WO2008024116A1 - System and method to adjust medical imaging equipment - Google Patents

System and method to adjust medical imaging equipment Download PDF

Info

Publication number
WO2008024116A1
WO2008024116A1 PCT/US2006/033385 US2006033385W WO2008024116A1 WO 2008024116 A1 WO2008024116 A1 WO 2008024116A1 US 2006033385 W US2006033385 W US 2006033385W WO 2008024116 A1 WO2008024116 A1 WO 2008024116A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging machine
imaging
adjustment data
machine
sensor
Prior art date
Application number
PCT/US2006/033385
Other languages
French (fr)
Inventor
Kevin M. Crucs
Original Assignee
Apteryx, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apteryx, Inc. filed Critical Apteryx, Inc.
Priority to EP06813807A priority Critical patent/EP2057584A4/en
Priority to PCT/US2006/033385 priority patent/WO2008024116A1/en
Publication of WO2008024116A1 publication Critical patent/WO2008024116A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/542Control of apparatus or devices for radiation diagnosis involving control of exposure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • G06T1/0021Image watermarking
    • G06T1/005Robust watermarking, e.g. average attack or collusion attack resistant
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/60ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/63ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2201/00General purpose image data processing
    • G06T2201/005Image watermarking
    • G06T2201/0052Embedding of the watermark in the frequency domain
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/60ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
    • G16H10/65ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records stored on portable record carriers, e.g. on smartcards, RFID tags or CD

Definitions

  • Certain embodiments of the present invention relate to medical imaging equipment. More particularly, certain embodiments of the present invention relate to a system and method to automatically adjust certain parameters of medical imaging equipment such as, for example, a height of a sensor.
  • pan-tomograph X-ray images of each recruit's head may need to be taken to have an accurate dental record of each recruit.
  • a sensor of the imaging machine is rotated around the recruit's head.
  • the military typically has to deal with many recruits at one time. It is typical for the recruits to be lined up according to height and to image one recruit after another.
  • the imaging sensor of the imaging machine may need to be manually adjusted by, for example, an X-ray technician to correspond to the height of the next person (i.e., recruit) to be imaged.
  • Such manual adjustments are time consuming and, after imaging many recruits (perhaps thousands), much time is wasted that could be used by the X-ray technician to accomplish other tasks.
  • an X-ray dosage and time duration of exposure may need to be adjusted for each recruit to be imaged as well. For example, a higher X-ray dosage may need to be set for a next recruit to be imaged, who weighs more, than for a recruit that has just been imaged. Having to manually adjust an X-ray dosage for each recruit can also result in much wasted time. Other parameters of the imaging machine may have to be manually adjusted as well for different recruits.
  • a first embodiment of the present invention provides a method for automatically adjusting an imaging machine.
  • the method comprises retrieving demographic data of a next person to be imaged from a storage device using a processor-based platform and generating adjustment data based on the demographic data using the processor-based platform.
  • the method further comprises sending the adjustment data from the processor- based platform to an imaging machine to be used to image at least a portion of the next person.
  • the method also comprises adjusting at least one parameter of the imaging machine in response to the adjustment data and imaging at least a portion of the next person with the imaging machine after adjusting the at least one parameter.
  • Another embodiment of the present invention comprises a system for automatically adjusting parameters of an imaging machine.
  • the system includes a storage device for storing demographic information of at least one person to be imaged.
  • the system also includes a computerized device to retrieve the demographic information from the storage device and to generate adjustment data based on the demographic data for a next person to be imaged.
  • the system further includes an imaging machine to receive the adjustment data from the computerized device and to adjust at least one parameter of the imaging machine in response to the adjustment data.
  • a further embodiment of the present invention comprises a method for automatically adjusting a medical imaging machine.
  • the method comprises capturing sensed characteristic information from a next person to be medically imaged using a sensor device (e.g., a transmitter and a receiver) and transmitting the sensed characteristic information from the sensor device to a processor-based platform.
  • the method further comprises generating adjustment data based on the sensed characteristic information using the processor-based platform and sending the adjustment data from the processor- based platform to a medical imaging machine to be used to medically image at least a portion of the next person.
  • the method also includes adjusting at least one parameter of the medical imaging machine in response to the adjustment data and imaging at least a portion of the next person with the medical imaging machine after adjusting the at least one parameter.
  • Another embodiment of the present invention comprises a system for automatically adjusting parameters of a medical imaging machine.
  • the system includes a sensor device to capture sensed characteristic information of a next person to be medically imaged.
  • the system further includes a computer to receive the sensed characteristic information from the sensor device and to generate adjustment data based on the sensed characteristic information.
  • the system also includes a medical imaging machine to receive the adjustment data from the computer and to adjust at least one parameter of the medical imaging machine in response to the adjustment data.
  • Fig. IA is a schematic diagram of a first exemplary embodiment of a system for automatically adjusting parameters of an imaging machine, in accordance with various aspects of the present invention.
  • Fig. IB is a schematic diagram of a second exemplary embodiment of a system for automatically adjusting parameters of an imaging machine, in accordance with various aspects of the present invention.
  • FIG. 2 is a flowchart of a first exemplary embodiment of a method for automatically adjusting an imaging machine using the system of Fig. 1 or Fig. 2, in accordance with various aspects of the present invention.
  • FIG. 3 is a schematic diagram of a third exemplary embodiment of a system for automatically adjusting parameters of an imaging machine, in accordance with various aspects of the present invention.
  • FIG. 4 is a flowchart of a second exemplary embodiment of a method for automatically adjusting an imaging machine using the system of Fig. 3, in accordance with various aspects of the present invention.
  • FIG. 5 is a schematic diagram of a fourth exemplary embodiment of a system for automatically adjusting parameters of an imaging machine, in accordance with various aspects of the present invention.
  • demographic data/information any apriori data or information that relates to certain features of a person such as, for example, height, weight, age, sex, pregnancy status.
  • sensed characteristic information sensed data that captures features of a person such as, for example, a calibrated photographic image that allows a person's height to be ascertained, or a person's weight or mass.
  • adjustment data data that may be used by an imaging machine to adjust at least one parameter of the imaging machine such as, for example, a height position of an X-ray sensor of the imaging machine or an X-ray dosage amount of the imaging machine.
  • Fig. IA is a schematic diagram of a first exemplary embodiment of a system 100 for automatically adjusting parameters of an imaging machine 110, in accordance with various aspects of the present invention.
  • the system 100 comprises an imaging machine 110, a computer 120, and a storage device 130 such as a server hosting a database.
  • the computer 120 interfaces to both the storage device 130 and the imaging machine 110 via standard digital communication interfaces (wired or wireless).
  • the imaging machine 110 includes a re-positionable imaging sensor 115 (e.g., a medical transmitter/receiver). For example, the imaging sensor 115 may be moved up and down, depending on the height of a next person 140 to be imaged.
  • the imaging machine 110 may comprise an X-ray imaging machine for taking pan-tomograph images of people, or any other type of medical imaging machine that is used to image at least one portion of a person's body (e.g., ultrasound, X-ray, magnetic resonance, computed tomography (CT), etc.).
  • X-ray imaging machine for taking pan-tomograph images of people
  • CT computed tomography
  • the computer 120 may be a personal computer (PC), a work station, or any other processor-based platform or computerized device that may be used to accomplish the functions of the computer 120 as described herein.
  • the computer 120 may be a standalone platform or may be an integral part of the imaging machine 110, in accordance with various embodiments of the present invention.
  • the storage device 130 may be a server, a hard drive on a PC, a dedicated memory, a database, an imaging sensor such as, for example, a camera, or any other type of digital storage device that may be used to accomplish the functions of the storage device 130 as described herein, in accordance with various embodiments of the present invention.
  • the storage device 130 may be a standalone device or may be an integral part of the computer 120 or imaging machine 110, in accordance with various embodiments of the present invention.
  • the connection 125 between the computer 120 and the storage device 130 may be a network connection such that the storage device may be remotely located from the computer 120 and imaging machine 110.
  • the storage device 130 may be part of a DICOM compatible system, a patient list, or a practice management application, for example.
  • a database application hosted on the storage device 130 is used to manage the demographic data.
  • the demographic data may include, for example, a height, a weight, an age, and/or a sex of at least one person to be medically imaged. Other demographic data are possible as well.
  • Fig. 2 is a flowchart of a first exemplary embodiment of a method 200 for automatically adjusting an imaging machine 110 using the system 100 of Fig. 1, in accordance with various aspects of the present invention.
  • demographic data of a next person 140 to be imaged is retrieved from a storage device using a processor- based platform.
  • the computer 120 i.e., processor-based platform
  • the computer 120 may read height and weight information that was previously stored (i.e., apriori data) in the database of the storage device 130 for the next person 140 to be imaged.
  • adjustment data is generated based on the demographic data using the processor-based platform.
  • the height demographic data may be used by the computer 120 to generate a first adjustment data which will tell the imaging machine 110 how to position a height of the imaging sensor 115.
  • the height and weight demographic data may be used by the computer 120 to generate a second adjustment data which will tell the imaging machine 110 how to set an X-ray dosage amount to be delivered by the imaging machine 110 and a time duration of exposure.
  • the adjustment data is sent from the processor-based platform 120 to an imaging machine 110 to be used to image at least a portion of the next person 140.
  • the first and second adjustment data may be sent by the computer 120 to the imaging machine 110.
  • at least one parameter of the imaging machine 110 is automatically adjusted in response to the adjustment data.
  • the first and second adjustment data may be used by the imaging machine 110 to adjust a height position of the imaging sensor 115 and the X-ray dosage amount to be delivered by the imaging machine 110.
  • step 250 at least a portion of the next person 140 to be imaged is imaged with the imaging machine 110 using the adjusted parameters accomplished in step 240.
  • the person 140 stands at a pre-determined position with respect to the imaging machine 110.
  • the imaging sensor 115 is already positioned correctly to take a pan- tomograph image of the person's head and the X-ray dosage is already set to account for the fact that the person 140 is significantly overweight for his height.
  • step 260 a decision is made as to whether or not there is another person 141 to be subsequently imaged. If so, the method starts again at step 210, otherwise, the method ends.
  • the computer 120 knows the identity of the next person to be imaged 141 because the names of the persons to be imaged are retrieved alphabetically by the computer 120 and the persons to be imaged are lined-up in alphabetical order. Other pre-defined orders are possible as well.
  • a next person to be imaged (or an operator of the system 100) may speak the name or identification number of the next person to be imaged into a voice recognition device 150 which interfaces to the computer 120.
  • the computer 120 knows which corresponding demographic information to retrieve from the database.
  • Fig. IB is a schematic diagram of a second exemplary embodiment of a system 101 for automatically adjusting parameters of an imaging machine 110, in accordance with various aspects of the present invention.
  • the system 101 comprises an imaging machine 110, a computer 120, a storage device 142 and/or 143 (e.g., RF ID tags or bar code badges), and scanner/reader 160 (e.g., a bar code scanner/reader or an RFID interrogator/receiver).
  • the computer 120 interfaces to both the scanner/reader 160 and the imaging machine 110 via standard digital communication interfaces (wired or wireless).
  • the imaging machine 110 includes a re-positionable imaging sensor 115. For example, the imaging sensor 115 may be moved up and down, depending on the height of a next person 140 to be imaged.
  • the imaging machine 110 may comprise an X-ray imaging machine for taking pan-tomograph images of people, or any other type of medical imaging machine that is used to image at least one portion of a person's body (e.g., ultrasound, X-ray, magnetic resonance, computed tomography (CT), etc.).
  • X-ray imaging machine for taking pan-tomograph images of people
  • CT computed tomography
  • the computer 120 may be a personal computer (PC), a work station, or any other processor-based platform that may be used to accomplish the functions of the computer 120 as described herein.
  • the computer 120 may be a standalone platform or may be an integral part of the imaging machine 110, in accordance with various embodiments of the present invention.
  • the computer 120, the scanner/reader 160, or the combination thereof may be referred to as a computerized device.
  • the storage devices 142 and 143 may be RF ID tags worn by the persons to be imaged or badges with a bar code worn by the persons to be imaged.
  • Each RF ID tag and bar code badge contains the demographic information of the person the tag or badge belongs to.
  • the demographic data may include, for example, a height, a weight, an age, and/or a sex of at least one person to be medically imaged. Other demographic data are possible as well.
  • the scanner/reader 160 is an RFID interrogator/receiver which interrogates the RF ID tag 142 of the next person to be imaged and receives back the corresponding demographic information.
  • the scanner/reader 160 is a bar code scanner/reader which scans a bar code on the bar code badge 142 and reads the demographic information encoded in the bar code.
  • the demographic information is sent to the computer 120 where adjustment data is generated in response to the demographic data. Then, a parameter of the imaging machine 110 is adjusted in response to the adjustment parameters as described previously.
  • the RP ID tag and the bar code of the bar code badge, 142 or 143 may encode only an identification number of the corresponding person to be imaged.
  • the identification number would be read by the scanner/reader 160 and forwarded to the computer 120.
  • the actual demographic information may be stored on the computer 120 or, for example, in a database 130 on a server. The identification number is used to retrieve the corresponding demographic information for the next person to be imaged.
  • FIG. 3 is a schematic diagram of a third exemplary embodiment of a system 300 for automatically adjusting parameters of an imaging machine 310, in accordance with various aspects of the present invention.
  • the system 300 comprises an imaging machine 310, a computer 320, a sensor device 330 (e.g., a digital camera), and a scale 350.
  • the computer 320 interfaces to the sensor device 330, the imaging machine 310, and the scale 350 via standard digital communication interfaces (wired or wireless).
  • the imaging machine 310 includes a re-positionable imaging sensor 315. For example, the imaging sensor 315 may be moved up and down, depending on the height of a person 340 to be imaged.
  • the imaging machine 310 may comprise an X-ray imaging machine for taking pan-tomograph images of people, or any other type of medical imaging machine that is used to image at least one portion of a person's body (e.g., ultrasound, X-ray, magnetic resonance, computed tomography, etc.).
  • X-ray imaging machine for taking pan-tomograph images of people
  • any other type of medical imaging machine that is used to image at least one portion of a person's body (e.g., ultrasound, X-ray, magnetic resonance, computed tomography, etc.).
  • the computer 320 may be a personal computer (PC), a work station, or any other processor-based platform that may be used to accomplish the functions of the computer 320 as described herein.
  • the computer 320 may be a standalone platform or may be an integral part of the imaging machine 310 or the sensor device 330, in accordance with various embodiments of the present invention.
  • the sensor device 330 may be, for example, a calibrated digital camera or any other type of sensor device or biometric device that is capable of sensing and measuring at least one characteristic of the person to be imaged 340 (e.g., a laser device to measure a height of the person 340).
  • the sensor device 330 may be a standalone device or may be an integral part of the imaging machine 310 and/or the computer 320, for example.
  • the scale 350 may be a standard electronic scale that outputs a weight measurement when a person stands on the scale. The weight measurement data is electronically communicated (wired or wirelessly) to the computer 320.
  • Fig. 4 is a flowchart of a second exemplary embodiment of a method 400 for automatically adjusting an imaging machine 310 using the system 300 of Fig. 3, in accordance with various aspects of the present invention.
  • sensed characteristic information is captured from a next person to be medically imaged using at least one sensor device.
  • the camera 330 may capture a calibrated digital image (i.e., sensed characteristic information) of the next person to be medically imaged 340, or the scale 350 may capture a weight or mass measurement (i.e., sensed characteristic information) of the next person to be medically imaged 340.
  • the sensed characteristic information is transmitted from the at least one sensor device to a processor-based platform ' .
  • the calibrated digital image and the measured weight may be transmitted to the computer 320 in step 420.
  • the computer 320 may analyze the sensed characteristic data (e.g., the calibrated digital image) and ascertain the height of the next person 340 to be medically imaged.
  • adjustment data is generated based on the sensed characteristic information using the processor-based platform 320.
  • the computer 320 may take the height information of the person 340 and generate position data for the imaging sensor 315.
  • the computer 320 may take the weight information of the person 340 and generate a transmit dosage amount (e.g., an X-ray dosage amount) for the imaging sensor 315.
  • the adjustment data is sent to a medical imaging machine 310 to be used to medically image the next person 340.
  • the position data for the imaging sensor 315 may be sent from the computer 320 to the medical imaging machine 310.
  • at least one parameter of the medical imaging machine 310 is adjusted in response to the adjustment data.
  • the imaging sensor 315 is driven from a first position to a second position where the second position corresponds to a height of the next person 340 to be imaged.
  • step 460 the next person 340 to be imaged is imaged with the medical imaging machine 310 using the adjusted parameters accomplished in step 450.
  • the person 340 stands at a pre-determined position with respect to the imaging machine 310.
  • the imaging sensor 315 is already positioned correctly to take a pan-tomograph image of the person's head.
  • step 470 a decision is made as to whether or not there is another person to be subsequently imaged. If so, the method starts again at step 410, otherwise, the method ends.
  • Fig. 5 is a schematic diagram of a fourth exemplary embodiment of a system 500 for automatically adjusting parameters of an imaging machine 510, in accordance with various aspects of the present invention.
  • the system 500 of Fig. 5 is very similar to the system 300 of Fig. 3 except that, in Fig. 5, the sensor device 530 is a laser sensor which is used to measure the height of the next person to be imaged 540.
  • the laser sensor sends height information to the computer 520 such that the adjustable medical imaging sensor 515 may be adjusted to an appropriate height for the next person 540 to be medically imaged.
  • embodiments of the present invention provide a system and method for automatically adjusting parameters of an imaging machine.
  • the system comprises a computerized device to retrieve demographic data of a person to be imaged and to generate adjustment data from the demographic data.
  • the system further comprises an imaging machine that receives the adjustment data and adjusts certain parameters of the imaging machine in response to the adjustment data.
  • the adjusted imaging machine is set for imaging the next person to be imaged based on that person's demographic data in an automatic manner.
  • a user of the imaging machine is relieved from having to manually adjust the certain parameters (e.g., height position of an imaging sensor, X-ray dosage of the imaging machine).

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Primary Health Care (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • General Business, Economics & Management (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

A system (100) and method for automatically adjusting parameters of an imaging machine (110) are disclosed. The system comprises a storage device (130) for storing demographic information of at least one person to be imaged. The system (100) also includes a computerized platform (120) to retrieve the demographic information from the storage device (130) and to generate adjustment data based on the demographic data for a next person to be imaged. The system (100) further includes an imaging machine (110) to receive the adjustment data from the computer (120) and to adjust at least one parameter of the imaging machine (110) in response to the adjustment data.

Description

SYSTEM AND METHOD TO ADJUST MEDICAL IMAGING EQUIPMENT
TECHNICAL FIELD
[0001] Certain embodiments of the present invention relate to medical imaging equipment. More particularly, certain embodiments of the present invention relate to a system and method to automatically adjust certain parameters of medical imaging equipment such as, for example, a height of a sensor.
BACKGROUND OF THE INVENTION
[0002] The military often needs to take medical images of new recruits as part of their entrance process. For example, pan-tomograph X-ray images of each recruit's head may need to be taken to have an accurate dental record of each recruit. In capturing a pan- tomograph image, a sensor of the imaging machine is rotated around the recruit's head. The military typically has to deal with many recruits at one time. It is typical for the recruits to be lined up according to height and to image one recruit after another. However, as the height of each recruit may be different, the imaging sensor of the imaging machine may need to be manually adjusted by, for example, an X-ray technician to correspond to the height of the next person (i.e., recruit) to be imaged. Such manual adjustments are time consuming and, after imaging many recruits (perhaps thousands), much time is wasted that could be used by the X-ray technician to accomplish other tasks.
[0003] Also, an X-ray dosage and time duration of exposure may need to be adjusted for each recruit to be imaged as well. For example, a higher X-ray dosage may need to be set for a next recruit to be imaged, who weighs more, than for a recruit that has just been imaged. Having to manually adjust an X-ray dosage for each recruit can also result in much wasted time. Other parameters of the imaging machine may have to be manually adjusted as well for different recruits.
[0004] Further limitations and disadvantages of conventional, traditional, and proposed approaches will become apparent to one of skill in the art, through comparison of such systems and methods with the present invention as set forth in the remainder of the present application with reference to the drawings.
BRIEF SUMMARY OF THE INVENTION
[0005] A first embodiment of the present invention provides a method for automatically adjusting an imaging machine. The method comprises retrieving demographic data of a next person to be imaged from a storage device using a processor-based platform and generating adjustment data based on the demographic data using the processor-based platform. The method further comprises sending the adjustment data from the processor- based platform to an imaging machine to be used to image at least a portion of the next person. The method also comprises adjusting at least one parameter of the imaging machine in response to the adjustment data and imaging at least a portion of the next person with the imaging machine after adjusting the at least one parameter.
[0006] Another embodiment of the present invention comprises a system for automatically adjusting parameters of an imaging machine. The system includes a storage device for storing demographic information of at least one person to be imaged. The system also includes a computerized device to retrieve the demographic information from the storage device and to generate adjustment data based on the demographic data for a next person to be imaged. The system further includes an imaging machine to receive the adjustment data from the computerized device and to adjust at least one parameter of the imaging machine in response to the adjustment data.
[0007] A further embodiment of the present invention comprises a method for automatically adjusting a medical imaging machine. The method comprises capturing sensed characteristic information from a next person to be medically imaged using a sensor device (e.g., a transmitter and a receiver) and transmitting the sensed characteristic information from the sensor device to a processor-based platform. The method further comprises generating adjustment data based on the sensed characteristic information using the processor-based platform and sending the adjustment data from the processor- based platform to a medical imaging machine to be used to medically image at least a portion of the next person. The method also includes adjusting at least one parameter of the medical imaging machine in response to the adjustment data and imaging at least a portion of the next person with the medical imaging machine after adjusting the at least one parameter.
[0008] Another embodiment of the present invention comprises a system for automatically adjusting parameters of a medical imaging machine. The system includes a sensor device to capture sensed characteristic information of a next person to be medically imaged. The system further includes a computer to receive the sensed characteristic information from the sensor device and to generate adjustment data based on the sensed characteristic information. The system also includes a medical imaging machine to receive the adjustment data from the computer and to adjust at least one parameter of the medical imaging machine in response to the adjustment data.
[0009] These and other advantages and novel features of the present invention, as well as details of an illustrated embodiment thereof, will be more fully understood from the following description and drawings.
BRIEF DESCRIPTION OF SEVERAL VIEWS OF THE DRAWINGS
[0010] Fig. IA is a schematic diagram of a first exemplary embodiment of a system for automatically adjusting parameters of an imaging machine, in accordance with various aspects of the present invention. [0011] Fig. IB is a schematic diagram of a second exemplary embodiment of a system for automatically adjusting parameters of an imaging machine, in accordance with various aspects of the present invention.
[0012] Fig. 2 is a flowchart of a first exemplary embodiment of a method for automatically adjusting an imaging machine using the system of Fig. 1 or Fig. 2, in accordance with various aspects of the present invention.
[0013] Fig. 3 is a schematic diagram of a third exemplary embodiment of a system for automatically adjusting parameters of an imaging machine, in accordance with various aspects of the present invention.
[0014] Fig. 4 is a flowchart of a second exemplary embodiment of a method for automatically adjusting an imaging machine using the system of Fig. 3, in accordance with various aspects of the present invention.
[0015] Fig. 5 is a schematic diagram of a fourth exemplary embodiment of a system for automatically adjusting parameters of an imaging machine, in accordance with various aspects of the present invention.
DETAILED DESCRIPTION OF THE INVENTION
[0016] For purposes of describing embodiments of the present invention, the following definitions are to be used and, if necessary, supercede any commonly understood definition of the terms.
[0017] demographic data/information - any apriori data or information that relates to certain features of a person such as, for example, height, weight, age, sex, pregnancy status.
[0018] sensed characteristic information — sensed data that captures features of a person such as, for example, a calibrated photographic image that allows a person's height to be ascertained, or a person's weight or mass. [0019] adjustment data - data that may be used by an imaging machine to adjust at least one parameter of the imaging machine such as, for example, a height position of an X-ray sensor of the imaging machine or an X-ray dosage amount of the imaging machine.
[0020] Fig. IA is a schematic diagram of a first exemplary embodiment of a system 100 for automatically adjusting parameters of an imaging machine 110, in accordance with various aspects of the present invention. The system 100 comprises an imaging machine 110, a computer 120, and a storage device 130 such as a server hosting a database. The computer 120 interfaces to both the storage device 130 and the imaging machine 110 via standard digital communication interfaces (wired or wireless). The imaging machine 110 includes a re-positionable imaging sensor 115 (e.g., a medical transmitter/receiver). For example, the imaging sensor 115 may be moved up and down, depending on the height of a next person 140 to be imaged.
[0021] In accordance with various embodiments of the present invention, the imaging machine 110 may comprise an X-ray imaging machine for taking pan-tomograph images of people, or any other type of medical imaging machine that is used to image at least one portion of a person's body (e.g., ultrasound, X-ray, magnetic resonance, computed tomography (CT), etc.).
[0022] In accordance with various embodiments of the present invention, the computer 120 may be a personal computer (PC), a work station, or any other processor-based platform or computerized device that may be used to accomplish the functions of the computer 120 as described herein. The computer 120 may be a standalone platform or may be an integral part of the imaging machine 110, in accordance with various embodiments of the present invention.
[0023] The storage device 130 may be a server, a hard drive on a PC, a dedicated memory, a database, an imaging sensor such as, for example, a camera, or any other type of digital storage device that may be used to accomplish the functions of the storage device 130 as described herein, in accordance with various embodiments of the present invention. The storage device 130 may be a standalone device or may be an integral part of the computer 120 or imaging machine 110, in accordance with various embodiments of the present invention.
[0024] If the storage device 130 is a standalone device, the connection 125 between the computer 120 and the storage device 130 may be a network connection such that the storage device may be remotely located from the computer 120 and imaging machine 110. The storage device 130 may be part of a DICOM compatible system, a patient list, or a practice management application, for example. A database application hosted on the storage device 130 is used to manage the demographic data. The demographic data may include, for example, a height, a weight, an age, and/or a sex of at least one person to be medically imaged. Other demographic data are possible as well.
[0025] Fig. 2 is a flowchart of a first exemplary embodiment of a method 200 for automatically adjusting an imaging machine 110 using the system 100 of Fig. 1, in accordance with various aspects of the present invention. In step 210, demographic data of a next person 140 to be imaged is retrieved from a storage device using a processor- based platform. For example, the computer 120 (i.e., processor-based platform) may read height and weight information that was previously stored (i.e., apriori data) in the database of the storage device 130 for the next person 140 to be imaged. In step 220, adjustment data is generated based on the demographic data using the processor-based platform. For example, the height demographic data may be used by the computer 120 to generate a first adjustment data which will tell the imaging machine 110 how to position a height of the imaging sensor 115. Also, the height and weight demographic data may be used by the computer 120 to generate a second adjustment data which will tell the imaging machine 110 how to set an X-ray dosage amount to be delivered by the imaging machine 110 and a time duration of exposure.
[0026] In step 230, the adjustment data is sent from the processor-based platform 120 to an imaging machine 110 to be used to image at least a portion of the next person 140. For example, the first and second adjustment data may be sent by the computer 120 to the imaging machine 110. In step 240, at least one parameter of the imaging machine 110 is automatically adjusted in response to the adjustment data. For example, the first and second adjustment data may be used by the imaging machine 110 to adjust a height position of the imaging sensor 115 and the X-ray dosage amount to be delivered by the imaging machine 110.
[0027] In step 250, at least a portion of the next person 140 to be imaged is imaged with the imaging machine 110 using the adjusted parameters accomplished in step 240. For example, the person 140 stands at a pre-determined position with respect to the imaging machine 110. The imaging sensor 115 is already positioned correctly to take a pan- tomograph image of the person's head and the X-ray dosage is already set to account for the fact that the person 140 is significantly overweight for his height. In step 260, a decision is made as to whether or not there is another person 141 to be subsequently imaged. If so, the method starts again at step 210, otherwise, the method ends.
[0028] In accordance with an embodiment of the present invention, the computer 120 knows the identity of the next person to be imaged 141 because the names of the persons to be imaged are retrieved alphabetically by the computer 120 and the persons to be imaged are lined-up in alphabetical order. Other pre-defined orders are possible as well. Alternatively, a next person to be imaged (or an operator of the system 100) may speak the name or identification number of the next person to be imaged into a voice recognition device 150 which interfaces to the computer 120. As a result, the computer 120 knows which corresponding demographic information to retrieve from the database.
[0029] Fig. IB is a schematic diagram of a second exemplary embodiment of a system 101 for automatically adjusting parameters of an imaging machine 110, in accordance with various aspects of the present invention. The system 101 comprises an imaging machine 110, a computer 120, a storage device 142 and/or 143 (e.g., RF ID tags or bar code badges), and scanner/reader 160 (e.g., a bar code scanner/reader or an RFID interrogator/receiver). The computer 120 interfaces to both the scanner/reader 160 and the imaging machine 110 via standard digital communication interfaces (wired or wireless). The imaging machine 110 includes a re-positionable imaging sensor 115. For example, the imaging sensor 115 may be moved up and down, depending on the height of a next person 140 to be imaged.
[0030] In accordance with various embodiments of the present invention, the imaging machine 110 may comprise an X-ray imaging machine for taking pan-tomograph images of people, or any other type of medical imaging machine that is used to image at least one portion of a person's body (e.g., ultrasound, X-ray, magnetic resonance, computed tomography (CT), etc.).
[0031] In accordance with various embodiments of the present invention, the computer 120 may be a personal computer (PC), a work station, or any other processor-based platform that may be used to accomplish the functions of the computer 120 as described herein. The computer 120 may be a standalone platform or may be an integral part of the imaging machine 110, in accordance with various embodiments of the present invention. In accordance with various embodiments of the present invention, the computer 120, the scanner/reader 160, or the combination thereof may be referred to as a computerized device.
[0032] The storage devices 142 and 143 may be RF ID tags worn by the persons to be imaged or badges with a bar code worn by the persons to be imaged. Each RF ID tag and bar code badge contains the demographic information of the person the tag or badge belongs to. The demographic data may include, for example, a height, a weight, an age, and/or a sex of at least one person to be medically imaged. Other demographic data are possible as well. In the case of an RF ID tag, the scanner/reader 160 is an RFID interrogator/receiver which interrogates the RF ID tag 142 of the next person to be imaged and receives back the corresponding demographic information. In the case of a bar code badge, the scanner/reader 160 is a bar code scanner/reader which scans a bar code on the bar code badge 142 and reads the demographic information encoded in the bar code. In either case, the demographic information is sent to the computer 120 where adjustment data is generated in response to the demographic data. Then, a parameter of the imaging machine 110 is adjusted in response to the adjustment parameters as described previously.
[0033] As an alternative, the RP ID tag and the bar code of the bar code badge, 142 or 143, may encode only an identification number of the corresponding person to be imaged. In such a case, the identification number would be read by the scanner/reader 160 and forwarded to the computer 120. The actual demographic information may be stored on the computer 120 or, for example, in a database 130 on a server. The identification number is used to retrieve the corresponding demographic information for the next person to be imaged.
[0034] Fig. 3 is a schematic diagram of a third exemplary embodiment of a system 300 for automatically adjusting parameters of an imaging machine 310, in accordance with various aspects of the present invention. The system 300 comprises an imaging machine 310, a computer 320, a sensor device 330 (e.g., a digital camera), and a scale 350. The computer 320 interfaces to the sensor device 330, the imaging machine 310, and the scale 350 via standard digital communication interfaces (wired or wireless). The imaging machine 310 includes a re-positionable imaging sensor 315. For example, the imaging sensor 315 may be moved up and down, depending on the height of a person 340 to be imaged.
[0035] In accordance with various embodiments of the present invention, the imaging machine 310 may comprise an X-ray imaging machine for taking pan-tomograph images of people, or any other type of medical imaging machine that is used to image at least one portion of a person's body (e.g., ultrasound, X-ray, magnetic resonance, computed tomography, etc.).
[0036] In accordance with various embodiments of the present invention, the computer 320 may be a personal computer (PC), a work station, or any other processor-based platform that may be used to accomplish the functions of the computer 320 as described herein. The computer 320 may be a standalone platform or may be an integral part of the imaging machine 310 or the sensor device 330, in accordance with various embodiments of the present invention.
[0037] The sensor device 330 may be, for example, a calibrated digital camera or any other type of sensor device or biometric device that is capable of sensing and measuring at least one characteristic of the person to be imaged 340 (e.g., a laser device to measure a height of the person 340). The sensor device 330 may be a standalone device or may be an integral part of the imaging machine 310 and/or the computer 320, for example. The scale 350 may be a standard electronic scale that outputs a weight measurement when a person stands on the scale. The weight measurement data is electronically communicated (wired or wirelessly) to the computer 320.
[0038] Fig. 4 is a flowchart of a second exemplary embodiment of a method 400 for automatically adjusting an imaging machine 310 using the system 300 of Fig. 3, in accordance with various aspects of the present invention. In step 410, sensed characteristic information is captured from a next person to be medically imaged using at least one sensor device. For example, the camera 330 may capture a calibrated digital image (i.e., sensed characteristic information) of the next person to be medically imaged 340, or the scale 350 may capture a weight or mass measurement (i.e., sensed characteristic information) of the next person to be medically imaged 340. In step 420, the sensed characteristic information is transmitted from the at least one sensor device to a processor-based platform'. For example, the calibrated digital image and the measured weight may be transmitted to the computer 320 in step 420.
[0039] The computer 320 may analyze the sensed characteristic data (e.g., the calibrated digital image) and ascertain the height of the next person 340 to be medically imaged. In step 430, adjustment data is generated based on the sensed characteristic information using the processor-based platform 320. For example, the computer 320 may take the height information of the person 340 and generate position data for the imaging sensor 315. Also, the computer 320 may take the weight information of the person 340 and generate a transmit dosage amount (e.g., an X-ray dosage amount) for the imaging sensor 315.
[0040] In step 440, the adjustment data is sent to a medical imaging machine 310 to be used to medically image the next person 340. For example, the position data for the imaging sensor 315 may be sent from the computer 320 to the medical imaging machine 310. In step 450, at least one parameter of the medical imaging machine 310 is adjusted in response to the adjustment data. For example, the imaging sensor 315 is driven from a first position to a second position where the second position corresponds to a height of the next person 340 to be imaged.
[0041] In step 460, the next person 340 to be imaged is imaged with the medical imaging machine 310 using the adjusted parameters accomplished in step 450. For example, the person 340 stands at a pre-determined position with respect to the imaging machine 310. The imaging sensor 315 is already positioned correctly to take a pan-tomograph image of the person's head. In step 470, a decision is made as to whether or not there is another person to be subsequently imaged. If so, the method starts again at step 410, otherwise, the method ends.
[0042] Fig. 5 is a schematic diagram of a fourth exemplary embodiment of a system 500 for automatically adjusting parameters of an imaging machine 510, in accordance with various aspects of the present invention. The system 500 of Fig. 5 is very similar to the system 300 of Fig. 3 except that, in Fig. 5, the sensor device 530 is a laser sensor which is used to measure the height of the next person to be imaged 540. The laser sensor sends height information to the computer 520 such that the adjustable medical imaging sensor 515 may be adjusted to an appropriate height for the next person 540 to be medically imaged.
[0043] In summary, embodiments of the present invention provide a system and method for automatically adjusting parameters of an imaging machine. The system comprises a computerized device to retrieve demographic data of a person to be imaged and to generate adjustment data from the demographic data. The system further comprises an imaging machine that receives the adjustment data and adjusts certain parameters of the imaging machine in response to the adjustment data. As a result, the adjusted imaging machine is set for imaging the next person to be imaged based on that person's demographic data in an automatic manner. A user of the imaging machine is relieved from having to manually adjust the certain parameters (e.g., height position of an imaging sensor, X-ray dosage of the imaging machine).
[0044] While the invention has been described with reference to certain embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from its scope. Therefore, it is intended that the invention not be limited to the particular embodiments disclosed, but that the invention will include all embodiments falling within the scope of the appended claims.

Claims

CLAIMSWhat is claimed is:
1. A method for automatically adjusting an imaging machine, said method comprising:
retrieving demographic data of a next person to be imaged from a storage device using a processor-based platform;
generating adjustment data based on said demographic data using said processor-based platform;
sending said adjustment data from said processor-based platform to an imaging machine to be used to image at least a portion of said next person;
adjusting at least one parameter of said imaging machine in response to said adjustment data; and
imaging at least a portion of said next person with said imaging machine after adjusting said at least one parameter.
2. The method of claim 1 wherein said storage device comprises at least one of a server, a hard drive, a personal computer (PC), an RF ID tag, and a bar code badge.
3. The method of claim 1 wherein said storage device hosts a database application for managing said demographic information on said storage device.
4. The method of claim 1 wherein said demographic information comprises at least one of a height of said next person to be imaged, a weight of said next person to be imaged, an age of said next person to be imaged, and a sex of said next person to be imaged.
5. The method of claim 1 wherein said processor-based platform comprises at least one of a personal computer (PC), a work station, an RF ID interrogator/receiver, and a bar code scanner/reader.
6. The method of claim 1 wherein said processor-based platform in an integral part of said imaging machine.
7. The method of claim 1 wherein said adjustment data comprises position information for an imaging sensor of said imaging machine.
8. The method of claim 1 wherein said adjustment data comprises X-ray dosage information for said imaging machine.
9. The method of claim 1 wherein said imaging machine comprises an X-ray imaging sensor for taking pan-tomograph images of people.
10. The method of claim 1 wherein said imaging machine comprises one of an ultrasound imaging machine, an X-ray imaging machine, a magnetic resonance imaging machine, and a computed tomography imaging machine.
11. The method of claim 1 wherein said imaging machine includes at least one imaging sensor.
12. The method of claim 1 wherein said at least one parameter comprises a height of an imaging sensor of said imaging machine.
13. The method of claim 1 wherein said at least one parameter comprises a dosage amount to be applied by a transmitter of said imaging machine when imaging said next person and a time duration of exposure.
14. A method for automatically adjusting a medical imaging machine, said method comprising:
capturing sensed characteristic information from a next person to be medically imaged using at least one sensor device;
transmitting said sensed characteristic information from said at least one sensor device to a processor-based platform;
generating adjustment data based on said sensed characteristic information using said processor-based platform;
sending said adjustment data from said processor-based platform to a medical imaging machine to be used to medically image at least a portion of said next person;
adjusting at least one parameter of said medical imaging machine in response to said adjustment data; and
imaging at least a portion of said next person with said medical imaging machine after adjusting said at least one parameter.
15. The method of claim 14 wherein said at least one sensor device comprises at least one of a camera device, a laser device, and a scale device.
16. The method of claim 14 wherein said sensed characteristic information . includes at least one of a height of said next person to be medically imaged and a weight of said next person to be medically imaged.
17. The method of claim 14 wherein said processor-based platform comprises at least one of a personal computer (PC) and a work station.
18. The method of claim 14 wherein said processor-based platform is an integral part of said imaging machine.
19. The method of claim 14 wherein said processor-based platform is an integral part of said sensor device.
20. The method of claim 14 wherein said adjustment data comprises position information for an imaging sensor of said imaging machine.
21. The method of claim 14 wherein said adjustment data comprises X-ray dosage information for said imaging machine.
22. The method of claim 14 wherein said imaging machine comprises an X-ray imaging sensor for taking pan-tomograph images of people.
23. The method of claim 14 wherein said imaging machine comprises one of an ultrasound imaging machine, an X-ray imaging machine, a magnetic resonance imaging machine, and a computed tomography imaging machine.
24. The method of claim 14 wherein said imaging machine includes at least one imaging sensor.
25. The method of claim 14 wherein said at least one parameter comprises a height of an imaging sensor of said imaging machine.
26. The method of claim 14 wherein said at least one parameter comprises a dosage amount to be applied by a transmitter of said imaging machine when medically imaging said next person.
27. A system for automatically adjusting parameters of an imaging machine, said system comprising: a storage device for storing demographic information of at least one person to be imaged;
a computerized device to retrieve said demographic information from said storage device and to generate adjustment data based on said demographic data for a next person to be imaged; and
an imaging machine to receive said adjustment data from said computerized device and to adjust at least one parameter of said imaging machine in response to said adjustment data.
28. The system of claim 27 wherein said storage device comprises at least one of a server, a hard drive, a personal computer (PC), an RP ID tag, and a bar code badge.
29. The system of claim 27 wherein said storage device hosts a database application for managing said demographic information on said storage device.
30. The system of claim 27 wherein said demographic information comprises at least one of a height of said at least one person, a weight of said at least one person, an age of said at least one person, and a sex of said at least one person.
31. The system of claim 27 wherein said computerized device comprises at least one of a personal computer (PC)5 a work station, an RF ID interrogator/receiver, and a bar code scanner/reader.
32. The system of claim 27 wherein said computerized device is an integral part of said imaging machine.
33. The system of claim 27 wherein said adjustment data comprises position information for an imaging sensor of said imaging machine.
34. The system of claim 27 wherein said adjustment data comprises X-ray dosage information for said imaging machine.
35. The system of claim 27 wherein said imaging machine comprises an X-ray imaging sensor for taking pan-tomograph images of people.
36. The system of claim 27 wherein said imaging machine comprises one of an ultrasound imaging machine, an X-ray imaging machine, a magnetic resonance imaging machine, and a computed tomography imaging machine.
37. The system of claim 27 wherein said imaging machine includes at least one imaging sensor.
38. The system of claim 27 wherein said at least one parameter comprises a height of an imaging sensor of said imaging machine.
39. The system of claim 27 wherein said at least one parameter comprises a dosage amount to be applied by a transmitter of said imaging machine when imaging said at least one person.
40. A system for automatically adjusting parameters of a medical imaging machine, said system comprising:
at least one sensor device to capture sensed characteristic information of a next person to be medically imaged;
a computer to receive said sensed characteristic information from said at least one sensor device and to generate adjustment data based on said sensed characteristic information; and
a medical imaging machine to receive said adjustment data from said computer and to adjust at least one parameter of said medical imaging machine in response to said adjustment data.
41. The system of claim 40 wherein said at least one sensor device comprises at least one of a camera device, a laser device, and a scale device.
42. The system of claim 40 wherein said sensed characteristic information includes at least one of a height of said next person to be medically imaged and a weight of said next person to be medically imaged.
43. The system of claim 40 wherein said computer comprises at least one of a personal computer (PC) and a work station.
44. The system of claim 40 wherein said computer is an integral part of said imaging machine.
45. The system of claim 40 wherein said computer is an integral part of said sensor device.
46. The system of claim 40 wherein said adjustment data comprises position information for an imaging sensor of said imaging machine.
47. The system of claim 40 wherein said adjustment data comprises X-ray dosage information for said imaging machine.
48. The system of claim 40 wherein said imaging machine comprises an X-ray imaging sensor for taking pan-tomograph images of people.
49. The system of claim 40 wherein said imaging machine comprises one of an ultrasound imaging machine, and X-ray imaging machine, a magnetic resonance imaging machine, and a computed tomography imaging machine.
50. The system of claim 40 wherein said imaging machine includes at least one imaging sensor.
51. The system of claim 40 wherein said at least one parameter comprises a height of an imaging sensor of said imaging machine.
52. The system of claim 40 wherein said at least one parameter comprises a dosage amount to be applied by a transmitter of said imaging machine when medically imaging said next person.
PCT/US2006/033385 2006-08-24 2006-08-24 System and method to adjust medical imaging equipment WO2008024116A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06813807A EP2057584A4 (en) 2006-08-24 2006-08-24 System and method to adjust medical imaging equipment
PCT/US2006/033385 WO2008024116A1 (en) 2006-08-24 2006-08-24 System and method to adjust medical imaging equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2006/033385 WO2008024116A1 (en) 2006-08-24 2006-08-24 System and method to adjust medical imaging equipment

Publications (1)

Publication Number Publication Date
WO2008024116A1 true WO2008024116A1 (en) 2008-02-28

Family

ID=39107090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/033385 WO2008024116A1 (en) 2006-08-24 2006-08-24 System and method to adjust medical imaging equipment

Country Status (2)

Country Link
EP (1) EP2057584A4 (en)
WO (1) WO2008024116A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5469353A (en) * 1993-11-26 1995-11-21 Access Radiology Corp. Radiological image interpretation apparatus and method
US5592374A (en) * 1993-07-02 1997-01-07 Eastman Kodak Company Patient identification and x-ray exam data collection bar code system
US6287257B1 (en) * 1999-06-29 2001-09-11 Acuson Corporation Method and system for configuring a medical diagnostic ultrasound imaging system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8814203U1 (en) * 1988-11-09 1990-03-15 Muthmann, Karl-Dieter, 5810 Witten, De
DE4210120C1 (en) * 1992-03-27 1993-08-05 Siemens Ag, 8000 Muenchen, De X=ray appts. for peripheral angiography - calculates relative positioning of appts. and patient support using data derived from patient
WO2003010555A2 (en) * 2001-07-24 2003-02-06 Case Western Reserve University X-ray dose control based on patient size
DE10333295A1 (en) * 2003-07-22 2005-02-24 Siemens Ag X-ray diagnostic device with a patient sitting stitch

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5592374A (en) * 1993-07-02 1997-01-07 Eastman Kodak Company Patient identification and x-ray exam data collection bar code system
US5469353A (en) * 1993-11-26 1995-11-21 Access Radiology Corp. Radiological image interpretation apparatus and method
US6287257B1 (en) * 1999-06-29 2001-09-11 Acuson Corporation Method and system for configuring a medical diagnostic ultrasound imaging system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2057584A4 *

Also Published As

Publication number Publication date
EP2057584A4 (en) 2012-09-05
EP2057584A1 (en) 2009-05-13

Similar Documents

Publication Publication Date Title
US7769218B2 (en) System and method to adjust medical imaging equipment
AU2016263106B2 (en) Systems and methods for providing guidance for a robotic medical procedure
US7573034B2 (en) Mobile radiography image recording system
CN100435750C (en) Dental Diagnosing and dispensing apparatus and system and method for providing same
US20150265239A1 (en) X-ray image photographing apparatus and management method
US20060242159A1 (en) Methods and apparatus for distributing digital medical images via a redirected system
WO2005066871A2 (en) Patient information management system and method
US20110261194A1 (en) System for performing clinical trials
CN102711603A (en) Diagnostic imaging device, diagnostic imaging method, medical image server, and medical image storing method
JPWO2007105726A1 (en) Medical imaging system
US20120259886A1 (en) System and method for the automatic generation of a query to a dicom server
WO2021114638A1 (en) Image processing method, apparatus, electronic device, and storage medium
KR20170028931A (en) Systems and methods for managing adverse reactions in contrast media-based medical procedures
US9002075B2 (en) Interpretation support system
KR102041888B1 (en) Dental care system
JP4525095B2 (en) Medical image photographing system and medical image management method
JP4552487B2 (en) Radiation image detection confirmation network system
KR20200007298A (en) X-ray imaging system and method based on photographed images
WO2008024116A1 (en) System and method to adjust medical imaging equipment
JP2014146275A (en) Authentication device, authentication method, and program
JP6391785B2 (en) Imaging apparatus, authentication method, and program
JP6822459B2 (en) Medical image classification system, medical image classification device, medical image classification method and program
JP7324505B2 (en) X-ray dose control system and X-ray dose control method
US20030204563A1 (en) Diagnosis delivering method
JP4400168B2 (en) Medical imaging system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06813807

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2006813807

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006813807

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU