 10-Bis(3-cyanostilil)anthracene), MEHPPV(Poly[2_Methoxy_5_(2_ethylhexyloxy)_ 1, 4-phenylenevinylene]) CN— PPP(Poly [2_(6_cyano_6_methylheptyloxy)_ 1 ,4-phe nyleneコ)、 Bis(2_(2_hydroxyphenyl)_benz_l,3_thiazolato)zinc complex^ Poly[(9,9_dih exylfluoren_2,7_diyl)_co_(anthracen_9,10_diyl)]を例不でき。。  xyquinonnato alminum (III)), CBP (4,4 _Bis (carbazoto 9_yl) bipnenyl), B¾A—lm (9, 10-Bis (3-cyanostilil) anthracene), MEHPPV (Poly [2_Methoxy_5_ (2_ethylhexyloxy) _ 1, 4 -phenylenevinylene]) CN— PPP (Poly [2_ (6_cyano_6_methylheptyloxy) _ 1, 4-phe nylene), Bis (2_ (2_hydroxyphenyl) _benz_l, 3_thiazolato) zinc complex ^ Poly [(9,9_dih exylfluoren_2,7_diyl) _co_ (anthracen_9 , 10_diyl)]. .
[0028] 電極 5, 6には、有機材料層 4に適用される有機材料を考慮して、この有機材料層 4 との間でキヤリャの授受を行いやすい材料が適用される。具体的には、たとえば、金( Au)、アルミニウム(A1)、マグネシウム 金(Mg-Au)合金、マグネシウム 銀(Mg-Ag )合金、アルミニウム—リチウム(Aト Li)合金、カルシウム(Ca)、白金(Pt)、 ITO (酸化 インジウム(In 0 )と酸化錫(SnO )との固溶体)などで電極 5, 6を構成することができ [0028] In consideration of the organic material applied to the organic material layer 4, a material that easily exchanges a carrier with the organic material layer 4 is applied to the electrodes 5 and 6. Specifically, for example, gold (Au), aluminum (A1), magnesium gold (Mg-Au) alloy, magnesium silver (Mg-Ag) alloy, aluminum-lithium (A to Li) alloy, calcium (Ca), Electrodes 5 and 6 can be composed of platinum (Pt), ITO (solid solution of indium oxide (In 0) and tin oxide (SnO)), etc.
[0029] P型有機半導体層(たとえば、ペンタセン層)で有機材料層 4を構成する場合には、 有機トランジスタ 1において、半導体動作時には、電極 5, 6間には、キヤリャ注入電 極 5側が正となる電圧が印加される。この状態で、ゲート電極 2に負の電圧を印加す ると、電極 5, 6間において有機材料層 4内にチャネルが形成される。これにより、キヤ リャ注入電極 5から注入された正孔が有機材料層 4を通ってキヤリャ引き出し電極 6 へと輸送される。こうして、電極 5, 6間が導通する。ゲート電極 2への印加電圧を取り 除くと、有機材料層 4内のチャネルが消失して、電極 5, 6間が遮断される。電極 5, 6 間の電流は、ゲート電極 2への印加電圧に依存して変化する。このようにしてトランジ スタ動作が行われる。 [0029] When the organic material layer 4 is composed of a P-type organic semiconductor layer (for example, a pentacene layer), the carrier injection electrode 5 side is positive between the electrodes 5 and 6 in the organic transistor 1 during semiconductor operation. A voltage is applied. When a negative voltage is applied to the gate electrode 2 in this state, a channel is formed in the organic material layer 4 between the electrodes 5 and 6. As a result, holes injected from the carrier injection electrode 5 are transported through the organic material layer 4 to the carrier extraction electrode 6. Thus, the electrodes 5 and 6 are electrically connected. When the voltage applied to the gate electrode 2 is removed, the channel in the organic material layer 4 disappears and the electrodes 5 and 6 are blocked. Electrodes 5, 6 The current between them varies depending on the voltage applied to the gate electrode 2. In this way, the transistor operation is performed.
[0030] 図 2A〜2Gは、図 1の有機トランジスタの製造方法を工程順に示す図解的な断面 図である。まず、図 2Aに示すように、基板を兼ねるゲート電極 2上に、ゲート絶縁膜 3 が形成され、このゲート絶縁膜 3上に有機材料層 4 (第 1材料層)が積層形成され、さ らに、この有機材料層 4の上に犠牲層 8が積層形成される。  2A to 2G are schematic cross-sectional views showing the method of manufacturing the organic transistor of FIG. 1 in the order of steps. First, as shown in FIG. 2A, a gate insulating film 3 is formed on a gate electrode 2 that also serves as a substrate, and an organic material layer 4 (first material layer) is formed on the gate insulating film 3 to form a layer. Further, a sacrificial layer 8 is formed on the organic material layer 4 in a laminated manner.
犠牲層 8は、後述するフォトレジスト 9に対して化学的に安定な無機材料であり、たと えば、アルミニウム(A1)、ガリウム(Ga)、インジウム(In)、タリウム(T1)などの周期律表 (IUPAC、 1990年) ΠΙΒ族に属する金属材料、アルミニウム タンタル (Aト Ta)合金 などが挙げられる。一般に、アルミニウムなどの金属は、アルカリ性水溶液に可溶で あるため、犠牲層 8がこのような金属であると、後述するリフトオフ時に、フォトレジスト 9と共に犠牲層 8を容易に溶解除去することができ、犠牲層 8が有機材料層 4に残存 することを防止できる。  The sacrificial layer 8 is an inorganic material that is chemically stable with respect to the photoresist 9 described later, for example, a periodic table such as aluminum (A1), gallium (Ga), indium (In), and thallium (T1). (IUPAC, 1990) Examples include the metal materials belonging to the ΠΙΒ family, aluminum tantalum (A to Ta) alloys. In general, since metals such as aluminum are soluble in an alkaline aqueous solution, if the sacrificial layer 8 is such a metal, the sacrificial layer 8 can be easily dissolved and removed together with the photoresist 9 at the time of lift-off described later. Thus, the sacrificial layer 8 can be prevented from remaining in the organic material layer 4.
[0031] 次に、この状態で、図 2Bに示すように、犠牲層 8の上にフォトレジスト 9が塗布される 。この時、有機材料層 4は、犠牲層 8に保護されているので、有機材料層 4とフオトレ ジスト 9との接触を回避できる。すなわち、フォトレジスト 9中の有機溶媒が有機材料層 4を浸食したりすることがない。フォトレジスト 9としては、紫外線露光を受けることにより 、アルカリ現像液に対して可溶な性質に化学変化するものが用いられる。  Next, in this state, as shown in FIG. 2B, a photoresist 9 is applied on the sacrificial layer 8. At this time, since the organic material layer 4 is protected by the sacrificial layer 8, contact between the organic material layer 4 and the photoregister 9 can be avoided. That is, the organic solvent in the photoresist 9 does not erode the organic material layer 4. As the photoresist 9, a material that undergoes a chemical change to a property soluble in an alkali developer upon exposure to ultraviolet light is used.
[0032] 次に、フォトレジスト 9に対して適切なベータ処理を施した後、図 2Cに示すように、こ の状態の基板の上方にフォトマスク 10Aが配置され、フォトレジスト 9が選択的に露光 される。すなわち、フォトマスク 10Aには、電極 5および電極 6にそれぞれ対応する形 状の開口 10aおよび開口 10bが形成されていて、この開口 10aおよび開口 10bに対 応する領域のフォトレジスト 9が選択的に紫外線露光される(選択露光工程)。これに より、フォトレジスト 9の開口 10aおよび開口 10bに対応する部分は、アルカリ現像液 に対して可溶な性質に化学変化する。  Next, after performing an appropriate beta treatment on the photoresist 9, as shown in FIG. 2C, a photomask 10A is disposed above the substrate in this state, and the photoresist 9 is selectively used. Exposed. That is, the photomask 10A is formed with openings 10a and 10b having shapes corresponding to the electrodes 5 and 6, respectively, and the photoresist 9 in a region corresponding to the openings 10a and 10b is selectively formed. UV exposure (selective exposure process). As a result, the portions of the photoresist 9 corresponding to the openings 10a and 10b are chemically changed to a property soluble in an alkali developer.
[0033] 次に、図 2Dに示すように、アルカリ現像液、たとえば、 TMAH (テトラメチルアンモ ニゥムハイド口オキサイド)を用いてフォトレジスト 9を現像することにより、電極 5, 6を 形成すべき領域の有機材料層 4が露出させられる(現像工程)。 次に、図 2Eに示すように、全面が紫外線露光され、基板上に残存しているすべて のフォトレジスト 9が紫外線によって露光される(全レジスト露光工程)。 Next, as shown in FIG. 2D, the photoresist 9 is developed using an alkaline developer, for example, TMAH (tetramethyl ammonium hydroxide), so that the regions where the electrodes 5 and 6 are to be formed are developed. The organic material layer 4 is exposed (development process). Next, as shown in FIG. 2E, the entire surface is exposed to ultraviolet light, and all the photoresist 9 remaining on the substrate is exposed to ultraviolet light (all resist exposure process).
[0034] 次に、図 2Fに示すように、全面に金属層である電極 5, 6 (第 2材料層)が蒸着され 、さらに、図 2Gに示すように、アルカリ現像液を用いて、フォトレジスト 9が溶解させら れる。これにより、電極 5, 6の不要部分がフォトレジスト 9とともにリフトオフされて(リフ トオフ工程)、有機トランジスタ 1が完成する。  Next, as shown in FIG. 2F, electrodes 5 and 6 (second material layer), which are metal layers, are vapor-deposited on the entire surface. Further, as shown in FIG. Resist 9 is dissolved. Thereby, unnecessary portions of the electrodes 5 and 6 are lifted off together with the photoresist 9 (lift-off process), and the organic transistor 1 is completed.
このように、犠牲層 8の働きにより、有機溶剤に希釈されたフォトレジスト 9が有機材 料層 4に接触することを回避できるため、有機材料層 4に対する影響を抑制または防 止しながら、つまり、有機材料層 4の電気的特性を損なうことなぐフォトリソグラフィに よって、有機材料層 4の上に電極 5, 6の微細パターンを形成することができる。また、 リフトオフ時にもアルカリ性水溶液を用いることによって、有機材料層 4に対するフォト レジスト 9の選択比を大きくとることができ、精密なリフトオフが可能になる。  As described above, the sacrificial layer 8 can prevent the photoresist 9 diluted in the organic solvent from coming into contact with the organic material layer 4, so that the influence on the organic material layer 4 is suppressed or prevented. The fine patterns of the electrodes 5 and 6 can be formed on the organic material layer 4 by photolithography without impairing the electrical characteristics of the organic material layer 4. Also, by using an alkaline aqueous solution at the time of lift-off, the selectivity of the photoresist 9 with respect to the organic material layer 4 can be increased, and precise lift-off can be achieved.
[0035] 図 3は、この発明の第 2の実施形態に係る方法が適用される有機材料装置の構成 を説明するための図解的な断面図である。  FIG. 3 is a schematic cross-sectional view for explaining the configuration of an organic material device to which the method according to the second embodiment of the present invention is applied.
この有機材料装置は、基板 11 (たとえば、ガラス基板、シリコン基板またはプラスチ ック基板)上に複数 (たとえば、 2つ)の有機トランジスタ 12P, 12Nが形成された、有 機トランジスタ集積回路素子 29である。  This organic material device is an organic transistor integrated circuit element 29 in which a plurality of (for example, two) organic transistors 12P and 12N are formed on a substrate 11 (for example, a glass substrate, a silicon substrate, or a plastic substrate). is there.
[0036] 個々の有機トランジスタ 12P, 12Nは、基板 11上に形成されたゲート電極 13, 14と 、ゲート電極 13, 14上に積層されたゲート絶縁膜 15と、ゲート絶縁膜 15上に所定の 間隔(たとえば、 10 m)を空けて形成された電極 16P, 17, 16Nと、これらの電極 1 6P, 17, 16N上に形成され、ゲート電極 13, 14と対向配置された有機半導体層 18 , 19とを備えている。すなわち、この有機トランジスタ集積回路素子 29は、電極 16P , 17, 16N力 S、有機半導体層 18, 19に対してゲート電極 13, 14と同じ側に配置され た、いわゆるボトムコンタクト型の構造を有している。電極 17は、一対の有機トランジ スタ 12P, 12Nによって共有され、それらを互いに接続している。  Each organic transistor 12P, 12N includes a gate electrode 13, 14 formed on the substrate 11, a gate insulating film 15 stacked on the gate electrode 13, 14, and a predetermined on the gate insulating film 15. Electrodes 16P, 17, 16N formed with a gap (for example, 10 m), and organic semiconductor layers 18, 18 formed on these electrodes 16P, 17, 16N and arranged opposite to the gate electrodes 13, 14 19 and. That is, the organic transistor integrated circuit element 29 has a so-called bottom contact type structure in which the electrodes 16P, 17, 16N force S and the organic semiconductor layers 18, 19 are disposed on the same side as the gate electrodes 13, 14. is doing. The electrode 17 is shared by the pair of organic transistors 12P and 12N and connects them to each other.
[0037] 一方の有機半導体層 18は P型有機半導体層(第 1材料層)であり、他方の有機半 導体層 19は N型有機半導体層(第 2材料層)である。すなわち、この実施形態では、 基板 11上に、 CMOS (Complementary Metal Oxide Semiconductor)構造の回路を形 成できる。 P型有機半導体層 18は前述の P型有機半導体材料で構成することができ 、同じぐ N型有機半導体層 19は前述の N型有機半導体材料で構成することができ One organic semiconductor layer 18 is a P-type organic semiconductor layer (first material layer), and the other organic semiconductor layer 19 is an N-type organic semiconductor layer (second material layer). That is, in this embodiment, a circuit having a complementary metal oxide semiconductor (CMOS) structure is formed on the substrate 11. Can be made. The P-type organic semiconductor layer 18 can be composed of the aforementioned P-type organic semiconductor material, and the same N-type organic semiconductor layer 19 can be composed of the aforementioned N-type organic semiconductor material.
[0038] ゲート電極 13, 14の材料としては、たとえば、上記した第 1の実施形態におけるゲ ート電極 2と同様の材料が挙げられる。 [0038] Examples of the material of the gate electrodes 13 and 14 include the same material as that of the gate electrode 2 in the first embodiment described above.
ゲート絶縁膜 15についても同様に、上記した第 1の実施形態におけるゲート絶縁 膜 3と同様の材料で構成することができる。  Similarly, the gate insulating film 15 can be made of the same material as the gate insulating film 3 in the first embodiment described above.
電極 16Pは、 P型有機半導体層 18に正孔を注入する正孔注入電極であり、電極 1 6Nは N型有機半導体層 19に電子を注入する電子注入電極である。電極 16P, 17, 16Nの材料としては、たとえば、上記した第 1の実施形態における電極 5, 6と同様の 材料が挙げられる。  The electrode 16P is a hole injection electrode that injects holes into the P-type organic semiconductor layer 18, and the electrode 16N is an electron injection electrode that injects electrons into the N-type organic semiconductor layer 19. Examples of the material of the electrodes 16P, 17 and 16N include the same materials as the electrodes 5 and 6 in the first embodiment described above.
[0039] P型有機半導体層 18と N型有機半導体層 19とは、互いに異なる種類の有機材料 で構成されている。  [0039] The P-type organic semiconductor layer 18 and the N-type organic semiconductor layer 19 are composed of different types of organic materials.
そして、この有機トランジスタ集積回路素子 29において、個々の有機トランジスタ 1 2P, 12Nを電気的に分離する素子分離の目的で、隣り合う P型有機半導体層 18と N 型有機半導体層 19とは、互いに間隔 Dを開けて分離されている。この間隔 Dは、たと えば、 1マイクロメートルのオーダーであり、これにより、サブミクロンルールの有機トラ ンジスタ集積回路素子 29が構成されて!/、る。  In this organic transistor integrated circuit element 29, adjacent P-type organic semiconductor layer 18 and N-type organic semiconductor layer 19 are mutually connected for the purpose of element isolation for electrically separating individual organic transistors 12P, 12N. Separated with a gap D. This distance D is, for example, on the order of 1 micrometer, and this constitutes a submicron rule organic transistor integrated circuit element 29! /.
[0040] 図 4A〜4Fおよび図 5G〜5Lは、図 3の有機トランジスタ集積回路素子の製造方法 を工程順に示す図解的な断面図である。この図 4A〜4Fおよび図 5G〜5Lにおいて 前述の図 2A〜2Gに示された各部に対応する部分には、図 2A〜2Gの場合と同一 の参照符号を付して示す。 4A to 4F and FIGS. 5G to 5L are schematic sectional views showing a method of manufacturing the organic transistor integrated circuit element of FIG. 3 in the order of steps. In FIGS. 4A to 4F and FIGS. 5G to 5L, parts corresponding to those shown in FIGS. 2A to 2G are denoted by the same reference numerals as in FIGS. 2A to 2G.
まず、図 4Aに示すように、ゲート電極 13, 14、ゲート絶縁膜 15および電極 16P, 1 7, 16Nが形成された(ゲート電極 13, 14については、たとえば、フォトリソグラフィに よりパターユングされて形成)基板 11の表面(正確には、ゲート絶縁膜 15および電極 16P, 17, 16Nの表面)の全面に、フォトレジスト 20が塗布され、適切なベータ処理 が施される。この状態の基板 11の上方にフォトマスク 10Bが配置され、フォトレジスト 20が選択的に露光される。すなわち、フォトマスク 10Bには、 P型有機半導体層 18に 対応する形状の開口 10cが形成されていて、この開口 10cに対応する領域のフオトレ ジスト 20が選択的に紫外線露光される。 First, as shown in FIG. 4A, gate electrodes 13 and 14, gate insulating film 15 and electrodes 16P, 17 and 16N were formed (gate electrodes 13 and 14 were patterned by photolithography, for example. Formation) Photoresist 20 is applied to the entire surface of the substrate 11 (more precisely, the surfaces of the gate insulating film 15 and the electrodes 16P, 17, 16N), and appropriate beta treatment is performed. A photomask 10B is disposed above the substrate 11 in this state, and the photoresist 20 is selectively exposed. That is, the photomask 10B has a P-type organic semiconductor layer 18 An opening 10c having a corresponding shape is formed, and the photoresist 20 in a region corresponding to the opening 10c is selectively exposed to ultraviolet rays.
[0041] 次に、図 4Bに示すように、アルカリ現像液を用いてフォトレジスト 20を現像すること により、電極 16P, 17の各一部が露出させられる。このとき、フォトレジスト 20は、形成 すべき P型有機半導体層 18のパターンを反転したパターン (反転パターン)に現像さ れることになる。この後、次に形成される P型有機半導体層 18とゲート絶縁膜 15との 密着力を強化するための表面処理として、 HMDS処理が行われ、さらに、 P型有機 半導体層 18と電極 16P, 17 (たとえば Auからなるもの)との密着力を強化するために 、チオール化合物を用いた表面処理が行われる。  Next, as shown in FIG. 4B, by developing the photoresist 20 using an alkaline developer, a part of each of the electrodes 16P and 17 is exposed. At this time, the photoresist 20 is developed into a pattern (reversal pattern) obtained by reversing the pattern of the P-type organic semiconductor layer 18 to be formed. Thereafter, as a surface treatment for enhancing the adhesion between the P-type organic semiconductor layer 18 and the gate insulating film 15 to be formed next, HMDS treatment is performed. Further, the P-type organic semiconductor layer 18 and the electrodes 16P, In order to enhance the adhesion with 17 (for example, made of Au), a surface treatment using a thiol compound is performed.
[0042] 次に、図 4Cに示すように、全面が紫外線露光され、基板 11上のすべてのフオトレ ジスト 20が紫外線によって露光される。  Next, as shown in FIG. 4C, the entire surface is exposed to ultraviolet rays, and all the photoresists 20 on the substrate 11 are exposed to ultraviolet rays.
次に、図 4Dに示すように、全面に P型有機半導体層 18が蒸着され、さらに、図 4E に示すように、アルカリ現像液を用いて、フォトレジスト 20が溶解させられる。これによ り、 P型有機半導体層 18の不要部分がリフトオフされる。フォトレジスト 20は、図 4Cの 工程において予め紫外線に露光されているため、アルカリ現像液に容易に溶解し、 P型有機半導体層 18に対して高い選択比で除去される。また、 P型有機半導体層 18 の形成前に HMDS処理およびチオール化合物による表面処理を行っているため、リ フトオフ時にも P型有機半導体層 18とゲート絶縁膜 15および電極 16P, 17との結合 が強固に保持される。こうして、有機トランジスタ 12Pの電極 16P, 17間に渡る領域に 、これらの電極 16P, 17に接する P型有機半導体層 18を形成することができる。  Next, as shown in FIG. 4D, a P-type organic semiconductor layer 18 is deposited on the entire surface, and further, as shown in FIG. 4E, the photoresist 20 is dissolved using an alkali developer. As a result, unnecessary portions of the P-type organic semiconductor layer 18 are lifted off. Since the photoresist 20 has been previously exposed to ultraviolet rays in the step of FIG. 4C, it is easily dissolved in an alkaline developer and removed with a high selectivity with respect to the P-type organic semiconductor layer 18. In addition, since the HMDS treatment and the surface treatment with the thiol compound are performed before the P-type organic semiconductor layer 18 is formed, the bond between the P-type organic semiconductor layer 18 and the gate insulating film 15 and the electrodes 16P and 17 is also achieved at the time of lift-off. Firmly held. In this manner, the P-type organic semiconductor layer 18 in contact with these electrodes 16P and 17 can be formed in a region extending between the electrodes 16P and 17 of the organic transistor 12P.
[0043] 次に、図 4Fに示すように、 P型有機半導体層 18を含む全面に、犠牲層 8が形成さ れる。  Next, as shown in FIG. 4F, a sacrificial layer 8 is formed on the entire surface including the P-type organic semiconductor layer 18.
次に、この状態で、図 5Gに示すように、犠牲層 8の上にフォトレジスト 9が塗布され る。この時、 P型有機半導体層 18は、犠牲層 8に保護されているので、 P型有機半導 体層 18とフォトレジスト 9との接触を回避できる。すなわち、フォトレジスト 9中の有機 溶媒が P型有機半導体層 18を浸食したりすることがない。  Next, in this state, a photoresist 9 is applied on the sacrificial layer 8 as shown in FIG. 5G. At this time, since the P-type organic semiconductor layer 18 is protected by the sacrificial layer 8, contact between the P-type organic semiconductor layer 18 and the photoresist 9 can be avoided. That is, the organic solvent in the photoresist 9 does not erode the P-type organic semiconductor layer 18.
[0044] 次に、図 5Hに示すように、この状態の基板の上方にフォトマスク 10Cが配置され、 フォトレジスト 9が選択的に露光される。すなわち、フォトマスク 10Cには、 N型有機半 導体層 19に対応する形状の開口 10dが形成されていて、この開口 10dに対応する 領域のフォトレジスト 9が選択的に紫外線露光される(選択露光工程)。これにより、フ オトレジスト 9の開口 10dに対応する部分は、アルカリ現像液に対して可溶な性質に 化学変化する。 Next, as shown in FIG. 5H, a photomask 10C is arranged above the substrate in this state, and the photoresist 9 is selectively exposed. In other words, the photomask 10C has an N-type organic half An opening 10d having a shape corresponding to the conductor layer 19 is formed, and the photoresist 9 in a region corresponding to the opening 10d is selectively exposed to ultraviolet rays (selective exposure step). As a result, the portion of the photoresist 9 corresponding to the opening 10d is chemically changed to a property soluble in an alkali developer.
[0045] 次に、図 51に示すように、アルカリ現像液、たとえば、 TMAH (テトラメチルアンモニ ゥムハイド口オキサイド)を用いてフォトレジスト 9を現像することにより、 N型有機半導 体層 19を形成すべき領域の電極 16N, 17が露出させられる(現像工程)。  Next, as shown in FIG. 51, the N-type organic semiconductor layer 19 is formed by developing the photoresist 9 using an alkali developer, for example, TMAH (tetramethyl ammonium hydroxide). The electrodes 16N and 17 in the region to be exposed are exposed (development process).
次に、図 5Jに示すように、全面が紫外線露光され、基板上に残存しているすべての フォトレジスト 9が紫外線によって露光される(全レジスト露光工程)。  Next, as shown in FIG. 5J, the entire surface is exposed to ultraviolet rays, and all of the photoresist 9 remaining on the substrate is exposed to ultraviolet rays (total resist exposure step).
[0046] 次に、図 5Kに示すように、全面に N型有機半導体層 19が蒸着され、さらに、図 5L に示すように、アルカリ現像液を用いて、フォトレジスト 9が溶解させられる。これにより 、 N型有機半導体層 19の不要部分がフォトレジスト 9とともにリフトオフされて(リフトォ フエ程)、同一基板上に複数種類の有機トランジスタ 12P, 12Nが形成された有機ト ランジスタ集積回路素子 29が完成する。  Next, as shown in FIG. 5K, an N-type organic semiconductor layer 19 is deposited on the entire surface, and further, as shown in FIG. 5L, the photoresist 9 is dissolved using an alkaline developer. As a result, an unnecessary portion of the N-type organic semiconductor layer 19 is lifted off together with the photoresist 9 (lift-off process), and an organic transistor integrated circuit element 29 in which a plurality of types of organic transistors 12P and 12N are formed on the same substrate is obtained. Complete.
[0047] このように、犠牲層 8の働きにより、有機溶剤に希釈されたフォトレジスト 9が P型有 機半導体層 18および N型有機半導体層 19に接触することを回避できるため、 P型有 機半導体層 18および N型有機半導体層 19に対する影響を抑制または防止しながら 、つまり、 P型有機半導体層 18および N型有機半導体層 19の電気的特性を損なうこ となぐフォトリソグラフィによって、基板上に P型有機半導体層 18および N型有機半 導体層 19をいずれも微細パターンに形成することができる。  [0047] As described above, the sacrificial layer 8 can prevent the photoresist 9 diluted in the organic solvent from coming into contact with the P-type organic semiconductor layer 18 and the N-type organic semiconductor layer 19; While suppressing or preventing the influence on the semiconductor layer 18 and the N-type organic semiconductor layer 19, that is, by photolithography that impairs the electrical characteristics of the P-type organic semiconductor layer 18 and the N-type organic semiconductor layer 19, In addition, both the P-type organic semiconductor layer 18 and the N-type organic semiconductor layer 19 can be formed in a fine pattern.
[0048] 図 6は、この発明の第 3の実施形態に係る方法が適用される有機材料装置の構成 を説明するための図解的な断面図である。  FIG. 6 is a schematic cross-sectional view for explaining the configuration of an organic material device to which the method according to the third embodiment of the present invention is applied.
この有機材料装置は、基板 21上に複数色(たとえば、 3色)の赤色有機 EL22R, 2 2G, 22B (総称するときには「有機 EL22」という。)が形成された、 RGB発光素子 30 である。  This organic material device is an RGB light emitting element 30 in which a plurality of colors (for example, three colors) of red organic ELs 22R, 22G, and 22B (collectively referred to as “organic EL22”) are formed on a substrate 21.
[0049] 基板 21は、光透過率の高い材料、たとえば、ガラス基板またはプラスチック基板な どから構成される。これにより、有機 EL22で生じる光は、基板 21を通過して外部に 取り出される。 有機 EL22は、赤色 (R)、緑色(G)、青色(B)の各色に発光する発光色素の種類 が異なる。そのため、同時に形成することができず、赤色有機 EL22Rと、緑色有機 E L22Gと、青色有機 EL22Bとに分離して形成される。個々の有機 EL22は、基板 21 上に形成された信号電極 23 (陽極)と、赤色有機層 24R,緑色有機層 24G,青色有 機層 24B (総称するときには「有機層 24」という。)と、電子注入層 25と、走査電極 26 (陰極)とを備えている。より詳しくは、信号電極 23が、基板 21上に互いに間隔を空 けて 3箇所に分離形成され、各信号電極 23をそれぞれ覆うように有機層 24が形成さ れ、各有機層 24上に電子注入層 25が形成されている。そして、走査電極 26が、電 子注入層 25の上面および側面、ならびに有機層 24の側面を覆うように形成されてお り、走査電極 26と信号電極 23とは、有機層 24を隔てて、接触が回避されている。 [0049] The substrate 21 is made of a material having a high light transmittance, such as a glass substrate or a plastic substrate. As a result, light generated in the organic EL 22 passes through the substrate 21 and is extracted outside. Organic EL22 has different types of luminescent dyes that emit red (R), green (G), and blue (B) colors. Therefore, they cannot be formed at the same time, and are formed separately into red organic EL22R, green organic EL22G, and blue organic EL22B. Each organic EL 22 includes a signal electrode 23 (anode) formed on the substrate 21, a red organic layer 24R, a green organic layer 24G, and a blue organic layer 24B (collectively referred to as “organic layer 24”). An electron injection layer 25 and a scanning electrode 26 (cathode) are provided. More specifically, the signal electrodes 23 are formed on the substrate 21 so as to be separated from each other at three positions, and an organic layer 24 is formed so as to cover each signal electrode 23, and an electron is formed on each organic layer 24. An injection layer 25 is formed. The scan electrode 26 is formed so as to cover the upper and side surfaces of the electron injection layer 25 and the side surface of the organic layer 24, and the scan electrode 26 and the signal electrode 23 are separated from each other by the organic layer 24. Contact is avoided.
[0050] 信号電極 23は、有機層 24に正孔を注入するための電極であり、たとえば、 ITO (酸 化インジウム(In 0 )と酸化錫(SnO )との固溶体)、 IZO (酸化インジウム亜鉛)または 酸化亜鉛 (ZnO)などの透明電極材料から構成される。  [0050] The signal electrode 23 is an electrode for injecting holes into the organic layer 24. For example, ITO (solid solution of indium oxide (In 0) and tin oxide (SnO)), IZO (indium zinc oxide) ) Or a transparent electrode material such as zinc oxide (ZnO).
有機層 24は、有機 EL22における発光部分であり、正孔輸送層 241と、赤色、緑色 および青色の各発光層 242R, 242G, 242B (総称するときには「発光層 242」という 。)と、電子輸送層 243とを信号電極 23上に積層した積層構造を有している。  The organic layer 24 is a light emitting portion in the organic EL 22, and includes a hole transport layer 241, red, green, and blue light emitting layers 242R, 242G, and 242B (collectively, “light emitting layer 242”), and electron transport. The layer 243 is stacked on the signal electrode 23.
[0051] 正孔輸送層 241は、信号電極 23から注入される正孔を発光層 242へと輸送するた めの層であり、たとえば、 a _NPD、 TPDなどのジァミン系材料、または m-TDATAなど で構成される。  [0051] The hole transport layer 241 is a layer for transporting holes injected from the signal electrode 23 to the light emitting layer 242. For example, a _NPD, a jamin material such as TPD, or m-TDATA Etc.
信号電極 23から正孔輸送層 241への正孔の注入を容易にするため、正孔輸送層 241と信号電極 23との間に正孔注入層を介装してもよい。このような正孔注入層の 材料としては、たとえば、 Copper Phthalocyanine, m_MTD ATA (たとえば、層厚は In m以下)などが挙げられる。  In order to facilitate injection of holes from the signal electrode 23 into the hole transport layer 241, a hole injection layer may be interposed between the hole transport layer 241 and the signal electrode 23. Examples of the material for such a hole injection layer include Copper Phthalocyanine, m_MTD ATA (for example, a layer thickness of In m or less).
[0052] 発光層 242は、正孔輸送層 241から正孔の供給を受け、また、電子輸送層 243か ら電子の供給を受けて、これら正孔および電子を再結合させることによって発光を生 じさせる層であり、分離形成された各有機 EL22に対応して、赤色発光層 242R、緑 色発光層 242Gおよび青色発光層 242Bとして構成される。 [0052] The light emitting layer 242 receives light from the hole transport layer 241 and receives electrons from the electron transport layer 243 to recombine these holes and electrons to generate light. The red light emitting layer 242R, the green light emitting layer 242G, and the blue light emitting layer 242B are configured corresponding to each organic EL 22 formed separately.
各発光層 242は、キヤリャ(正孔または電子)輸送能力を有して!/、る必要はな!/、が、 正孔輸送層 241および電子輸送層 243よりも発光量子効率の高い有機半導体材料 力、らなるものであること力 S好ましく、 Alqなどの蛍光を示す金属錯体系材料に蛍光色 素をドープして構成される。たとえば、赤色発光層 242Rとしては、 Alqに DCMがドー プされたもの、たとえば、緑色発光層 242Gとしては、 Alqに Coumaline (クマリン)がド ープされたもの、たとえば、青色発光層 242Bとしては、 Alqに Perylene (ペリレン)がド ープされたものなどが挙げられる。 Each light emitting layer 242 has a carrier (hole or electron) transport capability! /, Which need not be! / Organic semiconductor materials with higher emission quantum efficiency than the hole transport layer 241 and electron transport layer 243, and the ability to be comprised of S. Preferably, a metal complex material exhibiting fluorescence such as Alq is doped with a fluorescent dye. Composed. For example, as red light emitting layer 242R, Alq is doped with DCM, for example, green light emitting layer 242G is as Alq is doped with Coumaline, for example, as blue light emitting layer 242B And Alq doped with Perylene.
[0053] 電子輸送層 243は、走査電極 26から電子注入層 25を介して注入される電子を輸 送するための層であり、たとえば、 Alqなどの金属錯体系材料から構成される。 [0053] The electron transport layer 243 is a layer for transporting electrons injected from the scan electrode 26 through the electron injection layer 25, and is made of, for example, a metal complex material such as Alq.
電子注入層 25は、走査電極 26と電子輸送層 243とのエネルギー障壁を緩和する ように作用する層であり、走査電極 26と電子輸送層 243との間に電子注入層 25を介 在させることにより、電子輸送層 243に対して容易に電子を注入することができる。電 子注入層 25の材料としては、 Alqや Bathophenanthrolineなどの電子輸送性有機半 導体にリチウム (Li)、セシウム (Cs)などのアルカリ金属をドープした層、フッ化リチウム( LiF)を始めとするアルカリ金属 ·アルカリ土類金属フッ化物、酸化ゲルマニウム (GeO ) 、酸化アルミニウム (A1 0 )などが挙げられる。  The electron injection layer 25 is a layer that acts to relax the energy barrier between the scan electrode 26 and the electron transport layer 243, and the electron injection layer 25 is interposed between the scan electrode 26 and the electron transport layer 243. Thus, electrons can be easily injected into the electron transport layer 243. Materials for the electron injection layer 25 include layers in which an electron transporting organic semiconductor such as Alq or Bathophenanthroline is doped with an alkali metal such as lithium (Li) or cesium (Cs), or lithium fluoride (LiF). Alkali metal / alkaline earth metal fluoride, germanium oxide (GeO), aluminum oxide (A1 0) and the like can be mentioned.
[0054] 走査電極 26は、電子注入層 25を介して電子輸送層 243に電子を注入するための 電極であり、導電率が高ぐ電子輸送層 243に対して電子を注入しやすい金属、たと えば、アルミニウム(A1)、カルシウム(Ca)マグネシウム アルミニウム(Mg-Al)合金、 アルミニウム リチウム (Aト Li)合金、などから構成される。  The scan electrode 26 is an electrode for injecting electrons into the electron transport layer 243 via the electron injection layer 25, and is a metal that easily injects electrons into the electron transport layer 243 with high conductivity. For example, aluminum (A1), calcium (Ca) magnesium aluminum (Mg-Al) alloy, aluminum lithium (A to Li) alloy, and the like.
発光動作時には、たとえば、信号電極 23に対して正の電圧が印加され、正孔輸送 層 241に正孔が注入される。一方、走査電極 26に対して、負の電圧が印加され、電 子注入層 25を介して電子輸送層 243に電子が注入される。そして、これらの電子と 正孔とが各層を輸送され、有機材料層 4内で再結合することにより発光する。発光し た光は、信号電極 23および基板 21を通過して外部に取り出される。  During the light emission operation, for example, a positive voltage is applied to the signal electrode 23 and holes are injected into the hole transport layer 241. On the other hand, a negative voltage is applied to the scan electrode 26, and electrons are injected into the electron transport layer 243 through the electron injection layer 25. Then, these electrons and holes are transported through each layer and recombine in the organic material layer 4 to emit light. The emitted light passes through the signal electrode 23 and the substrate 21 and is extracted outside.
[0055] 図 6に示された構造で構成した画素を基板 21上に複数個マトリクス配列することに より、二次元カラー表示装置を構成することができる。  A two-dimensional color display device can be configured by arranging a plurality of pixels configured in the structure shown in FIG. 6 on the substrate 21 in a matrix.
図 7A〜7E、図 8F〜8I、図 9J〜9M、図 ION〜図 10Qおよび図 11R〜図 11Uは、 図 6の RGB発光素子の製造方法を工程順に示す図解的な断面図である。この図 7A 〜7E、図 8F〜8I、図 9J〜9M、図 ION〜図 10Qおよび図 11R〜図 11Uにおいて 前述の図 2A〜2G、図 4A〜4Fおよび図 5G〜5Lに示された各部に対応する部分 には、図 2A〜2G、図 4A〜4Fおよび図 5G〜5Lの場合と同一の参照符号を付して 示す。 FIGS. 7A to 7E, FIGS. 8F to 8I, FIGS. 9J to 9M, FIGS. ION to 10Q, and FIGS. 11R to 11U are schematic cross-sectional views showing the method of manufacturing the RGB light emitting device of FIG. This figure 7A ~ 7E, Figures 8F to 8I, Figures 9J to 9M, Figures ION to 10Q and Figures 11R to 11U, corresponding to the parts shown in Figures 2A to 2G, Figures 4A to 4F and Figures 5G to 5L described above Are denoted by the same reference numerals as in FIGS. 2A to 2G, FIGS. 4A to 4F and FIGS. 5G to 5L.
[0056] まず、図 7Aに示すように、信号電極 23が所定の間隔を空けて形成(たとえば、フォ トリソグラフィによりパターユングされて形成)された基板 21の表面(正確には、基板 2 1および信号電極 23の表面)の全面に、フォトレジスト 20が塗布され、適切なベータ 処理が施される。この状態の基板 21の上方にフォトマスク 10Dが配置され、フオトレ ジスト 20が選択的に露光される。すなわち、フォトマスク 10Dには、赤色有機 EL22R に対応する形状の開口 10eが形成されていて、この開口 10eに対応する領域のフォ トレジスト 20が選択的に紫外線露光される。  First, as shown in FIG. 7A, the surface of the substrate 21 on which the signal electrodes 23 are formed at a predetermined interval (for example, formed by patterning by photolithography) (more precisely, the substrate 21) Photoresist 20 is applied to the entire surface of the signal electrode 23 and an appropriate beta treatment. A photomask 10D is disposed above the substrate 21 in this state, and the photoresist 20 is selectively exposed. That is, an opening 10e having a shape corresponding to the red organic EL 22R is formed in the photomask 10D, and the photoresist 20 in a region corresponding to the opening 10e is selectively exposed to ultraviolet rays.
[0057] 次に、図 7Bに示すように、アルカリ現像液を用いてフォトレジスト 20を現像すること により、赤色有機 EL22Rに対応する信号電極 23が露出させられる。このとき、フォト レジスト 20は、形成すべき赤色有機 EL22Rのパターンを反転したパターン(反転パ ターン)に現像されることになる。  Next, as shown in FIG. 7B, the signal electrode 23 corresponding to the red organic EL 22R is exposed by developing the photoresist 20 using an alkaline developer. At this time, the photoresist 20 is developed into a pattern (reversal pattern) obtained by reversing the pattern of the red organic EL 22R to be formed.
次に、図 7Cに示すように、全面が紫外線露光され、基板 21上のすべてのフオトレ ジスト 20が紫外線によって露光される。  Next, as shown in FIG. 7C, the entire surface is exposed to ultraviolet rays, and all the photoresists 20 on the substrate 21 are exposed to ultraviolet rays.
[0058] 次に、図 7Dに示すように、全面に正孔輸送層 241、赤色発光層 242Rおよび電子 輸送層 243が、蒸着源を切り換えながら連続的に蒸着され、信号電極 23上に赤色 有機層 24R (第 1材料層)が積層構造を有するように形成される。さらに、図 7Eに示 すように、アルカリ現像液を用いて、フォトレジスト 20が溶解させられる。これにより、 赤色有機層 24Rの不要部分がリフトオフされる。  Next, as shown in FIG. 7D, a hole transport layer 241, a red light emitting layer 242 R, and an electron transport layer 243 are continuously deposited on the entire surface while switching the deposition source, and a red organic layer is formed on the signal electrode 23. The layer 24R (first material layer) is formed to have a stacked structure. Further, as shown in FIG. 7E, the photoresist 20 is dissolved using an alkaline developer. As a result, unnecessary portions of the red organic layer 24R are lifted off.
[0059] 次に、図 8Fに示すように、基板 21および赤色有機層 24Rの全面に、犠牲層 8が形 成される。  Next, as shown in FIG. 8F, the sacrificial layer 8 is formed on the entire surface of the substrate 21 and the red organic layer 24R.
次に、この状態で、図 8Gに示すように、犠牲層 8の上にフォトレジスト 9が塗布され る。この時、赤色有機層 24Rは、犠牲層 8に保護されているので、赤色有機層 24Rと フォトレジスト 9との接触を回避できる。すなわち、フォトレジスト 9中の有機溶媒が赤 色有機層 24Rを浸食したりすることがない。 [0060] 次に、フォトレジスト 9に対して適切なベータ処理を施した後、図 8Hに示すように、こ の状態の基板の上方にフォトマスク 10Eが配置され、フォトレジスト 9が選択的に露光 される。すなわち、フォトマスク 10Eには、緑色有機層 24Gに対応する形状の開口 10 fが形成されていて、この開口 10fに対応する領域のフォトレジスト 9が選択的に紫外 線露光される(選択露光工程)。これにより、フォトレジスト 9の開口 1 Ofに対応する部 分は、アルカリ現像液に対して可溶な性質に化学変化する。 Next, in this state, a photoresist 9 is applied on the sacrificial layer 8 as shown in FIG. 8G. At this time, since the red organic layer 24R is protected by the sacrificial layer 8, contact between the red organic layer 24R and the photoresist 9 can be avoided. That is, the organic solvent in the photoresist 9 does not erode the red organic layer 24R. Next, after performing an appropriate beta process on the photoresist 9, as shown in FIG. 8H, a photomask 10E is disposed above the substrate in this state, and the photoresist 9 is selectively used. Exposed. That is, the photomask 10E has an opening 10f having a shape corresponding to the green organic layer 24G, and the photoresist 9 in the region corresponding to the opening 10f is selectively exposed to ultraviolet rays (selective exposure step). ). As a result, the portion corresponding to the opening 1 Of of the photoresist 9 is chemically changed to a property soluble in the alkaline developer.
[0061] 次に、図 81に示すように、アルカリ現像液、たとえば、 TMAH (テトラメチルアンモニ ゥムハイド口オキサイド)を用いてフォトレジスト 9を現像することにより、緑色有機層 24 Gを形成すべき領域の信号電極 23が露出させられる(現像工程)。  Next, as shown in FIG. 81, a region in which the green organic layer 24 G is to be formed is developed by developing the photoresist 9 using an alkaline developer, for example, TMAH (tetramethylammonium hydroxide). The signal electrode 23 is exposed (development process).
次に、図 9Jに示すように、全面が紫外線露光され、基板上に残存しているすべての フォトレジスト 9が紫外線によって露光される(全レジスト露光工程)。  Next, as shown in FIG. 9J, the entire surface is exposed to ultraviolet rays, and all of the photoresist 9 remaining on the substrate is exposed to ultraviolet rays (total resist exposure step).
[0062] 次に、図 9Kに示すように、全面に正孔輸送層 241、緑色発光層 242Gおよび電子 輸送層 243が、蒸着源を切り換えながら連続的に蒸着され、信号電極 23上に緑色 有機層 24G (第 2材料層)が積層構造を有するように形成される。さらに、図 9Lに示 すように、アルカリ現像液を用いて、フォトレジスト 9が溶解させられる。これにより、緑 色有機層 24Gの不要部分がリフトオフされる。  Next, as shown in FIG. 9K, a hole transport layer 241, a green light emitting layer 242 G, and an electron transport layer 243 are continuously deposited on the entire surface while switching the deposition source. The layer 24G (second material layer) is formed to have a stacked structure. Furthermore, as shown in FIG. 9L, the photoresist 9 is dissolved using an alkaline developer. This lifts off unnecessary portions of the green organic layer 24G.
[0063] その後、図 8F〜図 81および図 9J〜9Lと同様の工程が行なわれ、図 9Mに示すよう に、青色有機層 24Bが形成される。  [0063] Thereafter, the same steps as in Fig. 8F to Fig. 81 and Fig. 9J to 9L are performed, and as shown in Fig. 9M, blue organic layer 24B is formed.
次に、図 10Nに示すように、有機層 24および基板 21の全面に犠牲層 8が形成され る。次に、この状態で、図 10Oに示すように、犠牲層 8の上にフォトレジスト 9が塗布さ れる。この時、有機層 24は、犠牲層 8に保護されているので、有機層 24とフォトレジス ト 9との接触を回避できる。すなわち、フォトレジスト 9中の有機溶媒が有機層 24を浸 食したりすることがない。  Next, as shown in FIG. 10N, the sacrificial layer 8 is formed on the entire surface of the organic layer 24 and the substrate 21. Next, in this state, as shown in FIG. 10O, a photoresist 9 is applied on the sacrificial layer 8. At this time, since the organic layer 24 is protected by the sacrificial layer 8, contact between the organic layer 24 and the photoresist 9 can be avoided. That is, the organic solvent in the photoresist 9 does not erode the organic layer 24.
[0064] 次に、図 10Pに示すように、基板 21の上方にフォトマスク 10Fが配置され、フオトレ ジスト 9が選択的に露光される。すなわち、フォトマスク 10Fには、電子注入層 25に対 応する形状の開口 10g〜10iが形成されていて、この開口 10g〜10iに対応する領域 のフォトレジスト 9が選択的に紫外線露光される。  Next, as shown in FIG. 10P, a photomask 10F is disposed above the substrate 21, and the photoregister 9 is selectively exposed. That is, openings 10g to 10i having a shape corresponding to the electron injection layer 25 are formed in the photomask 10F, and the photoresist 9 in a region corresponding to the openings 10g to 10i is selectively exposed to ultraviolet rays.
次に、図 10Qに示すように、アルカリ現像液を用いてフォトレジスト 9を現像すること により、有機層 24が露出させられる。その後、図 11Rに示すように全面が紫外線露光 され、基板 21上のすべてのフォトレジスト 9が紫外線によって露光される。 Next, as shown in FIG. 10Q, the photoresist 9 should be developed using an alkaline developer. As a result, the organic layer 24 is exposed. Thereafter, as shown in FIG. 11R, the entire surface is exposed to ultraviolet rays, and all the photoresists 9 on the substrate 21 are exposed to ultraviolet rays.
[0065] 次に、図 11Sに示すように、各有機層 24に電子注入層 25が形成され、図 11Tに示 すように、アルカリ現像液を用いて、フォトレジスト 9が溶解させられる。これにより、電 子注入層 25の不要部分がリフトオフされる。  [0065] Next, as shown in FIG. 11S, an electron injection layer 25 is formed in each organic layer 24, and as shown in FIG. 11T, the photoresist 9 is dissolved using an alkali developer. Thereby, an unnecessary portion of the electron injection layer 25 is lifted off.
そして、図 11Uに示すように、走査電極 26が形成されて、同一基板上に複数の有 機 ELが形成された RGB発光素子 30が完成する。  Then, as shown in FIG. 11U, the scanning electrode 26 is formed, and the RGB light emitting element 30 in which a plurality of organic ELs are formed on the same substrate is completed.
[0066] このように、犠牲層 8の働きにより、有機溶剤に希釈されたフォトレジスト 9が各有機 層 24に接触することを回避できるため、有機層 24に対する影響を抑制または防止し ながら、つまり、有機層 24の電気的特性を損なうことなぐフォトリソグラフィによって、 各有機層 24をいずれも微細パターンに形成することができる。そのため、高精細で かつ表示品質の高い 2次元表示デバイスを実現できる。  [0066] In this way, the action of the sacrificial layer 8 can prevent the photoresist 9 diluted in an organic solvent from coming into contact with each organic layer 24, so that the influence on the organic layer 24 is suppressed or prevented. Each organic layer 24 can be formed into a fine pattern by photolithography without impairing the electrical characteristics of the organic layer 24. As a result, a high-definition and high-quality 2D display device can be realized.
[0067] 図 12は、この発明の第 4の実施形態に係る方法が適用される有機材料装置の構成 を説明するための図解的な断面図である。この図 12において前述の図 1に示された 各部に対応する部分には、図 1の場合と同一の参照符号を付して示す。  FIG. 12 is a schematic cross-sectional view for explaining the configuration of an organic material device to which the method according to the fourth embodiment of the present invention is applied. In FIG. 12, portions corresponding to the respective portions shown in FIG. 1 are denoted by the same reference numerals as in FIG.
この有機材料装置は、有機トランジスタ 32が複数(図 12に表れているのは 3つだが 、実際にはより多数)集積された、有機トランジスタ集積回路素子 31である。  This organic material device is an organic transistor integrated circuit element 31 in which a plurality of organic transistors 32 (three actually shown in FIG. 12, but actually more) are integrated.
[0068] 個々の有機トランジスタ 32は、図 1に示す有機トランジスタ 1とほぼ同じ構成であり、 ゲート電極 2が基板 33 (たとえば、ガラス基板、シリコン基板またはプラスチック基板) と一体的に形成されておらず、基板 33上に分離して形成されている点において、図 1の有機トランジスタ 1と異なっている。また、一部の電極 6は、隣り合う一対の有機トラ ンジスタ 32によって共有されており、これらを互いに接続して!/、る。  Each organic transistor 32 has substantially the same configuration as the organic transistor 1 shown in FIG. 1, and the gate electrode 2 is integrally formed with the substrate 33 (for example, a glass substrate, a silicon substrate, or a plastic substrate). First, it differs from the organic transistor 1 in FIG. 1 in that it is formed separately on the substrate 33. Some of the electrodes 6 are shared by a pair of adjacent organic transistors 32, which are connected to each other! /.
[0069] 図 13A〜図 13D、図 14E〜; 14Hおよび図 151〜図 15Lは、図 12の有機トランジス タ集積回路素子の製造方法を工程順に示す図解的な断面図である。図 13A〜図 1 3D、図 14E〜; 14Hおよび図 151〜図 15Lにおいて図 2A〜2G、図 4A〜4Fおよび 図 5G〜5Lに示された各部に対応する部分には、図 2A〜2G、図 4A〜4Fおよび図 5G〜5Lの場合と同一の参照符号を付して示す。  FIGS. 13A to 13D, FIGS. 14E to 14H, and FIGS. 151 to 15L are schematic cross-sectional views showing a method of manufacturing the organic transistor integrated circuit device of FIG. 13A to 13D, 14E to 14H and 151 to 15L, FIGS. 2A to 2G, FIGS. 4A to 4F, and 5G to 5L correspond to the parts shown in FIGS. 2A to 2G, 4A to 4F and FIGS. 5G to 5L are denoted by the same reference numerals.
[0070] まず、図 13Aに示すように、ゲート電極 2およびゲート絶縁膜 3が形成(ゲート電極 2 については、たとえば、フォトリソグラフィによりパターユングして形成)された基板 33 の表面(正確にはゲート絶縁膜 3の表面)の全面に、フォトレジスト 20が塗布され、適 切なベータ処理が施される。この状態の基板 33の上方にフォトマスク 10Gが配置さ れ、フォトレジスト 20が選択的に露光される。すなわち、フォトマスク 10Gには、有機 材料層 4に対応する形状の開口 10j〜101が形成されていて、この開口 10j〜101に 対応する領域のフォトレジスト 20が選択的に紫外線露光される。 First, as shown in FIG. 13A, the gate electrode 2 and the gate insulating film 3 are formed (the gate electrode 2 For example, photoresist 20 is applied to the entire surface of the substrate 33 (formed by patterning by photolithography) (more precisely, the surface of the gate insulating film 3), and an appropriate beta treatment is performed. . A photomask 10G is disposed above the substrate 33 in this state, and the photoresist 20 is selectively exposed. That is, openings 10j to 101 having a shape corresponding to the organic material layer 4 are formed in the photomask 10G, and the photoresist 20 in a region corresponding to the openings 10j to 101 is selectively exposed to ultraviolet rays.
[0071] 次に、図 13Bに示すように、アルカリ現像液を用いてフォトレジスト 20を現像するこ とにより、ゲート絶縁膜 3の一部が露出させられる。このとき、フォトレジスト 20は、形成 すべき有機材料層 4のパターンを反転したパターン (反転パターン)に現像されること になる。 Next, as shown in FIG. 13B, a portion of the gate insulating film 3 is exposed by developing the photoresist 20 using an alkaline developer. At this time, the photoresist 20 is developed into a pattern (reversal pattern) obtained by reversing the pattern of the organic material layer 4 to be formed.
次に、図 13Cに示すように、全面が紫外線露光され、基板 33上のすべてのフオトレ ジスト 20が紫外線によって露光される。  Next, as shown in FIG. 13C, the entire surface is exposed to ultraviolet rays, and all the photoresists 20 on the substrate 33 are exposed to ultraviolet rays.
[0072] 次に、図 13Dに示すように、全面に有機材料層 4 (第 1材料層)が蒸着され、図 14E に示すように、アルカリ現像液を用いて、フォトレジスト 20が溶解させられる。これによ り、有機材料層 4の不要部分力 Sリフトオフされる。 Next, as shown in FIG. 13D, an organic material layer 4 (first material layer) is deposited on the entire surface, and as shown in FIG. 14E, the photoresist 20 is dissolved using an alkali developer. . As a result, the unnecessary partial force S of the organic material layer 4 is lifted off.
次に、図 14Fに示すように、有機材料層 4を含む全面に、犠牲層 8が形成される。 次に、この状態で、図 14Gに示すように、犠牲層 8の上にフォトレジスト 9が塗布され る。この時、有機材料層 4は、犠牲層 8に保護されているので、有機材料層 4とフォト レジスト 9との接触を回避できる。すなわち、フォトレジスト 9中の有機溶媒が有機材料 層 4を浸食したりすることがなレ、。  Next, as shown in FIG. 14F, a sacrificial layer 8 is formed on the entire surface including the organic material layer 4. Next, in this state, as shown in FIG. 14G, a photoresist 9 is applied on the sacrificial layer 8. At this time, since the organic material layer 4 is protected by the sacrificial layer 8, contact between the organic material layer 4 and the photoresist 9 can be avoided. That is, the organic solvent in the photoresist 9 does not erode the organic material layer 4.
[0073] 次に、フォトレジスト 9に対して適切なベータ処理を施した後、図 14Hに示すように、 この状態の基板の上方にフォトマスク 10Hが配置され、フォトレジスト 9が選択的に露 光される。すなわち、フォトマスク 10Hには、電極 5および電極 6にそれぞれ対応する 形状の開口 10m〜; 10qが形成されていて、この開口 10m〜; 10qに対応する領域の フォトレジスト 9が選択的に紫外線露光される(選択露光工程)。これにより、フォトレジ スト 9の開口 10m〜; 10qに対応する部分は、アルカリ現像液に対して可溶な性質に 化学変化する。 Next, after subjecting the photoresist 9 to an appropriate beta treatment, as shown in FIG. 14H, a photomask 10H is disposed above the substrate in this state, and the photoresist 9 is selectively exposed. To be lighted. That is, the photomask 10H has openings 10m to 10q having shapes corresponding to the electrodes 5 and 6, respectively, and the photoresist 9 in a region corresponding to the openings 10m to 10q is selectively exposed to ultraviolet rays. (Selective exposure step). As a result, the portion corresponding to the openings 10m to 10q of the photoresist 9 is chemically changed to a property soluble in an alkali developer.
[0074] 次に、図 151に示すように、アルカリ現像液、たとえば、 TMAH (テトラメチルアンモ ニゥムハイド口オキサイド)を用いてフォトレジスト 9を現像することにより、電極 5, 6を 形成すべき領域の有機材料層 4が露出させられる(現像工程)。 [0074] Next, as shown in FIG. 151, an alkaline developer such as TMAH (tetramethylammonium The photoresist 9 is developed using the (Nymhydride mouth oxide) to expose the organic material layer 4 in the region where the electrodes 5 and 6 are to be formed (development process).
次に、 15Jに示すように、全面が紫外線露光され、基板上に残存しているすべての フォトレジスト 9が紫外線によって露光される(全レジスト露光工程)。  Next, as shown in 15J, the entire surface is exposed to ultraviolet light, and all the photoresist 9 remaining on the substrate is exposed to ultraviolet light (all resist exposure process).
[0075] 次に、図 15Kに示すように、全面に金属層である電極 5, 6 (第 2材料層)が蒸着さ れ、さらに、図 15Lに示すように、アルカリ現像液を用いて、フォトレジスト 9が溶解さ せられる。これにより、電極 5, 6の不要部分がフォトレジスト 9とともにリフトオフされて( リフトオフ工程)、有機トランジスタ 32が複数集積された、有機トランジスタ集積回路素 子 31が完成する。 Next, as shown in FIG. 15K, electrodes 5 and 6 (second material layer), which are metal layers, are vapor-deposited on the entire surface. Further, as shown in FIG. 15L, using an alkali developer, Photoresist 9 is dissolved. As a result, unnecessary portions of the electrodes 5 and 6 are lifted off together with the photoresist 9 (lift-off process), and an organic transistor integrated circuit element 31 in which a plurality of organic transistors 32 are integrated is completed.
[0076] このように、犠牲層 8の働きにより、有機溶剤に希釈されたフォトレジスト 9が有機材 料層 4に接触することを回避できるため、有機材料層 4に対する影響を抑制または防 止しながら、つまり、有機材料層 4の電気的特性を損なうことなぐフォトリソグラフィに よって、有機材料層 4の上に電極 5, 6の微細パターンを形成することができる。これ により、デバイスの微細化および高集積化を図ることができる。  In this way, the action of the sacrificial layer 8 can prevent the photoresist 9 diluted in the organic solvent from coming into contact with the organic material layer 4, thereby suppressing or preventing the influence on the organic material layer 4. In other words, the fine patterns of the electrodes 5 and 6 can be formed on the organic material layer 4 by photolithography without impairing the electrical characteristics of the organic material layer 4. As a result, the device can be miniaturized and highly integrated.
[0077] 図 16は、この発明の第 5の実施形態に係る方法が適用される有機材料装置の構成 を説明するための図解的な断面図である。この図 16において前述の図 1に示された 各部に対応する部分には、図 1の場合と同一の参照符号を付して示す。  FIG. 16 is an illustrative cross-sectional view for explaining the configuration of an organic material device to which the method according to the fifth embodiment of the present invention is applied. In FIG. 16, portions corresponding to the respective portions shown in FIG. 1 are denoted by the same reference numerals as in FIG.
この有機材料装置は、材料が異なる複数 (たとえば、 2つ)の電極が有機材料層 4の 上面に接触して形成されるトップコンタクト型の有機トランジスタ 35である。  This organic material device is a top contact type organic transistor 35 in which a plurality of (for example, two) electrodes of different materials are formed in contact with the upper surface of the organic material layer 4.
[0078] この有機トランジスタ 35は、図 1に示す有機トランジスタ 1とほぼ同じ構成であり、ゲ ート電極 2が基板 36 (たとえば、ガラス基板、シリコン基板またはプラスチック基板)と 一体的に形成されておらず、基板 36上に分離して形成されている点、および電極 5 , 6が、異なる材料で形成されている点において、図 1の有機トランジスタ 1と異なって いる。  The organic transistor 35 has substantially the same configuration as the organic transistor 1 shown in FIG. 1, and the gate electrode 2 is formed integrally with a substrate 36 (for example, a glass substrate, a silicon substrate, or a plastic substrate). The organic transistor 1 is different from the organic transistor 1 of FIG. 1 in that it is formed separately on the substrate 36 and the electrodes 5 and 6 are formed of different materials.
[0079] 図 17A〜; 17F、図 18G〜; 18Mおよび図 19N〜; 19Sは、図 16の有機トランジスタの 製造方法を工程順に示す図解的な断面図である。図 17A〜; 17F、図 18G〜; 18Mお よび図 19N〜; 19Sにおいて前述の図 2A〜2G、図 4A〜4Fおよび図 5G〜5Lに示 された各部に対応する部分には、図 2A〜2G、図 4A〜4Fおよび図 5G〜5Lの場合 と同一の参照符号を付して示す。 FIGS. 17A to 17F, FIGS. 18G to 18M and FIGS. 19N to 19S are schematic cross-sectional views illustrating the method of manufacturing the organic transistor of FIG. 16 in the order of steps. 17F, 17G, 18G and 18M and 19N and 19S, the parts corresponding to the parts shown in FIGS. 2A to 2G, 4A to 4F and 5G to 5L described above are shown in FIG. For 2G, Figures 4A-4F and Figures 5G-5L The same reference numerals are attached and shown.
[0080] まず、図 17Aに示すように、ゲート電極 2およびゲート絶縁膜 3が形成(ゲート電極 2 については、たとえば、フォトリソグラフィによりパターユングして形成)された基板 36 の表面(正確にはゲート絶縁膜 3の表面)の全面に、フォトレジスト 20が塗布され、適 切なベータ処理が施される。この状態の基板 36の上方にフォトマスク 101が配置され 、フォトレジスト 20が選択的に露光される。すなわち、フォトマスク 101には、有機材料 層 4に対応する形状の開口 10rが形成されていて、この開口 10rに対応する領域の フォトレジスト 20が選択的に紫外線露光される。  First, as shown in FIG. 17A, the surface of the substrate 36 on which the gate electrode 2 and the gate insulating film 3 are formed (for example, the gate electrode 2 is formed by patterning by photolithography) (precisely, Photoresist 20 is applied to the entire surface of the gate insulating film 3) and appropriate beta treatment is performed. A photomask 101 is disposed above the substrate 36 in this state, and the photoresist 20 is selectively exposed. That is, an opening 10r having a shape corresponding to the organic material layer 4 is formed in the photomask 101, and the photoresist 20 in a region corresponding to the opening 10r is selectively exposed to ultraviolet rays.
[0081] 次に、図 17Bに示すように、アルカリ現像液を用いてフォトレジスト 20を現像するこ とにより、ゲート絶縁膜 3の各一部が露出させられる。このとき、フォトレジスト 20は、形 成すべき有機材料層 4のパターンを反転したパターン (反転パターン)に現像される ことになる。  Next, as shown in FIG. 17B, each part of the gate insulating film 3 is exposed by developing the photoresist 20 using an alkali developer. At this time, the photoresist 20 is developed into a pattern (reversal pattern) obtained by reversing the pattern of the organic material layer 4 to be formed.
次に、図 17Cに示すように、全面が紫外線露光され、基板 36上のすべてのフオトレ ジスト 20が紫外線によって露光される。  Next, as shown in FIG. 17C, the entire surface is exposed to ultraviolet rays, and all the photoresists 20 on the substrate 36 are exposed to ultraviolet rays.
[0082] 次に、図 17Dに示すように、全面に有機材料層 4 (第 1材料層)が蒸着され、図 17E に示すように、アルカリ現像液を用いて、フォトレジスト 20が溶解させられる。これによ り、有機材料層 4の不要部分力 Sリフトオフされる。 Next, as shown in FIG. 17D, an organic material layer 4 (first material layer) is deposited on the entire surface, and as shown in FIG. 17E, the photoresist 20 is dissolved using an alkali developer. . As a result, the unnecessary partial force S of the organic material layer 4 is lifted off.
次に、図 17Fに示すように、有機材料層 4を含む全面に、犠牲層 8が形成される。 次に、この状態で、図 18Gに示すように、犠牲層 8の上にフォトレジスト 9が塗布され る。この時、有機材料層 4は、犠牲層 8に保護されているので、有機材料層 4とフォト レジスト 9との接触を回避できる。すなわち、フォトレジスト 9中の有機溶媒が有機材料 層 4を浸食したりすることがなレ、。  Next, as shown in FIG. 17F, a sacrificial layer 8 is formed on the entire surface including the organic material layer 4. Next, in this state, a photoresist 9 is applied on the sacrificial layer 8 as shown in FIG. 18G. At this time, since the organic material layer 4 is protected by the sacrificial layer 8, contact between the organic material layer 4 and the photoresist 9 can be avoided. That is, the organic solvent in the photoresist 9 does not erode the organic material layer 4.
[0083] 次に、フォトレジスト 9に対して適切なベータ処理を施した後、図 18Hに示すように、 この状態の基板の上方にフォトマスク 10Jが配置され、フォトレジスト 9が選択的に露 光される。すなわち、フォトマスク 10Jには、電極 5に対応する形状の開口 10sが形成 されていて、この開口 10sに対応する領域のフォトレジスト 9が選択的に紫外線露光さ れる(選択露光工程)。これにより、フォトレジスト 9の開口 10sに対応する部分は、ァ ルカリ現像液に対して可溶な性質に化学変化する。 [0084] 次に、図 181に示すように、アルカリ現像液、たとえば、 TMAH (テトラメチルアンモ ニゥムハイド口オキサイド)を用いてフォトレジスト 9を現像することにより、電極 5を形成 すべき領域の有機材料層 4が露出させられる(現像工程)。 Next, after performing an appropriate beta process on the photoresist 9, as shown in FIG. 18H, a photomask 10J is disposed above the substrate in this state, and the photoresist 9 is selectively exposed. Lighted. That is, an opening 10s having a shape corresponding to the electrode 5 is formed in the photomask 10J, and the photoresist 9 in a region corresponding to the opening 10s is selectively exposed to ultraviolet rays (selective exposure step). As a result, the portion of the photoresist 9 corresponding to the opening 10s is chemically changed to a property soluble in the alkaline developer. Next, as shown in FIG. 181, an organic material in a region where the electrode 5 is to be formed is developed by developing the photoresist 9 using an alkaline developer, for example, TMAH (tetramethyl ammonium hydroxide). Layer 4 is exposed (development process).
次に、図 18Jに示すように、全面が紫外線露光され、基板上に残存しているすべて のフォトレジスト 9が紫外線によって露光される(全レジスト露光工程)。  Next, as shown in FIG. 18J, the entire surface is exposed to ultraviolet light, and all of the photoresist 9 remaining on the substrate is exposed to ultraviolet light (all resist exposure process).
[0085] 次に、図 18Kに示すように、全面に金属層である電極 5 (第 2材料層)が蒸着され、 さらに、図 18Lに示すように、アルカリ現像液を用いて、フォトレジスト 9が溶解させら れる。これにより、電極 5の不要部分がフォトレジスト 9とともにリフトオフされる(リフトォ フエ程)。  Next, as shown in FIG. 18K, an electrode 5 (second material layer), which is a metal layer, is vapor-deposited on the entire surface. Further, as shown in FIG. Is dissolved. As a result, the unnecessary portion of the electrode 5 is lifted off together with the photoresist 9 (lift-off process).
次に、図 18Mに示すように、有機材料層 4を含む全面に、犠牲層 8が形成される。  Next, as shown in FIG. 18M, a sacrificial layer 8 is formed on the entire surface including the organic material layer 4.
[0086] 次に、この状態で、図 19Nに示すように、犠牲層 8の上にフォトレジスト 9が塗布され る。この時、有機材料層 4は、犠牲層 8に保護されているので、有機材料層 4とフォト レジスト 9との接触を回避できる。すなわち、フォトレジスト 9中の有機溶媒が有機材料 層 4を浸食したりすることがなレ、。 Next, in this state, as shown in FIG. 19N, a photoresist 9 is applied on the sacrificial layer 8. At this time, since the organic material layer 4 is protected by the sacrificial layer 8, contact between the organic material layer 4 and the photoresist 9 can be avoided. That is, the organic solvent in the photoresist 9 does not erode the organic material layer 4.
次に、フォトレジスト 9に対して適切なベータ処理を施した後、図 190に示すように、 この状態の基板の上方にフォトマスク 10Kが配置され、フォトレジスト 9が選択的に露 光される。すなわち、フォトマスク 10Kには、電極 6に対応する形状の開口 10tが形成 されていて、この開口 10tに対応する領域のフォトレジスト 9が選択的に紫外線露光さ れる(選択露光工程)。これにより、フォトレジスト 9の開口 10tに対応する部分は、ァ ルカリ現像液に対して可溶な性質に化学変化する。  Next, after performing an appropriate beta process on the photoresist 9, as shown in FIG. 190, a photomask 10K is placed above the substrate in this state, and the photoresist 9 is selectively exposed. . That is, an opening 10t having a shape corresponding to the electrode 6 is formed in the photomask 10K, and the photoresist 9 in a region corresponding to the opening 10t is selectively exposed to ultraviolet rays (selective exposure step). As a result, the portion of the photoresist 9 corresponding to the opening 10t is chemically changed to a property soluble in the alkaline developer.
[0087] 次に、図 19Pに示すように、アルカリ現像液、たとえば、 TMAH (テトラメチルアンモ ニゥムハイド口オキサイド)を用いてフォトレジスト 9を現像することにより、電極 6を形成 すべき領域の有機材料層 4が露出させられる(現像工程)。 Next, as shown in FIG. 19P, the organic material in the region where the electrode 6 is to be formed is developed by developing the photoresist 9 using an alkaline developer, for example, TMAH (tetramethyl ammonium hydroxide). Layer 4 is exposed (development process).
次に、図 19Qに示すように、全面が紫外線露光され、基板上に残存しているすべて のフォトレジスト 9が紫外線によって露光される(全レジスト露光工程)。  Next, as shown in FIG. 19Q, the entire surface is exposed to ultraviolet rays, and all of the photoresist 9 remaining on the substrate is exposed to ultraviolet rays (entire resist exposure step).
[0088] 次に、図 19Rに示すように、全面に金属層である電極 6が蒸着される。ここで、電極 6の材料としては、電極 5の蒸着に用いられた材料とは異なる材料が用いられる。たと えば、電極 5が金(Au)で形成され、電極 6がカルシウム(Ca)で形成される。また、電 極 6の材料としてアルカリ現像液と反応しやすい材料、たとえば、アルミニウム (A1)を 用いると、最終リフトオフのとき(図 19S参照)に、電極 6とアルカリ現像液が反応し、 電極の厚みが薄くなる場合がある。そのため、このような材料を用いる場合には、たと えば、電極 6の厚みが電極 5より厚くなるように(たとえば、厚み差分 hを設けるように) 蒸着させる。 Next, as shown in FIG. 19R, an electrode 6 that is a metal layer is deposited on the entire surface. Here, as the material of the electrode 6, a material different from the material used for the evaporation of the electrode 5 is used. For example, the electrode 5 is made of gold (Au) and the electrode 6 is made of calcium (Ca). Also, electric If a material that easily reacts with an alkaline developer, such as aluminum (A1), is used as the electrode 6, the electrode 6 reacts with the alkaline developer during the final lift-off (see Fig. 19S), and the electrode becomes thin. There is a case. Therefore, when such a material is used, for example, vapor deposition is performed such that the electrode 6 is thicker than the electrode 5 (for example, a thickness difference h is provided).
[0089] 次に、図 19Sに示すように、アルカリ現像液を用いて、フォトレジスト 9が溶解させら れる。これにより、電極 6の不要部分がフォトレジスト 9とともにリフトオフされて(リフトォ フエ程)、材料が異なる複数の電極が形成された有機トランジスタ 35が完成する。 このように、犠牲層 8の働きにより、有機溶剤に希釈されたフォトレジスト 9が有機材 料層 4に接触することを回避できるため、有機材料層 4に対する影響を抑制または防 止しながら、つまり、有機材料層 4の電気的特性を損なうことなぐフォトリソグラフィに よって、有機材料層 4の上に電極 5, 6の微細パターンを形成することができる。  Next, as shown in FIG. 19S, the photoresist 9 is dissolved using an alkaline developer. As a result, unnecessary portions of the electrode 6 are lifted off together with the photoresist 9 (lift-off process), and the organic transistor 35 in which a plurality of electrodes of different materials are formed is completed. As described above, the sacrificial layer 8 can prevent the photoresist 9 diluted in the organic solvent from coming into contact with the organic material layer 4, so that the influence on the organic material layer 4 is suppressed or prevented. The fine patterns of the electrodes 5 and 6 can be formed on the organic material layer 4 by photolithography without impairing the electrical characteristics of the organic material layer 4.
[0090] 図 20は、この発明の第 6の実施形態に係る方法が適用される有機材料装置の構成 を説明するための図解的な断面図である。この図 20において前述の図 6および図 1 2に示された各部に対応する部分には、図 6および図 12の場合と同一の参照符号を 付して示す。  FIG. 20 is a schematic cross-sectional view for explaining the configuration of an organic material device to which the method according to the sixth embodiment of the present invention is applied. In FIG. 20, portions corresponding to the respective portions shown in FIG. 6 and FIG. 12 described above are denoted by the same reference numerals as those in FIG. 6 and FIG.
この有機材料装置は、有機トランジスタと有機 ELとを有する複合集積素子 38であ  This organic material device is a composite integrated element 38 having an organic transistor and an organic EL.
[0091] この複合集積素子 38は、基板 39 (たとえば、ガラス基板またはプラスチック基板)上 に、図 12に示す有機トランジスタ 32と、図 6に示す赤色有機 EL22Rとを所定の間隔 を空けて備えている。なお、電極 5および電極 6の材料としては、赤色有機 EL22Rに おいて生じる光を外部に取り出す必要があるため、上記した信号電極 23と同様の材 料である透明電極材料が用いられる。 [0091] The composite integrated element 38 includes an organic transistor 32 shown in FIG. 12 and a red organic EL 22R shown in FIG. 6 on a substrate 39 (for example, a glass substrate or a plastic substrate) at a predetermined interval. Yes. As the material for the electrodes 5 and 6, it is necessary to extract light generated in the red organic EL 22R to the outside, and therefore, a transparent electrode material that is the same material as the signal electrode 23 described above is used.
[0092] 図 21A〜21F、図 22G〜22K、図 23L〜23Pおよび図 24Q〜24Sは、図 20の複 合集積素子の製造方法を工程順に示す図解的な断面図である。図 21A〜21F、図 22G〜22K、図 23し〜 23Pおよび図 24Q〜24S(こおレヽて前述の図 7A〜7E、図 8F 〜81、図 9J〜9M、図 ION〜図 10Qおよび図 11R〜図 11Uならびに図 13A〜図 13 D、図 14E〜; 14Hおよび図 151〜図 15Lに示された各部に対応する部分には、図 7 A〜7E、図 8F〜8I、図 9J〜9M、図 ION〜図 10Qおよび図 11R〜図 11Uならびに 図 13A〜図 13D、図 14E〜 14Hおよび図 151〜図 15Lの場合と同一の参照符号を 付して示す。 FIGS. 21A to 21F, FIGS. 22G to 22K, FIGS. 23L to 23P, and FIGS. 24Q to 24S are schematic cross-sectional views illustrating the method of manufacturing the composite integrated device of FIG. Figures 21A to 21F, Figures 22G to 22K, Figures 23 to 23P, and Figures 24Q to 24S (see Figure 7A to 7E, Figures 8F to 81, Figures 9J to 9M, Figures ION to 10Q, and 11R) ~ Figure 11U and Figure 13A ~ Figure 13D, Figure 14E ~; 14H and the parts corresponding to those shown in Figure 151 ~ Figure 15L are shown in Figure 7 A-7E, 8F-8I, 9J-9M, ION-10Q and 11R-11U, 13A-13D, 14E-14H and 151-15L. Attached is shown.
[0093] まず、図 21A〜図 21Eの工程(図 13A〜図 13Dおよび図 14Eと同様の工程)が行 なわれ、基板 39上に有機材料層 4が形成される。  First, the steps of FIG. 21A to FIG. 21E (the same steps as FIG. 13A to FIG. 13D and FIG. 14E) are performed, and the organic material layer 4 is formed on the substrate 39.
次に、図 21Fに示すように、有機材料層 4を含む全面に、犠牲層 8が形成される。 次に、この状態で、図 22Gに示すように、犠牲層 8の上にフォトレジスト 9が塗布され る。この時、有機材料層 4は、犠牲層 8に保護されているので、有機材料層 4とフォト レジスト 9との接触を回避できる。すなわち、フォトレジスト 9中の有機溶媒が有機材料 層 4を浸食したりすることがなレ、。  Next, as shown in FIG. 21F, a sacrificial layer 8 is formed on the entire surface including the organic material layer 4. Next, in this state, a photoresist 9 is applied on the sacrificial layer 8 as shown in FIG. 22G. At this time, since the organic material layer 4 is protected by the sacrificial layer 8, contact between the organic material layer 4 and the photoresist 9 can be avoided. That is, the organic solvent in the photoresist 9 does not erode the organic material layer 4.
[0094] 次に、フォトレジスト 9に対して適切なベータ処理を施した後、図 22Hに示すように、 この状態の基板の上方にフォトマスク 10Mが配置され、フォトレジスト 9が選択的に露 光される。すなわち、フォトマスク 10Mには、電極 5, 6 (23)にそれぞれ対応する形状 の開口 10vおよび開口 10wが形成されていて、この開口 lOvおよび開口 lOwに対応 する領域のフォトレジスト 9が選択的に紫外線露光される(選択露光工程)。これにより 、フォトレジスト 9の開口 lOvおよび開口 lOwに対応する部分は、アルカリ現像液に対 して可溶な性質に化学変化する。  Next, after performing an appropriate beta process on the photoresist 9, as shown in FIG. 22H, a photomask 10M is disposed above the substrate in this state, and the photoresist 9 is selectively exposed. To be lighted. That is, the photomask 10M has openings 10v and 10w having shapes corresponding to the electrodes 5, 6 (23), respectively, and the photoresist 9 in the region corresponding to the openings lOv and lOw is selectively formed. UV exposure (selective exposure process). As a result, the portions of the photoresist 9 corresponding to the openings lOv and lOw are chemically changed to properties soluble in an alkali developer.
[0095] 次に、図 221に示すように、アルカリ現像液、たとえば、 TMAH (テトラメチルアンモ ニゥムハイド口オキサイド)を用いてフォトレジスト 9を現像することにより、電極 5, 6 (2 3)を形成すべき領域の有機材料層 4およびゲート絶縁膜 3が露出させられる(現像 工程)。  Next, as shown in FIG. 221, electrodes 5 and 6 (2 3) are formed by developing photoresist 9 using an alkali developer, for example, TMAH (tetramethyl ammonium hydroxide). The organic material layer 4 and the gate insulating film 3 in the region to be exposed are exposed (development process).
次に、図 22Jに示すように、全面が紫外線露光され、基板上に残存しているすべて のフォトレジスト 9が紫外線によって露光される(全レジスト露光工程)。  Next, as shown in FIG. 22J, the entire surface is exposed to ultraviolet light, and all the photoresist 9 remaining on the substrate is exposed to ultraviolet light (all resist exposure process).
[0096] 次に、図 22Kに示すように、全面に電極 5, 6 (23)が蒸着され、さらに、図 23Lに示 すように、アルカリ現像液を用いて、フォトレジスト 9が溶解させられる。これにより、電 極 5, 6 (23)の不要部分がフォトレジスト 9とともにリフトオフされる(リフトオフ工程)。 次に、図 23Mに示すように、有機材料層 4を含む全面に、犠牲層 8が形成される。 Next, as shown in FIG. 22K, electrodes 5, 6 (23) are vapor-deposited on the entire surface, and further, as shown in FIG. 23L, the photoresist 9 is dissolved using an alkali developer. . Thus, unnecessary portions of the electrodes 5, 6 (23) are lifted off together with the photoresist 9 (lift-off process). Next, as shown in FIG. 23M, a sacrificial layer 8 is formed on the entire surface including the organic material layer 4.
[0097] 次に、この状態で、図 23Nに示すように、犠牲層 8の上にフォトレジスト 9が塗布され る。この時、有機材料層 4は、犠牲層 8に保護されているので、有機材料層 4とフォト レジスト 9との接触を回避できる。すなわち、フォトレジスト 9中の有機溶媒が有機材料 層 4を浸食したりすることがなレ、。 Next, in this state, as shown in FIG. 23N, a photoresist 9 is applied on the sacrificial layer 8. The At this time, since the organic material layer 4 is protected by the sacrificial layer 8, contact between the organic material layer 4 and the photoresist 9 can be avoided. That is, the organic solvent in the photoresist 9 does not erode the organic material layer 4.
次に、フォトレジスト 9に対して適切なベータ処理を施した後、図 230に示すように、 この状態の基板の上方にフォトマスク 10N配置され、フォトレジスト 9が選択的に露光 される。すなわち、フォトマスク 10N、赤色有機層 24Rに対応する形状の開口 ΙΟχが 形成されていて、この開口 ΙΟχに対応する領域のフォトレジスト 9が選択的に紫外線 露光される(選択露光工程)。これにより、フォトレジスト 9の開口 1 Oxに対応する部分 は、アルカリ現像液に対して可溶な性質に化学変化する。  Next, after an appropriate beta treatment is performed on the photoresist 9, as shown in FIG. 230, the photomask 10N is disposed above the substrate in this state, and the photoresist 9 is selectively exposed. That is, an opening ΙΟχ having a shape corresponding to the photomask 10N and the red organic layer 24R is formed, and the photoresist 9 in a region corresponding to the opening ΙΟχ is selectively exposed to ultraviolet rays (selective exposure step). As a result, the portion of the photoresist 9 corresponding to the opening 1 Ox is chemically changed to a property soluble in an alkaline developer.
[0098] 次に、図 23Pに示すように、アルカリ現像液、たとえば、 TMAH (テトラメチルアンモ ニゥムハイド口オキサイド)を用いてフォトレジスト 9を現像することにより、赤色有機層 24Rを形成すべき領域の電極 6 (23)が露出させられる(現像工程)。  [0098] Next, as shown in FIG. 23P, the photoresist 9 is developed using an alkaline developer, for example, TMAH (tetramethyl ammonium hydroxide), so that the red organic layer 24R is formed. The electrode 6 (23) is exposed (development process).
次に、図 24Qに示すように、全面が紫外線露光され、基板上に残存しているすべて のフォトレジスト 9が紫外線によって露光される(全レジスト露光工程)。  Next, as shown in FIG. 24Q, the entire surface is exposed to ultraviolet light, and all the photoresist 9 remaining on the substrate is exposed to ultraviolet light (all resist exposure process).
[0099] 次に、図 24Rに示すように、全面に正孔輸送層 241、赤色発光層 242Rおよび電 子輸送層 243が、蒸着源を切り換えながら連続的に蒸着され、電極 6 (23)上に赤色 有機層 24Rが積層構造を有するように形成される。そして、赤色有機層 24Rの上に、 電子注入層 25および走査電極 26が形成される。さらに、図 24Sに示すように、アル カリ現像液を用いて、フォトレジスト 9が溶解させられる。これにより、赤色有機層 24R の不要部分カ^フトオフされて(リフトオフ工程)、有機トランジスタと有機 ELとを有す る複合集積素子 38が完成する。  Next, as shown in FIG. 24R, the hole transport layer 241, the red light emitting layer 242 R, and the electron transport layer 243 are continuously deposited on the entire surface while switching the deposition source, so that the electrode 6 (23) The red organic layer 24R is formed to have a laminated structure. Then, the electron injection layer 25 and the scan electrode 26 are formed on the red organic layer 24R. Further, as shown in FIG. 24S, the photoresist 9 is dissolved using an alkali developer. As a result, the unnecessary portion of the red organic layer 24R is coffed off (lift-off process), and the composite integrated device 38 having the organic transistor and the organic EL is completed.
[0100] このように、犠牲層 8の働きにより、有機溶剤に希釈されたフォトレジスト 9が有機材 料層 4および赤色有機層 24Rに接触することを回避できるため、有機材料層 4および 赤色有機層 24Rに対する影響を抑制または防止しながら、つまり、有機材料層 4およ び赤色有機層 24Rの電気的特性を損なうことなぐフォトリソグラフィによって、有機材 料層 4および赤色有機層 24Rをいずれも微細パターンに形成することができる。その ため、高精細な複合集積素子を実現できる。  [0100] Thus, the sacrificial layer 8 can prevent the photoresist 9 diluted in the organic solvent from coming into contact with the organic material layer 4 and the red organic layer 24R, and thus the organic material layer 4 and the red organic layer. Both organic material layer 4 and red organic layer 24R are made fine by photolithography while suppressing or preventing the effect on layer 24R, that is, without damaging the electrical properties of organic material layer 4 and red organic layer 24R. Can be formed into a pattern. Therefore, a high-definition composite integrated device can be realized.
[0101] なお、上記した製造方法では、有機 EL22として、赤色有機 EL22Rを形成したが、 図 6に示した緑色有機 EL22Gや青色有機 EL22Bを形成することもできる。 [0101] In the above manufacturing method, red organic EL22R was formed as organic EL22. The green organic EL22G and blue organic EL22B shown in Fig. 6 can also be formed.
以上、この発明の実施形態について説明した力 この発明はさらに他の形態で実 施することが可能である。たとえば、有機材料層の表面を平坦化して、犠牲層にピン ホールが生じることを防ぐために、保護膜として、 TPD/Copper Phthalocyanine (CuP c)などから構成される膜を形成することもできる。  As described above, the force described in the embodiment of the present invention can be implemented in still other forms. For example, a film made of TPD / Copper Phthalocyanine (CuPc) or the like can be formed as a protective film in order to flatten the surface of the organic material layer and prevent pinholes from occurring in the sacrificial layer.
本発明の実施形態について詳細に説明してきたが、これらは本発明の技術的内容 を明らかにするために用いられた具体例に過ぎず、本発明はこれらの具体例に限定 して解釈されるべきではなぐ本発明の精神および範囲は添付の請求の範囲によつ てのみ限定される。  Although the embodiments of the present invention have been described in detail, these are only specific examples used to clarify the technical contents of the present invention, and the present invention is construed as being limited to these specific examples. The spirit and scope of the present invention should not be limited only by the appended claims.
この出願 (ま、 2006年 9月 28曰 ίこ曰本国特許疔 ίこ提出された特願 2006— 26553 8号に対応しており、この出願の全開示はここに引用により組み込まれるものとする。  This application corresponds to Japanese Patent Application No. 2006- 26553 8 filed on this application (September, 2006, September 28, 2006), the entire disclosure of which is incorporated herein by reference. .

Claims

請求の範囲 The scope of the claims
[1] 基板上に形成された有機材料からなる第 1材料層上に無機材料からなる犠牲層を 形成する工程と、  [1] forming a sacrificial layer made of an inorganic material on a first material layer made of an organic material formed on a substrate;
前記犠牲層上を含む前記基板上の領域にレジストを形成する工程と、 このレジストを所定パターンに選択露光する選択露光工程と、  Forming a resist in a region on the substrate including the sacrificial layer; and a selective exposure step of selectively exposing the resist in a predetermined pattern;
前記犠牲層を溶解させることができる水溶液からなる現像液で、前記選択露光ェ 程において露光されたレジスト部分およびその直下の犠牲層を溶解させる現像工程 と、  A developing step of dissolving the resist portion exposed in the selective exposure step and the sacrificial layer directly below the developer with an aqueous solution capable of dissolving the sacrificial layer;
この現像工程の後の前記基板上に、第 2材料層を形成する工程と、  Forming a second material layer on the substrate after the development step;
前記犠牲層を溶解させることができる水溶液からなる現像液で、前記レジストおよび その直下の犠牲層を溶解させることによって、当該レジスト上の第 2材料層をリフトォ フし、前記第 2材料層をパターユングするリフトオフ工程とを含む、有機材料装置の 製造方法。  The second material layer on the resist is lifted off by dissolving the resist and the sacrificial layer directly below the developer with an aqueous solution capable of dissolving the sacrificial layer, and the second material layer is patterned. A method for manufacturing an organic material device, including a lift-off process for Jung.
[2] 前記現像工程後に前記基板上に残っている未露光部分のレジストを露光して、こ のレジストを前記リフトオフ工程で用いる現像液に可溶な性質に化学変化させる全レ ジスト露光工程をさらに含み、  [2] An all resist exposure process in which an unexposed portion of the resist remaining on the substrate after the development process is exposed to chemically change the resist to a property soluble in a developer used in the lift-off process. In addition,
この全レジスト露光工程の後に、前記第 2材料層を形成する工程を行う、請求項 1 記載の有機材料装置の製造方法。  2. The method of manufacturing an organic material device according to claim 1, wherein a step of forming the second material layer is performed after the entire resist exposure step.
[3] 前記現像工程およびリフトオフ工程において用いられる前記現像液は、いずれもァ ルカリ性水溶液である、請求項 1記載の有機材料装置の製造方法。 [3] The method for producing an organic material device according to [1], wherein the developing solution used in the developing step and the lift-off step is an alkaline aqueous solution.
[4] 前記犠牲層が金属層である、請求項 1記載の有機材料装置の製造方法。 4. The method for manufacturing an organic material device according to claim 1, wherein the sacrificial layer is a metal layer.
[5] 前記第 1材料層が有機半導体材料層である、請求項 1記載の有機材料装置の製 造方法。 5. The method for manufacturing an organic material device according to claim 1, wherein the first material layer is an organic semiconductor material layer.
[6] 前記第 2材料層が金属層を含む、請求項 1記載の有機材料装置の製造方法。  6. The method for manufacturing an organic material device according to claim 1, wherein the second material layer includes a metal layer.
[7] 前記第 2材料層が、前記第 1材料層を構成する有機材料層とは別の種類の有機材 料層を含む、請求項 1記載の有機材料装置の製造方法。  7. The method of manufacturing an organic material device according to claim 1, wherein the second material layer includes an organic material layer of a different type from the organic material layer constituting the first material layer.
[8] 前記第 1材料層が、複数の有機材料層の積層構造を有する、請求項 1記載の有機 材料装置の製造方法。 [9] 前記第 2材料層が、複数の有機材料層の積層構造を有する、請求項 1記載の有機 材料装置の製造方法。 8. The method for manufacturing an organic material device according to claim 1, wherein the first material layer has a laminated structure of a plurality of organic material layers. 9. The method for manufacturing an organic material device according to claim 1, wherein the second material layer has a laminated structure of a plurality of organic material layers.
PCT/JP2007/068393 2006-09-28 2007-09-21 Method for manufacturing organic material apparatus WO2008038588A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006265538A JP4293467B2 (en) 2006-09-28 2006-09-28 Manufacturing method of organic material device
JP2006-265538 2006-09-28

Publications (1)

Publication Number Publication Date
WO2008038588A1 true WO2008038588A1 (en) 2008-04-03

Family

ID=39230023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/068393 WO2008038588A1 (en) 2006-09-28 2007-09-21 Method for manufacturing organic material apparatus

Country Status (3)

Country Link
JP (1) JP4293467B2 (en)
TW (1) TW200826330A (en)
WO (1) WO2008038588A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2579313A1 (en) * 2011-09-22 2013-04-10 LG Display Co., Ltd. Organic light emitting diode display device and method of fabricating the same
EP2343749A3 (en) * 2010-01-11 2014-04-02 Samsung Display Co., Ltd. Method of manufacturing high resolution organic thin film pattern
WO2015036287A3 (en) * 2013-09-12 2015-07-02 Osram Oled Gmbh Method for producing a component
US10090484B1 (en) 2017-03-10 2018-10-02 Samsung Display Co., Ltd. Organic light-emitting display apparatus and method of manufacturing the same
US10205124B2 (en) 2016-06-10 2019-02-12 Samsung Display Co., Ltd. Organic light-emitting display apparatus and method of manufacturing the same
WO2019096731A1 (en) * 2017-11-17 2019-05-23 Flexenable Limited Method of manufacturing organic semiconductor devices
US10431742B2 (en) 2017-01-03 2019-10-01 Samsung Display Co., Ltd. Organic light-emitting display apparatus and method of manufacturing the same
US10693068B2 (en) 2016-08-01 2020-06-23 Samsung Display Co., Ltd. Organic light-emitting display apparatus and method of manufacturing the same
US10720598B2 (en) 2017-12-01 2020-07-21 Samsung Display Co., Ltd. Organic light-emitting apparatus and method of manufacturing the same
US10879466B2 (en) 2016-07-29 2020-12-29 Samsung Display Co., Ltd. Organic light-emitting display apparatus and method of manufacturing the same
US10930875B2 (en) 2016-08-12 2021-02-23 Samsung Display Co., Ltd. Organic light-emitting display apparatus and method of manufacturing the same
US11508923B2 (en) * 2019-12-17 2022-11-22 Flexenable Limited Semiconductor devices

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5313769B2 (en) * 2009-05-29 2013-10-09 エルジー ディスプレイ カンパニー リミテッド Multilayer substrate and light emitting device manufacturing method
JP2011100831A (en) 2009-11-05 2011-05-19 Sony Corp Semiconductor device and display device using the semiconductor device
JP2011187626A (en) 2010-03-08 2011-09-22 Sony Corp Thin film transistor and electronic apparatus
JP2012164876A (en) * 2011-02-08 2012-08-30 Mitsubishi Chemicals Corp Method of forming interconnection or electrode, electronic device, and method of manufacturing the same
JP6016407B2 (en) * 2011-04-28 2016-10-26 キヤノン株式会社 Manufacturing method of organic EL display device
JP5884306B2 (en) 2011-06-13 2016-03-15 ソニー株式会社 THIN FILM TRANSISTOR, MANUFACTURING METHOD THEREOF, AND ELECTRONIC DEVICE
JP6168742B2 (en) * 2011-09-02 2017-07-26 キヤノン株式会社 Organic EL device
KR101463030B1 (en) * 2011-09-22 2014-11-20 엘지디스플레이 주식회사 Organic light emitting diode display device and method of fabricating the same
JP6284849B2 (en) * 2013-08-23 2018-02-28 富士フイルム株式会社 Laminate
KR102490889B1 (en) 2016-02-29 2023-01-25 삼성디스플레이 주식회사 Organic light-emitting apparatus and the method for manufacturing of the organic light-emitting display apparatus
EP3458908B1 (en) * 2016-05-20 2023-11-01 Gentex Corporation Method of resistive coating for voltage uniformity
US20200058715A1 (en) * 2018-08-16 2020-02-20 Int Tech Co., Ltd. Light emitting device and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004335688A (en) * 2003-05-07 2004-11-25 Sony Corp Field-effect transistor and its manufacturing method
JP2005086147A (en) * 2003-09-11 2005-03-31 Sony Corp Method of forming metal single layer film, method of forming wiring, and manufacturing method of field-effect transistor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004335688A (en) * 2003-05-07 2004-11-25 Sony Corp Field-effect transistor and its manufacturing method
JP2005086147A (en) * 2003-09-11 2005-03-31 Sony Corp Method of forming metal single layer film, method of forming wiring, and manufacturing method of field-effect transistor

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8778600B2 (en) 2010-01-11 2014-07-15 Samsung Display Co., Ltd. Method of manufacturing high resolution organic thin film pattern
EP2343749A3 (en) * 2010-01-11 2014-04-02 Samsung Display Co., Ltd. Method of manufacturing high resolution organic thin film pattern
EP2579313A1 (en) * 2011-09-22 2013-04-10 LG Display Co., Ltd. Organic light emitting diode display device and method of fabricating the same
US10547017B2 (en) 2011-09-22 2020-01-28 Lg Display Co., Ltd. Organic light emitting diode display device and method of fabricating the same
US9006009B2 (en) 2011-09-22 2015-04-14 Lg Display Co., Ltd. Organic light emitting diode display device and method of fabricating the same
US20150188098A1 (en) * 2011-09-22 2015-07-02 Lg Display Co., Ltd. Organic Light Emitting Diode Display Device and Method of Fabricating the Same
US9425438B2 (en) 2011-09-22 2016-08-23 Lg Display Co., Ltd. Organic light emitting diode display device and method of fabricating the same
US10256428B2 (en) 2011-09-22 2019-04-09 Lg Display Co., Ltd. Organic light emitting diode display device and method of fabricating the same
US9960376B2 (en) 2011-09-22 2018-05-01 Lg Display Co., Ltd. Organic light emitting diode display device and method of fabricating the same
US9685638B2 (en) 2013-09-12 2017-06-20 ORAM OLED GmbH Method for producing a component
WO2015036287A3 (en) * 2013-09-12 2015-07-02 Osram Oled Gmbh Method for producing a component
US10205124B2 (en) 2016-06-10 2019-02-12 Samsung Display Co., Ltd. Organic light-emitting display apparatus and method of manufacturing the same
US10749141B2 (en) 2016-06-10 2020-08-18 Samsung Display Co., Ltd. Organic light-emitting display apparatus and method of manufacturing the same
US11469374B2 (en) 2016-07-29 2022-10-11 Samsung Display Co., Ltd. Organic light-emitting display apparatus and method of manufacturing the same
US10879466B2 (en) 2016-07-29 2020-12-29 Samsung Display Co., Ltd. Organic light-emitting display apparatus and method of manufacturing the same
US10693068B2 (en) 2016-08-01 2020-06-23 Samsung Display Co., Ltd. Organic light-emitting display apparatus and method of manufacturing the same
US10930875B2 (en) 2016-08-12 2021-02-23 Samsung Display Co., Ltd. Organic light-emitting display apparatus and method of manufacturing the same
US11127902B2 (en) 2017-01-03 2021-09-21 Samsung Display Co., Ltd. Organic light-emitting display apparatus and method of manufacturing the same
US10431742B2 (en) 2017-01-03 2019-10-01 Samsung Display Co., Ltd. Organic light-emitting display apparatus and method of manufacturing the same
US10263210B2 (en) 2017-03-10 2019-04-16 Samsung Display Co., Ltd Organic light-emitting display apparatus and method of manufacturing the same
US10090484B1 (en) 2017-03-10 2018-10-02 Samsung Display Co., Ltd. Organic light-emitting display apparatus and method of manufacturing the same
CN111344877A (en) * 2017-11-17 2020-06-26 弗莱克英纳宝有限公司 Method for manufacturing organic semiconductor element
WO2019096731A1 (en) * 2017-11-17 2019-05-23 Flexenable Limited Method of manufacturing organic semiconductor devices
US10720598B2 (en) 2017-12-01 2020-07-21 Samsung Display Co., Ltd. Organic light-emitting apparatus and method of manufacturing the same
US11508923B2 (en) * 2019-12-17 2022-11-22 Flexenable Limited Semiconductor devices

Also Published As

Publication number Publication date
JP2008085200A (en) 2008-04-10
JP4293467B2 (en) 2009-07-08
TW200826330A (en) 2008-06-16

Similar Documents

Publication Publication Date Title
JP4293467B2 (en) Manufacturing method of organic material device
TWI793061B (en) Method for high resolution patterning of organic layers
JP4972728B2 (en) Organic material layer formation method
CN102150292B (en) Organic electronic devices and methods of making the same using solution processing techniques
JP4808479B2 (en) ORGANIC LIGHT EMITTING TRANSISTOR ELEMENT, ITS MANUFACTURING METHOD, AND LIGHT EMITTING DISPLAY DEVICE
KR101084191B1 (en) Organic light emitting diode display apparatus and method of manufacturing the same
KR101474580B1 (en) Active matrix optical device
JP4934774B2 (en) Organic light emitting transistor and display device
CN102144312B (en) Method of making organic thin film transistors using a laser induced thermal transfer printing process
CN101388438B (en) Organic electroluminescent device, fabrication process of organic electroluminescent device, display device, and fabrication process of display device
JP2010524217A (en) Organic thin film transistor
WO2005091373A1 (en) Organic semiconductor element and organic el display device using the same
CN102017158A (en) Electronic devices and methods of making them using solution processing techniques
US20120252303A1 (en) Method of manufacturing an organic light emitting device
JPWO2007043704A1 (en) Light emitting element and display device
US20090218941A1 (en) Organic semiconductor light-emitting device and display device
JP2007109564A (en) Light emitting element and display device
JP4972727B2 (en) ORGANIC SEMICONDUCTOR LIGHT EMITTING ELEMENT, DISPLAY DEVICE USING SAME, AND METHOD FOR MANUFACTURING ORGANIC SEMICONDUCTOR LIGHT EMITTING ELEMENT
WO2006098420A1 (en) Light-emitting device and display
US8642379B2 (en) Thin film transistor
JP2012124104A (en) Method for manufacturing organic el display device
KR20230137363A (en) Display device and method of manufacturing the display device
JP2006098542A (en) Organic electroluminescence apparatus
JP2006086084A (en) Method of manufacturing self-luminous panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07807725

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07807725

Country of ref document: EP

Kind code of ref document: A1