WO2008029812A1 - Distance measuring device - Google Patents

Distance measuring device Download PDF

Info

Publication number
WO2008029812A1
WO2008029812A1 PCT/JP2007/067235 JP2007067235W WO2008029812A1 WO 2008029812 A1 WO2008029812 A1 WO 2008029812A1 JP 2007067235 W JP2007067235 W JP 2007067235W WO 2008029812 A1 WO2008029812 A1 WO 2008029812A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
frequency
phase
distance
signals
Prior art date
Application number
PCT/JP2007/067235
Other languages
French (fr)
Japanese (ja)
Inventor
Minori Kawano
Yasunori Takeuchi
Hironori Kawano
Original Assignee
Radio Communication Systems Ltd.
The Chugoku Electric Power Co., Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Radio Communication Systems Ltd., The Chugoku Electric Power Co., Inc. filed Critical Radio Communication Systems Ltd.
Priority to JP2008533169A priority Critical patent/JPWO2008029812A1/en
Priority to US12/439,962 priority patent/US20100207820A1/en
Publication of WO2008029812A1 publication Critical patent/WO2008029812A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/02Systems for determining distance or velocity not using reflection or reradiation using radio waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/02Speed or phase control by the received code signals, the signals containing no special synchronisation information
    • H04L7/033Speed or phase control by the received code signals, the signals containing no special synchronisation information using the transitions of the received signal to control the phase of the synchronising-signal-generating means, e.g. using a phase-locked loop

Definitions

  • a plurality of ultrasonic signals or high-frequency signals or optical signals having at least different frequencies are transmitted from a single signal transmitting means, and received by the single signal receiving means.
  • the present invention relates to a distance measuring device for measuring the distance between the means and the signal receiving means with high accuracy.
  • Patent Document 1 US Patent No. 4087816
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-207557
  • Patent Document 3 Special Table 2004—507714
  • Patent Document 4 Japanese Patent Laid-Open No. 2006-023261
  • Patent Document 5 Japanese Patent Laid-Open No. 2006-0042201
  • FIG. 11 shows an example of a conventional “VLF band wireless position detection device” described in Patent Document 1!
  • VLF signal radio wave FSK between f0 and f0 + 50Hz in 20ms ec period
  • antenna 10 receives VLF signal from the US Navy VLF communication station
  • amplifier 11 receives VLF signal from the US Navy VLF communication station
  • the signal from the synthesizer 23 is mixed by the mixer 16 to generate an intermediate frequency signal, amplified by the intermediate frequency amplifier 12 and limited by the limiter 18, and then the VCX022 signal is divided into 1 / P by the frequency divider 24.
  • the result of the comparison is compared by the phase comparator 20 and the result is input to the loop filter 21.
  • the output of the loop filter 21 controls the oscillation frequency of VCX022.
  • the output of the limiter 18 is compared with the output of the frequency divider 24 at the timing when the output of the frequency divider 24 is divided by 20 by the frequency divider 27 by the delay time measuring device 25. The distance from the detected delay time to the communication station can be measured.
  • the frequency of the VLF signal varies between (f0 and f 0 + 50Hz). It is difficult to accurately detect the timing at the receiver side, resulting in an error, so that it is difficult to measure a relatively close distance within 300m with high accuracy if the force is as it is. There was a point.
  • the phase of the distance measurement signal of two different frequencies starts to change from the transmission start point 0 as a base point. It is important to know the timing of the transmission start point 0 in synchronization.
  • the first and second transponders are transferred from the first transponder to the second transponder.
  • the distance between the first and second transponders is determined by transmitting the first and second signals of the frequency and determining the phase difference between the two signals to the second tarance bonder! Is disclosed to be measurable.
  • the second transponder in order to determine the comparison between the two signals and the phase difference between them, the second transponder generates a reference signal that is phase-locked to the first signal and mixes it with the second signal. A mixed signal is generated, and the phase difference is determined by counting the number of nulls or peaks in the mixed signal in a counter. For this reason, the accuracy of distance measurement is governed by the occurrence interval of nulls or peaks. As described in (00 25), when 880 MHz is used for the first signal and 884 MHz is used for the second signal, nulls or peaks are detected. It occurs every 75m, and the distance measurement accuracy is ⁇ 37.5m.
  • (0026) describes a method for improving the distance measurement accuracy, in principle there is a limit to the accuracy improvement, and there is a problem that it is difficult to increase to the accuracy in centimeters.
  • a signal having a plurality of carrier frequencies that are synchronized with or orthogonal to a transmitting means or a relay means is a subcarrier frequency or a plurality of frequencies. It is disclosed to transmit an ultrasonic signal, a high-frequency signal, or an optical signal that is hopped or switched between a modulation frequency or a plurality of spreading code rates.
  • the receiving means detects the distance from the transmitting means or the relay means
  • specific means for realizing the transmitting means and the receiving means are described! /, NA! /, Problem There was a point.
  • the present invention provides a plurality of ultrasonic signals or high-frequency signals which are synchronized or orthogonal and have at least different frequencies, or an optical signal transmitted from a single signal transmitting means.
  • the apparatus for measuring the distance by receiving by the receiving means there are a plurality of ultrasonic signals transmitted from the signal transmitting means! /, A high frequency signal or an optical signal, and a common intermediate frequency signal or modulation in the signal receiving means.
  • the distance between the signal transmitting means and the signal receiving means is highly accurate. This is to realize a distance measuring device that can be measured at a low cost.
  • the distance measuring device comprises at least a single signal transmitting means, a single signal receiving means and a signal processing means,
  • a single signal transmission means transmits a plurality of ultrasonic signals that are synchronized or orthogonal and have at least different frequencies, and transmit a high-frequency signal or an optical signal.
  • a single signal receiving means a plurality of local oscillation signals that are synchronized or orthogonal and have at least different frequencies are generated, and a plurality of ultrasonic signals, high frequency signals, or optical signals received by using the plurality of local oscillation signals. Mix and convert to a common intermediate frequency signal, modulation signal or baseband signal
  • the phase and frequency detector for detecting the frequency and / or phase using the clock signal output from the synchronous oscillator force, and the clock signal output from the synchronous oscillator
  • the frequency is! /
  • the phase is! /
  • the delay time or a combination thereof is controlled to establish and maintain synchronization between the intermediate frequency signal, modulation signal or baseband signal and the clock signal.
  • the frequency and / or phase of the band signal is detected, and the distance between the signal transmitting means and the signal receiving means is measured with high accuracy from the detection result.
  • the frequency of the local oscillation signal is fixed in the receiving means, a plurality of intermediate frequency signals or modulation signals or baseband signals having different frequencies are output, and the clock output from the synchronous oscillator power in the signal processing means A similar effect can be realized by multiplying or dividing the frequency of the signal, and various applications are possible.
  • an ultrasonic signal, a high-frequency signal, or an optical signal is transmitted from a single signal transmitting means, and the reflected or retransmitted ultrasonic signal is transmitted from the object whose distance is to be measured. If there is a sound wave signal or high-frequency signal, the optical signal is transmitted to a single signal receiving means and the time until the signal is received to measure the distance is measured.
  • ⁇ VLF band radio position detector '' that measures the distance by receiving the FSK modulated high frequency signal from the signal transmitting means with a single signal receiving means and detecting the time delay between the carrier signal and the FSK modulated signal.
  • an ultrasonic signal, a high frequency signal or an optical signal transmitted from a single signal transmitting means is received by a single signal receiving means and reflected or retransmitted. It is a method that can measure the direct distance without using radiant waves, and it is possible to measure relatively close distances within 300m with high accuracy and force in real time. There are advantages such as being able to.
  • the distance measuring device includes a signal transmitting means 101, a signal receiving means 102, and a signal processing unit as shown in Fig. 1, Claim 1 and Claim 5 according to the first aspect of the present invention. Composed of stage 103.
  • the oscillation frequency of the voltage controlled oscillator 4 is generated in synchronization with the reference oscillator 7 by the phase locked loop composed of the frequency divider 6 and the phase comparator 5.
  • the local frequency signal generated at a fixed frequency and a plurality of orthogonal signals that are synchronized or orthogonal and have at least different frequencies are mixed by the mixer 3 and / or the local signal and the synchronous signal are modulated by the mixer 3.
  • a plurality of carrier signals or subcarrier signals are generated and amplified by the power amplifier 2 and radiated from the antenna 1 to the space as a high frequency signal.
  • the plurality of carrier signals or subcarrier signals can be simultaneously and / or time-series. Can be generated.
  • a first local oscillation signal having a fixed frequency is generated by a phase-locked loop composed of the frequency divider 32 and the phase comparator 33 with respect to the oscillation frequency of the reference oscillator 32, and the first local oscillation signal is generated.
  • the second intermediate frequency signal force is also detected by the synchronization signal detector 51 and the control timing of the control unit 54 is started.
  • the controller 54 Since a plurality of carrier signals or subcarrier signals are transmitted from the signal transmission means 101 using the synchronization signal as a timing reference, the controller 54 sets the frequency of the orthogonal signal transmitter 55 and waits.
  • the oscillation frequency of the direct signal generator 55 is controlled at a timing determined in advance by the control unit 54 and is supplied to the second mixer 35 to be transmitted to the first intermediate frequency signal. Mix and convert to multiple second intermediate frequency signals with the same frequency
  • the first second intermediate frequency signal corresponding to the carrier signal or subcarrier signal of the first frequency and the synchronous oscillator 54 While receiving the first carrier signal or subcarrier signal serving as the reference, the first second intermediate frequency signal corresponding to the carrier signal or subcarrier signal of the first frequency and the synchronous oscillator 54 generate At least the frequency at which the first and second intermediate frequency signals are detected by the phase 'frequency detector 52 and subsequently received. Of the second second intermediate frequency signal corresponding to the second carrier signal or subcarrier signal with different frequency and / or The phase is detected by the phase / frequency detector 52, and the distance between the signal transmitting means 101 and the signal receiving means 102 can be measured with high accuracy from the detection result.
  • the signal transmitting means 101 and / or the signal receiving means 102 are provided with a plurality of antennas or a plurality of transducers, By switching the plurality of antennas or the plurality of transducers by the switching means, the distance between the signal transmitting means 101 and the signal receiving means 102 is measured with high accuracy, and the signal transmitting means 101 and / or the signal is measured.
  • the direction in which the receiving means 102 is located can be measured, and thus the merit of being able to determine the current position of the signal receiving means 102 with high accuracy is added.
  • FIG. 1 is a configuration diagram of a distance measuring device according to the first embodiment of the present invention
  • FIG. 2 is a diagram showing an example of a signal flow.
  • 101 is a signal transmission means
  • 1 is an antenna
  • 2 is a power amplifier
  • 3 is a mixer
  • 4 is a voltage controlled oscillator
  • 5 is a phase comparator
  • 6 is a frequency divider
  • 7 is a reference oscillator
  • 8a is synchronous A signal generator
  • 8b is a quadrature signal generator
  • 9 is a control unit.
  • 102 is a signal receiving means
  • 10 is an antenna
  • 11 is a low noise amplifier
  • 16 is a first mixer
  • 17 is a first intermediate frequency amplifier
  • 31 is a voltage controlled oscillator
  • 32 is a frequency divider
  • 33 is a phase comparison
  • 34 is a reference oscillator
  • 35 is a second mixer.
  • Reference numeral 103 is a signal processing means
  • 51 is a synchronous signal detector
  • 52 is a phase / frequency detector
  • 53 is a synchronous oscillator
  • 54 is a control unit
  • 55 is a quadrature signal generator
  • 61, 62 and 63 are connection points. It is.
  • the voltage-controlled oscillator 4 has its oscillation frequency and phase as a reference oscillation by a phase-locked loop composed of the frequency divider 6 and the phase comparator 5. Locked to the frequency and phase of the generator 7 to generate a carrier signal or subcarrier signal, and mixed or modulated by the synchronization signal and / or quadrature signal generated by the synchronization signal generator 8a with the mixer 3, Amplified by the power amplifier 2 and radiated from the antenna 1 to the space as a high frequency signal.
  • At least the oscillation frequency of the quadrature signal generator 8b is periodically switched and controlled by the control unit 9, and the first quadrature signal set at the first control start point 203a shown in FIG. 2 and the second control start point 203b
  • the second quadrature signal 202 set in step 1 is generated synchronously or orthogonally and at least with a different frequency.
  • the header portion is modulated from the antenna 1 by the synchronization signal, and is synchronized or orthogonal at the timing strictly controlled by the control unit 9, and at least the frequency.
  • a high-frequency signal mixed or modulated by multiple orthogonal signals with different values is emitted in bursts!
  • the voltage controlled oscillator 31 has the oscillation frequency and phase of the frequency of the reference oscillator 34 by a phase-locked loop composed of the frequency divider 32 and the phase comparator 33. And a phase-locked signal, a local oscillation signal is generated, applied to the first mixer 16, mixed with the received signal received by the antenna 10 and amplified by the low-noise amplifier 11, so that the first intermediate frequency of a plurality of frequencies is obtained. Converted into a frequency signal, amplified by the first intermediate frequency amplifier 17, and mixed with a plurality of orthogonal signals of at least different frequencies supplied by the second mixer 35 via the connection point 63 to share at least the frequency band. The signal is converted into a second intermediate frequency signal and output to the signal processing means 103 via the connection point 61.
  • the signal processing means 103 supplies a quadrature signal to the synchronization signal detector 51 for detecting a synchronization signal from the second intermediate frequency signal output from the signal receiving means 102 and the second mixer. From a quadrature signal generator 55 for detecting the frequency and / or phase, a phase / frequency detector 52, a synchronous oscillator 53 for supplying a clock signal to the phase / frequency detector 52, and a control unit 54 Composed.
  • the synchronous oscillator 53 has a frequency and / or phase of the second intermediate frequency signal and a frequency and / or phase of the clock signal generated by the synchronous oscillator 53.
  • Synchronization establishment means for establishing synchronization and synchronized It is assumed that a synchronization detection means for detecting this and a synchronization holding means for holding synchronization are incorporated.
  • phase / frequency detector 52 converts the second intermediate frequency signal into a digital signal with a period of a clock signal, for example, as shown in FIG. 6, and provides a Sin and Cos look-up table.
  • the frequency and / or phase of the input signal is detected by a product-sum operation, fast Fourier transform, or by taking a zero beat after conversion to an IQ signal as shown in FIG.
  • the synchronization signal detector 51 of the signal processing means 103 detects the synchronization signal and activates the control timing.
  • the synchronous oscillator 53 incorporates that the clock signal output from the synchronous oscillator 53 is synchronized with the first second intermediate frequency signal corresponding to the first orthogonal signal transmitted from the signal transmitting means 101.
  • the frequency and / or phase of the clock signal is held by the synchronization holding means built in the synchronization oscillator 53.
  • the frequency and / or phase of the first second intermediate frequency signal is detected by the phase / frequency detector 52, and then the signal From the transmitting means 101, a second high-frequency signal is radiated into the space corresponding to a second orthogonal signal having at least a different frequency at the second control starting point.
  • the orthogonal signal generator 55 The frequency is switched by the control unit 54, and the second orthogonal signal is supplied to the second mixer 35 of the signal receiving means 102 via the connection point 63, and the frequency of the second second intermediate frequency signal is / is present!
  • the phase can be detected by the phase / frequency detector 52, and the distance between the signal transmission means 101 and the reception signal means 102 can be measured with high accuracy from the detection result.
  • the signal reception unit 102 receives the signal.
  • the first high-frequency signal and the second high-frequency signal transmitted from the signal transmission unit 101 are a Sin (2 flt) and aSin (2 f2t)
  • the signal reception unit 102 receives the signal.
  • the distance from the signal transmitting means 101 is D (m)
  • the first high-frequency signal and the second high-frequency signal are ASin ⁇ 2 ⁇ f lt + (2 ⁇ D / ⁇ 1) ⁇
  • ASin ⁇ 2 ⁇ f2t + (2 ⁇ D / ⁇ 2) ⁇ ASin ⁇ 2 ⁇ f2t + (2 ⁇ D / ⁇ 2) ⁇ .
  • is the wavelength of the first high frequency signal
  • ⁇ 2 is the wavelength of the second high frequency signal.
  • the signal receiving means 102 converts the signal to a first intermediate frequency signal having a different frequency, and further mixes with a plurality of orthogonal signals having different frequencies supplied from the signal processing means 103 by a second mixer to obtain a second intermediate frequency signal.
  • the first orthogonal signal generated by the signal processing means 103 corresponding to the first high-frequency signal is BSin (2 fLlt + ⁇ ) and corresponds to the second high-frequency signal.
  • the second quadrature signal generated by the signal processing means 103 is BSin (2 fL2t + ⁇ )
  • the first second intermediate frequency signal is 883 ⁇ ⁇ 2 ⁇ 3 ⁇ 4 + (2 ⁇ 0 / 1)- ⁇
  • the second second intermediate frequency signal is expressed as ABSin ⁇ 2wfit + (2 ⁇ / ⁇ 2) ⁇ .
  • fi fl-fLl
  • fi f2-fL2.
  • the frequency is the same, but only the phase is different, and the first second intermediate frequency signal and the second second intermediate frequency signal are the same. If the second intermediate frequency signal can be received simultaneously, the phase difference can be measured regardless of the measurement timing.
  • the angle can be quickly determined by strictly controlling the interval between tl and t2 by the control unit 54.
  • the first second intermediate frequency signal and the second second intermediate frequency signal have the same frequency but correspond to the distance D (m).
  • the frequency shift of the delay locked loop oscillator 54 is A f
  • the frequency of a plurality of carrier signals or subcarrier signals transmitted from the signal transmitting means is changed in the order of fl ⁇ f2 ⁇ fl
  • a f corresponding to the frequency shift can be reduced.
  • the frequency of the plurality of carrier signals or subcarrier signals is changed in the order of fl ⁇ f2 ⁇ fl
  • the plurality of carrier signals! / Are equal in the interval between the control start points corresponding to the subcarrier signals.
  • the multiple carrier wave signals! / which are generated at intervals of the control starting points, are set to be an integer multiple or the same as the number of cycles of the subcarrier signal to ensure orthogonality or The advantage of being easy to maintain is obtained.
  • a carrier signal or subcarrier signal is generated by hopping the frequency, performing FSK modulation, or using a single modulation signal or baseband signal.
  • the same effect can be obtained even if amplitude modulation, double sideband modulation, or single sideband modulation is repeated up and down.
  • the same effect can be obtained even if the signal transmitting means 101 transmits the signal as a high-frequency ultrasonic signal or an optical signal as described in the case of transmitting as a high-frequency signal.
  • the internal oscillator of the synchronous oscillator 53 has a frequency as shown in FIG.
  • a phase comparator, synchronization establishing means, synchronization detecting means, and synchronization holding means are incorporated. ing.
  • the same effect can be obtained by providing the quadrature signal generator 55 in the signal receiving means 102 or providing the second mixer 35 in the signal processing means 103.
  • a plurality of high-frequency signals that are generated in the signal transmitting means 101 in synchronization or orthogonally and have at least different frequencies are composed of a change part (orthogonal signal) and a fixed part (local signal), and the signal receiving means
  • a plurality of local signals generated in 102, which are synchronized or orthogonal and have at least different frequencies, are composed of a change part (orthogonal signal) and a fixed part (local signal), and are generated by at least the signal transmission means 101. It is desirable that the changed portion and the changed portion generated by the signal receiving means 102 are the same, similar, or similar.
  • the frequency difference between the fixed portion of the signal transmitting means 101 and the fixed portion of the signal receiving means 102 is the same as the first intermediate frequency and / or the second intermediate frequency of the signal receiving means 102. .
  • FIG. 3 is a configuration diagram of a distance measuring device according to the second embodiment of the present invention.
  • 102 is a signal receiving means
  • 10 is an antenna
  • 11 is a low noise amplifier
  • 16 is a mixer
  • 17 is an intermediate frequency amplifier
  • 31 is a voltage controlled oscillator
  • 32 is a frequency divider
  • 33 is a phase comparator
  • 35 is a reference oscillator
  • 103 is a signal processing means
  • 51 is a synchronous signal detector
  • 52 is a phase / frequency detector
  • 53 is a synchronous oscillator
  • 54 is a control unit
  • 56 is a multiplier or frequency divider
  • 61, 62 is a connection point
  • the voltage controlled oscillator 31 has its oscillation frequency and phase locked to the frequency and phase of the reference oscillator 35 by a phase locked loop composed of the frequency divider 32 and the phase comparator 33. Is applied to the mixer 16 as a fixed local oscillation signal, mixed with the received signal received by the antenna 10 and amplified by the low-noise amplifier 11, and converted to an intermediate frequency signal having a different frequency. Amplified by 17 and output to the signal processing means 103 via the connection point 61.
  • the signal processing means 103 includes a synchronization signal detector 51 for detecting a synchronization signal from the intermediate frequency signal, and the frequency or phase of the intermediate frequency signal is! / ⁇ is a delay time!
  • phase and frequency detector 52 for detecting the combination of the two and the multiplication to divide the frequency to supply the phase and frequency detector 52 with a reference clock signal for measuring the frequency and / or phase.
  • Device 56 synchronous oscillator 53, and control unit 54.
  • the multiplier / divider 56 is set to a multiplier / divider number (X P1), and a high frequency radiated at the first timing of the signal transmission means 101 (not shown). Waiting for a signal.
  • the intermediate frequency signal is converted into a digital signal at the period of the clock signal, and the sum and product of the Sin and Cos look-up tables are added.
  • the frequency and / or phase of the input signal is detected by a method of calculation, a method of fast Fourier transform, or a method of taking a zero beat after conversion to an IQ signal as shown in Fig. 8.
  • the signal transmitting means 101 transmits a first high-frequency signal including a synchronization signal at a first timing
  • the synchronization signal detector 51 detects the synchronization signal
  • the control unit 53 determines the control timing. to start.
  • the first intermediate frequency signal corresponding to the first high frequency signal transmitted from the signal transmitting means 101 and the oscillation frequency or phase or delay time of the output signal of the clock signal oscillator 53 are! /
  • the synchronous detection means incorporated in the synchronous oscillator 53 detects the difference between the two and controls the frequency and / or phase of the synchronous oscillator 53 so that the frequency and / or phase of the two coincide.
  • the synchronization is detected by, and the synchronization is held by the synchronization holding means when the synchronization is detected.
  • the frequency and / or phase of the intermediate frequency signal is detected by the phase / frequency detector 52, and then the signal transmitting means 101 Then, a second high-frequency signal having at least a different frequency at the second timing is radiated to the space, and the frequency dividing number of the multiplier / divider 56 is set to the multiplication-division number (X P2) by the control means 54.
  • the frequency and / or phase of the second intermediate frequency signal that is switched and output from the receiving means 102 is at least different in frequency.
  • the distance between the signal transmission means 101 and the reception signal means 102 can be measured with high accuracy from the detection result detected by the detector 52.
  • the internal oscillator of the synchronous oscillator 53 includes a delay lock loop oscillator, a voltage controlled crystal oscillator, a phase locked loop oscillator, a numerically controlled oscillator, a frequency and It has a built-in digitally controlled oscillator that can control the phase and / or maintain the synchronized frequency and / or phase.
  • ⁇ modulation for the phase-locked loop oscillator.
  • a band pass filter is inserted on the input side of the phase / frequency detector 52, and the multiplier 56 It is necessary to switch the bandpass filter at the timing of switching the multiple.
  • FIG. 2 is a diagram showing a signal relationship in the first embodiment of the present invention.
  • 201 and 202 are the first and second orthogonal signals transmitted from the signal transmission means 101 (not shown), and 203a and 203b are the controls output from the control unit 9 (not shown).
  • 204a and 204b are the phase differences between the control starting points 203a and 203b of the signal oscillating means and the control starting points 210a and 210b of the signal receiving means 102 (not shown), and 205 is generated in the signal receiving means 102.
  • the first local oscillation signal is not necessarily synchronized with the control starting points 210a and 210b, and has a fixed frequency because the frequency dividing number of the signal frequency divider 24 is fixed.
  • Reference numerals 206 and 207 denote a first first intermediate frequency signal and a second first intermediate frequency signal output corresponding to the first orthogonal signal 201 and the second orthogonal signal 202 of the signal transmitting means 101, respectively.
  • 208, 209 are the first orthogonal signal and the second orthogonal signal generated in the signal receiving means 102 corresponding to the first orthogonal signal 201 and the second orthogonal signal 202 of the signal transmitting means 101
  • 212 and 213 are a first second intermediate frequency signal and a second second intermediate frequency signal output in correspondence with the first quadrature signal 201 and the second quadrature signal 202 of the signal transmission means 101
  • 211a, 21 lb is the phase of the first second intermediate frequency signal and the second second intermediate frequency signal
  • To 231 are the respective time axes.
  • the first orthogonal signal 201 and the second orthogonal signal 202 transmitted from the signal transmission means 101 are: Although the frequencies are different, the control starting points 203a and 203b output from the control unit 9 (not shown) of the signal transmitting means 101 are synchronized with a specific phase (in the figure, rising from zero voltage), and thus are mutually connected. Orthogonal to! /
  • the first local oscillation signal 205 generated by the signal receiving means 102 has a fixed frequency. Therefore, the first first intermediate frequency signal 206 output from the signal receiving means 102 and the second first signal The frequency between the intermediate frequency signals 207 is different, and it is difficult to measure the phase difference as it is.
  • the signal receiving means 102 is provided with a second mixer 35, which outputs a first second intermediate frequency signal 212 and a second second intermediate frequency signal 213, and outputs the phase from each of the phases 21 la and 21 lb.
  • the phase difference is calculated.
  • phase difference between 213 and 213 In order to measure the phase difference between 213 and 213, first, synchronization between the first second intermediate frequency and the clock signal output from the synchronous oscillator 53 is established, and the phase of the synchronized clock signal is detected. Measure the frequency and / or phase of the first second intermediate frequency signal 212 and supply the clock signal to the phase and frequency while maintaining synchronization with the first second intermediate frequency signal 208. The frequency is supplied to the detector 52, and the frequency and / or phase of the second second intermediate frequency signal 213 is measured.
  • the phases 211a and 21 lb of the first second intermediate frequency signal 212 and the second second intermediate frequency signal 213 can be measured, so that the distance between the signal transmitting means 101 and the signal receiving means 102 is increased. It becomes possible to measure with accuracy.
  • the control starting points 203a and 203b can generate force S at the same timing.
  • the signal receiving means 102 it becomes easy to measure the phase difference.
  • FIG. 4 is a diagram showing a signal relationship in the first embodiment of the present invention.
  • 201 and 202 are the first and second orthogonal signals transmitted from the signal transmission means 101 (not shown), and 203a and 203b are the controls output from the control unit 9 (not shown).
  • the starting points 204a and 204b are the control starting points 203a and 203b of the signal transmitting means 101 and the signal receiving means 102 (not shown).
  • the phase difference between the control starting points 210a and 210b, 205 is the first local signal generated by the signal receiving means 102, and has a fixed frequency because the frequency dividing number of the frequency divider 24 is fixed.
  • Reference numerals 206 and 207 denote first intermediate frequency signals and second intermediate frequency signals output corresponding to the first orthogonal signal 201 and the second orthogonal signal 202, and 208 and 209 denote the signal transmission means.
  • the first orthogonal signal 201 and the second orthogonal signal generated by the signal receiving means 102 corresponding to the first orthogonal signal 201 and the second orthogonal signal 202 of 101, and 212 and 213 are the signal transmitting means.
  • the first second intermediate frequency signal and the second second intermediate frequency signal output corresponding to the first quadrature signal 201 and the second quadrature signal 202 of 101, 211a, 211b are the first Phases of the second intermediate frequency signal and the second second intermediate frequency signal, 22;! To 231 are respective time axes.
  • the first orthogonal signal 201 and the second orthogonal signal 202 transmitted from the signal transmission means 101 are different in frequency, but are output from the control unit 9 (not shown) of the signal transmission means 101.
  • the starting points 203a and 203b are synchronized with a specific phase (in the figure, rising from a voltage of zero), and are thus orthogonal to each other!
  • the first local oscillation signal 205 generated by the signal receiving means 102 has a fixed frequency. Therefore, the first first intermediate frequency signal 206 output from the signal receiving means 102 and the second first signal The frequency between the intermediate frequency signals 207 is different, and it is difficult to measure the phase difference as it is.
  • the synchronization of the first intermediate frequency and the synchronous oscillator 53 is established, and the first clock
  • the signal 214 is supplied to the phase detector 52 to measure the frequency and / or phase of the first intermediate frequency signal 206, and while maintaining the synchronization with the first intermediate frequency signal 206,
  • the second clock signal 215 is supplied to the phase detector 52 to measure the frequency and / or phase of the second intermediate frequency signal.
  • the phase difference 211b between the first intermediate frequency signal 206 and the second intermediate frequency signal 207 can be measured. Therefore, the distance between the signal transmitting means 101 and the signal receiving means 102 can be measured with high accuracy. It becomes possible to measure.
  • the first high-frequency signal 201 and the second high-frequency signal 2 are sent from the signal transmitting means 101.
  • the control start points 203a and 203b have the same timing, so it is easy to measure the phase difference.
  • FIG. 5 is a diagram showing another example of signal flow in the third mode of the present invention.
  • 201 and 202 are the first and second orthogonal signals transmitted from the signal transmission means 101 (not shown), and 203a and 203b are the control unit 9 (not shown) of the signal transmission means 101.
  • 204a, 204b is the phase difference between the control starting points 203a, 203b of the signal oscillating means and the control starting points 210a, 210b of the signal receiving means 102 (not shown), 205
  • This is a first local signal generated by the signal receiving means 102 and does not necessarily need to be synchronized with the control starting points 210a and 210b, and therefore has a fixed frequency because the frequency dividing number of the signal divider 24 is fixed.
  • Reference numerals 206 and 207 denote a first first intermediate frequency signal and a second first intermediate frequency signal output corresponding to the first orthogonal signal 201 and the second orthogonal signal 202 of the signal transmission means 101.
  • 208, 209 are the first orthogonal signal and the second orthogonal signal generated in the signal receiving means 102 corresponding to the first orthogonal signal 201 and the second orthogonal signal 202 of the signal transmitting means 101
  • Reference numerals 212 and 213 denote zero beat outputs of the first second intermediate frequency signal and the second second intermediate frequency signal output corresponding to the first orthogonal signal 201 and the second orthogonal signal 202 of the signal transmitting means 101, respectively.
  • 211a, 21 lb are DC voltages corresponding to the phases of the first second intermediate frequency signal and the second second intermediate frequency signal, and 22;! -231 are respective time axes.
  • the first orthogonal signal 201 and the second orthogonal signal 202 transmitted from the signal transmission means 101 are different in frequency, but are output from the control unit 9 (not shown) of the signal transmission means 101.
  • the starting points 203a and 203b are synchronized with a specific phase (in the figure, rising from a voltage of zero), and are thus orthogonal to each other!
  • the first local oscillation signal 205 generated by the signal receiving means 102 has a fixed frequency. Therefore, the first first intermediate frequency signal 206 output from the signal receiving means 102 and the second first signal The frequency between the intermediate frequency signals 207 is different, and it is difficult to measure the phase difference as it is.
  • the signal receiving means 102 is provided with a second mixer 35, which outputs a first second intermediate frequency signal 212 and a second second intermediate frequency signal 213, and outputs the phase from each of the phases 21 la and 21 lb. Phase difference We will ask for it.
  • first control is performed so that a zero beat is obtained.
  • the second quadrature signal 209 is measured as the phase-frequency detector 52 while measuring the frequency and / or phase of the first second intermediate frequency signal 212 and holding the zero beat with the first second intermediate frequency signal 208. And the frequency and / or phase of the second second intermediate frequency signal 213 is measured.
  • the phases 211a and 21 lb of the first second intermediate frequency signal 212 and the second second intermediate frequency signal 213 can be measured, so that the distance between the signal transmitting means 101 and the signal receiving means 102 is increased. It becomes possible to measure with accuracy.
  • control is performed so that the frequency of the first first intermediate frequency signal and the frequency of the first orthogonal signal are the same. It is necessary to control the frequency of the first intermediate frequency signal and the frequency of the second orthogonal signal to be the same.
  • the same effect can be obtained by changing the sampling frequency when converting the intermediate frequency signal into a digital signal instead of taking the zero beat as described above.
  • FIG. 6 is a configuration diagram showing an example of the phase / frequency detector of the present invention.
  • Figure 6
  • 61, 64, and 65 are connection points
  • 521 is an analog-digital converter
  • 522a is a Sin product-sum calculator
  • 522b is a Cos product-sum calculator
  • 523 is an ArcTan calculator.
  • the intermediate frequency signal output from the signal receiving means 102 (not shown) is input via the connection point 61, converted into a digital signal by the analog-to-digital converter 521, and branched into two to be the Sin multiply-add calculator. Applied to 522a and Cos product-sum calculator 522b.
  • the reference clock signal for measuring frequency and / or phase is input via connection point 525, split into three, analog 'digital converter 521, Sin product-sum calculator 522a, and Cos product. Applied to the sum calculator 522b.
  • the lookup table of the Sin multiply-add calculator 522a uses "0, 1, 0, — 1" as a basic unit, and the lookup table of the Cos multiply-add calculator 522b uses "1, 0, - Ten] By using as a basic unit, the merit that the product-sum operation can be processed at high speed can be obtained.
  • phase 'frequency detector as a digital phase comparator built in the synchronous oscillator shown in FIG.
  • FIG. 7 is a block diagram showing another example of the phase / frequency detector of the present invention.
  • connections up to 61, 64, 65 ⁇ , 524a, 524bi mixer, 526a, 526bi low pass filter, 521a, 521b are analog-to-digital converters, 523 is ArcTan calculator, 525 is 90 ° phase shifter It is.
  • the intermediate frequency signal output from the signal receiving means 102 (not shown) is manually input via the connection point 61, branched into two, and applied to the mixers 524a and 524b.
  • a clock signal serving as a reference for detecting the frequency and / or phase is a connection point.
  • mixer 525 two branches, one is directly applied to mixer 524a as the first local oscillator signal, the other is 90 ° phase shifted by 90 ° phase shifter 525 and the second station is supplied to mixer 524b. Applied as an emission signal.
  • An I signal is output from the mixer 524a, harmonics are removed by the low-pass filter 526a, digitally converted by the analog-to-digital converter 521a, and input to the ArcTan calculator 523 as an I signal.
  • a Q signal is output from the mixer 524b, harmonics are removed by the low-pass filter 526b, digitally converted by the analog-digital converter 521b, and input to the ArcTan calculator 523 as the Q signal.
  • phase 'frequency detector can be used for a phase comparator built in a synchronous oscillator shown in FIG. 9 as an example.
  • FIG. 8 is a configuration diagram showing an example of the synchronous oscillator of the present invention.
  • 53 is a synchronous oscillator
  • 531 is a synchronization establishment / synchronization circuit
  • 532 is a digital phase comparator
  • 533 is a digitally controlled oscillator
  • 67, 68, 69 and 70 are connection points.
  • An intermediate frequency signal output from the signal receiving means 102 (not shown) is input as a synchronization input signal via the connection point 61 and connected to the digital phase comparator 532 via the synchronization establishment / holding circuit 531.
  • the phase between the synchronous input signal and the output signal of the digitally controlled oscillator 533 is compared, and the compared result is input as a control signal of the digitally controlled oscillator 533, and the frequency of the digitally controlled oscillator 533 is present.
  • ! / Controls the phase or delay time, or a combination of these, and is output as a synchronous output signal from node 68.
  • a synchronization detection signal is output from the connection point 70 to the control unit 54 (not shown), and the control unit A synchronization hold signal is input from 54 through the connection point 69 to the synchronization establishment / holding circuit 531 to hold the oscillation frequency and / or phase of the digitally controlled oscillator 533.
  • the synchronization establishment / holding circuit 531 is composed of, for example, an AND gate or an OR gate.
  • the output of the AND gate or OR gate is “ By setting the state where synchronization is established by fixing it to “0” or “1”, the output signal of the digital phase comparator 532 is held OFF, and the frequency and / or phase of the digitally controlled oscillator 533 is changed. Control to hold.
  • the oscillation frequency can be controlled by adding / subtracting the output signal of the digital phase comparator 532 to / from the frequency setting register of the digital control oscillator 533.
  • a voltage controlled oscillator controlled by a digital signal a numerically controlled oscillator, a frequency, a phase, a delay time, or a combination thereof can be controlled.
  • a digitally controlled oscillator that can be set and maintained for the delay time or a combination thereof can be used.
  • a numerically controlled oscillator is used as the digitally controlled oscillator 533, and the digitally controlled oscillator 533
  • the digital control signal output from the phase comparator 531 controls the oscillation frequency and / or phase of the numerically controlled oscillator to be in a synchronized state, and the digital signal is held to maintain the synchronized state, thereby oscillating. It is possible to realize a synchronous oscillator with high frequency stability, stable synchronization pull-in time, and stable synchronization establishment / maintenance control.
  • the voltage sero point of the output signal can be easily controlled.
  • FIG. 9 is a block diagram of a distance measuring apparatus according to the fourth embodiment of the present invention.
  • la and lb are a plurality of antennas connected to the signal transmitting means 101
  • lc is an antenna switching means for switching the plurality of antennas 1a and lb
  • 10a and 10b are connected to the signal receiving means 102.
  • a plurality of antennas, 10c is an antenna switching means for switching between the plurality of antennas 10a and 10b
  • 66 is a connection point between the control unit 54 and the antenna switch 10c, and the others are the same as in FIG.
  • the plurality of antennas la, lb and / or antennas 10a, 10b are arranged at intervals of one wavelength or less of the carrier signal or subcarrier signal of the high-frequency signal, and the signal transmission means 101 transmits the high-frequency signal.
  • the antenna switching means lc or 10c controlled by the control section 9 or the control section 54 is periodically switched.
  • the signal transmission means 101 is a base station of a mobile phone system and the signal reception means 102 is a mobile terminal.
  • a radio signal from a single base station is received. This makes it possible to determine the exact position (distance and direction) of the mobile terminal.
  • the signal transmission means 101 is installed at a plurality of locations, the distance and direction from the plurality of locations are measured, and the signal reception means 102 of the signal reception means 102 is measured by a method such as hyperbolic navigation or trigonometry. Accurate location can be determined.
  • the general direction can be measured by unifying the plurality of antennas la and lb in the sector.
  • the approximate position (distance is accurate) of the means 102 can be determined.
  • two directivity antennas la, lb or 10a, 10b are arranged in the signal transmitting means 101 and / or the signal receiving means 102 at intervals of one wavelength or less of the signal transmitted from the signal transmitting means 101.
  • the distance is required for the measurement, except that a plurality of antennas la, lb and / or 10a, 10b and antenna switch lc and / or 10c are added to the signal receiving means 102 and / or the signal transmitting means 101. Since the circuit configuration is the same, the rising cost for measuring the direction in addition to the distance measurement can be kept low.
  • FIG. 10 is a conceptual diagram when the position is determined from the distance measurement result by the distance measuring apparatus of the present invention.
  • 301 is a signal transmitting means or signal receiving means installed at a relatively high position
  • 302 is a signal transmitting means or signal receiving means installed or moved at a relatively low position
  • 303 is a ground or floor.
  • 311 is the distance (Lm) measured by the above measuring method
  • 312 is the difference between the relatively high position and the relatively low position (Hm)
  • 313 is the height of the relatively low position
  • etc. (Hm) and 314 are horizontal distances (Dm).
  • the transmitting means or signal receiving means 301 installed at a relatively high position is an example.
  • the signal transmitting means or the signal receiving means 302 that is installed on a pillar or a ceiling and is installed or moved at a relatively low position is carried by, for example, a pedestrian or attached to a moving body.
  • the signal transmitting means or the signal receiving means Location can be determined.
  • the phase is measured using a product-sum operation unit using force hardware that uses a digital phase comparator, or the FFT operation is performed by software using a DSP or a microcomputer. This can be achieved by measuring the phase or by using existing technology. Since computation time by software is slow and processing in real time becomes difficult, processing by hardware is advantageous in terms of processing time, current consumption, and cost.
  • an ultrasonic signal is transmitted from the signal transmitting means using an ultrasonic transducer or an ultrasonic transmitter, and the receiving means is configured to transmit an ultrasonic signal using an ultrasonic transducer or an ultrasonic receiver.
  • the same effect can be obtained by receiving a sound wave signal or transmitting an optical signal to the transmitting means using a light emitting diode or a laser diode and receiving the optical signal using a photodiode in the receiving means.
  • a modulation signal or a baseband signal synchronized with a reference oscillator is generated, or a plurality of orthogonal modulation signals or baseband signals are generated, and an ultrasonic signal or a high-frequency signal exists! /
  • the signal receiving means generates a local oscillation signal that is synchronized with a reference oscillator and mixes it with the received modulation signal or baseband signal in the signal receiving means. The same effect can be obtained by converting to a frequency modulation signal or baseband signal. can get.
  • the signal reception Means for generating a plurality of spectral spreading codes used for despreading the spread common carrier signal or subcarrier signal received by the means, and a plurality of synchronization signals having different chip rates.
  • it can be a baseband signal.
  • a plurality of antennas or transducers connected to the signal transmission means and / or reception means are periodically generated at a timing for generating a plurality of signals that are synchronized or orthogonal and at least different in frequency.
  • the measurement error caused by multipath or height pattern can be reduced by measuring the distance and direction between the signal transmitting means and the signal receiving means.
  • the signal transmitting means may use an ultra-wideband (UWB) spread spectrum code to convert an ultrasonic signal into a high-frequency signal or an optical signal and transmit the same. Effects can be obtained.
  • UWB ultra-wideband
  • the interval between the plurality of antennas or the plurality of transducers is equal to or less than the interval corresponding to the chip rate of the spread spectrum code.
  • the above distance measurement method can be generally applied to a mobile radio system including a mobile phone system or a surveying system such as a system that requires distance and direction orientation.
  • the result of the distance measurement between the signal transmitting unit and the signal receiving unit being performed a plurality of times is statistically processed, and an ultrasonic signal or a high frequency signal transmitted from the transmitting unit is present! /, Is an optical signal
  • the accuracy of distance measurement can be improved by estimating the distribution status of multiple propagation paths or the occurrence of multipath.
  • the force S for estimating the distribution status of the propagation path or the occurrence status of the multipath can be obtained.
  • the signal reception is performed.
  • the distance can be measured by gradually switching from a plurality of signals received by the transmission means to a long range force and a short range.
  • the present invention is configured as described above, a single signal transmission unit or a single signal reception unit is fixedly installed, so that the signal transmission unit and the signal reception unit are arranged in a fixed manner.
  • the distance can be measured with high accuracy, and when combined with the measurement in the direction or direction, the position can be determined with high accuracy.
  • the location can be determined with high accuracy, it can be used in a system that supports walking while guiding pedestrians not to deviate from the pedestrian crossing when crossing a pedestrian crossing such as an intersection.
  • the active tag is used as a signal transmission means and a plurality of base stations are connected as a reception means through a network, the exact position of the active tag can be detected. It can be used for traffic flow management, logistics management to improve the efficiency of moving and collecting cargo, or searching for lost children.
  • the active tag can be carried by livestock or wild animals to detect the exact position and used for biotelemetry.
  • the distance and direction can be measured with high accuracy.
  • real-time performance is not so required, so it is possible to increase the accuracy of surveying by increasing the number of data acquisitions over time.
  • the distance and direction between multiple navigating vessels, multiple flying aircraft, or multiple running vehicles can be accurately measured, so collision prevention or maintaining the distance between each other is possible. Can be used in the system.
  • the relative positional relationship with the moving object can be accurately measured by one-to-one communication between the moving object and the pilot, a remote control of the moving object can be realized with an inexpensive device.
  • the distance measurement technology of the present invention is a basic technology and can be expected to be applied in other fields.
  • FIG. 1 Configuration diagram of a distance measuring apparatus according to Embodiment 1
  • FIG. 2 is a diagram showing an example of signal flow in the first embodiment
  • FIG. 3 Configuration diagram of the distance measuring apparatus according to the second embodiment.
  • FIG. 4 is a diagram illustrating an example of signal flow in the second embodiment.
  • FIG. 5 shows another example of signal flow in the second embodiment.
  • FIG. 8 Configuration diagram showing an example of a synchronous oscillator
  • FIG. 9 Configuration diagram of the distance measuring apparatus according to the third embodiment.
  • FIG. 11 Configuration diagram showing a conventional example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

A distance measuring device is comprised of a signal transmitting means (101), a signal receiving means (102) and a signal processing means (103). The signal transmitting means transmits a high frequency signal, the components of which are a plurality of measuring signals in synchronization with an output reference signal of a reference oscillator (7). The signal receiving means (102) generates a first local oscillating signal in synchronization with an output reference signal of a reference oscillator (34), mixes the first local oscillating signal with a received signal, converts the mixed signal to first intermediate signals with at least a plurality of different frequencies, mixes the first intermediate signals corresponding to the measuring signals with a plurality of second local oscillating signals with at least different frequencies in synchronization with or orthogonal to an output signal of a second mixer (35), and converts the mixed signal to a plurality of second intermediate signals. The signal processing means (103) detects a phase difference of the second intermediate signals and measures the distance between the signal transmitting means (101) and the signal receiving means (102) with high accuracy

Description

明 細 書  Specification
距離測定装置  Distance measuring device
技術分野  Technical field
[0001] この発明は、単一の信号発信手段から少なくとも周波数が異なる複数の超音波信 号あるいは高周波信号あるいは光信号を発信し、単一の信号受信手段で受信するこ とによって、前記信号発信手段と信号受信手段との間の距離を高い精度で測定する ための距離測定装置に関するものである。  [0001] In the present invention, a plurality of ultrasonic signals or high-frequency signals or optical signals having at least different frequencies are transmitted from a single signal transmitting means, and received by the single signal receiving means. The present invention relates to a distance measuring device for measuring the distance between the means and the signal receiving means with high accuracy.
背景技術  Background art
[0002] 従来から、複数の異なる周波数の無線信号を用いて距離を測定するシステムが提 案されている。 (例えば、特許文献 1から 5参照)  [0002] Conventionally, a system for measuring a distance using a plurality of radio signals having different frequencies has been proposed. (For example, see Patent Documents 1 to 5)
特許文献 1 :米国特許第 4087816号公報  Patent Document 1: US Patent No. 4087816
特許文献 2:特開 2003— 207557号  Patent Document 2: Japanese Patent Laid-Open No. 2003-207557
特許文献 3:特表 2004— 507714号  Patent Document 3: Special Table 2004—507714
特許文献 4 :特開 2006— 023261号  Patent Document 4: Japanese Patent Laid-Open No. 2006-023261
特許文献 5 :特開 2006— 0042201号  Patent Document 5: Japanese Patent Laid-Open No. 2006-0042201
[0003] 図 11は、特許文献 1に記載されて!/、る従来の「VLF帯無線位置検知装置」の実施 例である。図 11において、「米国海軍 VLF通信局」から発信される VLF信号(20ms ec周期で f0と f0 + 50Hzの間で FSKされる電波)をアンテナ 10で受信し増幅器 11 で増幅し、 VCX022に同期したシンセサイザ 23の信号とミキサ 16でミキシングして 中間周波信号を生成し、中間周波増幅器 12で増幅しリミッタ 18でリミットした後、前 記 VCX022の信号を分周器 24で P分の 1に分周したものと位相比較器 20で比較し 、その結果をループフィルタ 21に入力し、ループフィルタ 21の出力で VCX022の 発振周波数を制御して!/、る。  FIG. 11 shows an example of a conventional “VLF band wireless position detection device” described in Patent Document 1! In Fig. 11, VLF signal (radio wave FSK between f0 and f0 + 50Hz in 20ms ec period) received from the US Navy VLF communication station is received by antenna 10, amplified by amplifier 11, and synchronized with VCX022 The signal from the synthesizer 23 is mixed by the mixer 16 to generate an intermediate frequency signal, amplified by the intermediate frequency amplifier 12 and limited by the limiter 18, and then the VCX022 signal is divided into 1 / P by the frequency divider 24. The result of the comparison is compared by the phase comparator 20 and the result is input to the loop filter 21. The output of the loop filter 21 controls the oscillation frequency of VCX022.
[0004] 一方、リミッタ 18の出力は遅延時間測定器 25で分周器 24の出力を分周器 27で 20 分周したタイミングで分周器 24の出力と比較する。検出した遅延時間から前記通信 局までの距離を測定することができる。  On the other hand, the output of the limiter 18 is compared with the output of the frequency divider 24 at the timing when the output of the frequency divider 24 is divided by 20 by the frequency divider 27 by the delay time measuring device 25. The distance from the detected delay time to the communication station can be measured.
図 11に示す従来の技術では、 VLF信号の周波数が(f0と f 0 + 50Hz)の間で変化 するタイミングを受信側で正確に検出することが難しく誤差を生じるため、長距離で概 略の測定は可能である力 そのままでは 300m以内の比較的に近い距離を高精度で 測定するのが難しい問題点があった。 In the conventional technology shown in Fig. 11, the frequency of the VLF signal varies between (f0 and f 0 + 50Hz). It is difficult to accurately detect the timing at the receiver side, resulting in an error, so that it is difficult to measure a relatively close distance within 300m with high accuracy if the force is as it is. There was a point.
[0005] 特許文献 2に記載されている従来の「移動局および移動体通信システム」では、固 定局から移動体端末に向けて無線送信される周波数の異なる 2つの距離測定信号 を送信し、移動体端末では当該 2つの距離測定信号の位相差から自己と固定局の 間の距離を測定し、これらを 3つの固定局との間で行なうことで、 自己の位置を算出し ている。 [0005] In the conventional "mobile station and mobile communication system" described in Patent Document 2, two distance measurement signals with different frequencies that are wirelessly transmitted from a fixed station to a mobile terminal are transmitted to move the mobile station. The body terminal measures the distance between itself and the fixed station from the phase difference between the two distance measurement signals, and calculates the position of itself by performing these measurements with the three fixed stations.
特許文献 2の(0012)に記載されているように、固定局から無線送信される 2つの異 なる周波数ホッピング変調された距離測定信号を受信し、 2つの距離測定信号の位 相差を測定するとされており、具体的な位相差の測定手順が図 2に示されている。  As described in Patent Document 2 (0012), two different frequency hopping modulated distance measurement signals transmitted wirelessly from a fixed station are received, and the phase difference between the two distance measurement signals is measured. Figure 2 shows the specific phase difference measurement procedure.
[0006] 前記の方法では、図 2に示されているとおり、送信開始点 0を基点として 2つの異な る周波数の距離測定信号の位相が変化し始めるので、移動体端末側で、固定局と 同期して、送信開始点 0のタイミングを知ることが重要となる。  In the above method, as shown in FIG. 2, the phase of the distance measurement signal of two different frequencies starts to change from the transmission start point 0 as a base point. It is important to know the timing of the transmission start point 0 in synchronization.
しかし、前記の送信開始点 0を 1つの固定局から送信された 2つの距離測定信号か ら高い精度で検出することが困難であるため、 3つの固定局間で相互に同期を取つ た距離測定信号を受信することが必須の条件となり、 3つの固定局間で同期を取り、 し力、も移動体端末で 3つの基地局から同時にあるいは短時間で受信できなければな らない制約があるなどの問題点があった。  However, since it is difficult to detect the transmission start point 0 with high accuracy from two distance measurement signals transmitted from one fixed station, the distance between the three fixed stations is synchronized with each other. Receiving measurement signals is an indispensable condition, and there is a restriction that it is necessary to synchronize between three fixed stations, and to be able to simultaneously receive signals from three base stations at a mobile terminal in a short time. There were problems such as.
[0007] 特許文献 3に記載されて!/、る従来の「RF位相デルタの判定による距離/測距」で は、第 1のトランスボンダから第 2のトランスボンダへ、第 1と第 2の周波数の第 1と第 2 の信号を送信し、前記第 2のタランスボンダにお!/、てこれら 2つの信号間の位相差を 判定することで、前記第 1と第 2のトランスボンダ間の距離が測定できることが開示さ れている。  [0007] In the conventional "distance / ranging based on RF phase delta determination" described in Patent Document 3, the first and second transponders are transferred from the first transponder to the second transponder. The distance between the first and second transponders is determined by transmitting the first and second signals of the frequency and determining the phase difference between the two signals to the second tarance bonder! Is disclosed to be measurable.
しかしながら、前記 2つの信号間の比較およびその位相差を判定するのに、前記第 2のトランスボンダにおいて、前記第 1信号に位相ロックして基準信号を発生し、前記 第 2信号と混合して混合信号を発生し、カウンタにおいて、前記混合信号におけるヌ ルまたはピークの数をカウントすることによって位相差を判定している。 このため、距離の測定精度がヌルまたはピークの発生間隔によって支配され、(00 25)に記述されているように、第 1信号に 880MHz、第 2信号に 884MHzを用いた 場合、ヌルまたはピークが 75mおきに発生することになり、距離の測定精度は ± 37. 5mとなる。 However, in order to determine the comparison between the two signals and the phase difference between them, the second transponder generates a reference signal that is phase-locked to the first signal and mixes it with the second signal. A mixed signal is generated, and the phase difference is determined by counting the number of nulls or peaks in the mixed signal in a counter. For this reason, the accuracy of distance measurement is governed by the occurrence interval of nulls or peaks. As described in (00 25), when 880 MHz is used for the first signal and 884 MHz is used for the second signal, nulls or peaks are detected. It occurs every 75m, and the distance measurement accuracy is ± 37.5m.
なお、(0026)に距離の測定精度を改善する方法が記述されているが、原理的に 精度の改善には限界があり、 cm単位の精度にまで高めることが難しい問題点がある  Although (0026) describes a method for improving the distance measurement accuracy, in principle there is a limit to the accuracy improvement, and there is a problem that it is difficult to increase to the accuracy in centimeters.
[0008] 特許文献 4に記載されている従来の「アクティブタグ装置」では、発信手段あるいは 中継手段にぉレ、て、同期しあるいは直交した複数の搬送波周波数あるレヽは副搬送 波周波数あるいは複数の変調周波数あるいは複数の拡散符号速度の間でホッピン グさせあるいは切替えられた超音波信号あるいは高周波信号あるいは光信号を発信 することが開示されている。 [0008] In the conventional "active tag device" described in Patent Document 4, a signal having a plurality of carrier frequencies that are synchronized with or orthogonal to a transmitting means or a relay means is a subcarrier frequency or a plurality of frequencies. It is disclosed to transmit an ultrasonic signal, a high-frequency signal, or an optical signal that is hopped or switched between a modulation frequency or a plurality of spreading code rates.
しかしながら、受信手段において前記発信手段あるいは中継手段からの距離を検 知することが記述されているが、前記発信手段および受信手段の具体的な実現手段 が記述されて!/、な!/、問題点があった。  However, although it is described that the receiving means detects the distance from the transmitting means or the relay means, specific means for realizing the transmitting means and the receiving means are described! /, NA! /, Problem There was a point.
[0009] 特許文献 5に記載されて!/、る従来の「距離測定システム、距離測定方法ならびに通 信装置」では、一つの移動端末から周波数の異なる 2つの搬送波が送信され、他の 移動端末の受信機で受信して 2つの搬送波の位相差 Δ Φを検出することで距離が 算出されるとされている。  In the conventional “distance measurement system, distance measurement method and communication device” described in Patent Document 5, two carrier waves having different frequencies are transmitted from one mobile terminal, and the other mobile terminal It is said that the distance is calculated by detecting the phase difference ΔΦ between the two carrier waves.
しかしながら、距離を求める根拠となって!/、る (0067)に開示されて!/、る式(6)と(7) では、周波数が flと f2で異なるため、 Δ Φは時間とともに変化しており、従って、 (00 71)に開示されている距離 Rは時間とともに変化している。  However, as the basis for finding the distance! /, It is disclosed in (0067)! /, In Equations (6) and (7), the frequency differs between fl and f2, so ΔΦ changes with time. Therefore, the distance R disclosed in (00 71) varies with time.
何らかの方法で、送信機側と受信機側で時間を合わせる必要があり、この点が本方 式の問題点であった。  It was necessary to synchronize the time on the transmitter side and the receiver side in some way, and this was a problem with this method.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0010] この発明は、同期しあるいは直交し少なくとも周波数が異なる複数の超音波信号あ るいは高周波信号あるレ、は光信号を単一の信号発信手段から発信し、単一の信号 受信手段で受信することによって距離を測定する装置において、前記信号発信手段 から発信する複数の超音波信号ある!/、は高周波信号あるいは光信号を、前記信号 受信手段において共通の中間周波信号あるいは変調信号あるいはベースバンド信 号に変換し、前記中間周波信号あるいは変調信号あるいはベースバンド信号の周波 数および/あるいは位相を検出することによって、前記信号発信手段と信号受信手 段の間の距離を高い精度で測定できる距離測定装置を安価に実現するためのもの である。 [0010] The present invention provides a plurality of ultrasonic signals or high-frequency signals which are synchronized or orthogonal and have at least different frequencies, or an optical signal transmitted from a single signal transmitting means. In the apparatus for measuring the distance by receiving by the receiving means, there are a plurality of ultrasonic signals transmitted from the signal transmitting means! /, A high frequency signal or an optical signal, and a common intermediate frequency signal or modulation in the signal receiving means. By converting to a signal or baseband signal and detecting the frequency and / or phase of the intermediate frequency signal, modulation signal or baseband signal, the distance between the signal transmitting means and the signal receiving means is highly accurate. This is to realize a distance measuring device that can be measured at a low cost.
課題を解決するための手段  Means for solving the problem
[0011] この発明に係わる距離測定装置は、少なくとも単一の信号発信手段と、単一の信 号受信手段および信号処理手段から構成され、 [0011] The distance measuring device according to the present invention comprises at least a single signal transmitting means, a single signal receiving means and a signal processing means,
単一の信号発信手段からは同期しあるいは直交し少なくとも周波数が異なる複数 の超音波信号あるレ、は高周波信号あるいは光信号を発信し、  A single signal transmission means transmits a plurality of ultrasonic signals that are synchronized or orthogonal and have at least different frequencies, and transmit a high-frequency signal or an optical signal.
単一の信号受信手段において、同期しあるいは直交し少なくとも周波数が異なる複 数の局発信号を生成し、前記複数の局発信号を用いて受信した複数の超音波信号 あるいは高周波信号あるいは光信号とミキシングして周波数が共通な中間周波信号 あるいは変調信号あるいはベースバンド信号に変換し、  In a single signal receiving means, a plurality of local oscillation signals that are synchronized or orthogonal and have at least different frequencies are generated, and a plurality of ultrasonic signals, high frequency signals, or optical signals received by using the plurality of local oscillation signals. Mix and convert to a common intermediate frequency signal, modulation signal or baseband signal
[0012] 信号処理手段において、同期発振器力 出力されるクロック信号を用いて周波数 および/ある!/、は位相を検出するための位相 ·周波数検出器と、前記同期発振器か ら出力されるクロック信号の周波数ある!/、は位相ある!/、は遅延時間あるいはこれらの 組合せを制御し、前記中間周波信号あるいは変調信号あるいはベースバンド信号と 前記クロック信号との同期を確立し保持するための同期確立 ·保持手段を設け、 [0012] In the signal processing means, the phase and frequency detector for detecting the frequency and / or phase using the clock signal output from the synchronous oscillator force, and the clock signal output from the synchronous oscillator The frequency is! /, The phase is! /, The delay time or a combination thereof is controlled to establish and maintain synchronization between the intermediate frequency signal, modulation signal or baseband signal and the clock signal. · Provide holding means,
[0013] 前記位相 ·周波数検出器と同期確立 ·保持手段によって、基準となる第 1の周波数 の超音波信号あるいは高周波信号あるいは光信号に対応した第 1の中間周波信号 あるいは変調信号あるいはベースバンド信号と前記クロック信号を同期状態とし、当 該同期状態を保持して、少なくとも周波数が異なる第 2の超音波信号あるいは高周 波信号あるいは光信号に対応した第 2の中間周波信号あるいは変調信号あるいは バースバンド信号の周波数および/あるいは位相を検出し、前記検出結果から前記 信号発信手段と信号受信手段との間の距離を高精度で測定するものである。 上記の応用として、前記受信手段において局発信号の周波数を固定し、周波数が 異なる複数の中間周波信号あるいは変調信号あるいはベースバンド信号を出力し、 前記信号処理手段において前記同期発振器力 出力されるクロック信号の周波数を 遁倍しあるいは分周することでも同様な効果が実現できる他、多様な応用が可能で ある。 [0013] A first intermediate frequency signal, modulation signal, or baseband signal corresponding to an ultrasonic signal, a high frequency signal, or an optical signal of a first frequency serving as a reference by the phase, frequency detector, and synchronization establishing and holding means And the clock signal are in a synchronized state, and the synchronized state is maintained, and at least a second ultrasonic signal, a high frequency signal, or a second intermediate frequency signal, a modulated signal, or a burst signal corresponding to an optical signal having different frequencies. The frequency and / or phase of the band signal is detected, and the distance between the signal transmitting means and the signal receiving means is measured with high accuracy from the detection result. As the above-mentioned application, the frequency of the local oscillation signal is fixed in the receiving means, a plurality of intermediate frequency signals or modulation signals or baseband signals having different frequencies are output, and the clock output from the synchronous oscillator power in the signal processing means A similar effect can be realized by multiplying or dividing the frequency of the signal, and various applications are possible.
発明の効果  The invention's effect
[0014] 従来の高精度で距離を測定する装置として、単一の信号発信手段から超音波信号 あるいは高周波信号あるいは光信号を発信し、距離を測定する対象物から反射され あるいは再発信された超音波信号あるいは高周波信号あるレ、は光信号を単一の信 号受信手段にぉレ、て受信されるまでの時間を測定し距離を測定するレーダあるレ、は トランスボンダなどと、単一の信号発信手段から FSK変調された高周波信号を単一 の信号受信手段で受信して搬送波信号と FSK変調された信号と間の時間遅れを検 出して距離を測定する「VLF帯無線位置検知装置」などがあるが、これらは何れも高 価であるか、距離の測定精度が低ぐあるいは距離の測定に時間を要し、特に、 300 m以内の比較的に短距離での測定精度が低いなどの問題点があった。  [0014] As a conventional device for measuring distance with high accuracy, an ultrasonic signal, a high-frequency signal, or an optical signal is transmitted from a single signal transmitting means, and the reflected or retransmitted ultrasonic signal is transmitted from the object whose distance is to be measured. If there is a sound wave signal or high-frequency signal, the optical signal is transmitted to a single signal receiving means and the time until the signal is received to measure the distance is measured. `` VLF band radio position detector '' that measures the distance by receiving the FSK modulated high frequency signal from the signal transmitting means with a single signal receiving means and detecting the time delay between the carrier signal and the FSK modulated signal However, these are all expensive, or the distance measurement accuracy is low or the distance measurement takes time, especially the measurement accuracy at a relatively short distance within 300 m is low. There was a problem.
[0015] これに対して本発明の距離測定装置では、単一の信号発信手段から発信される超 音波信号あるいは高周波信号あるいは光信号を単一の信号受信手段で受信し、反 射波あるいは再輻射波を用いることなぐ直接距離を測定できる方法であり、 300m 以内の比較的に近い距離を高精度で、し力、もリアルタイムで測定することが可能であ り、し力、も安価に実現できるなどの利点がある。 [0015] In contrast, in the distance measuring apparatus of the present invention, an ultrasonic signal, a high frequency signal or an optical signal transmitted from a single signal transmitting means is received by a single signal receiving means and reflected or retransmitted. It is a method that can measure the direct distance without using radiant waves, and it is possible to measure relatively close distances within 300m with high accuracy and force in real time. There are advantages such as being able to.
更に、方向あるいは向かっている方向を検出する手段と組み合わせることによって 、移動体の位置を高レ、精度で標定できるメリットが得られる。  Furthermore, when combined with a means for detecting the direction or the direction in which it is heading, there is an advantage that the position of the moving body can be determined with high accuracy.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] この発明に係わる距離測定装置は、図 1、請求項 1、および請求項 5に本発明の第 1の形態を示すように、信号発信手段 101と信号受信手段 102、および信号処理手 段 103から構成される。 [0016] The distance measuring device according to the present invention includes a signal transmitting means 101, a signal receiving means 102, and a signal processing unit as shown in Fig. 1, Claim 1 and Claim 5 according to the first aspect of the present invention. Composed of stage 103.
信号発信手段 101において、電圧制御発振器 4の発振周波数を分周器 6および位 相比較器 5から構成される位相同期ループによって基準発振器 7と同期させて生成 される周波数が固定の局発信号と、同期しあるいは直交し少なくとも周波数が異なる 複数の直交信号とをミキサ 3でミキシングし、かつ/あるいは前記局発信号と同期信 号をミキサ 3で変調して複数の搬送波信号あるいは副搬送波信号を生成し電力増幅 器 2によって増幅し、アンテナ 1から高周波信号として空間に放射する。 In the signal transmission means 101, the oscillation frequency of the voltage controlled oscillator 4 is generated in synchronization with the reference oscillator 7 by the phase locked loop composed of the frequency divider 6 and the phase comparator 5. The local frequency signal generated at a fixed frequency and a plurality of orthogonal signals that are synchronized or orthogonal and have at least different frequencies are mixed by the mixer 3 and / or the local signal and the synchronous signal are modulated by the mixer 3. A plurality of carrier signals or subcarrier signals are generated and amplified by the power amplifier 2 and radiated from the antenna 1 to the space as a high frequency signal.
[0017] ミキサ 3によりミキサングするタイミングと、直交信号発生器 8bの少なくとも発振周波 数を切り替えるタイミングを制御部 9によって制御することで、前記複数の搬送波信号 あるいは副搬送波信号を同時および/あるいは時系列で生成することができる。 信号受信手段 102において、基準発振器 32の発振周波数を分周器 32および位 相比較器 33から構成される位相同期ループによって周波数が固定の第 1局発信号 を生成し、前記第 1局発信号を第 1ミキサ 16に印加し、アンテナ 10で受信し低雑音 増幅器 11で増幅した受信信号とミキシングすることによって複数の周波数の第 1中 間周波信号に変換し、前記第 1中間周波信号を増幅器 17により増幅し、第 2ミキサ 3 5により第 2中間周波信号に変換して信号処理手段 103に入力する。  [0017] By controlling the timing of mixing by the mixer 3 and the timing of switching at least the oscillation frequency of the quadrature signal generator 8b by the control unit 9, the plurality of carrier signals or subcarrier signals can be simultaneously and / or time-series. Can be generated. In the signal receiving means 102, a first local oscillation signal having a fixed frequency is generated by a phase-locked loop composed of the frequency divider 32 and the phase comparator 33 with respect to the oscillation frequency of the reference oscillator 32, and the first local oscillation signal is generated. Is applied to the first mixer 16 and mixed with the received signal received by the antenna 10 and amplified by the low-noise amplifier 11 to convert the first intermediate-frequency signal into a plurality of frequencies, and the first intermediate-frequency signal is amplified by the amplifier. Amplified by 17, converted to a second intermediate frequency signal by the second mixer 35, and input to the signal processing means 103.
[0018] 信号処理手段 103では、前記第 2中間周波信号力も同期信号検出器 51により同 期信号を検出し、制御部 54の制御タイミングをスタートさせる。  In the signal processing means 103, the second intermediate frequency signal force is also detected by the synchronization signal detector 51 and the control timing of the control unit 54 is started.
前記信号発信手段 101からは、前記同期信号がタイミングの基準となって複数の 搬送波信号あるいは副搬送波信号が発信されるので、制御部 54によって、直交信 号発信器 55の周波数を設定し待ち受ける。  Since a plurality of carrier signals or subcarrier signals are transmitted from the signal transmission means 101 using the synchronization signal as a timing reference, the controller 54 sets the frequency of the orthogonal signal transmitter 55 and waits.
[0019] 前記同期信号を検出すると、制御部 54によって予め決められたタイミングで前記直 交信号発生器 55の少なくとも発振周波数を制御し、第 2ミキサ 35に供給して前記第 1中間周波信号とミキシングし、周波数が共通な複数の第 2中間周波信号に変換す  When the synchronization signal is detected, at least the oscillation frequency of the direct signal generator 55 is controlled at a timing determined in advance by the control unit 54 and is supplied to the second mixer 35 to be transmitted to the first intermediate frequency signal. Mix and convert to multiple second intermediate frequency signals with the same frequency
[0020] 前記基準となる第 1の搬送波信号あるいは副搬送波信号を受信中に、前記第 1の 周波数の搬送波信号あるいは副搬送波信号に対応する第 1の第 2中間周波信号と 同期発振器 54で生成されるクロック信号との同期を確立するとともに、当該同期状態 を保持し、第 1の第 2中間周波信号の周波数および/あるいは位相を位相'周波数 検出器 52により検出し、続いて受信する少なくとも周波数が異なる第 2の搬送波信号 あるいは副搬送波信号に対応する第 2の第 2中間周波信号の周波数および/あるい は位相を位相 ·周波数検出器 52により検出し、前記検出結果から前記信号発信手 段 101と信号受信手段 102の間の距離を高精度で測定することができる。 [0020] While receiving the first carrier signal or subcarrier signal serving as the reference, the first second intermediate frequency signal corresponding to the carrier signal or subcarrier signal of the first frequency and the synchronous oscillator 54 generate At least the frequency at which the first and second intermediate frequency signals are detected by the phase 'frequency detector 52 and subsequently received. Of the second second intermediate frequency signal corresponding to the second carrier signal or subcarrier signal with different frequency and / or The phase is detected by the phase / frequency detector 52, and the distance between the signal transmitting means 101 and the signal receiving means 102 can be measured with high accuracy from the detection result.
[0021] 図 3および請求項 3に本発明の第 2の形態を示すように、信号受信手段 102の直交 信号発生器 55の周波数を切替える代わりに、信号処理手段 103の同期発振器 53の 出力信号を遁倍あるいは分周するための遁倍器 56を設けても同様な効果が得られ また、図 8および請求項 11に回路構成を示す同期発振器 53を用いることによって 、 2つの入力信号間の同期を確立し、同期を安定に保持することができる効果があるAs shown in FIG. 3 and claim 3, instead of switching the frequency of the quadrature signal generator 55 of the signal receiving means 102, the output signal of the synchronous oscillator 53 of the signal processing means 103 is shown. A similar effect can be obtained by providing a multiplier 56 for multiplying or dividing the frequency. Also, by using a synchronous oscillator 53 having a circuit configuration shown in FIG. Has the effect of establishing synchronization and maintaining stable synchronization
Yes
[0022] また、図 8および請求項 26に本発明の第 3の形態を示すように、前記信号発信手 段 101および/あるいは信号受信手段 102に複数のアンテナあるいは複数の送受 波器を設け、当該複数のアンテナあるいは複数の送受波器を切替手段によって切替 えることによって、当該信号発信手段 101と信号受信手段 102の間の距離を高精度 で測定するとともに、当該信号発信手段 101および/あるいは信号受信手段 102の 位置する方向が測定でき、従って、信号受信手段 102の現在の位置を高い精度で 標定できるメリットが付加される。  In addition, as shown in FIG. 8 and claim 26 in the third mode of the present invention, the signal transmitting means 101 and / or the signal receiving means 102 are provided with a plurality of antennas or a plurality of transducers, By switching the plurality of antennas or the plurality of transducers by the switching means, the distance between the signal transmitting means 101 and the signal receiving means 102 is measured with high accuracy, and the signal transmitting means 101 and / or the signal is measured. The direction in which the receiving means 102 is located can be measured, and thus the merit of being able to determine the current position of the signal receiving means 102 with high accuracy is added.
[0023] (実施の形態 1)  [0023] (Embodiment 1)
図 1は本発明の第 1の形態による距離測定装置の構成図、図 2は信号の流れの例 を示す図である。図 1において、 101は信号発信手段、 1はアンテナ、 2は電力増幅 器、 3はミキサ、 4は電圧制御発振器、 5は位相比較器、 6は分周器、 7は基準発振器 、 8aは同期信号発生器、 8bは直交信号発生器、 9は制御部である。一方、 102は信 号受信手段、 10はアンテナ、 11は低雑音増幅器、 16は第 1ミキサ、 17は第 1中間周 波増幅器、 31は電圧制御発振器、 32は分周器、 33は位相比較器、 34は基準発振 器、 35は第 2ミキサである。また、 103は信号処理手段であり、 51は同期信号検出器 、 52は位相 ·周波数検出器、 53は同期発振器、 54は制御部、 55は直交信号発生 器、 61、 62、 63は接続点である。  FIG. 1 is a configuration diagram of a distance measuring device according to the first embodiment of the present invention, and FIG. 2 is a diagram showing an example of a signal flow. In FIG. 1, 101 is a signal transmission means, 1 is an antenna, 2 is a power amplifier, 3 is a mixer, 4 is a voltage controlled oscillator, 5 is a phase comparator, 6 is a frequency divider, 7 is a reference oscillator, 8a is synchronous A signal generator, 8b is a quadrature signal generator, and 9 is a control unit. On the other hand, 102 is a signal receiving means, 10 is an antenna, 11 is a low noise amplifier, 16 is a first mixer, 17 is a first intermediate frequency amplifier, 31 is a voltage controlled oscillator, 32 is a frequency divider, 33 is a phase comparison , 34 is a reference oscillator, and 35 is a second mixer. Reference numeral 103 is a signal processing means, 51 is a synchronous signal detector, 52 is a phase / frequency detector, 53 is a synchronous oscillator, 54 is a control unit, 55 is a quadrature signal generator, 61, 62 and 63 are connection points. It is.
[0024] 信号発信手段 101にお!/、て、電圧制御発振器 4は、その発振周波数および位相が 分周器 6および位相比較器 5から構成されるフェイズロックループによって基準発振 器 7の周波数および位相にロックされ、搬送波信号あるいは副搬送波信号を生成し、 前記同期信号発生器 8aによって生成される同期信号および/あるいは直交信号とミ キサ 3によってミキシングしあるいは変調をかけて、電力増幅器 2で増幅してアンテナ 1から高周波信号として空間に放射する。 [0024] In the signal transmission means 101, the voltage-controlled oscillator 4 has its oscillation frequency and phase as a reference oscillation by a phase-locked loop composed of the frequency divider 6 and the phase comparator 5. Locked to the frequency and phase of the generator 7 to generate a carrier signal or subcarrier signal, and mixed or modulated by the synchronization signal and / or quadrature signal generated by the synchronization signal generator 8a with the mixer 3, Amplified by the power amplifier 2 and radiated from the antenna 1 to the space as a high frequency signal.
前記直交信号発生器 8bの少なくとも発振周波数が制御部 9によって周期的に切替 え制御され、図 2に示す第 1の制御起点 203aにおいて設定された第 1の直交信号と 、第 2の制御起点 203bにおいて設定された第 2の直交信号 202とは同期しあるいは 直交し少なくとも周波数が異なって生成される。  At least the oscillation frequency of the quadrature signal generator 8b is periodically switched and controlled by the control unit 9, and the first quadrature signal set at the first control start point 203a shown in FIG. 2 and the second control start point 203b The second quadrature signal 202 set in step 1 is generated synchronously or orthogonally and at least with a different frequency.
[0025] 信号発信手段 101は以上のように構成されるため、アンテナ 1からは、同期信号に よってヘッダー部分が変調され、制御部 9によって厳密に制御されたタイミングで同 期しあるいは直交し少なくとも周波数が異なる複数の直交信号によってミキシングさ れあるいは変調された高周波信号がバースト状に放射されて!/、る。  [0025] Since the signal transmission means 101 is configured as described above, the header portion is modulated from the antenna 1 by the synchronization signal, and is synchronized or orthogonal at the timing strictly controlled by the control unit 9, and at least the frequency. A high-frequency signal mixed or modulated by multiple orthogonal signals with different values is emitted in bursts!
[0026] 一方、信号受信手段 102において、電圧制御発振器 31は、その発振周波数およ び位相が分周器 32および位相比較器 33から構成されるフェイズロックループによつ て基準発振器 34の周波数および位相にロックされ、局発信号を生成して第 1ミキサ 1 6に印加し、アンテナ 10により受信し低雑音増幅器 11で増幅された受信信号とミキシ ングすることによって複数の周波数の第 1中間周波信号に変換し、第 1中間周波増 幅器 17により増幅し、第 2ミキサ 35によって接続点 63を介して供給される少なくとも 周波数が異なる複数の直交信号とミキシングして少なくとも周波数帯が共通な第 2中 間周波信号に変換し、接続点 61を介して信号処理手段 103に出力する。  On the other hand, in the signal receiving means 102, the voltage controlled oscillator 31 has the oscillation frequency and phase of the frequency of the reference oscillator 34 by a phase-locked loop composed of the frequency divider 32 and the phase comparator 33. And a phase-locked signal, a local oscillation signal is generated, applied to the first mixer 16, mixed with the received signal received by the antenna 10 and amplified by the low-noise amplifier 11, so that the first intermediate frequency of a plurality of frequencies is obtained. Converted into a frequency signal, amplified by the first intermediate frequency amplifier 17, and mixed with a plurality of orthogonal signals of at least different frequencies supplied by the second mixer 35 via the connection point 63 to share at least the frequency band. The signal is converted into a second intermediate frequency signal and output to the signal processing means 103 via the connection point 61.
[0027] 信号処理手段 103は、前記信号受信手段 102から出力される第 2中間周波信号か ら同期信号を検出するための同期信号検出器 51と、前記第 2ミキサに直交信号を供 給するための直交信号発生器 55と、周波数および/あるいは位相を検出するため の位相 ·周波数検出器 52と、位相 ·周波数検出器 52にクロック信号を供給するため の同期発振器 53と、制御部 54から構成される。  [0027] The signal processing means 103 supplies a quadrature signal to the synchronization signal detector 51 for detecting a synchronization signal from the second intermediate frequency signal output from the signal receiving means 102 and the second mixer. From a quadrature signal generator 55 for detecting the frequency and / or phase, a phase / frequency detector 52, a synchronous oscillator 53 for supplying a clock signal to the phase / frequency detector 52, and a control unit 54 Composed.
ここで、前記同期発振器 53は、図 9に回路構成を示すように、前記第 2中間周波信 号の周波数および/あるいは位相と前記同期発振器 53で生成するクロック信号の 周波数および/あるいは位相との同期を確立するための同期確立手段と、同期した ことを検出するための同期検出手段と、同期を保持させるための同期保持手段を内 蔵するものとする。 Here, as shown in FIG. 9, the synchronous oscillator 53 has a frequency and / or phase of the second intermediate frequency signal and a frequency and / or phase of the clock signal generated by the synchronous oscillator 53. Synchronization establishment means for establishing synchronization and synchronized It is assumed that a synchronization detection means for detecting this and a synchronization holding means for holding synchronization are incorporated.
[0028] また、前記位相 ·周波数検出器 52は、例えば、図 6に示すように、前記第 2中間周 波信号をクロック信号の周期でデジタル信号に変換し、 Sinおよび Cosのルックアツ プテーブルと積和演算し、あるいは高速フーリエ変換し、あるいは、図 7に示すように 、 IQ信号に変換した後ゼロビートをとるなどの方法で入力信号の周波数および/あ るいは位相を検出する。  Further, the phase / frequency detector 52 converts the second intermediate frequency signal into a digital signal with a period of a clock signal, for example, as shown in FIG. 6, and provides a Sin and Cos look-up table. The frequency and / or phase of the input signal is detected by a product-sum operation, fast Fourier transform, or by taking a zero beat after conversion to an IQ signal as shown in FIG.
[0029] 前記信号発信手段 101が第 1の制御起点において同期信号を含む第 1の直交信 号に対応する第 1の高周波信号を発信すると、前記信号処理手段 103の同期信号 検出器 51が前記同期信号を検出し、前記制御部 54が制御タイミングを起動する。 前記信号発信手段 101から発信される前記第 1の直交信号に対応する第 1の第 2 中間周波信号に、前記同期発振器 53から出力されるクロック信号が同期したことを 前記同期発振器 53に内蔵する同期検出手段によって検出した時点で、前記同期発 振器 53に内蔵された同期保持手段によってクロック信号の周波数および/あるいは 位相を保持させる。  [0029] When the signal transmission means 101 transmits a first high-frequency signal corresponding to a first orthogonal signal including a synchronization signal at a first control starting point, the synchronization signal detector 51 of the signal processing means 103 The control unit 54 detects the synchronization signal and activates the control timing. The synchronous oscillator 53 incorporates that the clock signal output from the synchronous oscillator 53 is synchronized with the first second intermediate frequency signal corresponding to the first orthogonal signal transmitted from the signal transmitting means 101. When detected by the synchronization detection means, the frequency and / or phase of the clock signal is held by the synchronization holding means built in the synchronization oscillator 53.
[0030] 前記同期発振器 53が同期状態を保持している間に、前記第 1の第 2中間周波信号 の周波数および/あるいは位相を前記位相 ·周波数検出器 52によって検出し、続い て、前記信号発信手段 101からは第 2の制御起点において少なくとも周波数が異な る第 2の直交信号に対応して第 2の高周波信号が空間に放射され、前記信号処理手 段 103において前記直交信号発生器 55の周波数が前記制御部 54によって切替え られ、前記信号受信手段 102の第 2ミキサ 35に接続点 63を介して第 2の直交信号を 供給し、第 2の第 2中間周波信号の周波数および/ある!/、は位相を前記位相 ·周波 数検出器 52によって検出し、当該検出結果から、前記信号発信手段 101と前記受 信信号手段 102との間の距離を高精度で測定することができる。  [0030] While the synchronous oscillator 53 is in a synchronized state, the frequency and / or phase of the first second intermediate frequency signal is detected by the phase / frequency detector 52, and then the signal From the transmitting means 101, a second high-frequency signal is radiated into the space corresponding to a second orthogonal signal having at least a different frequency at the second control starting point. In the signal processing means 103, the orthogonal signal generator 55 The frequency is switched by the control unit 54, and the second orthogonal signal is supplied to the second mixer 35 of the signal receiving means 102 via the connection point 63, and the frequency of the second second intermediate frequency signal is / is present! The phase can be detected by the phase / frequency detector 52, and the distance between the signal transmission means 101 and the reception signal means 102 can be measured with high accuracy from the detection result.
[0031] 前記の信号発信手段 101から発信される第 1の高周波信号と第 2の高周波信号を a Sin (2 flt)、 aSin (2 f2t)とすると、前記信号受信手段 102で受信される前記第 1の高周波信号と第 2の高周波信号は、前記信号発信手段 101からの距離を D (m) とすると、 ASin{ 2 π f lt+ (2 π D/ λ 1) }、 ASin{ 2 π f2t+ (2 π D/ λ 2) }となる。 ここで、 λ ΐは前記第 1の高周波信号の波長であり、 λ 2は前記第 2の高周波信号の 波長である。 [0031] When the first high-frequency signal and the second high-frequency signal transmitted from the signal transmission unit 101 are a Sin (2 flt) and aSin (2 f2t), the signal reception unit 102 receives the signal. Assuming that the distance from the signal transmitting means 101 is D (m), the first high-frequency signal and the second high-frequency signal are ASin {2 π f lt + (2 π D / λ 1)}, ASin {2 π f2t + (2πD / λ2)}. Here, λΐ is the wavelength of the first high frequency signal, and λ 2 is the wavelength of the second high frequency signal.
[0032] 前記信号受信手段 102で周波数が異なる第 1中間周波信号に変換され、更に、信 号処理手段 103から供給される周波数が異なる複数の直交信号と第 2ミキサによって ミキシングして第 2中間周波信号に変換される過程において、前記第 1の高周波信号 に対応して前記信号処理手段 103において生成される第 1の直交信号を BSin(2 fLlt+ φ)とし、前記第 2の高周波信号に対応して前記信号処理手段 103において 生成される第 2の直交信号を BSin(2 fL2t+ φ)とすると、前記第 1の第 2中間周 波信号は八83^ {2兀¾+ (2兀0/ぇ1)ー }、前記第 2の第 2中間周波信号は A BSin{2wfit+ (2πϋ/λ2) - φ }で表される。ここで、 fi = fl— fLl、 fi = f2— fL2 とする。  [0032] The signal receiving means 102 converts the signal to a first intermediate frequency signal having a different frequency, and further mixes with a plurality of orthogonal signals having different frequencies supplied from the signal processing means 103 by a second mixer to obtain a second intermediate frequency signal. In the process of converting to a frequency signal, the first orthogonal signal generated by the signal processing means 103 corresponding to the first high-frequency signal is BSin (2 fLlt + φ) and corresponds to the second high-frequency signal. Assuming that the second quadrature signal generated by the signal processing means 103 is BSin (2 fL2t + φ), the first second intermediate frequency signal is 883 ^ {2 兀 ¾ + (2 兀 0 / 1)-}, the second second intermediate frequency signal is expressed as ABSin {2wfit + (2πϋ / λ2) −φ}. Here, fi = fl-fLl and fi = f2-fL2.
前記第 1の第 2中間周波信号と第 2の第 2中間周波信号を比較すると、周波数が同 じであるが位相のみ相違することになり、前記第 1の第 2中間周波信号と第 2の第 2中 間周波信号が同時に受信できる場合には、測定のタイミングに関係なく位相差を測 定でさることになる。  Comparing the first second intermediate frequency signal and the second second intermediate frequency signal, the frequency is the same, but only the phase is different, and the first second intermediate frequency signal and the second second intermediate frequency signal are the same. If the second intermediate frequency signal can be received simultaneously, the phase difference can be measured regardless of the measurement timing.
[0033] しかし、現実には、前記第 1の第 2中間周波信号と第 2の第 2中間周波信号を同時 に受信するには 2台の受信機を持つ必要があり、 2台の受信機の間の特性の差が距 離の測定精度を悪化させるので、前記第 1の第 2中間周波信号と第 2の第 2中間周 波信号を交互に受信して位相差を測定する必要がある。  However, in reality, in order to simultaneously receive the first second intermediate frequency signal and the second second intermediate frequency signal, it is necessary to have two receivers. The measurement accuracy of the distance deteriorates due to the difference in characteristics between the first and second intermediate frequency signals, and it is necessary to measure the phase difference by alternately receiving the first second intermediate frequency signal and the second second intermediate frequency signal. .
そこで、前記第 1の第 2中間周波信号と第 2の第 2中間周波信号の間の位相差を測 定する制御起点として、前記第 1の第 2中間周波信号に対して とし、前記第 2の第 2中間周波信号に対して t2とすると、 tlと t2の間隔を制御部 54によって厳密に管理 することによって角早決できる。  Therefore, as a control starting point for measuring the phase difference between the first second intermediate frequency signal and the second second intermediate frequency signal, for the first second intermediate frequency signal, the second Assuming that the second intermediate frequency signal is t2, the angle can be quickly determined by strictly controlling the interval between tl and t2 by the control unit 54.
[0034] 前記第 1の第 2中間周波信号と第 2の第 2中間周波信号は、前記の同期状態が保 持されていると、周波数は同一であるが距離 D(m)に相当する分だけ位相差が生じ ており、当該位相差 Δ Φは、 Δ Φ = (2πϋ/λ 1)— (2πϋ/λ2)=2πϋ{(ΐ/ λ 1)-(1/λ2)} = (D/C) {2 π (f 1— f2) }となり、前記信号発信手段 101と信号 受信手段 102の間の距離 D (m)は、 D= (C X Δ Φ ) /{2 π (f 1— f 2) }から求めるこ とができる。ここで、 Cは光の速度とする。 [0034] When the synchronization state is maintained, the first second intermediate frequency signal and the second second intermediate frequency signal have the same frequency but correspond to the distance D (m). The phase difference Δ Φ is expressed as follows: Δ Φ = (2πϋ / λ 1) — (2πϋ / λ2) = 2πϋ {(ΐ / λ 1)-(1 / λ2)} = (D / C) {2 π (f 1− f2)}, and the distance D (m) between the signal transmitting means 101 and the signal receiving means 102 is D = (CX ΔΦ) / {2 π (f 1− f 2)} You can. Where C is the speed of light.
[0035] 例えば、 fl f2 = 5MHzとすると、前記信号発信手段 101と信号受信手段 102の 間の距離が 60mのとき、前記第 1の第 2中間周波信号と第 2の第 2中間周波信号の 間の位相差は 360° となるので、前記位相差の測定精度を ± 0. 5° とすると、距離 の測定精度は、距離が 60mのとき、 ± 8cmとなり、高精度の距離の測定が可能となる [0035] For example, if fl f2 = 5 MHz, when the distance between the signal transmitting means 101 and the signal receiving means 102 is 60 m, the first second intermediate frequency signal and the second second intermediate frequency signal Since the phase difference between them is 360 °, if the measurement accuracy of the phase difference is ± 0.5 °, the distance measurement accuracy is ± 8cm when the distance is 60m, which enables highly accurate distance measurement. Become
[0036] なお、前記同期が確立し保持されていない場合が起こると、距離の測定精度が悪く なる。 [0036] It should be noted that if the synchronization is not established and maintained, the distance measurement accuracy deteriorates.
そこで、前記遅延同期ループ発振器 54の周波数のズレが A fの場合、前記信号発 信手段から発信される複数の搬送波信号あるいは副搬送波信号の周波数を fl→f2 →flの順序で変化させると、上記の検出された位相差は(fl f 2+ Δ ί) - (f2-fl + A f) = 2 (fl— f2)となるので、周波数のズレ分の A fを削減することができる。 ここで、前記複数の搬送波信号あるいは副搬送波信号の周波数を fl→f2→flの 順序で変化させるとき、前記複数の搬送波信号ある!/、は副搬送波信号に対応する制 御起点の間隔を同一としあるいは整数倍とし、前記制御起点の間隔でに生成される 前記複数の搬送波信号ある!/、は副搬送波信号のサイクル数を整数倍としあるいは同 一とすることで、直交性を確保しあるいは維持することが容易となる利点が得られる。  Therefore, when the frequency shift of the delay locked loop oscillator 54 is A f, if the frequency of a plurality of carrier signals or subcarrier signals transmitted from the signal transmitting means is changed in the order of fl → f2 → fl, Since the detected phase difference is (fl f 2 + Δ ί) − (f 2 −fl + A f) = 2 (fl−f 2), A f corresponding to the frequency shift can be reduced. Here, when the frequency of the plurality of carrier signals or subcarrier signals is changed in the order of fl → f2 → fl, the plurality of carrier signals! / Are equal in the interval between the control start points corresponding to the subcarrier signals. The multiple carrier wave signals! /, Which are generated at intervals of the control starting points, are set to be an integer multiple or the same as the number of cycles of the subcarrier signal to ensure orthogonality or The advantage of being easy to maintain is obtained.
[0037] ただし、測定期間中に周波数のずれ力 サイクルを超えると位相差が 360° を超え るので距離の測定が不定となるので、測定中に 1サイクルを超えないように同期を確 立し保持する必要がある。 [0037] However, if the frequency deviation force cycle is exceeded during the measurement period, the phase difference will exceed 360 ° and the distance measurement will be indeterminate, so synchronization should be established so that it does not exceed one cycle during measurement. Need to hold.
なお、前記同期しあるいは直交した複数の高周波信号を生成する方法として、周波 数をホッピングさせ、あるいは FSK変調を行い、あるいは単一の変調信号あるいはべ ースバンド信号を用いて搬送波信号あるいは副搬送波信号を振幅変調し、あるいは 両側帯波変調し、あるいは単側帯波変調を上下に繰り返しても同様な効果が得られ  As a method for generating a plurality of synchronized or orthogonal high-frequency signals, a carrier signal or subcarrier signal is generated by hopping the frequency, performing FSK modulation, or using a single modulation signal or baseband signal. The same effect can be obtained even if amplitude modulation, double sideband modulation, or single sideband modulation is repeated up and down.
[0038] また、信号発信手段 101からは高周波信号として発信する場合について説明した 力 超音波信号あるいは光信号として発信しても同様な効果が得られる。 [0038] Further, the same effect can be obtained even if the signal transmitting means 101 transmits the signal as a high-frequency ultrasonic signal or an optical signal as described in the case of transmitting as a high-frequency signal.
また、前記同期発振器 53の内部の発振器には、図 8に一例を示すように、周波数 および/あるいは位相が制御可能であり特定の周波数および/あるいは位相に保 持可能である信号発振器の他に、位相比較器、同期確立手段、同期検出手段、およ び同期保持手段などが内蔵されている。 In addition, the internal oscillator of the synchronous oscillator 53 has a frequency as shown in FIG. In addition to a signal oscillator whose phase can be controlled and held at a specific frequency and / or phase, a phase comparator, synchronization establishing means, synchronization detecting means, and synchronization holding means are incorporated. ing.
また、前記直交信号発生器 55を信号受信手段 102に設け、あるいは前記第 2ミキ サ 35を信号処理手段 103に設けても同様な効果がえられる。  The same effect can be obtained by providing the quadrature signal generator 55 in the signal receiving means 102 or providing the second mixer 35 in the signal processing means 103.
[0039] また、前記信号発信手段 101において生成される同期しあるいは直交し少なくとも 周波数が異なる複数の高周波信号が変化部分 (直交信号)と固定部分 (局発信号) から構成され、前記信号受信手段 102において生成される同期しあるいは直交し少 なくとも周波数が異なる複数の局発信号が変化部分 (直交信号)と固定部分 (局発信 号)から構成され、少なくとも、前記信号発信手段 101で生成される変化部分と前記 信号受信手段 102で生成される変化部分とを同一とし、あるいは相似とし、あるいは 類似とすることが望ましい。 [0039] Further, a plurality of high-frequency signals that are generated in the signal transmitting means 101 in synchronization or orthogonally and have at least different frequencies are composed of a change part (orthogonal signal) and a fixed part (local signal), and the signal receiving means A plurality of local signals generated in 102, which are synchronized or orthogonal and have at least different frequencies, are composed of a change part (orthogonal signal) and a fixed part (local signal), and are generated by at least the signal transmission means 101. It is desirable that the changed portion and the changed portion generated by the signal receiving means 102 are the same, similar, or similar.
また、前記信号発信手段 101の固定部分と信号受信手段 102の固定部分との周 波数の差が前記信号受信手段 102の第 1中間周波数および/あるいは第 2中間周 波数と同じとすることが望ましい。  Further, it is desirable that the frequency difference between the fixed portion of the signal transmitting means 101 and the fixed portion of the signal receiving means 102 is the same as the first intermediate frequency and / or the second intermediate frequency of the signal receiving means 102. .
[0040] (実施の形態 3) [0040] (Embodiment 3)
図 3は、本発明の第 2の形態による距離測定装置の構成図である。図 3において、 1 02は信号受信手段、 10はアンテナ、 11は低雑音増幅器、 16はミキサ、 17は中間周 波増幅器、 31は電圧制御発振器、 32は分周器、 33は位相比較器、 35は基準発振 器であり、 103は信号処理手段、 51は同期信号検出器、 52は位相 ·周波数検出器、 53は同期発振器、 54は制御部、 56は遁倍あるいは分周器、 61、 62は接続点である FIG. 3 is a configuration diagram of a distance measuring device according to the second embodiment of the present invention. In FIG. 3, 102 is a signal receiving means, 10 is an antenna, 11 is a low noise amplifier, 16 is a mixer, 17 is an intermediate frequency amplifier, 31 is a voltage controlled oscillator, 32 is a frequency divider, 33 is a phase comparator, 35 is a reference oscillator, 103 is a signal processing means, 51 is a synchronous signal detector, 52 is a phase / frequency detector, 53 is a synchronous oscillator, 54 is a control unit, 56 is a multiplier or frequency divider, 61, 62 is a connection point
Yes
[0041] 信号受信手 102において、電圧制御発振器 31は、その発振周波数および位相が 分周器 32および位相比較器 33から構成される位相同期ループによって基準発振器 35の周波数および位相にロックされ、周波数が固定の局発信号を生成としてミキサ 1 6に印加し、アンテナ 10により受信し低雑音増幅器 11で増幅された受信信号とミキシ ングすることによって周波数が異なる中間周波信号に変換し、中間周波増幅器 17に より増幅し、接続点 61を介して信号処理手段 103に出力する。 [0042] 信号処理手段 103は、前記中間周波信号から同期信号を検出するために同期信 号検出器 51と、当該中間周波信号の周波数あるいは位相ある!/ヽは遅延時間ある!/ヽ はこれらの組合せを検出するための位相 ·周波数検出器 52と、周波数および/ある いは位相を測定するための基準となるクロック信号を前記位相 ·周波数検出器 52に 供給するための遁倍 '分周器 56と、同期発振器 53と、制御部 54から構成される。 [0041] In the signal receiver 102, the voltage controlled oscillator 31 has its oscillation frequency and phase locked to the frequency and phase of the reference oscillator 35 by a phase locked loop composed of the frequency divider 32 and the phase comparator 33. Is applied to the mixer 16 as a fixed local oscillation signal, mixed with the received signal received by the antenna 10 and amplified by the low-noise amplifier 11, and converted to an intermediate frequency signal having a different frequency. Amplified by 17 and output to the signal processing means 103 via the connection point 61. [0042] The signal processing means 103 includes a synchronization signal detector 51 for detecting a synchronization signal from the intermediate frequency signal, and the frequency or phase of the intermediate frequency signal is! / ヽ is a delay time! / ヽ is these The phase and frequency detector 52 for detecting the combination of the two and the multiplication to divide the frequency to supply the phase and frequency detector 52 with a reference clock signal for measuring the frequency and / or phase. Device 56, synchronous oscillator 53, and control unit 54.
[0043] 前記遁倍 ·分周器 56を待ち受け状態では遁倍 ·分周数(X P1)に設定して、前記 信号発信手段 101 (記載せず)の第 1のタイミングで放射される高周波信号を待ち受 けている。  [0043] In the standby state, the multiplier / divider 56 is set to a multiplier / divider number (X P1), and a high frequency radiated at the first timing of the signal transmission means 101 (not shown). Waiting for a signal.
なお、前記位相 ·周波数検出器 52の主要部には、例えば、図 7に示すように、前記 中間周波信号をクロック信号の周期でデジタル信号に変換し、 Sinおよび Cosのルツ クアップテーブルと積和演算する方法、あるいは高速フーリエ変換する方法、あるい は図 8に示すように、 IQ信号に変換した後ゼロビートをとるなどの方法で入力信号の 周波数および/あるいは位相を検出する。  In the main part of the phase / frequency detector 52, for example, as shown in FIG. 7, the intermediate frequency signal is converted into a digital signal at the period of the clock signal, and the sum and product of the Sin and Cos look-up tables are added. The frequency and / or phase of the input signal is detected by a method of calculation, a method of fast Fourier transform, or a method of taking a zero beat after conversion to an IQ signal as shown in Fig. 8.
[0044] 前記信号発信手段 101が第 1のタイミングで同期信号を含む第 1の高周波信号を 発信すると、前記同期信号検出器 51が当該同期信号を検出し、前記制御部 53が制 御タイミングを起動する。  [0044] When the signal transmitting means 101 transmits a first high-frequency signal including a synchronization signal at a first timing, the synchronization signal detector 51 detects the synchronization signal, and the control unit 53 determines the control timing. to start.
前記信号発信手段 101から発信される前記第 1の高周波信号に対応する第 1の中 間周波信号と前記クロック信号発振器 53の出力信号の発振周波数あるいは位相あ るいは遅延時間ある!/、はこれらの組合せの差を検出し、両者の周波数および/ある いは位相が一致するよう前記同期発振器 53の周波数および/あるいは位相を制御 し、両者が同期すると、前記同期発振器 53に内蔵する同期検出手段によって同期を 検出し、同期が検出された段階で同期保持手段によって同期を保持する。  The first intermediate frequency signal corresponding to the first high frequency signal transmitted from the signal transmitting means 101 and the oscillation frequency or phase or delay time of the output signal of the clock signal oscillator 53 are! / The synchronous detection means incorporated in the synchronous oscillator 53 detects the difference between the two and controls the frequency and / or phase of the synchronous oscillator 53 so that the frequency and / or phase of the two coincide. The synchronization is detected by, and the synchronization is held by the synchronization holding means when the synchronization is detected.
[0045] 前記同期発振器 53が同期状態を保持している間に、前記中間周波信号の周波数 および/あるいは位相を前記位相 ·周波数検出器 52によって検出し、続いて、前記 信号発信手段 101からは、第 2のタイミングで少なくとも周波数が異なる第 2の高周波 信号が空間に放射され、前記制御手段 54よって前記遁倍 ·分周器 56の分周数が遁 倍-分周数(X P2)に切替えられ、前記受信手段 102から出力される少なくとも周波 数が異なる第 2の中間周波信号の周波数および/あるいは位相を前記位相 ·周波数 検出器 52によって検出し、前記検出結果から、前記信号発信手段 101と前記受信 信号手段 102との間の距離を高精度で測定することができる。 [0045] While the synchronous oscillator 53 holds the synchronization state, the frequency and / or phase of the intermediate frequency signal is detected by the phase / frequency detector 52, and then the signal transmitting means 101 Then, a second high-frequency signal having at least a different frequency at the second timing is radiated to the space, and the frequency dividing number of the multiplier / divider 56 is set to the multiplication-division number (X P2) by the control means 54. The frequency and / or phase of the second intermediate frequency signal that is switched and output from the receiving means 102 is at least different in frequency. The distance between the signal transmission means 101 and the reception signal means 102 can be measured with high accuracy from the detection result detected by the detector 52.
[0046] なお、前記同期発振器 53の内部の発振器には、図 8に一例を示すように、遅延ロッ クループ発振器、あるいは電圧制御水晶発振器、あるいは位相同期ループ発振器、 あるいは数値制御発振器、あるいは周波数および/あるいは位相が制御可能であり 同期状態の周波数および/あるいは位相を保持可能できるデジタル制御発振器を が内蔵されている。 As shown in FIG. 8, the internal oscillator of the synchronous oscillator 53 includes a delay lock loop oscillator, a voltage controlled crystal oscillator, a phase locked loop oscillator, a numerically controlled oscillator, a frequency and It has a built-in digitally controlled oscillator that can control the phase and / or maintain the synchronized frequency and / or phase.
また、位相同期ループ発振器に Δ∑変調を用いても同様な効果が得られる。 また、前記信号発信手段 101から複数の搬送波信号あるいは副搬送波信号を並 列に発信する場合には、位相 ·周波数検出器 52の入力側にバンドパスフィルタを揷 入し、前記遁倍器 56の遁倍数を切替えるタイミングで当該バンドパスフィルタを切替 える必要がある。  The same effect can be obtained by using Δ∑ modulation for the phase-locked loop oscillator. When transmitting a plurality of carrier signals or subcarrier signals in parallel from the signal transmitting means 101, a band pass filter is inserted on the input side of the phase / frequency detector 52, and the multiplier 56 It is necessary to switch the bandpass filter at the timing of switching the multiple.
[0047] 図 2は本発明の第 1の形態における信号の関係を示す図であ。図 5において、 201 、 202は信号発信手段 101 (記載せず)から発信される第 1の直交信号と第 2の直交 信号、 203a、 203bは制御部 9 (記載せず)から出力される制御起点、 204a、 204b は前記信号発振手段の制御起点 203a、 203bと信号受信手段 102 (記載せず)の制 御起点 210a、 210bとの間の位相差、 205は信号受信手段 102において生成される 第 1局発信号であり、前記制御起点 210a、 210bとは必ずしも同期させる必要はなく 、信号分周器 24の分周数が固定であるため固定の周波数である。  FIG. 2 is a diagram showing a signal relationship in the first embodiment of the present invention. In FIG. 5, 201 and 202 are the first and second orthogonal signals transmitted from the signal transmission means 101 (not shown), and 203a and 203b are the controls output from the control unit 9 (not shown). 204a and 204b are the phase differences between the control starting points 203a and 203b of the signal oscillating means and the control starting points 210a and 210b of the signal receiving means 102 (not shown), and 205 is generated in the signal receiving means 102. The first local oscillation signal is not necessarily synchronized with the control starting points 210a and 210b, and has a fixed frequency because the frequency dividing number of the signal frequency divider 24 is fixed.
[0048] 206、 207は前記信号発信手段 101の第 1の直交信号 201と第 2の直交信号 202 に対応して出力される第 1の第 1中間周波信号と第 2の第 1中間周波信号、 208、 20 9は前記信号発信手段 101の第 1の直交信号 201と第 2の直交信号 202に対応して 前記信号受信手段 102において生成される第 1の直交信号と第 2の直交信号、 212 、 213は前記信号発信手段 101の第 1の直交信号 201と第 2の直交信号 202に対応 して出力される第 1の第 2中間周波信号と第 2の第 2中間周波信号、 211a, 21 lbは 前記第 1の第 2中間周波信号と第 2の第 2中間周波信号の位相、 22;!〜 231はそれ ぞれの時間軸である。  [0048] Reference numerals 206 and 207 denote a first first intermediate frequency signal and a second first intermediate frequency signal output corresponding to the first orthogonal signal 201 and the second orthogonal signal 202 of the signal transmitting means 101, respectively. 208, 209 are the first orthogonal signal and the second orthogonal signal generated in the signal receiving means 102 corresponding to the first orthogonal signal 201 and the second orthogonal signal 202 of the signal transmitting means 101, 212 and 213 are a first second intermediate frequency signal and a second second intermediate frequency signal output in correspondence with the first quadrature signal 201 and the second quadrature signal 202 of the signal transmission means 101, 211a, 21 lb is the phase of the first second intermediate frequency signal and the second second intermediate frequency signal, and 22;! To 231 are the respective time axes.
[0049] 信号発信手段 101から発信される第 1の直交信号 201と第 2の直交信号 202は、 周波数は異なるが、前記信号発信手段 101の制御部 9 (記載せず)から出力される制 御起点 203a、 203bにおいて特定の位相(図中では電圧ゼロからの立ち上がり)に 同期しており従ってお互いに直交して!/、る。 [0049] The first orthogonal signal 201 and the second orthogonal signal 202 transmitted from the signal transmission means 101 are: Although the frequencies are different, the control starting points 203a and 203b output from the control unit 9 (not shown) of the signal transmitting means 101 are synchronized with a specific phase (in the figure, rising from zero voltage), and thus are mutually connected. Orthogonal to! /
一方、信号受信手段 102で生成される第 1の局発信号 205は固定の周波数であり 、従って、当該信号受信手段 102から出力される第 1の第 1中間周波信号 206と第 2 の第 1中間周波信号 207の間の周波数は異なっており、そのままでは位相差を測定 すること力 S難しい。  On the other hand, the first local oscillation signal 205 generated by the signal receiving means 102 has a fixed frequency. Therefore, the first first intermediate frequency signal 206 output from the signal receiving means 102 and the second first signal The frequency between the intermediate frequency signals 207 is different, and it is difficult to measure the phase difference as it is.
そこで、前記信号受信手段 102に第 2ミキサ 35を設け、第 1の第 2中間周波信号 21 2と第 2の第 2中間周波信号 213を出力し、各々の位相 21 laと 21 lbとから位相差を 求めることとする。  Therefore, the signal receiving means 102 is provided with a second mixer 35, which outputs a first second intermediate frequency signal 212 and a second second intermediate frequency signal 213, and outputs the phase from each of the phases 21 la and 21 lb. The phase difference is calculated.
[0050] 前記信号受信手段 102の第 1の第 2中間周波信号 212と第 2の第 2中間周波信号  [0050] The first second intermediate frequency signal 212 and the second second intermediate frequency signal of the signal receiving means 102
213のと間の位相差を測定するために、先ず、前記第 1の第 2中間周波数と同期発 振器 53から出力されるクロック信号との同期を確立し、当該同期したクロック信号を 位相検出器 52に供給して第 1の第 2中間周波信号 212の周波数および/あるいは 位相を測定し、当該第 1の第 2中間周波信号 208との同期を保持した状態でクロック 信号を前記位相 ·周波数検出器 52に供給し、前記第 2の第 2中間周波信号 213の 周波数および/あるいは位相を測定する。  In order to measure the phase difference between 213 and 213, first, synchronization between the first second intermediate frequency and the clock signal output from the synchronous oscillator 53 is established, and the phase of the synchronized clock signal is detected. Measure the frequency and / or phase of the first second intermediate frequency signal 212 and supply the clock signal to the phase and frequency while maintaining synchronization with the first second intermediate frequency signal 208. The frequency is supplied to the detector 52, and the frequency and / or phase of the second second intermediate frequency signal 213 is measured.
前記第 1の第 2中間周波信号 212と第 2の第 2中間周波信号 213の位相 211aと 21 lbが測定可能となり、従って、当該信号発信手段 101と信号受信手段 102との間の 距離を高精度で測定することが可能となる。  The phases 211a and 21 lb of the first second intermediate frequency signal 212 and the second second intermediate frequency signal 213 can be measured, so that the distance between the signal transmitting means 101 and the signal receiving means 102 is increased. It becomes possible to measure with accuracy.
また、前記信号発信手段 101から前記第 1の直交信号 201と第 2の直交信号 202 を同時に放射できる場合には、制御起点 203aと 203bが同一のタイミングで生成す ること力 Sできるので、前記信号受信手段 102において、位相差を測定することが容易 となる。  Further, when the first orthogonal signal 201 and the second orthogonal signal 202 can be radiated simultaneously from the signal transmission means 101, the control starting points 203a and 203b can generate force S at the same timing. In the signal receiving means 102, it becomes easy to measure the phase difference.
[0051] 図 4は本発明の第 1の形態における信号の関係を示す図であ。図 4において、 201 、 202は信号発信手段 101 (記載せず)から発信される第 1の直交信号と第 2の直交 信号、 203a、 203bは制御部 9 (記載せず)から出力される制御起点、 204a、 204b は前記信号発信手段 101の制御起点 203a、 203bと信号受信手段 102 (記載せず) の制御起点 210a、 210bとの間の位相差、 205は信号受信手段 102において生成さ れる第 1局発信号であり、分周器 24の分周数が固定であるため固定の周波数であるFIG. 4 is a diagram showing a signal relationship in the first embodiment of the present invention. In FIG. 4, 201 and 202 are the first and second orthogonal signals transmitted from the signal transmission means 101 (not shown), and 203a and 203b are the controls output from the control unit 9 (not shown). The starting points 204a and 204b are the control starting points 203a and 203b of the signal transmitting means 101 and the signal receiving means 102 (not shown). The phase difference between the control starting points 210a and 210b, 205 is the first local signal generated by the signal receiving means 102, and has a fixed frequency because the frequency dividing number of the frequency divider 24 is fixed.
Yes
[0052] 206、 207は前記第 1の直交信号 201と第 2の直交信号 202に対応して出力される 第 1の中間周波信号と第 2の中間周波信号、 208、 209は前記信号発信手段 101の 第 1の直交信号 201と第 2の直交信号 202に対応して前記信号受信手段 102にお いて生成される第 1の直交信号と第 2の直交信号、 212、 213は前記信号発信手段 1 01の第 1の直交信号 201と第 2の直交信号 202に対応して出力される第 1の第 2中 間周波信号と第 2の第 2中間周波信号、 211a, 211bは前記第 1の第 2中間周波信 号と第 2の第 2中間周波信号の位相、 22;!〜 231はそれぞれの時間軸である。  Reference numerals 206 and 207 denote first intermediate frequency signals and second intermediate frequency signals output corresponding to the first orthogonal signal 201 and the second orthogonal signal 202, and 208 and 209 denote the signal transmission means. The first orthogonal signal 201 and the second orthogonal signal generated by the signal receiving means 102 corresponding to the first orthogonal signal 201 and the second orthogonal signal 202 of 101, and 212 and 213 are the signal transmitting means. The first second intermediate frequency signal and the second second intermediate frequency signal output corresponding to the first quadrature signal 201 and the second quadrature signal 202 of 101, 211a, 211b are the first Phases of the second intermediate frequency signal and the second second intermediate frequency signal, 22;! To 231 are respective time axes.
[0053] 信号発信手段 101から発信される第 1の直交信号 201と第 2の直交信号 202は、 周波数は異なるが、前記信号発信手段 101の制御部 9 (記載せず)から出力される制 御起点 203a、 203bにおいて特定の位相(図中では電圧ゼロからの立ち上がり)に 同期しており従ってお互いに直交して!/、る。  [0053] The first orthogonal signal 201 and the second orthogonal signal 202 transmitted from the signal transmission means 101 are different in frequency, but are output from the control unit 9 (not shown) of the signal transmission means 101. The starting points 203a and 203b are synchronized with a specific phase (in the figure, rising from a voltage of zero), and are thus orthogonal to each other!
一方、信号受信手段 102で生成される第 1の局発信号 205は固定の周波数であり 、従って、当該信号受信手段 102から出力される第 1の第 1中間周波信号 206と第 2 の第 1中間周波信号 207の間の周波数は異なっており、そのままでは位相差を測定 すること力 S難しい。  On the other hand, the first local oscillation signal 205 generated by the signal receiving means 102 has a fixed frequency. Therefore, the first first intermediate frequency signal 206 output from the signal receiving means 102 and the second first signal The frequency between the intermediate frequency signals 207 is different, and it is difficult to measure the phase difference as it is.
[0054] 前記第 1の中間周波信号 206と第 2の中間周波信号 207の位相差を測定するため に、先ず、前記第 1の中間周波数と同期発振器 53の同期を確立し、第 1のクロック信 号 214を前記位相検出器 52に供給して前記第 1の中間周波信号 206の周波数およ び/あるいは位相を測定し、当該第 1の中間周波信号 206との同期を保持した状態 で、第 2のクロック信号 215を位相検出器 52に供給して前記第 2の中間周波信号の 周波数および/あるいは位相を測定する。  [0054] In order to measure the phase difference between the first intermediate frequency signal 206 and the second intermediate frequency signal 207, first, the synchronization of the first intermediate frequency and the synchronous oscillator 53 is established, and the first clock The signal 214 is supplied to the phase detector 52 to measure the frequency and / or phase of the first intermediate frequency signal 206, and while maintaining the synchronization with the first intermediate frequency signal 206, The second clock signal 215 is supplied to the phase detector 52 to measure the frequency and / or phase of the second intermediate frequency signal.
[0055] 前記第 1の中間周波信号 206と第 2の中間周波信号 207との位相差 211bが測定 可能となり、従って、当該信号発信手段 101と信号受信手段 102との間の距離を高 精度で測定することが可能となる。  [0055] The phase difference 211b between the first intermediate frequency signal 206 and the second intermediate frequency signal 207 can be measured. Therefore, the distance between the signal transmitting means 101 and the signal receiving means 102 can be measured with high accuracy. It becomes possible to measure.
また、前記信号発信手段 101から前記第 1の高周波信号 201と第 2の高周波信号 2 02を同時に放射できる場合には、制御起点 203aと 203bとも同一タイミングとなるの で、前記位相差を測定することが容易となる。 Further, the first high-frequency signal 201 and the second high-frequency signal 2 are sent from the signal transmitting means 101. When 02 can be radiated simultaneously, the control start points 203a and 203b have the same timing, so it is easy to measure the phase difference.
[0056] 図 5は本発明の第 3の形態における信号の流れの他の例を示す図である。図 5に おいて、 201、 202は信号発信手段 101 (記載せず)から発信される第 1の直交信号 と第 2の直交信号、 203a, 203bは信号発信手段 101の制御部 9 (記載せず)から出 力される制御起点、 204a、 204bは前記信号発振手段の制御起点 203a、 203bと信 号受信手段 102 (記載せず)の制御起点 210a、 210bとの間の位相差、 205は信号 受信手段 102において生成される第 1局発信号であり、前記制御起点 210a、 210b とは必ずしも同期させる必要はなぐ信号分周器 24の分周数が固定であるため固定 の周波数である。 FIG. 5 is a diagram showing another example of signal flow in the third mode of the present invention. In FIG. 5, 201 and 202 are the first and second orthogonal signals transmitted from the signal transmission means 101 (not shown), and 203a and 203b are the control unit 9 (not shown) of the signal transmission means 101. 204a, 204b is the phase difference between the control starting points 203a, 203b of the signal oscillating means and the control starting points 210a, 210b of the signal receiving means 102 (not shown), 205 This is a first local signal generated by the signal receiving means 102 and does not necessarily need to be synchronized with the control starting points 210a and 210b, and therefore has a fixed frequency because the frequency dividing number of the signal divider 24 is fixed.
[0057] 206、 207は前記信号発信手段 101の第 1の直交信号 201と第 2の直交信号 202 に対応して出力される第 1の第 1中間周波信号と第 2の第 1中間周波信号、 208、 20 9は前記信号発信手段 101の第 1の直交信号 201と第 2の直交信号 202に対応して 前記信号受信手段 102において生成される第 1の直交信号と第 2の直交信号、 212 、 213は前記信号発信手段 101の第 1の直交信号 201と第 2の直交信号 202に対応 して出力される第 1の第 2中間周波信号と第 2の第 2中間周波信号のゼロビート出力 であり、 211a, 21 lbは前記第 1の第 2中間周波信号と第 2の第 2中間周波信号の位 相に応じた直流電圧、 22;!〜 231はそれぞれの時間軸である。  Reference numerals 206 and 207 denote a first first intermediate frequency signal and a second first intermediate frequency signal output corresponding to the first orthogonal signal 201 and the second orthogonal signal 202 of the signal transmission means 101. 208, 209 are the first orthogonal signal and the second orthogonal signal generated in the signal receiving means 102 corresponding to the first orthogonal signal 201 and the second orthogonal signal 202 of the signal transmitting means 101, Reference numerals 212 and 213 denote zero beat outputs of the first second intermediate frequency signal and the second second intermediate frequency signal output corresponding to the first orthogonal signal 201 and the second orthogonal signal 202 of the signal transmitting means 101, respectively. 211a, 21 lb are DC voltages corresponding to the phases of the first second intermediate frequency signal and the second second intermediate frequency signal, and 22;! -231 are respective time axes.
[0058] 信号発信手段 101から発信される第 1の直交信号 201と第 2の直交信号 202は、 周波数は異なるが、前記信号発信手段 101の制御部 9 (記載せず)から出力される制 御起点 203a、 203bにおいて特定の位相(図中では電圧ゼロからの立ち上がり)に 同期しており従ってお互いに直交して!/、る。  [0058] The first orthogonal signal 201 and the second orthogonal signal 202 transmitted from the signal transmission means 101 are different in frequency, but are output from the control unit 9 (not shown) of the signal transmission means 101. The starting points 203a and 203b are synchronized with a specific phase (in the figure, rising from a voltage of zero), and are thus orthogonal to each other!
一方、信号受信手段 102で生成される第 1の局発信号 205は固定の周波数であり 、従って、当該信号受信手段 102から出力される第 1の第 1中間周波信号 206と第 2 の第 1中間周波信号 207の間の周波数は異なっており、そのままでは位相差を測定 すること力 S難しい。  On the other hand, the first local oscillation signal 205 generated by the signal receiving means 102 has a fixed frequency. Therefore, the first first intermediate frequency signal 206 output from the signal receiving means 102 and the second first signal The frequency between the intermediate frequency signals 207 is different, and it is difficult to measure the phase difference as it is.
そこで、前記信号受信手段 102に第 2ミキサ 35を設け、第 1の第 2中間周波信号 21 2と第 2の第 2中間周波信号 213を出力し、各々の位相 21 laと 21 lbとから位相差を 求めることとする。 Therefore, the signal receiving means 102 is provided with a second mixer 35, which outputs a first second intermediate frequency signal 212 and a second second intermediate frequency signal 213, and outputs the phase from each of the phases 21 la and 21 lb. Phase difference We will ask for it.
[0059] 前記信号受信手段 102の第 1の第 2中間周波信号 212と第 2の第 2中間周波信号  [0059] The first second intermediate frequency signal 212 and the second second intermediate frequency signal of the signal receiving means 102.
213のと間の位相差を測定するために、先ず、前記第 1の第 2中間周波数と第 1の直 交信号 208との間がゼロビートとなるように制御し、前記位相検出器 52によって第 1 の第 2中間周波信号 212の周波数および/あるいは位相を測定し、当該第 1の第 2 中間周波信号 208とのゼロビートを保持した状態で第 2の直交信号 209を前記位相- 周波数検出器 52に供給し、前記第 2の第 2中間周波信号 213の周波数および/あ るいは位相を測定する。  In order to measure the phase difference between the first intermediate frequency 213 and the first intermediate signal 208, first, control is performed so that a zero beat is obtained. The second quadrature signal 209 is measured as the phase-frequency detector 52 while measuring the frequency and / or phase of the first second intermediate frequency signal 212 and holding the zero beat with the first second intermediate frequency signal 208. And the frequency and / or phase of the second second intermediate frequency signal 213 is measured.
前記第 1の第 2中間周波信号 212と第 2の第 2中間周波信号 213の位相 211aと 21 lbが測定可能となり、従って、当該信号発信手段 101と信号受信手段 102との間の 距離を高精度で測定することが可能となる。  The phases 211a and 21 lb of the first second intermediate frequency signal 212 and the second second intermediate frequency signal 213 can be measured, so that the distance between the signal transmitting means 101 and the signal receiving means 102 is increased. It becomes possible to measure with accuracy.
[0060] ここで、ゼロビートに制御するためには、前記第 1の第 1中間周波信号の周波数と 第 1の直交信号の周波数とが同じとなるように制御し、同様に、前記第 2の第 1中間周 波信号の周波数と第 2の直交信号の周波数とが同じとなるように制御する必要がある [0060] Here, in order to control to zero beat, control is performed so that the frequency of the first first intermediate frequency signal and the frequency of the first orthogonal signal are the same. It is necessary to control the frequency of the first intermediate frequency signal and the frequency of the second orthogonal signal to be the same.
Yes
また、前記のようにゼロビートをとる代わりに、前記中間周波信号をデジタル信号に 変換する際のサンプリング周波数を変化させることでも同様な効果が得られる。  The same effect can be obtained by changing the sampling frequency when converting the intermediate frequency signal into a digital signal instead of taking the zero beat as described above.
[0061] 図 6は、本発明の位相 ·周波数検出器の一例を示す構成図である。図 6において、 FIG. 6 is a configuration diagram showing an example of the phase / frequency detector of the present invention. In Figure 6,
61、 64、 65は接続点、 521はアナログ ·デジタル変換器、 522aは Sin積和演算器、 522bは Cos積和演算器、 523は ArcTan演算器である。  61, 64, and 65 are connection points, 521 is an analog-digital converter, 522a is a Sin product-sum calculator, 522b is a Cos product-sum calculator, and 523 is an ArcTan calculator.
信号受信手段 102 (記載せず)から出力される中間周波信号は、接続点 61を介し て入力され、アナログ 'デジタル変換器 521によってデジタル信号に変換され、 2分 岐されて Sin積和演算器 522aと Cos積和演算器 522bに印加される。  The intermediate frequency signal output from the signal receiving means 102 (not shown) is input via the connection point 61, converted into a digital signal by the analog-to-digital converter 521, and branched into two to be the Sin multiply-add calculator. Applied to 522a and Cos product-sum calculator 522b.
周波数および/あるレ、は位相を測定するための基準となるクロック信号は、接続点 525を介して入力され、 3分岐され、アナログ 'デジタル変換器 521、 Sin積和演算器 522a,および Cos積和演算器 522bに印加される。  The reference clock signal for measuring frequency and / or phase is input via connection point 525, split into three, analog 'digital converter 521, Sin product-sum calculator 522a, and Cos product. Applied to the sum calculator 522b.
[0062] 前記 Sin積和演算器 522aのルックアップテーブルには「0, 1 , 0, — 1」を基本単位 として用い、前記 Cos積和演算器 522bのルックアップテーブルには「1 , 0, - 1 , 0] を基本単位として用いることで、積和演算を高速で処理できるメリットが得られる。 前記積和演算器 522a、 522bの出力は、 ArcTan演算器 523によって、位相 Φ = ArcTan (Sin/Cos)が計算され、結果が接続点 64を介して制御部 54 (記載せず) に出力される。 [0062] The lookup table of the Sin multiply-add calculator 522a uses "0, 1, 0, — 1" as a basic unit, and the lookup table of the Cos multiply-add calculator 522b uses "1, 0, - Ten] By using as a basic unit, the merit that the product-sum operation can be processed at high speed can be obtained. The outputs of the product-sum calculators 522a and 522b are calculated by the ArcTan calculator 523 as the phase Φ = ArcTan (Sin / Cos), and the result is output to the controller 54 (not shown) via the connection point 64. The
なお、前記位相 '周波数検出器を利用して、図 9に一例を示す同期発振器の内部 に内蔵されているデジタル位相比較器として用いることも可能である。  Note that it is also possible to use the phase 'frequency detector as a digital phase comparator built in the synchronous oscillator shown in FIG.
[0063] 図 7は、本発明の位相 ·周波数検出器の他の例を示す構成図である。図 7において 、 61、 64、 65ίま接続 、 524a, 524biまミキサ、 526a, 526biま低域通過フイノレタ、 521a, 521bはアナログ ·デジタル変換器、 523は ArcTan演算器、 525は 90° 移 相器である。 FIG. 7 is a block diagram showing another example of the phase / frequency detector of the present invention. In Fig. 7, connections up to 61, 64, 65ί, 524a, 524bi mixer, 526a, 526bi low pass filter, 521a, 521b are analog-to-digital converters, 523 is ArcTan calculator, 525 is 90 ° phase shifter It is.
信号受信手段 102 (記載せず)から出力される中間周波信号は、接続点 61を介し て人力され、 2分岐されてミキサ 524aと 524bに印カロされる。  The intermediate frequency signal output from the signal receiving means 102 (not shown) is manually input via the connection point 61, branched into two, and applied to the mixers 524a and 524b.
[0064] 周波数および/あるいは位相を検出するための基準となるクロック信号は、接続点 [0064] A clock signal serving as a reference for detecting the frequency and / or phase is a connection point.
525を介して入力され、 2分岐され、一方は直接ミキサ 524aに第 1の局発信号として 印加され、もう一方は 90° 移相器 525により 90° 移相されてミキサ 524bに第 2の局 発信号として印加される。  525, two branches, one is directly applied to mixer 524a as the first local oscillator signal, the other is 90 ° phase shifted by 90 ° phase shifter 525 and the second station is supplied to mixer 524b. Applied as an emission signal.
前記ミキサ 524aからは I信号が出力され、低域通過フィルタ 526aにより高調波が 取りの除かれ、アナログ ·デジタル変換器 521aによりデジタル変換され、 ArcTan演 算器 523に I信号として入力される。  An I signal is output from the mixer 524a, harmonics are removed by the low-pass filter 526a, digitally converted by the analog-to-digital converter 521a, and input to the ArcTan calculator 523 as an I signal.
[0065] 前記ミキサ 524bからは Q信号が出力され、低域通過フィルタ 526bにより高調波が 取りの除かれ、アナログ ·デジタル変換器 521bによりデジタル変換され、 ArcTan演 算器 523に Q信号として入力される。 [0065] A Q signal is output from the mixer 524b, harmonics are removed by the low-pass filter 526b, digitally converted by the analog-digital converter 521b, and input to the ArcTan calculator 523 as the Q signal. The
前記 ArcTan演算器 523によって、位相差 Φ = ArcTan (I/Q)が計算され、結果 が接続点 64を介して制御部 54 (記載せず)に出力される。  The ArcTan computing unit 523 calculates the phase difference Φ = ArcTan (I / Q), and outputs the result to the control unit 54 (not shown) via the connection point 64.
[0066] なお、前記位相'周波数検出器を利用して、図 9に一例を示す同期発振器の内部 に内蔵されてレ、る位相比較器に用いることができる。 [0066] It should be noted that the phase 'frequency detector can be used for a phase comparator built in a synchronous oscillator shown in FIG. 9 as an example.
また、ミキサ 526a、 526bの出力周波数は共にゼロビート(直流)に設定する他に、 共通な任意の周波数に変換した後に位相を測定することができる。 [0067] 図 8は、本発明の同期発振器の一例を示す構成図である。図 8において、 53は同 期発振器、 531は同期確立 ·同期保持回路、 532はデジタル位相比較器、 533はデ ジタル制御発振器、 67、 68、 69、 70は接続点である。 In addition to setting the output frequency of both mixers 526a and 526b to zero beat (DC), the phase can be measured after conversion to a common arbitrary frequency. FIG. 8 is a configuration diagram showing an example of the synchronous oscillator of the present invention. In FIG. 8, 53 is a synchronous oscillator, 531 is a synchronization establishment / synchronization circuit, 532 is a digital phase comparator, 533 is a digitally controlled oscillator, and 67, 68, 69 and 70 are connection points.
信号受信手段 102 (記載せず)から出力される中間周波信号は、同期入力信号とし て接続点 61を介して入力され、前記同期確立 ·保持回路 531を介して前記デジタノレ 位相比較器 532に接続され、前記同期入力信号と前記デジタル制御発振器 533の 出力信号との間の位相が比較され、比較された結果は前記デジタル制御発振器 53 3の制御信号として入力され、前記デジタル制御発振器 533の周波数ある!/、は位相 あるいは遅延時間あるいはこれらの組合せを制御し、接続点 68から同期出力信号と して出力される。  An intermediate frequency signal output from the signal receiving means 102 (not shown) is input as a synchronization input signal via the connection point 61 and connected to the digital phase comparator 532 via the synchronization establishment / holding circuit 531. The phase between the synchronous input signal and the output signal of the digitally controlled oscillator 533 is compared, and the compared result is input as a control signal of the digitally controlled oscillator 533, and the frequency of the digitally controlled oscillator 533 is present. ! /, Controls the phase or delay time, or a combination of these, and is output as a synchronous output signal from node 68.
[0068] 前記同期入力信号と同期出力信号との間で周波数および/あるいは位相が同期 すると、同期検出信号が接続点 70から制御部 54 (記載せず)に向けて出力され、前 記制御部 54から同期保持信号が接続点 69を介して同期確立 ·保持回路 531に入 力され、前記デジタル制御発振器 533の発振周波数および/あるいは位相を保持さ せる。  [0068] When the frequency and / or phase is synchronized between the synchronization input signal and the synchronization output signal, a synchronization detection signal is output from the connection point 70 to the control unit 54 (not shown), and the control unit A synchronization hold signal is input from 54 through the connection point 69 to the synchronization establishment / holding circuit 531 to hold the oscillation frequency and / or phase of the digitally controlled oscillator 533.
[0069] 前記同期確立.保持回路 531は、例えば、 ANDゲートあるいは ORゲートで構成さ れ、接続点 69に「0」あるいは「1」が印加されると ANDゲートあるいは ORゲートの出 力は「0」あるいは「1」に固定され、同期が確立した状態を擬似的に設定することで、 前記デジタル位相比較器 532の出力信号は OFFに保持され、デジタル制御発振器 533の周波数および/あるいは位相を保持するよう制御する。  [0069] The synchronization establishment / holding circuit 531 is composed of, for example, an AND gate or an OR gate. When “0” or “1” is applied to the connection point 69, the output of the AND gate or OR gate is “ By setting the state where synchronization is established by fixing it to “0” or “1”, the output signal of the digital phase comparator 532 is held OFF, and the frequency and / or phase of the digitally controlled oscillator 533 is changed. Control to hold.
なお、前記デジタル位相比較器 532の出力信号を前記デジタル制御発振器 533 の周波数設定レジスタに加減算することで発振周波数を制御することができる。  The oscillation frequency can be controlled by adding / subtracting the output signal of the digital phase comparator 532 to / from the frequency setting register of the digital control oscillator 533.
[0070] 前記デジタル制御発振器 533の例として、デジタル信号によって制御する電圧制 御発振器、あるいは数値制御発振器、あるいは周波数あるいは位相あるいは遅延時 間あるいはこれらの組合せが制御可能であり特定の周波数あるいは位相あるいは遅 延時間あるいはこれらの組合せに設定可能でありかつ保持可能であるデジタル制御 発振器を用いることができる。  [0070] As an example of the digitally controlled oscillator 533, a voltage controlled oscillator controlled by a digital signal, a numerically controlled oscillator, a frequency, a phase, a delay time, or a combination thereof can be controlled. A digitally controlled oscillator that can be set and maintained for the delay time or a combination thereof can be used.
[0071] また、前記デジタル制御発振器 533として数値制御発振器を用い、前記デジタル 位相比較器 531から出力されるデジタル制御信号によって前記数値制御発振器の 発振周波数および/あるいは位相を制御して同期状態とし、当該デジタル信号を保 持することで前記同期状態を保持させることで、発振周波数が高安定であり、同期引 き込み時間が短ぐ同期引き込み時および同期確立 ·保持のための制御が安定な同 期発振器を実現することができる。 [0071] Further, a numerically controlled oscillator is used as the digitally controlled oscillator 533, and the digitally controlled oscillator 533 The digital control signal output from the phase comparator 531 controls the oscillation frequency and / or phase of the numerically controlled oscillator to be in a synchronized state, and the digital signal is held to maintain the synchronized state, thereby oscillating. It is possible to realize a synchronous oscillator with high frequency stability, stable synchronization pull-in time, and stable synchronization establishment / maintenance control.
また、前記制御起点によって、前記数値制御発振器の加算器 (アキュムレータ)をリ セットすることで、出力信号の電圧セロ点を容易にコントロールすることが可能となる。  Further, by resetting the adder (accumulator) of the numerically controlled oscillator according to the control starting point, the voltage sero point of the output signal can be easily controlled.
[0072] (実施の形態 4) [Embodiment 4]
図 9は本発明の第 4の形態による距離測定装置の構成図である。図 9において、 la 、 lbは信号発信手段 101に接続された複数のアンテナ、 lcは当該複数のアンテナ 1 a、 lbを切替えるためのアンテナ切替手段、 10a、 10bは信号受信手段 102に接続さ れた複数のアンテナ、 10cは当該複数のアンテナ 10a、 10bを切替えるためのアンテ ナ切替手段、 66は制御部 54とアンテナ切替器 10cとの接続点であり、その他は図 1 と同様である。  FIG. 9 is a block diagram of a distance measuring apparatus according to the fourth embodiment of the present invention. In FIG. 9, la and lb are a plurality of antennas connected to the signal transmitting means 101, lc is an antenna switching means for switching the plurality of antennas 1a and lb, and 10a and 10b are connected to the signal receiving means 102. A plurality of antennas, 10c is an antenna switching means for switching between the plurality of antennas 10a and 10b, 66 is a connection point between the control unit 54 and the antenna switch 10c, and the others are the same as in FIG.
[0073] 前記複数のアンテナ la、 lbおよび/あるいはアンテナ 10a、 10bは前記高周波信 号の搬送波信号あるいは副搬送波信号の 1波長以下の間隔で配置され、前記信号 発信手段 101が当該高周波信号を発信しあるいは前記信号受信手段 102が当該高 周波信号を受信する間に、制御部 9あるいは制御部 54によって制御される前記アン テナ切替手段 lcあるいは 10cによって周期的に切替えられているものとする。  [0073] The plurality of antennas la, lb and / or antennas 10a, 10b are arranged at intervals of one wavelength or less of the carrier signal or subcarrier signal of the high-frequency signal, and the signal transmission means 101 transmits the high-frequency signal. Alternatively, it is assumed that while the signal receiving means 102 receives the high frequency signal, the antenna switching means lc or 10c controlled by the control section 9 or the control section 54 is periodically switched.
[0074] 上記の構成により、信号発信手段 101と信号受信手段 102との間の距離を測定す ることが可能となるとともに、当該信号発信手段 101および/あるいは信号受信手段 102が位置する方向および/あるいは向かっている方向を高精度で測定できること から、単一の信号発信手段 101を固定して設置することで信号受信手段 102の現在 位置 (距離と方向)を高精度で標定できるメリットが生じ、あるいは単一の信号受信手 段 102を固定して設置することで信号発信手段 101の現在位置 (距離と方向)を高精 度で標定できるメリットが生じる。  [0074] With the above configuration, it becomes possible to measure the distance between the signal transmitting means 101 and the signal receiving means 102, and the direction in which the signal transmitting means 101 and / or the signal receiving means 102 is located and Since the direction in which the vehicle is heading can be measured with high accuracy, there is an advantage that the current position (distance and direction) of the signal receiving device 102 can be determined with high accuracy by installing the single signal transmitting device 101 fixedly. Alternatively, by fixing and installing the single signal receiving means 102, there is an advantage that the current position (distance and direction) of the signal transmission means 101 can be determined with high accuracy.
[0075] ここで、例えば、前記信号発信手段 101が携帯電話システムの基地局であり、前記 信号受信手段 102が携帯端末である場合、単一の基地局からの無線信号を受信す ることで携帯端末の正確な位置 (距離と方向)が標定できることになる。 また、前記信号発信手段 101が複数箇所に設置されている場合には、複数箇所か らの距離と方向を測定することで、双曲線航法あるいは三角法などの方法により、前 記信号受信手段 102の正確な位置を標定することができる。 [0075] Here, for example, when the signal transmission means 101 is a base station of a mobile phone system and the signal reception means 102 is a mobile terminal, a radio signal from a single base station is received. This makes it possible to determine the exact position (distance and direction) of the mobile terminal. In addition, when the signal transmission means 101 is installed at a plurality of locations, the distance and direction from the plurality of locations are measured, and the signal reception means 102 of the signal reception means 102 is measured by a method such as hyperbolic navigation or trigonometry. Accurate location can be determined.
また、前記信号発信手段 101の複数のアンテナ la、 lbを切替手段 lcによって切替 える代わりに、複数のアンテナ la、 lbをセクタ一化することでも概略の方向を測定で きることから、前記信号受信手段 102の概略の位置 (距離は正確)を標定することが できる。  In addition, instead of switching the plurality of antennas la and lb of the signal transmitting means 101 by the switching means lc, the general direction can be measured by unifying the plurality of antennas la and lb in the sector. The approximate position (distance is accurate) of the means 102 can be determined.
[0076] また、前記信号発信手段 101および/あるいは信号受信手段 102に 2基の指向性 アンテナ la、 lbあるいは 10a、 10bを当該信号発信手段 101から発信される信号の 1波長以下の間隔で配置して接続し、当該 2基の指向性アンテナの指向を水平方向 あるいは水平方向から斜め下方に向けて設置することで、マルチパスによる方向測 定の誤差を軽減するとともに、位置 (距離と方向)標定が可能な距離を拡大すること ができる。  [0076] Further, two directivity antennas la, lb or 10a, 10b are arranged in the signal transmitting means 101 and / or the signal receiving means 102 at intervals of one wavelength or less of the signal transmitted from the signal transmitting means 101. By connecting the two directional antennas horizontally or diagonally downward from the horizontal direction, the direction measurement error due to multipath can be reduced and the position (distance and direction) can be reduced. The distance that can be used for orientation can be expanded.
また、前記信号受信手段 102および/あるいは信号発信手段 101に複数のアンテ ナ la、 lbおよび/あるいは 10a、 10bとアンテナ切替器 lcおよび/あるいは 10cを 追加する以外は、距離のみを測定のに必要な回路構成と共通であることから、距離 の測定に加えて方向の測定を行なうために上昇するコストを低く抑えることができる。  Also, only the distance is required for the measurement, except that a plurality of antennas la, lb and / or 10a, 10b and antenna switch lc and / or 10c are added to the signal receiving means 102 and / or the signal transmitting means 101. Since the circuit configuration is the same, the rising cost for measuring the direction in addition to the distance measurement can be kept low.
[0077] 図 10は、本発明の距離測定装置による距離の測定結果から位置を標定する際の 概念図である。図 10において、 301は比較的に高い位置に設置された信号発信手 段あるいは信号受信手段、 302は比較的に低い位置に設置されあるいは移動する 信号発信手段あるいは信号受信手段、 303は地面あるいは床面など、 311は前記の 測定方法により測定された距離 (Lm)、 312は前記比較的に高い位置と比較的に低 い位置との差 (Hm)、 313は比較的に低い位置の高さ(hm)、 314は水平方向の距 離 (Dm)である。 FIG. 10 is a conceptual diagram when the position is determined from the distance measurement result by the distance measuring apparatus of the present invention. In FIG. 10, 301 is a signal transmitting means or signal receiving means installed at a relatively high position, 302 is a signal transmitting means or signal receiving means installed or moved at a relatively low position, and 303 is a ground or floor. 311 is the distance (Lm) measured by the above measuring method, 312 is the difference between the relatively high position and the relatively low position (Hm), 313 is the height of the relatively low position, etc. (Hm) and 314 are horizontal distances (Dm).
[0078] 前記の測定方法により測定された距離 (Lm) 31 1が求められると、水平方向の距離  [0078] When the distance (Lm) 31 1 measured by the above measuring method is obtained, the horizontal distance
(Dm) 314は既知の三角形の定理により容易に算出することができる。  (Dm) 314 can be easily calculated by the known triangle theorem.
なお、比較的に高い位置に設置された発信手段あるいは信号受信手段 301は、例 えば、柱あるいは天井などに設置され、比較的に低い位置に設置されあるいは移動 する信号発信手段あるいは信号受信手段 302は、例えば、歩行者が携帯しあるいは 移動体に装着されている。 The transmitting means or signal receiving means 301 installed at a relatively high position is an example. For example, the signal transmitting means or the signal receiving means 302 that is installed on a pillar or a ceiling and is installed or moved at a relatively low position is carried by, for example, a pedestrian or attached to a moving body.
[0079] また、比較的に高い位置に設置された発信手段あるいは信号受信手段 301の周辺 の地理によっては、より複雑な演算が必要となるので、前記比較的に高い位置に設 置された信号発信手段あるいは信号受信手段 301から周辺の地理に関する情報を 発信することも有効である。  [0079] Further, depending on the geography around the transmitting means or signal receiving means 301 installed at a relatively high position, more complicated calculation is required, so that the signal installed at the relatively high position is required. It is also effective to send information on the surrounding geography from the sending means or the signal receiving means 301.
また、上記に加えて、信号発信手段あるいは信号受信手段が設置された方向ある いは信号発信手段あるいは信号受信手段が向かって!/、る方向が検出できれば、信 号発信手段あるいは信号受信手段の位置の標定が可能となる。  In addition to the above, if the direction in which the signal transmitting means or the signal receiving means is installed, or the direction in which the signal transmitting means or the signal receiving means is heading, can be detected, the signal transmitting means or the signal receiving means Location can be determined.
[0080] 以上の説明では、デジタル位相比較器を用いることとした力 ハードウェアを用いた 積和演算器を用いて位相を測定し、あるいは DSPあるいはマイクロコンピュータを用 いてソフトウェアにより FFT演算を行なって位相を測定し、あるいは既存の技術を採 用することで実現できる。ソフトウェアによる演算では処理時間が遅くなりリアルタイム での処理が難しくなるので、ハードウェアにより処理する方が処理時間、電流消費の 面、およびコストの面などの点から有利である。  [0080] In the above description, the phase is measured using a product-sum operation unit using force hardware that uses a digital phase comparator, or the FFT operation is performed by software using a DSP or a microcomputer. This can be achieved by measuring the phase or by using existing technology. Since computation time by software is slow and processing in real time becomes difficult, processing by hardware is advantageous in terms of processing time, current consumption, and cost.
[0081] また、前記信号発信手段から超音波トランスデューサーあるいは超音波送波器を 用いて超音波信号を発信し、前記受信手段において超音波トランスデューサーある いは超音波受波器を用いて超音波信号を受信し、あるいは前記発信手段にお!/、て 発光ダイオードあるいはレーザーダイオードを用いて光信号を発信し、前記受信手 段においてホトダイオードを用いて光信号を受信することでも同様な効果が得られる  [0081] Further, an ultrasonic signal is transmitted from the signal transmitting means using an ultrasonic transducer or an ultrasonic transmitter, and the receiving means is configured to transmit an ultrasonic signal using an ultrasonic transducer or an ultrasonic receiver. The same effect can be obtained by receiving a sound wave signal or transmitting an optical signal to the transmitting means using a light emitting diode or a laser diode and receiving the optical signal using a photodiode in the receiving means. can get
[0082] また、前記信号発信手段において、基準発振器に同期した変調信号あるいはベー スバンド信号を生成し、あるいは直交する複数の変調信号あるいはベースバンド信号 を生成し、超音波信号あるいは高周波信号ある!/、は光信号の搬送波信号あるいは 副搬送波を変調して発信し、前記信号受信手段において、基準発振器に同期した 局発信号を生成して受信した変調信号あるいはベースバンド信号とミキシングして共 通の周波数の変調信号あるいはベースバンド信号に変換することでも同様な効果が 得られる。 [0082] Further, in the signal transmission means, a modulation signal or a baseband signal synchronized with a reference oscillator is generated, or a plurality of orthogonal modulation signals or baseband signals are generated, and an ultrasonic signal or a high-frequency signal exists! / The signal receiving means generates a local oscillation signal that is synchronized with a reference oscillator and mixes it with the received modulation signal or baseband signal in the signal receiving means. The same effect can be obtained by converting to a frequency modulation signal or baseband signal. can get.
[0083] また、前記信号発信手段から発信される共通の搬送波信号あるいは副搬送波信号 力 同期しあるいは直交する少なくともチップレートが異なる複数のスペクトル拡散符 号により拡散されている場合には、前記信号受信手段において受信した拡散された 共通の搬送波信号あるいは副搬送波信号を逆拡散するために用いる複数のスぺタト ル拡散符号を生成するためのチップレートが異なる複数の同期信号を前記複数の変 調信号あるいはベースバンド信号とすることができる。  [0083] Also, when the common carrier signal or subcarrier signal transmitted from the signal transmitting means is spread by a plurality of spread spectrum codes that are synchronized or orthogonal, at least with different chip rates, the signal reception Means for generating a plurality of spectral spreading codes used for despreading the spread common carrier signal or subcarrier signal received by the means, and a plurality of synchronization signals having different chip rates. Alternatively, it can be a baseband signal.
[0084] また、前記信号発信手段において、同期しあるいは直交し少なくとも周波数が異な る複数の信号を生成するタイミングで前記信号発信手段および/あるいは受信手段 に接続した複数のアンテナあるいは送受波器を周期的に切替え、前記信号発信手 段と信号受信手段との間の距離と方向を測定することによってマルチパスあるいはハ イトパターンにより生じる測定誤差を軽減することができる。  [0084] Further, in the signal transmission means, a plurality of antennas or transducers connected to the signal transmission means and / or reception means are periodically generated at a timing for generating a plurality of signals that are synchronized or orthogonal and at least different in frequency. Thus, the measurement error caused by multipath or height pattern can be reduced by measuring the distance and direction between the signal transmitting means and the signal receiving means.
[0085] また、前記信号発信手段にお!/、てウルトラワイドバンド (UWB)のスペクトル拡散符 号を用いて超音波信号あるレ、は高周波信号あるいは光信号に変換して発信しても 同様な効果が得られる。この場合、複数のアンテナあるいは複数の送受波器の間隔 は、当該スペクトル拡散符号のチップレートに対応する間隔以下となる。  [0085] In addition, the signal transmitting means may use an ultra-wideband (UWB) spread spectrum code to convert an ultrasonic signal into a high-frequency signal or an optical signal and transmit the same. Effects can be obtained. In this case, the interval between the plurality of antennas or the plurality of transducers is equal to or less than the interval corresponding to the chip rate of the spread spectrum code.
また、上記の距離測定方法を携帯電話システムを含む移動無線システム全般、あ るいは測量システムなど、距離あるレ、は距離と方向の標定が必要なシステムに汎用 的に適用することが出来る。  In addition, the above distance measurement method can be generally applied to a mobile radio system including a mobile phone system or a surveying system such as a system that requires distance and direction orientation.
[0086] また、前記信号発信手段と信号受信手段との間の距離測定を複数回実施した結果 を統計処理し、前記発信手段から発信される超音波信号あるいは高周波信号ある!/、 は光信号の伝搬経路の分布状況あるいはマルチパスの発生状況を推定することで 距離測定の精度を高めることができる。  [0086] Further, the result of the distance measurement between the signal transmitting unit and the signal receiving unit being performed a plurality of times is statistically processed, and an ultrasonic signal or a high frequency signal transmitted from the transmitting unit is present! /, Is an optical signal The accuracy of distance measurement can be improved by estimating the distribution status of multiple propagation paths or the occurrence of multipath.
また、複数回実施した距離測定の結果の分布とモデル化した距離測定の分布とを 比較することで前記伝搬経路の分布状況あるいはマルチパスの発生状況を推定す ること力 Sでさる。  In addition, by comparing the distribution of the results of the distance measurement performed a plurality of times with the distribution of the modeled distance measurement, the force S for estimating the distribution status of the propagation path or the occurrence status of the multipath can be obtained.
[0087] また、前記信号発信手段から発信される複数の信号の周波数あるいはチップレート の変化を小さな変化から大きな変化まで段階的に切替えることによって、前記信号受 信手段で受信する複数の信号から、長いレンジ力 短いレンジまで段階的に切替え て距離を測定することができる。 [0087] Further, by changing the frequency or chip rate of the plurality of signals transmitted from the signal transmission means stepwise from a small change to a large change, the signal reception is performed. The distance can be measured by gradually switching from a plurality of signals received by the transmission means to a long range force and a short range.
産業上の利用可能性  Industrial applicability
[0088] 本発明は、上記のように構成されているため、単一の信号発信手段あるいは単一 の信号受信手段を固定して設置することで、信号発信手段と信号受信手段との間の 距離を高精度で測定することが可能となり、方向あるいは向かっている方向の測定と 合わせれば、位置の標定が高精度で行なえることになる。 [0088] Since the present invention is configured as described above, a single signal transmission unit or a single signal reception unit is fixedly installed, so that the signal transmission unit and the signal reception unit are arranged in a fixed manner. The distance can be measured with high accuracy, and when combined with the measurement in the direction or direction, the position can be determined with high accuracy.
位置の標定が高精度で行なえることから、歩行者が交差点などの横断歩道を渡る 場合に、横断歩道から逸脱しないように誘導し、歩行を支援するためのシステムに利 用可能である。  Since the location can be determined with high accuracy, it can be used in a system that supports walking while guiding pedestrians not to deviate from the pedestrian crossing when crossing a pedestrian crossing such as an intersection.
また、移動無線システムにおいて単一の基地局と携帯端末との間で方向と距離が 測定可能となるので、高精度なカーナビゲーシヨンシステムあるいは歩行者ナビグー シヨンシステムを実現することが可能となる。  In addition, since the direction and distance can be measured between a single base station and a mobile terminal in a mobile radio system, a highly accurate car navigation system or pedestrian navigation system can be realized.
[0089] また、信号発信手段としてアクティブタグを用い、受信手段として複数の基地局をネ ットワークで結ぶことで、アクティブタグの正確な位置が検知できることから、マーケッ トなどで顧客の移動経路を調査するための動線管理、貨物の移動集積を効率化する ための物流管理、あるいは迷子の探索などに用いることができる。  [0089] In addition, since the active tag is used as a signal transmission means and a plurality of base stations are connected as a reception means through a network, the exact position of the active tag can be detected. It can be used for traffic flow management, logistics management to improve the efficiency of moving and collecting cargo, or searching for lost children.
また、前記アクティブタグを家畜あるいは野生動物に携帯させて正確な位置が検知 することで、バイオテレメトリなどに用いることができる。  In addition, the active tag can be carried by livestock or wild animals to detect the exact position and used for biotelemetry.
[0090] また、信号受信手段をトランジット側に設置し発信手段をポール側に設置すること で、距離と方向を高精度で測量することが可能である。なお、測量に用いる場合には リアルタイム性はそれほど要求されないので、時間をかけてデータの取得回数を増や すことで測量の精度を上げることが可能である。  [0090] Further, by installing the signal receiving means on the transit side and the transmitting means on the pole side, the distance and direction can be measured with high accuracy. When used for surveying, real-time performance is not so required, so it is possible to increase the accuracy of surveying by increasing the number of data acquisitions over time.
また、航行中の複数の船舶間、飛行中の複数の航空機間、あるいは走行中の複数 の車両間などの間隔および方向を正確に測定できるので、衝突防止あるいは相互間 の距離を維持するなどのシステムに活用することができる。  In addition, the distance and direction between multiple navigating vessels, multiple flying aircraft, or multiple running vehicles can be accurately measured, so collision prevention or maintaining the distance between each other is possible. Can be used in the system.
[0091] また、移動体と操縦者相互間の 1対 1の通信によって移動体との相対的な位置関係 が正確に測定できることから、移動体のリモコンなどが安価な装置で可能となる。 また、本発明の距離測定技術は基盤技術であり、その他の多分野での応用が期待 できる。 [0091] Further, since the relative positional relationship with the moving object can be accurately measured by one-to-one communication between the moving object and the pilot, a remote control of the moving object can be realized with an inexpensive device. In addition, the distance measurement technology of the present invention is a basic technology and can be expected to be applied in other fields.
図面の簡単な説明  Brief Description of Drawings
[0092] [図 1]実施の形態 1による距離測定装置の構成図  [FIG. 1] Configuration diagram of a distance measuring apparatus according to Embodiment 1
[図 2]実施の形態 1における信号の流れの例を示す図  FIG. 2 is a diagram showing an example of signal flow in the first embodiment
[図 3]実施の形態 2による距離測定装置の構成図  [Fig. 3] Configuration diagram of the distance measuring apparatus according to the second embodiment.
[図 4]実施の形態 2における信号の流れの例を示す図  FIG. 4 is a diagram illustrating an example of signal flow in the second embodiment.
[図 5]実施の形態 2における信号の流れの他の例を示す図  FIG. 5 shows another example of signal flow in the second embodiment.
[図 6]位相 ·周波数検出器の一例を示す構成図  [Figure 6] Configuration diagram showing an example of a phase / frequency detector
[図 7]位相 ·周波数検出器の他の例を示す構成図  [Fig.7] Configuration diagram showing another example of phase / frequency detector
[図 8]同期発振器の一例を示す構成図  [FIG. 8] Configuration diagram showing an example of a synchronous oscillator
[図 9]実施の形態 3による距離測定装置の構成図  [Fig. 9] Configuration diagram of the distance measuring apparatus according to the third embodiment.
[図 10]距離の測定結果から位置を標定する際の概念図  [Fig.10] Conceptual diagram for locating position from distance measurement results
[図 11]従来の実施例を示す構成図  [Fig. 11] Configuration diagram showing a conventional example.
符号の説明  Explanation of symbols
[0093] 1 アンテナ [0093] 1 antenna
la、 lb 複数のアンテナ  la, lb multiple antennas
lc アンテナ切替手段  lc Antenna switching means
2 電力増幅器  2 Power amplifier
3 ミキサ  3 Mixer
4 電圧制御発振器  4 Voltage controlled oscillator
5 位相比較器  5 Phase comparator
6 分周器  6 divider
7 基準発振器  7 Reference oscillator
8a 同期信号発生器  8a Sync signal generator
8b FSK信号発生器  8b FSK signal generator
9 制御部  9 Control unit
10 アンテナ a, 10b 複数のアンテナ10 Antenna a, 10b Multiple antennas
c アンテナ切替手段 c Antenna switching means
低雑音増幅器  Low noise amplifier
第 1ミキサ  1st mixer
中間周波増幅器  Intermediate frequency amplifier
H!J土制御発  From H! J soil control
分周器  Divider
位相比較器  Phase comparator
基準発振器  Reference oscillator
第 2ミキサ  Second mixer
同期信号検出器  Sync signal detector
位相 ·周波数検出器  Phase / frequency detector
同期発振器  Synchronous oscillator
制御部  Control unit
直交信号発生器  Quadrature signal generator
遁倍 ·分周器  遁 times
— 70 接続点— 70 connection points
1 信号発信手段1 Signal transmission means
2 信号受信手段2 Signal receiving means
3 信号処理手段3 Signal processing means
1、 202 第 1と第 2の直交信号1, 202 1st and 2nd quadrature signal
3a, 203b 制御起点3a, 203b Control start point
4a, 204b 発信制御起点と受信制御起点の間の位相差5 受信第 1局発信号4a, 204b Phase difference between transmission control start point and reception control start point 5 Reception first station signal
6、 207 第 1と第 2の第 1中間周波信号6, 207 First and second first intermediate frequency signals
8、 209 第 1と第 2の直交信号8, 209 First and second quadrature signals
0a, 210b 制御起点0a, 210b Control start point
1 a, 211b 第 1と第 2の第 2中間周波信号の位相差 212、 213 第 1と第 2の第 2中間周波信号 1 a, 211b Phase difference between the first and second second intermediate frequency signals 212, 213 First and second second intermediate frequency signals
214、 215 第 1と第 2のクロック信号 214, 215 First and second clock signals
22;!〜 231 各信号の時間軸 22;! ~ 231 Time axis of each signal
301 比較的に高い位置に設置された信号発信手段あるいは信号受信手 段  301 Signal transmitting means or signal receiving means installed at a relatively high position
302 比較的に低い位置に設置されあるいは移動する信号発信手段ある いは信号受信手段  302 Signal transmitting means or signal receiving means installed or moved at a relatively low position
303 地面あるいは床面など  303 Ground or floor surface
31 1 前記の測定方法により測定された距離 (Lm)  31 1 Distance measured by the above measurement method (Lm)
312 前記比較的に高い位置と比較的に低い位置との差 (Hm)  312 Difference between the relatively high position and the relatively low position (Hm)
313 比較的に低い位置の高さ(hm)  313 Height of relatively low position (hm)
314 水平方向の距離(Dm)  314 Horizontal distance (Dm)
521、 521a アナログ ·デジタル変換器 521, 521a Analog to digital converter
521b アナログ 'デジタル変換器 521b Analog 'digital converter'
522a Sin積和演算器 522a Sin Multiply-Accumulator
522b Cos積和演算器  522b Cos multiply-add calculator
523 ArcTan演算器  523 ArcTan calculator
524a, 524b ミキサ 524a, 524b mixer
525 90° 移相器  525 90 ° phase shifter
526a, 526b 低域通過フィルタ 526a, 526b Low-pass filter
531 デジタル位相比較器  531 Digital phase comparator
532 同期確立 ·同期保持手段  532 Synchronization establishment
533 デジタル制御発振器  533 Digitally controlled oscillator

Claims

請求の範囲 The scope of the claims
[1] 超音波信号あるいは高周波信号あるいは光信号を用いて距離を測定するシステム において、  [1] In a system that measures distance using ultrasonic signals, high-frequency signals, or optical signals,
同期しあるいは直交し少なくとも周波数が異なる複数の測定信号を含む超音波信号 あるいは高周波信号あるいは光信号を発信するための信号発信手段と、 前記信号発信手段から発信される超音波信号あるいは高周波信号ある!/、は光信号 を受信して前記複数の測定信号を再生し、当該再生した複数の測定信号と、同期し あるいは直交し少なくとも周波数が異なる複数の局発信号とをミキシングしあるいは 逆拡散して周波数が共通な中間周波信号あるいは変調信号あるいはベースバンド 信号に変換するための信号受信手段と、  There are signal transmitting means for transmitting a plurality of measurement signals that are synchronized or orthogonal and have at least different frequencies, or a high-frequency signal or an optical signal, and an ultrasonic signal or a high-frequency signal transmitted from the signal transmitting means! /, Receives an optical signal, regenerates the plurality of measurement signals, and mixes or despreads the regenerated plurality of measurement signals with a plurality of local oscillation signals that are synchronized or orthogonal and have at least different frequencies. A signal receiving means for converting to an intermediate frequency signal, a modulation signal or a baseband signal having a common frequency;
前記信号受信手段から出力される前記中間周波信号あるいは変調信号あるいはべ ースバンド信号を処理して距離を測定するための信号処理手段とから構成され、 前記信号処理手段が、基準となる第 1の測定信号に対応した第 1の中間周波信号あ るいは変調信号あるレ、はベースバンド信号の周波数および/あるレ、は位相を検出し 、続いて前記基準となる第 1の測定信号とは少なくとも周波数が異なる第 2の測定信 号に対応した第 2の中間周波信号あるいは変調信号あるいはベースバンド信号の周 波数および/あるいは位相を検出し、前記検出結果から前記信号発信手段と信号 受信手段との間の距離を測定することを特徴とする距離測定装置  Signal processing means for measuring the distance by processing the intermediate frequency signal, modulation signal or baseband signal output from the signal receiving means, and the signal processing means is a first measurement as a reference The first intermediate frequency signal or the modulation signal corresponding to the signal is detected, the frequency and / or the phase of the baseband signal is detected, and then the reference first measurement signal is at least the frequency The frequency and / or phase of the second intermediate frequency signal, modulation signal, or baseband signal corresponding to the second measurement signal with different values is detected, and the signal transmission means and the signal reception means are detected from the detection result. Distance measuring device characterized by measuring distance of
[2] 前記測定信号が、搬送波信号あるいは副搬送波信号ある!/、はスペクトル拡散符号 あるいは変調信号あるいはベースバンド信号あるいはこれらの組合せであることを特 徴とする請求項第 1項に記載の距離測定装置  [2] The distance according to claim 1, wherein the measurement signal is a carrier signal or a subcarrier signal! / Is a spread spectrum code, a modulation signal, a baseband signal, or a combination thereof. measuring device
[3] 前記信号処理手段が、周波数あるいは位相ある!/、は遅延時間あるいはこれらの組 合せが制御可能な同期発振器と、前記同期発振器から出力されるクロック信号と前 記中間周波信号あるいは変調信号あるいはベースバンド信号との同期を確立し同期 を保持するための同期確立 ·保持手段と、前記同期発振器から出力されるクロック信 号を基準とし前記中間周波信号あるいは変調信号あるいはベースバンド信号の周波 数および/あるいは位相を検出するための位相 ·周波数検出器を有し、  [3] The signal processing means has a frequency or phase! / Is a synchronous oscillator whose delay time or a combination thereof can be controlled, a clock signal output from the synchronous oscillator and the intermediate frequency signal or modulation signal Alternatively, the frequency of the intermediate frequency signal, the modulation signal, or the baseband signal is based on the synchronization establishment / holding means for establishing synchronization with the baseband signal and maintaining the synchronization, and the clock signal output from the synchronous oscillator. And / or have a phase / frequency detector to detect the phase,
前記同期確立 ·保持手段によって前記同期発振器を制御して基準となる第 1の測定 信号に対応した第 1の中間周波信号あるいは変調信号あるいはベースバンド信号と 前記同期発振器力、ら出力されるクロック信号との同期を確立し、前記第 1の中間周波 信号あるいは変調信号あるいはベースバンド信号とクロック信号との同期を保持した 状態で、前記中間周波信号あるいは変調信号あるいはベースバンド信号の周波数 および/あるいは位相を検出することを特徴とする請求項第 1項あるいは第 2項に記 載の距離測定装置 The first measurement which becomes a reference by controlling the synchronous oscillator by the synchronization establishment / holding means The first intermediate frequency signal, modulation signal, or baseband signal corresponding to the signal is synchronized with the clock signal output from the synchronous oscillator force, and the first intermediate frequency signal, modulation signal, or baseband signal is established. The frequency and / or phase of the intermediate frequency signal, the modulation signal, or the baseband signal is detected in a state in which synchronization with the clock signal is maintained. Distance measuring device
[4] 前記信号受信手段の局発信号発振器の周波数あるいは位相あるいは遅延時間あ るいはこれらの組合せが制御可能であり、  [4] The frequency or phase of the local signal oscillator of the signal receiving means or the delay time or a combination thereof can be controlled,
前記同期確立 ·保持手段によって前記局発信号発振器を制御して前記基準となる第 1の中間周波信号あるいは変調信号あるいはベースバンド信号と周波数あるいは位 相あるいは遅延時間あるいはこれらの組合せが固定のクロック発振器から出力される クロック信号との同期を確立し、前記第 1の中間周波信号あるいは変調信号あるいは ベースバンド信号と前記クロック信号との同期を保持した状態で、前記第 2の中間周 波信号あるいは変調信号あるいはベースバンド信号の周波数および/あるレ、は位相 を検出し、前記検出結果から前記信号発信手段と信号受信手段との間の距離を測 定することを特徴とする請求項第 1項から第 3項のいずれかに該当する距離測定装 置  A clock oscillator in which the local signal oscillator is controlled by the synchronization establishment / holding means and the reference first intermediate frequency signal, modulation signal, baseband signal, frequency, phase, delay time, or a combination thereof is fixed The second intermediate frequency signal or modulation is established in synchronization with the clock signal output from the first intermediate frequency signal, modulation signal or baseband signal and the clock signal. 2. The frequency and / or phase of a signal or baseband signal is detected, and the distance between the signal transmitting means and the signal receiving means is measured from the detection result. A distance measuring device that falls under any of the paragraphs 3
[5] 前記信号受信手段において、前記再生した複数の測定信号を周波数が固定ある いは半固定の局発信号とミキシングして少なくとも周波数が異なる複数の中間周波 信号あるいは変調信号あるいはベースバンド信号に変換し、  [5] In the signal receiving means, the reproduced plurality of measurement signals are mixed with a fixed or semi-fixed local oscillation signal to obtain a plurality of intermediate frequency signals, modulation signals, or baseband signals having different frequencies. Converted,
前記信号処理手段の同期発振器の周波数あるいは位相ある!/、は遅延時間ある!/、は これらの組み合わせが制御可能であり、  The frequency or phase of the synchronous oscillator of the signal processing means is! /, There is a delay time! /, A combination of these can be controlled,
前記同期確立 ·保持手段によって前記同期発振器を制御し、前記基準となる第 1の 中間周波信号あるいは変調信号あるいはベースバンド信号と前記同期発振器から 出力されるクロック信号との同期を確立し、前記第 1の中間周波信号あるいは変調信 号あるいはベースバンド信号とクロック信号との同期を保持した状態で、前記第 1の 中間周波信号あるいは変調信号あるいはベースバンド信号の周波数および/あるレ、 は位相を検出し、続いて前記クロック信号を遁倍しあるいは分周して前記周波数が 異なる第 2の中間周波信号あるいは変調信号あるいはベースバンド信号に対応した クロック信号に変換し、前記変換したクロック信号を基準として、前記第 2の中間周波 信号あるいは変調信号あるいはベースバンド信号の周波数および/あるレ、は位相を 検出し、前記検出結果から前記信号発信手段と信号受信手段との間の距離を測定 することを特徴とする請求項第 1項から第 4項のいずれかに該当する距離測定装置The synchronization establishment / holding means controls the synchronization oscillator to establish synchronization between the reference first intermediate frequency signal, modulation signal, or baseband signal and the clock signal output from the synchronization oscillator, While the synchronization between the intermediate frequency signal of 1 and the modulation signal or baseband signal and the clock signal is maintained, the frequency and / or certain phase of the first intermediate frequency signal or modulation signal or baseband signal is detected. Subsequently, the clock signal is multiplied or divided to obtain the frequency. The second intermediate frequency signal, the modulation signal, or the clock signal corresponding to the baseband signal is converted, and the second intermediate frequency signal, the modulation signal, or the baseband signal frequency and / or 5. A distance corresponding to any one of claims 1 to 4, wherein a phase is detected and a distance between the signal transmitting means and the signal receiving means is measured from the detection result. measuring device
[6] 前記信号受信手段において、前記再生した複数の測定信号と、周波数が固定ある いは半固定の第 1局発信号とミキシングして少なくとも周波数が異なる複数の第 1中 間周波信号あるいは変調信号あるいはベースバンド信号に変換し、 [6] In the signal receiving means, a plurality of first intermediate frequency signals or modulations having at least different frequencies by mixing with the reproduced plurality of measurement signals and a first local signal having a fixed or semi-fixed frequency. Signal or baseband signal,
前記信号受信手段あるいは信号処理手段に設けられた第 2局発信号発振器の周波 数あるいは位相あるいは遅延時間ある!/、はこれらの組合せが制御可能であり、 前記少なくとも周波数が異なる複数の第 1中間周波信号あるいは変調信号あるいは ベースバンド信号と前記第 2局発信号をミキシングして少なくとも周波数が同一である 第 2中間周波信号あるいは変調信号あるいはベースバンド信号に変換し、 前記信号処理手段が、周波数ある!/、は位相ある!/、は遅延時間あるいはこれらの組合 せが制御可能な同期発振器と、前記同期発振器から出力されるクロック信号と前記 第 2中間周波信号あるいは変調信号あるいはベースバンド信号との同期を確立し同 期を保持するための同期確立 ·保持手段と、前記同期発振器力 出力されるクロック 信号を基準とし前記第 2中間周波信号あるいは変調信号あるいはベースバンド信号 の周波数および/あるいは位相を検出するための位相 ·周波数検出器を有し、 前記同期確立 ·保持手段によって前記同期発振器を制御して基準となる第 1の測定 信号に対応した第 1の第 2中間周波信号あるいは変調信号あるいはベースバンド信 号と前記同期発振器力 出力されるクロック信号との同期を確立し、前記第 1の第 2 中間周波信号あるいは変調信号あるいはベースバンド信号とクロック信号との同期を 保持した状態で、前記第 2中間周波信号あるいは変調信号あるいはベースバンド信 号の周波数および/あるいは位相を検出することを特徴とする請求項第 1項から第 4 項のいずれかに該当する距離測定装置  The frequency, phase or delay time of the second local signal oscillator provided in the signal receiving means or signal processing means is controllable in combination, and a plurality of first intermediate points having different at least frequencies can be controlled. A frequency signal, a modulation signal, or a baseband signal and the second local oscillation signal are mixed and converted to a second intermediate frequency signal, a modulation signal, or a baseband signal that has at least the same frequency, and the signal processing means has a frequency ! / Is a phase! / Is a synchronous oscillator whose delay time or a combination thereof can be controlled, and a clock signal output from the synchronous oscillator and the second intermediate frequency signal, modulation signal or baseband signal. Synchronization establishment / holding means for establishing synchronization and maintaining synchronization and the clock signal output from the synchronous oscillator force And a phase / frequency detector for detecting the frequency and / or phase of the second intermediate frequency signal, modulation signal or baseband signal, and controlling the synchronous oscillator by the synchronization establishing / holding means. Establishing synchronization between the first second intermediate frequency signal or modulation signal or baseband signal corresponding to the reference first measurement signal and the clock signal output from the synchronous oscillator power, and the first second signal Detecting the frequency and / or phase of the second intermediate frequency signal, modulation signal, or baseband signal while maintaining synchronization of the intermediate frequency signal, modulation signal, baseband signal, and clock signal A distance measuring device corresponding to any one of claims 1 to 4.
[7] 前記信号受信手段において、前記再生した複数の測定信号をチップレータあるい は位相ある!/、は遅延時間あるいはこれらの組み合わせが制御可能な拡散符号発振 器力も出力される拡散符号とミキシングあるいは変調して周波数が共通な中間周波 信号あるいは変調信号あるいはベースバンド信号に変換し、 [7] In the signal receiving means, the reproduced plurality of measurement signals have a chiplator or a phase! /, A spread code oscillation whose delay time or a combination thereof can be controlled The power is also mixed or modulated with the output spreading code to convert it into an intermediate frequency signal, modulation signal or baseband signal with a common frequency,
前記同期確立 ·保持手段によって前記拡散符号発振器を制御し、前記基準となる再 生した第 1の拡散符号と前記拡散符号発振器から出力される拡散符号との同期を確 立し、前記再生した第 1の拡散符号との同期を保持した状態で、前記再生した第 1の 拡散符号の周波数および/あるレ、は位相を検出し、続!、て前記拡散符号発振器に おいて第 1の拡散符号とは直交し少なくともチップレートが異なる第 2の拡散符号を 発振させて前記再生した第 2の拡散符号の周波数および/あるいは位相を検出し、 前記検出結果から前記信号発信手段と信号受信手段との間の距離を測定すること を特徴とする請求項第 1項あるいは第 2項に記載の距離測定装置  The spread code oscillator is controlled by the synchronization establishment / holding means to establish synchronization between the reference first spread code and the spread code output from the spread code oscillator, and the reproduced second code In the state where the synchronization with the spreading code of 1 is maintained, the frequency and / or certain phase of the reproduced first spreading code is detected, and then the first spreading code is detected in the spreading code oscillator. Oscillates at least a second spreading code different in chip rate and detects the frequency and / or phase of the reproduced second spreading code, and from the detection result, the signal transmitting means and the signal receiving means The distance measuring device according to claim 1 or 2, wherein a distance between the two is measured.
[8] 前記信号発信手段から発信される超音波信号あるいは高周波信号あるいは光信 号が、同期しあるいは直交し少なくとも周波数が異なる複数の測定信号の間を複数 回切り替えられあるいはホッピングされ、 [8] The ultrasonic signal, the high-frequency signal, or the optical signal transmitted from the signal transmitting means is switched or hopped a plurality of times between a plurality of measurement signals that are synchronized or orthogonal and have at least different frequencies,
前記受信手段において、前記複数回切り替えられあるいはホッピングされた際の周 波数差および/あるいは位相差、および/ある!/、は第 1の測定信号と第 2の測定信 号との周波数差および/あるいは位相差、および/あるいは複数の測定信号間の 周波数差および/あるいは位相差を求めることによって、前記同期確立 ·保持手段を 設ける場合には同期確立誤差を算出し、あるいは前記同期確立 ·保持手段を設けな い場合には前記発信手段の基準発振器と前記受信手段の基準発振器の周波数差 によって生じる周波数シフトおよび/あるいは位相シフトを算出することによって、前 記複数の測定信号の間の周波数差および/あるいは位相差の算出誤差を補正する ことを特徴とする請求項第 1項力 第 7項のいずれかに該当する距離測定装置  In the receiving means, the frequency difference and / or phase difference when switched or hopped a plurality of times, and / or there is /! Is the frequency difference between the first measurement signal and the second measurement signal and / or Alternatively, when the synchronization establishment / holding means is provided by calculating the phase difference and / or the frequency difference and / or phase difference between a plurality of measurement signals, the synchronization establishment error is calculated or the synchronization establishment / holding means is provided. If the frequency difference and the phase shift caused by the frequency difference between the reference oscillator of the transmitting means and the reference oscillator of the receiving means are calculated, the frequency difference between the plurality of measurement signals and A distance measuring device corresponding to any one of claims 1 to 7, wherein a phase difference calculation error is corrected.
[9] 前記信号発信手段において生成される同期しあるいは直交し少なくとも周波数が 異なる複数の測定信号が変化部分と固定部分から構成され、前記信号受信手段に おいて生成される同期しあるいは直交し少なくとも周波数が異なる複数の局発信号 が変化部分と固定部分から構成され、少なくとも、前記信号発信手段で生成される測 定信号の変化部分と前記信号受信手段で生成される局発信号の変化部分とが同一 であり、あるいは相似であり、あるいは類似であることを特徴とする請求項第 1項から 第 7項のいずれかに該当する距離測定装置 [9] A plurality of measurement signals generated in the signal transmission means that are synchronized or orthogonal and at least different in frequency are composed of a change part and a fixed part, and are generated in the signal reception means in synchronization or orthogonal and at least A plurality of local signals having different frequencies are composed of a change part and a fixed part, and at least a change part of the measurement signal generated by the signal transmission means and a change part of the local signal generated by the signal reception means. Are the same, similar or similar, from claim 1 A distance measuring device that falls under any of items 7
[10] 前記信号発信手段において同期しあるいは直交し少なくとも周波数が異なる複数 の測定信号を生成するのに対応し、前記信号発信手段および/あるいは受信手段 に接続した複数のアンテナあるいは送受波器を周期的に切替え、前記信号発信手 段と信号受信手段との間の距離と方向を測定することを特徴とする請求項第 1項から 第 7項のいずれかに該当する距離測定装置  [10] A plurality of antennas or transducers connected to the signal transmitting means and / or the receiving means corresponding to the generation of a plurality of measurement signals synchronized or orthogonal and different in frequency at least in the signal transmitting means. The distance measuring device according to any one of claims 1 to 7, characterized in that the distance and direction between the signal transmitting means and the signal receiving means are measured and switched.
[11] 前記信号発信手段および/あるレ、は信号受信手段にぉレ、て、同期しあるレ、は直交 し少なくとも周波数が異なる複数の測定信号を生成するために、特定の周波数ある いは位相あるいは遅延時間あるいはタイミングあるいはこれらの組み合わせを制御起 点として複数の測定信号を生成し、あるいは制御起点を定めて複数の拡散符号を発 生させある!/、は複数の周波数間をホッピングさせある!/、はチヤープ変調しあるいは複 数の周波数間を周波数シフトキーイングし、あるいは制御起点を定めて任意の変調 信号あるいはベースバンド信号によって振幅変調しあるレ、は両側帯波変調しあるレ、 は単側帯波変調することを特徴とする請求項第 1項から第 7項のいずれかに該当す る距離測定装置  [11] In order to generate a plurality of measurement signals that are orthogonal to each other and at least different in frequency from the signal transmitting means and / or the signal receiving means, the signal receiving means is synchronized with the signal receiving means. Multiple measurement signals are generated using phase, delay time, timing, or a combination of these as control starting points, or multiple spreading codes are generated by setting control starting points! / Is hopping between multiple frequencies ! /, Is a chirp modulation or frequency shift keying between multiple frequencies, or an amplitude modulation by an arbitrary modulation signal or baseband signal with a control starting point, or a double-sideband modulation The distance measuring device according to any one of claims 1 to 7, wherein single-sideband modulation is performed.
[12] 前記同期しあるいは直交し少なくとも周波数が異なる複数の測定信号を複数回繰り 返して生成する際に、前記複数の測定信号に対応する制御起点の間隔が同一であ りあるいは整数倍であり、あるいは前記制御起点の間隔で生成される前記複数の測 定信号のサイクル数が整数倍でありあるいは同一であることを特徴とする請求項第 1 項から第 11項のいずれかに該当する距離測定装置  [12] When the plurality of measurement signals that are synchronized or orthogonal and have at least different frequencies are generated repeatedly, the intervals between the control start points corresponding to the plurality of measurement signals are the same or an integral multiple. 12. The distance corresponding to any one of claims 1 to 11, wherein the number of cycles of the plurality of measurement signals generated at the interval between the control starting points is an integer multiple or the same. measuring device
[13] 前記制御起点が少なくとも周波数が異なる複数の測定信号のゼロクロス点あるいは 特定点であり、かつ直前の測定信号のゼロクロス点あるいは特定点に同期して後続 の測定信号を起動しあるいは生成を開始し、当該直前の測定信号から後続の測定 信号への変化が継続的であり連続的に行われることを特徴とする請求項第 12項に 記載する距離測定装置  [13] The control starting point is a zero cross point or a specific point of a plurality of measurement signals having at least different frequencies, and the subsequent measurement signal is started or generated in synchronization with the zero cross point or the specific point of the immediately preceding measurement signal. 13. The distance measuring device according to claim 12, wherein the change from the immediately preceding measurement signal to the subsequent measurement signal is continuous and continuously performed.
[14] 前記信号発信手段から発信される基準発振器に同期しあるいは直交した複数の測 定信号力スペクトル拡散符号により拡散されている場合には、逆拡散し、あるいは遁 倍して、前記複数の測定信号を再生することを特徴とする請求項第 1項から第 13項 のいずれかに該当する距離測定装置 [14] When spread by a plurality of measurement signal power spread spectrum codes synchronized or orthogonal to a reference oscillator transmitted from the signal transmission means, the plurality of the plurality of measurement signal power spread spectrum codes are despread or multiplied, 14. The measurement signal is reproduced as claimed in claims 1 to 13. Distance measuring device corresponding to any of
[15] 前記信号発信手段が同期しあるいは直交し少なくとも周波数が異なる複数の変調 信号あるいはベースバンド信号により変調された超音波信号あるいは高周波信号あ るいは光信号を発信し、 [15] The signal transmission means transmits an ultrasonic signal, a high-frequency signal, or an optical signal modulated by a plurality of modulation signals or baseband signals that are synchronized or orthogonal and have at least different frequencies,
前記受信手段にぉレ、て、前記超音波信号ある!/、は高周波信号あるいは光信号を受 信して前記複数の変調信号あるいはベースバンド信号を復調し、当該復調した複数 の変調信号あるいはベースバンド信号を、同期しあるいは直交し少なくとも周波数が 異なる複数の局発信号とミキシングして周波数が共通な中間周波信号に変換するこ とを特徴とする請求項第 1項力 第 4項のいずれかに該当する距離測定装置  The ultrasonic signal is! / Is received by the receiving means, receives a high-frequency signal or an optical signal, demodulates the plurality of modulation signals or baseband signals, and demodulates the plurality of demodulated modulation signals or base signals. 5. The method according to claim 1, wherein the band signal is converted to an intermediate frequency signal having a common frequency by mixing with a plurality of local signals synchronized or orthogonal and having at least different frequencies. Distance measuring device applicable to
[16] 前記局発信号発振器あるいは同期発振器あるいはこれらの両方が、前記制御起点 にお!/、て、特定の周波数あるいは位相ある!/、は遅延時間あるいはこれらの組合せか ら発振を開始し、あるいは特定の周波数あるいは位相点あるいは遅延時間あるいは これらの組合せにセットされある!/、はリセットされあるいは切替えられ、あるいは特定 の信号の周波数あるいは位相あるレヽは遅延時間ある!/ヽはこれらの組合せに同期させ ることを特徴とする請求項第 1項から第 15項のいずれかに該当する距離測定装置 [16] The local signal oscillator or the synchronous oscillator or both of them have a specific frequency or phase at the control start point! /, And start oscillating from a delay time or a combination thereof. Or it is set to a specific frequency or phase point or delay time or a combination of these! / Is reset or switched, or a certain signal frequency or phase is a delay time! /! Is a combination of these The distance measuring device according to any one of claims 1 to 15, wherein the distance measuring device is synchronized.
[17] 前記局発信号発振器あるいは同期発振器あるいは拡散符号発振器あるいはこれら の組合せが、複数の測定信号間の位相差をデジタル信号として検出するためのデジ タル位相比較器あるいはデジタル遅延ロックループと、前記デジタル信号によって周 波数あるいは位相あるいは遅延時間あるレ、はこれらの組合せを制御できるデジタノレ 制御発振器とを有し、前記位相比較器あるいは遅延ロックループに入力される複数 の信号間の同期を確立し、前記同期を保持させることができることを特徴とする請求 項第 1項から第 16項のいずれかに該当する距離測定装置 [17] The digital signal comparator or digital delay lock loop for detecting the phase difference between the plurality of measurement signals as a digital signal by the local oscillator, the synchronous oscillator, the spread code oscillator, or a combination thereof, A digital oscillator having a frequency or phase or delay time controlled by a digital signal and a digital oscillator controlled oscillator capable of controlling a combination thereof, establishes synchronization between a plurality of signals input to the phase comparator or the delay lock loop, The distance measuring device according to any one of claims 1 to 16, wherein the synchronization can be maintained.
[18] 前記制御起点にお!/、て、数値制御発振器の発振周波数および/あるいは発振位 相を設定するレジスタをセットしあるいはリセットすることを特徴とする請求項第 17項 に記載の距離測定装置  [18] The distance measurement according to claim 17, wherein a register for setting an oscillation frequency and / or an oscillation phase of a numerically controlled oscillator is set or reset at the control start point! Equipment
[19] 前記位相 ·周波数検出器において、前記中間周波信号あるいは変調信号あるいは ベースバンド信号の周波数および/あるいは位相を検出するために、前記中間周波 信号あるいは前記変調信号あるいはベースバンド信号をアナログ 'デジタル変換器 によりデジタル信号に変換し、 Sinのルックアップテーブルとして 0、 1、 0、 1を単位 とし、 Cosinのルックアップテーブルとして 1、 0、 1、 0を単位とし、前記デジタル信 号との積和演算を行うことを特徴とする請求項第 1項から第 18項のいずれかに該当 する距離測定装置 [19] In the phase / frequency detector, in order to detect the frequency and / or phase of the intermediate frequency signal, the modulation signal, or the baseband signal, the intermediate frequency signal, the modulation signal, or the baseband signal is converted into an analog digital signal. converter Is converted into a digital signal, and 0, 1, 0, 1 is used as the unit for the Sin lookup table, and 1, 0, 1, 0 is used as the unit for the Cosin lookup table. The distance measuring device according to any one of claims 1 to 18, wherein
[20] 前記位相 ·周波数検出器において、前記中間周波信号あるいは変調信号あるいは ベースバンド信号の周波数および/あるいは位相を検出するために、前記中間周波 信号あるいは変調信号あるいはベースバンド信号をダイレクトコンバージョンして 1/ Q信号を出力し、あるいはゼロビートをとることによって I/Q信号を出力し、当該 I/Q 信号をアナログ 'デジタル変換器によりデジタル信号に変換することを特徴とする請 求項第 1項から第 19項のいずれかに該当する距離測定装置  [20] In the phase / frequency detector, in order to detect the frequency and / or phase of the intermediate frequency signal, modulation signal, or baseband signal, the intermediate frequency signal, modulation signal, or baseband signal is directly converted. 1 / Q signal is output or an I / Q signal is output by taking a zero beat, and the I / Q signal is converted to a digital signal by an analog 'digital converter'. To a distance measuring device falling under any one of items 19
[21] 前記信号処理手段において、前記中間周波信号あるいは変調信号あるいはベー スバンド信号の複数サイクルに渡る窓枠関数を設け、かつ/または前記中間周波信 号あるいは変調信号あるいはベースバンド信号に対応したクロック信号発振器から出 力されるクロック信号を分岐しあるいは分周しあるいは遁倍して基準となる複数のクロ ック信号を発生し、前記中間周波信号あるいは変調信号あるいはベースバンド信号 の周波数および/あるいは位相をリアルタイムで演算することを特徴とする請求項第 1項から第 20項のいずれかに該当する距離測定装置  [21] In the signal processing means, a window frame function over a plurality of cycles of the intermediate frequency signal, modulation signal, or baseband signal is provided, and / or a clock corresponding to the intermediate frequency signal, modulation signal, or baseband signal A clock signal output from the signal oscillator is branched, divided, or multiplied to generate a plurality of reference clock signals, and the frequency of the intermediate frequency signal, modulation signal, or baseband signal and / or 21. The distance measuring device according to any one of claims 1 to 20, wherein the phase is calculated in real time.
[22] 前記信号処理手段が、前記信号発信手段と信号受信手段との間の距離測定を複 数回実施した結果を統計処理するための統計処理手段を有し、当該統計処理手段 を用いて前記発信手段から発信される超音波信号ある!/、は高周波信号あるいは光 信号の伝搬経路の分布状況、あるいはハイトパターンあるいはマルチパスの発生状 況を推定し、前記推定結果から前記距離測定の精度を高めることを特徴とする請求 項第 1項から第 21項のいずれかに該当する距離測定装置  [22] The signal processing means includes statistical processing means for statistically processing a result of performing the distance measurement between the signal transmitting means and the signal receiving means a plurality of times, and using the statistical processing means The ultrasonic signal transmitted from the transmitting means is! /, The distribution status of a high-frequency signal or optical signal propagation path, the height pattern or multipath generation status is estimated, and the accuracy of the distance measurement is estimated from the estimation result. The distance measuring device according to any one of claims 1 to 21, wherein
[23] 前記統計処理手段において、特定の発信手段からの距離測定を複数回継続して 実施し、あるいは複数のアンテナある!/、は送受波器を切替えて距離測定を実施し、 前記測定結果の分布とモデル化した距離測定の分布とを比較することで、前記伝搬 経路の分布状況あるいはマルチパスの発生状況を推定することを特徴とする請求項 第 22項に記載の距離測定装置 [23] In the statistical processing means, the distance measurement from a specific transmission means is continuously performed a plurality of times, or there are a plurality of antennas! /, The distance measurement is performed by switching the transducer, and the measurement result 23. The distance measuring device according to claim 22, wherein the distribution status of the propagation path or the occurrence status of multipaths is estimated by comparing the distribution of the distance and the distribution of the modeled distance measurement.
[24] 前記統計処理手段において、特定の発信手段からの距離測定を複数回継続して 実施し、および/あるいは特定の発信手段および/あるいは受信手段の個別のアン テナ毎に距離測定を実施し、比較的に距離を短く測定した結果を加重して平均しあ るいは移動平均を求めることを特徴とする請求項第 21項から第 23項のいずれかに 該当する距離測定装置 [24] In the statistical processing means, distance measurement from a specific transmission means is continuously performed a plurality of times, and / or distance measurement is performed for each individual antenna of the specific transmission means and / or reception means. The distance measuring device according to any one of claims 21 to 23, wherein a result obtained by measuring a relatively short distance is weighted and averaged or a moving average is obtained.
[25] 前記信号発信手段から発信される超音波信号あるいは高周波信号あるいは光信 号が、同期信号および/あるいは前記信号発信手段を特定できる識別信号および /あるいは前記信号発信手段に関する情報を含むことを特徴とする請求項第 1項か ら第 21項のいずれかに該当する距離測定装置  [25] The ultrasonic signal, the high-frequency signal, or the optical signal transmitted from the signal transmission unit includes a synchronization signal and / or an identification signal that can identify the signal transmission unit and / or information on the signal transmission unit. A distance measuring device corresponding to any one of claims 1 to 21
[26] 前記信号発信手段から発信される複数の測定信号が、多重化されかつ/または時 分割で発信されることを特徴とする請求項第 1項から第 21項のいずれかに該当する 距離測定装置  [26] The distance corresponding to any one of claims 1 to 21, wherein the plurality of measurement signals transmitted from the signal transmission means are multiplexed and / or transmitted in a time division manner. measuring device
[27] 前記信号発信手段と信号受信手段が異なる高さで設置され、前記高さの差分が既 知であり、前記信号発信手段と信号受信手段との間の距離の測定結果から、前記信 号発信手段と信号受信手段との間の水平方向の距離を求めることを特徴とする請求 項第 1項から第 21項のいずれかに該当する距離測定装置  [27] The signal transmission means and the signal reception means are installed at different heights, the difference in height is known, and the signal is obtained from the measurement result of the distance between the signal transmission means and the signal reception means. The distance measuring device according to any one of claims 1 to 21, wherein a distance in a horizontal direction between the signal transmitting means and the signal receiving means is obtained.
[28] 前記信号受信手段が複数のアンテナあるいは複数の送受波器と当該複数のアン テナあるいは複数の送受波器を切替えるための切替手段を有し、前記信号受信手 段および/あるいは信号発信手段の方向、あるいは前記信号受信手段および/あ るいは信号発信手段が向かっている方向、および/あるいは前記信号受信手段と信 号発信手段との間の距離を検知することを特徴とする請求項第 1項から第 21項のい ずれかに該当する距離測定装置  [28] The signal receiving means includes switching means for switching between a plurality of antennas or a plurality of transducers and the plurality of antennas or a plurality of transducers, and the signal receiving means and / or the signal transmitting means. And / or a distance between the signal receiving means and / or the signal transmitting means and / or a distance between the signal receiving means and the signal transmitting means. A distance measuring device that falls under any one of items 1 to 21
[29] 前記信号発信手段が携帯無線システムの基地局であり、前記信号受信手段が携 帯無線システムの携帯端末であることを特徴とする請求項第 1項から第 28項のいず れかに該当する距離測定装置  [29] Any one of [1] to [28], wherein the signal transmitting means is a base station of a portable radio system, and the signal receiving means is a portable terminal of a portable radio system. Distance measuring device applicable to
[30] 前記信号受信手段が携帯無線システムの基地局であり、前記信号発信手段が携 帯無線システムの携帯端末であることを特徴とする請求項第 1項から第 29項のいず れかに該当する距離測定装置 30. Any one of claims 1 to 29, wherein the signal receiving means is a base station of a portable radio system, and the signal transmission means is a portable terminal of a portable radio system. Distance measuring device applicable to
[31] 前記信号受信手段を測量システムの基準点あるいはトランジット側に固定して設置 し、前記信号発信手段を測量点あるいはポール側に設置し、当該測量点あるいはポ ール側までの距離および当該測量点あるいはポール側の方向および/あるいは高 さを測量することを特徴とする請求項第 1項から第 30項のいずれかに該当する距離 測定装置 [31] The signal receiving means is fixedly installed on the reference point or transit side of the survey system, the signal transmitting means is installed on the survey point or pole side, and the distance to the survey point or pole side and the relevant The distance measuring device according to any one of claims 1 to 30, characterized in that the direction and / or height of the survey point or pole side is measured.
[32] 前記信号受信手段が間隔を置いて離散的に設置され、前記信号発信手段を移動 体に装着し、あるいは移動体が携帯し、あるいは観測点に固定し、前記信号発信手 段の位置あるいは位置の変化を標定することを特徴とする請求項第 1項から第 30項 のいずれかに該当する距離測定装置  [32] The signal receiving means are discretely installed at intervals, and the signal transmitting means is mounted on a mobile body, or the mobile body is carried or fixed at an observation point, and the position of the signal transmitting means is A distance measuring device corresponding to any one of claims 1 to 30, wherein a change in position is determined.
[33] 前記信号発信手段が間隔を置いて離散的に設置され、前記信号受信手段を移動 体に装着し、あるいは移動体が携帯し、あるいは観測点に固定とし、当該信号受信 手段の位置あるいは位置の変化を標定することを特徴とする請求項第 1項から第 30 項のいずれかに該当する距離測定装置  [33] The signal transmitting means are discretely installed at intervals, and the signal receiving means is attached to the mobile body, or the mobile body is carried or fixed to the observation point, and the position of the signal receiving means or The distance measuring device according to any one of claims 1 to 30, wherein a change in position is determined.
[34] 前記信号発信手段および受信手段が同一あるいは異なる移動体に装着されある いは移動体により携帯されることを特徴とする請求項第 1項から第 30項のいずれか に該当する距離測定装置  [34] The distance measurement according to any one of claims 1 to 30, wherein the signal transmitting means and the receiving means are attached to or carried by the same or different moving body. Equipment
[35] 前記信号発信手段が信号受信手段を含み、自局以外の信号発信手段から発信さ れる発信要求を受信することによって、前記同期しあるいは直交し少なくとも周波数 が異なる複数の搬送波信号あるレ、は副搬送波信号を含む超音波信号あるいは高周 波信号あるいは光信号を発信することを特徴とする請求項第 1項から第 34項のいず れかに該当する距離測定装置  [35] The signal transmission means includes a signal reception means, and receives a transmission request transmitted from a signal transmission means other than its own station, whereby a plurality of carrier signals that are synchronized or orthogonal and have at least different frequencies are provided. 35. The distance measuring device according to any one of claims 1 to 34, which transmits an ultrasonic signal including a subcarrier signal, a high frequency signal, or an optical signal.
[36] 前記信号発信手段から発信される複数の信号間の周波数の変化あるいはチップレ ートの変化を小さな変化から大きな変化まで段階的に切替えることによって、前記信 号受信手段で受信する複数の信号から、長いレンジ力 短いレンジまで段階的に切 替えて距離を測定することを特徴とする請求項第 1項から第 35項のいずれかに該当 する距離測定装置  [36] A plurality of signals received by the signal receiving means by stepwise switching a change in frequency or a change in chip rate between a plurality of signals transmitted from the signal transmitting means from a small change to a large change. The distance measuring device according to any one of claims 1 to 35, wherein the distance is measured by gradually switching from a long range force to a short range.
PCT/JP2007/067235 2006-09-05 2007-09-04 Distance measuring device WO2008029812A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008533169A JPWO2008029812A1 (en) 2006-09-05 2007-09-04 Distance measuring device
US12/439,962 US20100207820A1 (en) 2006-09-05 2007-09-04 Distance measuring device

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
JP2006-240101 2006-09-05
JP2006240101 2006-09-05
JP2006-306405 2006-11-13
JP2006306405 2006-11-13
JP2006-335162 2006-12-12
JP2006335162 2006-12-12
JP2007005379 2007-01-15
JP2007-005379 2007-01-15
JP2007027385 2007-02-06
JP2007-027385 2007-02-06
JP2007084798 2007-03-28
JP2007-084798 2007-03-28
JP2007-106109 2007-04-13
JP2007106109 2007-04-13
JP2007-182548 2007-07-11
JP2007182548 2007-07-11

Publications (1)

Publication Number Publication Date
WO2008029812A1 true WO2008029812A1 (en) 2008-03-13

Family

ID=39157239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/067235 WO2008029812A1 (en) 2006-09-05 2007-09-04 Distance measuring device

Country Status (2)

Country Link
JP (1) JPWO2008029812A1 (en)
WO (1) WO2008029812A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010002225A (en) * 2008-06-18 2010-01-07 Toshiba Corp Apparatus, system and method for measuring position by utilizing visible light communication
JP2010019803A (en) * 2008-07-14 2010-01-28 Sony Corp Receiving device, wireless communication system, position estimation method, and program
US20110285592A1 (en) * 2008-12-03 2011-11-24 Leica Geosystems Ag Position determination method and geodetic measuring system
US20120268141A1 (en) * 2009-10-27 2012-10-25 Roland Gierlich Method and arrangement for measuring the signal delay between a transmitter and a receiver
KR101454827B1 (en) 2013-03-28 2014-10-28 부산대학교 산학협력단 High resolution distance measuring method by phase shifted value of ultrasonic signal
CN107678021A (en) * 2017-09-26 2018-02-09 南京索尔维电子科技有限公司 A kind of synchronous radio beat frequency phase range unit and method
JP2018526938A (en) * 2015-12-08 2018-09-13 華為技術有限公司Huawei Technologies Co.,Ltd. Data transmission method, base station and terminal device
US10209342B2 (en) * 2009-01-30 2019-02-19 The United States Of America, As Represented By The Secretary Of The Navy Electromagnetic radiation source locating system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001051044A (en) * 1999-08-04 2001-02-23 Nissan Motor Co Ltd Distance measuring apparatus
JP2006023261A (en) * 2003-07-28 2006-01-26 Rcs:Kk Active tag device
JP2006042201A (en) * 2004-07-29 2006-02-09 Advanced Telecommunication Research Institute International Distance measurement system, distance measuring method and communication equipment
JP2007010639A (en) * 2004-08-16 2007-01-18 Rcs:Kk Active tag apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001051044A (en) * 1999-08-04 2001-02-23 Nissan Motor Co Ltd Distance measuring apparatus
JP2006023261A (en) * 2003-07-28 2006-01-26 Rcs:Kk Active tag device
JP2006042201A (en) * 2004-07-29 2006-02-09 Advanced Telecommunication Research Institute International Distance measurement system, distance measuring method and communication equipment
JP2007010639A (en) * 2004-08-16 2007-01-18 Rcs:Kk Active tag apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010002225A (en) * 2008-06-18 2010-01-07 Toshiba Corp Apparatus, system and method for measuring position by utilizing visible light communication
JP2010019803A (en) * 2008-07-14 2010-01-28 Sony Corp Receiving device, wireless communication system, position estimation method, and program
US8456362B2 (en) 2008-07-14 2013-06-04 Sony Corporation Receiving apparatus, radio communication system, position estimation method and program
US20110285592A1 (en) * 2008-12-03 2011-11-24 Leica Geosystems Ag Position determination method and geodetic measuring system
US9316496B2 (en) * 2008-12-03 2016-04-19 Leica Geosystems Ag Position determination method and geodetic measuring system
US10209342B2 (en) * 2009-01-30 2019-02-19 The United States Of America, As Represented By The Secretary Of The Navy Electromagnetic radiation source locating system
US20120268141A1 (en) * 2009-10-27 2012-10-25 Roland Gierlich Method and arrangement for measuring the signal delay between a transmitter and a receiver
KR101454827B1 (en) 2013-03-28 2014-10-28 부산대학교 산학협력단 High resolution distance measuring method by phase shifted value of ultrasonic signal
JP2018526938A (en) * 2015-12-08 2018-09-13 華為技術有限公司Huawei Technologies Co.,Ltd. Data transmission method, base station and terminal device
US10568133B2 (en) 2015-12-08 2020-02-18 Huawei Technologies Co., Ltd. Data sending method, base station, and terminal device
CN107678021A (en) * 2017-09-26 2018-02-09 南京索尔维电子科技有限公司 A kind of synchronous radio beat frequency phase range unit and method

Also Published As

Publication number Publication date
JPWO2008029812A1 (en) 2010-01-21

Similar Documents

Publication Publication Date Title
US20100207820A1 (en) Distance measuring device
US10416301B2 (en) Distance measurement between two nodes of a radio network
CN107076842B (en) Indoor position location using a delayed scanning directional reflector
US20180088221A1 (en) Multi-radar system
CN101398483B (en) Detection and ranging apparatus and detection and ranging method
WO2008029812A1 (en) Distance measuring device
JP5407856B2 (en) Multiband transceiver and positioning system using the transceiver
US20180231649A1 (en) Systems and methods of wireless position tracking
US8749433B2 (en) Multiplexing receiver system
US20170322294A1 (en) System and method for enhanced point-to-point direction finding
JP4123494B2 (en) Mobile object search system
US11994604B2 (en) System and methods for improving secure phase-based positioning accuracy
JP2006023261A (en) Active tag device
JP5683805B2 (en) Positioning device
TW201525508A (en) Localising method and wireless nodes of CSS localization system
JP2007240534A (en) Active tag device
JP2009210372A (en) Distance measuring device
EP2815249B1 (en) Method and apparatus for estimating a distance and a location through near-field multi-frequency radio transmissions
CN211293246U (en) Micro-deformation remote measuring system based on wireless synchronization technology
JP5611294B2 (en) Detecting and ranging device
JP2001183447A (en) Range finding method and device
Roehr et al. Novel secondary radar for precise distance and velocity measurement in multipath environments
Friedman et al. Angle-of-arrival-assisted relative interferometric localization using software defined radios
CN110515074B (en) Micro-deformation telemetry system and method based on wireless synchronization technology
Szilvasi et al. Interferometry in wireless sensor networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07806690

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2008533169

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12439962

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 07806690

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)